--- /srv/rebuilderd/tmp/rebuilderdxkamE1/inputs/axiom-databases_20210105dp1-1_all.deb +++ /srv/rebuilderd/tmp/rebuilderdxkamE1/out/axiom-databases_20210105dp1-1_all.deb ├── file list │ @@ -1,3 +1,3 @@ │ -rw-r--r-- 0 0 0 4 2025-04-30 17:11:29.000000 debian-binary │ --rw-r--r-- 0 0 0 1844 2025-04-30 17:11:29.000000 control.tar.xz │ --rw-r--r-- 0 0 0 935184 2025-04-30 17:11:29.000000 data.tar.xz │ +-rw-r--r-- 0 0 0 1852 2025-04-30 17:11:29.000000 control.tar.xz │ +-rw-r--r-- 0 0 0 947572 2025-04-30 17:11:29.000000 data.tar.xz ├── control.tar.xz │ ├── control.tar │ │ ├── ./control │ │ │ @@ -1,13 +1,13 @@ │ │ │ Package: axiom-databases │ │ │ Source: axiom │ │ │ Version: 20210105dp1-1 │ │ │ Architecture: all │ │ │ Maintainer: Camm Maguire │ │ │ -Installed-Size: 11326 │ │ │ +Installed-Size: 11329 │ │ │ Depends: tex-common (>= 6.13) │ │ │ Section: math │ │ │ Priority: optional │ │ │ Description: General purpose computer algebra system: generated text databases │ │ │ Axiom is useful for │ │ │ research and development of mathematical algorithms. It defines a │ │ │ strongly typed, mathematically correct type hierarchy. It has a │ │ ├── ./md5sums │ │ │ ├── ./md5sums │ │ │ │┄ Files differ ├── data.tar.xz │ ├── data.tar │ │ ├── file list │ │ │ @@ -2,24 +2,24 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-04-30 17:11:29.000000 ./usr/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-04-30 17:11:29.000000 ./usr/lib/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-04-30 17:11:29.000000 ./usr/lib/axiom-20210105dp1/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-04-30 17:11:29.000000 ./usr/lib/axiom-20210105dp1/algebra/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-04-30 17:11:29.000000 ./usr/share/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-04-30 17:11:29.000000 ./usr/share/axiom-20210105dp1/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-04-30 17:11:29.000000 ./usr/share/axiom-20210105dp1/algebra/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2626657 2025-04-30 17:11:29.000000 ./usr/share/axiom-20210105dp1/algebra/browse.daase │ │ │ +-rw-r--r-- 0 root (0) root (0) 2627866 2025-04-30 17:11:29.000000 ./usr/share/axiom-20210105dp1/algebra/browse.daase │ │ │ -rw-r--r-- 0 root (0) root (0) 547061 2025-04-30 17:11:29.000000 ./usr/share/axiom-20210105dp1/algebra/category.daase │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-04-30 17:11:29.000000 ./usr/share/axiom-20210105dp1/algebra/dependents.daase/ │ │ │ -rw-r--r-- 0 root (0) root (0) 86347 2025-04-30 17:11:29.000000 ./usr/share/axiom-20210105dp1/algebra/dependents.daase/index.kaf │ │ │ -rw-r--r-- 0 root (0) root (0) 54124 2025-04-30 17:11:29.000000 ./usr/share/axiom-20210105dp1/algebra/gloss.text │ │ │ -rw-r--r-- 0 root (0) root (0) 54430 2025-04-30 17:11:29.000000 ./usr/share/axiom-20210105dp1/algebra/glossdef.text │ │ │ -rw-r--r-- 0 root (0) root (0) 3300 2025-04-30 17:11:29.000000 ./usr/share/axiom-20210105dp1/algebra/glosskey.text │ │ │ --rw-r--r-- 0 root (0) root (0) 6099578 2025-04-30 17:11:29.000000 ./usr/share/axiom-20210105dp1/algebra/interp.daase │ │ │ +-rw-r--r-- 0 root (0) root (0) 6101057 2025-04-30 17:11:29.000000 ./usr/share/axiom-20210105dp1/algebra/interp.daase │ │ │ -rw-r--r-- 0 root (0) root (0) 8977 2025-04-30 17:11:29.000000 ./usr/share/axiom-20210105dp1/algebra/libdb.text │ │ │ --rw-r--r-- 0 root (0) root (0) 1661942 2025-04-30 17:11:29.000000 ./usr/share/axiom-20210105dp1/algebra/operation.daase │ │ │ +-rw-r--r-- 0 root (0) root (0) 1661941 2025-04-30 17:11:29.000000 ./usr/share/axiom-20210105dp1/algebra/operation.daase │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-04-30 17:11:29.000000 ./usr/share/axiom-20210105dp1/algebra/users.daase/ │ │ │ -rw-r--r-- 0 root (0) root (0) 263947 2025-04-30 17:11:29.000000 ./usr/share/axiom-20210105dp1/algebra/users.daase/index.kaf │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-04-30 17:11:29.000000 ./usr/share/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-04-30 17:11:29.000000 ./usr/share/doc/axiom-databases/ │ │ │ -rw-r--r-- 0 root (0) root (0) 645 2025-04-30 17:11:29.000000 ./usr/share/doc/axiom-databases/changelog.Debian.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 155936 2025-04-30 17:11:29.000000 ./usr/share/doc/axiom-databases/changelog.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2122 2010-05-19 18:56:13.000000 ./usr/share/doc/axiom-databases/copyright │ │ ├── ./usr/share/axiom-20210105dp1/algebra/browse.daase │ │ │ @@ -1,5196 +1,5196 @@ │ │ │ │ │ │ -(2550765 . 3955370495) │ │ │ -(|ArcHyperbolicFunctionCategory|) │ │ │ -((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x.}")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x.}")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x.}")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x.}")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x.}")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x.}"))) │ │ │ -NIL │ │ │ -NIL │ │ │ -(|AdditiveValuationAttribute|) │ │ │ -((|constructor| (NIL "The class of all euclidean domains such that \\spad{euclideanSize(a*b) = euclideanSize(a)+euclideanSize(b)}"))) │ │ │ -((|nil| . T)) │ │ │ -NIL │ │ │ -(|CentralAttribute|) │ │ │ -((|constructor| (NIL "Central is \\spad{true} if, given an algebra over a ring \\spad{R,} the image of \\spad{R} is the center of the algebra. For example, the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra."))) │ │ │ -((|nil| . T)) │ │ │ -NIL │ │ │ -(|CommutativeStarAttribute|) │ │ │ -((|constructor| (NIL "The class of all commutative semigroups in multiplicative notation. In other words domain \\spad{D} with \\spad{\"*\": (D,D) \\spad{->} \\spad{D}} which is commutative. Typically applied to rings."))) │ │ │ -((|nil| . T)) │ │ │ +(2550765 . 3962170406) │ │ │ +(|PatternMatchFunctionSpace| S R F) │ │ │ +((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression expr; res contains the variables of \\spad{pat} which are already matched and their matches."))) │ │ │ NIL │ │ │ -(|ArbitraryExponentAttribute|) │ │ │ -((|constructor| (NIL "Approximate numbers with arbitrarily large exponents"))) │ │ │ -((|nil| . T)) │ │ │ NIL │ │ │ -(|ApproximateAttribute|) │ │ │ -((|constructor| (NIL "An approximation to the real numbers."))) │ │ │ -((|nil| . T)) │ │ │ +(|RecursivePolynomialCategory| R E V) │ │ │ +((|constructor| (NIL "\\indented{1}{Author: Marc Moreno Maza} Date Created: 04/22/1994 Date Last Updated: 14/12/1998 Description:")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(p)} returns the square free part of \\axiom{p} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{R}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(p)} returns the primitive part of \\axiom{p} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{R}.")) (|mainContent| (($ $) "\\axiom{mainContent(p)} returns the content of \\axiom{p} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{R}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(p)} replaces \\axiom{p} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(r,p)} returns the \\spad{gcd} of \\axiom{r} and the content of \\axiom{p}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(p,q,z,s)} is the multivariate version of the operation \\spad{next_sousResultant2} from PseudoRemainderSequence from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(p,a,b,n)} returns \\axiom{(a**(n-1) * \\spad{p)} exquo b**(n-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,b,n)} returns \\axiom{a**n exquo b**(n-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,b)} returns the last non-zero subresultant of \\axiom{a} and \\axiom{b} where \\axiom{a} and \\axiom{b} are assumed to have the same main variable \\axiom{v} and are viewed as univariate polynomials in \\axiom{v}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,b)}, where \\axiom{a} and \\axiom{b} are not contant polynomials with the same main variable, returns the subresultant chain of \\axiom{a} and \\axiom{b}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,b)} computes the resultant of \\axiom{a} and \\axiom{b} where \\axiom{a} and \\axiom{b} are assumed to have the same main variable \\axiom{v} and are viewed as univariate polynomials in \\axiom{v}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,b)} returns \\axiom{[g,cb]} if \\axiom{extendedSubResultantGcd(a,b)} returns \\axiom{[g,ca,cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,b)} returns \\axiom{[g,ca]} if \\axiom{extendedSubResultantGcd(a,b)} returns \\axiom{[g,ca,cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,b)} returns \\axiom{[ca,cb,r]} such that \\axiom{r} is \\axiom{subResultantGcd(a,b)} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,b)} computes a \\spad{gcd} of \\axiom{a} and \\axiom{b} where \\axiom{a} and \\axiom{b} are assumed to have the same main variable \\axiom{v} and are viewed as univariate polynomials in \\axiom{v} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{R}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,b)} replaces \\axiom{a} by \\axiom{exactQuotient(a,b)}") (($ $ |#1|) "\\axiom{exactQuotient!(p,r)} replaces \\axiom{p} by \\axiom{exactQuotient(p,r)}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,b)} computes the exact quotient of \\axiom{a} by \\axiom{b}, which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(p,r)} computes the exact quotient of \\axiom{p} by \\axiom{r}, which is assumed to be a divisor of \\axiom{p}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(p)} replaces \\axiom{p} by \\axiom{primPartElseUnitCanonical(p)}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(p)} returns \\axiom{primitivePart(p)} if \\axiom{R} is a gcd-domain, otherwise \\axiom{unitCanonical(p)}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}, otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(p)} returns the same as \\axiom{retract(p)}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(p)} returns the same as \\axiom{retract(p)}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(p)} returns the same as \\axiom{retract(p)}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,b)} returns a polynomial \\axiom{r} such that \\axiom{initiallyReduced?(r,b)} holds and there exists an integer \\axiom{e} such that \\axiom{init(b)^e a - \\spad{r}} is zero modulo \\axiom{b}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,b)} returns a polynomial \\axiom{r} such that \\axiom{headReduced?(r,b)} holds and there exists an integer \\axiom{e} such that \\axiom{init(b)^e a - \\spad{r}} is zero modulo \\axiom{b}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,b)} returns \\axiom{[p,q,n]} where \\axiom{p / q**n} represents the residue class of \\axiom{a} modulo \\axiom{b} and \\axiom{p} is reduced w.r.t. \\axiom{b} and \\axiom{q} is \\axiom{init(b)}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,b)} computes \\axiom{a mod \\spad{b},} if \\axiom{b} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,b)} computes \\axiom{[pquo(a,b),prem(a,b)]}, both polynomials viewed as univariate polynomials in the main variable of \\axiom{b}, if \\axiom{b} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,b,v)} returns \\axiom{[c,g,q,r]} such that \\axiom{r = lazyPrem(a,b,v)}, \\axiom{(c**g)*r = prem(a,b,v)} and \\axiom{q} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,b)} returns \\axiom{[c,g,q,r]} such that \\axiom{[c,g,r] = lazyPremWithDefault(a,b)} and \\axiom{q} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,b,v)} returns \\axiom{[c,g,r]} such that \\axiom{r = lazyPrem(a,b,v)} and \\axiom{(c**g)*r = prem(a,b,v)}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,b)} returns \\axiom{[c,g,r]} such that \\axiom{r = lazyPrem(a,b)} and \\axiom{(c**g)*r = prem(a,b)}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,b,v)} returns the polynomial \\axiom{q} such that \\axiom{lazyPseudoDivide(a,b,v)} returns \\axiom{[c,g,q,r]}.") (($ $ $) "\\axiom{lazyPquo(a,b)} returns the polynomial \\axiom{q} such that \\axiom{lazyPseudoDivide(a,b)} returns \\axiom{[c,g,q,r]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,b,v)} returns the polynomial \\axiom{r} reduced w.r.t. \\axiom{b} viewed as univariate polynomials in the variable \\axiom{v} such that \\axiom{b} divides \\axiom{init(b)^e a - \\spad{r}} where \\axiom{e} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,b)} returns the polynomial \\axiom{r} reduced w.r.t. \\axiom{b} and such that \\axiom{b} divides \\axiom{init(b)^e a - \\spad{r}} where \\axiom{e} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,b,v)} computes the pseudo-quotient of \\axiom{a} by \\axiom{b}, both viewed as univariate polynomials in \\axiom{v}.") (($ $ $) "\\axiom{pquo(a,b)} computes the pseudo-quotient of \\axiom{a} by \\axiom{b}, both viewed as univariate polynomials in the main variable of \\axiom{b}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,b,v)} computes the pseudo-remainder of \\axiom{a} by \\axiom{b}, both viewed as univariate polynomials in \\axiom{v}.") (($ $ $) "\\axiom{prem(a,b)} computes the pseudo-remainder of \\axiom{a} by \\axiom{b}, both viewed as univariate polynomials in the main variable of \\axiom{b}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(q,lp)} returns \\spad{true} iff \\axiom{normalized?(q,p)} holds for every \\axiom{p} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,b)} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero w.r.t. the main variable of \\axiom{b}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(q,lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(q,p)} holds for every \\axiom{p} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,b)} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced w.r.t \\axiom{b}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(q,lp)} returns \\spad{true} iff \\axiom{headReduced?(q,p)} holds for every \\axiom{p} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,b)} returns \\spad{true} iff \\axiom{degree(head(a),mvar(b)) < mdeg(b)}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(q,lp)} returns \\spad{true} iff \\axiom{reduced?(q,p)} holds for every \\axiom{p} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,b)} returns \\spad{true} iff \\axiom{degree(a,mvar(b)) < mdeg(b)}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,b)} returns \\spad{true} if \\axiom{a} is greater than \\axiom{b} w.r.t. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,b)} returns \\spad{true} if \\axiom{a} is less than \\axiom{b} w.r.t. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,b)} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{b} have same rank w.r.t. Ritt and Wu Wen Tsun ordering using the refinement of Lazard, otherwise returns \\axiom{infRittWu?(a,b)}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(p)} returns an error if \\axiom{p} is \\axiom{O}, otherwise, if \\axiom{p} belongs to \\axiom{R} returns [1], otherwise returns the list of the monomials of \\axiom{p}, where \\axiom{p} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(p)} returns an error if \\axiom{p} is \\axiom{O}, otherwise, if \\axiom{p} belongs to \\axiom{R} returns [p], otherwise returns the list of the coefficients of \\axiom{p}, where \\axiom{p} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(p)} returns an error if \\axiom{p} is \\axiom{O}, otherwise, if \\axiom{p} belongs to \\axiom{R} returns \\axiom{1}, otherwise, the monomial of \\axiom{p} with lowest degree, where \\axiom{p} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(p)} returns an error if \\axiom{p} is \\axiom{O}, otherwise, if \\axiom{p} belongs to \\axiom{R} returns \\axiom{1}, otherwise, \\axiom{mvar(p)} raised to the power \\axiom{mdeg(p)}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(p)} returns \\spad{false} if \\axiom{p} belongs to \\axiom{R}, otherwise returns \\spad{true} iff the initial of \\axiom{p} lies in the base ring \\axiom{R}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(p)} returns \\spad{false} if \\axiom{p} belongs to \\axiom{R}, otherwise returns \\spad{true} iff \\axiom{p} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(p,v)} returns the reductum of \\axiom{p}, where \\axiom{p} is viewed as a univariate polynomial in \\axiom{v}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(p,v)} returns the leading coefficient of \\axiom{p}, where \\axiom{p} is viewed as A univariate polynomial in \\axiom{v}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(p)} returns an error if \\axiom{p} belongs to \\axiom{R}, otherwise returns the last term of \\axiom{iteratedInitials(p)}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(p)} returns \\axiom{[]} if \\axiom{p} belongs to \\axiom{R}, otherwise returns the list of the iterated initials of \\axiom{p}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(p)} returns \\axiom{0} if \\axiom{p} belongs to \\axiom{R}, otherwise returns tail(p), if \\axiom{tail(p)} belongs to \\axiom{R} or \\axiom{mvar(tail(p)) < mvar(p)}, otherwise returns \\axiom{deepestTail(tail(p))}.")) (|tail| (($ $) "\\axiom{tail(p)} returns its reductum, where \\axiom{p} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(p)} returns \\axiom{p} if \\axiom{p} belongs to \\axiom{R}, otherwise returns its leading term (monomial in the AXIOM sense), where \\axiom{p} is viewed as a univariate polynomial \\indented{1}{in its main variable.}")) (|init| (($ $) "\\axiom{init(p)} returns an error if \\axiom{p} belongs to \\axiom{R}, otherwise returns its leading coefficient, where \\axiom{p} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(p)} returns an error if \\axiom{p} is \\axiom{0}, otherwise, if \\axiom{p} belongs to \\axiom{R} returns \\axiom{0}, otherwise, returns the degree of \\axiom{p} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(p)} returns an error if \\axiom{p} belongs to \\axiom{R}, otherwise returns its main variable \\spad{w.} \\spad{r.} \\spad{t.} to the total ordering on the elements in \\axiom{V}."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|ArbitraryPrecisionAttribute|) │ │ │ -((|constructor| (NIL "Approximate numbers for which the user can set the precision for subsequent calculations."))) │ │ │ -((|nil| . T)) │ │ │ +(|OrderedMultisetAggregate| S) │ │ │ +((|constructor| (NIL "An ordered-multiset aggregate is a multiset built over an ordered set \\spad{S} so that the relative sizes of its entries can be assessed. These aggregates serve as models for priority queues.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate u."))) │ │ │ +((|finiteAggregate| . T) (|partiallyOrderedSet| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|CanonicalClosedAttribute|) │ │ │ -((|constructor| (NIL "The class of all integral domains such that \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}"))) │ │ │ -((|nil| . T)) │ │ │ +(|QuotientFieldCategory&| A S) │ │ │ +((|constructor| (NIL "QuotientField(S) is the category of fractions of an Integral Domain \\spad{S.}")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x.}")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x.}")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x.} \\spad{x} = wholePart(x) + fractionPart(x)")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\spad{%.}")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\spad{%.}")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x.}")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x.}")) (/ (($ |#2| |#2|) "\\spad{d1 / \\spad{d2}} returns the fraction \\spad{d1} divided by \\spad{d2.}"))) │ │ │ NIL │ │ │ -(|CanonicalAttribute|) │ │ │ -((|constructor| (NIL "The class of all domains which have canonical represenntation, that is, mathematically equal elements have the same data structure."))) │ │ │ -((|nil| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|RealConstant|))) (|HasCategory| |#2| (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|StepThrough|)))) │ │ │ +(|AffineSpace| |dim| K) │ │ │ +((|constructor| (NIL "The following is all the categories and domains related to projective space and part of the PAFF package"))) │ │ │ NIL │ │ │ -(|FiniteAggregateAttribute|) │ │ │ -((|constructor| (NIL "The class of all aggregates with a finite number of arguments"))) │ │ │ -((|nil| . T)) │ │ │ NIL │ │ │ -(|CanonicalUnitNormalAttribute|) │ │ │ -((|constructor| (NIL "The class of all integral domains such that we can choose a canonical representative for each class of associate elements. That is, \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a)} = \\spad{unitCanonical(b)}"))) │ │ │ -((|nil| . T)) │ │ │ +(|PseudoRemainderSequence| R |polR|) │ │ │ +((|constructor| (NIL "This package contains some functions: discriminant, resultant, subResultantGcd, chainSubResultants, degreeSubResultant, lastSubResultant, resultantEuclidean, subResultantGcdEuclidean, semiSubResultantGcdEuclidean1, semiSubResultantGcdEuclidean2\\br These procedures come from improvements of the subresultants algorithm.")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(P,Q)} returns the semi-extended resultant of \\axiom{P} and \\axiom{Q} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(P,Q)} returns the extended resultant of \\axiom{P} and \\axiom{Q} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(P,Q)} returns the resultant of \\axiom{P} and \\axiom{Q} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(P, \\spad{Q,} \\spad{Z,} \\spad{s)}} returns the subresultant \\axiom{S_{e-1}} where \\axiom{P ~ S_d, \\spad{Q} = S_{d-1}, \\spad{Z} = S_e, \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(F, \\spad{x,} \\spad{y,} \\spad{n)}} computes \\axiom{(x/y)**(n-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(x, \\spad{y,} \\spad{n)}} computes \\axiom{x**n/y**(n-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(F,G)} computes quotient and rest of the exact euclidean division of \\axiom{F} by \\axiom{G}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(P,Q)} computes the pseudoDivide of \\axiom{P} by \\axiom{Q}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{v exquo \\spad{r}} computes the exact quotient of \\axiom{v} by \\axiom{r}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{r * \\spad{v}} computes the product of \\axiom{r} and \\axiom{v}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(P, \\spad{Q)}} returns the \\spad{gcd} of \\axiom{P} and \\axiom{Q}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(P,Q)} returns the \"reduce resultant\" and carries out the equality \\axiom{...P + coef2*Q = resultantReduit(P,Q)}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(P,Q)} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(P,Q)}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(P,Q)} returns the \"reduce resultant\" of \\axiom{P} and \\axiom{Q}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(P,Q)} returns the list of degrees of non zero subresultants of \\axiom{P} and \\axiom{Q}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(P, \\spad{Q)}} computes the list of non zero subresultants of \\axiom{P} and \\axiom{Q}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(P)} carries out the equality \\axiom{...P + \\spad{coef2} * D(P) = discriminant(P)}. Warning. \\axiom{degree(P) \\spad{>=} degree(Q)}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(P)} carries out the equality \\axiom{coef1 * \\spad{P} + \\spad{coef2} * D(P) = discriminant(P)}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(P, \\spad{Q)}} returns the discriminant of \\axiom{P} and \\axiom{Q}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(P,Q)} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(P,Q)} where the degree (not the indice) of the subresultant \\axiom{S_i(P,Q)} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(P,Q)} carries out the equality \\axiom{...P + coef2*Q = \\spad{+/-} S_i(P,Q)} where the degree (not the indice) of the subresultant \\axiom{S_i(P,Q)} is the smaller as possible. Warning. \\axiom{degree(P) \\spad{>=} degree(Q)}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(P,Q)} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(P,Q)} where the degree (not the indice) of the subresultant \\axiom{S_i(P,Q)} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(P, \\spad{Q)}} returns the \\spad{gcd} of two primitive polynomials \\axiom{P} and \\axiom{Q}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(P, \\spad{Q)}} computes the last non zero subresultant \\axiom{S} and carries out the equality \\axiom{...P + coef2*Q = \\spad{S}.} Warning. \\axiom{degree(P) \\spad{>=} degree(Q)}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(P, \\spad{Q)}} computes the last non zero subresultant \\axiom{S} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}.}")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(P, \\spad{Q)}} computes the last non zero subresultant of \\axiom{P} and \\axiom{Q}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(P, \\spad{Q,} i)} returns a subresultant \\axiom{S} of degree \\axiom{d} and carries out the equality \\axiom{...P + coef2*Q = S_i}. Warning. \\axiom{degree(P) \\spad{>=} degree(Q)}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(P, \\spad{Q,} i)} returns a subresultant \\axiom{S} of degree \\axiom{d} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(P, \\spad{Q,} \\spad{d)}} computes a subresultant of degree \\axiom{d}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(P, \\spad{Q,} i)} returns the subresultant \\axiom{S_i(P,Q)} and carries out the equality \\axiom{...P + coef2*Q = S_i(P,Q)} Warning. \\axiom{degree(P) \\spad{>=} degree(Q)}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(P, \\spad{Q,} i)} returns the subresultant \\axiom{S_i(P,Q)} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(P,Q)}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(P, \\spad{Q,} i)} returns the subresultant of indice \\axiom{i}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(P,Q)} carries out the equality \\axiom{coef1.P + ? \\spad{Q} = resultant(P,Q)}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(P,Q)} carries out the equality \\axiom{...P + coef2*Q = resultant(P,Q)}. Warning. \\axiom{degree(P) \\spad{>=} degree(Q)}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(P,Q)} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(P,Q)}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(P, \\spad{Q)}} returns the resultant of \\axiom{P} and \\axiom{Q}"))) │ │ │ NIL │ │ │ -(|JacobiIdentityAttribute|) │ │ │ -((|constructor| (NIL "JacobiIdentity means that \\spad{[x,[y,z]]+[y,[z,x]]+[z,[x,y]] = 0} holds. See LieAlgebra."))) │ │ │ -((|nil| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|GcdDomain|)))) │ │ │ +(|FiniteFieldNormalBasis| |p| |extdeg|) │ │ │ +((|constructor| (NIL "FiniteFieldNormalBasis(p,n) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis, a basis consisting of the conjugates (q-powers) of an element, in this case called normal element. This is chosen as a root of the extension polynomial created by createNormalPoly")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|Finite|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|Finite|))))) │ │ │ +(|ParametricPlaneCurveFunctions2| CF1 CF2) │ │ │ +((|constructor| (NIL "This package has no description")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) │ │ │ NIL │ │ │ -(|LazyRepresentationAttribute|) │ │ │ -((|constructor| (NIL "The class of all domains which have a lazy representation"))) │ │ │ -((|nil| . T)) │ │ │ NIL │ │ │ -(|LeftUnitaryAttribute|) │ │ │ -((|constructor| (NIL "LeftUnitary is \\spad{true} if \\spad{1 * \\spad{x} = \\spad{x}} for all \\spad{x.}"))) │ │ │ -((|nil| . T)) │ │ │ +(|XPBWPolynomial| |VarSet| R) │ │ │ +((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations.")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(p,n)} returns the logarithm of \\axiom{p} (truncated up to order \\axiom{n}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(p,n)} returns the exponential of \\axiom{p} (truncated up to order \\axiom{n}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,b,n)} returns \\axiom{a*b} (truncated up to order \\axiom{n}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(p)} return \\axiom{p} if \\axiom{p} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(p)} returns \\axiom{p} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(p)} returns \\axiom{p} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(p)} returns \\axiom{p}."))) │ │ │ +((|noZeroDivisors| |has| |#2| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (LIST (QUOTE |Module|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasAttribute| |#2| (QUOTE |noZeroDivisors|))) │ │ │ +(|PermutationGroup| S) │ │ │ +((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S,} all subgroups of the symmetric group of \\spad{S,} represented as a list of permutations (generators). Note that therefore the objects are not members of the Axiom category \\spadtype{Group}. Using the idea of base and strong generators by Sims, basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group \\spad{gp} for the word problem. Notes: \\spad{(1)} with a small integer you get shorter words, but the routine takes longer than the standard routine for longer words. \\spad{(2)} be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). \\spad{(3)} users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group \\spad{gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: initializeGroupForWordProblem(gp,0,1). Notes: \\spad{(1)} be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) \\spad{(2)} users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 \\spad{<=} gp2} returns \\spad{true} if and only if \\spad{gp1} is a subgroup of gp2. Note: because of a bug in the parser you have to call this function explicitly by \\spad{gp1} <=$(PERMGRP \\spad{S)} gp2.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if \\spad{gp1} is a proper subgroup of gp2.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group \\spad{gp.} \\blankline \\spad{X} \\spad{x} : PERM INT \\spad{:=} [[1,3,5],[7,11,9]] \\spad{X} \\spad{z} : PERM INT \\spad{:=} [1,3,11] \\spad{X} \\spad{g} : PERMGRP INT \\spad{:=} [ \\spad{x} ,{} \\spad{z} ] \\spad{X} movedPoints \\spad{g}")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group \\spad{gp,} represented by the indices of the list, given by generators.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group \\spad{gp,} represented by the indices of the list, given by strongGenerators.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question, whether the \\indented{1}{permutation \\spad{pp} is in the group \\spad{gp} or not.} \\blankline \\spad{X} \\spad{x} : PERM INT \\spad{:=} [[1,3,5],[7,11,9]] \\spad{X} \\spad{y} : PERM INT \\spad{:=} [[3,5,7,9]] \\spad{X} \\spad{z} : PERM INT \\spad{:=} [1,3,11] \\spad{X} \\spad{g} : PERMGRP INT \\spad{:=} [ \\spad{x} ,{} \\spad{z} ] \\spad{X} member? ( \\spad{y} ,{} \\spad{g} )")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group \\spad{gp,} \\indented{1}{it partitions the (finite) of all moved points.} \\blankline \\spad{X} \\spad{y} : PERM INT \\spad{:=} [[3,5,7,9]] \\spad{X} \\spad{z} : PERM INT \\spad{:=} [1,3,11] \\spad{X} \\spad{g} : PERMGRP INT \\spad{:=} [ \\spad{y} ,{} \\spad{z} ] \\spad{X} orbits \\spad{g}")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered \\indented{1}{list \\spad{ls} under the group gp.} \\indented{1}{Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.} \\blankline \\spad{X} S:List(Integer) \\spad{:=} [1,2,3,4] \\spad{X} \\spad{G} \\spad{:=} symmetricGroup(S) \\spad{X} orbit(G,[1,2,3])") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set \\spad{els} under the group \\spad{gp.}") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element \\spad{el} under the \\indented{1}{group \\spad{gp,} the set of all points gained by applying} \\indented{1}{each group element to el.} \\blankline \\spad{X} S:List(Integer) \\spad{:=} [1,2,3,4] \\spad{X} \\spad{G} \\spad{:=} symmetricGroup(S) \\spad{X} orbit(G,[1,2,3]) \\spad{X} \\spad{x} : PERM INT \\spad{:=} [[1,3,5],[7,11,9]] \\spad{X} \\spad{y} : PERM INT \\spad{:=} [[3,5,7,9]] \\spad{X} \\spad{g} : PERMGRP INT \\spad{:=} [ \\spad{x} ,{} \\spad{y} ] \\spad{X} orbit(g, 3)")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations \\spad{ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group \\spad{gp} in the original generators of \\spad{gp,} represented by their indices in the list, given by generators.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for \\indented{1}{the group gp.} \\blankline \\spad{X} S:List(Integer) \\spad{:=} [1,2,3,4] \\spad{X} \\spad{G} \\spad{:=} symmetricGroup(S) \\spad{X} strongGenerators(G)")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group \\spad{gp.} \\blankline \\spad{X} S:List(Integer) \\spad{:=} [1,2,3,4] \\spad{X} \\spad{G} \\spad{:=} symmetricGroup(S) \\spad{X} base(G)")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations \\indented{1}{of the group gp.} \\blankline \\spad{X} \\spad{y} : PERM INT \\spad{:=} [[3,5,7,9]] \\spad{X} \\spad{z} : PERM INT \\spad{:=} [1,3,11] \\spad{X} \\spad{g} : PERMGRP INT \\spad{:=} [ \\spad{y} ,{} \\spad{z} ] \\spad{X} degree \\spad{g}")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group \\spad{gp.} \\blankline \\spad{X} \\spad{x} : PERM INT \\spad{:=} [[1,3,5],[7,11,9]] \\spad{X} \\spad{y} : PERM INT \\spad{:=} [[3,5,7,9]] \\spad{X} \\spad{g} : PERMGRP INT \\spad{:=} [ \\spad{x} ,{} \\spad{y} ] \\spad{X} order \\spad{g}")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators \\indented{1}{of the group gp.} \\indented{1}{Note: random(gp)=random(gp,20).} \\blankline \\spad{X} S:List(Integer) \\spad{:=} [1,2,3,4] \\spad{X} \\spad{G} \\spad{:=} symmetricGroup(S) \\spad{X} random(G)") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators \\indented{1}{of the group gp.} \\blankline \\spad{X} S:List(Integer) \\spad{:=} [1,2,3,4] \\spad{X} \\spad{G} \\spad{:=} symmetricGroup(S) \\spad{X} random(G,2)")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group \\spad{gp.} \\blankline \\spad{X} S:List(Integer) \\spad{:=} [1,2,3,4] \\spad{X} \\spad{G} \\spad{:=} symmetricGroup(S) \\spad{X} \\spad{G.2}")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group \\spad{gp.} \\blankline \\spad{X} S:List(Integer) \\spad{:=} [1,2,3,4] \\spad{X} \\spad{G} \\spad{:=} symmetricGroup(S) \\spad{X} generators(G)")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations \\spad{ls} to the group \\indented{1}{generated by this list.} \\blankline \\spad{X} \\spad{y} : PERM INT \\spad{:=} [[3,5,7,9]] \\spad{X} \\spad{z} : PERM INT \\spad{:=} [1,3,11] \\spad{X} \\spad{g} : PERMGRP INT \\spad{:=} [ \\spad{y} ,{} \\spad{z} ]") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group \\spad{gp.} \\blankline \\spad{X} \\spad{x} : PERM INT \\spad{:=} [[1,3,5],[7,11,9]]"))) │ │ │ NIL │ │ │ -(|MultiplicativeValuationAttribute|) │ │ │ -((|constructor| (NIL "The class of all euclidean domains such that \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}"))) │ │ │ -((|nil| . T)) │ │ │ NIL │ │ │ -(|NotherianAttribute|) │ │ │ -((|constructor| (NIL "Notherian is \\spad{true} if all of its ideals are finitely generated."))) │ │ │ -((|nil| . T)) │ │ │ +(|SparseUnivariateSkewPolynomial| R |sigma| |delta|) │ │ │ +((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) \\spad{x} + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, \\spad{x)}} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) │ │ │ +((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ +(|PseudoAlgebraicClosureOfFiniteField| K) │ │ │ +((|constructor| (NIL "This domain implement dynamic extension using the simple notion of tower extensions. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension \\spad{(T} : K_0, K_1, ..., K_i...,K_n) where \\spad{K_0} = \\spad{K} and for \\spad{i} =1,2,...,n, K_i is an extension of K_{i-1} of degree > 1 and defined by an irreducible polynomial p(Z) in K_{i-1}. Two towers (T_1: K_01, K_11,...,K_i1,...,K_n1) and (T_2: K_02, K_12,...,K_i2,...,K_n2) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} T_2), that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1,2,...,n1} (or i=1,2,...,n2). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Finite|)))) │ │ │ +(|UnivariatePowerSeriesCategory| |Coef| |Expon|) │ │ │ +((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note that this category exports a substitution function if it is possible to multiply exponents. Also note that this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 \\spad{<=} \\spad{d} \\spad{<=} k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= \\spad{k}.}")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)}, where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f.}") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f.} This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n.}")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f.}")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms, where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|NullSquareAttribute|) │ │ │ -((|constructor| (NIL "NullSquare means that \\spad{[x,x] = 0} holds. See LieAlgebra."))) │ │ │ -((|nil| . T)) │ │ │ +(|ThreeSpaceCategory| R) │ │ │ +((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points, curves, polygons, constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace}, \\spad{s.}")) (|check| (($ $) "\\spad{check(s)} returns lllpt, list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s.}")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace}, \\spad{s,} in the form of a 3D object record containing information on the number of points, curves, polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a list of subspace component properties, and if so, returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a list of curves which are lists of the subspace component properties of the curves, and if so, returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a list of components, which are lists of curves, which are lists of points, and if so, returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a list of components, which are lists of curves, which are lists of indices to points, and if so, returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace}, \\spad{s,} contains; these points are used by reference, that is, the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component, a mesh comprising a list of curves which are lists of points, or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a single surface component defined by a list curves which contain lists of points, and if so, returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves, \\spad{p0} through \\spad{pn,} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is, the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists, \\spad{p0} through \\spad{pn,} of points, and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s, LLLR, close1, close2)} where \\spad{LLLR} is of the form [[[r10]...,[r1m]],[[r20]...,[r2m]],...,[[rn0]...,[rnm]]], adds a surface component to the \\spadtype{ThreeSpace} \\spad{s,} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (that is, the last point of the list is to be connected to the first point); if \\spad{close2} is true, this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s, LLP, close1, close2)} where \\spad{LLP} is of the form [[p0],[p1],...,[pn]] adds a surface component to the \\spadtype{ThreeSpace}, which is defined over a list of curves, in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed, that is, the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end, that is, the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s, LLLR, [props], prop)} where \\spad{LLLR} is of the form: [[[r10]...,[r1m]],[[r20]...,[r2m]],...,[[rn0]...,[rnm]]], adds a surface component to the \\spadtype{ThreeSpace} \\spad{s,} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list, and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component, defined over a list curves which contains lists of points, to the \\spadtype{ThreeSpace} \\spad{s;} props is a list which contains the subspace component properties for each surface parameter, and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component, or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a single polygon component defined by a list of points, and if so, returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points, \\spad{p0} through \\spad{pn,} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn}, which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s,} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points, \\spad{p0} throught \\spad{pn,} to the \\spadtype{ThreeSpace} \\spad{s.}")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component, that is, the first element of the curve is also the last element, or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a single closed curve component defined by a list of points in which the first point is also the last point, all of which are from the domain \\spad{PointDomain(m,R)} and if so, returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp.}") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn}, which are lists of elements from the domain \\spad{PointDomain(m,R)}, where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points, in which the last element of the list of points contains a copy of the first element list, lr0. The closed curve is added to the \\spadtype{ThreeSpace}, \\spad{s.}") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again, to the \\spadtype{ThreeSpace} \\spad{s.}")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace}, \\spad{s,} is a curve, that is, has one component, a list of list of points, and returns \\spad{true} if it is, or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a single curve defined by a list of points and if so, returns the curve, that is, list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn}, and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)}, where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points, to the \\spadtype{ThreeSpace} \\spad{s.}") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn}, to the \\spadtype{ThreeSpace} \\spad{s.}")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of only a single point and if so, returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component, the point \\spad{p.}") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace}, \\spad{s,} at the index given by i.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace}, \\spad{s,} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point, \\spad{p,} specified as a list from \\spad{List(R)}, to the \\spadtype{ThreeSpace}, \\spad{s,} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace}, \\spad{s,} to that of point \\spad{p.} This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace}, \\spad{s,} and returns the index, to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s.}")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s,} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s.} If \\spad{s} has no composites defined (composites need to be explicitly created), the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s,} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s.} If \\spad{s} has no components defined, the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list, grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents, or composites, in the \\spadtype{ThreeSpace}, \\spad{s;} Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and, outside of the requirement that no component can belong to more than one composite at a time, the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace}, \\spad{s,} such as points, curves, polygons, and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s.}") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point, curve, mesh components and any combination."))) │ │ │ NIL │ │ │ -(|NoZeroDivisorsAttribute|) │ │ │ -((|constructor| (NIL "The class of all semirings such that \\spad{x * \\spad{y} \\spad{~=} 0} implies both \\spad{x} and \\spad{y} are non-zero."))) │ │ │ -((|nil| . T)) │ │ │ NIL │ │ │ -(|PartiallyOrderedSetAttribute|) │ │ │ -((|constructor| (NIL "PartiallyOrderedSet is \\spad{true} if a set with \\spad{<} is transitive, but \\spad{not(a \\spad{} \\spad{D}} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) │ │ │ -((|finiteAggregate| . T) ((|commutative| "*") . T) (|shallowlyMutable| . T) (|unitsKnown| . T) (|leftUnitary| . T) (|rightUnitary| . T) (|noZeroDivisors| . T) (|canonicalUnitNormal| . T) (|canonicalsClosed| . T) (|arbitraryPrecision| . T) (|partiallyOrderedSet| . T) (|central| . T) (|noetherian| . T) (|additiveValuation| . T) (|multiplicativeValuation| . T) (|NullSquare| . T) (|JacobiIdentity| . T) (|canonical| . T) (|approximate| . T)) │ │ │ +(|TexFormat|) │ │ │ +((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue, a tex part and an epilogue. The functions \\spadfun{prologue}, \\spadfun{tex} and \\spadfun{epilogue} extract these parts, respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!}, \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example, the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'', respectively, so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to strings.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to strings.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to strings.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t.}")) (|new| (($) "\\spad{new()} create a new, empty object. Use \\spadfun{setPrologue!}, \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t.}")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t.}")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{width}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and type. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) │ │ │ NIL │ │ │ -(|BasicType&| S) │ │ │ -((|constructor| (NIL "BasicType is the basic category for describing a collection of elements with = (equality).")) (~= (((|Boolean|) $ $) "\\spad{x~=y} tests if \\spad{x} and \\spad{y} are not equal.")) (= (((|Boolean|) $ $) "\\spad{x=y} tests if \\spad{x} and \\spad{y} are equal."))) │ │ │ NIL │ │ │ +(|InfiniteTupleFunctions3| A B C) │ │ │ +((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) │ │ │ NIL │ │ │ -(|CombinatorialFunctionCategory|) │ │ │ -((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n, \\spad{m)}} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note that \\spad{permutation(n,m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note that \\spad{n! = \\spad{n} (n-1)! when \\spad{n} > 0}; also, \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,r)} returns the \\spad{(n,r)} binomial coefficient \\indented{1}{(often denoted in the literature by \\spad{C(n,r)}).} \\indented{1}{Note that \\spad{C(n,r) = n!/(r!(n-r)!)} where \\spad{n \\spad{>=} \\spad{r} \\spad{>=} 0}.} \\blankline \\spad{X} [binomial(5,i) for \\spad{i} in 0..5]"))) │ │ │ NIL │ │ │ +(|Algebra&| S R) │ │ │ +((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline Axioms\\br \\tab{5}\\spad{(b+c)::% = (b::\\%) + (c::\\%)}\\br \\tab{5}\\spad{(b*c)::% = (b::\\%) * (c::\\%)}\\br \\tab{5}\\spad{(1::R)::% = 1::%}\\br \\tab{5}\\spad{b*x = (b::\\%)*x}\\br \\tab{5}\\spad{r*(a*b) = (r*a)*b = a*(r*b)}")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) │ │ │ NIL │ │ │ -(|Eltable| S |Index|) │ │ │ -((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to I. Examples of eltable structures range from data structures, For example, those of type List, to algebraic structures like Polynomial.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,i)} (also written: \\spad{u} . i) returns the element of \\spad{u} indexed by i. Error: if \\spad{i} is not an index of u."))) │ │ │ NIL │ │ │ +(|InnerTaylorSeries| |Coef|) │ │ │ +((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series, the \\spad{Stream} elements are the Taylor coefficients. For multivariate series, the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x.}") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x.}") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x.}")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x.}") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x,} \\indented{1}{that is, the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types, the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types, the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series, this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series, the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) │ │ │ +((|leftUnitary| |has| |#1| (|IntegralDomain|)) (|rightUnitary| |has| |#1| (|IntegralDomain|)) ((|commutative| "*") |has| |#1| (|IntegralDomain|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) │ │ │ +(|GaloisGroupFactorizer| UP) │ │ │ +((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p,} the result is a Record such that \\spad{contp=}content \\spad{p,} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p.} Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p,} the result is a Record such that \\spad{contp=}content \\spad{p,} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree listOfDegrees, and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree listOfDegrees, and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree listOfDegrees.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d.}")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm, knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm, knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree listOfDegrees. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm, knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm, knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree listOfDegrees.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion, \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it, \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound, \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization, \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by completeHensel. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit \\spad{(1} or -1). \\spad{f} shall be primitive (content(p)=1) and square free (without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by ddFact for some prime \\spad{p.}")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by ddFact for some prime \\spad{p.}")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) │ │ │ NIL │ │ │ -(|BasicType|) │ │ │ -((|constructor| (NIL "BasicType is the basic category for describing a collection of elements with = (equality).")) (~= (((|Boolean|) $ $) "\\spad{x~=y} tests if \\spad{x} and \\spad{y} are not equal.")) (= (((|Boolean|) $ $) "\\spad{x=y} tests if \\spad{x} and \\spad{y} are equal."))) │ │ │ NIL │ │ │ +(|PowerSeriesLimitPackage| R FE) │ │ │ +((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits, left- and right- hand limits, and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x \\spad{->} a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x \\spad{->} a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x \\spad{->} a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x \\spad{->} a,f(x))}."))) │ │ │ NIL │ │ │ -(|ExpertSystemContinuityPackage1| A B) │ │ │ -((|constructor| (NIL "\\spad{ExpertSystemContinuityPackage1} exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) │ │ │ NIL │ │ │ +(|Type|) │ │ │ +((|constructor| (NIL "The fundamental Type."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|GraphicsDefaults|) │ │ │ -((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n.}") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n.}")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is false.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is true.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) │ │ │ +(|ComplexPattern| R S CS) │ │ │ +((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|IntegerBits|) │ │ │ -((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(n) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(n)")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(n)"))) │ │ │ +(|PermutationGroupExamples|) │ │ │ +((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric, alternating, dihedral, cyclic, direct products of cyclic, which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore, Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition lambda.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups Sn1,...,Snk.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6, 1 \\spad{<=} \\spad{j} \\spad{<=} 8. The faces of Rubik's Cube are labelled in the obvious way Front, Right, Up, Down, Left, Back and numbered from 1 to 6 in this given ordering, the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces, represented as a two digit integer ij where \\spad{i} is the numer of theface \\spad{(1} to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators, which represent a 90 degree turns of the faces, or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6, 1 \\spad{<=} \\spad{j} <=8. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,...,100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list li. Note that duplicates in the list will be removed. Error: if \\spad{li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,...,24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list li. Note that duplicates in the list will be removed. Error: if \\spad{li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,...,23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list li. Note that duplicates in the list will be removed. Error: if \\spad{li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,...,22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list li. Note that duplicates in the list will be removed. Error: if \\spad{li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,...,12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list li. Note that duplicates in the list will be removed Error: if \\spad{li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,...,11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list li. Note that duplicates in the list will be removed. error, if \\spad{li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of i1,...,ik. Note that duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,...,N.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers i1,...,ik. Note that duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,...,n.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order ni.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list li, generators are in general the n-2-cycle (li.3,...,li.n) and the 3-cycle (li.1,li.2,li.3), if \\spad{n} is odd and product of the 2-cycle (li.1,li.2) with n-2-cycle (li.3,...,li.n) and the 3-cycle (li.1,li.2,li.3), if \\spad{n} is even. Note that duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group An acting on the integers 1,...,n, generators are in general the n-2-cycle (3,...,n) and the 3-cycle (1,2,3) if \\spad{n} is odd and the product of the 2-cycle (1,2) with n-2-cycle (3,...,n) and the 3-cycle (1,2,3) if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list li, generators are the cycle given by \\spad{li} and the 2-cycle (li.1,li.2). Note that duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group \\spad{Sn} acting on the integers 1,...,n, generators are the n-cycle (1,...,n) and the 2-cycle (1,2)."))) │ │ │ NIL │ │ │ NIL │ │ │ (|ConvertibleTo| S) │ │ │ ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B,} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|CoercibleTo| S) │ │ │ -((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S.}"))) │ │ │ +(|StringAggregate&| S) │ │ │ +((|constructor| (NIL "A string aggregate is a category for strings, that is, one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t.} It is provided to allow juxtaposition of strings to work as concatenation. For example, \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example, \\axiom{rightTrim(\"(abc)\", charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example, \\axiom{rightTrim(\" abc \\spad{\",} char \" \\spad{\")}} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example, \\axiom{leftTrim(\"(abc)\", charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example, \\axiom{leftTrim(\" abc \\spad{\",} char \" \\spad{\")}} returns \\axiom{\"abc \\spad{\"}.}")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example, \\axiom{trim(\"(abc)\", charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example, \\axiom{trim(\" abc \\spad{\",} char \" \\spad{\")}} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc.}") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c.}")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c.}")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{j \\spad{>=} i} in \\spad{t} of the first character belonging to \\spad{cc.}") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t,} where \\axiom{j \\spad{>=} i} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{s(i..j)} of \\spad{s} by string \\spad{t.}")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c.} Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{p} matches subject \\axiom{s} where \\axiom{wc} is a wild card character. If no match occurs, the index \\axiom{0} is returned; otheriwse, the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example, \\axiom{match(\"*to*\",\"yorktown\",\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index i. Note that \\axiom{substring?(s,t,0) = prefix?(s,t)}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t.} Note that \\axiom{suffix?(s,t) \\spad{==} \\indented{1}{reduce(and,[s.i = t.(n - \\spad{m} + i) for \\spad{i} in 0..maxIndex s])}} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t.} Note that \\axiom{prefix?(s,t) \\spad{==} \\indented{2}{reduce(and,[s.i = t.i for \\spad{i} in 0..maxIndex s])}.}")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ModularAlgebraicGcdOperations| MPT MD) │ │ │ -((|constructor| (NIL "This category specifies operations needed by ModularAlgebraicGcd package. Since we have multiple implementations we specify interface here and put implementations in separate packages. Most operations are done using special purpose abstract representation. Apropriate types are passesd as parametes: \\spad{MPT} is type of modular polynomials in one variable with coefficients in some algebraic extension. \\spad{MD} is type of modulus. Final results are converted to packed representation, with coefficients (from prime field) stored in one array and exponents (in main variable and in auxilary variables representing generators of algebrac extension) stored in parallel array.")) (|repack1| (((|Void|) |#1| (|U32Vector|) (|Integer|) |#2|) "\\spad{repack1(x, a, \\spad{d,} \\spad{m)}} stores coefficients of \\spad{x} in a. \\spad{d} is degree of \\spad{x.} Corresponding exponents are given by packExps.")) (|packExps| ((|SortedExponentVector| (|Integer|) (|Integer|) |#2|) "\\spad{packExps(d, \\spad{s,} \\spad{m)}} produces vector of exponents up to degree \\spad{d.} \\spad{s} is size (degree) of algebraic extension. Use together with repack1.")) (|degree| (((|Integer|) |#1|) "\\spad{degree(x)} gives degree of \\spad{x.}")) (|zero?| (((|Boolean|) |#1|) "\\spad{zero?(x)} checks if \\spad{x} is zero.")) (|MPtoMPT| ((|#1| (|Polynomial| (|Integer|)) (|Symbol|) (|List| (|Symbol|)) |#2|) "\\spad{MPtoMPT(p, \\spad{s,} \\spad{ls,} \\spad{m)}} coverts \\spad{p} to packed represntation.")) (|packModulus| (((|Union| |#2| "failed") (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Integer|)) "\\spad{packModulus(lp, \\spad{ls,} \\spad{p)}} converts \\spad{lp,} \\spad{ls} and prime \\spad{p} which together describe algebraic extension to packed representation.")) (|canonicalIfCan| (((|Union| |#1| "failed") |#1| |#2|) "\\spad{canonicalIfCan(x, \\spad{m)}} tries to divide \\spad{x} by its leading coefficient modulo \\spad{m.}")) (|pseudoRem| ((|#1| |#1| |#1| |#2|) "\\spad{pseudoRem(x, \\spad{y,} \\spad{m)}} computes pseudoremainder of \\spad{x} by \\spad{y} modulo \\spad{m.}"))) │ │ │ +(|Ring|) │ │ │ +((|constructor| (NIL "The category of rings with unity, always associative, but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note that \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring, or zero if no such \\spad{n} exists."))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|PolynomialAN2Expression|) │ │ │ +((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf}, a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) │ │ │ NIL │ │ │ -(|MoreSystemCommands|) │ │ │ -((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis, for example, the \"what\" commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{cmd} and passes it to the runtime environment for execution as a system command. Although various things may be printed, no usable value is returned."))) │ │ │ NIL │ │ │ +(|d02bbfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF, a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) │ │ │ NIL │ │ │ -(|ODEIntensityFunctionsTable|) │ │ │ -((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE's.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k.}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l.}")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) │ │ │ NIL │ │ │ +(|ParametricLinearEquations| R |Var| |Expon| GR) │ │ │ +((|constructor| (NIL "This package completely solves a parametric linear system of equations by decomposing the set of all parametric values for which the linear system is consistent into a union of quasi-algebraic sets (which need not be irredundant, but most of the time is). Each quasi-algebraic set is described by a list of polynomials that vanish on the set, and a list of polynomials that vanish at no point of the set. For each quasi-algebraic set, the solution of the linear system is given, as a particular solution and a basis of the homogeneous system. \\blankline The parametric linear system should be given in matrix form, with a coefficient matrix and a right hand side vector. The entries of the coefficient matrix and right hand side vector should be polynomials in the parametric variables, over a Euclidean domain of characteristic zero. \\blankline If the system is homogeneous, the right hand side need not be given. The right hand side can also be replaced by an indeterminate vector, in which case, the conditions required for consistency will also be given. \\blankline The package has other facilities for saving results to external files, as well as solving the system for a specified minimum rank. Altogether there are 12 mode maps for psolve, as explained below.")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\spad{inconsistent?(pl)} returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "\\spad{inconsistent?(pl)} returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, \\spad{w,} \\spad{p,} \\spad{r,} \\spad{rm,} \\spad{m)}} returns a regime, a list of polynomials specifying the consistency conditions, a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant y.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm.} The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants, and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous, or the right hand side is arbitrary, or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl;} otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of k-subsets of \\spad{{1,} ..., \\spad{n}.}")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p.}")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (s.mat) \\spad{z} = s.vec for the variables given by the column indices of s.cols in terms of the other variables and the right hand side s.vec by assuming that the rank is s.rank, that the system is consistent, with the linearly independent equations indexed by the given row indices s.rows; the coefficients in s.mat involving parameters are treated as polynomials. B1solve(s) returns a particular solution to the system and a basis of the homogeneous system (s.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, \\spad{l)}} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{^=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, \\spad{w,} \\spad{r,} \\spad{s,} \\spad{m)}} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r;} depending on the mode \\spad{m} chosen, it writes the output to a file given by the string \\spad{s.}")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c,} writes the results to a file named \\spad{s,} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w,} writes the results to a file named \\spad{s,} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w,} writes the results to a file named \\spad{s,} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w,} writes the results to a file named \\spad{s,} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w,} writes the results to a file named \\spad{s,} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w,} writes the results to a file named \\spad{s,} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) │ │ │ NIL │ │ │ -(|OpenMath|) │ │ │ -((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{u} to the OpenMath device \\axiom{dev} as a complete OpenMath object; OMwrite(dev, u, false) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{u} to the OpenMath device \\axiom{dev} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{u} as a complete OpenMath object; OMwrite(u, false) returns the OpenMath \\spad{XML} encoding of \\axiom{u} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{u} as a complete OpenMath object."))) │ │ │ NIL │ │ │ +(|DesingTreeCategory| S) │ │ │ +((|constructor| (NIL "This category is part of the PAFF package")) (|tree| (($ (|List| |#1|)) "\\spad{tree(l)} creates a chain tree from the list \\spad{l}") (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd,} and no children") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd,} and children \\spad{ls.}"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|OpenMathConnection|) │ │ │ -((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}s.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) │ │ │ +(|PseudoAlgebraicClosureOfFiniteFieldCategory|) │ │ │ +((|constructor| (NIL "This category exports the function for the domain PseudoAlgebraicClosureOfFiniteField which implement dynamic extension using the simple notion of tower extensions. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension \\spad{(T} : K_0, K_1, ..., K_i...,K_n) where \\spad{K_0} = \\spad{K} and for \\spad{i} =1,2,...,n, K_i is an extension of K_{i-1} of degree > 1 and defined by an irreducible polynomial p(Z) in K_{i-1}. Two towers (T_1: K_01, K_11,...,K_i1,...,K_n1) and (T_2: K_02, K_12,...,K_i2,...,K_n2) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} T_2), that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1,2,...,n1} (or i=1,2,...,n2). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|MakeFunction| S) │ │ │ +((|constructor| (NIL "Tools for making interpreter functions from top-level expressions Transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) \\spad{==} e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, \\spad{x,} \\spad{y)}} creates a function \\spad{foo(x, \\spad{y)} = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, \\spad{x)}} creates a function \\spad{foo(x) \\spad{==} e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() \\spad{==} e}."))) │ │ │ NIL │ │ │ -(|OpenMathDevice|) │ │ │ -((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files, strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{dev}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{dev}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{dev}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{dev}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{dev}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{dev}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{dev}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{dev}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{dev}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{dev}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{dev}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{dev}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{dev}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{dev}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{dev}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{dev}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{dev}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{dev}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{dev}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{dev}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{s} from \\spad{CD} \\axiom{cd} to \\axiom{dev}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{i} to \\axiom{dev}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{i} to \\axiom{dev}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{i} to \\axiom{dev}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{i} to \\axiom{dev}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{dev}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{dev}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{dev}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{dev}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{dev}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{dev}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{dev}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{dev}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{dev}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{dev}")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{dev}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{dev}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{dev}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{dev}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{dev} to \\axiom{enc}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{dev}, flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{s} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{f} for reading or writing OpenMath objects (depending on \\axiom{mode} which can be \"r\", \\spad{\"w\"} or \"a\" for read, write and append respectively), in the encoding \\axiom{enc}."))) │ │ │ NIL │ │ │ +(|TrigonometricFunctionCategory&| S) │ │ │ +((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x.}")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x.}")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x.}")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x.}")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x.}")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x.}"))) │ │ │ NIL │ │ │ -(|OutputPackage|) │ │ │ -((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream, as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream, as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream, as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream, as defined by \\spadsyscom{set output algebra}."))) │ │ │ NIL │ │ │ +(|PatternMatchKernel| S E) │ │ │ +((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) │ │ │ NIL │ │ │ -(|PrimitiveFunctionCategory|) │ │ │ -((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, \\spad{x} = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b.}") (($ $ (|Symbol|)) "\\spad{integral(f, \\spad{x)}} returns the formal integral of \\spad{f} \\spad{dx.}"))) │ │ │ NIL │ │ │ +(|TableAggregate| |Key| |Entry|) │ │ │ +((|constructor| (NIL "A table aggregate is a model of a table, that is, a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements fn(x,y) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{x,y,...,z}.") (($) "\\spad{table()}$T creates an empty table of type \\spad{T.} \\blankline \\spad{X} Data:=Record(age:Integer,gender:String) \\spad{X} a1:AssociationList(String,Data):=table() \\spad{X} a1.\"tim\":=[55,\"male\"]$Data")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{t.k \\spad{:=} e}) is equivalent to \\axiom{(insert([k,e],t); e)}."))) │ │ │ +((|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|PartialTranscendentalFunctions| K) │ │ │ -((|constructor| (NIL "A package which provides partial transcendental functions, for example, functions which return an answer or \"failed\" This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(z) if possible, and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(z) if possible, and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(z) if possible, and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(z) if possible, and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(z) if possible, and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(z) if possible, and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(z) if possible, and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(z) if possible, and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(z) if possible, and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(z) if possible, and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(z) if possible, and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(z) if possible, and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(z) if possible, and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(z) if possible, and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(z) if possible, and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(z) if possible, and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(z) if possible, and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(z) if possible, and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(z) if possible, and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(z) if possible, and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(z) if possible, and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(z) if possible, and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(z) if possible, and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(z) if possible, and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(z) if possible, and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(z) if possible, and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible, and \"failed\" otherwise."))) │ │ │ +(|PartiallyOrderedSetAttribute|) │ │ │ +((|constructor| (NIL "PartiallyOrderedSet is \\spad{true} if a set with \\spad{<} is transitive, but \\spad{not(a \\spad{\\%)}\\tab{5}\\spad{(x+y)+z = x+(y+z)}\\br \\tab{6}\\spad{commutative(\"+\":(\\%,\\%)->\\%)}\\tab{5}\\spad{x+y = y+x}")) (* (($ (|PositiveInteger|) $) "\\spad{n*x} computes the left-multiplication of \\spad{x} by the positive integer \\spad{n.} This is equivalent to adding \\spad{x} to itself \\spad{n} times.")) (+ (($ $ $) "\\spad{x+y} computes the sum of \\spad{x} and \\spad{y.}"))) │ │ │ NIL │ │ │ -(|RandomIntegerDistributions|) │ │ │ -((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} as \\indented{4}{l + \\spad{u0} + \\spad{w*u1} + \\spad{w**2*u2} +...+ \\spad{w**(n-1)*u-1} + w**n*m} where \\indented{4}{s = a..b} \\indented{4}{l = min(a,b)} \\indented{4}{m = abs(b-a) + 1} \\indented{4}{w**n < \\spad{m} < w**(n+1)} \\indented{4}{u0,...,un-1\\space{2}are uniform on\\space{2}0..w-1} \\indented{4}{m\\space{12}is\\space{2}uniform on\\space{2}0..(m quo w**n)-1}"))) │ │ │ NIL │ │ │ +(|OneDimensionalArray| S) │ │ │ +((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s} \\blankline \\spad{X} oneDimensionalArray(10,0.0)") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l} \\blankline \\spad{X} oneDimensionalArray \\spad{[i**2} for \\spad{i} in 1..10]"))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ +(|Places| K) │ │ │ +((|constructor| (NIL "The following is part of the PAFF package"))) │ │ │ NIL │ │ │ -(|SpecialFunctionCategory|) │ │ │ -((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)}, (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x.}"))) │ │ │ NIL │ │ │ +(|XExponentialPackage| R |VarSet| XPOLY) │ │ │ +((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables.")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,b,n)} returns log(exp(a)*exp(b)) truncated at order \\axiom{n}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(p, \\spad{n)}} returns the logarithm of \\axiom{p} truncated at order \\axiom{n}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(p, \\spad{n)}} returns the exponential of \\axiom{p} truncated at order \\axiom{n}."))) │ │ │ NIL │ │ │ -(|Type|) │ │ │ -((|constructor| (NIL "The fundamental Type."))) │ │ │ -((|nil| . T)) │ │ │ NIL │ │ │ -(|AnonymousFunction|) │ │ │ -((|constructor| (NIL "This domain implements anonymous functions"))) │ │ │ +(|FloatingPointSystem|) │ │ │ +((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact, it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline 1: base of the exponent where the actual implemenations are usually binary or decimal)\\br 2: precision of the mantissa (arbitrary or fixed)\\br 3: rounding error for operations \\blankline Because a Float is an approximation to the real numbers, even though it is defined to be a join of a Field and OrderedRing, some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x.}")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x.}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order \\spad{x}} is the order of magnitude of \\spad{x.} Note that \\spad{base \\spad{**} order \\spad{x} \\spad{<=} \\spad{|x|} < base \\spad{**} \\spad{(1} + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * \\spad{b} \\spad{**} e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() \\spad{**} e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) │ │ │ +((|approximate| . T) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|PatternMatchIntegration| R F) │ │ │ +((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, \\spad{x} = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, \\spad{x)}} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = \\spad{g} + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, \\spad{x)}} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = \\spad{g} + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, \\spad{x)}} returns \\spad{[c, \\spad{g]}} such that \\spad{f = \\spad{c} * \\spad{g}} and \\spad{c} does not involve \\spad{t}."))) │ │ │ NIL │ │ │ -(|Aggregate&| S) │ │ │ -((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate, designating any collection of objects, with heterogenous or homogeneous members, with a finite or infinite number of members, explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation r(x)\" An attribute \"finiteAggregate\" is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{# u} returns the number of items in u.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}$D creates an aggregate of type \\spad{D} with 0 elements. Note that The \\spad{$D} can be dropped if understood by context, for example \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of u. Note that for collections, \\axiom{copy(u) \\spad{==} \\spad{[x} for \\spad{x} in u]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) │ │ │ +((AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SpecialFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|LiouvillianFunctionCategory|))))) │ │ │ +(|Color|) │ │ │ +((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the Axiom system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue i.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues, set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c.}")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + \\spad{c2}} additively mixes the two colors \\spad{c1} and \\spad{c2.}")) (* (($ (|DoubleFloat|) $) "\\spad{s * \\spad{c},} returns the color \\spad{c,} whose weighted shade has been scaled by \\spad{s.}") (($ (|PositiveInteger|) $) "\\spad{s * \\spad{c},} returns the color \\spad{c,} whose weighted shade has been scaled by \\spad{s.}"))) │ │ │ NIL │ │ │ -((|HasAttribute| |#1| (QUOTE |finiteAggregate|))) │ │ │ -(|AnyFunctions1| S) │ │ │ -((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible, it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can, then such an object is returned. Otherwise, \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) │ │ │ NIL │ │ │ +(|OpenMath|) │ │ │ +((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{u} to the OpenMath device \\axiom{dev} as a complete OpenMath object; OMwrite(dev, u, false) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{u} to the OpenMath device \\axiom{dev} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{u} as a complete OpenMath object; OMwrite(u, false) returns the OpenMath \\spad{XML} encoding of \\axiom{u} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{u} as a complete OpenMath object."))) │ │ │ NIL │ │ │ -(|Aggregate|) │ │ │ -((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate, designating any collection of objects, with heterogenous or homogeneous members, with a finite or infinite number of members, explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation r(x)\" An attribute \"finiteAggregate\" is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{# u} returns the number of items in u.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}$D creates an aggregate of type \\spad{D} with 0 elements. Note that The \\spad{$D} can be dropped if understood by context, for example \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of u. Note that for collections, \\axiom{copy(u) \\spad{==} \\spad{[x} for \\spad{x} in u]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) │ │ │ -((|nil| . T)) │ │ │ NIL │ │ │ -(|BlowUpMethodCategory|) │ │ │ +(|RegularChain| R |ls|) │ │ │ +((|constructor| (NIL "A domain for regular chains (regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover, if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See zeroSetSplit from RegularTriangularSet."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |NewSparseMultivariatePolynomial|) (|devaluate| |#1|) (LIST (QUOTE |OrderedVariableList|) (|devaluate| |#2|))))) (|HasCategory| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| (|OrderedVariableList| |#2|) (QUOTE (|Finite|)))) │ │ │ +(|DictionaryOperations&| A S) │ │ │ +((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{p(x)} is not true.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{p(x)} is true.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{y = \\spad{x}.}")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{x,y,...,z}.") (($) "\\spad{dictionary()}$D creates an empty dictionary of type \\spad{D.}"))) │ │ │ NIL │ │ │ +((|HasAttribute| |#1| (QUOTE |finiteAggregate|))) │ │ │ +(|TheSymbolTable|) │ │ │ +((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation, containing details of types, dimensions, and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new, empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from tab, on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t.}") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t.}") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t.}")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l.}") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l.}") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l.}")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f.}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in asp.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table tab.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table tab.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|CombinatorialOpsCategory|) │ │ │ -((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n), \\spad{n} = a..b)} returns f(a) * \\spad{...} * f(b) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n), \\spad{n)}} returns the formal product P(n) which verifies P(n+1)/P(n) = f(n).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n), \\spad{n} = a..b)} returns f(a) + \\spad{...} + f(b) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n), \\spad{n)}} returns the formal sum S(n) which verifies S(n+1) - S(n) = f(n).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f, \\spad{x)}} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials."))) │ │ │ +(|SquareMatrix| |ndim| R) │ │ │ +((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices, where the number of rows \\spad{(=} number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R.}")) (|central| ((|attribute|) "the elements of the Ring \\spad{R,} viewed as diagonal matrices, commute with all matrices and, indeed, are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m.}"))) │ │ │ +((|unitsKnown| . T) (|central| |has| |#2| (ATTRIBUTE (|commutative| "*"))) (|finiteAggregate| . T) (|rightUnitary| . T) (|leftUnitary| . T)) │ │ │ +((|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#2| (QUOTE (|commutative| "*"))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|Field|))) (OR (|HasAttribute| |#2| (QUOTE (|commutative| "*"))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) │ │ │ +(|IntegrationResultRFToFunction| R) │ │ │ +((|constructor| (NIL "Conversion of integration results to top-level expressions. This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents, provided that the indexing polynomial can be factored into quadratics.")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, \\spad{x)}} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, \\spad{x)}} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to i.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to i.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + \\spad{...} + sum_{Pn(a)=0} Q(a,x)} where P1,...,Pn are the factors of \\spad{P.}"))) │ │ │ NIL │ │ │ +((|HasCategory| |#1| (QUOTE (|CharacteristicZero|)))) │ │ │ +(|UserDefinedPartialOrdering| S) │ │ │ +((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, \\spad{b)}} compares a and \\spad{b} in the partial ordering induced by setOrder, and uses the ordering on \\spad{S} if a and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by setOrder is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest \\spad{l}} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S.}") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn.}")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, \\spad{b,} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder, and returns \\spad{fn(a, \\spad{b)}} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, \\spad{b)}} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < \\spad{b2} < \\spad{...} < \\spad{bm} < \\spad{a1} < \\spad{a2} < \\spad{...} < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < \\spad{c} < ai}\\space{2}for \\spad{c} not among the ai's and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the ai's,bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < \\spad{a2} < \\spad{...} < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for \\spad{i} = 1..n} and \\spad{b} not among the ai's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, \\spad{c)}} if neither is among the ai's.}"))) │ │ │ NIL │ │ │ -(|Commutator|) │ │ │ -((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,j)} is not documented") (($ (|Integer|)) "\\spad{mkcomm(i)} is not documented"))) │ │ │ +((|HasCategory| |#1| (QUOTE (|OrderedSet|)))) │ │ │ +(|ElementaryFunctionLODESolver| R F L) │ │ │ +((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, \\spad{g,} \\spad{x,} a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op \\spad{y} = \\spad{g,} y(a) = \\spad{y0,} y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, \\spad{g,} \\spad{x)}} returns either a solution of the ordinary differential equation \\spad{op \\spad{y} = \\spad{g}} or \"failed\" if no non-trivial solution can be found; When found, the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op \\spad{y} = 0}. A full basis for the solutions of the homogenuous equation is not always returned, only the solutions which were found; \\spad{x} is the dependent variable."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Comparable|) │ │ │ -((|constructor| (NIL "The class of set equipped with possibly unnatural linear order (needed for technical reasons).")) (|smaller?| (((|Boolean|) $ $) "\\spad{smaller?(x, \\spad{y)}} is a strict total ordering on the elements of the set."))) │ │ │ +(|GeneralizedMultivariateFactorize| OV E S R P) │ │ │ +((|constructor| (NIL "This is the top level package for doing multivariate factorization over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Color|) │ │ │ -((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the Axiom system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue i.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues, set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c.}")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + \\spad{c2}} additively mixes the two colors \\spad{c1} and \\spad{c2.}")) (* (($ (|DoubleFloat|) $) "\\spad{s * \\spad{c},} returns the color \\spad{c,} whose weighted shade has been scaled by \\spad{s.}") (($ (|PositiveInteger|) $) "\\spad{s * \\spad{c},} returns the color \\spad{c,} whose weighted shade has been scaled by \\spad{s.}"))) │ │ │ +(|PatternMatchQuotientFieldCategory| S R Q) │ │ │ +((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient a/b; res contains the variables of \\spad{pat} which are already matched and their matches."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|SubSpaceComponentProperty|) │ │ │ -((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} is not documented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,b)} is not documented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,b)} is not documented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} is not documented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} is not documented")) (|new| (($) "\\spad{new()} is not documented"))) │ │ │ +(|LiePolynomial| |VarSet| R) │ │ │ +((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C.} Reutenauer (Oxford science publications).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(x,y)} returns the Lie bracket \\axiom{[x,y]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(x,y)} returns the Lie bracket \\axiom{[x,y]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(x,y)} returns the Lie bracket \\axiom{[x,y]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(p)} returns \\axiom{p} in Lyndon basis if \\axiom{p} is a Lie polynomial, otherwise \\axiom{\"failed\"} is returned."))) │ │ │ +((|JacobiIdentity| . T) (|NullSquare| . T) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) │ │ │ +(|SquareFreeRegularSetDecompositionPackage| R E V P TS) │ │ │ +((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu, Wang or Lazard- Moreno methods). This algorithm is valid for any type of regular set. It does not care about the way a polynomial is added in an regular set, or how two quasi-components are compared (by an inclusion-test), or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call directly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus, the operations of this package are not documented."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|DrawOptionFunctions1| S) │ │ │ -((|constructor| (NIL "This package has no description")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option, \\spad{s,} is contained in the list of drawing options, \\spad{l,} which is defined by the draw command."))) │ │ │ +(|LinearSystemMatrixPackage| F |Row| |Col| M) │ │ │ +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = \\spad{B}.}")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = \\spad{B}.}")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = \\spad{B}} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = \\spad{B}.}")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = \\spad{B}} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB.}") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = \\spad{B}} and a basis of the associated homogeneous system \\spad{AX = 0}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|EltableAggregate&| S |Dom| |Im|) │ │ │ -((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example, the list [1,7,4] can applied to 0,1, and 2 respectively will return the integers 1, 7, and 4; thus this list may be viewed as mapping 0 to 1, 1 to 7 and 2 to 4. In general, an aggregate can map members of a domain Dom to an image domain Im.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{x} to be \\axiom{y} under \\axiom{u}, without checking that \\axiom{x} is in the domain of \\axiom{u}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under u, assuming \\spad{x} is in the domain of u. Error: if \\spad{x} is not in the domain of u.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, \\spad{x)}} applies \\axiom{u} to \\axiom{x} without checking whether \\axiom{x} is in the domain of \\axiom{u}. If \\axiom{x} is not in the domain of \\axiom{u} a memory-access violation may occur. If a check on whether \\axiom{x} is in the domain of \\axiom{u} is required, use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, \\spad{x,} \\spad{y)}} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of u, and returns \\spad{y} otherwise. For example, if \\spad{u} is a polynomial in \\axiom{x} over the rationals, \\axiom{elt(u,n,0)} may define the coefficient of \\axiom{x} to the power \\spad{n,} returning 0 when \\spad{n} is out of range."))) │ │ │ +(|DiscreteLogarithmPackage| M) │ │ │ +((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note that this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x \\spad{**} \\spad{n}} returns \\spad{x} raised to the integer power \\spad{n}"))) │ │ │ NIL │ │ │ -((|HasAttribute| |#1| (QUOTE |shallowlyMutable|))) │ │ │ -(|EquationFunctions2| S R) │ │ │ -((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) │ │ │ NIL │ │ │ +(|IntegrationResultFunctions2| E F) │ │ │ +((|constructor| (NIL "Internally used by the integration packages")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) │ │ │ NIL │ │ │ -(|EltableAggregate| |Dom| |Im|) │ │ │ -((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example, the list [1,7,4] can applied to 0,1, and 2 respectively will return the integers 1, 7, and 4; thus this list may be viewed as mapping 0 to 1, 1 to 7 and 2 to 4. In general, an aggregate can map members of a domain Dom to an image domain Im.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{x} to be \\axiom{y} under \\axiom{u}, without checking that \\axiom{x} is in the domain of \\axiom{u}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under u, assuming \\spad{x} is in the domain of u. Error: if \\spad{x} is not in the domain of u.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, \\spad{x)}} applies \\axiom{u} to \\axiom{x} without checking whether \\axiom{x} is in the domain of \\axiom{u}. If \\axiom{x} is not in the domain of \\axiom{u} a memory-access violation may occur. If a check on whether \\axiom{x} is in the domain of \\axiom{u} is required, use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, \\spad{x,} \\spad{y)}} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of u, and returns \\spad{y} otherwise. For example, if \\spad{u} is a polynomial in \\axiom{x} over the rationals, \\axiom{elt(u,n,0)} may define the coefficient of \\axiom{x} to the power \\spad{n,} returning 0 when \\spad{n} is out of range."))) │ │ │ NIL │ │ │ +(|FunctionSpaceComplexIntegration| R F) │ │ │ +((|constructor| (NIL "Top-level complex function integration \\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, \\spad{x)}} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function, but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, \\spad{x)}} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) │ │ │ NIL │ │ │ -(|Exit|) │ │ │ -((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note that It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows, for example, errors to be raised in one half of a type-balanced \\spad{if}."))) │ │ │ NIL │ │ │ +(|PatternMatchPolynomialCategory| S E V R P) │ │ │ +((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p;} res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p.} \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) │ │ │ NIL │ │ │ -(|FileCategory| |Name| S) │ │ │ -((|constructor| (NIL "This category provides an interface to operate on files in the computer's file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S.}")) (|flush| (((|Void|) $) "\\spad{flush(f)} makes sure that buffered data is written out")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f.} The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f.} The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f.} The input/output status of \\spad{f} may be \"input\", \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f.}")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) │ │ │ +((|HasCategory| |#3| (LIST (QUOTE |PatternMatchable|) (|devaluate| |#1|)))) │ │ │ +(|GeneralPackageForAlgebraicFunctionField| K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR |InfClsPoint| |DesTree| BLMET) │ │ │ +((|constructor| (NIL "A package that implements the Brill-Noether algorithm. Part of the PAFF package.")) (|ZetaFunction| (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|) (|PositiveInteger|)) "\\spad{ZetaFunction(pi)} returns the Zeta function of the curve in constant field extension. Calculated by using the L-Polynomial") (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|)) "\\spad{ZetaFunction()} returns the Zeta function of the curve. Calculated by using the L-Polynomial")) (|numberPlacesDegExtDeg| (((|Integer|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberPlacesDegExtDeg(d, \\spad{n)}} returns the number of places of degree \\spad{d} in the constant field extension of degree \\spad{n}")) (|numberRatPlacesExtDeg| (((|Integer|) (|PositiveInteger|)) "\\spad{numberRatPlacesExtDeg(n)} returns the number of rational places in the constant field extenstion of degree \\spad{n}")) (|numberOfPlacesOfDegree| (((|Integer|) (|PositiveInteger|)) "\\spad{numberOfPlacesOfDegree(pi)} returns the number of places of the given degree")) (|placesOfDegree| (((|List| |#7|) (|PositiveInteger|)) "\\spad{placesOfDegree(d)} returns all places of degree \\spad{d} of the curve.")) (|classNumber| (((|Integer|)) "\\spad{classNumber()} returns the class number of the curve.")) (|LPolynomial| (((|SparseUnivariatePolynomial| (|Integer|)) (|PositiveInteger|)) "\\spad{LPolynomial(d)} returns the L-Polynomial of the curve in constant field extension of degree \\spad{d.}") (((|SparseUnivariatePolynomial| (|Integer|))) "\\spad{LPolynomial()} returns the L-Polynomial of the curve.")) (|rationalPlaces| (((|List| |#7|)) "\\spad{rationalPlaces returns} all the rational places of the curve defined by the polynomial given to the package.")) (|pointDominateBy| ((|#5| |#7|) "\\spad{pointDominateBy(pl)} returns the projective point dominated by the place \\spad{pl.}")) (|adjunctionDivisor| ((|#8|) "\\spad{adjunctionDivisor computes} the adjunction divisor of the plane curve given by the polynomial crv.")) (|intersectionDivisor| ((|#8| |#3|) "\\spad{intersectionDivisor(pol)} compute the intersection divisor (the Cartier divisor) of the form \\spad{pol} with the curve. If some intersection points lie in an extension of the ground field, an error message is issued specifying the extension degree needed to find all the intersection points. (If \\spad{pol} is not homogeneous an error message is issued).")) (|evalIfCan| (((|Union| |#1| "failed") (|Fraction| |#3|) |#7|) "\\spad{evalIfCan(u,pl)} evaluate the function \\spad{u} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") |#3| |#3| |#7|) "\\spad{evalIfCan(f,g,pl)} evaluate the function \\spad{f/g} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") |#3| |#7|) "\\spad{evalIfCan(f,pl)} evaluate \\spad{f} at the place \\spad{pl} (returns \"failed\" if it is a pole).")) (|eval| ((|#1| (|Fraction| |#3|) |#7|) "\\spad{eval(u,pl)} evaluate the function \\spad{u} at the place \\spad{pl.}") ((|#1| |#3| |#3| |#7|) "\\spad{eval(f,g,pl)} evaluate the function \\spad{f/g} at the place \\spad{pl.}") ((|#1| |#3| |#7|) "\\spad{eval(f,pl)} evaluate \\spad{f} at the place \\spad{pl.}")) (|interpolateForms| (((|List| |#3|) |#8| (|NonNegativeInteger|)) "\\spad{interpolateForms(d,n)} returns a basis of the interpolate forms of degree \\spad{n} of the divisor \\spad{d.}")) (|lBasis| (((|Record| (|:| |num| (|List| |#3|)) (|:| |den| |#3|)) |#8|) "\\spad{lBasis computes} a basis associated to the specified divisor")) (|parametrize| ((|#6| |#3| |#7|) "\\spad{parametrize(f,pl)} returns a local parametrization of \\spad{f} at the place \\spad{pl.}")) (|singularPoints| (((|List| |#5|)) "\\spad{singularPoints()} returns the singular points of the curve defined by the polynomial given to the package. If the singular points lie in an extension of the specified ground field an error message is issued specifying the extension degree needed to find all singular points.")) (|setSingularPoints| (((|List| |#5|) (|List| |#5|)) "\\spad{setSingularPoints(lpt)} sets the singular points to be used. Beware: no attempt is made to check if the points are singular or not, nor if all of the singular points are presents. Hence, results of some computation maybe false. It is intend to be use when one want to compute the singular points are computed by other means than to use the function singularPoints.")) (|desingTreeWoFullParam| (((|List| |#10|)) "\\spad{desingTreeWoFullParam returns} the desingularisation trees at all singular points of the curve defined by the polynomial given to the package. The local parametrizations are not computed.")) (|desingTree| (((|List| |#10|)) "\\spad{desingTree returns} the desingularisation trees at all singular points of the curve defined by the polynomial given to the package.")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus returns} the genus of the curve defined by the polynomial given to the package.")) (|theCurve| ((|#3|) "\\spad{theCurve returns} the specified polynomial for the package.")) (|printInfo| (((|Void|) (|List| (|Boolean|))) "\\spad{printInfo(lbool)} prints some information comming from various package and domain used by this package.")) (|setCurve| ((|#3| |#3|) "\\spad{setCurve sets} the defining polynomial"))) │ │ │ NIL │ │ │ +((|HasCategory| |#1| (QUOTE (|Finite|)))) │ │ │ +(|TableAggregate&| S |Key| |Entry|) │ │ │ +((|constructor| (NIL "A table aggregate is a model of a table, that is, a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements fn(x,y) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{x,y,...,z}.") (($) "\\spad{table()}$T creates an empty table of type \\spad{T.} \\blankline \\spad{X} Data:=Record(age:Integer,gender:String) \\spad{X} a1:AssociationList(String,Data):=table() \\spad{X} a1.\"tim\":=[55,\"male\"]$Data")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{t.k \\spad{:=} e}) is equivalent to \\axiom{(insert([k,e],t); e)}."))) │ │ │ NIL │ │ │ -(|Finite&| S) │ │ │ -((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|enumerate| (((|List| $)) "\\spad{enumerate()} returns a list of elements of the set \\blankline \\spad{X} enumerate()$OrderedVariableList([p,q])")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup \\spad{x}.}")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}-th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) │ │ │ NIL │ │ │ +(|U16Vector|) │ │ │ +((|constructor| (NIL "\\indented{2}{fill!(x, \\spad{s)} modifies a vector \\spad{x} so every element has value \\spad{s}} \\blankline \\spad{X} t1:=new(10,7)$U16Vector \\spad{X} fill!(t1,9)"))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| (|Integer|) (QUOTE (|SetCategory|))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))))) │ │ │ +(|U8Matrix|) │ │ │ +((|constructor| (NIL "This is a low-level domain which implements matrices (two dimensional arrays) of 8-bit integers. Indexing is 0 based, there is no bound checking (unless provided by lower level).")) (|qnew| (($ (|Integer|) (|Integer|)) "\\spad{qnew(n, \\spad{m)}} creates a new \\spad{n} by \\spad{m} matrix of zeros. \\blankline \\spad{X} qnew(3,4)$U8Matrix()"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|Integer|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|Integer|) (QUOTE (|IntegralDomain|))) (|HasAttribute| (|Integer|) (QUOTE (|commutative| "*"))) (|HasCategory| (|Integer|) (QUOTE (|CommutativeRing|))) (|HasCategory| (|Integer|) (QUOTE (|Field|)))) │ │ │ +(|ElementaryIntegration| R F) │ │ │ +((|constructor| (NIL "This package provides functions for integration, limited integration, extended integration and the risch differential equation for elementary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, \\spad{c]}} such that \\spad{dh/dx = \\spad{f} - \\spad{c} dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and k1,...,kn (the ki's must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, \\spad{x)}} = \\spad{g} such that \\spad{dg/dx = \\spad{f}.}")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, \\spad{x)}} returns a function \\spad{g} such that \\spad{dg/dx = \\spad{f}} if \\spad{g} exists, \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the gi's are among \\spad{[g1,...,gn]}, and \\spad{d(h+sum(ci log(gi)))/dx = \\spad{f},} if possible, \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, \\spad{x,} \\spad{g)}} returns functions \\spad{[h, \\spad{c]}} such that \\spad{dh/dx = \\spad{f} - cg}, if \\spad{(h,} \\spad{c)} exist, \"failed\" otherwise."))) │ │ │ NIL │ │ │ -(|ScriptFormulaFormat1| S) │ │ │ -((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) │ │ │ NIL │ │ │ +(|NagPartialDifferentialEquationsPackage|) │ │ │ +((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs, \\indented{7}{zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) │ │ │ NIL │ │ │ -(|FileNameCategory|) │ │ │ -((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory, \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string, a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory, \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string, a default is used.")) (|coerce| (((|String|) $) "\\spad{coerce(fn)} produces a string for a file name according to operating system-dependent conventions.") (($ (|String|)) "\\spad{coerce(s)} converts a string to a file name according to operating system-dependent conventions."))) │ │ │ NIL │ │ │ +(|LyndonWord| |VarSet|) │ │ │ +((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C.} Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors w.r.t. the pure lexicographical ordering. If \\axiom{a} and \\axiom{b} are two Lyndon words such that \\axiom{a < \\spad{b}} holds w.r.t lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule:\\br \\axiom{[[a,b],c]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds.\\br Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic.")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl, \\spad{n)}} returns the list of Lyndon words over the alphabet \\axiom{vl}, up to order \\axiom{n}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(vl, \\spad{n)}} returns an array of lists of Lyndon words over the alphabet \\axiom{vl}, up to order \\axiom{n}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(x)} returns the list of distinct entries of \\axiom{x}")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(w)} convert \\axiom{w} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(w)} convert \\axiom{w} into a Lyndon word, error if \\axiom{w} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(w)} test if \\axiom{w} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(x)} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(x)} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{x}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(x)} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{x}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(x,y)} returns \\axiom{true} iff \\axiom{x} is smaller than \\axiom{y} w.r.t. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(x)} returns the number of entries in \\axiom{x}.")) (|right| (($ $) "\\axiom{right(x)} returns right subtree of \\axiom{x} or error if retractable?(x) is true.")) (|left| (($ $) "\\axiom{left(x)} returns left subtree of \\axiom{x} or error if retractable?(x) is true.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(x)} tests if \\axiom{x} is a tree with only one entry."))) │ │ │ NIL │ │ │ -(|Finite|) │ │ │ -((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|enumerate| (((|List| $)) "\\spad{enumerate()} returns a list of elements of the set \\blankline \\spad{X} enumerate()$OrderedVariableList([p,q])")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup \\spad{x}.}")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}-th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) │ │ │ NIL │ │ │ +(|d01fcfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF, a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ NIL │ │ │ -(|IndexedDirectProductCategory| A S) │ │ │ -((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z.} Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z.} Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z.} Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z.}"))) │ │ │ NIL │ │ │ +(|Asp35| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs, needed for NAG routines c05pbf, c05pcf, for example: \\blankline \\tab{5}SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)\\br \\tab{5}DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)\\br \\tab{5}INTEGER LDFJAC,N,IFLAG\\br \\tab{5}IF(IFLAG.EQ.1)THEN\\br \\tab{7}FVEC(1)=(-1.0D0*X(2))+X(1)\\br \\tab{7}FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2)\\br \\tab{7}FVEC(3)=3.0D0*X(3)\\br \\tab{5}ELSEIF(IFLAG.EQ.2)THEN\\br \\tab{7}FJAC(1,1)=1.0D0\\br \\tab{7}FJAC(1,2)=-1.0D0\\br \\tab{7}FJAC(1,3)=0.0D0\\br \\tab{7}FJAC(2,1)=0.0D0\\br \\tab{7}FJAC(2,2)=2.0D0\\br \\tab{7}FJAC(2,3)=-1.0D0\\br \\tab{7}FJAC(3,1)=0.0D0\\br \\tab{7}FJAC(3,2)=0.0D0\\br \\tab{7}FJAC(3,3)=3.0D0\\br \\tab{5}ENDIF\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ -(|FortranProgramCategory|) │ │ │ -((|constructor| (NIL "FortranProgramCategory provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(u)} translates \\axiom{u} into a legal FORTRAN subprogram."))) │ │ │ +NIL │ │ │ +(|NoZeroDivisorsAttribute|) │ │ │ +((|constructor| (NIL "The class of all semirings such that \\spad{x * \\spad{y} \\spad{~=} 0} implies both \\spad{x} and \\spad{y} are non-zero."))) │ │ │ ((|nil| . T)) │ │ │ NIL │ │ │ -(|InnerEvalable&| S A B) │ │ │ -((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make \"evaluation\" substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f.}") (($ $ |#2| |#3|) "\\spad{eval(f, \\spad{x,} \\spad{v)}} replaces \\spad{x} by \\spad{v} in \\spad{f.}"))) │ │ │ +(|QuadraticForm| |n| K) │ │ │ +((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v,} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf.}")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric, square matrix \\spad{m.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InfiniteTupleFunctions2| A B) │ │ │ -((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) │ │ │ +(|Symbol|) │ │ │ +((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\% \\blankline \\spad{X} sample()$Symbol")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list \\indented{1}{of the name followed by the scripts.} \\blankline \\spad{X} m:=script(Big,[[i,j],[k,1],[0,1],[2],[u,v,w]]) \\spad{X} (list m)$Symbol")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. \\indented{1}{Error: if the symbol is subscripted.} \\blankline \\spad{X} S:=\"Hello\"::Symbol \\spad{X} string \\spad{S}")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or s([a1,...,an]) \\indented{1}{returns \\spad{s} subscripted by \\spad{[a1,...,an]}.} \\blankline \\spad{X} elt(S,[a1,a2]) \\spad{X} s([a1,a2])")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} \\indented{1}{arg-scripted by \\spad{[a1,...,an]}.} \\blankline \\spad{X} argscript(Big,[a,1])")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} \\indented{1}{superscripted by \\spad{[a1,...,an]}.} \\blankline \\spad{X} superscript(Big,[a,1])")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} \\indented{1}{subscripted by \\spad{[a1,...,an]}.} \\blankline \\spad{X} subscript(Big,[a,1])")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a, \\indented{1}{superscripts \\spad{b,} pre-superscripts \\spad{c,} pre-subscripts \\spad{d,}} \\indented{1}{and argument-scripts e.} \\blankline \\spad{X} m:=script(Big,[[i,j],[k,1],[0,1],[2],[u,v,w]]) \\spad{X} n:=scripts \\spad{m} \\spad{X} script(Little,n)") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a, \\indented{1}{superscripts \\spad{b,} pre-superscripts \\spad{c,} pre-subscripts \\spad{d,}} \\indented{1}{and argument-scripts e.\\space{2}Omitted components are taken to be empty.} \\indented{1}{For example, \\spad{script(s, [a,b,c])} is equivalent to} \\indented{1}{\\spad{script(s,[a,b,c,[],[]])}.} \\blankline \\spad{X} m:=script(Big,[[i,j],[k,1],[0,1],[2],[u,v,w]]) \\spad{X} scripts \\spad{m}")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s.} \\blankline \\spad{X} m:=script(Big,[[i,j],[k,1],[0,1],[2],[u,v,w]]) \\spad{X} scripts \\spad{m}")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts. \\blankline \\spad{X} U:=subscript(u,[1,2]) \\spad{X} scripted? \\spad{U} \\spad{X} scripted? \\spad{W}")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts. \\blankline \\spad{X} U:=subscript(u,[1,2]) \\spad{X} name(U)")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol. \\blankline \\spad{X} coerce(\"Hello\")$Symbol \\spad{X} \"Hello\"::Symbol")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and \\indented{1}{new(s) use to return distinct symbols every time.} \\blankline \\spad{X} new()$Symbol \\spad{X} new()$Symbol \\spad{X} resetNew() \\spad{X} new()$Symbol")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\spad{%s.} \\blankline \\spad{X} new(\"xyz\")$Symbol") (($) "\\spad{new()} returns a new symbol whose name starts with \\spad{%.} \\blankline \\spad{X} new()$Symbol"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InfiniteTupleFunctions3| A B C) │ │ │ -((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) │ │ │ +(|OpenMathEncoding|) │ │ │ +((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device, the encoding will be autodetected. It is invalid to use it on an output device."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InnerEvalable| A B) │ │ │ -((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make \"evaluation\" substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f.}") (($ $ |#1| |#2|) "\\spad{eval(f, \\spad{x,} \\spad{v)}} replaces \\spad{x} by \\spad{v} in \\spad{f.}"))) │ │ │ +(|UnivariatePuiseuxSeriesConstructorCategory&| S |Coef| ULS) │ │ │ +((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]}, where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible, \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)}, which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InfiniteTuple| S) │ │ │ -((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for \\spad{x} in \\spad{t} | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for \\spad{x} in \\spad{t} while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for \\spad{x} in \\spad{t} while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for \\spad{x} in t]}."))) │ │ │ +(|MonadWithUnit|) │ │ │ +((|constructor| (NIL "MonadWithUnit is the class of multiplicative monads with unit, that is, sets with a binary operation and a unit element. \\blankline Axioms\\br \\tab{5}leftIdentity(\"*\":(\\%,\\%)->\\%,1) for example, 1*x=x\\br \\tab{5}rightIdentity(\"*\":(\\%,\\%)->\\%,1) for example, x*1=x \\blankline Common Additional Axioms\\br \\tab{5}unitsKnown - if \"recip\" says \"failed\", it PROVES input wasn't a unit")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element, which is a right inverse of \\spad{a}, or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element, which is a left inverse of \\spad{a}, or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element, which is both a left and a right inverse of \\spad{a}, or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}-th power of \\spad{a}, defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}-th left power of \\spad{a}, that is, \\spad{leftPower(a,n) \\spad{:=} a * leftPower(a,n-1)} and \\spad{leftPower(a,0) \\spad{:=} 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}-th right power of \\spad{a}, that is, \\spad{rightPower(a,n) \\spad{:=} rightPower(a,n-1) * a} and \\spad{rightPower(a,0) \\spad{:=} 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "\\spad{1} returns the unit element, denoted by 1."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ListFunctions3| A B C) │ │ │ -((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists, each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is, the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) │ │ │ +(|FieldOfPrimeCharacteristic&| S) │ │ │ +((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic, for example, finite fields, algebraic closures of fields of prime characteristic, transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a**p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|LeftModule| R) │ │ │ -((|constructor| (NIL "The category of left modules over an \\spad{rng} \\spad{(ring not necessarily with unit)}. This is an abelian group which supports left multiplication by elements of the rng. \\blankline Axioms\\br \\tab{5}\\spad{(a*b)*x = a*(b*x)}\\br \\tab{5}\\spad{(a+b)*x = (a*x)+(b*x)}\\br \\tab{5}\\spad{a*(x+y) = (a*x)+(a*y)}")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r.}"))) │ │ │ +(|RealNumberSystem|) │ │ │ +((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs \\spad{x}} returns the absolute value of \\spad{x.}")) (|round| (($ $) "\\spad{round \\spad{x}} computes the integer closest to \\spad{x.}")) (|truncate| (($ $) "\\spad{truncate \\spad{x}} returns the integer between \\spad{x} and 0 closest to \\spad{x.}")) (|fractionPart| (($ $) "\\spad{fractionPart \\spad{x}} returns the fractional part of \\spad{x.}")) (|wholePart| (((|Integer|) $) "\\spad{wholePart \\spad{x}} returns the integer part of \\spad{x.}")) (|floor| (($ $) "\\spad{floor \\spad{x}} returns the largest integer \\spad{<= \\spad{x}.}")) (|ceiling| (($ $) "\\spad{ceiling \\spad{x}} returns the small integer \\spad{>= \\spad{x}.}")) (|norm| (($ $) "\\spad{norm \\spad{x}} returns the same as absolute value."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|OctonionCategoryFunctions2| OR R OS S) │ │ │ +((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}"))) │ │ │ NIL │ │ │ -(|Logic&| S) │ │ │ -((|constructor| (NIL "Logic provides the basic operations for lattices, for example, boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{\\/} returns the logical `join', for example, `or'.")) (|/\\| (($ $ $) "\\spadignore{/\\} returns the logical `meet', for example, `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x.}"))) │ │ │ NIL │ │ │ +(|ModularDistinctDegreeFactorizer| U) │ │ │ +((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p.}")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, \\spad{p)}} refines the distinct degree factorization produced by ddFact to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p,} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p.}")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p.} Error: if \\spad{f1} is not square-free modulo \\spad{p.}")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p.} Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p.}")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p.}"))) │ │ │ NIL │ │ │ -(|MappingPackageInternalHacks1| A) │ │ │ -((|constructor| (NIL "Various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f \\spad{n}} times to \\spad{x}."))) │ │ │ NIL │ │ │ +(|TranscendentalFunctionCategory&| S) │ │ │ +((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant pi."))) │ │ │ NIL │ │ │ -(|MappingPackageInternalHacks2| A C) │ │ │ -((|constructor| (NIL "Various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) │ │ │ NIL │ │ │ +(|AttributeRegistry|) │ │ │ +((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example, a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if, given an algebra over a ring \\spad{R,} the image of \\spad{R} is the center of the algebra, For example, the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive, but \\spad{not(a < \\spad{b} or a = \\spad{b)}} does not necessarily imply \\spad{b} \\spad{D}} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) │ │ │ +((|finiteAggregate| . T) ((|commutative| "*") . T) (|shallowlyMutable| . T) (|unitsKnown| . T) (|leftUnitary| . T) (|rightUnitary| . T) (|noZeroDivisors| . T) (|canonicalUnitNormal| . T) (|canonicalsClosed| . T) (|arbitraryPrecision| . T) (|partiallyOrderedSet| . T) (|central| . T) (|noetherian| . T) (|additiveValuation| . T) (|multiplicativeValuation| . T) (|NullSquare| . T) (|JacobiIdentity| . T) (|canonical| . T) (|approximate| . T)) │ │ │ NIL │ │ │ -(|Logic|) │ │ │ -((|constructor| (NIL "Logic provides the basic operations for lattices, for example, boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{\\/} returns the logical `join', for example, `or'.")) (|/\\| (($ $ $) "\\spadignore{/\\} returns the logical `meet', for example, `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x.}"))) │ │ │ +(|InnerTrigonometricManipulations| R F FG) │ │ │ +((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms, and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's}, in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) \\spad{b)}} returns \\spad{a + \\spad{i} \\spad{b}.}")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + \\spad{i} \\spad{b)}} returns \\spad{a + sqrt(-1) \\spad{b}.}")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + \\spad{i} \\spad{b)}} returns \\spad{a + \\spad{i} \\spad{b}} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MappingPackageInternalHacks3| A B C) │ │ │ -((|constructor| (NIL "Various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) │ │ │ +(|Infinity|) │ │ │ +((|constructor| (NIL "Top-level infinity Default infinity signatures for the interpreter.")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MappingPackage1| A) │ │ │ -((|constructor| (NIL "Various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the n-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id \\spad{x}} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint \\spad{f}} is the fixed point of function \\spad{f}. \\indented{1}{that is, such that \\spad{fixedPoint \\spad{f} = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) │ │ │ +(|MoreSystemCommands|) │ │ │ +((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis, for example, the \"what\" commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{cmd} and passes it to the runtime environment for execution as a system command. Although various things may be printed, no usable value is returned."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MappingPackage2| A C) │ │ │ -((|constructor| (NIL "Various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= \\spad{f} ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g \\spad{()=} \\spad{f} a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const \\spad{c}} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) │ │ │ +(|MRationalFactorize| E OV R P) │ │ │ +((|constructor| (NIL "MRationalFactorize contains the factor function for multivariate polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R.}")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MappingPackage3| A B C) │ │ │ -((|constructor| (NIL "Various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h \\spad{x=} \\spad{f(g} x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= \\spad{f} b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= \\spad{f} a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g \\spad{b} = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) │ │ │ +(|UnivariatePowerSeriesCategory&| S |Coef| |Expon|) │ │ │ +((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note that this category exports a substitution function if it is possible to multiply exponents. Also note that this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 \\spad{<=} \\spad{d} \\spad{<=} k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= \\spad{k}.}")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)}, where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f.}") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f.} This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n.}")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f.}")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms, where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) │ │ │ NIL │ │ │ +((|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (|SemiGroup|))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#2|) (QUOTE (|Symbol|)))))) │ │ │ +(|UnivariateSkewPolynomialCategory&| S R) │ │ │ +((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) \\spad{x} + \\delta a}. This category is an evolution of the types MonogenicLinearOperator, OppositeMonogenicLinearOperator, and NonCommutativeOperatorDivision")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = \\spad{c} * a + \\spad{d} * \\spad{b} = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q}, if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = \\spad{q*b} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = \\spad{q*b} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{q*b} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * \\spad{c} + \\spad{b} * \\spad{d} = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q}, if it exists, \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * \\spad{l0}} for some a in \\spad{R,} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l.}")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{q*b} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a, returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, \\spad{c,} \\spad{m)}} returns \\spad{p(m)} where the action is given by \\spad{x \\spad{m} = \\spad{c} sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l.}")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator, \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\spad{^=} 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}"))) │ │ │ NIL │ │ │ -(|MakeBinaryCompiledFunction| S D1 D2 I) │ │ │ -((|constructor| (NIL "Tools and transforms for making compiled functions from top-level expressions")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, \\spad{D2)} \\spad{->} I} \\indented{1}{defined by \\spad{f(x, \\spad{y)} \\spad{==} expr}.} \\indented{1}{Function \\spad{f} is compiled and directly} \\indented{1}{applicable to objects of type \\spad{(D1, D2)}} \\blankline \\spad{X} MBCF:=MakeBinaryCompiledFunction(POLY(FRAC(INT)),FLOAT,FLOAT,FLOAT) \\spad{X} f:=(x+3)*(y+4) \\spad{X} g:=compiledFunction(f,x,y)$MBCF \\spad{X} g(2.0,3.0)")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) │ │ │ +((|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) │ │ │ +(|NonLinearFirstOrderODESolver| R F) │ │ │ +((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), \\spad{y,} \\spad{x)}} returns \\spad{F(x,y)} such that \\spad{F(x,y) = \\spad{c}} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) \\spad{dx} + N(x,y) dy = 0}, or \"failed\" if no first-integral can be found."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MakeFunction| S) │ │ │ -((|constructor| (NIL "Tools for making interpreter functions from top-level expressions Transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) \\spad{==} e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, \\spad{x,} \\spad{y)}} creates a function \\spad{foo(x, \\spad{y)} = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, \\spad{x)}} creates a function \\spad{foo(x) \\spad{==} e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() \\spad{==} e}."))) │ │ │ +(|MultivariateTaylorSeriesCategory| |Coef| |Var|) │ │ │ +((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 \\spad{<=} \\spad{d} \\spad{<=} k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= \\spad{k}.}")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * \\spad{x1^n1} * \\spad{...} * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= \\spad{n}} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * \\spad{...} * xk^nk} in \\spad{f.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f.}"))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|SegmentBinding| S) │ │ │ +((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used, for example, by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example, if \\spad{segb} is \\spad{v=a..b}, then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example, if \\spad{segb} is \\spad{v=a..b}, then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) │ │ │ NIL │ │ │ -(|MakeRecord| S T$) │ │ │ -((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S, part2:R), where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}."))) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|)))) │ │ │ +(|CyclicStreamTools| S ST) │ │ │ +((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,cycElt)}, where \\spad{cycElt} is a pointer to a \\indented{1}{node in the cyclic part of the cyclic stream \\spad{x,} returns a} \\indented{1}{pointer to the first node in the cycle} \\blankline \\spad{X} p:=repeating([1,2,3]) \\spad{X} q:=cons(4,p) \\spad{X} computeCycleEntry(q,cycleElt(q))")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a \\indented{1}{cyclic stream \\spad{t,} where \\spad{s} is a pointer to a node in the} \\indented{1}{cyclic part of \\spad{t.}} \\blankline \\spad{X} p:=repeating([1,2,3]) \\spad{X} q:=cons(4,p) \\spad{X} computeCycleLength(cycleElt(q))")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\indented{1}{s is cyclic and returns \"failed\" if \\spad{s} is not cyclic} \\blankline \\spad{X} p:=repeating([1,2,3]) \\spad{X} q:=cons(4,p) \\spad{X} cycleElt \\spad{q} \\spad{X} r:=[1,2,3]::Stream(Integer) \\spad{X} cycleElt \\spad{r}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MakeUnaryCompiledFunction| S D I) │ │ │ -((|constructor| (NIL "Tools for making compiled functions from top-level expressions Transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, \\spad{x)}} returns a function \\spad{f: \\spad{D} \\spad{->} I} \\indented{1}{defined by \\spad{f(x) \\spad{==} expr}.} \\indented{1}{Function \\spad{f} is compiled and directly} \\indented{1}{applicable to objects of type \\spad{D.}} \\blankline \\spad{X} MUCF:=MakeUnaryCompiledFunction(POLY(FRAC(INT)),FLOAT,FLOAT) \\spad{X} \\spad{f:=(x+3)^2} \\spad{X} g:=compiledFunction(f,x)$MUCF \\spad{X} g(2.0)")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) │ │ │ +(|Asp31| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs, needed for NAG routine d02ejf, for example: \\blankline \\tab{5}SUBROUTINE PEDERV(X,Y,PW)\\br \\tab{5}DOUBLE PRECISION X,Y(*)\\br \\tab{5}DOUBLE PRECISION PW(3,3)\\br \\tab{5}PW(1,1)=-0.03999999999999999D0\\br \\tab{5}PW(1,2)=10000.0D0*Y(3)\\br \\tab{5}PW(1,3)=10000.0D0*Y(2)\\br \\tab{5}PW(2,1)=0.03999999999999999D0\\br \\tab{5}PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2))\\br \\tab{5}PW(2,3)=-10000.0D0*Y(2)\\br \\tab{5}PW(3,1)=0.0D0\\br \\tab{5}PW(3,2)=60000000.0D0*Y(2)\\br \\tab{5}PW(3,3)=0.0D0\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Monad&| S) │ │ │ -((|constructor| (NIL "Monad is the class of all multiplicative monads, that is sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}-th power of \\spad{a}, defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}-th left power of \\spad{a}, that is, \\spad{leftPower(a,n) \\spad{:=} a * leftPower(a,n-1)} and \\spad{leftPower(a,1) \\spad{:=} a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}-th right power of \\spad{a}, that is, \\spad{rightPower(a,n) \\spad{:=} rightPower(a,n-1) * a} and \\spad{rightPower(a,1) \\spad{:=} a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) │ │ │ +(|UnivariateFormalPowerSeries| |Coef|) │ │ │ +((|constructor| (NIL "This domain has no description"))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|)) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|)) (|devaluate| |#1|))))) (|HasCategory| (|NonNegativeInteger|) (QUOTE (|SemiGroup|))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ +(|ChineseRemainderToolsForIntegralBases| K R UP) │ │ │ +((|constructor| (NIL "This package has no description")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]}, where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|None|) │ │ │ -((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (for example, the interpreter and some of the internal \\spadtype{Expression} code)."))) │ │ │ +(|ComplexPatternMatch| R S CS) │ │ │ +((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression cexpr. res contains the variables of \\spad{pat} which are already matched and their matches."))) │ │ │ NIL │ │ │ +((|HasCategory| (|Polynomial| |#2|) (LIST (QUOTE |PatternMatchable|) (|devaluate| |#1|)))) │ │ │ +(|OrderedFinite|) │ │ │ +((|constructor| (NIL "Ordered finite sets."))) │ │ │ NIL │ │ │ -(|NumericalIntegrationProblem|) │ │ │ -((|constructor| (NIL "\\axiomType{NumericalIntegrationProblem} is a \\axiom{domain} for the representation of Numerical Integration problems for use by ANNA. \\blankline The representation is a Union of two record types - one for integration of a function of one variable: \\blankline \\axiomType{Record}(var:\\axiomType{Symbol},\\br fn:\\axiomType{Expression DoubleFloat},\\br range:\\axiomType{Segment OrderedCompletion DoubleFloat},\\br abserr:\\axiomType{DoubleFloat},\\br relerr:\\axiomType{DoubleFloat},) \\blankline and one for multivariate integration: \\blankline \\axiomType{Record}(fn:\\axiomType{Expression DoubleFloat},\\br range:\\axiomType{List Segment OrderedCompletion DoubleFloat},\\br abserr:\\axiomType{DoubleFloat},\\br relerr:\\axiomType{DoubleFloat},).")) (|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} is not documented")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} is not documented") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} is not documented"))) │ │ │ NIL │ │ │ +(|PolynomialInterpolationAlgorithms| F P) │ │ │ +((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) │ │ │ NIL │ │ │ -(|Monad|) │ │ │ -((|constructor| (NIL "Monad is the class of all multiplicative monads, that is sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}-th power of \\spad{a}, defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}-th left power of \\spad{a}, that is, \\spad{leftPower(a,n) \\spad{:=} a * leftPower(a,n-1)} and \\spad{leftPower(a,1) \\spad{:=} a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}-th right power of \\spad{a}, that is, \\spad{rightPower(a,n) \\spad{:=} rightPower(a,n-1) * a} and \\spad{rightPower(a,1) \\spad{:=} a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) │ │ │ NIL │ │ │ +(|DeRhamComplex| |CoefRing| |listIndVar|) │ │ │ +((|constructor| (NIL "The deRham complex of Euclidean space, that is, the class of differential forms of arbitary degree over a coefficient ring. See Flanders, Harley, Differential Forms, With Applications to the Physical Sciences, New York, Academic Press, 1963.")) (|lieDerivative| (($ (|Vector| (|Expression| |#1|)) $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|))) "\\spad{lieDerivative(vr,a,s)} calculates the Lie derivative L_X(a) \\indented{1}{of the differential form a with respect to the vector} \\indented{1}{field \\spad{X} (w.r.t. metric \\spad{g)}} \\blankline \\spad{X} coefRing \\spad{:=} Integer \\spad{X} \\spad{R3} : List Symbol \\spad{:=} [x,y,z] \\spad{X} \\spad{D} \\spad{:=} DERHAM(coefRing,R3) \\spad{X} [dx,dy,dz] \\spad{:=} [generator(i)$D for \\spad{i} in 1..3] \\spad{X} a : BOP \\spad{:=} operator('a) \\spad{X} \\spad{b} : BOP \\spad{:=} operator('b) \\spad{X} \\spad{c} : BOP \\spad{:=} operator('c) \\spad{X} \\spad{U} : BOP \\spad{:=} operator('U) \\spad{X} \\spad{V} : BOP \\spad{:=} operator('V) \\spad{X} \\spad{W} : BOP \\spad{:=} operator('W) \\spad{X} \\spad{v} \\spad{:=} vector[U(x,y,z),V(x,y,z),W(x,y,z)] \\spad{X} theta \\spad{:=} a(x,y,z)*dx*dy + b(x,y,z)*dx*dz + c(x,y,z)*dy*dz \\spad{X} \\spad{G} \\spad{:=} diagonalMatrix([1,1,1]) \\spad{X} eta \\spad{:=} lieDerivative(v,theta,G)")) (|interiorProduct| (($ (|Vector| (|Expression| |#1|)) $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|))) "\\spad{interiorProduct(vr,a,s)} calculates the interior product \\indented{1}{i_X(a) of the vector field \\spad{X}} \\indented{1}{with the differential form a (w.r.t. metric \\spad{g)}} \\blankline \\spad{X} coefRing \\spad{:=} Integer \\spad{X} \\spad{R3} : List Symbol \\spad{:=} [x,y,z] \\spad{X} \\spad{D} \\spad{:=} DERHAM(coefRing,R3) \\spad{X} [dx,dy,dz] \\spad{:=} [generator(i)$D for \\spad{i} in 1..3] \\spad{X} \\spad{f} : BOP \\spad{:=} operator('f) \\spad{X} \\spad{g} : BOP \\spad{:=} operator('g) \\spad{X} \\spad{h} : BOP \\spad{:=} operator('h) \\spad{X} a : BOP \\spad{:=} operator('a) \\spad{X} \\spad{b} : BOP \\spad{:=} operator('b) \\spad{X} \\spad{c} : BOP \\spad{:=} operator('c) \\spad{X} \\spad{U} : BOP \\spad{:=} operator('U) \\spad{X} \\spad{V} : BOP \\spad{:=} operator('V) \\spad{X} \\spad{W} : BOP \\spad{:=} operator('W) \\spad{X} \\spad{v} \\spad{:=} vector[U(x,y,z),V(x,y,z),W(x,y,z)] \\spad{X} sigma \\spad{:=} f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} theta \\spad{:=} a(x,y,z)*dx*dy + b(x,y,z)*dx*dz + c(x,y,z)*dy*dz \\spad{X} \\spad{G} \\spad{:=} diagonalMatrix([1,1,1]) \\spad{X} interiorProduct(v,sigma,G) \\spad{X} interiorProduct(v,theta,G)")) (|proj| (($ $ (|NonNegativeInteger|)) "\\spad{proj(a,n)} projection to homogeneous terms of degree \\spad{p} \\blankline \\spad{X} coefRing \\spad{:=} Integer \\spad{X} \\spad{R3} : List Symbol \\spad{:=} [x,y,z] \\spad{X} \\spad{D} \\spad{:=} DERHAM(coefRing,R3) \\spad{X} [dx,dy,dz] \\spad{:=} [generator(i)$D for \\spad{i} in 1..3] \\spad{X} proj(dx+dy*dz+dx*dy*dz,2)")) (|dot| (((|Expression| |#1|) $ $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|))) "\\spad{dot(a,b,s)} compute the inner product of two differential \\indented{1}{forms w.r.t. \\spad{g}} \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} G:SquareMatrix(3,Integer):=diagonalMatrix([1,1,1]) \\spad{X} dot(sigma,sigma,G)")) (|hodgeStar| (($ $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|))) "\\spad{hodgeStar(a,s)} computes the Hodge dual of the differential \\indented{1}{form with respect to the metric \\spad{g.}} \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} G:SquareMatrix(3,Integer):=diagonalMatrix([1,1,1]) \\spad{X} hodgeStar(sigma,G)")) (|dim| (((|NonNegativeInteger|) $) "\\spad{dim(s)} returns the dimension of the underlying space \\indented{1}{that is, dim ExtAlg = 2^dim} \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} dim sigma")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior \\indented{1}{derivative (gradient, curl, divergence, ...) of} \\indented{1}{the differential form df.} \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} \\spad{R} \\spad{:=} Expression(Integer) \\spad{X} [dx,dy,dz] \\spad{:=} [generator(i)$der for \\spad{i} in 1..3] \\spad{X} \\spad{f} : \\spad{R} \\spad{:=} \\spad{x**2*y*z-5*x**3*y**2*z**5} \\spad{X} \\spad{g} : \\spad{R} \\spad{:=} \\spad{z**2*y*cos(z)-7*sin(x**3*y**2)*z**2} \\spad{X} \\spad{h} : \\spad{R} \\spad{:=x*y*z-2*x**3*y*z**2} \\spad{X} alpha : der \\spad{:=} f*dx + g*dy + h*dz \\spad{X} exteriorDifferential alpha")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential \\indented{1}{(gradient) form for element \\spad{x.}} \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} a : BOP \\spad{:=} operator('a) \\spad{X} totalDifferential(a(x,y,z))$der \\spad{X} totalDifferential(x^2+y^2+sin(x)*z^2)$der")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential \\indented{1}{form \\spad{df} by \\spad{f(x)}.} \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} \\spad{R} \\spad{:=} Expression(Integer) \\spad{X} T(x:R):R \\spad{==} \\spad{x^2} \\spad{X} map(T,sigma)")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df.} \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} \\spad{t1} \\spad{:=} generator(1)$der \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} a:BOP:=operator('a) \\spad{X} b:BOP:=operator('b) \\spad{X} c:BOP:=operator('c) \\spad{X} theta:der:=a(x,y,z)*dx*dy + b(x,y,z)*dx*dz + c(x,y,z)*dy*dz \\spad{X} [degree \\spad{x} for \\spad{x} in [sigma,theta,t1]]")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form, \\indented{1}{if degree(df) = 0.} \\blankline \\spad{X} der:=DERHAM(Integer,[x,y,z]) \\spad{X} [dx,dy,dz]:=[generator(i)$der for \\spad{i} in 1..3] \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} retractable? sigma")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of \\indented{1}{differential form \\spad{df} have the same degree.} \\blankline \\spad{X} der:=DERHAM(Integer,[x,y,z]) \\spad{X} [dx,dy,dz]:=[generator(i)$der for \\spad{i} in 1..3] \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} homogeneous? sigma \\spad{X} a:BOP:=operator('a) \\spad{X} b:BOP:=operator('b) \\spad{X} c:BOP:=operator('c) \\spad{X} theta:=a(x,y,z)*dx*dy + b(x,y,z)*dx*dz + c(x,y,z)*dy*dz \\spad{X} homogeneous? (sigma+theta)")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form. \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} [dx,dy,dz] \\spad{:=} [generator(i)$der for \\spad{i} in 1..3]")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)}, where \\spad{df} is a differential form, \\indented{1}{returns the coefficient of \\spad{df} containing the basis term u} \\indented{1}{if such a term exists, and 0 otherwise.} \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} \\spad{R} \\spad{:=} Expression(Integer) \\spad{X} [dx,dy,dz] \\spad{:=} [generator(i)$der for \\spad{i} in 1..3] \\spad{X} \\spad{f} : \\spad{R} \\spad{:=} \\spad{x**2*y*z-5*x**3*y**2*z**5} \\spad{X} \\spad{g} : \\spad{R} \\spad{:=} \\spad{z**2*y*cos(z)-7*sin(x**3*y**2)*z**2} \\spad{X} \\spad{h} : \\spad{R} \\spad{:=x*y*z-2*x**3*y*z**2} \\spad{X} alpha : der \\spad{:=} f*dx + g*dy + h*dz \\spad{X} beta : der \\spad{:=} cos(tan(x*y*z)+x*y*z)*dx + x*dy \\spad{X} gamma \\spad{:=} alpha * beta \\spad{X} coefficient(gamma, dx*dy)")) (|reductum| (($ $) "\\spad{reductum(df)}, where \\spad{df} is a differential form, returns \\spad{df} minus \\indented{1}{the leading term of \\spad{df} if \\spad{df} has two or more terms, and} \\indented{1}{0 otherwise.} \\blankline \\spad{X} der:=DERHAM(Integer,[x,y,z]) \\spad{X} [dx,dy,dz]:=[generator(i)$der for \\spad{i} in 1..3] \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} reductum sigma")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading \\indented{1}{basis term of differential form df.} \\blankline \\spad{X} der:=DERHAM(Integer,[x,y,z]) \\spad{X} [dx,dy,dz]:=[generator(i)$der for \\spad{i} in 1..3] \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} leadingBasisTerm sigma")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading \\indented{1}{coefficient of differential form df.} \\blankline \\spad{X} der:=DERHAM(Integer,[x,y,z]) \\spad{X} [dx,dy,dz]:=[generator(i)$der for \\spad{i} in 1..3] \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} leadingCoefficient sigma"))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|NoneFunctions1| S) │ │ │ -((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) │ │ │ +(|InfinitlyClosePoint| K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR BLMET) │ │ │ +((|constructor| (NIL "This domain is part of the PAFF package")) (|fullOutput| (((|Boolean|)) "\\spad{fullOutput returns} the value of the flag set by fullOutput(b).") (((|Boolean|) (|Boolean|)) "\\spad{fullOutput(b)} sets a flag such that when true, a coerce to OutputForm yields the full output of \\spad{tr,} otherwise encode(tr) is output (see encode function). The default is false.")) (|fullOut| (((|OutputForm|) $) "\\spad{fullOut(tr)} yields a full output of \\spad{tr} (see function fullOutput)."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NumericalIntegrationCategory|) │ │ │ -((|constructor| (NIL "\\axiomType{NumericalIntegrationCategory} is the \\axiom{category} for describing the set of Numerical Integration \\axiom{domains} with \\axiomFun{measure} and \\axiomFun{numericalIntegration}.")) (|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter, labelled \\axiom{sofar}, which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter, labelled \\axiom{sofar}, which would contain the best compatibility found so far."))) │ │ │ +(|FunctionSpaceIntegration| R F) │ │ │ +((|constructor| (NIL "Top-level real function integration \\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, \\spad{x)}} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|OrdinaryDifferentialEquationsSolverCategory|) │ │ │ -((|constructor| (NIL "\\axiomType{OrdinaryDifferentialEquationsSolverCategory} is the \\axiom{category} for describing the set of ODE solver \\axiom{domains} with \\axiomFun{measure} and \\axiomFun{ODEsolve}.")) (|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}."))) │ │ │ +(|CommuteUnivariatePolynomialCategory| R UP UPUP) │ │ │ +((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,y))} returns p(y,x)."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NumericalODEProblem|) │ │ │ -((|constructor| (NIL "\\axiomType{NumericalODEProblem} is a \\axiom{domain} for the representation of Numerical ODE problems for use by ANNA. \\blankline The representation is of type: \\blankline \\axiomType{Record}(xinit:\\axiomType{DoubleFloat},\\br xend:\\axiomType{DoubleFloat},\\br fn:\\axiomType{Vector Expression DoubleFloat},\\br yinit:\\axiomType{List DoubleFloat},intvals:\\axiomType{List DoubleFloat},\\br g:\\axiomType{Expression DoubleFloat},abserr:\\axiomType{DoubleFloat},\\br relerr:\\axiomType{DoubleFloat}) \\blankline")) (|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} is not documented")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} is not documented"))) │ │ │ +(|Asp50| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs, needed for NAG routine e04fdf, for example: \\blankline \\tab{5}SUBROUTINE LSFUN1(M,N,XC,FVECC)\\br \\tab{5}DOUBLE PRECISION FVECC(M),XC(N)\\br \\tab{5}INTEGER I,M,N\\br \\tab{5}FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/(\\br \\tab{4}&XC(3)+15.0D0*XC(2))\\br \\tab{5}FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X\\br \\tab{4}&C(3)+7.0D0*XC(2))\\br \\tab{5}FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666\\br \\tab{4}&66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2))\\br \\tab{5}FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X\\br \\tab{4}&C(3)+3.0D0*XC(2))\\br \\tab{5}FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC\\br \\tab{4}&(2)+1.0D0)/(XC(3)+2.2D0*XC(2))\\br \\tab{5}FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X\\br \\tab{4}&C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2))\\br \\tab{5}FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142\\br \\tab{4}&85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2))\\br \\tab{5}FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999\\br \\tab{4}&99D0)*XC(2)+1.0D0)/(XC(3)+XC(2))\\br \\tab{5}FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999\\br \\tab{4}&99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2))\\br \\tab{5}FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666\\br \\tab{4}&67D0)/(XC(3)+XC(2))\\br \\tab{5}FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999\\br \\tab{4}&999D0)*XC(2)+2.2D0)/(XC(3)+XC(2))\\br \\tab{5}FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3)\\br \\tab{4}&+XC(2))\\br \\tab{5}FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333\\br \\tab{4}&3333D0)/(XC(3)+XC(2))\\br \\tab{5}FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X\\br \\tab{4}&C(2))\\br \\tab{5}FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3\\br \\tab{4}&)+XC(2))\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|OpenMathEncoding|) │ │ │ -((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device, the encoding will be autodetected. It is invalid to use it on an output device."))) │ │ │ +(|RewriteRule| |Base| R F) │ │ │ +((|constructor| (NIL "Rules for the pattern matcher")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted, that is they are not evaluated during any rewrite, but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or r(f, \\spad{n)} applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r.}")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r.}")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r.}")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], \\spad{f)}} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, \\spad{g,} [f1,...,fn])} creates the rewrite rule \\spad{f \\spad{==} eval(eval(g, \\spad{g} is \\spad{f),} [f1,...,fn])}, that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g;} The symbols f1,...,fn are the operators that are considered quoted, that is they are not evaluated during any rewrite, but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, \\spad{g)}} creates the rewrite rule: \\spad{f \\spad{==} eval(g, \\spad{g} is f)}, \\indented{1}{with left-hand side \\spad{f} and right-hand side \\spad{g.}} \\blankline \\spad{X} logrule \\spad{:=} rule log(x) + log(y) \\spad{==} log(x*y) \\spad{X} \\spad{f} \\spad{:=} log(sin(x)) + log(x) \\spad{X} logrule \\spad{f}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|OnePointCompletionFunctions2| R S) │ │ │ -((|constructor| (NIL "Lifting of maps to one-point completions.")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, \\spad{r,} i)} lifts \\spad{f} and applies it to \\spad{r,} assuming that f(infinity) = i.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, \\spad{r)}} lifts \\spad{f} and applies it to \\spad{r,} assuming that f(infinity) = infinity."))) │ │ │ +(|InnerIndexedTwoDimensionalArray| R |mnRow| |mnCol| |Row| |Col|) │ │ │ +((|constructor| (NIL "There is no description for this domain"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ +(|PartialFraction| R) │ │ │ +((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator, while the ``p-adic'' form expands each numerator p-adically via the prime \\spad{p} in the denominator. For computational efficiency, the compact form is used, though the p-adic form may be gotten by calling the function padicFraction}. For a general euclidean domain, it is not known how to factor the denominator. Thus the function partialFraction takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\indented{1}{\\spad{p}.} \\blankline \\spad{X} a:=(74/13)::PFR(INT) \\spad{X} wholePart(a)")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for \\indented{1}{constructing partial fractions. The second argument is the} \\indented{1}{denominator and should be factored.} \\blankline \\spad{X} partialFraction(1,factorial 10)")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction p-adically in the primes \\indented{1}{\\spad{p} in the denominator of \\spad{q}. For example,} \\indented{1}{\\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}.} \\indented{1}{Use compactFraction from PartialFraction to} \\indented{1}{return to compact form.} \\blankline \\spad{X} a:=partialFraction(1,factorial 10) \\spad{X} padicFraction(a)")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional \\indented{1}{terms in \\spad{p}. This returns 0 if there is no fractional} \\indented{1}{part.} \\blankline \\spad{X} a:=partialFraction(1,factorial 10) \\spad{X} b:=padicFraction(a) \\spad{X} numberOfFractionalTerms(b)")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from \\indented{1}{the partial fraction \\spad{p}.\\space{2}This returns 0 if the index} \\indented{1}{\\spad{n} is out of range.} \\blankline \\spad{X} a:=partialFraction(1,factorial 10) \\spad{X} b:=padicFraction(a) \\spad{X} nthFractionalTerm(b,3)")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional \\indented{1}{term. This returns 0 if there is no fractional part (use} \\indented{1}{wholePart from PartialFraction to get the whole part).} \\blankline \\spad{X} a:=partialFraction(1,factorial 10) \\spad{X} firstNumer(a)")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional \\indented{1}{term. This returns 1 if there is no fractional part (use} \\indented{1}{wholePart from PartialFraction to get the whole part).} \\blankline \\spad{X} a:=partialFraction(1,factorial 10) \\spad{X} firstDenom(a)")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} \\indented{1}{to the compact representation. In this form, the partial} \\indented{1}{fraction has only one fractional term per prime in the} \\indented{1}{denominator.} \\blankline \\spad{X} a:=partialFraction(1,factorial 10) \\spad{X} b:=padicFraction(a) \\spad{X} compactFraction(b)")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in \\indented{1}{factored form and creates a partial fraction.\\space{2}It is} \\indented{1}{necessary for the parts to be factored because it is not} \\indented{1}{known in general how to factor elements of \\spad{R} and} \\indented{1}{this is needed to decompose into partial fractions.} \\blankline \\spad{X} (13/74)::PFR(INT)") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and \\indented{1}{returns a single fraction.} \\blankline \\spad{X} a:=(13/74)::PFR(INT) \\spad{X} a::FRAC(INT)"))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|FortranMatrixCategory|) │ │ │ +((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP, making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ (|NumericalOptimizationCategory|) │ │ │ ((|constructor| (NIL "\\axiomType{NumericalOptimizationCategory} is the \\axiom{category} for describing the set of Numerical Optimization \\axiom{domains} with \\axiomFun{measure} and \\axiomFun{optimize}.")) (|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter, labelled \\axiom{sofar}, which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter, labelled \\axiom{sofar}, which would contain the best compatibility found so far."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NumericalOptimizationProblem|) │ │ │ -((|constructor| (NIL "\\axiomType{NumericalOptimizationProblem} is a \\axiom{domain} for the representation of Numerical Optimization problems for use by ANNA. \\blankline The representation is a Union of two record types - one for optimization of a single function of one or more variables: \\blankline \\axiomType{Record}(\\br fn:\\axiomType{Expression DoubleFloat},\\br init:\\axiomType{List DoubleFloat},\\br lb:\\axiomType{List OrderedCompletion DoubleFloat},\\br cf:\\axiomType{List Expression DoubleFloat},\\br ub:\\axiomType{List OrderedCompletion DoubleFloat}) \\blankline and one for least-squares problems that is, optimization of a set of observations of a data set: \\blankline \\axiomType{Record}\\spad{(}lfn:\\axiomType{List Expression DoubleFloat},\\br init:\\axiomType{List DoubleFloat}\\spad{)}.")) (|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} is not documented")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} is not documented") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} is not documented"))) │ │ │ +(|PatternMatchable| S) │ │ │ +((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S.}")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression expr. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially, res is just the result of \\spadfun{new} which is an empty list of matches."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|OrderedCompletionFunctions2| R S) │ │ │ -((|constructor| (NIL "Lifting of maps to ordered completions.")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, \\spad{r,} \\spad{p,} \\spad{m)}} lifts \\spad{f} and applies it to \\spad{r,} assuming that f(plusInfinity) = \\spad{p} and that f(minusInfinity) = \\spad{m.}") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, \\spad{r)}} lifts \\spad{f} and applies it to \\spad{r,} assuming that f(plusInfinity) = plusInfinity and that f(minusInfinity) = minusInfinity."))) │ │ │ +(|LinesOpPack| K) │ │ │ +((|constructor| (NIL "A package that exports several linear algebra operations over lines of matrices. Part of the PAFF package.")) (|reduceRowOnList| (((|List| (|List| |#1|)) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{reduceRowOnList(v,lvec)} applies a row reduction on each of the element of \\spad{lv} using \\spad{v} according to a pivot in \\spad{v} which is set to be the first non nul element in \\spad{v.}")) (|reduceLineOverLine| (((|List| |#1|) (|List| |#1|) (|List| |#1|) |#1|) "\\spad{reduceLineOverLine(v1,v2,a)} returns \\spad{v1-a*v1} where \\indented{1}{v1 and \\spad{v2} are considered as vector space.}")) (|quotVecSpaceBasis| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{quotVecSpaceBasis(b1,b2)} returns a basis of \\spad{V1/V2} where \\spad{V1} and \\spad{V2} are vector space with basis \\spad{b1} and \\spad{b2} resp. and \\spad{V2} is suppose to be include in \\spad{V1;} Note that if it is not the case then it returs the basis of V1/W where \\spad{W} = intersection of \\spad{V1} and \\spad{V2}")) (|reduceRow| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{reduceRow(llk)} if the input is considered as a matrix, the output would be the row reduction matrix. It's almost the rowEchelon form except that no permution of lines is performed."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|OrderedSet&| S) │ │ │ -((|constructor| (NIL "The class of totally ordered sets, that is, sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a} a= (((|Boolean|) $ $) "\\spad{x \\spad{>=} \\spad{y}} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > \\spad{y}} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < \\spad{y}} is a strict total ordering on the elements of the set."))) │ │ │ +(|LeftUnitaryAttribute|) │ │ │ +((|constructor| (NIL "LeftUnitary is \\spad{true} if \\spad{1 * \\spad{x} = \\spad{x}} for all \\spad{x.}"))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ +(|PolynomialFactorizationByRecursionUnivariate| R S) │ │ │ +((|constructor| (NIL "PolynomialFactorizationByRecursionUnivariate \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain, \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S,} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p.} This functions performs the recursion step for factorSquareFreePolynomial, as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p.} This function performs the recursion step for factorPolynomial, as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = \\spad{p} / prod pi}, a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists, then \"failed\" is returned."))) │ │ │ NIL │ │ │ -(|Palette|) │ │ │ -((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c.}")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p.}")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p.}")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue, \\spad{c,} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue, \\spad{c,} above bright, but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue, \\spad{c,} above dim, but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue, \\spad{c,} above dark, but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value."))) │ │ │ NIL │ │ │ +(|InnerAlgebraicNumber|) │ │ │ +((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z.}")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z.}")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| $ (QUOTE (|Ring|))) (|HasCategory| $ (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) │ │ │ +(|BinaryTournament| S) │ │ │ +((|constructor| (NIL "BinaryTournament creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b.} \\blankline \\spad{X} t1:=binaryTournament [1,2,3,4] \\spad{X} insert!(5,t1) \\spad{X} \\spad{t1}")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the \\indented{1}{elements of \\spad{ls} as values at the nodes.} \\blankline \\spad{X} binaryTournament [1,2,3,4]"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ +(|StorageEfficientMatrixOperations| R) │ │ │ +((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices, rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x \\spad{**} \\spad{n}} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a}, \\spad{b,} \\spad{c,} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * \\spad{b}} and stores the result in the matrix \\spad{c.} Error: if \\spad{a}, \\spad{b,} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * \\spad{r}} and stores the result in the matrix \\spad{c.} Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c.} Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - \\spad{b}} and stores the result in the matrix \\spad{c.} Error: if \\spad{a}, \\spad{b,} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c.} Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + \\spad{b}} and stores the result in the matrix \\spad{c.} Error: if \\spad{a}, \\spad{b,} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c.} Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) │ │ │ NIL │ │ │ -(|ParametricPlaneCurve| |ComponentFunction|) │ │ │ -((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to i. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) │ │ │ NIL │ │ │ +(|BinaryRecursiveAggregate| S) │ │ │ +((|constructor| (NIL "A binary-recursive aggregate has 0, 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x.}")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b.}")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{b . right \\spad{:=} \\spad{b})} is equivalent to \\axiom{setright!(a,b)}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b})} is equivalent to \\axiom{setleft!(a,b)}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|OrderedSet|) │ │ │ -((|constructor| (NIL "The class of totally ordered sets, that is, sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a} a= (((|Boolean|) $ $) "\\spad{x \\spad{>=} \\spad{y}} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > \\spad{y}} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < \\spad{y}} is a strict total ordering on the elements of the set."))) │ │ │ +(|ThreeSpace| R) │ │ │ +((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points, curves, polygons, constructs and the subspaces containing them."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ParametricPlaneCurveFunctions2| CF1 CF2) │ │ │ -((|constructor| (NIL "This package has no description")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) │ │ │ +(|ListFunctions3| A B C) │ │ │ +((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists, each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is, the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ParametricSpaceCurve| |ComponentFunction|) │ │ │ -((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to i. This indicates what the function for the coordinate component, i, of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1}, \\spad{c2}, and \\spad{c3}."))) │ │ │ +(|Dictionary&| A S) │ │ │ +((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted, searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ParametricSpaceCurveFunctions2| CF1 CF2) │ │ │ -((|constructor| (NIL "This package has no description")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) │ │ │ +(|e04ucfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF, a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ParametricSurface| |ComponentFunction|) │ │ │ -((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to i. This indicates what the function for the coordinate component, i, of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1}, \\spad{c2}, and \\spad{c3}."))) │ │ │ +(|SubResultantPackage| R UP) │ │ │ +((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one.")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, \\spad{q)}} reduces the coefficient of \\spad{p} modulo \\spad{q,} takes the primitive part of the result, and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, \\spad{q)}} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q.} In particular, \\spad{p0 = resultant(p, q)}."))) │ │ │ NIL │ │ │ +((|HasCategory| |#1| (QUOTE (|EuclideanDomain|)))) │ │ │ +(|DifferentialVariableCategory| S) │ │ │ +((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If x,...,y is an ordered set of differential indeterminates, and the prime notation is used for differentiation, then the set of derivatives (including zero-th order) of the differential indeterminates is x,\\spad{x'},\\spad{x''},..., y,\\spad{y'},\\spad{y''},... (Note that in the interpreter, the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n.)} This set is viewed as a set of algebraic indeterminates, totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives, and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates, just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example, one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order}, then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates, Very often, a grading is the first step in ordering the set of monomials. For differential polynomial domains, this constructor provides a function \\spadfun{weight}, which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example, one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials, providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s,} viewed as the zero-th order derivative of \\spad{s.}")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, \\spad{n)}} returns the \\spad{n}-th derivative of \\spad{v.}") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v.}")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v.}")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s.}")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, \\spad{n)}} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) │ │ │ NIL │ │ │ -(|ParametricSurfaceFunctions2| CF1 CF2) │ │ │ -((|constructor| (NIL "This package has no description")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) │ │ │ NIL │ │ │ +(|MonogenicAlgebra&| S R UP) │ │ │ +((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, \\spad{')}} returns \\spad{M} such that \\spad{b' = \\spad{M} \\spad{b}.}")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element, reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element, reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) │ │ │ NIL │ │ │ -(|Patternable| R) │ │ │ -((|constructor| (NIL "Category of sets that can be converted to useful patterns An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) │ │ │ +((|HasCategory| |#2| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Finite|)))) │ │ │ +(|Character|) │ │ │ +((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number, for example, one of 0..9, a..z or A..Z. \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [alphanumeric? \\spad{c} for \\spad{c} in chars]")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter, for example, one of a..z. \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [lowerCase? \\spad{c} for \\spad{c} in chars]")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter, for example, one of A..Z. \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [upperCase? \\spad{c} for \\spad{c} in chars]")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter, for example, one of a..z or A..Z. \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [alphabetic? \\spad{c} for \\spad{c} in chars]")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral, for example, one of 0..9, a..f or A..F. \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [hexDigit? \\spad{c} for \\spad{c} in chars]")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character, for example, one of 0..9. \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [digit? \\spad{c} for \\spad{c} in chars]")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter, then it is returned unchanged. \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [lowerCase \\spad{c} for \\spad{c} in chars]")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter, then it is returned unchanged. \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [upperCase \\spad{c} for \\spad{c} in chars]")) (|escape| (($) "\\spad{escape()} provides the escape character, \\spad{_}, which is used to allow quotes and other characters within strings. \\blankline \\spad{X} escape()")) (|quote| (($) "\\spad{quote()} provides the string quote character, \\spad{\"}. \\blankline \\spad{X} quote()")) (|space| (($) "\\spad{space()} provides the blank character. \\blankline \\spad{X} space()")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one. \\blankline \\spad{X} [char \\spad{c} for \\spad{c} in [\"a\",\"A\",\"X\",\"8\",\"+\"]]") (($ (|Integer|)) "\\spad{char(i)} provides a character corresponding to the integer code i. It is always \\spad{true} that \\spad{ord char \\spad{i} = i}. \\blankline \\spad{X} [char \\spad{c} for \\spad{c} in [97,65,88,56,43]]")) (|ord| (((|Integer|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c.} It is always \\spad{true} that \\spad{char ord \\spad{c} = \\spad{c}.} \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [ord \\spad{c} for \\spad{c} in chars]"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PatternMatchable| S) │ │ │ -((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S.}")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression expr. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially, res is just the result of \\spadfun{new} which is an empty list of matches."))) │ │ │ +(|Graphviz|) │ │ │ +((|constructor| (NIL "Low level tools for creating and viewing graphs using graphviz")) (|dotview| (((|Void|) (|String|) (|String|)) "\\spad{dotview(str1,str2)} runs \"viewer filename\". \\indented{1}{A file extension of \".eps\" is added.} \\blankline \\spad{X} dotview(\"evince\",\"NeuralNet\") \\spad{--} on Linux \\spad{X} dotview(\"gv\",\"NeuralNet\") \\spad{--} on MAC \\spad{X} dotview(\"firefox\",\"NeuralNet\") \\spad{--} most places")) (|dot2eps| (((|Void|) (|String|)) "\\spad{dot2eps(f)} runs dot \\spad{-T} eps filename.dot >filename.eps \\blankline \\spad{X} dot2eps \"NeuralNet\"")) (|writeDotGraph| (((|Void|) (|List| (|String|)) (|List| (|String|)) (|String|)) "\\spad{writeDotGraph(h,g,f)} creates a graphviz dot file and \\indented{1}{writes it out} \\blankline \\spad{X} header:=standardDotHeader() \\spad{X} graph:=sampleDotGraph() \\spad{X} writeDotGraph(header,graph,\"NeuralNet\")")) (|sampleDotGraph| (((|List| (|String|))) "\\spad{sampleDotGraph()} creates a sample graph file \\blankline \\spad{X} graph:=sampleDotGraph()")) (|standardDotHeader| (((|List| (|String|))) "\\spad{standardDotHeader()} create the standard dot file header \\blankline \\spad{X} header:=standardDotHeader()"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PatternMatchResultFunctions2| R A B) │ │ │ -((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(v1,f(a1)),...,(vn,f(an))]."))) │ │ │ +(|DirichletRing| |Coef|) │ │ │ +((|constructor| (NIL "DirichletRing is the ring of arithmetical functions with Dirichlet convolution as multiplication")) (|additive?| (((|Boolean|) $ (|PositiveInteger|)) "\\spad{additive?(a, \\spad{n)}} returns \\spad{true} if the first \\spad{n} coefficients of a are additive")) (|multiplicative?| (((|Boolean|) $ (|PositiveInteger|)) "\\spad{multiplicative?(a, \\spad{n)}} returns \\spad{true} if the first \\spad{n} coefficients of a are multiplicative")) (|zeta| (($) "\\spad{zeta()} returns the function which is constantly one"))) │ │ │ +((|leftUnitary| |has| |#1| (|CommutativeRing|)) (|rightUnitary| |has| |#1| (|CommutativeRing|)) ((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|CommutativeRing|)) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CommutativeRing|)))) │ │ │ +(|GuessFiniteFunctions| F) │ │ │ +((|constructor| (NIL "This package exports guessing of sequences of numbers in a finite field"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PatternFunctions1| R D) │ │ │ -((|constructor| (NIL "Utilities for handling patterns")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p;} \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, \\spad{v)}} adds \\spad{v} to the list of \"bad values\" for \\spad{p;} \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], \\spad{p)}} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p.}") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, \\spad{p)}} returns f(v) where \\spad{f} is the predicate attached to \\spad{p.}")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p,} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], \\spad{f)}} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and \\spad{...} and \\spad{fn} to the copy, which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, \\spad{f)}} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy, which is returned."))) │ │ │ +(|ExpressionSpace&| S) │ │ │ +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? \\spad{x}} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? \\spad{x}} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, \\spad{s,} \\spad{f)}} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, \\spad{s,} \\spad{f)}} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},...,\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},...,\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, \\spad{s,} \\spad{f)}} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, \\spad{s,} \\spad{f)}} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},...,\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},...,\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, \\spad{s)}} tests if \\spad{x} does not contain any operator whose name is \\spad{s.}") (((|Boolean|) $ $) "\\spad{freeOf?(x, \\spad{y)}} tests if \\spad{x} does not contain any occurrence of \\spad{y,} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, \\spad{k)}} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, \\spad{x)}} constructs op(x) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, \\spad{s)}} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s.}") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{%.}")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f,} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f,} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f,} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level, or if \\spad{f} has no kernels (that is, \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f.} Constants have height 0. Symbols have height 1. For any operator op and expressions f1,...,fn, \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, \\spad{g)}} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them, and makes them applicable to a unary operator. For example, \\spad{atan(paren \\spad{[x,} 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (f). This prevents \\spad{f} from being evaluated when operators are applied to it. For example, \\spad{log(1)} returns 0, but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them, and makes them applicable to a unary operator. For example, \\spad{atan(box \\spad{[x,} 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example, \\spad{log(1)} returns 0, but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels k1,...,kn by g1,...,gn formally in \\spad{f.}") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, \\spad{[k1} = g1,...,kn = gn])} replaces the kernels k1,...,kn by g1,...,gn formally in \\spad{f.}") (($ $ (|Equation| $)) "\\spad{subst(f, \\spad{k} = \\spad{g)}} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f.}")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or op([x1,...,xn]) applies the n-ary operator \\spad{op} to x1,...,xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or op(x, \\spad{y,} \\spad{z,} \\spad{t)} applies the 4-ary operator \\spad{op} to \\spad{x,} \\spad{y,} \\spad{z} and \\spad{t.}") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or op(x, \\spad{y,} \\spad{z)} applies the ternary operator \\spad{op} to \\spad{x,} \\spad{y} and \\spad{z.}") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or op(x, \\spad{y)} applies the binary operator \\spad{op} to \\spad{x} and \\spad{y.}") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or op(x) applies the unary operator \\spad{op} to \\spad{x.}"))) │ │ │ NIL │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Ring|)))) │ │ │ +(|RationalFunctionLimitPackage| R) │ │ │ +((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(f(x),x,a,\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) │ │ │ NIL │ │ │ -(|PartialDifferentialEquationsSolverCategory|) │ │ │ -((|constructor| (NIL "\\axiomType{PartialDifferentialEquationsSolverCategory} is the \\axiom{category} for describing the set of PDE solver \\axiom{domains} with \\axiomFun{measure} and \\axiomFun{PDEsolve}.")) (|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}."))) │ │ │ NIL │ │ │ +(|BinaryTreeCategory| S) │ │ │ +((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right}, both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v}, a binary tree \\spad{left}, and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|NumericalPDEProblem|) │ │ │ -((|constructor| (NIL "\\axiomType{NumericalPDEProblem} is a \\axiom{domain} for the representation of Numerical PDE problems for use by ANNA. \\blankline The representation is of type: \\blankline \\axiomType{Record}(pde:\\axiomType{List Expression DoubleFloat}, \\spad{\\br} constraints:\\axiomType{List PDEC}, \\spad{\\br} f:\\axiomType{List List Expression DoubleFloat},\\br st:\\axiomType{String},\\br tol:\\axiomType{DoubleFloat}) \\blankline where \\axiomType{PDEC} is of type: \\blankline \\axiomType{Record}(start:\\axiomType{DoubleFloat}, \\spad{\\br} finish:\\axiomType{DoubleFloat},\\br grid:\\axiomType{NonNegativeInteger},\\br boundaryType:\\axiomType{Integer},\\br dStart:\\axiomType{Matrix DoubleFloat}, \\spad{\\br} dFinish:\\axiomType{Matrix DoubleFloat})")) (|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} is not documented")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} is not documented"))) │ │ │ +(|StreamTranscendentalFunctions| |Coef|) │ │ │ +((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series, where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st.}")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st.}")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st.}")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st.}")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st.}")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st.}")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st.}")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st.}")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st.}")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st.}")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st.}")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st.}")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st.}")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st.}")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st.}")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st.}")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st.}")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st.}")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st.}")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st.}")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st.}")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st.}")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st.}")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st.}")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st.}")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st.}")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 \\spad{**} st2} computes the power of a power series \\spad{st1} by another power series st2.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PlotFunctions1| S) │ │ │ -((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)}, \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) │ │ │ +(|RegularTriangularSetCategory&| S R E V P) │ │ │ +((|constructor| (NIL "The category of regular triangular sets, introduced under the name regular chains in \\spad{[1]} (and other papers). In \\spad{[3]} it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions, all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (w.r.t. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is false. This category provides operations related to both kinds of splits, the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the RegularTriangularSet constructor for more explanations about decompositions by means of regular triangular sets.")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is false, it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or, in other words, a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for \\spad{ts} in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? \\spad{lp}} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first \\spad{lp,} extend(rest \\spad{lp,} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for \\spad{ts} in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself, if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest \\spad{lp,} internalAugment(first \\spad{lp,} ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for \\spad{ts} in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp}, \\spad{augment(p,ts)} if \\spad{lp = [p]}, otherwise \\spad{augment(first \\spad{lp,} augment(rest \\spad{lp,} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for \\spad{ts} in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set, say \\spad{ts+p}, is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself, if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for \\spad{ts} in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial w.r.t. \\spad{lpwt.i.tower}, this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower}, for every \\spad{i}. Moreover, the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts}, then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} w.r.t. \\spad{lpwt.i.tower}, for every \\spad{i}, and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover, if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} w.r.t. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials w.r.t. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same main variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} w.r.t. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{I} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic w.r.t. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic w.r.t. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic w.r.t. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is select from TriangularSetCategory(ts,v) and \\spad{ts_v_-} is collectUnder from TriangularSetCategory(ts,v).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic w.r.t. \\spad{ts}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PlottablePlaneCurveCategory|) │ │ │ -((|constructor| (NIL "PlotablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points, representing the branches of the curve, and for determining the ranges of the x-coordinates and y-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the y-coordinates of the points on the curve \\spad{c.}")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the x-coordinates of the points on the curve \\spad{c.}")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points, representing the branches of the curve \\spad{c.}"))) │ │ │ +(|MatrixManipulation| R |Row| |Col| M) │ │ │ +((|constructor| (NIL "Some functions for manipulating (dense) matrices. Supported are various kinds of slicing, splitting and stacking of matrices. The functions resemble operations often used in numerical linear algebra algorithms.")) (|blockSplit| (((|List| (|List| |#4|)) |#4| (|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{blockSplit} splits a matrix into multiple \\indented{1}{submatrices row and column wise, dividing} \\indented{1}{a matrix into blocks.} \\blankline \\spad{X} \\spad{E} \\spad{:=} matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) \\spad{X} t1:= blockSplit(E, [1,2,1], [2,2])") (((|List| (|List| |#4|)) |#4| (|PositiveInteger|) (|List| (|PositiveInteger|))) "\\spad{blockSplit} splits a matrix into multiple \\indented{1}{submatrices row and column wise, dividing} \\indented{1}{a matrix into blocks.} \\blankline \\spad{X} \\spad{E} \\spad{:=} matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) \\spad{X} t1:= blockSplit(E, 4, [2,2])") (((|List| (|List| |#4|)) |#4| (|List| (|PositiveInteger|)) (|PositiveInteger|)) "\\spad{blockSplit} splits a matrix into multiple \\indented{1}{submatrices row and column wise, dividing} \\indented{1}{a matrix into blocks.} \\blankline \\spad{X} \\spad{E} \\spad{:=} matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) \\spad{X} t1:= blockSplit(E, [2,1,1], 2)") (((|List| (|List| |#4|)) |#4| (|PositiveInteger|) (|PositiveInteger|)) "\\spad{blockSplit} splits a matrix into multiple \\indented{1}{submatrices row and column wise, dividing} \\indented{1}{a matrix into blocks.} \\blankline \\spad{X} \\spad{E} \\spad{:=} matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) \\spad{X} t1:= blockSplit(E,2,2)")) (|horizSplit| (((|List| |#4|) |#4| (|List| (|PositiveInteger|))) "\\spad{horizSplit} splits a matrix into multiple \\indented{1}{submatrices column wise.} \\blankline \\spad{X} \\spad{E} \\spad{:=} matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) \\spad{X} t1:= horizSplit(E, [2,2]) \\spad{X} t2:= horizSplit(E, [1,2,1])") (((|List| |#4|) |#4| (|PositiveInteger|)) "\\spad{horizSplit} splits a matrix into multiple \\indented{1}{submatrices column wise.} \\blankline \\spad{X} \\spad{E} \\spad{:=} matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) \\spad{X} t1:= horizSplit(E, 2)")) (|vertSplit| (((|List| |#4|) |#4| (|List| (|PositiveInteger|))) "\\spad{vertSplit} splits a matrix into multiple \\indented{1}{submatrices row wise.} \\blankline \\spad{X} \\spad{E} \\spad{:=} matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) \\spad{X} t1:= vertSplit(E, [1,2,1])") (((|List| |#4|) |#4| (|PositiveInteger|)) "\\spad{vertSplit} splits a matrix into multiple \\indented{1}{submatrices row wise.} \\blankline \\spad{X} \\spad{E} \\spad{:=} matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) \\spad{X} t1:= vertSplit(E, 2)")) (|blockConcat| ((|#4| (|List| (|List| |#4|))) "\\spad{blockConcat} concatenates matrices row and \\indented{1}{column wise, building a block matrix. The order} \\indented{1}{is row major as in \\spad{matrix}.} \\blankline \\spad{X} A \\spad{:=} matrix([[a]]) \\spad{X} \\spad{B} \\spad{:=} matrix([[b]]) \\spad{X} \\spad{C} \\spad{:=} matrix([[c]]) \\spad{X} \\spad{A11} \\spad{:=} element(M, 3,3) \\spad{X} \\spad{A12} \\spad{:=} horizConcat([A,B,C]) \\spad{X} \\spad{A21} \\spad{:=} vertConcat([A,B,C]) \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} \\spad{E} \\spad{:=} blockConcat([[A11,A12],[A21,M]]) \\spad{X} \\spad{t1} \\spad{:=} blockSplit(E, 4, [2,2]) \\spad{X} \\spad{t2} \\spad{:=} blockConcat \\spad{t1} \\spad{X} zero?(E-t2) \\spad{X} \\spad{t3} \\spad{:=} blockSplit(E, [1,2,1], [2,2]) \\spad{X} \\spad{t4} \\spad{:=} blockConcat \\spad{t3} \\spad{X} zero?(E-t4)")) (|vertConcat| ((|#4| (|List| |#4|)) "\\spad{vertConcat} concatenates matrices row wise. \\blankline \\spad{X} A \\spad{:=} matrix([[a]]) \\spad{X} \\spad{B} \\spad{:=} matrix([[b]]) \\spad{X} \\spad{C} \\spad{:=} matrix([[c]]) \\spad{X} \\spad{A21} \\spad{:=} vertConcat([A,B,C])")) (|horizConcat| ((|#4| (|List| |#4|)) "\\spad{horizConcat} concatenates matrices column wise. \\blankline \\spad{X} A \\spad{:=} matrix([[a]]) \\spad{X} \\spad{B} \\spad{:=} matrix([[b]]) \\spad{X} \\spad{C} \\spad{:=} matrix([[c]]) \\spad{X} \\spad{A12} \\spad{:=} horizConcat([A,B,C])")) (|bandMatrix| ((|#4| |#4| (|Segment| (|Integer|))) "\\spad{bandMatrix} returns multiple diagonals out of a matrix. \\indented{1}{The diagonals are put into a matrix of same shape as the} \\indented{1}{original one. Positive integer arguments select upper} \\indented{1}{off-diagonals, negative ones lower off-diagonals.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} bandMatrix(M, -1..1)") ((|#4| |#4| (|List| (|Integer|))) "\\spad{bandMatrix} returns multiple diagonals out of a matrix. \\indented{1}{The diagonals are put into a matrix of same shape as the} \\indented{1}{original one. Positive integer arguments select upper} \\indented{1}{off-diagonals, negative ones lower off-diagonals.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} bandMatrix(M, [-1,1]) \\spad{X} bandMatrix(M, [-1,0,1])")) (|diagonalMatrix| ((|#4| |#4|) "\\spad{diagonalMatrix} returns the main diagonal out of \\indented{1}{a matrix. The diagonal is put into a matrix of same shape} \\indented{1}{as the original one.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} diagonalMatrix(M)") ((|#4| |#4| (|Integer|)) "\\spad{diagonalMatrix} returns a diagonal out of a matrix. \\indented{1}{The diagonal is put into a matrix of same shape as the} \\indented{1}{original one. Positive integer arguments select upper} \\indented{1}{off-diagonals, negative ones lower off-diagonals.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} diagonalMatrix(M, 1) \\spad{X} diagonalMatrix(M, 2) \\spad{X} diagonalMatrix(M, \\spad{-1)}")) (|subMatrix| ((|#4| |#4| (|Segment| (|PositiveInteger|)) (|Segment| (|PositiveInteger|))) "\\spad{subMatrix} returns several elements out of a matrix. \\indented{1}{The elements are stacked into a submatrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} subMatrix(M, 1..2,2..3)") ((|#4| |#4| (|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{subMatrix} returns several elements out of a matrix. \\indented{1}{The elements are stacked into a submatrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} subMatrix(M, [1,2],[1,2]) \\spad{X} subMatrix(M, [1,3],[1,3])")) (|columns| ((|#4| |#4| (|Segment| (|PositiveInteger|))) "\\spad{columns} returns several columns out of a matrix. \\indented{1}{The columns are stacked into a matrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} columns(M, 1..2)") ((|#4| |#4| (|List| (|PositiveInteger|))) "\\spad{columns} returns several columns out of a matrix. \\indented{1}{The columns are stacked into a matrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} columns(M, [1,2]) \\spad{X} columns(M, [3,2])")) (|aColumn| ((|#4| |#4| (|PositiveInteger|)) "\\spad{aColumn} returns a single column out of a matrix. \\indented{1}{The column is put into a one by \\spad{N} matrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} aColumn(M, 2)")) (|rows| ((|#4| |#4| (|Segment| (|PositiveInteger|))) "\\spad{rows} returns several rows out of a matrix. \\indented{1}{The rows are stacked into a matrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} rows(M, 2..3)") ((|#4| |#4| (|List| (|PositiveInteger|))) "\\spad{rows} returns several rows out of a matrix. \\indented{1}{The rows are stacked into a matrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} rows(M, [1,2]) \\spad{X} rows(M, [3,2])")) (|aRow| ((|#4| |#4| (|PositiveInteger|)) "\\spad{aRow} returns a single row out of a matrix. \\indented{1}{The row is put into a one by \\spad{N} matrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} aRow(M, 1) \\spad{X} aRow(M, 2)")) (|element| ((|#4| |#4| (|PositiveInteger|) (|PositiveInteger|)) "\\spad{element} returns a single element out of a matrix. \\indented{1}{The element is put into a one by one matrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} element(M,2,2)"))) │ │ │ +NIL │ │ │ +NIL │ │ │ +(|Monoid&| S) │ │ │ +((|constructor| (NIL "The class of multiplicative monoids, that is, semigroups with a multiplicative identity element. \\blankline Axioms\\br \\tab{5}\\spad{leftIdentity(\"*\":(\\%,\\%)->\\%,1)}\\tab{5}\\spad{1*x=x}\\br \\tab{5}\\spad{rightIdentity(\"*\":(\\%,\\%)->\\%,1)}\\tab{4}\\spad{x*1=x} \\blankline Conditional attributes\\br \\tab{5}unitsKnown - \\spadfun{recip} only returns \"failed\" on non-units")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times, that is, exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times, that is, exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "\\axiom{1} is the multiplicative identity."))) │ │ │ NIL │ │ │ NIL │ │ │ (|PlottableSpaceCurveCategory|) │ │ │ ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points, representing the branches of the curve, and for determining the ranges of the \\spad{x-,} \\spad{y-,} and z-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the z-coordinates of the points on the curve \\spad{c.}")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the y-coordinates of the points on the curve \\spad{c.}")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the x-coordinates of the points on the curve \\spad{c.}")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points, representing the branches of the curve \\spad{c.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RealConstant|) │ │ │ -((|constructor| (NIL "The category of real numeric domains, that is, convertible to floats."))) │ │ │ +(|OrderedVariableList| |VariableList|) │ │ │ +((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RepeatedSquaring| S) │ │ │ -((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) │ │ │ +(|Rng|) │ │ │ +((|constructor| (NIL "The category of associative rings, not necessarily commutative, and not necessarily with a 1. This is a combination of an abelian group and a semigroup, with multiplication distributing over addition. \\blankline Axioms\\br \\tab{5}\\spad{x*(y+z) = x*y + x*z}\\br \\tab{5}\\spad{(x+y)*z = \\spad{x*z} + y*z} \\blankline Conditional attributes\\br \\tab{5}noZeroDivisors\\tab{5}\\spad{ab = 0 \\spad{=>} \\spad{a=0} or b=0}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RepeatedDoubling| S) │ │ │ -((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, \\spad{r)}} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) │ │ │ +(|IntegerRetractions| S) │ │ │ +((|constructor| (NIL "Provides integer testing and retraction functions.")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer, \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer, \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ResolveLatticeCompletion| S) │ │ │ -((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example, it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) │ │ │ +(|FortranExpression| |basicSymbols| |subscriptedSymbols| R) │ │ │ +((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77, with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of pi}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function \\spad{LOG10}")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} is not documented")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it is one of the given basic symbols or subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it is one of the given basic symbols or subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively."))) │ │ │ +((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Float|)))) (|HasCategory| $ (QUOTE (|Ring|))) (|HasCategory| $ (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) │ │ │ +(|AbelianMonoid|) │ │ │ +((|constructor| (NIL "The class of multiplicative monoids, that is, semigroups with an additive identity element. \\blankline Axioms\\br \\tab{5}\\spad{leftIdentity(\"+\":(\\%,\\%)->\\%,0)}\\tab{5}\\spad{0+x=x}\\br \\tab{5}\\spad{rightIdentity(\"+\":(\\%,\\%)->\\%,0)}\\tab{4}\\spad{x+0=x}")) (* (($ (|NonNegativeInteger|) $) "\\spad{n * \\spad{x}} is left-multiplication by a non negative integer")) (|zero?| (((|Boolean|) $) "\\spad{zero?(x)} tests if \\spad{x} is equal to 0.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|Zero|) (($) "\\spad{0} is the additive identity element."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RetractableTo&| A S) │ │ │ -((|constructor| (NIL "A is retractable to \\spad{B} means that some elements if A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S.}")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S.}")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\spad{%.}"))) │ │ │ +(|GuessOption|) │ │ │ +((|constructor| (NIL "GuessOption is a domain whose elements are various options used by Guess.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option(l, option)} returns which options are given.")) (|displayKind| (($ (|Symbol|)) "\\spad{displayKind(d)} specifies kind of the result: generating function, recurrence or equation. This option should not be set by the user, but rather by the HP-specification.")) (|indexName| (($ (|Symbol|)) "\\spad{indexName(d)} specifies the index variable used for the formulas. This option is expressed in the form \\spad{indexName \\spad{==} \\spad{d}.}")) (|variableName| (($ (|Symbol|)) "\\spad{variableName(d)} specifies the variable used in by the algebraic differential equation. This option is expressed in the form \\spad{variableName \\spad{==} \\spad{d}.}")) (|functionNames| (($ (|List| (|Symbol|))) "\\spad{functionNames(d)} specifies the names for the function in algebraic dependence. This option is expressed in the form \\spad{functionNames \\spad{==} \\spad{d}.}")) (|functionName| (($ (|Symbol|)) "\\spad{functionName(d)} specifies the name of the function given by the algebraic differential equation or recurrence. This option is expressed in the form \\spad{functionName \\spad{==} \\spad{d}.}")) (|debug| (($ (|Boolean|)) "\\spad{debug(d)} specifies whether we want additional output on the progress. This option is expressed in the form \\spad{debug \\spad{==} \\spad{d}.}")) (|one| (($ (|Boolean|)) "\\spad{one(d)} specifies whether we are happy with one solution. This option is expressed in the form \\spad{one \\spad{==} \\spad{d}.}")) (|checkExtraValues| (($ (|Boolean|)) "\\spad{checkExtraValues(d)} specifies whether we want to check the solution beyond the order given by the degree bounds. This option is expressed in the form \\spad{checkExtraValues \\spad{==} \\spad{d}}")) (|check| (($ (|Union| "skip" "MonteCarlo" "deterministic")) "\\spad{check(d)} specifies how we want to check the solution. If the value is \"skip\", we return the solutions found by the interpolation routine without checking. If the value is \"MonteCarlo\", we use a probabilistic check. This option is expressed in the form \\spad{check \\spad{==} \\spad{d}}")) (|safety| (($ (|NonNegativeInteger|)) "\\spad{safety(d)} specifies the number of values reserved for testing any solutions found. This option is expressed in the form \\spad{safety \\spad{==} \\spad{d}.}")) (|allDegrees| (($ (|Boolean|)) "\\spad{allDegrees(d)} specifies whether all possibilities of the degree vector - taking into account maxDegree - should be tried. This is mainly interesting for rational interpolation. This option is expressed in the form \\spad{allDegrees \\spad{==} \\spad{d}.}")) (|maxMixedDegree| (($ (|NonNegativeInteger|)) "\\spad{maxMixedDegree(d)} specifies the maximum q-degree of the coefficient polynomials in a recurrence with polynomial coefficients, in the case of mixed shifts. Although slightly inconsistent, maxMixedDegree(0) specifies that no mixed shifts are allowed. This option is expressed in the form \\spad{maxMixedDegree \\spad{==} \\spad{d}.}")) (|maxDegree| (($ (|Union| (|NonNegativeInteger|) "arbitrary")) "\\spad{maxDegree(d)} specifies the maximum degree of the coefficient polynomials in an algebraic differential equation or a recursion with polynomial coefficients. For rational functions with an exponential term, \\spad{maxDegree} bounds the degree of the denominator polynomial. This option is expressed in the form \\spad{maxDegree \\spad{==} \\spad{d}.}")) (|maxLevel| (($ (|Union| (|NonNegativeInteger|) "arbitrary")) "\\spad{maxLevel(d)} specifies the maximum number of recursion levels operators guessProduct and guessSum will be applied. This option is expressed in the form spad{maxLevel \\spad{==} \\spad{d}.}")) (|Somos| (($ (|Union| (|PositiveInteger|) (|Boolean|))) "\\spad{Somos(d)} specifies whether we want that the total degree of the differential operators is constant, and equal to \\spad{d,} or maxDerivative if true. If true, maxDerivative must be set, too.")) (|homogeneous| (($ (|Union| (|PositiveInteger|) (|Boolean|))) "\\spad{homogeneous(d)} specifies whether we allow only homogeneous algebraic differential equations. This option is expressed in the form \\spad{homogeneous \\spad{==} \\spad{d}.} If true, then maxPower must be set, too, and ADEs with constant total degree are allowed. If a PositiveInteger is given, only ADE's with this total degree are allowed.")) (|maxPower| (($ (|Union| (|PositiveInteger|) "arbitrary")) "\\spad{maxPower(d)} specifies the maximum degree in an algebraic differential equation. For example, the degree of \\spad{(f'')^3} \\spad{f'} is 4. maxPower(-1) specifies that the maximum exponent can be arbitrary. This option is expressed in the form \\spad{maxPower \\spad{==} \\spad{d}.}")) (|maxSubst| (($ (|Union| (|PositiveInteger|) "arbitrary")) "\\spad{maxSubst(d)} specifies the maximum degree of the monomial substituted into the function we are looking for. That is, if \\spad{maxSubst \\spad{==} \\spad{d},} we look for polynomials such that $p(f(x), f(x^2), ..., f(x^d))=0$. equation. This option is expressed in the form \\spad{maxSubst \\spad{==} \\spad{d}.}")) (|maxShift| (($ (|Union| (|NonNegativeInteger|) "arbitrary")) "\\spad{maxShift(d)} specifies the maximum shift in a recurrence equation. This option is expressed in the form \\spad{maxShift \\spad{==} \\spad{d}.}")) (|maxDerivative| (($ (|Union| (|NonNegativeInteger|) "arbitrary")) "\\spad{maxDerivative(d)} specifies the maximum derivative in an algebraic differential equation. This option is expressed in the form \\spad{maxDerivative \\spad{==} \\spad{d}.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RetractableTo| S) │ │ │ -((|constructor| (NIL "A is retractable to \\spad{B} means that some elements if A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S.}")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S.}")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\spad{%.}"))) │ │ │ +(|Evalable&| S R) │ │ │ +((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make \"evaluation\" substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, \\spad{[x1} = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f.}") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = \\spad{v)}} replaces \\spad{x} by \\spad{v} in \\spad{f.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RightModule| R) │ │ │ -((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplication by elements of the rng. \\blankline Axioms\\br \\tab{5}\\spad{x*(a*b) = (x*a)*b}\\br \\tab{5}\\spad{x*(a+b) = (x*a)+(x*b)}\\br \\tab{5}\\spad{(x+y)*x = (x*a)+(y*a)}")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r.}"))) │ │ │ +(|FreeModuleCat| R |Basis|) │ │ │ +((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor.")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{listOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{listOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{listOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}")) (|listOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{listOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, \\spad{c:} \\spad{R)}} such that \\spad{x} equals \\spad{reduce(+, map(x \\spad{+->} monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) │ │ │ +((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ +(|AffineSpaceCategory| K) │ │ │ +((|constructor| (NIL "The following is all the categories and domains related to projective space and part of the PAFF package")) (|pointValue| (((|List| |#1|) $) "\\spad{pointValue returns} the coordinates of the point or of the point of origin that represent an infinitly close point")) (|setelt| ((|#1| $ (|Integer|) |#1|) "\\spad{setelt sets} the value of a specified coordinates")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt returns} the value of a specified coordinates")) (|list| (((|List| |#1|) $) "\\spad{list returns} the list of the coordinates")) (|rational?| (((|Boolean|) $) "\\spad{rational?(p)} test if the point is rational according to the characteristic of the ground field.") (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{rational?(p,n)} test if the point is rational according to \\spad{n.}")) (|removeConjugate| (((|List| $) (|List| $)) "\\spad{removeConjugate(lp)} returns removeConjugate(lp,n) where \\spad{n} is the characteristic of the ground field.") (((|List| $) (|List| $) (|NonNegativeInteger|)) "\\spad{removeConjugate(lp,n)} returns a list of points such that no points in the list is the conjugate (according to \\spad{n)} of another point.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns conjugate(p,n) where \\spad{n} is the characteristic of the ground field.") (($ $ (|NonNegativeInteger|)) "\\spad{conjugate(p,n)} returns p**n, that is all the coordinates of \\spad{p} to the power of \\spad{n}")) (|orbit| (((|List| $) $ (|NonNegativeInteger|)) "\\spad{orbit(p,n)} returns the orbit of the point \\spad{p} according to \\spad{n,} that is orbit(p,n) = \\spad{\\{} \\spad{p,} p**n, p**(n**2), p**(n**3), ..... \\spad{\\}}") (((|List| $) $) "\\spad{orbit(p)} returns the orbit of the point \\spad{p} according to the characteristic of \\spad{K,} that is, for \\spad{q=} char \\spad{K,} orbit(p) = \\spad{\\{} \\spad{p,} p**q, p**(q**2), p**(q**3), ..... \\spad{\\}}")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce a} list of \\spad{K} to a affine point.")) (|affinePoint| (($ (|List| |#1|)) "\\spad{affinePoint creates} a affine point from a list"))) │ │ │ NIL │ │ │ -(|SegmentBindingFunctions2| R S) │ │ │ -((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}s.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) │ │ │ NIL │ │ │ +(|ComplexCategory&| S R) │ │ │ +((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1.}")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number, or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns \\spad{(r,} phi) such that \\spad{x} = \\spad{r} * exp(\\%i * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,1) and (0,x).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(x)).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, \\spad{r)}} returns the exact quotient of \\spad{x} by \\spad{r,} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(x)")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x.}")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x.}")) (|conjugate| (($ $) "\\spad{conjugate(x + \\spad{%i} \\spad{y)}} returns \\spad{x} - \\spad{%i} \\spad{y.}")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(-1) = \\%i.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(-1)"))) │ │ │ NIL │ │ │ -(|SegmentCategory| S) │ │ │ -((|constructor| (NIL "This category provides operations on ranges, or segments as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n}, where \\spad{s} is a segment in which every \\spad{n}-th element is used. Note that \\spad{incr(l..h by \\spad{n)} = \\spad{n}.}")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s.} Note that \\spad{high(l..h) = \\spad{h}.}")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s.} Note that \\spad{low(l..h) = \\spad{l}.}")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s.} Note that \\spad{hi(l..h) = \\spad{h}.}")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s.} Note that \\spad{lo(l..h) = \\spad{l}.}")) (BY (($ $ (|Integer|)) "\\spad{s by \\spad{n}} creates a new segment in which only every \\spad{n}-th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) │ │ │ -((|nil| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#2| (QUOTE (|RadicalCategory|))) (|HasCategory| |#2| (QUOTE (|TranscendentalFunctionCategory|))) (|HasCategory| |#2| (QUOTE (|RealNumberSystem|))) (|HasCategory| |#2| (QUOTE (|RealConstant|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasAttribute| |#2| (QUOTE |additiveValuation|)) (|HasAttribute| |#2| (QUOTE |multiplicativeValuation|)) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|)))) │ │ │ +(|Monad|) │ │ │ +((|constructor| (NIL "Monad is the class of all multiplicative monads, that is sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}-th power of \\spad{a}, defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}-th left power of \\spad{a}, that is, \\spad{leftPower(a,n) \\spad{:=} a * leftPower(a,n-1)} and \\spad{leftPower(a,1) \\spad{:=} a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}-th right power of \\spad{a}, that is, \\spad{rightPower(a,n) \\spad{:=} rightPower(a,n-1) * a} and \\spad{rightPower(a,1) \\spad{:=} a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) │ │ │ NIL │ │ │ -(|SetCategoryWithDegree|) │ │ │ -((|constructor| (NIL "This is part of the PAFF package, related to projective space."))) │ │ │ NIL │ │ │ +(|AlgebraPackage| R A) │ │ │ +((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of va.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()}, if the algebra is associative, alternative or a Jordan algebra, then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid, the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note that right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note that left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},b in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},b in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},b in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},b in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},b in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x}, \\spad{x*bi}, \\spad{bi*x}, \\spad{bi*x*bj}, \\spad{i,j=1,...,n}, where \\spad{b=[b1,...,bn]} is a basis. Note that if \\spad{A} has a unit, then doubleRank, weakBiRank, and biRank coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj}, \\spad{i,j=1,...,n}, where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},...,\\spad{x*bn}, where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},...,\\spad{bn*x}, where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},...,\\spad{x*bn}, where \\spad{b=[b1,...,bn]} is a basis."))) │ │ │ NIL │ │ │ -(|SExpressionCategory| |Str| |Sym| |Int| |Flt| |Expr|) │ │ │ -((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,...,an), [i1,...,im])} returns \\spad{(a_i1,...,a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,...,an), i)} returns \\spad{ai}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n.}")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x.}") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x.}") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x.}") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x.}") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x;}") (($ (|List| $)) "\\spad{convert([a1,...,an])} returns an S-expression \\spad{(a1,...,an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,...,an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list, possibly \\spad{().}")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the S-expression \\spad{().}")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, \\spad{t)}} is \\spad{true} if EQ(s,t) is \\spad{true} in Lisp."))) │ │ │ +((|HasCategory| |#1| (QUOTE (|EuclideanDomain|)))) │ │ │ +(|Variable| |sym|) │ │ │ +((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|SemiGroup&| S) │ │ │ -((|constructor| (NIL "the class of all multiplicative semigroups, that is, a set with an associative operation \\spadop{*}. \\blankline Axioms\\br \\tab{5}\\spad{associative(\"*\":(\\%,\\%)->\\%)}\\tab{5}\\spad{(x*y)*z = x*(y*z)} \\blankline Conditional attributes\\br \\tab{5}\\spad{commutative(\"*\":(\\%,\\%)->\\%)}\\tab{5}\\spad{x*y = y*x}")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times, exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times, exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y.}"))) │ │ │ +(|Asp78| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs, needed for NAG routine d02gbf, for example: \\blankline \\tab{5}SUBROUTINE FCNG(X,G)\\br \\tab{5}DOUBLE PRECISION G(*),X\\br \\tab{5}G(1)=0.0D0\\br \\tab{5}G(2)=0.0D0\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|SemiGroup|) │ │ │ -((|constructor| (NIL "the class of all multiplicative semigroups, that is, a set with an associative operation \\spadop{*}. \\blankline Axioms\\br \\tab{5}\\spad{associative(\"*\":(\\%,\\%)->\\%)}\\tab{5}\\spad{(x*y)*z = x*(y*z)} \\blankline Conditional attributes\\br \\tab{5}\\spad{commutative(\"*\":(\\%,\\%)->\\%)}\\tab{5}\\spad{x*y = y*x}")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times, exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times, exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y.}"))) │ │ │ +(|Asp33| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs, needed for NAG routine d02kef. The code is a dummy ASP: \\blankline \\tab{5}SUBROUTINE REPORT(X,V,JINT)\\br \\tab{5}DOUBLE PRECISION V(3),X\\br \\tab{5}INTEGER JINT\\br \\tab{5}RETURN\\br \\tab{5}END")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|StepThrough|) │ │ │ -((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains, repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes\\br \\tab{5}infinite\\tab{5}repeated nextItem's are never \"failed\".")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item, or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) │ │ │ +(|Patternable| R) │ │ │ +((|constructor| (NIL "Category of sets that can be converted to useful patterns An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ThreeSpaceCategory| R) │ │ │ -((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points, curves, polygons, constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace}, \\spad{s.}")) (|check| (($ $) "\\spad{check(s)} returns lllpt, list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s.}")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace}, \\spad{s,} in the form of a 3D object record containing information on the number of points, curves, polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a list of subspace component properties, and if so, returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a list of curves which are lists of the subspace component properties of the curves, and if so, returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a list of components, which are lists of curves, which are lists of points, and if so, returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a list of components, which are lists of curves, which are lists of indices to points, and if so, returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace}, \\spad{s,} contains; these points are used by reference, that is, the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component, a mesh comprising a list of curves which are lists of points, or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a single surface component defined by a list curves which contain lists of points, and if so, returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves, \\spad{p0} through \\spad{pn,} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is, the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists, \\spad{p0} through \\spad{pn,} of points, and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s, LLLR, close1, close2)} where \\spad{LLLR} is of the form [[[r10]...,[r1m]],[[r20]...,[r2m]],...,[[rn0]...,[rnm]]], adds a surface component to the \\spadtype{ThreeSpace} \\spad{s,} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (that is, the last point of the list is to be connected to the first point); if \\spad{close2} is true, this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s, LLP, close1, close2)} where \\spad{LLP} is of the form [[p0],[p1],...,[pn]] adds a surface component to the \\spadtype{ThreeSpace}, which is defined over a list of curves, in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed, that is, the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end, that is, the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s, LLLR, [props], prop)} where \\spad{LLLR} is of the form: [[[r10]...,[r1m]],[[r20]...,[r2m]],...,[[rn0]...,[rnm]]], adds a surface component to the \\spadtype{ThreeSpace} \\spad{s,} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list, and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component, defined over a list curves which contains lists of points, to the \\spadtype{ThreeSpace} \\spad{s;} props is a list which contains the subspace component properties for each surface parameter, and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component, or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a single polygon component defined by a list of points, and if so, returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points, \\spad{p0} through \\spad{pn,} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn}, which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s,} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points, \\spad{p0} throught \\spad{pn,} to the \\spadtype{ThreeSpace} \\spad{s.}")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component, that is, the first element of the curve is also the last element, or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a single closed curve component defined by a list of points in which the first point is also the last point, all of which are from the domain \\spad{PointDomain(m,R)} and if so, returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp.}") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn}, which are lists of elements from the domain \\spad{PointDomain(m,R)}, where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points, in which the last element of the list of points contains a copy of the first element list, lr0. The closed curve is added to the \\spadtype{ThreeSpace}, \\spad{s.}") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again, to the \\spadtype{ThreeSpace} \\spad{s.}")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace}, \\spad{s,} is a curve, that is, has one component, a list of list of points, and returns \\spad{true} if it is, or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a single curve defined by a list of points and if so, returns the curve, that is, list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn}, and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)}, where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points, to the \\spadtype{ThreeSpace} \\spad{s.}") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn}, to the \\spadtype{ThreeSpace} \\spad{s.}")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace}, \\spad{s,} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace}, \\spad{s,} is composed of only a single point and if so, returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component, the point \\spad{p.}") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace}, \\spad{s,} at the index given by i.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace}, \\spad{s,} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point, \\spad{p,} specified as a list from \\spad{List(R)}, to the \\spadtype{ThreeSpace}, \\spad{s,} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace}, \\spad{s,} to that of point \\spad{p.} This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace}, \\spad{s,} and returns the index, to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s.}")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s,} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s.} If \\spad{s} has no composites defined (composites need to be explicitly created), the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s,} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s.} If \\spad{s} has no components defined, the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list, grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents, or composites, in the \\spadtype{ThreeSpace}, \\spad{s;} Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and, outside of the requirement that no component can belong to more than one composite at a time, the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace}, \\spad{s,} such as points, curves, polygons, and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s.}") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point, curve, mesh components and any combination."))) │ │ │ +(|RadicalFunctionField| F UP UPUP |radicnd| |n|) │ │ │ +((|constructor| (NIL "Function field defined by y**n = f(x)."))) │ │ │ +((|noZeroDivisors| |has| (|Fraction| |#2|) (|Field|)) (|canonicalUnitNormal| |has| (|Fraction| |#2|) (|Field|)) (|canonicalsClosed| |has| (|Fraction| |#2|) (|Field|)) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| (|Fraction| |#2|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|FiniteFieldCategory|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|))) (OR (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|FiniteFieldCategory|)))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Finite|))) (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|Finite|))) (OR (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|)))) (AND (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|)))) (OR (AND (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|)))) (AND (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|FiniteFieldCategory|))))) (AND (|HasCategory| (|Fraction| |#2|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|)))) (OR (AND (|HasCategory| (|Fraction| |#2|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|)))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|FiniteFieldCategory|))))) │ │ │ +(|DrawComplex|) │ │ │ +((|constructor| (NIL "\\axiomType{DrawComplex} provides some facilities for drawing complex functions.")) (|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x.}")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns i.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns i.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-d viewport control panel. Sample call: \\indented{3}{\\spad{f \\spad{z} \\spad{==} sin \\spad{z}}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{f : the function to draw} \\indented{2}{rRange : the range of the real values} \\indented{2}{iRange : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value. Sample call: \\indented{2}{\\spad{f \\spad{z} \\spad{==} exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*%pi, false)}} Parameter descriptions: \\indented{2}{f:\\space{2}the function to draw} \\indented{2}{rRange : the range of the real values} \\indented{2}{iRange : the range of imaginary values} \\indented{2}{arrows? : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|StreamTensor| R) │ │ │ -((|constructor| (NIL "This package has no description")) (|tensorMap| (((|Stream| |#1|) (|Stream| |#1|) (|Mapping| (|List| |#1|) |#1|)) "\\spad{tensorMap([s1, \\spad{s2,} ...], \\spad{f)}} returns the stream consisting of all elements of f(s1) followed by all elements of f(s2) and so on."))) │ │ │ +(|EqTable| |Key| |Entry|) │ │ │ +((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (OR (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) │ │ │ +(|FullPartialFractionExpansion| F UP) │ │ │ +((|constructor| (NIL "Full partial fraction expansion of rational functions")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, \\spad{n)}} returns the \\spad{n}-th derivative of \\spad{f.}") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f.}")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, \\spad{n)}} returns the \\spad{n}-th derivative of \\spad{f.}") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f.}")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f.}")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, \\spad{Dj,} Hj]...]]} such that \\spad{f = p(x) + sum_{[j,Dj,Hj] in \\spad{l}} sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + \\spad{x}} returns the sum of \\spad{p} and \\spad{x}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|StreamFunctions2| A B) │ │ │ -((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)}, where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]}, \\indented{1}{returns the value \\spad{r(n)} computed as follows:} \\indented{1}{\\spad{r0 = f(x0,b),} \\indented{1}{r1 = f(x1,r0),...,} \\indented{1}{r(n) = f(xn,r(n-1))}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..300]::Stream(Integer) \\spad{X} f(i:Integer,j:Integer):Integer==i+j \\spad{X} reduce(1,f,m)")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]}, where \\indented{1}{\\spad{y0 = h(x0,b)},} \\indented{1}{\\spad{y1 = h(x1,y0)},\\spad{...}} \\indented{1}{\\spad{yn = h(xn,y(n-1))}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..]::Stream(Integer) \\spad{X} f(i:Integer,j:Integer):Integer==i+j \\spad{X} scan(1,f,m)")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied \\indented{1}{to the corresponding elements of \\spad{s.}} \\indented{1}{Note that \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..] \\spad{X} \\spad{f(i:PositiveInteger):PositiveInteger==i**2} \\spad{X} map(f,m)"))) │ │ │ +(|TrigonometricFunctionCategory|) │ │ │ +((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x.}")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x.}")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x.}")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x.}")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x.}")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|StreamFunctions1| S) │ │ │ -((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the \\indented{1}{streams in u. Note that \\spad{concat(u) = reduce(concat,u)}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 10..] \\spad{X} n:=[j for \\spad{j} in 1.. | prime? \\spad{j]} \\spad{X} p:=[m,n]::Stream(Stream(PositiveInteger)) \\spad{X} concat(p)"))) │ │ │ +(|Asp20| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs, for example: \\blankline \\tab{5}SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX)\\br \\tab{5}DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH)\\br \\tab{5}INTEGER JTHCOL,N,NROWH,NCOLH\\br \\tab{5}HX(1)=2.0D0*X(1)\\br \\tab{5}HX(2)=2.0D0*X(2)\\br \\tab{5}HX(3)=2.0D0*X(4)+2.0D0*X(3)\\br \\tab{5}HX(4)=2.0D0*X(4)+2.0D0*X(3)\\br \\tab{5}HX(5)=2.0D0*X(5)\\br \\tab{5}HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6))\\br \\tab{5}HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6))\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|StreamFunctions3| A B C) │ │ │ -((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the \\indented{1}{function \\spad{f} applied to the corresponding elements of \\spad{st1} and st2.} \\indented{1}{\\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.} \\blankline \\spad{S} \\spad{X} m:=[i for \\spad{i} in 1..]::Stream(Integer) \\spad{X} n:=[i for \\spad{i} in 1..]::Stream(Integer) \\spad{X} f(i:Integer,j:Integer):Integer \\spad{==} i+j \\spad{X} map(f,m,n)"))) │ │ │ +(|PointsOfFiniteOrderTools| UP UPUP) │ │ │ +((|constructor| (NIL "Utilities for PFOQ and PFO")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime \\spad{n}} returns the smallest prime not dividing \\spad{n}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|SuchThat| S1 S2) │ │ │ -((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}"))) │ │ │ +(|DoubleFloatSpecialFunctions|) │ │ │ +((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|fresnelC| (((|Float|) (|Float|)) "\\spad{fresnelC(f)} denotes the Fresnel integral \\spad{C} \\blankline \\spad{X} fresnelC(1.5)")) (|fresnelS| (((|Float|) (|Float|)) "\\spad{fresnelS(f)} denotes the Fresnel integral \\spad{S} \\blankline \\spad{X} fresnelS(1.5)")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; \\spad{c;} z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; \\spad{c;} z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - \\spad{x} * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - \\spad{x} * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - \\spad{x} * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - \\spad{x} * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the second kind, \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + \\spad{x} w'(x) - (x^2+v^2)w(x) = 0}.} Note that the default implementation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the second kind, \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + \\spad{x} w'(x) - (x^2+v^2)w(x) = 0}.} Note that the default implementation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v.}")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind, \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + \\spad{x} w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind, \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + \\spad{x} w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind, \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + \\spad{x} w'(x) + (x^2-v^2)w(x) = 0}.} Note that the default implementation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind, \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + \\spad{x} w'(x) + (x^2-v^2)w(x) = 0}.} Note that the default implementation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v.}")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind, \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + \\spad{x} w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind, \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + \\spad{x} w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, \\spad{x)}} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, \\spad{x)}} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function, \\spad{psi(x)}, defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function, \\spad{psi(x)}, defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. \\indented{1}{This can often be computed even if \\spad{Gamma(x)} cannot.} \\blankline \\spad{X} a:Complex(DoubleFloat):=3.5*\\%i \\spad{X} logGamma(a)") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. \\indented{1}{This can often be computed even if \\spad{Gamma(x)} cannot.} \\blankline \\spad{X} \\spad{a:DoubleFloat:=3.5} \\spad{X} logGamma(a)")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, \\spad{y)}} is the Euler beta function, \\spad{B(x,y)}, defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, \\spad{y)}} is the Euler beta function, \\spad{B(x,y)}, defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Ei6| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei6(opr)} is the first approximation of \\spad{Ei} where the result is x*\\%e^-x*Ei(x) from 32 to infinity (preserves digits)")) (|Ei5| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei5(opr)} is the first approximation of \\spad{Ei} where the result is x*\\%e^-x*Ei(x) from 12 to 32 (preserves digits)")) (|Ei4| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei4(opr)} is the first approximation of \\spad{Ei} where the result is x*\\%e^-x*Ei(x) from 4 to 12 (preserves digits)")) (|Ei3| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei3(opr)} is the first approximation of \\spad{Ei} where the result is (Ei(x)-log \\spad{|x|} - gamma)/x from \\spad{-4} to 4 (preserves digits)")) (|Ei2| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei2(opr)} is the first approximation of \\spad{Ei} where the result is x*\\%e^-x*Ei(x) from \\spad{-10} to \\spad{-4} (preserves digits)")) (|Ei1| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei1(opr)} is the first approximation of \\spad{Ei} where the result is x*\\%e^-x*Ei(x) from -infinity to \\spad{-10} (preserves digits)")) (|Ei| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei(opr)} is the Exponential Integral function This is computed using a 6 part piecewise approximation. DoubleFloat can only preserve about 16 digits but the Chebyshev approximation used can give 30 digits.")) (|En| (((|OnePointCompletion| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|)) "\\spad{En(n,x)} is the \\spad{n}th Exponential Integral Function")) (E1 (((|OnePointCompletion| (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{E1(x)} is the Exponential Integral function The current implementation is a piecewise approximation involving one poly from \\spad{-4..4} and a second poly for \\spad{x} > 4")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function, \\spad{Gamma(x)}, defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function, \\spad{Gamma(x)}, defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|TexFormat1| S) │ │ │ -((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) │ │ │ +(|PolynomialInterpolation| |xx| F) │ │ │ +((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ParadoxicalCombinatorsForStreams| A) │ │ │ -((|constructor| (NIL "Computation of fixed points of mappings on streams")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g,} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f.}"))) │ │ │ +(|PriorityQueueAggregate| S) │ │ │ +((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1.}")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q.}")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q.}"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ +(|Divisor| S) │ │ │ +((|constructor| (NIL "The following is part of the PAFF package"))) │ │ │ +((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +((|HasCategory| (|Integer|) (QUOTE (|OrderedAbelianMonoid|)))) │ │ │ +(|FiniteFieldSquareFreeDecomposition| K |PolK|) │ │ │ +((|constructor| (NIL "Part of the package for Algebraic Function Fields in one variable (PAFF)"))) │ │ │ NIL │ │ │ -(|AffineSpaceCategory| K) │ │ │ -((|constructor| (NIL "The following is all the categories and domains related to projective space and part of the PAFF package")) (|pointValue| (((|List| |#1|) $) "\\spad{pointValue returns} the coordinates of the point or of the point of origin that represent an infinitly close point")) (|setelt| ((|#1| $ (|Integer|) |#1|) "\\spad{setelt sets} the value of a specified coordinates")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt returns} the value of a specified coordinates")) (|list| (((|List| |#1|) $) "\\spad{list returns} the list of the coordinates")) (|rational?| (((|Boolean|) $) "\\spad{rational?(p)} test if the point is rational according to the characteristic of the ground field.") (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{rational?(p,n)} test if the point is rational according to \\spad{n.}")) (|removeConjugate| (((|List| $) (|List| $)) "\\spad{removeConjugate(lp)} returns removeConjugate(lp,n) where \\spad{n} is the characteristic of the ground field.") (((|List| $) (|List| $) (|NonNegativeInteger|)) "\\spad{removeConjugate(lp,n)} returns a list of points such that no points in the list is the conjugate (according to \\spad{n)} of another point.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns conjugate(p,n) where \\spad{n} is the characteristic of the ground field.") (($ $ (|NonNegativeInteger|)) "\\spad{conjugate(p,n)} returns p**n, that is all the coordinates of \\spad{p} to the power of \\spad{n}")) (|orbit| (((|List| $) $ (|NonNegativeInteger|)) "\\spad{orbit(p,n)} returns the orbit of the point \\spad{p} according to \\spad{n,} that is orbit(p,n) = \\spad{\\{} \\spad{p,} p**n, p**(n**2), p**(n**3), ..... \\spad{\\}}") (((|List| $) $) "\\spad{orbit(p)} returns the orbit of the point \\spad{p} according to the characteristic of \\spad{K,} that is, for \\spad{q=} char \\spad{K,} orbit(p) = \\spad{\\{} \\spad{p,} p**q, p**(q**2), p**(q**3), ..... \\spad{\\}}")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce a} list of \\spad{K} to a affine point.")) (|affinePoint| (($ (|List| |#1|)) "\\spad{affinePoint creates} a affine point from a list"))) │ │ │ NIL │ │ │ +(|SparseUnivariateTaylorSeries| |Coef| |var| |cen|) │ │ │ +((|constructor| (NIL "Sparse Taylor series in one variable \\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring, the power series variable, and the center of the power series expansion. For example, \\spadtype{SparseUnivariateTaylorSeries}(Integer,x,3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|)) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|)) (|devaluate| |#1|))))) (|HasCategory| (|NonNegativeInteger|) (QUOTE (|SemiGroup|))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ +(|Finite&| S) │ │ │ +((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|enumerate| (((|List| $)) "\\spad{enumerate()} returns a list of elements of the set \\blankline \\spad{X} enumerate()$OrderedVariableList([p,q])")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup \\spad{x}.}")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}-th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) │ │ │ NIL │ │ │ -(|ApplicationProgramInterface|) │ │ │ -((|constructor| (NIL "This package contains useful functions that expose Axiom system internals")) (|reportInstantiations| (((|Void|) (|Boolean|)) "\\spad{reportInstantiations(bool)} is a debugging tool to show \\indented{1}{instantiation information} \\blankline \\spad{X} reportInstantiations(true) \\spad{X} 1 \\spad{X} reportInstantiations(false)")) (|summary| (((|Void|)) "\\spad{summary()} prints a short list of useful console commands \\blankline \\spad{X} summary()")) (|credits| (((|Void|)) "\\spad{credits()} prints a list of people who contributed to Axiom \\blankline \\spad{X} credits()")) (|getAncestors| (((|Set| (|Symbol|)) (|Symbol|)) "\\spad{getAncestors(s)} takes a category and returns the list of domains \\indented{1}{that have that category as ancestors} \\blankline \\spad{X} getAncestors 'IndexedAggregate")) (|getDomains| (((|Set| (|Symbol|)) (|Symbol|)) "\\spad{getDomains(s)} takes a category and returns the list of domains \\indented{1}{that have that category} \\blankline \\spad{X} getDomains 'IndexedAggregate"))) │ │ │ NIL │ │ │ +(|IdealDecompositionPackage| |vl| |nv|) │ │ │ +((|constructor| (NIL "This package provides functions for the primary decomposition of polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain, and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal I.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal I.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) │ │ │ NIL │ │ │ -(|ArcTrigonometricFunctionCategory&| S) │ │ │ -((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x.} When evaluated into some subset of the complex numbers, one branch cut for atan lies along the positive imaginary axis above \\spad{%i} (exclusive), continuous with the left half plane, the other along the negative imaginary axis below -\\%i (exclusive) continuous with the right half plane. The domain does not contain \\spad{%i} and -\\%i")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x.} When evaluated into some subset of the complex numbers, one branch cut for asin lies along the negative real axis to the left of \\spad{-1} (inclusive), continuous with the upper half plane, the other along the positive real axis to the right of 1 (inclusive), continuous with the lower half plane.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x.}")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x.}")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x.}")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x.} When evaluated into some subset of the complex numbers, one branch cut for acos lies along the negative real axis to the left of \\spad{-1} (inclusive), continuous with the upper half plane, the other along the positive real axis to the right of 1 (inclusive), continuous with the lower half plane."))) │ │ │ NIL │ │ │ +(|ExponentialExpansion| R FE |var| |cen|) │ │ │ +((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums, where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var \\spad{->} a+,f(var))}."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|RealConstant|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|StepThrough|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (LIST (QUOTE |UnivariatePuiseuxSeriesWithExponentialSingularity|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |Evalable|) (LIST (QUOTE |UnivariatePuiseuxSeriesWithExponentialSingularity|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |Eltable|) (LIST (QUOTE |UnivariatePuiseuxSeriesWithExponentialSingularity|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE |UnivariatePuiseuxSeriesWithExponentialSingularity|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|ElementaryRischDESystem| R F) │ │ │ +((|constructor| (NIL "Risch differential equation, elementary case.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, \\spad{f,} g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - \\spad{n} df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist, \"failed\" otherwise. \\spad{lim} is a limited integration function, \\spad{ext} is an extended integration function."))) │ │ │ NIL │ │ │ -(|Asp29| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs, needed for NAG routine f02fjf, for example: \\blankline \\tab{5}SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D)\\br \\tab{5}DOUBLE PRECISION D(K),F(K)\\br \\tab{5}INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE\\br \\tab{5}CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D)\\br \\tab{5}RETURN\\br \\tab{5}END\\br")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) │ │ │ NIL │ │ │ +(|TwoDimensionalViewport|) │ │ │ +((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, and creates a directory indicated by \\spad{s,} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf.}") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, and creates a directory indicated by \\spad{s,} which contains the graph data files for \\spad{v} and an optional file type \\spad{f.}") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, and creates a directory indicated by \\spad{s,} which contains the graph data files for \\spad{v.}")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, with a width of \\spad{w} and a height of \\spad{h,} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x,} \\spad{y.}")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, if \\spad{s} is \"on\", or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, translated by \\spad{dx} in the x-coordinate direction from the center of the viewport, and by \\spad{dy} in the y-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, scaled by the factor \\spad{sx} in the x-coordinate direction and by the factor \\spad{sy} in the y-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, to the window coordinate \\spad{x,} \\spad{y,} and sets the dimensions of the window to that of \\spad{width}, \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v.}")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, if \\spad{s} is \"on\", or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, if \\spad{s} is \"on\", or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, if \\spad{s} is \"on\", or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, if \\spad{s} is \"on\", or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, with the units color set to the given palette color \\spad{c.}") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, if \\spad{s} is \"on\", or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, with the axes color set to the given palette color \\spad{c.}") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, if \\spad{s} is \"on\", or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n,} of the indicated two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, to be the graph, \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport, \\spad{v,} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v.}")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window, \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector, or list, which is a union of all the graphs, of the domain \\spadtype{GraphImage}, which are allocated for the two-dimensional viewport, \\spad{v,} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\", otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v,} of domain \\spadtype{TwoDimensionalViewport}, to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points, lines, bounding box, axes, or units will be shown in the viewport if their given parameters \\spad{pts}, \\spad{lns}, \\spad{box}, \\spad{axes} or \\spad{un} are set to be \\spad{1}, but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed, set \\spad{cP} to \\spad{1}, otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport, \\spad{v,} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list, \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport, \\spad{v,} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v.}")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph, \\spad{gi}, of domain \\spadtype{GraphImage}, and whose options field is set to be the list of options, \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport, \\spad{v,} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v.}")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system, some design issues need to be addressed: for example, how to go through the GraphImage interface, how to default to graphs, etc."))) │ │ │ NIL │ │ │ -(|ArcTrigonometricFunctionCategory|) │ │ │ -((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x.} When evaluated into some subset of the complex numbers, one branch cut for atan lies along the positive imaginary axis above \\spad{%i} (exclusive), continuous with the left half plane, the other along the negative imaginary axis below -\\%i (exclusive) continuous with the right half plane. The domain does not contain \\spad{%i} and -\\%i")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x.} When evaluated into some subset of the complex numbers, one branch cut for asin lies along the negative real axis to the left of \\spad{-1} (inclusive), continuous with the upper half plane, the other along the positive real axis to the right of 1 (inclusive), continuous with the lower half plane.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x.}")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x.}")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x.}")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x.} When evaluated into some subset of the complex numbers, one branch cut for acos lies along the negative real axis to the left of \\spad{-1} (inclusive), continuous with the upper half plane, the other along the positive real axis to the right of 1 (inclusive), continuous with the lower half plane."))) │ │ │ NIL │ │ │ +(|InnerMatrixQuotientFieldFunctions| R |Row| |Col| M QF |Row2| |Col2| M2) │ │ │ +((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m.}")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m.} If the matrix is not invertible, \"failed\" is returned. Error: if the matrix is not square. Note that the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m.} the result will have entries in the quotient field."))) │ │ │ NIL │ │ │ -(|BlowUpWithHamburgerNoether|) │ │ │ -((|constructor| (NIL "This domain is part of the PAFF package"))) │ │ │ -((|HamburgerNoether| . T)) │ │ │ +((|HasAttribute| |#7| (QUOTE |shallowlyMutable|))) │ │ │ +(|MonomialExtensionTools| F UP) │ │ │ +((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, \\spad{D)}} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s}, all the squarefree factors of \\spad{denom(n)} are normal w.r.t. \\spad{D,} \\spad{denom(s)} is special w.r.t. \\spad{D,} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, \\spad{D)}} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, \\spad{D)}} returns \\spad{[n_1 \\spad{n_2\\^2} \\spad{...} n_m\\^m, \\spad{s_1} \\spad{s_2\\^2} \\spad{...} s_q\\^q]} such that \\spad{p = \\spad{n_1} \\spad{n_2\\^2} \\spad{...} n_m\\^m \\spad{s_1} \\spad{s_2\\^2} \\spad{...} s_q\\^q}, each \\spad{n_i} is normal w.r.t. \\spad{D} and each \\spad{s_i} is special w.r.t \\spad{D.} \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, \\spad{D)}} returns \\spad{[n,s]} such that \\spad{p = \\spad{n} \\spad{s},} all the squarefree factors of \\spad{n} are normal w.r.t. \\spad{D,} and \\spad{s} is special w.r.t. \\spad{D.} \\spad{D} is the derivation to use."))) │ │ │ NIL │ │ │ -(|Bezier| R) │ │ │ -((|constructor| (NIL "Provide linear, quadratic, and cubic spline bezier curves")) (|cubicBezier| (((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{cubicBezier(w,z,y,z)} curve is a simple interpolation between the \\indented{1}{starting point, a left-middle point, a right-middle point,} \\indented{1}{and the ending point based on a parameter \\spad{t.}} \\indented{1}{Given a start point a=[x1,y1], the left-middle point b=[x2,y2],} \\indented{1}{the right-middle point c=[x3,y3] and an endpoint d=[x4,y4]} \\indented{1}{f(t) \\spad{==} \\spad{[(1-t)^3} \\spad{x1} + 3t(1-t)^2 \\spad{x2} + 3t^2 (1-t) \\spad{x3} + \\spad{t^3} x4,} \\indented{10}{(1-t)^3 \\spad{y1} + 3t(1-t)^2 \\spad{y2} + 3t^2 (1-t) \\spad{y3} + \\spad{t^3} y4]} \\blankline \\spad{X} n:=cubicBezier([2.0,2.0],[2.0,4.0],[6.0,4.0],[6.0,2.0]) \\spad{X} [n(t/10.0) for \\spad{t} in 0..10 by 1]")) (|quadraticBezier| (((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{quadraticBezier(x,y,z)} curve is a simple interpolation between the \\indented{1}{starting point, a middle point, and the ending point based on} \\indented{1}{a parameter \\spad{t.}} \\indented{1}{Given a start point a=[x1,y1], a middle point b=[x2,y2],} \\indented{1}{and an endpoint c=[x3,y3]} \\indented{1}{f(t) \\spad{==} \\spad{[(1-t)^2} \\spad{x1} + 2t(1-t) \\spad{x2} + \\spad{t^2} x3,} \\indented{10}{(1-t)^2 \\spad{y1} + 2t(1-t) \\spad{y2} + \\spad{t^2} y3]} \\blankline \\spad{X} n:=quadraticBezier([2.0,2.0],[4.0,4.0],[6.0,2.0]) \\spad{X} [n(t/10.0) for \\spad{t} in 0..10 by 1]")) (|linearBezier| (((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{linearBezier(x,y)} curve is a simple interpolation between the \\indented{1}{starting point and the ending point based on a parameter \\spad{t.}} \\indented{1}{Given a start point a=[x1,y1] and an endpoint b=[x2,y2]} \\indented{1}{f(t) \\spad{==} \\spad{[(1-t)*x1} + t*x2, \\spad{(1-t)*y1} + t*y2]} \\blankline \\spad{X} n:=linearBezier([2.0,2.0],[4.0,4.0]) \\spad{X} [n(t/10.0) for \\spad{t} in 0..10 by 1]"))) │ │ │ NIL │ │ │ +(|PowerSeriesCategory| |Coef| |Expon| |Var|) │ │ │ +((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note that this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f.}")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * \\spad{x1**n1} * \\spad{..} * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|BiModule| R S) │ │ │ -((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline Axiom\\br \\tab{5}\\spad{r*(x*s) = (r*x)*s}")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = \\spad{x}}")) (|leftUnitary| ((|attribute|) "\\spad{1 * \\spad{x} = \\spad{x}}"))) │ │ │ -((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +(|Multiset| S) │ │ │ +((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} \\indented{1}{copies of elements \\spad{x} such that \\spad{p(x)} is} \\indented{1}{\\spadfun{true} if \\spad{number} is positive, all of them if} \\indented{1}{\\spad{number} equals zero, and all but at most \\spad{-number} if} \\indented{1}{\\spad{number} is negative.} \\blankline \\spad{X} f(x) \\spad{==} \\spad{x} < 4 \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} remove!(f,s,2) \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} remove!(f,s,0) \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} remove!(f,s,-2)") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} \\indented{1}{copies of element \\spad{x} if \\spad{number} is positive, all} \\indented{1}{of them if \\spad{number} equals zero, and all but at most} \\indented{1}{\\spad{-number} if \\spad{number} is negative.} \\blankline \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} remove!(3,s,2) \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} remove!(3,s,0) \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} remove!(3,s,-2)")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of \\indented{1}{elements \\spad{x} such that \\spad{p(x)} is \\spadfun{true}} \\indented{1}{if \\spad{number} is positive, all of them if} \\indented{1}{\\spad{number} equals zero, and all but at most \\spad{-number} if} \\indented{1}{\\spad{number} is negative.} \\blankline \\spad{X} f(x) \\spad{==} \\spad{x} < 4 \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} remove(f,s,2) \\spad{X} remove(f,s,0) \\spad{X} remove(f,s,-2)") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of \\indented{1}{element \\spad{x} if \\spad{number} is positive, all of them if} \\indented{1}{\\spad{number} equals zero, and all but at most \\spad{-number} if} \\indented{1}{\\spad{number} is negative.} \\blankline \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} remove(3,s,2) \\spad{X} remove(3,s,0) \\spad{X} remove(3,s,-2)")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} \\indented{1}{without their multiplicity. See also \\spadfun{parts}.} \\blankline \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} members(s)")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}. \\blankline \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s.} \\blankline \\spad{X} multiset(3)") (($) "\\spad{multiset()}$D creates an empty multiset of domain \\spad{D.} \\blankline \\spad{X} m:=multiset()@Multiset(Integer)"))) │ │ │ +((|finiteAggregate| . T) (|partiallyOrderedSet| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ +(|AnnaPartialDifferentialEquationPackage|) │ │ │ +((|constructor| (NIL "AnnaPartialDifferentialEquationPackage is an uncompleted package for the interface to NAG PDE routines. It has been realised that a new approach to solving PDEs will need to be created.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{prob}. \\blankline It calls each \\axiom{domain} listed in \\axiom{R} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{prob}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{pde}), a grid (\\axiom{xmin}, \\axiom{ymin}, \\axiom{xmax}, \\axiom{ymax}, \\axiom{ngx}, \\axiom{ngy}) and the boundary values (\\axiom{bounds}). A default value for tolerance is used. There is also a parameter (\\axiom{st}) which should contain the value \"elliptic\" if the PDE is known to be elliptic, or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment, only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{pde}), a grid (\\axiom{xmin}, \\axiom{ymin}, \\axiom{xmax}, \\axiom{ymax}, \\axiom{ngx}, \\axiom{ngy}), the boundary values (\\axiom{bounds}) and a tolerance requirement (\\axiom{tol}). There is also a parameter (\\axiom{st}) which should contain the value \"elliptic\" if the PDE is known to be elliptic, or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment, only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment, only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment, only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) │ │ │ NIL │ │ │ -(|BlowUpWithQuadTrans|) │ │ │ -((|constructor| (NIL "This domain is part of the PAFF package"))) │ │ │ -((|QuadraticTransform| . T)) │ │ │ NIL │ │ │ -(|CachableSet|) │ │ │ -((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x, \\spad{n)}} associates the integer \\spad{n} to \\spad{x.}")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x.}"))) │ │ │ +(|IntegrationResult| F) │ │ │ +((|constructor| (NIL "The result of a transcendental integration. If a function \\spad{f} has an elementary integral \\spad{g,} then \\spad{g} can be written in the form \\spad{g = \\spad{h} + \\spad{c1} log(u1) + \\spad{c2} log(u2) + \\spad{...} + \\spad{cn} log(un)} where \\spad{h,} which is in the same field than \\spad{f,} is called the rational part of the integral, and \\spad{c1 log(u1) + \\spad{...} \\spad{cn} log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form, by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r,} a logarithmic part \\spad{l,} and a non-elementary part ne."))) │ │ │ +((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|))))) │ │ │ +(|InfiniteProductPrimeField| |Coef| UTS) │ │ │ +((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|CharacteristicNonZero|) │ │ │ -((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) │ │ │ -((|unitsKnown| . T)) │ │ │ +(|SetAggregate&| A S) │ │ │ +((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both, the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x,} \\axiom{union(x,u)} returns a copy of u.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x,} \\axiom{union(u,x)} returns a copy of u.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v.}")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v.} Note that equivalent to \\axiom{reduce(and,{member?(x,v) for \\spad{x} in u},true,false)}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common, \\axiom{symmetricDifference(u,v)} returns a copy of u. Note that \\axiom{symmetricDifference(u,v) = \\indented{1}{union(difference(u,v),difference(v,u))}}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x,} a copy of \\spad{u} is returned. Note that \\axiom{difference(s, \\spad{x)} = difference(s, {x})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v.} If \\spad{u} and \\spad{v} have no elements in common, \\axiom{difference(u,v)} returns a copy of u. Note that equivalent to the notation (not currently supported) \\axiom{{x for \\spad{x} in \\spad{u} | not member?(x,v)}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v.} Note that equivalent to the notation (not currently supported) \\spad{{x} for \\spad{x} in \\spad{u} | member?(x,v)}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items x,y,...,z.") (($) "\\spad{set()}$D creates an empty set aggregate of type \\spad{D.}")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items x,y,...,z. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}$D (otherwise written {}$D) creates an empty set aggregate of type \\spad{D.} This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < \\spad{t}} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t.}"))) │ │ │ NIL │ │ │ -(|CharacteristicZero|) │ │ │ -((|constructor| (NIL "Rings of Characteristic Zero."))) │ │ │ -((|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|DifferentialVariableCategory&| A S) │ │ │ -((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If x,...,y is an ordered set of differential indeterminates, and the prime notation is used for differentiation, then the set of derivatives (including zero-th order) of the differential indeterminates is x,\\spad{x'},\\spad{x''},..., y,\\spad{y'},\\spad{y''},... (Note that in the interpreter, the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n.)} This set is viewed as a set of algebraic indeterminates, totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives, and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates, just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example, one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order}, then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates, Very often, a grading is the first step in ordering the set of monomials. For differential polynomial domains, this constructor provides a function \\spadfun{weight}, which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example, one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials, providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s,} viewed as the zero-th order derivative of \\spad{s.}")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, \\spad{n)}} returns the \\spad{n}-th derivative of \\spad{v.}") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v.}")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v.}")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s.}")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, \\spad{n)}} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) │ │ │ +(|RationalFunctionFactorizer| R) │ │ │ +((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ElementaryFunctionCategory&| S) │ │ │ -((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y.}")) (|exp| (($ $) "\\spad{exp(x)} returns \\%e to the power \\spad{x.}")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x.} When evaluated into some subset of the complex numbers, the branch cut lies along the negative real axis, continuous with quadrant II. The domain does not contain the origin."))) │ │ │ +(|IndexedAggregate&| S |Index| |Entry|) │ │ │ +((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example, a one-dimensional-array is an indexed aggregate where the index is an integer. Also, a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate u. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x.} The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of u. Note that for collections, \\axiom{first([x,y,...,z]) = \\spad{x}.} Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate u. Note that in general, \\axiom{minIndex(a) = reduce(min,[i for \\spad{i} in indices a])}; for lists, \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate u. Note that in general, \\axiom{maxIndex(u) = reduce(max,[i for \\spad{i} in indices u])}; if \\spad{u} is a list, \\axiom{maxIndex(u) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{u . i} for some index i.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order. to become indices:")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate u.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) │ │ │ NIL │ │ │ +((|HasAttribute| |#1| (QUOTE |shallowlyMutable|)) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasAttribute| |#1| (QUOTE |finiteAggregate|)) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) │ │ │ +(|Bezier| R) │ │ │ +((|constructor| (NIL "Provide linear, quadratic, and cubic spline bezier curves")) (|cubicBezier| (((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{cubicBezier(w,z,y,z)} curve is a simple interpolation between the \\indented{1}{starting point, a left-middle point, a right-middle point,} \\indented{1}{and the ending point based on a parameter \\spad{t.}} \\indented{1}{Given a start point a=[x1,y1], the left-middle point b=[x2,y2],} \\indented{1}{the right-middle point c=[x3,y3] and an endpoint d=[x4,y4]} \\indented{1}{f(t) \\spad{==} \\spad{[(1-t)^3} \\spad{x1} + 3t(1-t)^2 \\spad{x2} + 3t^2 (1-t) \\spad{x3} + \\spad{t^3} x4,} \\indented{10}{(1-t)^3 \\spad{y1} + 3t(1-t)^2 \\spad{y2} + 3t^2 (1-t) \\spad{y3} + \\spad{t^3} y4]} \\blankline \\spad{X} n:=cubicBezier([2.0,2.0],[2.0,4.0],[6.0,4.0],[6.0,2.0]) \\spad{X} [n(t/10.0) for \\spad{t} in 0..10 by 1]")) (|quadraticBezier| (((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{quadraticBezier(x,y,z)} curve is a simple interpolation between the \\indented{1}{starting point, a middle point, and the ending point based on} \\indented{1}{a parameter \\spad{t.}} \\indented{1}{Given a start point a=[x1,y1], a middle point b=[x2,y2],} \\indented{1}{and an endpoint c=[x3,y3]} \\indented{1}{f(t) \\spad{==} \\spad{[(1-t)^2} \\spad{x1} + 2t(1-t) \\spad{x2} + \\spad{t^2} x3,} \\indented{10}{(1-t)^2 \\spad{y1} + 2t(1-t) \\spad{y2} + \\spad{t^2} y3]} \\blankline \\spad{X} n:=quadraticBezier([2.0,2.0],[4.0,4.0],[6.0,2.0]) \\spad{X} [n(t/10.0) for \\spad{t} in 0..10 by 1]")) (|linearBezier| (((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{linearBezier(x,y)} curve is a simple interpolation between the \\indented{1}{starting point and the ending point based on a parameter \\spad{t.}} \\indented{1}{Given a start point a=[x1,y1] and an endpoint b=[x2,y2]} \\indented{1}{f(t) \\spad{==} \\spad{[(1-t)*x1} + t*x2, \\spad{(1-t)*y1} + t*y2]} \\blankline \\spad{X} n:=linearBezier([2.0,2.0],[4.0,4.0]) \\spad{X} [n(t/10.0) for \\spad{t} in 0..10 by 1]"))) │ │ │ NIL │ │ │ -(|ExpertSystemToolsPackage2| R1 R2) │ │ │ -((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping \\spad{f:R1} \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) │ │ │ NIL │ │ │ +(|DrawOptionFunctions0|) │ │ │ +((|constructor| (NIL "This package has no description")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value, \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value, \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value, \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value, \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options, \\spad{l,} and checks to see if it contains the option \\spad{space}. If the the option doesn't exist, then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value, \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value, \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value, \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value, \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value, \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value, \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value, \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value, \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist, the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value, \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value, \\spad{b} is returned."))) │ │ │ NIL │ │ │ -(|Evalable&| S R) │ │ │ -((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make \"evaluation\" substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, \\spad{[x1} = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f.}") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = \\spad{v)}} replaces \\spad{x} by \\spad{v} in \\spad{f.}"))) │ │ │ NIL │ │ │ +(|TwoDimensionalArrayCategory| R |Row| |Col|) │ │ │ +((|constructor| (NIL "Two dimensional array categories and domains")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} \\indented{1}{for all \\spad{i, \\spad{j}}} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} map!(-,arr)")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c}, where \\spad{c(i,j) = f(a(i,j),b(i,j))} \\indented{1}{when both \\spad{a(i,j)} and \\spad{b(i,j)} exist;} \\indented{1}{else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist;} \\indented{1}{else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist;} \\indented{1}{otherwise \\spad{c(i,j) = f(r,r)}.} \\blankline \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} \\spad{arr1} : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} \\spad{arr2} : \\spad{ARRAY2} INT \\spad{:=} new(3,3,10) \\spad{X} map(adder,arr1,arr2,17)") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c}, where \\spad{c(i,j) = f(a(i,j),b(i,j))} \\indented{1}{for all \\spad{i, \\spad{j}}} \\blankline \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} map(adder,arr,arr)") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b}, where \\spad{b(i,j) = f(a(i,j))} \\indented{1}{for all \\spad{i, \\spad{j}}} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} map(-,arr) \\spad{X} map((x \\spad{+->} \\spad{x} + x),arr)")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v} \\blankline \\spad{X} T1:=TwoDimensionalArray Integer \\spad{X} arr:T1:= new(5,4,0) \\spad{X} T2:=OneDimensionalArray Integer \\spad{X} \\spad{acol:=construct([1,2,3,4,5]::List(INT))$T2} \\spad{X} \\spad{setColumn!(arr,1,acol)$T1}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v} \\blankline \\spad{X} T1:=TwoDimensionalArray Integer \\spad{X} arr:T1:= new(5,4,0) \\spad{X} T2:=OneDimensionalArray Integer \\spad{X} \\spad{arow:=construct([1,2,3,4]::List(INT))$T2} \\spad{X} \\spad{setRow!(arr,1,arow)$T1}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of \\spad{m} to \\spad{r}} \\indented{1}{NO error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,0) \\spad{X} qsetelt!(arr,1,1,17)")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of \\spad{m} to \\spad{r}} \\indented{1}{error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,0) \\spad{X} setelt(arr,1,1,17)")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} parts(arr)")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} \\indented{1}{error check to determine if index is in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} column(arr,1)")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} \\indented{1}{error check to determine if index is in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} row(arr,1)")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of the array \\spad{m}} \\indented{1}{NO error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} qelt(arr,1,1)")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of the array \\spad{m,} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,} \\indented{1}{and returns \\spad{r} otherwise} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} elt(arr,1,1,6) \\spad{X} elt(arr,1,10,6)") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of the array \\spad{m}} \\indented{1}{error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} elt(arr,1,1)")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} ncols(arr)")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} nrows(arr)")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} maxColIndex(arr)")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} minColIndex(arr)")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} maxRowIndex(arr)")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} minRowIndex(arr)")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r's} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,0) \\spad{X} fill!(arr,10)")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an m-by-n array all of whose entries are \\spad{r} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,0)")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|ElementaryFunctionCategory|) │ │ │ -((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y.}")) (|exp| (($ $) "\\spad{exp(x)} returns \\%e to the power \\spad{x.}")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x.} When evaluated into some subset of the complex numbers, the branch cut lies along the negative real axis, continuous with quadrant II. The domain does not contain the origin."))) │ │ │ +(|SExpressionOf| |Str| |Sym| |Int| |Flt| |Expr|) │ │ │ +((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Evalable| R) │ │ │ -((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make \"evaluation\" substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, \\spad{[x1} = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f.}") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = \\spad{v)}} replaces \\spad{x} by \\spad{v} in \\spad{f.}"))) │ │ │ +(|ComplexIntegerSolveLinearPolynomialEquation| R CR) │ │ │ +((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], \\spad{g)}} where (fi relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} \\spad{(j} \\spad{\\=} i) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FreeAbelianMonoidCategory| S E) │ │ │ -((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the si's are in \\spad{S,} and the ni's are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 \\spad{a1} + \\spad{...} + en an, \\spad{f1} \\spad{b1} + \\spad{...} + \\spad{fm} bm)} returns \\spad{reduce(+,[max(ei, fi) ci])} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, \\spad{e1} \\spad{a1} +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, \\spad{e1} \\spad{a1} +...+ en an)} returns \\spad{f(e1) \\spad{a1} +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, \\spad{e1} \\spad{a1} + \\spad{...} + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s,} or 0 if \\spad{s} is not one of the ai's.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, \\spad{n)}} returns the factor of the n^th term of \\spad{x.}")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, \\spad{n)}} returns the coefficient of the n^th term of \\spad{x.}")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 \\spad{a1} + \\spad{...} + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x.} \\indented{1}{mapGen(f, \\spad{a1\\^e1} \\spad{...} an\\^en) returns} \\spad{f(a1)\\^e1 \\spad{...} f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * \\spad{s}} returns \\spad{e} times \\spad{s.}")) (+ (($ |#1| $) "\\spad{s + \\spad{x}} returns the sum of \\spad{s} and \\spad{x.}"))) │ │ │ +(|FreeAbelianGroup| S) │ │ │ +((|constructor| (NIL "Free abelian group on any set of generators The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the si's are in \\spad{S,} and the ni's are integers. The operation is commutative."))) │ │ │ +((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedAbelianMonoid|)))) │ │ │ +(|NewSparseMultivariatePolynomial| R |VarSet|) │ │ │ +((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|))))) (|HasCategory| |#1| (QUOTE (|Field|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|)))) (|not| (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|)))))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|)))) (|not| (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|not| (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|)))) (|not| (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|not| (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|)))) (|not| (|HasCategory| |#1| (LIST (QUOTE |QuotientFieldCategory|) (QUOTE (|Integer|))))))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|ToolsForSign| R) │ │ │ +((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|DifferentialVariableCategory| S) │ │ │ -((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If x,...,y is an ordered set of differential indeterminates, and the prime notation is used for differentiation, then the set of derivatives (including zero-th order) of the differential indeterminates is x,\\spad{x'},\\spad{x''},..., y,\\spad{y'},\\spad{y''},... (Note that in the interpreter, the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n.)} This set is viewed as a set of algebraic indeterminates, totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives, and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates, just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example, one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order}, then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates, Very often, a grading is the first step in ordering the set of monomials. For differential polynomial domains, this constructor provides a function \\spadfun{weight}, which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example, one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials, providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s,} viewed as the zero-th order derivative of \\spad{s.}")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, \\spad{n)}} returns the \\spad{n}-th derivative of \\spad{v.}") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v.}")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v.}")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s.}")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, \\spad{n)}} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) │ │ │ +(|InnerSparseUnivariatePowerSeries| |Coef|) │ │ │ +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain used for creating sparse Taylor and Laurent series.")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r}, where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1.}")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + \\spad{a1} \\spad{x} + \\spad{a2} \\spad{x**2} + ...)} returns \\spad{a1 + \\spad{a2} \\spad{x} + \\spad{a3} \\spad{x**2} + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g.} If \\spad{taylor?} is \\spad{true}, then we must have \\spad{order(f) \\spad{>=} order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)}, where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms, where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f.}")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|))))) (|HasCategory| (|Integer|) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|))))))) │ │ │ +(|Asp1| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs, needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{x)} and turn it into a Fortran Function like the following: \\blankline \\tab{5}DOUBLE PRECISION FUNCTION F(X)\\br \\tab{5}DOUBLE PRECISION X\\br \\tab{5}F=DSIN(X)\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FourierComponent| E) │ │ │ -((|constructor| (NIL "This domain creates kernels for use in Fourier series")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin, otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) │ │ │ +(|FiniteAlgebraicExtensionField| F) │ │ │ +((|constructor| (NIL "FiniteAlgebraicExtensionField \\spad{F} is the category of fields which are finite algebraic extensions of the field \\spad{F.} If \\spad{F} is finite then any finite algebraic extension of \\spad{F} is finite, too. Let \\spad{K} be a finite algebraic extension of the finite field \\spad{F.} The exponentiation of elements of \\spad{K} defines a Z-module structure on the multiplicative group of \\spad{K.} The additive group of \\spad{K} becomes a module over the ring of polynomials over \\spad{F} via the operation \\spadfun{linearAssociatedExp}(a:K,f:SparseUnivariatePolynomial \\spad{F)} which is linear over \\spad{F,} that is, for elements a from \\spad{K,} \\spad{c,d} from \\spad{F} and \\spad{f,g} univariate polynomials over \\spad{F} we have \\spadfun{linearAssociatedExp}(a,cf+dg) equals \\spad{c} times \\spadfun{linearAssociatedExp}(a,f) plus \\spad{d} times \\spadfun{linearAssociatedExp}(a,g). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from F[X]: \\spadfun{linearAssociatedExp}(a,monomial(1,k)\\$SUP(F)) is defined to be \\spadfun{Frobenius}(a,k) which is a**(q**k) where q=size()\\$F. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog}, respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial \\spad{g,} such that the \\spadfun{linearAssociatedExp}(b,g) equals a. If there is no such polynomial \\spad{g,} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial \\spad{g,} such that \\spadfun{linearAssociatedExp}(normalElement(),g) equals a.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial \\spad{g} of least degree, such that \\spadfun{linearAssociatedExp}(a,g) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over \\spad{F,} that is, for elements a from \\spad{\\$,} \\spad{c,d} form \\spad{F} and \\spad{f,g} univariate polynomials over \\spad{F} we have \\spadfun{linearAssociatedExp}(a,cf+dg) equals \\spad{c} times \\spadfun{linearAssociatedExp}(a,f) plus \\spad{d} times \\spadfun{linearAssociatedExp}(a,g). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from F[X]: \\spadfun{linearAssociatedExp}(a,monomial(1,k)\\$SUP(F)) is defined to be \\spadfun{Frobenius}(a,k) which is a**(q**k), where q=size()\\$F.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F,} that is, \\spad{a**(q**i), 0 \\spad{<=} \\spad{i} \\spad{<=} extensionDegree()-1} is an F-basis, where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element, normal over the ground field \\spad{F,} thus \\spad{a**(q**i), 0 \\spad{<=} \\spad{i} < extensionDegree()} is an F-basis, where \\spad{q = size()\\$F}. At the first call, the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls, the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F,} that is, \\spad{a**(q**i), 0 \\spad{<=} \\spad{i} < extensionDegree()} is an F-basis, where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q.} Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note that \\spad{trace(a,d)=reduce(+,[a**(q**(d*i)) for \\spad{i} in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F.}")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note that norm(a,d) = reduce(*,[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F.}")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F.}")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F.}") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F.}")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where v1,...,vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the vi's with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|MatrixCategory&| S R |Row| |Col|) │ │ │ +((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m.} \\indented{1}{If the matrix is not invertible, \"failed\" is returned.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} inverse matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|pfaffian| ((|#2| $) "\\spad{pfaffian(m)} returns the Pfaffian of the matrix \\spad{m.} \\indented{1}{Error if the matrix is not antisymmetric} \\blankline \\spad{X} pfaffian [[0,1,0,0],[-1,0,0,0],[0,0,0,1],[0,0,-1,0]]")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using \\indented{1}{minors. Error: if the matrix is not square.} \\blankline \\spad{X} minordet matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} determinant matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of \\indented{1}{the matrix \\spad{m.}} \\blankline \\spad{X} nullSpace matrix [[1,2,3],[4,5,6],[7,8,9]]")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m.} This is \\indented{1}{the dimension of the null space of the matrix \\spad{m.}} \\blankline \\spad{X} nullity matrix [[1,2,3],[4,5,6],[7,8,9]]")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m.} \\blankline \\spad{X} rank matrix [[1,2,3],[4,5,6],[7,8,9]]")) (|columnSpace| (((|List| |#4|) $) "\\spad{columnSpace(m)} returns a sublist of columns of the matrix \\spad{m} \\indented{1}{forming a basis of its column space} \\blankline \\spad{X} columnSpace matrix [[1,2,3],[4,5,6],[7,8,9],[1,1,1]]")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m.} \\blankline \\spad{X} rowEchelon matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r.} Error: if \\spad{r = 0}. \\blankline \\spad{X} m:=matrix [[2**i for \\spad{i} in 2..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m/4}")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements \\indented{1}{of \\spad{m} by \\spad{r,} returning \\axiom{\"failed\"} if this is not possible.} \\blankline \\spad{X} m:=matrix [[2**i for \\spad{i} in 2..4] for \\spad{j} in 1..5] \\spad{X} exquo(m,2)")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m.} \\indented{1}{Error: if matrix is not square or if the matrix} \\indented{1}{is square but not invertible.} \\blankline \\spad{X} (matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]) \\spad{**} 2") (($ $ (|NonNegativeInteger|)) "\\spad{x \\spad{**} \\spad{n}} computes a non-negative integral power of the matrix \\spad{x.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m**3}")) (* ((|#3| |#3| $) "\\spad{r * \\spad{x}} is the product of the row vector \\spad{r} and the matrix \\spad{x.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} r:=transpose([1,2,3,4,5])@Matrix(INT) \\spad{X} \\spad{r*m}") ((|#4| $ |#4|) "\\spad{x * \\spad{c}} is the product of the matrix \\spad{x} and the column vector \\spad{c.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} c:=coerce([1,2,3,4,5])@Matrix(INT) \\spad{X} \\spad{m*c}") (($ (|Integer|) $) "\\spad{n * \\spad{x}} is an integer multiple. \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} 3*m") (($ $ |#2|) "\\spad{x * \\spad{r}} is the right scalar multiple of the scalar \\spad{r} and the \\indented{1}{matrix \\spad{x.}} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m*1/3}") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the \\indented{1}{matrix \\spad{x.}} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} 1/3*m") (($ $ $) "\\spad{x * \\spad{y}} is the product of the matrices \\spad{x} and \\spad{y.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m*m}")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{-m}") (($ $ $) "\\spad{x - \\spad{y}} is the difference of the matrices \\spad{x} and \\spad{y.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m-m}")) (+ (($ $ $) "\\spad{x + \\spad{y}} is the sum of the matrices \\spad{x} and \\spad{y.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m+m}")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix!(x,i1,j1,y)} destructively alters the \\indented{1}{matrix \\spad{x.} Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for} \\indented{1}{\\spad{i = i1,...,i1-1+nrows \\spad{y}} and \\spad{j = j1,...,j1-1+ncols y}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} setsubMatrix!(m,2,2,matrix [[3,3],[3,3]])")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\indented{1}{\\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2}} \\indented{1}{and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} subMatrix(m,1,3,2,4)")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th \\indented{1}{columns of \\spad{m.} This destructively alters the matrix.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} swapColumns!(m,2,4)")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th \\indented{1}{rows of \\spad{m.} This destructively alters the matrix.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} swapRows!(m,2,4)")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x.} \\indented{1}{If \\spad{y} is \\spad{m}-by-\\spad{n}, \\spad{rowList = [i<1>,i<2>,...,i]}} \\indented{1}{and \\spad{colList = [j<1>,j<2>,...,j]}, then \\spad{x(i,j)}} \\indented{1}{is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} setelt(m,3,3,10)")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an m-by-n matrix consisting \\indented{1}{of elements of \\spad{x,} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}} \\indented{1}{If \\spad{rowList = [i<1>,i<2>,...,i]} and \\spad{colList \\spad{=}} \\indented{1}{[j<1>,j<2>,...,j]}, then the \\spad{(k,l)}th entry of} \\indented{1}{\\spad{elt(x,rowList,colList)} is \\spad{x(i,j)}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} elt(m,3,3)")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list \\indented{1}{of lists.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} listOfLists \\spad{m}")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an \\indented{1}{equal number of columns. The entries of \\spad{y} appear below} \\indented{1}{of the entries of x.\\space{2}Error: if the matrices} \\indented{1}{do not have the same number of columns.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} vertConcat(m,m)")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with \\indented{1}{an equal number of rows. The entries of \\spad{y} appear to the right} \\indented{1}{of the entries of x.\\space{2}Error: if the matrices} \\indented{1}{do not have the same number of rows.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} horizConcat(m,m)")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an n-by-n matrix consisting of the first \\indented{1}{n rows of the m-by-n matrix \\spad{m.} Error: if} \\indented{1}{\\spad{m < n}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..2] for \\spad{j} in 1..5] \\spad{X} squareTop \\spad{m}")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} transpose \\spad{m}") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix. \\blankline \\spad{X} transpose([1,2,3])@Matrix(INT)")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix. \\blankline \\spad{X} coerce([1,2,3])@Matrix(INT)")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\indented{1}{M with block matrices m1,...,mk down the diagonal,} \\indented{1}{with 0 block matrices elsewhere.} \\indented{1}{More precisly: if \\spad{ri \\spad{:=} nrows mi}, \\spad{ci \\spad{:=} ncols mi},} \\indented{1}{then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix\\space{2}with entries} \\indented{1}{\\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))}, if} \\indented{1}{\\spad{(r1+..+r(l-1)) < \\spad{i} \\spad{<=} r1+..+rl} and} \\indented{1}{\\spad{(c1+..+c(l-1)) < \\spad{i} \\spad{<=} c1+..+cl},} \\indented{1}{\\spad{m.i.j} = 0\\space{2}otherwise.} \\blankline \\spad{X} diagonalMatrix [matrix [[1,2],[3,4]], matrix [[4,5],[6,7]]]") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements \\indented{1}{of \\spad{l} on the diagonal.} \\blankline \\spad{X} diagonalMatrix [1,2,3]")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an n-by-n matrix with \\spad{r's} on the \\indented{1}{diagonal and zeroes elsewhere.} \\blankline \\spad{X} z:Matrix(INT):=scalarMatrix(3,5)")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} constructs an \\spad{n * \\spad{m}} matrix with \\indented{1}{the \\spad{(i,j)} entry equal to \\spad{f(i,j)}} \\blankline \\spad{X} f(i:INT,j:INT):INT \\spad{==} i+j \\spad{X} matrix(3,4,f)") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix, where the \\indented{1}{list of lists is viewed as a list of the rows of the matrix.} \\blankline \\spad{X} matrix [[1,2,3],[4,5,6],[7,8,9],[1,1,1]]")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an m-by-n zero matrix. \\blankline \\spad{X} z:Matrix(INT):=zero(3,3)")) (|zero?| (((|Boolean|) $) "\\spad{zero?(m)} returns \\spad{true} if \\spad{m} is a zero matrix \\blankline zero? matrix \\spad{[[0} for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and \\indented{1}{antisymmetric (that is, \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j)}} \\indented{1}{and \\spad{false} otherwise.} \\blankline \\spad{X} antisymmetric? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and \\indented{1}{symmetric (that is, \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j)} and false} \\indented{1}{otherwise.} \\blankline \\spad{X} symmetric? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and \\indented{1}{diagonal (that is, all entries of \\spad{m} not on the diagonal are zero) and} \\indented{1}{false otherwise.} \\blankline \\spad{X} diagonal? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix \\indented{1}{(if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.} \\blankline \\spad{X} square? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) │ │ │ NIL │ │ │ -(|FortranMatrixCategory|) │ │ │ -((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP, making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) │ │ │ -((|nil| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasAttribute| |#2| (QUOTE (|commutative| "*"))) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) │ │ │ +(|InfiniteTuple| S) │ │ │ +((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for \\spad{x} in \\spad{t} | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for \\spad{x} in \\spad{t} while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for \\spad{x} in \\spad{t} while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for \\spad{x} in t]}."))) │ │ │ NIL │ │ │ -(|FortranMatrixFunctionCategory|) │ │ │ -((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP, making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) │ │ │ -((|nil| . T)) │ │ │ NIL │ │ │ -(|FortranFunctionCategory|) │ │ │ -((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP, making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) │ │ │ -((|nil| . T)) │ │ │ +(|TabulatedComputationPackage| |Key| |Entry|) │ │ │ +((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However, onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(x,y)} stores the item whose key is \\axiom{x} and whose entry is \\axiom{y}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(x)} searches the item whose key is \\axiom{x}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(x)} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(x,y)} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{x} is displayed. If an item is stored then \\axiom{y} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) │ │ │ NIL │ │ │ -(|FullyPatternMatchable| R) │ │ │ -((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) │ │ │ -((|nil| . T)) │ │ │ NIL │ │ │ -(|FortranVectorCategory|) │ │ │ -((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP, making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) │ │ │ -((|nil| . T)) │ │ │ +(|NagOrdinaryDifferentialEquationsPackage|) │ │ │ +((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem, those in which all boundary conditions are specified at one point (initial-value problems), and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems, two-point boundary-value problems and Sturm-Liouville eigenvalue problems.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork, \\indented{7}{liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations, using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "d02kef(xpoint,m,k,tol,maxfun,match,elam,delam, \\indented{7}{hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range, using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "d02kef(xpoint,m,k,tol,maxfun,match,elam,delam, \\indented{7}{hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range, using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains \\spad{Asp12} and \\spad{Asp33} are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations, using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions, using a variable-order, variable-step method implementing the Backward Differentiation Formulae (BDF), until a user-specified function, if supplied, of the solution is zero, and returns the solution at points specified by the user, if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions, using a variable-order, variable-step Adams method until a user-specified function, if supplied, of the solution is zero, and returns the solution at points specified by the user, if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions, using a Runge-Kutta-Merson method, until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions, using a Runge-Kutta-Merson method, and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) │ │ │ NIL │ │ │ -(|FortranVectorFunctionCategory|) │ │ │ -((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP, making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) │ │ │ -((|nil| . T)) │ │ │ NIL │ │ │ -(|Group&| S) │ │ │ -((|constructor| (NIL "The class of multiplicative groups, that is, monoids with multiplicative inverses. \\blankline Axioms\\br \\tab{5}\\spad{leftInverse(\"*\":(\\%,\\%)->\\%,inv)}\\tab{5}\\spad{inv(x)*x = 1}\\br \\tab{5}\\spad{rightInverse(\"*\":(\\%,\\%)->\\%,inv)}\\tab{4}\\spad{x*inv(x) = 1}")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * \\spad{p} * \\spad{q}.}")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * \\spad{p} * \\spad{q};} this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n.}")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n.}")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y.}")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x.}"))) │ │ │ +(|QuaternionCategory| R) │ │ │ +((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number, or \"failed\" if this is not possible. Note that if \\spad{rational?(q)} is true, the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is true, the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it true} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number, and {\\it false} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) │ │ │ +((|noZeroDivisors| |has| |#1| (|EntireRing|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|OpenMathServerPackage|) │ │ │ +((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server, reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls, for example, \\axiom{Omserve(4000,60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{portnum}. The parameter \\axiom{timeout} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{u} on \\axiom{c} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{c} and returns the appropriate AXIOM object."))) │ │ │ NIL │ │ │ -(|IndexedDirectProductAbelianGroup| A S) │ │ │ -((|constructor| (NIL "Indexed direct products of abelian groups over an abelian group \\spad{A} of generators indexed by the ordered set \\spad{S.} All items have finite support: only non-zero terms are stored."))) │ │ │ NIL │ │ │ +(|ODEIntensityFunctionsTable|) │ │ │ +((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE's.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k.}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l.}")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) │ │ │ NIL │ │ │ -(|IndexedDirectProductAbelianMonoid| A S) │ │ │ -((|constructor| (NIL "Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of generators indexed by the ordered set \\spad{S.} All items have finite support. Only non-zero terms are stored."))) │ │ │ NIL │ │ │ +(|IndexedFlexibleArray| S |mn|) │ │ │ +((|constructor| (NIL "A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations\\br \\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}\\br \\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}\\br Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However, these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50% larger) array. Conversely, when the array becomes less than 1/2 full, it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps, stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} \\indented{1}{and returns the previous value} \\blankline \\spad{X} T1:=IndexedFlexibleArray(Integer,20) \\spad{X} \\spad{shrinkable(false)$T1}")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and \\indented{1}{returns the new array.} \\blankline \\spad{X} T1:=IndexedFlexibleArray(Integer,20) \\spad{X} t2:=flexibleArray([i for \\spad{i} in 1..10])$T1 \\spad{X} physicalLength!(t2,15)")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can \\indented{1}{accomodate before growing} \\blankline \\spad{X} T1:=IndexedFlexibleArray(Integer,20) \\spad{X} t2:=flexibleArray([i for \\spad{i} in 1..10])$T1 \\spad{X} physicalLength \\spad{t2}")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l} \\blankline \\spad{X} T1:=IndexedFlexibleArray(Integer,20) \\spad{X} flexibleArray([i for \\spad{i} in 1..10])$T1"))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ +(|ShallowlyMutableAttribute|) │ │ │ +((|constructor| (NIL "The class of all domains which have immediate components that are updateable in place (mutable). The properties of any component domain are irrevelant to the ShallowlyMutableAttribute."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|IndexedDirectProductObject| A S) │ │ │ -((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S.} All items have finite support."))) │ │ │ +(|e04nafAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF, an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|IncrementingMaps| R) │ │ │ -((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example, if \\spad{{f} \\spad{:=} increment(n)} then \\spad{f \\spad{x}} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example, if \\spad{{f} \\spad{:=} increment()} then \\spad{f \\spad{x}} is \\spad{x+1}."))) │ │ │ +(|FloatSpecialFunctions|) │ │ │ +((|Gamma| (((|Complex| (|Float|)) (|Complex| (|Float|))) "\\spad{Gamma(x)} is the Euler Gamma function \\blankline \\spad{X} a:Complex(Float):=3.5*\\%i \\spad{X} Gamma(a)") (((|Float|) (|Float|)) "\\spad{Gamma(x)} is the Euler Gamma function \\blankline \\spad{X} Gamma(3.5)")) (|logGamma| (((|Complex| (|Float|)) (|Complex| (|Float|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. \\blankline \\spad{X} a:Complex(Float):=3.5*\\%i \\spad{X} logGamma(a)") (((|Float|) (|Float|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. \\blankline \\spad{X} logGamma(3.5)"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Group|) │ │ │ -((|constructor| (NIL "The class of multiplicative groups, that is, monoids with multiplicative inverses. \\blankline Axioms\\br \\tab{5}\\spad{leftInverse(\"*\":(\\%,\\%)->\\%,inv)}\\tab{5}\\spad{inv(x)*x = 1}\\br \\tab{5}\\spad{rightInverse(\"*\":(\\%,\\%)->\\%,inv)}\\tab{4}\\spad{x*inv(x) = 1}")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * \\spad{p} * \\spad{q}.}")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * \\spad{p} * \\spad{q};} this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n.}")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n.}")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y.}")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x.}"))) │ │ │ -((|unitsKnown| . T)) │ │ │ +(|PolynomialFactorizationByRecursion| R E |VarSet| S) │ │ │ +((|constructor| (NIL "PolynomialFactorizationByRecursion(R,E,VarSet,S) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R.}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion} {PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of solveLinearPolynomialEquationByRecursion its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p.} This functions performs the recursion step for factorSquareFreePolynomial, as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p.} This function performs the recursion step for factorPolynomial, as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = \\spad{p} / prod pi}, a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists, then \"failed\" is returned."))) │ │ │ NIL │ │ │ -(|IntegerRetractions| S) │ │ │ -((|constructor| (NIL "Provides integer testing and retraction functions.")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer, \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer, \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) │ │ │ NIL │ │ │ +(|TriangularSetCategory| R E V P) │ │ │ +((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{R} be an integral domain and \\axiom{V} a finite ordered set of variables, say \\axiom{X1 < \\spad{X2} < \\spad{...} < Xn}. A set \\axiom{S} of polynomials in \\axiom{R[X1,X2,...,Xn]} is triangular if no elements of \\axiom{S} lies in \\axiom{R}, and if two distinct elements of \\axiom{S} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to \\spad{[1]} for more details. A polynomial \\axiom{P} is reduced w.r.t a non-constant polynomial \\axiom{Q} if the degree of \\axiom{P} in the main variable of \\axiom{Q} is less than the main degree of \\axiom{Q}. A polynomial \\axiom{P} is reduced w.r.t a triangular set \\axiom{T} if it is reduced w.r.t. every polynomial of \\axiom{T}.")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$V} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,p)} returns a triangular set which encodes the simple extension by \\axiom{p} of the extension of the base field defined by \\axiom{ts}, according to the properties of triangular sets of the current category. If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,p)} returns a triangular set which encodes the simple extension by \\axiom{p} of the extension of the base field defined by \\axiom{ts}, according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,v)} returns the polynomial of \\axiom{ts} with \\axiom{v} as main variable, if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(v,ts)} returns \\spad{true} iff \\axiom{v} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty, otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty, otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty, otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[ts1,qs1],...,[tsn,qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(p,ts)} returns the same as \\axiom{remainder(p,collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{R}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(p,ts)} returns \\axiom{0} if \\axiom{p} reduces to \\axiom{0} by pseudo-division w.r.t \\axiom{ts} otherwise returns a polynomial \\axiom{q} computed from \\axiom{p} by removing any coefficient in \\axiom{p} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(p,ts)} returns a polynomial \\axiom{r} such that \\axiom{initiallyReduced?(r,ts)} holds and there exists some product \\axiom{h} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(p,ts)} returns a polynomial \\axiom{r} such that \\axiom{headReduce?(r,ts)} holds and there exists some product \\axiom{h} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(p,ts)} returns a polynomial \\axiom{r} such that \\axiom{stronglyReduced?(r,ts)} holds and there exists some product \\axiom{h} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(p,ts,redOp,redOp?)} returns a polynomial \\axiom{r} such that \\axiom{redOp?(r,p)} holds for every \\axiom{p} of \\axiom{ts} and there exists some product \\axiom{h} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{p} and \\axiom{q} we have \\axiom{redOp?(redOp(p,q),q)} and there exists an integer \\axiom{e} and a polynomial \\axiom{f} such that \\axiom{init(q)^e*p = \\spad{f*q} + redOp(p,q)}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced w.r.t to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{p} of \\axiom{ts}. \\axiom{p} and all its iterated initials are reduced w.r.t. to the other elements of \\axiom{ts} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(p,ts)} returns \\spad{true} iff \\axiom{p} and all its iterated initials are reduced w.r.t. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{ts} is reduced w.r.t to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(p,ts)} returns \\spad{true} iff the head of \\axiom{p} is reduced w.r.t. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced w.r.t to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(p,ts)} returns \\spad{true} iff \\axiom{p} is reduced w.r.t. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(p,ts,redOp?)} returns \\spad{true} iff \\axiom{p} is reduced w.r.t.in the sense of the operation \\axiom{redOp?}, that is if for every \\axiom{t} in \\axiom{ts} \\axiom{redOp?(p,t)} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{p} in \\axiom{ts} we have \\axiom{normalized?(p,us)} where \\axiom{us} is \\axiom{collectUnder(ts,mvar(p))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(p,ts)} returns \\spad{true} iff \\axiom{p} and all its iterated initials have degree zero w.r.t. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,pred?,redOp?)} returns the same as \\axiom{basicSet(qs,redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,redOp?)} returns \\axiom{[bs,ts]} where \\axiom{concat(bs,ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} w.r.t the reduction-test \\axiom{redOp?}, if no non-zero constant polynomial lie in \\axiom{ps}, otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(ts1,ts2)} returns \\spad{true} iff \\axiom{ts2} has higher rank than \\axiom{ts1} in Wu Wen Tsun sense."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|KernelFunctions2| R S) │ │ │ -((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) │ │ │ +(|FiniteRankNonAssociativeAlgebra| R) │ │ │ +((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit, similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left, respectively right, minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique), or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique), or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique), or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra, or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra, or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note that the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note that the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities, that is, finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0, for all \\spad{a},b,c in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element, which is a right inverse of \\spad{a}, or \\spad{\"failed\"} if there is no unit element, if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element, which is a left inverse of \\spad{a}, or \\spad{\"failed\"} if there is no unit element, if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element, which is both a left and a right inverse of \\spad{a}, or \\spad{\"failed\"} if there is no unit element, if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},b,c in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)}, where \\spad{a*b \\spad{:=} a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative, characteristic is not 2, and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},b,c in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)}, where \\spad{a*b \\spad{:=} (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra, that is, satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra, that is, satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},b,c in the algebra. For example, this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a}, \\spad{b} in the algebra. Note that we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a}, \\spad{b} in the algebra. Note that we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a}, \\spad{b} in the algebra. Note that we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a}, \\spad{b} in the algebra. Note that we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative, that is, \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},b,c in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note that this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the right trace of the product \\spad{vi*vj}. Note that this is the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the left trace of the product \\spad{vi*vj}. Note that this is the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + \\spad{...} + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},...,\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},...,\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for \\spad{k} in 1..m]} defined by \\spad{vi * \\spad{vj} = \\spad{gammaij1} * \\spad{v1} + \\spad{...} + gammaijm * vm}, where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},...,\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) │ │ │ +((|unitsKnown| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ +(|ElementaryFunctionDefiniteIntegration| R F) │ │ │ +((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, \\spad{x,} a, \\spad{b,} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, \\spad{x} = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b.} If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters), then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, \\spad{x} = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b.} Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b.}"))) │ │ │ NIL │ │ │ -(|LinearlyExplicitRingOver| R) │ │ │ -((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, \\spad{v)}} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A \\spad{x} = \\spad{v}} and \\spad{B \\spad{x} = \\spad{w}} have the same solutions in \\spad{R.}") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A \\spad{x} = 0} and \\spad{B \\spad{x} = 0} have the same solutions in \\spad{R.}"))) │ │ │ -((|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|LeftAlgebra&| S R) │ │ │ -((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) │ │ │ +(|IndexedAggregate| |Index| |Entry|) │ │ │ +((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example, a one-dimensional-array is an indexed aggregate where the index is an integer. Also, a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate u. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x.} The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of u. Note that for collections, \\axiom{first([x,y,...,z]) = \\spad{x}.} Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate u. Note that in general, \\axiom{minIndex(a) = reduce(min,[i for \\spad{i} in indices a])}; for lists, \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate u. Note that in general, \\axiom{maxIndex(u) = reduce(max,[i for \\spad{i} in indices u])}; if \\spad{u} is a list, \\axiom{maxIndex(u) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{u . i} for some index i.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order. to become indices:")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate u.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ +(|BrillhartTests| UP) │ │ │ +((|constructor| (NIL "This package has no description")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer, \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart, \\spad{false} else. If \\spad{noLinears} is \\spad{true}, we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart, \\spad{false} is inconclusive."))) │ │ │ NIL │ │ │ -(|LeftAlgebra| R) │ │ │ -((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) │ │ │ -((|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|ModuleMonomial| IS E |ff|) │ │ │ -((|constructor| (NIL "This package has no documentation")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} is not documented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} is not documented")) (|index| ((|#1| $) "\\spad{index(x)} is not documented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} is not documented"))) │ │ │ +(|SparseUnivariatePolynomialFunctions2| R S) │ │ │ +((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S.} Note that the mapping is assumed to send zero to zero, since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MonoidRingFunctions2| R S M) │ │ │ -((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b.}"))) │ │ │ +(|MakeRecord| S T$) │ │ │ +((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S, part2:R), where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MonadWithUnit&| S) │ │ │ -((|constructor| (NIL "MonadWithUnit is the class of multiplicative monads with unit, that is, sets with a binary operation and a unit element. \\blankline Axioms\\br \\tab{5}leftIdentity(\"*\":(\\%,\\%)->\\%,1) for example, 1*x=x\\br \\tab{5}rightIdentity(\"*\":(\\%,\\%)->\\%,1) for example, x*1=x \\blankline Common Additional Axioms\\br \\tab{5}unitsKnown - if \"recip\" says \"failed\", it PROVES input wasn't a unit")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element, which is a right inverse of \\spad{a}, or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element, which is a left inverse of \\spad{a}, or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element, which is both a left and a right inverse of \\spad{a}, or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}-th power of \\spad{a}, defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}-th left power of \\spad{a}, that is, \\spad{leftPower(a,n) \\spad{:=} a * leftPower(a,n-1)} and \\spad{leftPower(a,0) \\spad{:=} 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}-th right power of \\spad{a}, that is, \\spad{rightPower(a,n) \\spad{:=} rightPower(a,n-1) * a} and \\spad{rightPower(a,0) \\spad{:=} 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "\\spad{1} returns the unit element, denoted by 1."))) │ │ │ +(|PureAlgebraicIntegration| R F L) │ │ │ +((|constructor| (NIL "Integration of pure algebraic functions; This package provides functions for integration, limited integration, extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, \\spad{g,} \\spad{kx,} \\spad{y,} \\spad{x)}} returns the solution of \\spad{op \\spad{f} = \\spad{g}.} \\spad{y} is an algebraic function of \\spad{x.}")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, \\spad{f,} \\spad{g,} \\spad{x,} \\spad{y,} foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + \\spad{n} * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists, \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x;} \\spad{foo(a, \\spad{b,} \\spad{x)}} is a function that solves \\spad{du/dx + \\spad{n} * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y.} \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, \\spad{x,} \\spad{y,} [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the ui's are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist, \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x.}")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, \\spad{x,} \\spad{y,} \\spad{g)}} returns functions \\spad{[h, \\spad{c]}} such that \\spad{dh/dx = f(x,y) - \\spad{c} \\spad{g},} where \\spad{y} is an algebraic function of \\spad{x;} returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, \\spad{x,} \\spad{y)}} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x.}"))) │ │ │ NIL │ │ │ +((|HasCategory| |#3| (LIST (QUOTE |LinearOrdinaryDifferentialOperatorCategory|) (|devaluate| |#2|)))) │ │ │ +(|RealNumberSystem&| S) │ │ │ +((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs \\spad{x}} returns the absolute value of \\spad{x.}")) (|round| (($ $) "\\spad{round \\spad{x}} computes the integer closest to \\spad{x.}")) (|truncate| (($ $) "\\spad{truncate \\spad{x}} returns the integer between \\spad{x} and 0 closest to \\spad{x.}")) (|fractionPart| (($ $) "\\spad{fractionPart \\spad{x}} returns the fractional part of \\spad{x.}")) (|wholePart| (((|Integer|) $) "\\spad{wholePart \\spad{x}} returns the integer part of \\spad{x.}")) (|floor| (($ $) "\\spad{floor \\spad{x}} returns the largest integer \\spad{<= \\spad{x}.}")) (|ceiling| (($ $) "\\spad{ceiling \\spad{x}} returns the small integer \\spad{>= \\spad{x}.}")) (|norm| (($ $) "\\spad{norm \\spad{x}} returns the same as absolute value."))) │ │ │ NIL │ │ │ -(|NonAssociativeRng&| S) │ │ │ -((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure, not necessarily commutative or associative, and not necessarily with unit.\\br Axioms\\br \\tab{5}x*(y+z) = x*y + x*z\\br \\tab{5}(x+y)*z = \\spad{x*z} + y*z\\br \\blankline Common Additional Axioms\\br \\tab{5}noZeroDivisors\\tab{5} ab = 0 \\spad{=>} \\spad{a=0} or \\spad{b=0}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) │ │ │ NIL │ │ │ +(|PolynomialSetUtilitiesPackage| R E V P) │ │ │ +((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [p1,...,pn]} and \\axiom{lf = [f1,...,fm]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0}, and the \\axiom{fi} are irreducible over \\axiom{R} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{R}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [p1,...,pn]} and \\axiom{lf = [f1,...,fm]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0}, and the \\axiom{fi} are irreducible over \\axiom{R} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{p} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{f} in \\axiom{lf}. Moreover, squares over \\axiom{R} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{f} in \\axiom{lf}. Moreover, squares over \\axiom{R} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{f} in \\axiom{lf}. Moreover, squares over \\axiom{R} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{false} and if the previous operation does not return any non null and constant polynomial, else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(p)} returns the square-free factors of \\axiom{p} over \\axiom{R}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,redOp?,redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(-1) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover, \\axiom{lq} is computed by reducing \\axiom{lp} w.r.t. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,pred?,redOp?,redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set w.r.t. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?}, if it is empty then leave, else reduce the other polynomials by this basic set w.r.t. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(p,lf)} returns the same as removeRoughlyRedundantFactorsInPols([p],lf,true)")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,lf,opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,lf)} if \\axiom{opt} is \\axiom{false} and if the previous operation does not return any non null and constant polynomial, else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{p} of \\axiom{lp} any occurence of a polynomial \\axiom{f} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,nbps} where \\axiom{bps} is a list of the bivariate polynomials, and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(p)} returns \\spad{true} iff \\axiom{p} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,nlps} where \\axiom{lps} is a list of the linear polynomials in \\spad{lp,} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(p)} returns \\spad{true} iff \\axiom{p} does not lie in the base ring \\axiom{R} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,nups} where \\axiom{ups} is a list of the univariate polynomials, and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(p)} returns \\spad{true} iff \\axiom{p} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,ps)} returns \\axiom{gps,bps} where \\axiom{gps} is a list of the polynomial \\axiom{p} in \\axiom{ps} such that \\axiom{pred?(p)} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,ps)} returns \\axiom{gps,bps} where \\axiom{gps} is a list of the polynomial \\axiom{p} in \\axiom{ps} such that \\axiom{pred?(p)} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,ps)} returns \\axiom{gps,bps} where \\axiom{gps} is a list of the polynomial \\axiom{p} in \\axiom{ps} such that \\axiom{pred?(p)} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,lp)} returns \\spad{true} iff for every \\axiom{p} in \\axiom{lp} the remainder of \\axiom{p} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(p,q)} returns the same as \\axiom{removeRedundantFactors(p,q)} but does assume that neither \\axiom{p} nor \\axiom{q} lie in the base ring \\axiom{R} and assumes that \\axiom{infRittWu?(p,q)} holds. Moreover, if \\axiom{R} is gcd-domain, then \\axiom{p} and \\axiom{q} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(p)$P for \\spad{p} in lp]} if \\axiom{R} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,lq,remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,lq)),lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,q)} returns the same as \\axiom{removeRedundantFactors(cons(q,lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(p,q)} returns the same as \\axiom{removeRedundantFactors([p,q])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [p1,...,pn]} and \\axiom{lq = [q1,...,qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes, and the product of degrees of the \\axiom{qi} is not greater than the one of the \\axiom{pj}, and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular, polynomials lying in the base ring \\axiom{R} are removed. Moreover, \\axiom{lq} is sorted w.r.t \\axiom{infRittWu?}. Furthermore, if \\spad{R} is gcd-domain, the polynomials in \\axiom{lq} are pairwise without common non trivial factor."))) │ │ │ NIL │ │ │ -(|NewSparseUnivariatePolynomialFunctions2| R S) │ │ │ -((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S.} Note that the mapping is assumed to send zero to zero, since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func, poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) │ │ │ +((AND (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|)))) │ │ │ +(|SequentialDifferentialPolynomial| R) │ │ │ +((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates, with coefficients in a ring. The ranking on the differential indeterminate is sequential."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|SequentialDifferentialVariable| (|Symbol|)) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|SequentialDifferentialVariable| (|Symbol|)) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|SequentialDifferentialVariable| (|Symbol|)) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|SequentialDifferentialVariable| (|Symbol|)) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|SequentialDifferentialVariable| (|Symbol|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|Asp74| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs, needed for NAG routine d03eef, for example: \\blankline \\tab{5} SUBROUTINE BNDY(X,Y,A,B,C,IBND)\\br \\tab{5} DOUBLE PRECISION A,B,C,X,Y\\br \\tab{5} INTEGER IBND\\br \\tab{5} IF(IBND.EQ.0)THEN\\br \\tab{7} A=0.0D0\\br \\tab{7} B=1.0D0\\br \\tab{7} C=-1.0D0*DSIN(X)\\br \\tab{5} ELSEIF(IBND.EQ.1)THEN\\br \\tab{7} A=1.0D0\\br \\tab{7} B=0.0D0\\br \\tab{7} C=DSIN(X)*DSIN(Y)\\br \\tab{5} ELSEIF(IBND.EQ.2)THEN\\br \\tab{7} A=1.0D0\\br \\tab{7} B=0.0D0\\br \\tab{7} C=DSIN(X)*DSIN(Y)\\br \\tab{5} ELSEIF(IBND.EQ.3)THEN\\br \\tab{7} A=0.0D0\\br \\tab{7} B=1.0D0\\br \\tab{7} C=-1.0D0*DSIN(Y)\\br \\tab{5} ENDIF\\br \\tab{5} END")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|OrderedAbelianSemiGroup|) │ │ │ -((|constructor| (NIL "Ordered sets which are also abelian semigroups, such that the addition preserves the ordering.\\br \\blankline Axiom\\br \\tab{5} \\spad{x} < \\spad{y} \\spad{=>} \\spad{x+z} < \\spad{y+z}"))) │ │ │ +(|CRApackage| R) │ │ │ +((|constructor| (NIL "This package has no documentation")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values, each of which corresponds to the Chinese remainder of the associated element of \\axiom{llv} and axiom{lm}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{v} such that, if \\spad{x} is \\axiom{lv.i} modulo \\axiom{lm.i} for all \\axiom{i}, then \\spad{x} is \\axiom{v} modulo \\axiom{lm(1)*lm(2)*...*lm(n)}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NonAssociativeRng|) │ │ │ -((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure, not necessarily commutative or associative, and not necessarily with unit.\\br Axioms\\br \\tab{5}x*(y+z) = x*y + x*z\\br \\tab{5}(x+y)*z = \\spad{x*z} + y*z\\br \\blankline Common Additional Axioms\\br \\tab{5}noZeroDivisors\\tab{5} ab = 0 \\spad{=>} \\spad{a=0} or \\spad{b=0}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) │ │ │ +(|InnerMatrixLinearAlgebraFunctions| R |Row| |Col| M) │ │ │ +((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m.} If the matrix is not invertible, \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m,} the matrix \\spad{h} such that m*h*m=h, h*m*h=m, \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m.} an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m.}")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m.} This is the dimension of the null space of the matrix \\spad{m.}")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m.}")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m.}"))) │ │ │ NIL │ │ │ +((|HasAttribute| |#3| (QUOTE |shallowlyMutable|))) │ │ │ +(|ExpressionSpace|) │ │ │ +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? \\spad{x}} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? \\spad{x}} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, \\spad{s,} \\spad{f)}} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, \\spad{s,} \\spad{f)}} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},...,\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},...,\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, \\spad{s,} \\spad{f)}} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, \\spad{s,} \\spad{f)}} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},...,\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},...,\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, \\spad{s)}} tests if \\spad{x} does not contain any operator whose name is \\spad{s.}") (((|Boolean|) $ $) "\\spad{freeOf?(x, \\spad{y)}} tests if \\spad{x} does not contain any occurrence of \\spad{y,} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, \\spad{k)}} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, \\spad{x)}} constructs op(x) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, \\spad{s)}} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s.}") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{%.}")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f,} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f,} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f,} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level, or if \\spad{f} has no kernels (that is, \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f.} Constants have height 0. Symbols have height 1. For any operator op and expressions f1,...,fn, \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, \\spad{g)}} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them, and makes them applicable to a unary operator. For example, \\spad{atan(paren \\spad{[x,} 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (f). This prevents \\spad{f} from being evaluated when operators are applied to it. For example, \\spad{log(1)} returns 0, but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them, and makes them applicable to a unary operator. For example, \\spad{atan(box \\spad{[x,} 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example, \\spad{log(1)} returns 0, but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels k1,...,kn by g1,...,gn formally in \\spad{f.}") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, \\spad{[k1} = g1,...,kn = gn])} replaces the kernels k1,...,kn by g1,...,gn formally in \\spad{f.}") (($ $ (|Equation| $)) "\\spad{subst(f, \\spad{k} = \\spad{g)}} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f.}")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or op([x1,...,xn]) applies the n-ary operator \\spad{op} to x1,...,xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or op(x, \\spad{y,} \\spad{z,} \\spad{t)} applies the 4-ary operator \\spad{op} to \\spad{x,} \\spad{y,} \\spad{z} and \\spad{t.}") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or op(x, \\spad{y,} \\spad{z)} applies the ternary operator \\spad{op} to \\spad{x,} \\spad{y} and \\spad{z.}") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or op(x, \\spad{y)} applies the binary operator \\spad{op} to \\spad{x} and \\spad{y.}") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or op(x) applies the unary operator \\spad{op} to \\spad{x.}"))) │ │ │ NIL │ │ │ -(|MonadWithUnit|) │ │ │ -((|constructor| (NIL "MonadWithUnit is the class of multiplicative monads with unit, that is, sets with a binary operation and a unit element. \\blankline Axioms\\br \\tab{5}leftIdentity(\"*\":(\\%,\\%)->\\%,1) for example, 1*x=x\\br \\tab{5}rightIdentity(\"*\":(\\%,\\%)->\\%,1) for example, x*1=x \\blankline Common Additional Axioms\\br \\tab{5}unitsKnown - if \"recip\" says \"failed\", it PROVES input wasn't a unit")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element, which is a right inverse of \\spad{a}, or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element, which is a left inverse of \\spad{a}, or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element, which is both a left and a right inverse of \\spad{a}, or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}-th power of \\spad{a}, defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}-th left power of \\spad{a}, that is, \\spad{leftPower(a,n) \\spad{:=} a * leftPower(a,n-1)} and \\spad{leftPower(a,0) \\spad{:=} 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}-th right power of \\spad{a}, that is, \\spad{rightPower(a,n) \\spad{:=} rightPower(a,n-1) * a} and \\spad{rightPower(a,0) \\spad{:=} 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "\\spad{1} returns the unit element, denoted by 1."))) │ │ │ NIL │ │ │ +(|CartesianTensor| |minix| |dim| R) │ │ │ +((|constructor| (NIL "CartesianTensor(minix,dim,R) provides Cartesian tensors with components belonging to a commutative ring \\spad{R.} These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\spad{%.}")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{3}{\\spad{unravel(ravel(t)) = t}.} \\blankline \\spad{X} n:SquareMatrix(2,Integer):=matrix [[2,3],[0,1]] \\spad{X} tn:CartesianTensor(1,2,Integer):=n \\spad{X} ravel \\spad{tn}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\indented{1}{\\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1}} \\indented{1}{if \\spad{i1,...,idim} is an even/is nota /is an odd permutation} \\indented{1}{of \\spad{minix,...,minix+dim-1}.} \\blankline \\spad{X} lcs:CartesianTensor(1,2,Integer):=leviCivitaSymbol()")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{4}{\\spad{kroneckerDelta()(i,j)}} \\indented{7}{\\spad{= 1\\space{2}if \\spad{i} = \\spad{j}}} \\indented{7}{\\spad{= 0 if\\space{2}i \\spad{\\^=} \\spad{j}}} \\blankline \\spad{X} delta:CartesianTensor(1,2,Integer):=kroneckerDelta()")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t.} \\indented{1}{For example, if \\spad{r = reindex(t, [4,1,2,3])}} \\indented{1}{for a rank 4 tensor \\spad{t,}} \\indented{1}{then \\spad{r} is the rank for tensor given \\spad{by}} \\indented{5}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.} \\blankline \\spad{X} n:SquareMatrix(2,Integer):=matrix [[2,3],[0,1]] \\spad{X} tn:CartesianTensor(1,2,Integer):=n \\spad{X} p:=product(tn,tn) \\spad{X} reindex(p,[4,3,2,1])")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}-th and \\spad{j}-th \\indented{1}{indices of \\spad{t.} For example, if \\spad{r = transpose(t,2,3)}} \\indented{1}{for a rank 4 tensor \\spad{t,} then \\spad{r} is the rank 4 tensor} \\indented{1}{given \\spad{by}} \\indented{5}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.} \\blankline \\spad{X} m:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] \\spad{X} tm:CartesianTensor(1,2,Integer):=m \\spad{X} tn:CartesianTensor(1,2,Integer):=[tm,tm] \\spad{X} transpose(tn,1,2)") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t.} \\indented{1}{For example, if \\spad{r = transpose(t)} for a rank 4} \\indented{1}{tensor \\spad{t,} then \\spad{r} is the rank 4 tensor given \\spad{by}} \\indented{5}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.} \\blankline \\spad{X} m:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] \\spad{X} Tm:CartesianTensor(1,2,Integer):=m \\spad{X} transpose(Tm)")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which \\indented{1}{sums along the \\spad{i}-th and \\spad{j}-th indices.} \\indented{1}{For example,\\space{2}if} \\indented{1}{\\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t,} then} \\indented{1}{\\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given \\spad{by}} \\indented{5}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.} \\blankline \\spad{X} m:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] \\spad{X} Tm:CartesianTensor(1,2,Integer):=m \\spad{X} v:DirectProduct(2,Integer):=directProduct [3,4] \\spad{X} Tv:CartesianTensor(1,2,Integer):=v \\spad{X} Tmv:=contract(Tm,2,1)") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} \\indented{1}{which sums along the \\spad{k1}-th index of} \\indented{1}{t and the \\spad{k2}-th index of \\spad{s.}} \\indented{1}{For example, if \\spad{r = contract(s,2,t,1)} for rank 3 tensors} \\indented{1}{rank 3 tensors \\spad{s} and \\spad{t}, then \\spad{r} is} \\indented{1}{the rank 4 \\spad{(= 3 + 3 - 2)} tensor\\space{2}given \\spad{by}} \\indented{5}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.} \\blankline \\spad{X} m:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] \\spad{X} Tm:CartesianTensor(1,2,Integer):=m \\spad{X} v:DirectProduct(2,Integer):=directProduct [3,4] \\spad{X} Tv:CartesianTensor(1,2,Integer):=v \\spad{X} Tmv:=contract(Tm,2,Tv,1)")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts \\indented{1}{the last index of \\spad{s} with the first index of \\spad{t,} that is,} \\indented{5}{\\spad{t*s = contract(t,rank \\spad{t,} \\spad{s,} 1)}} \\indented{5}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} \\indented{1}{This is compatible with the use of \\spad{M*v} to denote} \\indented{1}{the matrix-vector inner product.} \\blankline \\spad{X} m:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] \\spad{X} Tm:CartesianTensor(1,2,Integer):=m \\spad{X} v:DirectProduct(2,Integer):=directProduct [3,4] \\spad{X} Tv:CartesianTensor(1,2,Integer):=v \\spad{X} Tm*Tv")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t.} \\indented{1}{For example, if \\spad{r = product(s,t)} for rank 2 tensors} \\indented{1}{s and \\spad{t,} then \\spad{r} is a rank 4 tensor given \\spad{by}} \\indented{5}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.} \\blankline \\spad{X} m:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] \\spad{X} Tm:CartesianTensor(1,2,Integer):=m \\spad{X} n:SquareMatrix(2,Integer):=matrix [[2,3],[0,1]] \\spad{X} Tn:CartesianTensor(1,2,Integer):=n \\spad{X} Tmn:=product(Tm,Tn)")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor. \\blankline \\spad{X} v:=[2,3] \\spad{X} tv:CartesianTensor(1,2,Integer):=v \\spad{X} tm:CartesianTensor(1,2,Integer):=[tv,tv] \\spad{X} tn:CartesianTensor(1,2,Integer):=[tm,tm] \\spad{X} tp:CartesianTensor(1,2,Integer):=[tn,tn] \\spad{X} tq:CartesianTensor(1,2,Integer):=[tp,tp] \\spad{X} elt(tq,[2,2,2,2,2])") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor. \\blankline \\spad{X} v:=[2,3] \\spad{X} tv:CartesianTensor(1,2,Integer):=v \\spad{X} tm:CartesianTensor(1,2,Integer):=[tv,tv] \\spad{X} tn:CartesianTensor(1,2,Integer):=[tm,tm] \\spad{X} tp:CartesianTensor(1,2,Integer):=[tn,tn] \\spad{X} elt(tp,2,2,2,2) \\spad{X} tp[2,2,2,2]") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor. \\blankline \\spad{X} v:=[2,3] \\spad{X} tv:CartesianTensor(1,2,Integer):=v \\spad{X} tm:CartesianTensor(1,2,Integer):=[tv,tv] \\spad{X} tn:CartesianTensor(1,2,Integer):=[tm,tm] \\spad{X} elt(tn,2,2,2) \\spad{X} tn[2,2,2]") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor. \\blankline \\spad{X} v:=[2,3] \\spad{X} tv:CartesianTensor(1,2,Integer):=v \\spad{X} tm:CartesianTensor(1,2,Integer):=[tv,tv] \\spad{X} elt(tm,2,2) \\spad{X} tm[2,2]") ((|#3| $ (|Integer|)) "\\spad{elt(t,i)} gives a component of a rank 1 tensor. \\blankline \\spad{X} v:=[2,3] \\spad{X} tv:CartesianTensor(1,2,Integer):=v \\spad{X} elt(tv,2) \\spad{X} tv[2]") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor. \\blankline \\spad{X} \\spad{tv:CartesianTensor(1,2,Integer):=8} \\spad{X} elt(tv) \\spad{X} tv[]")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is, the \\indented{1}{number of indices).\\space{2}This is the same as the graded module} \\indented{1}{degree.} \\blankline \\spad{X} CT:=CARTEN(1,2,Integer) \\spad{X} \\spad{t0:CT:=8} \\spad{X} rank \\spad{t0}")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed \\indented{1}{using lists.} \\blankline \\spad{X} v:=[2,3] \\spad{X} tv:CartesianTensor(1,2,Integer):=v \\spad{X} tm:CartesianTensor(1,2,Integer):=[tv,tv]") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed \\indented{1}{using lists.} \\blankline \\spad{X} v:=[2,3] \\spad{X} tv:CartesianTensor(1,2,Integer):=v") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor. \\blankline \\spad{X} v:SquareMatrix(2,Integer):=[[1,2],[3,4]] \\spad{X} tv:CartesianTensor(1,2,Integer):=v") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor. \\blankline \\spad{X} v:DirectProduct(2,Integer):=directProduct [3,4] \\spad{X} tv:CartesianTensor(1,2,Integer):=v"))) │ │ │ NIL │ │ │ -(|OperationsQuery|) │ │ │ -((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations), \\spad{\"k\"} (constructors), \\spad{\"d\"} (domains), \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) │ │ │ NIL │ │ │ +(|OneDimensionalArrayAggregate| S) │ │ │ +((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically, these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property, that is, any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over, and access to, elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|OrderedFinite|) │ │ │ -((|constructor| (NIL "Ordered finite sets."))) │ │ │ +(|FileName|) │ │ │ +((|constructor| (NIL "This domain provides an interface to names in the file system."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|OrderedMonoid|) │ │ │ -((|constructor| (NIL "Ordered sets which are also monoids, such that multiplication preserves the ordering. \\blankline Axioms\\br \\tab{5}\\spad{x < \\spad{y} \\spad{=>} \\spad{x*z} < y*z}\\br \\tab{5}\\spad{x < \\spad{y} \\spad{=>} \\spad{z*x} < z*y}"))) │ │ │ +(|SetCategoryWithDegree|) │ │ │ +((|constructor| (NIL "This is part of the PAFF package, related to projective space."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PatternMatch| |Base| |Subject| |Pat|) │ │ │ -((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match expr.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match expr.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match expr.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) │ │ │ +(|DifferentialRing|) │ │ │ +((|constructor| (NIL "An ordinary differential ring, that is, a ring with an operation \\spadfun{differentiate}. \\blankline Axioms\\br \\tab{5}\\spad{differentiate(x+y) = differentiate(x)+differentiate(y)}\\br \\tab{5}\\spad{differentiate(x*y) = x*differentiate(y) + differentiate(x)*y}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, \\spad{n)}} returns the \\spad{n}-th derivative of \\spad{x.}") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x.} This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, \\spad{n)}} returns the \\spad{n}-th derivative of \\spad{x.}") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x.} This function is a simple differential operator where no variable needs to be specified."))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (AND (|not| (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|))))) (|not| (|HasCategory| |#2| (QUOTE (|Ring|))))) (AND (|HasCategory| |#2| (QUOTE (|Ring|))) (|not| (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|))))))) │ │ │ -(|PartialDifferentialRing&| A S) │ │ │ -((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S.} \\blankline Axioms\\br \\tab{5}\\spad{differentiate(x+y,e)=differentiate(x,e)+differentiate(y,e)}\\br \\tab{5}\\spad{differentiate(x*y,e)=x*differentiate(y,e)+differentiate(x,e)*y}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives, that is, \\spad{D(...D(x, \\spad{s1,} n1)..., \\spad{sn,} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x, \\spad{s,} \\spad{n)}} computes multiple partial derivatives, that is, \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s.}") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives, that is, \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v.}")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives, that is, \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x, \\spad{s,} \\spad{n)}} computes multiple partial derivatives, that is, \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s.}") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives, that is, \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v.}"))) │ │ │ +(|TranscendentalRischDE| F UP) │ │ │ +((|constructor| (NIL "Risch differential equation, transcendental case.")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, \\spad{B,} \\spad{C,} \\spad{n,} \\spad{D)}} returns either: 1. \\spad{[Q, \\spad{b]}} such that \\spad{degree(Q) \\spad{<=} \\spad{n}} and \\indented{3}{\\spad{a \\spad{Q'+} \\spad{B} \\spad{Q} = \\spad{C}} if \\spad{b = true}, \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, \\spad{C1,} \\spad{m,} \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A \\spad{Q'} + \\spad{BQ} = \\spad{C}} must be of the form} \\indented{3}{\\spad{Q = \\alpha \\spad{H} + \\beta} where \\spad{degree(H) \\spad{<=} \\spad{m}} and} \\indented{3}{H satisfies \\spad{H' + \\spad{B1} \\spad{H} = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, \\spad{g)}} returns a \\spad{[y, \\spad{b]}} such that \\spad{y' + fy = \\spad{g}} if \\spad{b = true}, \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, \\spad{B,} \\spad{C,} \\spad{T]}} such that \\spad{y' + \\spad{f} \\spad{y} = \\spad{g}} has a solution if and only if \\spad{y = \\spad{Q} / \\spad{T},} where \\spad{Q} satisfies \\spad{A \\spad{Q'} + \\spad{B} \\spad{Q} = \\spad{C}} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PlacesCategory| K PCS) │ │ │ -((|constructor| (NIL "This is part of the PAFF package, related to projective space.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt returns} the value of a specified coordinates if the places correspnd to a simple point")) (|setFoundPlacesToEmpty| (((|List| $)) "\\spad{setFoundPlacesToEmpty()} does what it says. (this should not be used)!!!")) (|foundPlaces| (((|List| $)) "\\spad{foundPlaces()} returns the list of all \"created\" places up to now.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(pl)} test if the place \\spad{pl} correspond to a leaf of a desingularisation tree.")) (|setDegree!| (((|Void|) $ (|PositiveInteger|)) "\\spad{setDegree!(pl,ls)} set the degree.")) (|setParam!| (((|Void|) $ (|List| |#2|)) "\\spad{setParam!(pl,ls)} set the local parametrization of \\spad{pl} to \\spad{ls.}")) (|localParam| (((|List| |#2|) $) "\\spad{localParam(pl)} returns the local parametrization associated to the place \\spad{pl.}"))) │ │ │ +(|d03eefAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ProjectiveSpaceCategory| K) │ │ │ -((|constructor| (NIL "This is part of the PAFF package, related to projective space.")) (|pointValue| (((|List| |#1|) $) "\\spad{pointValue returns} the coordinates of the point or of the point of origin that represent an infinitly close point")) (|setelt| ((|#1| $ (|Integer|) |#1|) "\\spad{setelt sets} the value of a specified coordinates")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt returns} the value of a specified coordinates")) (|list| (((|List| |#1|) $) "\\spad{list returns} the list of the coordinates")) (|lastNonNull| (((|Integer|) $) "\\spad{lastNonNull returns} the integer corresponding to the last non null coordinates.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(p)} test if the point is rational according to the characteristic of the ground field.") (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{rational?(p,n)} test if the point is rational according to \\spad{n.}")) (|removeConjugate| (((|List| $) (|List| $)) "\\spad{removeConjugate(lp)} returns removeConjugate(lp,n) where \\spad{n} is the characteristic of the ground field.") (((|List| $) (|List| $) (|NonNegativeInteger|)) "\\spad{removeConjugate(lp,n)} returns a list of points such that no points in the list is the conjugate (according to \\spad{n)} of another point.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns conjugate(p,n) where \\spad{n} is the characteristic of the ground field.") (($ $ (|NonNegativeInteger|)) "\\spad{conjugate(p,n)} returns p**n, that is all the coordinates of \\spad{p} to the power of \\spad{n}")) (|orbit| (((|List| $) $ (|NonNegativeInteger|)) "\\spad{orbit(p,n)} returns the orbit of the point \\spad{p} according to \\spad{n,} that is orbit(p,n) = \\spad{\\{} \\spad{p,} p**n, p**(n**2), p**(n**3), ..... \\spad{\\}}") (((|List| $) $) "\\spad{orbit(p)} returns the orbit of the point \\spad{p} according to the characteristic of \\spad{K,} that is, for \\spad{q=} char \\spad{K,} orbit(p) = \\spad{\\{} \\spad{p,} p**q, p**(q**2), p**(q**3), ..... \\spad{\\}}")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce a} list of \\spad{K} to a projective point.") (((|List| |#1|) $) "\\spad{coerce a} a projective point list of \\spad{K}")) (|projectivePoint| (($ (|List| |#1|)) "\\spad{projectivePoint creates} a projective point from a list")) (|homogenize| (($ $) "\\spad{homogenize(pt)} the point according to the coordinate which is the last non null.") (($ $ (|Integer|)) "\\spad{homogenize the} point according to the coordinate specified by the integer"))) │ │ │ +(|LinearOrdinaryDifferentialOperator2| A M) │ │ │ +((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M.} Multiplication of operators corresponds to functional composition:\\br \\spad{(L1 * L2).(f) = \\spad{L1} \\spad{L2} \\spad{f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) │ │ │ +((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ +(|AxiomServer|) │ │ │ +((|constructor| (NIL "This package provides a functions to support a web server for the new Axiom Browser functions."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|SegmentExpansionCategory| S L) │ │ │ -((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by \\spad{k)}} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment, that is, \\spad{[f(l), f(l+k), ..., f(lN)]}, where \\spad{lN \\spad{<=} \\spad{h} < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by \\spad{k)}} creates value of type \\spad{L} with elements \\spad{l, l+k, \\spad{...} \\spad{lN}} where \\spad{lN \\spad{<=} \\spad{h} < lN+k}. For example, \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by \\spad{k}} is replaced with \\spad{l, l+k, \\spad{...} lN}, where \\spad{lN \\spad{<=} \\spad{h} < lN+k}. For example, \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) │ │ │ -((|nil| . T)) │ │ │ +(|ElementaryFunctionSign| R F) │ │ │ +((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, \\spad{x,} a, \\spad{s)}} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\", or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, \\spad{x,} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a}, from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) │ │ │ NIL │ │ │ -(|PartialDifferentialRing| S) │ │ │ -((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S.} \\blankline Axioms\\br \\tab{5}\\spad{differentiate(x+y,e)=differentiate(x,e)+differentiate(y,e)}\\br \\tab{5}\\spad{differentiate(x*y,e)=x*differentiate(y,e)+differentiate(x,e)*y}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives, that is, \\spad{D(...D(x, \\spad{s1,} n1)..., \\spad{sn,} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x, \\spad{s,} \\spad{n)}} computes multiple partial derivatives, that is, \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s.}") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives, that is, \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v.}")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives, that is, \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x, \\spad{s,} \\spad{n)}} computes multiple partial derivatives, that is, \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s.}") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives, that is, \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v.}"))) │ │ │ -((|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|SplittingNode| V C) │ │ │ -((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value, that is the current expression to evaluate. The second one is its condition, that is the hypothesis under which the value has to be evaluated. The last one is its status, that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(n1,n2,o2)} returns \\spad{true} iff \\axiom{value(n1) = value(n2)} and \\axiom{o2(condition(n1),condition(n2))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(n1,n2,o1,o2)} returns \\spad{true} iff \\axiom{o1(value(n1),value(n2))} or \\axiom{value(n1) = value(n2)} and \\axiom{o2(condition(n1),condition(n2))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(n)} replaces \\spad{n} by \\axiom{empty()$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(n,b)} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty, else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(n,t)} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty, else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(n,v)} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty, else an error is produced.")) (|copy| (($ $) "\\axiom{copy(n)} returns a copy of \\spad{n.}")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(v,lt)} returns the same as \\axiom{[construct(v,t) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,vt.tower) for \\spad{vt} in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(v,t)} returns the same as \\axiom{construct(v,t,false)}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(v,t,b)} returns the non-empty node with value \\spad{v,} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(n)} returns the status of the node \\spad{n.}")) (|condition| ((|#2| $) "\\axiom{condition(n)} returns the condition of the node \\spad{n.}")) (|value| ((|#1| $) "\\axiom{value(n)} returns the value of the node \\spad{n.}")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(n)} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()$V,empty()$C,false]$\\%}"))) │ │ │ +(|GeneralUnivariatePowerSeries| |Coef| |var| |cen|) │ │ │ +((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]}, where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|))))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ +(|PatternMatchIntegerNumberSystem| I) │ │ │ +((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n;} res contains the variables of \\spad{pat} which are already matched and their matches."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|TrigonometricFunctionCategory&| S) │ │ │ -((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x.}")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x.}")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x.}")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x.}")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x.}")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x.}"))) │ │ │ +(|AffinePlane| K) │ │ │ +((|constructor| (NIL "The following is all the categories and domains related to projective space and part of the PAFF package"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|SparseUnivariatePolynomialFunctions2| R S) │ │ │ -((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S.} Note that the mapping is assumed to send zero to zero, since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) │ │ │ +(|UniversalSegmentFunctions2| R S) │ │ │ +((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s,} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of seg."))) │ │ │ NIL │ │ │ +((|HasCategory| |#1| (QUOTE (|OrderedRing|)))) │ │ │ +(|Field|) │ │ │ +((|constructor| (NIL "The category of commutative fields, commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline Axioms\\br \\tab{5}\\spad{a*(b/a) = b}\\br \\tab{5}\\spad{inv(a) = 1/a}")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0}, \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y.} Error: if \\spad{y} is 0."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|UserDefinedVariableOrdering|) │ │ │ -((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials, fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > \\spad{b2} > \\spad{...} > \\spad{bm} \\spad{>}} other variables \\spad{> \\spad{a1} > \\spad{a2} > \\spad{...} > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > \\spad{a2} > \\spad{...} > an > other variables}."))) │ │ │ +(|AbelianMonoidRing&| S R E) │ │ │ +((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i, elements of the ordered abelian monoid, are thought of as exponents or monomials. The monomials commute with each other, and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least, only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c.}")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p,} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent e.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of u.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p.}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p.}"))) │ │ │ NIL │ │ │ +((|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ +(|e04mbfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF, an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) │ │ │ NIL │ │ │ -(|UnivariateLaurentSeriesFunctions2| |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) │ │ │ -((|constructor| (NIL "Mapping package for univariate Laurent series This package allows one to apply a function to the coefficients of a univariate Laurent series.")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) │ │ │ NIL │ │ │ +(|PartitionsAndPermutations|) │ │ │ +((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions, and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,\\spad{l1} 1's,\\spad{l2} 2's,...,\\spad{ln} n's.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and l2.} \\indented{1}{For example,the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2}, 2 \\spad{3}'s, and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(l,u) on to all \\indented{1}{members \\spad{u} of \\spad{st,} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2,} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and l2.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions lp.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt.}")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l.}}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n.}") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,l,n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l.}}"))) │ │ │ NIL │ │ │ -(|TrigonometricFunctionCategory|) │ │ │ -((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x.}")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x.}")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x.}")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x.}")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x.}")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x.}"))) │ │ │ NIL │ │ │ +(|EvaluateCycleIndicators| F) │ │ │ +((|constructor| (NIL "This package is to be used in conjuction with the CycleIndicators package. It provides an evaluation function for SymmetricPolynomials.")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,} \\indented{1}{forms their product and sums the results over all monomials.}"))) │ │ │ NIL │ │ │ -(|UnivariatePolynomialFunctions2| |x| R |y| S) │ │ │ -((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(x,R) to \\spadtype{UnivariatePolynomial}(y,S). Note that the mapping is assumed to send zero to zero, since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) │ │ │ NIL │ │ │ +(|PolynomialCategory&| S R E |VarSet|) │ │ │ +((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R,} in variables from VarSet, with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p.}")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v.} Thus, for polynomial 7*x**2*y + 14*x*y**2, the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v.}")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v.}")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note that \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p.}")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p)} of the variables in the list \\spad{lv.}") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, \\spad{n]}} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = \\spad{a1} \\spad{...} an} and \\spad{n \\spad{>=} 2}, and, for each i, \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e}, where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = \\spad{m1} + \\spad{...} + \\spad{mn}} and \\spad{n \\spad{>=} 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v.}") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v.}")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial, \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b,} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v.}")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v,} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p,} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p,} which should actually involve only one variable, into a univariate polynomial in that variable, whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v,} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p,} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, \\spad{lv,} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln}, \\spad{prod(lv_i \\spad{**} ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv.}") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v.}"))) │ │ │ NIL │ │ │ -(|Automorphism| R) │ │ │ -((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R.}")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, \\spad{g)}} returns the invertible morphism given by \\spad{f,} where \\spad{g} is the inverse of \\spad{f..}") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f.}"))) │ │ │ -((|unitsKnown| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#4| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#4| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#4| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|OrderedSet|)))) │ │ │ +(|Factored| R) │ │ │ +((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others, like addition require somewhat more work, and unless the argument domain provides a factor function, the result may not be completely factored. Each object consists of a unit and a list of factors, where a factor has a member of \\spad{R} (the \"base\"), and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\", \"sqfr\", \"irred\" or \"prime\", which respectively mean that nothing is known about the base, it is square-free, it is irreducible, or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one, and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{u} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{u} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{fn} across the factors of \\indented{1}{\\spadvar{u} and creates a new factored object. Note: this clears} \\indented{1}{the information flags (sets them to \"nil\") because the effect of} \\indented{1}{\\userfun{fn} is clearly not known in general.} \\blankline \\spad{X} m(a:Factored Polynomial Integer):Factored Polynomial Integer \\spad{==} \\spad{a^2} \\spad{X} \\spad{f:=x*y^3-3*x^2*y^2+3*x^3*y-x^4} \\spad{X} map(m,f) \\spad{X} g:=makeFR(z,factorList \\spad{f)} \\spad{X} map(m,g)")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example, when working with factored integers, this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization. \\blankline \\spad{X} \\spad{f:=x*y^3-3*x^2*y^2+3*x^3*y-x^4} \\spad{X} unit \\spad{f} \\spad{X} g:=makeFR(z,factorList \\spad{f)} \\spad{X} unit \\spad{g}")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information flag.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with \\indented{1}{a single factor whose \\spad{base} is asserted to be square-free} \\indented{1}{(flag = \"sqfr\").} \\blankline \\spad{X} a:=sqfrFactor(3,5) \\spad{X} nthFlag(a,1)")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with \\indented{1}{a single factor whose \\spad{base} is asserted to be prime} \\indented{1}{(flag = \"prime\").} \\blankline \\spad{X} a:=primeFactor(3,4) \\spad{X} nthFlag(a,1)")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{u}. \\blankline \\spad{X} a:=factor 9720000 \\spad{X} numberOfFactors a")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\indented{1}{\\spadvar{u}.\\space{2}If \\spadvar{n} is not a valid index for a factor} \\indented{1}{(for example, less than 1 or too big), \"nil\" is returned.} \\blankline \\spad{X} a:=factor 9720000 \\spad{X} nthFlag(a,2)")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\indented{1}{\\spadvar{u}.\\space{2}If \\spadvar{n} is not a valid index for a factor} \\indented{1}{(for example, less than 1 or too big), 1 is returned.\\space{2}If} \\indented{1}{\\spadvar{u} consists only of a unit, the unit is returned.} \\blankline \\spad{X} a:=factor 9720000 \\spad{X} nthFactor(a,2)")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\indented{1}{\\spadvar{u}.\\space{2}If \\spadvar{n} is not a valid index for a factor} \\indented{1}{(for example, less than 1 or too big), 0 is returned.} \\blankline \\spad{X} a:=factor 9720000 \\spad{X} nthExponent(a,2)")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with \\indented{1}{a single factor whose \\spad{base} is asserted to be irreducible} \\indented{1}{(flag = \"irred\").} \\blankline \\spad{X} a:=irreducibleFactor(3,1) \\spad{X} nthFlag(a,1)")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable \\indented{1}{for iteration. That is, it returns a list where each element} \\indented{1}{is a record containing a base and exponent.\\space{2}The original} \\indented{1}{object is the product of all the factors and the unit (which} \\indented{1}{can be extracted by \\axiom{unit(u)}).} \\blankline \\spad{X} \\spad{f:=x*y^3-3*x^2*y^2+3*x^3*y-x^4} \\spad{X} factors \\spad{f} \\spad{X} g:=makeFR(z,factorList \\spad{f)} \\spad{X} factors \\spad{g}")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with \\indented{1}{a single factor with no information about the kind of} \\indented{1}{base (flag = \"nil\").} \\blankline \\spad{X} nilFactor(24,2) \\spad{X} nilFactor(x-y,3)")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for \\indented{1}{use by factoring code).} \\blankline \\spad{X} f:=nilFactor(x-y,3) \\spad{X} factorList \\spad{f}")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for \\indented{1}{use by factoring code).} \\blankline \\spad{X} f:=nilFactor(x-y,3) \\spad{X} g:=factorList \\spad{f} \\spad{X} makeFR(z,g)")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\indented{1}{\\spadvar{u}, or 0 if the factored form consists solely of a unit.} \\blankline \\spad{X} f:=nilFactor(y-x,3) \\spad{X} exponent(f)")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together, yielding an \\indented{1}{\"unfactored\" object. Note: this is purposely not called} \\indented{1}{\\spadfun{coerce} which would cause the interpreter to do this} \\indented{1}{automatically.} \\blankline \\spad{X} f:=nilFactor(y-x,3) \\spad{X} expand(f)"))) │ │ │ +((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE |Eltable|) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|UniqueFactorizationDomain|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|UniqueFactorizationDomain|)))) (|HasCategory| |#1| (QUOTE (|RealConstant|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Eltable|) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|)))) │ │ │ +(|IncrementingMaps| R) │ │ │ +((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example, if \\spad{{f} \\spad{:=} increment(n)} then \\spad{f \\spad{x}} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example, if \\spad{{f} \\spad{:=} increment()} then \\spad{f \\spad{x}} is \\spad{x+1}."))) │ │ │ NIL │ │ │ -(|BagAggregate&| A S) │ │ │ -((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects, and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks, queues, and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag u.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag u.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements x,y,...,z.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) │ │ │ NIL │ │ │ +(|UniqueFactorizationDomain&| S) │ │ │ +((|constructor| (NIL "A constructive unique factorization domain, where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring, \\spad{x} is an irreducible element."))) │ │ │ NIL │ │ │ -(|BagAggregate| S) │ │ │ -((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects, and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks, queues, and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag u.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag u.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements x,y,...,z.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) │ │ │ -((|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|BinaryRecursiveAggregate&| A S) │ │ │ -((|constructor| (NIL "A binary-recursive aggregate has 0, 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x.}")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b.}")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{b . right \\spad{:=} \\spad{b})} is equivalent to \\axiom{setright!(a,b)}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b})} is equivalent to \\axiom{setleft!(a,b)}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) │ │ │ +(|FunctionFieldCategory| F UP UPUP) │ │ │ +((|constructor| (NIL "Function field of a curve This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,...,un of \\indented{1}{an affine non-singular model for the curve.}")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, \\spad{D)}} returns \\spad{[h,d,d',g]} such that \\indented{1}{\\spad{f=h/d},} \\indented{1}{\\spad{h} is integral at all the normal places w.r.t. \\spad{D},} \\indented{1}{\\spad{d' = Dd}, \\spad{g = gcd(d, discriminant())} and \\spad{D}} \\indented{1}{is the derivation to use. \\spad{f} must have at most simple finite} \\indented{1}{poles.}")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the \\indented{1}{hyperelliptic} \\indented{1}{defined by \\spad{y**2 = p(x)}, \"failed\" otherwise.}")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic \\indented{1}{defined by \\spad{y**2 = p(x)}, \"failed\" otherwise.}")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or f(a, \\spad{b)} returns the value of \\spad{f} \\indented{1}{at the point \\spad{(x = a, \\spad{y} = b)}} \\indented{1}{if it is not singular.}")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and \\indented{1}{the common content of the numerator of \\spad{f.}}")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, \\spad{d)}} extends the derivation \\spad{d} from UP to \\$ and \\indented{1}{applies it to \\spad{x.}}")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ \\indented{1}{and returns \\spad{(M,} \\spad{Q)} such that the i^th row of \\spad{M} divided by \\spad{Q} form} \\indented{1}{the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)}} \\indented{1}{where \\spad{(w1,...,wn)} is the integral basis returned} \\indented{1}{by integralBasis().}")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], \\spad{D)}} returns \\indented{1}{\\spad{(A1 w1+...+An wn)/D}} \\indented{1}{where \\spad{(w1,...,wn)} is the integral} \\indented{1}{basis of \\spad{integralBasis()}.}")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], \\spad{D]}} such that \\indented{1}{\\spad{f = \\spad{(A1} \\spad{w1} +...+ An \\spad{wn)} / D}\\space{2}where \\spad{(w1,...,wn)} is the} \\indented{1}{integral basis returned by \\spad{integralBasis()}.}")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\indented{1}{\\spad{(A0 + \\spad{A1} \\spad{y} +...+ A(n-1)*y**(n-1))/D}.}") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\indented{1}{\\spad{(A0 + \\spad{A1} \\spad{y} +...+ A(n-1)*y**(n-1))/D}.}")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], \\spad{D]}} such that \\indented{1}{\\spad{f = \\spad{(A1} + \\spad{A2} \\spad{y} +...+ An y**(n-1)) / D}.}")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such \\indented{1}{that \\spad{M (v1,...,vn) = \\spad{(1,} \\spad{y,} ..., y**(n-1))}} \\indented{1}{where \\spad{(v1,...,vn)} is the local integral basis at infinity} \\indented{1}{returned by \\spad{infIntBasis()}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} inverseIntegralMatrixAtInfinity()$R")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\indented{1}{\\spad{(v1,...,vn) = \\spad{M} \\spad{(1,} \\spad{y,} ..., y**(n-1))}} \\indented{1}{where \\spad{(v1,...,vn)} is the local integral basis at infinity} \\indented{1}{returned by \\spad{infIntBasis()}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} integralMatrixAtInfinity()$R")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\indented{1}{\\spad{M (w1,...,wn) = \\spad{(1,} \\spad{y,} ..., y**(n-1))}} \\indented{1}{where \\spad{(w1,...,wn)} is the integral basis of} \\indented{1}{\\spadfunFrom{integralBasis}{FunctionFieldCategory}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} inverseIntegralMatrix()$R")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\indented{1}{\\spad{(w1,...,wn) = \\spad{M} \\spad{(1,} \\spad{y,} ..., y**(n-1))},} \\indented{1}{where \\spad{(w1,...,wn)} is the integral basis of} \\indented{1}{\\spadfunFrom{integralBasis}{FunctionFieldCategory}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} integralMatrix()$R")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} \\indented{1}{for all i,j such that \\spad{x**i*bj} is locally integral} \\indented{1}{at infinity.}")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\indented{1}{\\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.}")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, \\spad{p)}} tests whether \\spad{f} is locally integral at \\indented{1}{\\spad{p(x) = 0}}") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis \\indented{1}{at infinity} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} integralBasisAtInfinity()$R")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve. \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} integralBasis()$R")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point \\indented{1}{at infinity.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} branchPointAtInfinity?()$R \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 2 * x**2, 4) \\spad{X} branchPointAtInfinity?()$R")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, \\spad{b)}} tests if \\spad{(x=a,y=b)} is on the curve. \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} rationalPoint?(0,0)$R \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 2 * x**2, 4) \\spad{X} \\spad{rationalPoint?(0,0)$R2}")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible? \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 2 * x**2, 4) \\spad{X} \\spad{absolutelyIrreducible?()$R2}")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} genus()$R")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible \\indented{1}{components.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} numberOfComponents()$R"))) │ │ │ +((|noZeroDivisors| |has| (|Fraction| |#2|) (|Field|)) (|canonicalUnitNormal| |has| (|Fraction| |#2|) (|Field|)) (|canonicalsClosed| |has| (|Fraction| |#2|) (|Field|)) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -((|HasAttribute| |#1| (QUOTE |shallowlyMutable|))) │ │ │ -(|CartesianTensorFunctions2| |minix| |dim| S T$) │ │ │ -((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T.}")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts.}"))) │ │ │ +(|NagSpecialFunctionsPackage|) │ │ │ +((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind, via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind, via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind, via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral, which occurs as a degenerate case of an elliptic integral of the first kind, via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral C(x), via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral S(x), via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(x) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(x), via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(x) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(x) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{I\\space{6}(z) for complex \\spad{z,} non-negative (nu) and} \\indented{2}{(nu)+n} n=0,1,...,N-1, with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{K\\space{6}(z) for complex \\spad{z,} non-negative (nu) and} \\indented{2}{(nu)+n} n=0,1,...,N-1, with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{I (x), via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{I (x), via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{K (x), via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{K (x), via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{H\\space{6}(z) or H\\space{6}(z) for complex \\spad{z,} non-negative (nu) and} \\indented{2}{(nu)+n\\space{8}(nu)+n} n=0,1,...,N-1, with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function Bi(z) or its derivative Bi'(z) for complex \\spad{z,} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function Ai(z) or its derivative Ai'(z) for complex \\spad{z,} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{J\\space{6}(z) for complex \\spad{z,} non-negative (nu) and n=0,1,...,N-1,} \\indented{2}{(nu)+n} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{Y\\space{6}(z) for complex \\spad{z,} non-negative (nu) and n=0,1,...,N-1,} \\indented{2}{(nu)+n} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function Bi(x), via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function Ai(x), via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function, Bi(x), via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function, Ai(x), via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{J (x), via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{J (x), via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{Y (x), via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{Y (x), via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(x), via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function, erfc(x), via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions P(a,x) and Q(a,x). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log, ln(Gamma(x)), via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(x), via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{E (x), via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(z) ,{} for complex \\spad{z.} See \\downlink{Manual Page}{manpageXXs01eaf}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|CharacteristicPolynomialPackage| R) │ │ │ -((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r.} In particular, if \\spad{r} is the polynomial \\spad{'x,} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x.}"))) │ │ │ +(|ExpressionFunctions2| R S) │ │ │ +((|constructor| (NIL "Lifting of maps to Expressions.")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in e."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ComplexFunctions2| R S) │ │ │ -((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of u."))) │ │ │ +(|Vector| R) │ │ │ +((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#1| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|Monoid|))) (|HasCategory| |#1| (QUOTE (|Ring|))) (AND (|HasCategory| |#1| (QUOTE (|RadicalCategory|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ +(|InnerFiniteField| |p| |n|) │ │ │ +((|constructor| (NIL "InnerFiniteField(p,n) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime, see \\spadtype{FiniteField}."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| (|InnerPrimeField| |#1|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|InnerPrimeField| |#1|) (QUOTE (|Finite|))) (|HasCategory| (|InnerPrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| (|InnerPrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|InnerPrimeField| |#1|) (QUOTE (|Finite|))))) │ │ │ +(|RationalFactorize| RP) │ │ │ +((|constructor| (NIL "Factorization of extended polynomials with rational coefficients. This package implements factorization of extended polynomials whose coefficients are rational numbers. It does this by taking the \\spad{lcm} of the coefficients of the polynomial and creating a polynomial with integer coefficients. The algorithm in \\spadtype{GaloisGroupFactorizer} is then used to factor the integer polynomial. The result is normalized with respect to the original \\spad{lcm} of the denominators.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|DifferentialExtension&| S R) │ │ │ -((|constructor| (NIL "Differential extensions of a ring \\spad{R.} Given a differentiation on \\spad{R,} extend it to a differentiation on \\spad{%.}")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, \\spad{n)}} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R.}") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R.}")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, \\spad{n)}} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R.}") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R.}"))) │ │ │ +(|MultiVariableCalculusFunctions| S F FLAF FLAS) │ │ │ +((|constructor| (NIL "\\spadtype{MultiVariableCalculusFunctions} Package provides several functions for multivariable calculus. These include gradient, hessian and jacobian, divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian, the matrix of first partial derivatives, of the vector field \\spad{vf,} \\spad{vf} a vector function of the variables listed in xlist, \\spad{kl} is the number of nonzero subdiagonals, \\spad{ku} is the number of nonzero superdiagonals, \\spad{kl+ku+1} being actual bandwidth. Stores the nonzero band in a matrix, dimensions \\spad{kl+ku+1} by \\#xlist. The upper triangle is in the top \\spad{ku} rows, the diagonal is in row ku+1, the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to \\spad{LAPACK/NAG-F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian, the matrix of first partial derivatives, of the vector field \\spad{vf,} \\spad{vf} a vector function of the variables listed in xlist.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian, the matrix of second partial derivatives, of the scalar field \\spad{v,} \\spad{v} a function of the variables listed in xlist, \\spad{k} is the semi-bandwidth, the number of nonzero subdiagonals, 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix, dimensions \\spad{k+1} by \\#xlist, whose rows are the vectors formed by diagonal, subdiagonal, etc. of the real, full-matrix, hessian. (The notation conforms to \\spad{LAPACK/NAG-F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian, the matrix of second partial derivatives, of the scalar field \\spad{v,} \\spad{v} a function of the variables listed in xlist.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v,} \\spad{v} a function of the variables listed in xlist.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf,} \\spad{vf} a vector function of the variables listed in xlist.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient, the vector of first partial derivatives, of the scalar field \\spad{v,} \\spad{v} a function of the variables listed in xlist."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) │ │ │ -(|DoublyLinkedAggregate| S) │ │ │ -((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list, that is, a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v,} returning \\spad{v.}")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v,} returning \\spad{v.}")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate u.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note that \\axiom{next(l) = rest(l)} and \\axiom{previous(next(l)) = \\spad{l}.}")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note that \\axiom{next(previous(l)) = \\spad{l}.}")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l.} Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l.} Error: if \\spad{l} is empty."))) │ │ │ -((|nil| . T)) │ │ │ NIL │ │ │ -(|DesingTreeCategory| S) │ │ │ -((|constructor| (NIL "This category is part of the PAFF package")) (|tree| (($ (|List| |#1|)) "\\spad{tree(l)} creates a chain tree from the list \\spad{l}") (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd,} and no children") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd,} and children \\spad{ls.}"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ +(|GcdDomain&| S) │ │ │ +((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However, if such a \\spadfun{factor} operation exist, factorization will be unique up to order and units.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the greatest common divisor (gcd) of univariate polynomials over the domain")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l.}") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y.}")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l.}") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y.}"))) │ │ │ NIL │ │ │ -(|ExpressionSpaceFunctions1| F S) │ │ │ -((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set, using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, \\spad{p,} \\spad{k)}} uses the property \\spad{p} of the operator of \\spad{k,} in order to lift \\spad{f} and apply it to \\spad{k.}"))) │ │ │ NIL │ │ │ +(|IntegerCombinatoricFunctions| I) │ │ │ +((|constructor| (NIL "The \\spadtype{IntegerCombinatoricFunctions} package provides some standard functions in combinatorics.")) (|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,m)} returns the Stirling number of the second kind denoted \\spad{SS[n,m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,m)} returns the Stirling number of the first kind denoted \\spad{S[n,m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n.} This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,[m1,m2,...,mk])} returns the multinomial coefficient \\spad{n!/(m1! \\spad{m2!} \\spad{...} mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note that \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,r)} returns the binomial coefficient \\indented{1}{\\spad{C(n,r) = n!/(r! (n-r)!)}, where \\spad{n \\spad{>=} \\spad{r} \\spad{>=} 0}.} \\indented{1}{This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time.} \\blankline \\spad{X} [binomial(5,i) for \\spad{i} in 0..5]"))) │ │ │ NIL │ │ │ -(|DifferentialExtension| R) │ │ │ -((|constructor| (NIL "Differential extensions of a ring \\spad{R.} Given a differentiation on \\spad{R,} extend it to a differentiation on \\spad{%.}")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, \\spad{n)}} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R.}") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R.}")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, \\spad{n)}} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R.}") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R.}"))) │ │ │ -((|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|ExpressionSpaceFunctions2| E F) │ │ │ -((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over E; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F;} Do not use this package with \\spad{E} = \\spad{F,} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, \\spad{k)}} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) │ │ │ +(|GuessInteger|) │ │ │ +((|constructor| (NIL "This package exports guessing of sequences of rational numbers"))) │ │ │ NIL │ │ │ +((AND (|HasCategory| (|Fraction| (|Integer|)) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))))) │ │ │ +(|InfinitlyClosePointCategory| K |symb| |PolyRing| E |ProjPt| PCS |Plc| |Divisor| BLMET) │ │ │ +((|constructor| (NIL "This category is part of the PAFF package")) (|excpDivV| ((DIVISOR $) "\\spad{excpDivV returns} the exceptional divisor of the infinitly close point.")) (|chartV| ((|#9| $) "\\spad{chartV(p)} is the chart of the infinitly close point. The first integer correspond to variable defining the exceptional line, the last one the affine neighboorhood and the second one is the remaining integer. For example [1,2,3] means that Z=1, \\spad{X=X} and Y=XY. [2,3,1] means that X=1, \\spad{Y=Y} and Z=YZ.")) (|multV| (((|NonNegativeInteger|) $) "\\spad{multV(p)} returns the multiplicity of the infinitly close point.")) (|localPointV| (((|AffinePlane| |#1|) $) "\\spad{localPointV(p)} returns the coordinates of the local infinitly close point")) (|curveV| (((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) $) "\\spad{curveV(p)} returns the defining polynomial of the strict transform on which lies the corresponding infinitly close point.")) (|pointV| ((|#5| $) "\\spad{pointV(p)} returns the infinitly close point.")) (|create| (($ |#5| (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|AffinePlane| |#1|) (|NonNegativeInteger|) |#9| (|NonNegativeInteger|) DIVISOR |#1| (|Symbol|)) "\\spad{create(p,b,a,n1,c,n2,d,k,s)} an infinitly close point"))) │ │ │ NIL │ │ │ -(|FullyEvalableOver&| S R) │ │ │ -((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex, applying \\spad{f} to values of type \\spad{R} in ex."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |Eltable|) (|devaluate| |#2|) (|devaluate| |#2|)))) │ │ │ -(|GradedModule&| S R E) │ │ │ -((|constructor| (NIL "GradedModule(R,E) denotes ``E-graded R-module'', that is, collection of R-modules indexed by an abelian monoid E. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with degree \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h.} Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h.} Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g.}")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "\\spad{0} denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g.} The set of all elements of a given degree form an R-module."))) │ │ │ +(|RationalFunction| R) │ │ │ +((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R.}")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, \\spad{[v1} = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel, vi's appearing inside the gi's are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, \\spad{v} = \\spad{g)}} returns \\spad{f} with \\spad{v} replaced by \\spad{g.} Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel, vi's appearing inside the gi's are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, \\spad{v,} \\spad{g)}} returns \\spad{f} with \\spad{v} replaced by \\spad{g.}")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, \\spad{v)}} applies both the numerator and denominator of \\spad{f} to \\spad{v.}")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, \\spad{v)}} returns \\spad{f} viewed as a univariate rational function in \\spad{v.}")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f,} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|BinaryRecursiveAggregate| S) │ │ │ -((|constructor| (NIL "A binary-recursive aggregate has 0, 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x.}")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b.}")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{b . right \\spad{:=} \\spad{b})} is equivalent to \\axiom{setright!(a,b)}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b})} is equivalent to \\axiom{setleft!(a,b)}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) │ │ │ -((|nil| . T)) │ │ │ +(|Pi|) │ │ │ +((|constructor| (NIL "Symbolic fractions in \\%pi with integer coefficients; The point for using \\spad{Pi} as the default domain for those fractions is that \\spad{Pi} is coercible to the float types, and not Expression.")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%pi."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|HyperbolicFunctionCategory&| S) │ │ │ -((|constructor| (NIL "\\indented{1}{Date Last Updated: 14 May 1991} Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x.}")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x.}")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x.}")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x.}")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x.}")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x.}"))) │ │ │ +(|RealSolvePackage|) │ │ │ +((|constructor| (NIL "This package provides numerical solutions of systems of polynomial equations for use in ACPLOT")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real \\indented{1}{solutions of the list \\spad{lp} of polynomials with integer} \\indented{1}{coefficients with respect to the variables in lv,} \\indented{1}{with precision eps.} \\blankline \\spad{X} \\spad{p1} \\spad{:=} x**2*y*z + \\spad{y*z} \\spad{X} \\spad{p2} \\spad{:=} x**2*y**2*z + \\spad{x} + \\spad{z} \\spad{X} \\spad{p3} \\spad{:=} \\spad{x**2*y**2*z**2} + \\spad{z} + 1 \\spad{X} \\spad{lp} \\spad{:=} [p1, \\spad{p2,} \\spad{p3]} \\spad{X} realSolve(lp,[x,y,z],0.01)")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate \\indented{1}{integer polynomial \\spad{p} with precision eps.} \\blankline \\spad{X} \\spad{p} \\spad{:=} 4*x^3 - 3*x^2 + 2*x - 4 \\spad{X} solve(p,0.01)$REALSOLV") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a \\indented{1}{univariate rational polynomial \\spad{p} with precision eps.} \\blankline \\spad{X} \\spad{p} \\spad{:=} 4*x^3 - 3*x^2 + 2*x - 4 \\spad{X} solve(p::POLY(FRAC(INT)),0.01)$REALSOLV"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|GradedModule| R E) │ │ │ -((|constructor| (NIL "GradedModule(R,E) denotes ``E-graded R-module'', that is, collection of R-modules indexed by an abelian monoid E. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with degree \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h.} Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h.} Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g.}")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "\\spad{0} denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g.} The set of all elements of a given degree form an R-module."))) │ │ │ +(|d02cjfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF, a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FullyEvalableOver| R) │ │ │ -((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex, applying \\spad{f} to values of type \\spad{R} in ex."))) │ │ │ +(|PatternMatchAssertions|) │ │ │ +((|constructor| (NIL "Attaching assertions to symbols for pattern matching.")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists, multiple(x) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity \\spad{(0} in a sum, 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x, \\spad{s)}} makes the assertion \\spad{s} about \\spad{x.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|IndexedAggregate&| S |Index| |Entry|) │ │ │ -((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example, a one-dimensional-array is an indexed aggregate where the index is an integer. Also, a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate u. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x.} The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of u. Note that for collections, \\axiom{first([x,y,...,z]) = \\spad{x}.} Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate u. Note that in general, \\axiom{minIndex(a) = reduce(min,[i for \\spad{i} in indices a])}; for lists, \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate u. Note that in general, \\axiom{maxIndex(u) = reduce(max,[i for \\spad{i} in indices u])}; if \\spad{u} is a list, \\axiom{maxIndex(u) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{u . i} for some index i.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order. to become indices:")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate u.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) │ │ │ +(|PrimitiveElement| F) │ │ │ +((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], \\spad{q]}} such that then \\spad{k(a1,...,an) = k(a)}, where \\spad{a = \\spad{a1} \\spad{c1} + \\spad{...} + an cn}, \\spad{ai = qi(a)}, and \\spad{q(a) = 0}. The pi's are the defining polynomials for the ai's. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], \\spad{q]}} such that then \\spad{k(a1,...,an) = k(a)}, where \\spad{a = \\spad{a1} \\spad{c1} + \\spad{...} + an cn}, \\spad{ai = qi(a)}, and \\spad{q(a) = 0}. The pi's are the defining polynomials for the ai's. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, \\spad{p2,} a2)} returns \\spad{[c1, \\spad{c2,} \\spad{q]}} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = \\spad{c1} \\spad{a1} + \\spad{c2} a2, and q(a) = 0}. The pi's are the defining polynomials for the ai's. The \\spad{p2} may involve a1, but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) │ │ │ NIL │ │ │ -((|HasAttribute| |#1| (QUOTE |shallowlyMutable|)) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasAttribute| |#1| (QUOTE |finiteAggregate|)) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) │ │ │ -(|LeftOreRing|) │ │ │ -((|constructor| (NIL "This is the category of left ore rings, that is noncommutative rings without zero divisors where we can compute the least left common multiple.")) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) "\\spad{lcmCoef(c1, c2)} computes (llcm_res, coeff1, coeff2) such that llcm_res is least left common multiple of \\spad{c1} and \\spad{c2} and llcm_res = \\spad{coeff1*c1} = \\spad{coeff2*c2}"))) │ │ │ -((|noZeroDivisors| . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|HyperbolicFunctionCategory|) │ │ │ -((|constructor| (NIL "\\indented{1}{Date Last Updated: 14 May 1991} Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x.}")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x.}")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x.}")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x.}")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x.}")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x.}"))) │ │ │ +(|ExpressionTubePlot|) │ │ │ +((|constructor| (NIL "Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)}, \\spad{y = g(t)}, \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\", the tube is considered to be closed; if \\spad{s} = \"open\", the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)}, \\spad{y = g(t)}, \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)}, \\spad{y = g(t)}, \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\", the tube is considered to be closed; if \\spad{s} = \"open\", the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius r(t) with \\spad{n} points on each circle about the curve \\spad{x = f(t)}, \\spad{y = g(t)}, \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s,} which may be a function of a constant, and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MakeCachableSet| S) │ │ │ -((|constructor| (NIL "MakeCachableSet(S) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\spad{%.}"))) │ │ │ +(|MPolyCatRationalFunctionFactorizer| E OV R PRF) │ │ │ +((|constructor| (NIL "This package exports a factor operation for multivariate polynomials with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients, themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial monom.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial prf.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ModularRing| R |Mod| |reduction| |merge| |exactQuo|) │ │ │ -((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} is not documented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} is not documented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} is not documented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} is not documented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} is not documented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} is not documented"))) │ │ │ -((|unitsKnown| . T)) │ │ │ +(|ScriptFormulaFormat|) │ │ │ +((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue, a formula part and an epilogue. The functions \\spadfun{prologue}, \\spadfun{formula} and \\spadfun{epilogue} extract these parts, respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!}, \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example, the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to strings.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to strings.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to strings.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t.}")) (|new| (($) "\\spad{new()} create a new, empty object. Use \\spadfun{setPrologue!}, \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t.}")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t.}")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{width}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) │ │ │ NIL │ │ │ -(|Module&| S R) │ │ │ -((|constructor| (NIL "The category of modules over a commutative ring. \\blankline Axioms\\br \\tab{5}\\spad{1*x = x}\\br \\tab{5}\\spad{(a*b)*x = a*(b*x)}\\br \\tab{5}\\spad{(a+b)*x = (a*x)+(b*x)}\\br \\tab{5}\\spad{a*(x+y) = (a*x)+(a*y)}"))) │ │ │ NIL │ │ │ +(|GradedModule&| S R E) │ │ │ +((|constructor| (NIL "GradedModule(R,E) denotes ``E-graded R-module'', that is, collection of R-modules indexed by an abelian monoid E. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with degree \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h.} Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h.} Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g.}")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "\\spad{0} denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g.} The set of all elements of a given degree form an R-module."))) │ │ │ NIL │ │ │ -(|IndexedAggregate| |Index| |Entry|) │ │ │ -((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example, a one-dimensional-array is an indexed aggregate where the index is an integer. Also, a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate u. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x.} The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of u. Note that for collections, \\axiom{first([x,y,...,z]) = \\spad{x}.} Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate u. Note that in general, \\axiom{minIndex(a) = reduce(min,[i for \\spad{i} in indices a])}; for lists, \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate u. Note that in general, \\axiom{maxIndex(u) = reduce(max,[i for \\spad{i} in indices u])}; if \\spad{u} is a list, \\axiom{maxIndex(u) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{u . i} for some index i.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order. to become indices:")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate u.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) │ │ │ -((|nil| . T)) │ │ │ NIL │ │ │ -(|NonAssociativeRing&| S) │ │ │ -((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit, the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) │ │ │ +(|RectangularMatrixCategoryFunctions2| |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) │ │ │ +((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{i} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Module| R) │ │ │ -((|constructor| (NIL "The category of modules over a commutative ring. \\blankline Axioms\\br \\tab{5}\\spad{1*x = x}\\br \\tab{5}\\spad{(a*b)*x = a*(b*x)}\\br \\tab{5}\\spad{(a+b)*x = (a*x)+(b*x)}\\br \\tab{5}\\spad{a*(x+y) = (a*x)+(a*y)}"))) │ │ │ -((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +(|PatternFunctions1| R D) │ │ │ +((|constructor| (NIL "Utilities for handling patterns")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p;} \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, \\spad{v)}} adds \\spad{v} to the list of \"bad values\" for \\spad{p;} \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], \\spad{p)}} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p.}") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, \\spad{p)}} returns f(v) where \\spad{f} is the predicate attached to \\spad{p.}")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p,} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], \\spad{f)}} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and \\spad{...} and \\spad{fn} to the copy, which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, \\spad{f)}} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy, which is returned."))) │ │ │ NIL │ │ │ -(|NonAssociativeRing|) │ │ │ -((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit, the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) │ │ │ NIL │ │ │ +(|FiniteLinearAggregate&| A S) │ │ │ +((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse}, \\spadfun{sort}, and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p.}")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element i.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{i \\spad{>=} \\spad{n},} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a, and \\axiom{minIndex(a) - 1} if there is no such \\spad{x.}") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{p(x)} is true, and \\axiom{minIndex(a) - 1} if there is no such \\spad{x.}")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p.}")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note that \\axiom{sort(u) = sort(<=,u)}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p.}")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note that \\axiom{merge(u,v) = merge(<=,u,v)}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b.} The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{p(x,y)} is true, then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen, the next element of \\axiom{a} is examined, and so on. When all the elements of one aggregate are examined, the remaining elements of the other are appended. For example, \\axiom{merge(<,[1,3],[2,7,5])} returns \\axiom{[1,2,3,7,5]}."))) │ │ │ NIL │ │ │ -(|OrderedAbelianMonoid|) │ │ │ -((|constructor| (NIL "Ordered sets which are also abelian monoids, such that the addition preserves the ordering."))) │ │ │ +((|HasAttribute| |#1| (QUOTE |shallowlyMutable|)) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) │ │ │ +(|TopLevelDrawFunctionsForAlgebraicCurves| R |Ex|) │ │ │ +((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|OrderlyDifferentialVariable| S) │ │ │ -((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v,} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v.} This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order}, and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(u), \\spadfun{variable}(u))."))) │ │ │ +(|NagIntegrationPackage|) │ │ │ +((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region, using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points, over the whole of its specified range, using third-order finite-difference formulae with error estimates, according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions), with constant and finite limits, to a specified relative accuracy, using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre, Gauss-Rational, Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function g(x) over [a,b]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function g(x)w(x) over a finite interval [a,b]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,b]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function f(x) over an infinite or semi-infinite interval [a,b]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function f(x) over a finite interval [a,b]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator, especially suited to oscillating, non-singular integrands, which calculates an approximation to the integral of a function f(x) over a finite interval [a,b]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function f(x) over a finite interval [a,b]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PermutationCategory| S) │ │ │ -((|constructor| (NIL "PermutationCategory provides a categorial environment for subgroups of bijections of a set (that is, permutations)")) (< (((|Boolean|) $ $) "\\spad{p < \\spad{q}} is an order relation on permutations. Note that this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of el under the permutation \\spad{p,} that is, the set which is given by applications of the powers of \\spad{p} to el.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p, el)} returns the image of el under the permutation \\spad{p.}")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p, el)} returns the image of el under the permutation \\spad{p.}")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles \\spad{lls} to a permutation, each cycle being a list with not repetitions, is coerced to the permutation, which maps ls.i to ls.i+1, indices modulo the length of the list, then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle \\spad{ls,} that is, a list with not repetitions to a permutation, which maps ls.i to ls.i+1, indices modulo the length of the list. Error: if repetitions occur."))) │ │ │ -((|unitsKnown| . T)) │ │ │ +(|PAdicInteger| |p|) │ │ │ +((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} p-adic numbers are represented as sum(i = 0.., a[i] * p^i), where the a[i] lie in 0,1,...,(p - 1)."))) │ │ │ +((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|SequentialDifferentialVariable| S) │ │ │ -((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v,} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v.} This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order}, and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(u), \\spadfun{order}(u))."))) │ │ │ +(|RepeatedDoubling| S) │ │ │ +((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, \\spad{r)}} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|IntegerMod| |p|) │ │ │ -((|constructor| (NIL "IntegerMod(n) creates the ring of integers reduced modulo the integer \\spad{n.}"))) │ │ │ -(((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|LazyStreamAggregate&| A S) │ │ │ +((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?', for example 'first' and 'rest', will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. \\indented{1}{this function should only be called on streams which are} \\indented{1}{known to be finite.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..] \\spad{X} n:=filterUntil(i+->i>100,m) \\spad{X} numberOfComputedEntries \\spad{n} \\spad{X} complete \\spad{n} \\spad{X} numberOfComputedEntries \\spad{n}")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed, if necessary, \\indented{1}{so that 'st' will have at least \\spad{'n'} explicit entries or so} \\indented{1}{that all entries of 'st' will be computed if 'st' is finite} \\indented{1}{with length \\spad{<=} \\spad{n.}} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} numberOfComputedEntries \\spad{m} \\spad{X} extend(m,20) \\spad{X} numberOfComputedEntries \\spad{m}")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly \\indented{1}{computed entries of stream \\spad{st} which exist immediately prior to the} \\indented{1}{time this function is called.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} numberOfComputedEntries \\spad{m}")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s.} \\indented{1}{Cautrion: this function should only be called after a \\spad{empty?}} \\indented{1}{test has been made since there no error check.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} \\spad{rst} \\spad{m}")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s.} \\indented{1}{Caution: this function should only be called after a \\spad{empty?}} \\indented{1}{test has been made since there no error check.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} frst \\spad{m}")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s.} \\indented{1}{Caution: the first node must be a lazy evaluation mechanism} \\indented{1}{(satisfies \\spad{lazy?(s) = true}) as there is no error check.} \\indented{1}{Note that a call to this function may} \\indented{1}{or may not produce an explicit first entry}")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} \\indented{1}{is a lazy evaluation mechanism which could produce an} \\indented{1}{additional entry to \\spad{s.}} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} lazy? \\spad{m}")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an \\indented{1}{(explicitly) empty stream.} \\indented{1}{Note that this is a null test which will not cause lazy evaluation.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} explicitlyEmpty? \\spad{m}")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has \\indented{1}{explicitly computed entries, and \\spad{false} otherwise.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} explicitEntries? \\spad{m}")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\indented{1}{st satisfying the predicate \\spad{f.}} \\indented{1}{Note that \\spad{select(f,st) = \\spad{[x} for \\spad{x} in \\spad{st} | f(x)]}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} select(x+->prime? x,m)")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\indented{1}{st which do not satisfy the predicate \\spad{f.}} \\indented{1}{Note that \\spad{remove(f,st) = \\spad{[x} for \\spad{x} in \\spad{st} | not f(x)]}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..] \\spad{X} f(i:PositiveInteger):Boolean \\spad{==} even? \\spad{i} \\spad{X} remove(f,m)"))) │ │ │ NIL │ │ │ -(|Algebra&| S R) │ │ │ -((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline Axioms\\br \\tab{5}\\spad{(b+c)::% = (b::\\%) + (c::\\%)}\\br \\tab{5}\\spad{(b*c)::% = (b::\\%) * (c::\\%)}\\br \\tab{5}\\spad{(1::R)::% = 1::%}\\br \\tab{5}\\spad{b*x = (b::\\%)*x}\\br \\tab{5}\\spad{r*(a*b) = (r*a)*b = a*(r*b)}")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) │ │ │ NIL │ │ │ +(|PolynomialPackageForCurve| K |PolyRing| E |dim| |ProjPt|) │ │ │ +((|constructor| (NIL "The following is part of the PAFF package")) (|multiplicity| (((|NonNegativeInteger|) |#2| |#5| (|Integer|)) "\\spad{multiplicity returns} the multiplicity of the polynomial at given point.") (((|NonNegativeInteger|) |#2| |#5|) "\\spad{multiplicity returns} the multiplicity of the polynomial at given point.")) (|minimalForm| ((|#2| |#2| |#5| (|Integer|)) "\\spad{minimalForm returns} the minimal form after translation to the origin.") ((|#2| |#2| |#5|) "\\spad{minimalForm returns} the minimal form after translation to the origin.")) (|translateToOrigin| ((|#2| |#2| |#5|) "\\spad{translateToOrigin translate} the polynomial from the given point to the origin") ((|#2| |#2| |#5| (|Integer|)) "\\spad{translateToOrigin translate} the polynomial from the given point to the origin")) (|eval| ((|#1| |#2| |#5|) "\\spad{eval returns} the value at given point.")) (|pointInIdeal?| (((|Boolean|) (|List| |#2|) |#5|) "\\spad{pointInIdeal? test} if the given point is in the algebraic set defined by the given list of polynomials."))) │ │ │ NIL │ │ │ -(|Algebra| R) │ │ │ -((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline Axioms\\br \\tab{5}\\spad{(b+c)::% = (b::\\%) + (c::\\%)}\\br \\tab{5}\\spad{(b*c)::% = (b::\\%) * (c::\\%)}\\br \\tab{5}\\spad{(1::R)::% = 1::%}\\br \\tab{5}\\spad{b*x = (b::\\%)*x}\\br \\tab{5}\\spad{r*(a*b) = (r*a)*b = a*(r*b)}")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) │ │ │ -((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ (|BinaryTreeCategory&| A S) │ │ │ ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right}, both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v}, a binary tree \\spad{left}, and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|BinaryTreeCategory| S) │ │ │ -((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right}, both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v}, a binary tree \\spad{left}, and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ +(|LinearOrdinaryDifferentialOperatorsOps| A L) │ │ │ +((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) │ │ │ NIL │ │ │ -(|ExtensibleLinearAggregate&| A S) │ │ │ -((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion, deletion, and concatenation efficient. However, access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from u.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{p(x)}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p.}")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position i.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position i.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from u.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{p(x)} is true.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements u.i through u.j.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{i}th element of u. \\blankline \\spad{X} Data:=Record(age:Integer,gender:String) \\spad{X} a1:AssociationList(String,Data):=table() \\spad{X} a1.\"tim\":=[55,\"male\"]$Data \\spad{X} delete!(a1,1)")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of u. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of u."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) │ │ │ -(|FreeModuleCat| R |Basis|) │ │ │ -((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor.")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{listOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{listOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{listOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}")) (|listOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{listOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, \\spad{c:} \\spad{R)}} such that \\spad{x} equals \\spad{reduce(+, map(x \\spad{+->} monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) │ │ │ -((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ -NIL │ │ │ -(|IndexedDirectProductOrderedAbelianMonoid| A S) │ │ │ -((|constructor| (NIL "Indexed direct products of ordered abelian monoids \\spad{A} of generators indexed by the ordered set \\spad{S.} The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) │ │ │ +(|RealConstant|) │ │ │ +((|constructor| (NIL "The category of real numeric domains, that is, convertible to floats."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InnerFreeAbelianMonoid| S E |un|) │ │ │ -((|constructor| (NIL "Internal implementation of a free abelian monoid on any set of generators"))) │ │ │ +(|FractionFreeFastGaussianFractions| D V VF) │ │ │ +((|constructor| (NIL "This package lifts the interpolation functions from \\spadtype{FractionFreeFastGaussian} to fractions. The packages defined in this file provide fast fraction free rational interpolation algorithms. (see FAMR2, FFFG, FFFGF, NEWTON)")) (|generalInterpolation| (((|Stream| (|Matrix| (|SparseUnivariatePolynomial| |#1|))) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#3|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalInterpolation(l, CA, \\spad{f,} sumEta, maxEta)} applies generalInterpolation(l, CA, \\spad{f,} eta) for all possible eta with maximal entry maxEta and sum of entries \\spad{sumEta}") (((|Matrix| (|SparseUnivariatePolynomial| |#1|)) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{generalInterpolation(l, CA, \\spad{f,} eta)} performs Hermite-Pade approximation using the given action \\spad{CA} of polynomials on the elements of \\spad{f.} The result is guaranteed to be correct up to order |eta|-1. Given that eta is a \"normal\" point, the degrees on the diagonal are given by eta. The degrees of column \\spad{i} are in this case eta + e.i - [1,1,...,1], where the degree of zero is \\spad{-1.}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoid|)))) │ │ │ -(|GradedAlgebra&| S R E) │ │ │ -((|constructor| (NIL "GradedAlgebra(R,E) denotes ``E-graded R-algebra''. A graded algebra is a graded module together with a degree preserving R-linear map, called the product. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving R-linear product: \\blankline \\spad{degree product(a,b) = degree a + degree \\spad{b}} \\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)} \\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)} \\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)} \\spad{product(a,product(b,c)) = product(product(a,b),c)}")) ((|One|) (($) "\\spad{1} is the identity for \\spad{product}."))) │ │ │ NIL │ │ │ +(|CliffordAlgebra| |n| K Q) │ │ │ +((|constructor| (NIL "CliffordAlgebra(n, \\spad{K,} \\spad{Q)} defines a vector space of dimension \\spad{2**n} over \\spad{K,} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]}, \\spad{1<=i<=n} is a basis for \\spad{K**n} then 1, \\spad{e[i]} (\\spad{1<=i<=n}), \\spad{e[i1]*e[i2]} (\\spad{1<=i11} and \\spad{a} for \\spad{n=1}."))) │ │ │ +(|FreeAbelianMonoid| S) │ │ │ +((|constructor| (NIL "Free abelian monoid on any set of generators The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the si's are in \\spad{S,} and the ni's are non-negative integers. The operation is commutative."))) │ │ │ NIL │ │ │ +((|HasCategory| (|NonNegativeInteger|) (QUOTE (|OrderedAbelianMonoid|)))) │ │ │ +(|MappingPackage1| A) │ │ │ +((|constructor| (NIL "Various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the n-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id \\spad{x}} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint \\spad{f}} is the fixed point of function \\spad{f}. \\indented{1}{that is, such that \\spad{fixedPoint \\spad{f} = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) │ │ │ NIL │ │ │ -(|GradedAlgebra| R E) │ │ │ -((|constructor| (NIL "GradedAlgebra(R,E) denotes ``E-graded R-algebra''. A graded algebra is a graded module together with a degree preserving R-linear map, called the product. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving R-linear product: \\blankline \\spad{degree product(a,b) = degree a + degree \\spad{b}} \\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)} \\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)} \\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)} \\spad{product(a,product(b,c)) = product(product(a,b),c)}")) ((|One|) (($) "\\spad{1} is the identity for \\spad{product}."))) │ │ │ NIL │ │ │ +(|GenusZeroIntegration| R F L) │ │ │ +((|constructor| (NIL "Rationalization of several types of genus 0 integrands; This internal package rationalises integrands on curves of the form:\\br \\tab{5}\\spad{y\\^2 = a \\spad{x\\^2} + \\spad{b} \\spad{x} + c}\\br \\tab{5}\\spad{y\\^2 = (a \\spad{x} + \\spad{b)} / \\spad{(c} \\spad{x} + d)}\\br \\tab{5}\\spad{f(x, \\spad{y)} = 0} where \\spad{f} has degree 1 in x\\br The rationalization is done for integration, limited integration, extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op \\spad{f} = \\spad{g}} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = \\spad{c} f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y.}") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, \\spad{g,} \\spad{x,} \\spad{y,} \\spad{d,} \\spad{p)}} returns the solution of \\spad{op \\spad{f} = \\spad{g}.} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, \\spad{g,} \\spad{x,} \\spad{y,} foo, \\spad{t,} \\spad{c)}} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + \\spad{n} * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists, and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = \\spad{c} f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y.} Argument \\spad{foo}, called by \\spad{foo(a, \\spad{b,} x)}, is a function that solves \\spad{du/dx + \\spad{n} * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y.}") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, \\spad{g,} \\spad{x,} \\spad{y,} foo, \\spad{d,} \\spad{p)}} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + \\spad{n} * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists, and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument foo, called by \\spad{foo(a, \\spad{b,} x)}, is a function that solves \\spad{du/dx + \\spad{n} * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y.}")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, \\spad{x,} \\spad{y,} [u1,...,un], \\spad{z,} \\spad{t,} \\spad{c)}} returns functions \\spad{[h,[[ci, ui]]]} such that the ui's are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist, and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = \\spad{c} f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y.}") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, \\spad{x,} \\spad{y,} [u1,...,un], \\spad{d,} \\spad{p)}} returns functions \\spad{[h,[[ci, ui]]]} such that the ui's are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist, and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, \\spad{x,} \\spad{y,} \\spad{g,} \\spad{z,} \\spad{t,} \\spad{c)}} returns functions \\spad{[h, \\spad{d]}} such that \\spad{dh/dx = f(x,y) - \\spad{d} \\spad{g},} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = \\spad{c} f(t,y) dy}, and \\spad{c} and \\spad{t} are rational functions of \\spad{y.} Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, \\spad{x,} \\spad{y,} \\spad{g,} \\spad{d,} \\spad{p)}} returns functions \\spad{[h, \\spad{c]}} such that \\spad{dh/dx = f(x,y) - \\spad{c} \\spad{g},} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 \\spad{y(x)\\^2} = P(x)}, or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, \\spad{x,} \\spad{y,} \\spad{z,} \\spad{t,} \\spad{c)}} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = \\spad{c} f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y.} Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, \\spad{x,} \\spad{y,} \\spad{d,} \\spad{p)}} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 \\spad{y(x)\\^2} = P(x)}."))) │ │ │ NIL │ │ │ -(|ExtensibleLinearAggregate| S) │ │ │ -((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion, deletion, and concatenation efficient. However, access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from u.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{p(x)}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p.}")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position i.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position i.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from u.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{p(x)} is true.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements u.i through u.j.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{i}th element of u. \\blankline \\spad{X} Data:=Record(age:Integer,gender:String) \\spad{X} a1:AssociationList(String,Data):=table() \\spad{X} a1.\"tim\":=[55,\"male\"]$Data \\spad{X} delete!(a1,1)")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of u. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of u."))) │ │ │ +((|HasCategory| |#3| (LIST (QUOTE |LinearOrdinaryDifferentialOperatorCategory|) (|devaluate| |#2|)))) │ │ │ +(|BagAggregate| S) │ │ │ +((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects, and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks, queues, and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag u.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag u.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements x,y,...,z.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) │ │ │ ((|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|OrderedCancellationAbelianMonoid|) │ │ │ -((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids, such that the addition preserves the ordering."))) │ │ │ +(|UniversalSegment| S) │ │ │ +((|constructor| (NIL "This domain provides segments which may be half open. That is, ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\spad{%.}")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment, that is, one with no upper bound."))) │ │ │ NIL │ │ │ +((|HasCategory| |#1| (QUOTE (|OrderedRing|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) │ │ │ +(|FactoredFunctions| M) │ │ │ +((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + \\spad{...} + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, \\spad{n)}} returns \\spad{(p, \\spad{r,} [r1,...,rm])} such that the nth-root of \\spad{f} is equal to \\spad{r * \\spad{pth-root(r1} * \\spad{...} * rm)}, where r1,...,rm are distinct factors of \\spad{f,} each of which has an exponent smaller than \\spad{p} in \\spad{f.}"))) │ │ │ NIL │ │ │ -(|NonAssociativeAlgebra| R) │ │ │ -((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs).\\br \\blankline Axioms\\br \\tab{5}r*(a*b) = (r*a)*b = a*(r*b)")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) │ │ │ -((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ -(|PriorityQueueAggregate| S) │ │ │ -((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1.}")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q.}")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q.}"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ +(|PlacesCategory| K PCS) │ │ │ +((|constructor| (NIL "This is part of the PAFF package, related to projective space.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt returns} the value of a specified coordinates if the places correspnd to a simple point")) (|setFoundPlacesToEmpty| (((|List| $)) "\\spad{setFoundPlacesToEmpty()} does what it says. (this should not be used)!!!")) (|foundPlaces| (((|List| $)) "\\spad{foundPlaces()} returns the list of all \"created\" places up to now.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(pl)} test if the place \\spad{pl} correspond to a leaf of a desingularisation tree.")) (|setDegree!| (((|Void|) $ (|PositiveInteger|)) "\\spad{setDegree!(pl,ls)} set the degree.")) (|setParam!| (((|Void|) $ (|List| |#2|)) "\\spad{setParam!(pl,ls)} set the local parametrization of \\spad{pl} to \\spad{ls.}")) (|localParam| (((|List| |#2|) $) "\\spad{localParam(pl)} returns the local parametrization associated to the place \\spad{pl.}"))) │ │ │ NIL │ │ │ -(|QueueAggregate| S) │ │ │ -((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note that \\axiom{length(q) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! \\spad{q}} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note that rotate! \\spad{q} is equivalent to enqueue!(dequeue!(q)).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! \\spad{s}} destructively extracts the first (top) element from queue \\spad{q.} The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|StackAggregate| S) │ │ │ -((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s.} \\indented{1}{Note that \\axiom{depth(s) = \\#s}.} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} depth a")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s;} \\spad{s} remains unchanged. \\indented{1}{Note that Use \\axiom{pop!(s)} to obtain \\spad{x} and remove it from \\spad{s.}} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} top a")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x,} destructively removing \\spad{x} from \\spad{s.} \\indented{1}{Note that Use \\axiom{top(s)} to obtain \\spad{x} without removing it from \\spad{s.}} \\indented{1}{Error: if \\spad{s} is empty.} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} pop! a \\spad{X} a")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s,} that is, destructively changing \\spad{s} \\indented{1}{so as to have a new first (top) element \\spad{x.}} \\indented{1}{Afterwards, pop!(s) produces \\spad{x} and pop!(s) produces the original \\spad{s.}} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} push! a \\spad{X} a"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ +(|PolynomialDecomposition| UP F) │ │ │ +((|constructor| (NIL "Polynomial composition and decomposition functions\\br If \\spad{f} = \\spad{g} \\spad{o} \\spad{h} then g=leftFactor(f,h) and h=rightFactor(f,g)")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) │ │ │ NIL │ │ │ -(|SortPackage| S A) │ │ │ -((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|OrderedSet|)))) │ │ │ -(|BinarySearchTree| S) │ │ │ -((|constructor| (NIL "\\spad{BinarySearchTree(S)} is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S,} and a right and left which are both \\spad{BinaryTree(S)} Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees, one with elements \\indented{1}{greater than \\spad{x,} the other with elements less than \\spad{x.}} \\blankline \\spad{X} t1:=binarySearchTree [1,2,3,4] \\spad{X} split(3,t1)")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b.} \\blankline \\spad{X} t1:=binarySearchTree [1,2,3,4] \\spad{X} insertRoot!(5,t1)")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b.} \\blankline \\spad{X} t1:=binarySearchTree [1,2,3,4] \\spad{X} insert!(5,t1)")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} is not documented \\blankline \\spad{X} binarySearchTree [1,2,3,4]"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|BinaryTournament| S) │ │ │ -((|constructor| (NIL "BinaryTournament creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b.} \\blankline \\spad{X} t1:=binaryTournament [1,2,3,4] \\spad{X} insert!(5,t1) \\spad{X} \\spad{t1}")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the \\indented{1}{elements of \\spad{ls} as values at the nodes.} \\blankline \\spad{X} binaryTournament [1,2,3,4]"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|DrawNumericHack| R) │ │ │ -((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b.} This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables, but is meant for expressions involving \\%pi. Note that this package is meant for internal use only.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b.}"))) │ │ │ +(|ApplicationProgramInterface|) │ │ │ +((|constructor| (NIL "This package contains useful functions that expose Axiom system internals")) (|reportInstantiations| (((|Void|) (|Boolean|)) "\\spad{reportInstantiations(bool)} is a debugging tool to show \\indented{1}{instantiation information} \\blankline \\spad{X} reportInstantiations(true) \\spad{X} 1 \\spad{X} reportInstantiations(false)")) (|summary| (((|Void|)) "\\spad{summary()} prints a short list of useful console commands \\blankline \\spad{X} summary()")) (|credits| (((|Void|)) "\\spad{credits()} prints a list of people who contributed to Axiom \\blankline \\spad{X} credits()")) (|getAncestors| (((|Set| (|Symbol|)) (|Symbol|)) "\\spad{getAncestors(s)} takes a category and returns the list of domains \\indented{1}{that have that category as ancestors} \\blankline \\spad{X} getAncestors 'IndexedAggregate")) (|getDomains| (((|Set| (|Symbol|)) (|Symbol|)) "\\spad{getDomains(s)} takes a category and returns the list of domains \\indented{1}{that have that category} \\blankline \\spad{X} getDomains 'IndexedAggregate"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|CardinalNumber|) │ │ │ -((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets, both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\spad{#X}} and \\spad{y = \\spad{#Y}} then\\br \\tab{5}\\spad{x+y = \\#(X+Y)} \\tab{5}disjoint union\\br \\tab{5}\\spad{x-y = \\#(X-Y)} \\tab{5}relative complement\\br \\tab{5}\\spad{x*y = \\#(X*Y)} \\tab{5}cartesian product\\br \\tab{5}\\spad{x**y = \\#(X**Y)} \\tab{4}\\spad{X**Y = \\spad{g|} g:Y->X} \\blankline The non-negative integers have a natural construction as cardinals\\br \\spad{0 = \\#\\{\\}}, \\spad{1 = \\{0\\}}, \\spad{2 = \\{0, 1\\}}, ..., \\spad{n = \\{i| 0 \\spad{<=} \\spad{i} < n\\}}. \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\spad{\\br} \\spad{2**Aleph \\spad{i} = Aleph(i+1)} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are\\br \\tab{5}\\spad{a = \\spad{#Z}} \\tab{5}countable infinity\\br \\tab{5}\\spad{c = \\spad{#R}} \\tab{5}the continuum\\br \\tab{5}\\spad{f = \\# \\spad{g} | g:[0,1]->R\\} \\blankline In this domain, these values are obtained using\\br \\tab{5}\\spad{a \\spad{:=} Aleph 0}, \\spad{c \\spad{:=} 2**a}, \\spad{f \\spad{:=} 2**c}.")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} \\indented{1}{is used to dictate whether the hypothesis is to be assumed.} \\blankline \\spad{X} generalizedContinuumHypothesisAssumed \\spad{true} \\spad{X} a:=Aleph 0 \\spad{X} c:=2**a \\spad{X} f:=2**c")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} \\indented{1}{tests if the hypothesis is currently assumed.} \\blankline \\spad{X} generalizedContinuumHypothesisAssumed?")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines \\indented{1}{whether \\spad{\\spad{a}} is a countable cardinal,} \\indented{1}{for example, an integer or \\spad{Aleph 0}.} \\blankline \\spad{X} c2:=2::CardinalNumber \\spad{X} countable? \\spad{c2} \\spad{X} A0:=Aleph 0 \\spad{X} countable? \\spad{A0} \\spad{X} A1:=Aleph 1 \\spad{X} countable? \\spad{A1}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\indented{1}{\\spad{a} is a finite cardinal, for example, an integer.} \\blankline \\spad{X} c2:=2::CardinalNumber \\spad{X} finite? \\spad{c2} \\spad{X} A0:=Aleph 0 \\spad{X} finite? \\spad{A0}")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number. \\blankline \\spad{X} A0:=Aleph 0")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{2}{as \\spad{\\{g| g:Y->X\\}}.} \\blankline \\spad{X} c2:=2::CardinalNumber \\spad{X} \\spad{c2**c2} \\spad{X} A1:=Aleph 1 \\spad{X} \\spad{A1**c2} \\spad{X} generalizedContinuumHypothesisAssumed \\spad{true} \\spad{X} \\spad{A1**A1}")) (- (((|Union| $ "failed") $ $) "\\spad{x - \\spad{y}} returns an element \\spad{z} such that \\indented{1}{\\spad{z+y=x} or \"failed\" if no such element exists.} \\blankline \\spad{X} c2:=2::CardinalNumber \\spad{X} \\spad{c2-c2} \\spad{X} A1:=Aleph 1 \\spad{X} \\spad{A1-c2}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} implies a domain has \\spad{\"*\": (D,D) \\spad{->} \\spad{D}} which is commutative."))) │ │ │ -(((|commutative| "*") . T)) │ │ │ +(|FiniteFieldCyclicGroupExtensionByPolynomial| GF |defpol|) │ │ │ +((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,defpol) implements a finite extension field of the ground field \\spad{GF.} Its elements are represented by powers of a primitive element, a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial defpol, which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size, and use \\spadtype{SingleInteger} for representing field elements, hence, there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))))) │ │ │ +(|FunctionSpacePrimitiveElement| R F) │ │ │ +((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, \\spad{q1,} \\spad{q2,} \\spad{q]}} such that \\spad{k(a1, a2) = k(a)}, \\spad{ai = qi(a)}, and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve a1, but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], \\spad{q]}} such that then \\spad{k(a1,...,an) = k(a)}, \\spad{ai = qi(a)}, and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) │ │ │ NIL │ │ │ -(|DequeueAggregate| S) │ │ │ -((|constructor| (NIL "A dequeue is a doubly ended stack, that is, a bag where first items inserted are the first items extracted, at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue, that is, the top (front) element is now the bottom (back) element, and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d.} Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d.} Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d,} that is, at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue, and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d.} Note that \\axiom{height(d) = \\# \\spad{d}.}")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x,} second element y,...,and last (bottom or back) element \\spad{z.}") (($) "\\spad{dequeue()}$D creates an empty dequeue of type \\spad{D.}"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|AlgebraicallyClosedField|)))) │ │ │ +(|FiniteDivisorFunctions2| R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) │ │ │ +((|constructor| (NIL "Lift a map to finite divisors.")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) │ │ │ NIL │ │ │ -(|FortranMachineTypeCategory|) │ │ │ -((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) │ │ │ -((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|FactoredFunctions| M) │ │ │ -((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + \\spad{...} + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, \\spad{n)}} returns \\spad{(p, \\spad{r,} [r1,...,rm])} such that the nth-root of \\spad{f} is equal to \\spad{r * \\spad{pth-root(r1} * \\spad{...} * rm)}, where r1,...,rm are distinct factors of \\spad{f,} each of which has an exponent smaller than \\spad{p} in \\spad{f.}"))) │ │ │ +(|RoutinesTable|) │ │ │ +((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which, given a NAG routine generating a higher measure, the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE's")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE's")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (QUOTE (|Symbol|))) (LIST (QUOTE |:|) (QUOTE |entry|) (QUOTE (|Any|)))))) (|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|)))) (|HasCategory| (|Symbol|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Any|) (QUOTE (|SetCategory|))) (OR (|HasCategory| (|Any|) (QUOTE (|SetCategory|))) (|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|)))) (AND (|HasCategory| (|Any|) (LIST (QUOTE |Evalable|) (QUOTE (|Any|)))) (|HasCategory| (|Any|) (QUOTE (|SetCategory|))))) │ │ │ +(|ExpressionSpaceFunctions2| E F) │ │ │ +((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over E; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F;} Do not use this package with \\spad{E} = \\spad{F,} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, \\spad{k)}} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FactoredFunctions2| R S) │ │ │ -((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example, \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{fn} to every factor of \\spadvar{u}. The new factored object will have all its information flags set to \"nil\". This function is used, for example, to coerce every factor base to another type."))) │ │ │ +(|SetCategory&| S) │ │ │ +((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes\\br \\tab{5}canonical\\tab{5}data structure equality is the same as \\spadop{=}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s.}")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FractionFunctions2| A B) │ │ │ -((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction frac."))) │ │ │ +(|DifferentialExtension&| S R) │ │ │ +((|constructor| (NIL "Differential extensions of a ring \\spad{R.} Given a differentiation on \\spad{R,} extend it to a differentiation on \\spad{%.}")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, \\spad{n)}} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R.}") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R.}")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, \\spad{n)}} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R.}") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R.}"))) │ │ │ NIL │ │ │ +((|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) │ │ │ +(|StreamFunctions1| S) │ │ │ +((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the \\indented{1}{streams in u. Note that \\spad{concat(u) = reduce(concat,u)}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 10..] \\spad{X} n:=[j for \\spad{j} in 1.. | prime? \\spad{j]} \\spad{X} p:=[m,n]::Stream(Stream(PositiveInteger)) \\spad{X} concat(p)"))) │ │ │ NIL │ │ │ -(|FactoredFunctionUtilities| R) │ │ │ -((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{u} and \\spadvar{v} are known to be disjoint, for example, resulting from a content/primitive part split. Essentially, it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{fn} to each factor of \\spadvar{u} and then build a new factored object from the results. For example, if \\spadvar{u} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) │ │ │ NIL │ │ │ +(|Palette|) │ │ │ +((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c.}")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p.}")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p.}")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue, \\spad{c,} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue, \\spad{c,} above bright, but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue, \\spad{c,} above dim, but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue, \\spad{c,} above dark, but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value."))) │ │ │ NIL │ │ │ -(|MonogenicLinearOperator| R) │ │ │ -((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience, call the generator \\spad{G}. Then each value is equal to \\spad{sum(a(i)*G**i, \\spad{i} = 0..n)} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact, if \\spad{a} is in \\spad{R}, it is quite normal to have \\spad{a*G \\spad{\\^=} G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator, \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\spad{\\^=} 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}"))) │ │ │ -((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|NewtonInterpolation| F) │ │ │ -((|constructor| (NIL "This package exports Newton interpolation for the special case where the result is known to be in the original integral domain The packages defined in this file provide fast fraction free rational interpolation algorithms. (see FAMR2, FFFG, FFFGF, NEWTON)")) (|newton| (((|SparseUnivariatePolynomial| |#1|) (|List| |#1|)) "\\spad{newton}(l) returns the interpolating polynomial for the values \\spad{l,} where the x-coordinates are assumed to be [1,2,3,...,n] and the coefficients of the interpolating polynomial are known to be in the domain \\spad{F.,} it is a very streamlined version for a special case of interpolation."))) │ │ │ +(|MachineComplex|) │ │ │ +((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) │ │ │ +((|noZeroDivisors| . T) (|canonicalUnitNormal| |has| (|MachineFloat|) (|Field|)) (|canonicalsClosed| |has| (|MachineFloat|) (|Field|)) (|complex| . T) (|multiplicativeValuation| |has| (|MachineFloat|) (ATTRIBUTE |multiplicativeValuation|)) (|additiveValuation| |has| (|MachineFloat|) (ATTRIBUTE |additiveValuation|)) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| (|MachineFloat|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|MachineFloat|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|Finite|))) (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|Field|))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|MachineFloat|) (QUOTE (|FiniteFieldCategory|))) (OR (|HasCategory| (|MachineFloat|) (QUOTE (|Field|))) (|HasCategory| (|MachineFloat|) (QUOTE (|FiniteFieldCategory|)))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |Eltable|) (QUOTE (|MachineFloat|)) (QUOTE (|MachineFloat|)))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |Evalable|) (QUOTE (|MachineFloat|)))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (QUOTE (|MachineFloat|)))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (OR (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|Field|))) (|HasCategory| (|MachineFloat|) (QUOTE (|FiniteFieldCategory|)))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|RealConstant|))) (|HasCategory| (|MachineFloat|) (QUOTE (|TranscendentalFunctionCategory|))) (AND (|HasCategory| (|MachineFloat|) (QUOTE (|RadicalCategory|))) (|HasCategory| (|MachineFloat|) (QUOTE (|TranscendentalFunctionCategory|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| (|MachineFloat|) (QUOTE (|RealNumberSystem|))) (AND (|HasCategory| (|MachineFloat|) (QUOTE (|RealNumberSystem|))) (|HasCategory| (|MachineFloat|) (QUOTE (|TranscendentalFunctionCategory|)))) (OR (|HasCategory| (|MachineFloat|) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|MachineFloat|) (QUOTE (|Field|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|))) (AND (|HasCategory| (|MachineFloat|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|MachineFloat|) (QUOTE (|Field|)))) (AND (|HasCategory| (|MachineFloat|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|Field|)))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|OrderedSet|))) (|HasCategory| (|MachineFloat|) (QUOTE (|IntegralDomain|))) (|HasAttribute| (|MachineFloat|) (QUOTE |multiplicativeValuation|)) (|HasAttribute| (|MachineFloat|) (QUOTE |additiveValuation|)) (AND (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|Field|))) (AND (|HasCategory| (|MachineFloat|) (QUOTE (|FiniteFieldCategory|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|))))) (OR (AND (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|MachineFloat|) (QUOTE (|Field|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|MachineFloat|) (QUOTE (|FiniteFieldCategory|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|))))) (OR (AND (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|Field|)))) (OR (AND (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|IntegralDomain|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|CharacteristicNonZero|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|FiniteFieldCategory|))))) │ │ │ +(|GraphicsDefaults|) │ │ │ +((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n.}") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n.}")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is false.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is true.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InnerTaylorSeries| |Coef|) │ │ │ -((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series, the \\spad{Stream} elements are the Taylor coefficients. For multivariate series, the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x.}") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x.}") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x.}")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x.}") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x,} \\indented{1}{that is, the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types, the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types, the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series, this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series, the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) │ │ │ -((|leftUnitary| |has| |#1| (|IntegralDomain|)) (|rightUnitary| |has| |#1| (|IntegralDomain|)) ((|commutative| "*") |has| |#1| (|IntegralDomain|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) │ │ │ -(|OrderedAbelianGroup|) │ │ │ -((|constructor| (NIL "Ordered sets which are also abelian groups, such that the addition preserves the ordering."))) │ │ │ +(|InfClsPt| K |symb| BLMET) │ │ │ +((|constructor| (NIL "This domain is part of the PAFF package")) (|fullOutput| (((|Boolean|)) "\\spad{fullOutput returns} the value of the flag set by fullOutput(b).") (((|Boolean|) (|Boolean|)) "\\spad{fullOutput(b)} sets a flag such that when true, a coerce to OutputForm yields the full output of \\spad{tr,} otherwise encode(tr) is output (see encode function). The default is false.")) (|fullOut| (((|OutputForm|) $) "\\spad{fullOut(tr)} yields a full output of \\spad{tr} (see function fullOutput)."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|OrderedAbelianMonoidSup|) │ │ │ -((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a sup operation added. The purpose of the sup operator in this domain is to act as a supremum with respect to the partial order imposed by `-`, rather than with respect to the total \\spad{$>$} order (since that is \"max\"). \\blankline Axioms\\br \\tab{5}sup(a,b)-a \\~~= \"failed\"\\br \\tab{5}sup(a,b)-b \\~~= \"failed\"\\br \\tab{5}x-a \\~~= \"failed\" and \\spad{x-b} \\~~= \"failed\" \\spad{=>} \\spad{x} \\spad{>=} sup(a,b)\\br")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) │ │ │ +(|UnivariateLaurentSeriesFunctions2| |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) │ │ │ +((|constructor| (NIL "Mapping package for univariate Laurent series This package allows one to apply a function to the coefficients of a univariate Laurent series.")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Operator| R) │ │ │ -((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) │ │ │ -((|leftUnitary| |has| |#1| (|CommutativeRing|)) (|rightUnitary| |has| |#1| (|CommutativeRing|)) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|)))) │ │ │ -(|RandomNumberSource|) │ │ │ -((|constructor| (NIL "Random number generators. All random numbers used in the system should originate from the same generator. This package is intended to be the source.")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n.}")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator If \\spad{r} \\spad{:=} randnum \\spad{n} and \\spad{n} \\spad{<=} size() then 0 \\spad{<=} \\spad{r} < \\spad{n.}")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n.}") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size(). If \\spad{r} \\spad{:=} randnum() then 0 \\spad{<=} \\spad{r} < size()."))) │ │ │ +(|d01AgentsPackage|) │ │ │ +((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,t,r)} changes the name of item \\axiom{s} in \\axiom{r} to \\axiom{t}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{x}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{x}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PrincipalIdealDomain|) │ │ │ -((|constructor| (NIL "The category of constructive principal ideal domains, that is, where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the fi.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) │ │ │ -((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|FiniteFieldCategory&| S) │ │ │ +((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation, one of: \\spad{prime}, \\spad{polynomial}, \\spad{normal}, or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field, is a primitive element. Implementation Note that see ch.IX.1.3, \\spad{th.2} in \\spad{D.} Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call, the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which, called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of \\spad{size()-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)}, given a matrix representing a homogeneous system of equations, returns a vector whose characteristic'th powers is a non-trivial solution, or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of a. Note that such a root is alway defined in finite fields."))) │ │ │ NIL │ │ │ -(|XAlgebra| R) │ │ │ -((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as XPolynomialRing and XFreeAlgebra")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}."))) │ │ │ -((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|AbelianMonoidRing&| S R E) │ │ │ -((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i, elements of the ordered abelian monoid, are thought of as exponents or monomials. The monomials commute with each other, and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least, only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c.}")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p,} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent e.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of u.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p.}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p.}"))) │ │ │ +(|PartialDifferentialEquationsSolverCategory|) │ │ │ +((|constructor| (NIL "\\axiomType{PartialDifferentialEquationsSolverCategory} is the \\axiom{category} for describing the set of PDE solver \\axiom{domains} with \\axiomFun{measure} and \\axiomFun{PDEsolve}.")) (|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ -(|DivisorCategory| S) │ │ │ -((|constructor| (NIL "This category exports the function for domains")) (|divOfPole| (($ $) "\\spad{divOfPole(d)} returns the negative part of \\spad{d.}")) (|divOfZero| (($ $) "\\spad{divOfZero(d)} returns the positive part of \\spad{d.}")) (|suppOfPole| (((|List| |#1|) $) "\\spad{suppOfPole(d)} returns the elements of the support of \\spad{d} that have a negative coefficient.")) (|suppOfZero| (((|List| |#1|) $) "\\spad{suppOfZero(d)} returns the elements of the support of \\spad{d} that have a positive coefficient.")) (|supp| (((|List| |#1|) $) "\\spad{supp(d)} returns the support of the divisor \\spad{d.}")) (|effective?| (((|Boolean|) $) "\\spad{effective?(d)} returns \\spad{true} if \\spad{d} \\spad{>=} 0.")) (|concat| (($ $ $) "\\spad{concat(a,b)} concats the divisor a and \\spad{b} without collecting the duplicative points.")) (|collect| (($ $) "\\spad{collect collects} the duplicative points in the divisor.")) (|split| (((|List| $) $) "\\spad{split(d)} splits the divisor \\spad{d.} For example, \\spad{split( 2 \\spad{p1} + 3p2 \\spad{)}} returns the list \\spad{[ 2 \\spad{p1,} 3 \\spad{p2} \\spad{]}.}")) (|degree| (((|Integer|) $) "\\spad{degree(d)} returns the degree of the divisor \\spad{d}"))) │ │ │ -((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ -(|DegreeReductionPackage| R1 R2) │ │ │ -((|constructor| (NIL "This package has no description")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) │ │ │ +(|PatternMatchTools| S R P) │ │ │ +((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P.}")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects lsubj, allowing for commutativity; \\spad{op} is the operator such that op(lpat) should match op(lsubj) at the end, \\spad{r} contains the previous matches, and match is a pattern-matching function on \\spad{P.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|DiscreteLogarithmPackage| M) │ │ │ -((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note that this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x \\spad{**} \\spad{n}} returns \\spad{x} raised to the integer power \\spad{n}"))) │ │ │ +(|AbelianSemiGroup&| S) │ │ │ +((|constructor| (NIL "The class of all additive (commutative) semigroups, that is, a set with a commutative and associative operation \\spadop{+}. \\blankline Axioms\\br \\tab{5}\\spad{associative(\"+\":(\\%,\\%)->\\%)}\\tab{5}\\spad{(x+y)+z = x+(y+z)}\\br \\tab{6}\\spad{commutative(\"+\":(\\%,\\%)->\\%)}\\tab{5}\\spad{x+y = y+x}")) (* (($ (|PositiveInteger|) $) "\\spad{n*x} computes the left-multiplication of \\spad{x} by the positive integer \\spad{n.} This is equivalent to adding \\spad{x} to itself \\spad{n} times.")) (+ (($ $ $) "\\spad{x+y} computes the sum of \\spad{x} and \\spad{y.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|AbelianMonoidRing| R E) │ │ │ -((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i, elements of the ordered abelian monoid, are thought of as exponents or monomials. The monomials commute with each other, and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least, only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p,} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent e.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of u.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p.}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p.}"))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|Export3D|) │ │ │ +((|constructor| (NIL "This package provides support for exporting SubSpace and ThreeSpace structures to files.")) (|writeObj| (((|Void|) (|SubSpace| 3 (|DoubleFloat|)) (|String|)) "\\spad{writeObj(sub,str)} writes 3D SubSpace to a file in Wavefront (.OBJ) format"))) │ │ │ NIL │ │ │ -(|ExpertSystemToolsPackage1| R1) │ │ │ -((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) │ │ │ NIL │ │ │ +(|FiniteFieldSolveLinearPolynomialEquation| F FP FPP) │ │ │ +((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], \\spad{g)}} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of ai's exists."))) │ │ │ NIL │ │ │ -(|ExtAlgBasis|) │ │ │ -((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R.} This domain represents the set of all ordered subsets of the set \\spad{X,} assumed to be in correspondance with {1,2,3, ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X.} A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x,} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element, where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively, is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) │ │ │ NIL │ │ │ +(|OnePointCompletionFunctions2| R S) │ │ │ +((|constructor| (NIL "Lifting of maps to one-point completions.")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, \\spad{r,} i)} lifts \\spad{f} and applies it to \\spad{r,} assuming that f(infinity) = i.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, \\spad{r)}} lifts \\spad{f} and applies it to \\spad{r,} assuming that f(infinity) = infinity."))) │ │ │ NIL │ │ │ -(|FreeAbelianGroup| S) │ │ │ -((|constructor| (NIL "Free abelian group on any set of generators The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the si's are in \\spad{S,} and the ni's are integers. The operation is commutative."))) │ │ │ -((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedAbelianMonoid|)))) │ │ │ -(|FreeAbelianMonoid| S) │ │ │ -((|constructor| (NIL "Free abelian monoid on any set of generators The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the si's are in \\spad{S,} and the ni's are non-negative integers. The operation is commutative."))) │ │ │ NIL │ │ │ -((|HasCategory| (|NonNegativeInteger|) (QUOTE (|OrderedAbelianMonoid|)))) │ │ │ -(|Field&| S) │ │ │ -((|constructor| (NIL "The category of commutative fields, commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline Axioms\\br \\tab{5}\\spad{a*(b/a) = b}\\br \\tab{5}\\spad{inv(a) = 1/a}")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0}, \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y.} Error: if \\spad{y} is 0."))) │ │ │ +(|NotherianAttribute|) │ │ │ +((|constructor| (NIL "Notherian is \\spad{true} if all of its ideals are finitely generated."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ +(|SparseUnivariatePolynomial| R) │ │ │ +((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name, use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented. Note that if the coefficient ring is a field, this domain forms a euclidean domain.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{x} : \\spad{p1} - \\spad{r} * x**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|additiveValuation| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|StepThrough|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|OpenMathPackage|) │ │ │ +((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{s} from \\spad{CD} \\axiom{cd}, \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{cd}, \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{cd}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{f} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{f} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{dev} and passes it to AXIOM."))) │ │ │ NIL │ │ │ -(|FullyLinearlyExplicitRingOver&| S R) │ │ │ -((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver \\spad{R}} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver \\spad{R}} and, in addition, if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer}, then so is \\spad{S}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) │ │ │ -(|FiniteLinearAggregate&| A S) │ │ │ -((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse}, \\spadfun{sort}, and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p.}")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element i.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{i \\spad{>=} \\spad{n},} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a, and \\axiom{minIndex(a) - 1} if there is no such \\spad{x.}") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{p(x)} is true, and \\axiom{minIndex(a) - 1} if there is no such \\spad{x.}")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p.}")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note that \\axiom{sort(u) = sort(<=,u)}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p.}")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note that \\axiom{merge(u,v) = merge(<=,u,v)}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b.} The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{p(x,y)} is true, then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen, the next element of \\axiom{a} is examined, and so on. When all the elements of one aggregate are examined, the remaining elements of the other are appended. For example, \\axiom{merge(<,[1,3],[2,7,5])} returns \\axiom{[1,2,3,7,5]}."))) │ │ │ +(|e04dgfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF, a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) │ │ │ NIL │ │ │ -((|HasAttribute| |#1| (QUOTE |shallowlyMutable|)) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) │ │ │ -(|FullyLinearlyExplicitRingOver| R) │ │ │ -((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver \\spad{R}} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver \\spad{R}} and, in addition, if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer}, then so is \\spad{S}"))) │ │ │ -((|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|FullyRetractableTo&| A S) │ │ │ -((|constructor| (NIL "A is fully retractable to \\spad{B} means that A is retractable to \\spad{B} and if \\spad{B} is retractable to the integers or rational numbers then so is A. In particular, what we are asserting is that there are no integers (rationals) in A which don't retract into \\spad{B.}"))) │ │ │ +(|IrrRepSymNatPackage|) │ │ │ +((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {1,2,...,n} in Young's natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n,} a weakly decreasing sequence of integers summing up to \\spad{n,} for example, [3,3,3,1] labels an irreducible representation for \\spad{n} equals 10. Note that whenever a \\spadtype{List Integer} appears in a signature, a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to \\spad{lambda} in Young's natural form for the list of permutations given by listOfPerm.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition \\spad{lambda} in Young's natural form for the following two generators of the symmetric group, whose elements permute {1,2,...,n}, namely \\spad{(1} 2) (2-cycle) and \\spad{(1} 2 \\spad{...} \\spad{n)} (n-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition \\spad{lambda} in Young's natural form of the permutation \\spad{pi} in the symmetric group, whose elements permute {1,2,...,n}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to lambda. Note that the Robinson-Thrall hook formula is implemented."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) │ │ │ -(|FourierSeries| R E) │ │ │ -((|constructor| (NIL "This domain converts terms into Fourier series")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) │ │ │ -((|canonical| AND (|has| |#1| (ATTRIBUTE |canonical|)) (|has| |#2| (ATTRIBUTE |canonical|))) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((AND (|HasAttribute| |#1| (QUOTE |canonical|)) (|HasAttribute| |#2| (QUOTE |canonical|)))) │ │ │ -(|FiniteLinearAggregate| S) │ │ │ -((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse}, \\spadfun{sort}, and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p.}")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element i.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{i \\spad{>=} \\spad{n},} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a, and \\axiom{minIndex(a) - 1} if there is no such \\spad{x.}") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{p(x)} is true, and \\axiom{minIndex(a) - 1} if there is no such \\spad{x.}")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p.}")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note that \\axiom{sort(u) = sort(<=,u)}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p.}")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note that \\axiom{merge(u,v) = merge(<=,u,v)}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b.} The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{p(x,y)} is true, then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen, the next element of \\axiom{a} is examined, and so on. When all the elements of one aggregate are examined, the remaining elements of the other are appended. For example, \\axiom{merge(<,[1,3],[2,7,5])} returns \\axiom{[1,2,3,7,5]}."))) │ │ │ -((|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|Field|) │ │ │ -((|constructor| (NIL "The category of commutative fields, commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline Axioms\\br \\tab{5}\\spad{a*(b/a) = b}\\br \\tab{5}\\spad{inv(a) = 1/a}")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0}, \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y.} Error: if \\spad{y} is 0."))) │ │ │ +(|FiniteFieldFunctions| GF) │ │ │ +((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field \\spad{GF,} for example, Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree \\spad{n} over \\spad{GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(n) to produce a normal polynomial of degree \\spad{n} over \\spad{GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree \\spad{n} over \\spad{GF} and returns its multiplication matrix Fails, if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table \\spad{m.}")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table \\spad{m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by \\spad{f.} This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP}, \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial f(x), \\spad{Z(i)}, defined by x**Z(i) = 1+x**i is stored at index i. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP}, \\spadtype{FFCGX}."))) │ │ │ +NIL │ │ │ +NIL │ │ │ +(|FiniteField| |p| |n|) │ │ │ +((|constructor| (NIL "FiniteField(p,n) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version, see \\spadtype{InnerFiniteField}."))) │ │ │ ((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|Finite|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|Finite|))))) │ │ │ +(|MakeCachableSet| S) │ │ │ +((|constructor| (NIL "MakeCachableSet(S) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\spad{%.}"))) │ │ │ NIL │ │ │ -(|FullyRetractableTo| S) │ │ │ -((|constructor| (NIL "A is fully retractable to \\spad{B} means that A is retractable to \\spad{B} and if \\spad{B} is retractable to the integers or rational numbers then so is A. In particular, what we are asserting is that there are no integers (rationals) in A which don't retract into \\spad{B.}"))) │ │ │ NIL │ │ │ +(|Asp10| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs, needed for NAG routine d02kef. This ASP computes the values of a set of functions, for example: \\blankline \\tab{5}SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT)\\br \\tab{5}DOUBLE PRECISION ELAM,P,Q,X,DQDL\\br \\tab{5}INTEGER JINT\\br \\tab{5}P=1.0D0\\br \\tab{5}Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X)\\br \\tab{5}DQDL=1.0D0\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ -(|FortranType|) │ │ │ -((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types, including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER, an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX, an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX, an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL, an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER, an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION, an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL, an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) │ │ │ NIL │ │ │ +(|RomanNumeral|) │ │ │ +((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting integers to roman numerals.")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n.}") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n.}")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n.}")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) │ │ │ +((|noetherian| . T) (|canonicalsClosed| . T) (|canonical| . T) (|canonicalUnitNormal| . T) (|multiplicativeValuation| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|IndexedDirectProductOrderedAbelianMonoidSup| A S) │ │ │ -((|constructor| (NIL "Indexed direct products of ordered abelian monoid sups \\spad{A}, generators indexed by the ordered set \\spad{S.} All items have finite support: only non-zero terms are stored."))) │ │ │ +(|EuclideanDomain|) │ │ │ +((|constructor| (NIL "A constructive euclidean domain, one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes\\br \\tab{5}multiplicativeValuation\\tab{5}Size(a*b)=Size(a)*Size(b)\\br \\tab{5}additiveValuation\\tab{11}Size(a*b)=Size(a)+Size(b)")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ \\spad{z} / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists, \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y.}") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y.} The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem \\spad{y}} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo \\spad{y}} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder}, where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y.}")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x.} Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) │ │ │ +((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|LazardSetSolvingPackage| R E V P TS ST) │ │ │ +((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets. This package provides two operations. One for solving in the sense of the regular zeros, and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover, the decompositions do not contain any redundant component. However, only zero-dimensional regular sets are normalized, since normalization may be time consumming in positive dimension. The decomposition process is that of [2].")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,clos?)} has the same specifications as zeroSetSplit(lp,clos?) from RegularTriangularSetCategory.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional."))) │ │ │ NIL │ │ │ -(|Infinity|) │ │ │ -((|constructor| (NIL "Top-level infinity Default infinity signatures for the interpreter.")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) │ │ │ NIL │ │ │ +(|GosperSummationMethod| E V R P Q) │ │ │ +((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, \\spad{n,} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n}, \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)}, where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note that \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) │ │ │ NIL │ │ │ -(|LocalAlgebra| A R S) │ │ │ -((|constructor| (NIL "LocalAlgebra produces the localization of an algebra, fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom \\spad{x}} returns the denominator of \\spad{x.}")) (|numer| ((|#1| $) "\\spad{numer \\spad{x}} returns the numerator of \\spad{x.}")) (/ (($ |#1| |#3|) "\\spad{a / \\spad{d}} divides the element \\spad{a} by \\spad{d.}") (($ $ |#3|) "\\spad{x / \\spad{d}} divides the element \\spad{x} by \\spad{d.}"))) │ │ │ -((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|OrderedRing|)))) │ │ │ -(|MappingPackage4| A B) │ │ │ -((|constructor| (NIL "Functional Composition. Given functions \\spad{f} and \\spad{g,} returns the applicable closure")) (/ (((|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|)) "\\spad(+) does functional addition \\blankline \\spad{X} p:=(x:EXPR(INT)):EXPR(INT)+->3*x \\spad{X} \\spad{q:=(x:EXPR(INT)):EXPR(INT)+->2*x+3} \\spad{X} (p/q)(4) \\spad{X} (p/q)(x)")) (* (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|)) "\\spad(+) does functional addition \\blankline \\spad{X} f:=(x:INT):INT \\spad{+->} 3*x \\spad{X} g:=(x:INT):INT \\spad{+->} 2*x+3 \\spad{X} (f*g)(4)")) (- (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|)) "\\spad(+) does functional addition \\blankline \\spad{X} f:=(x:INT):INT \\spad{+->} 3*x \\spad{X} g:=(x:INT):INT \\spad{+->} 2*x+3 \\spad{X} (f-g)(4)")) (+ (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|)) "\\spad(+) does functional addition \\blankline \\spad{X} f:=(x:INT):INT \\spad{+->} 3*x \\spad{X} g:=(x:INT):INT \\spad{+->} 2*x+3 \\spad{X} (f+g)(4)"))) │ │ │ NIL │ │ │ +(|DrawOption|) │ │ │ +((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command, or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf.} This option is expressed in the form \\spad{unit \\spad{==} [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p.} This option is expressed in the form \\spad{coord \\spad{==} \\spad{p}.}")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points, \\spad{n,} defining the circle which creates the tube around a 3D curve, the default is 6. This option is expressed in the form \\spad{tubePoints \\spad{==} \\spad{n}.}")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions, \\spad{n,} of the second range variable. This option is expressed in the form \\spad{var2Steps \\spad{==} \\spad{n}.}")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions, \\spad{n,} of the first range variable. This option is expressed in the form \\spad{var1Steps \\spad{==} \\spad{n}.}")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l.} This option is expressed in the form \\spad{ranges \\spad{==} \\spad{l}.}")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range i. This option is expressed in the form \\spad{range \\spad{==} [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l.} This option is expressed in the form \\spad{range \\spad{==} [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius, \\spad{r,} for a tube plot around a 3D curve is expressed in the form \\spad{tubeRadius \\spad{==} 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x,} \\spad{y,} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction \\spad{==} f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction \\spad{==} f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the z-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction \\spad{==} f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p.} This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color, \\spad{v,} for 2D graph curves. This option is expressed in the form \\spad{curveColor \\spad{==} \\spad{v}.}")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p.} This option is expressed in the form \\spad{pointColor \\spad{==} \\spad{p}.}") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color, \\spad{v,} for 2D graph points. This option is expressed in the form \\spad{pointColor \\spad{==} \\spad{v}.}")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p.} This option is expressed in the form \\spad{coordinates \\spad{==} \\spad{p}.}")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale, if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale \\spad{==} \\spad{b}.}")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s.} This option is expressed in the form \\spad{style \\spad{==} \\spad{s}.}")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s.} This option is expressed in the form \\spad{title \\spad{==} \\spad{s}.}")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta, phi, scale, scaleX, scaleY, scaleZ, deltaX, deltaY]. This option is expressed in the form \\spad{viewpoint \\spad{==} ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l.} This option is expressed in the form \\spad{clip \\spad{==} [l]}") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is true, or off if \\spad{b} is false. This option is expressed in the form \\spad{clip \\spad{==} \\spad{b}.}")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is true, or off if \\spad{b} is false. This option is expressed in the form \\spad{adaptive \\spad{==} \\spad{b}.}"))) │ │ │ NIL │ │ │ -(|OppositeMonogenicLinearOperator| P R) │ │ │ -((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P.} That is, as sets \\spad{P = \\spad{$}} but \\spad{a * \\spad{b}} in \\spad{$} is equal to \\spad{b * a} in \\spad{P.}")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\spad{$.}")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P.}"))) │ │ │ -((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|)))) │ │ │ -(|PAdicIntegerCategory| |p|) │ │ │ -((|constructor| (NIL "This is the category of stream-based representations of the p-adic integers.")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b.} Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = \\spad{x} (mod p^n)} when \\spad{n} is positive, and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b,} where \\spad{x = a + \\spad{b} \\spad{p}.}")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a, where \\spad{x = a + \\spad{b} \\spad{p}.}")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p.}")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n.}")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x.}")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of p-adic digits of \\spad{x.}"))) │ │ │ -((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|Product| A B) │ │ │ -((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} is not documented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} is not documented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} computes the product of two functions \\blankline \\spad{X} f:=(x:INT):INT \\spad{+->} 3*x \\spad{X} g:=(x:INT):INT \\spad{+->} \\spad{x^3} \\spad{X} h(x:INT):Product(INT,INT) \\spad{==} makeprod(f \\spad{x,} \\spad{g} \\spad{x)} \\spad{X} h(3)"))) │ │ │ -((|unitsKnown| AND (|has| |#2| (|Group|)) (|has| |#1| (|Group|)))) │ │ │ -((AND (|HasCategory| |#1| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#2| (QUOTE (|AbelianGroup|)))) (AND (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#2| (QUOTE (|Group|)))) (AND (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#1| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#2| (QUOTE (|Group|)))) (AND (|HasCategory| |#1| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|Monoid|))))) (AND (|HasCategory| |#1| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|AbelianMonoid|)))) (AND (|HasCategory| |#1| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#2| (QUOTE (|AbelianGroup|)))) (AND (|HasCategory| |#1| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#1| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))))) (OR (AND (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#2| (QUOTE (|AbelianGroup|)))) (AND (|HasCategory| |#1| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|AbelianMonoid|)))) (AND (|HasCategory| |#1| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#1| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))))) (OR (AND (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#2| (QUOTE (|AbelianGroup|)))) (AND (|HasCategory| |#1| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|AbelianMonoid|)))) (AND (|HasCategory| |#1| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#2| (QUOTE (|Group|)))) (AND (|HasCategory| |#1| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#1| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))))) (AND (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|)))))) │ │ │ -(|OrthogonalPolynomialFunctions| R) │ │ │ -((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial, \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, \\spad{n} = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial, \\spad{L[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial, \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, \\spad{n} = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial, \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, \\spad{n} = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind, \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, \\spad{n} = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind, \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, \\spad{n} = 0..)}."))) │ │ │ +(|OutputForm|) │ │ │ +((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (for example, FORTRAN or TeX) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not \\spad{f}} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or \\spad{g}} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and \\spad{g}} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo \\spad{g}} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem \\spad{g}} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div \\spad{g}} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f \\spad{**} \\spad{g}} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / \\spad{g}} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * \\spad{g}} creates the equivalent infix form.")) (- (($ $) "\\spad{- \\spad{f}} creates the equivalent prefix form.") (($ $ $) "\\spad{f - \\spad{g}} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + \\spad{g}} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f \\spad{>=} \\spad{g}} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f \\spad{<=} \\spad{g}} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > \\spad{g}} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < \\spad{g}} creates the equivalent infix form.")) (^= (($ $ $) "\\spad{f \\spad{^=} \\spad{g}} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = \\spad{g}} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile, the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and upperlimit.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a lowerlimit.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and upperlimit.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a lowerlimit.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital pi.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and upperlimit.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a lowerlimit.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n.}")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n.}")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n.}")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n.}")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m.}")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f,} for example, \\spad{f'}, \\spad{f''}, \\spad{f'''}, \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f \\spad{->} \\spad{g}.}")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f \\spad{:=} \\spad{g}.}")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g.}")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g.}")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f.}") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f.}")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g.}")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n.}")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l.}")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator, and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a op.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, \\spad{b)}} creates a form which prints as: a \\spad{op} \\spad{b.}") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the n-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l.}")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the n-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l.}")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list u.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g.}")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list u.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g.}")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n.}")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n.}")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n.}")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space, \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n.}")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n.}")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf.}") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s.}") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s.}") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n.}")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s.}")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form u."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) │ │ │ -(|AttachPredicates| D) │ │ │ -((|constructor| (NIL "Attaching predicates to symbols for pattern matching.")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, \\spad{f2,} ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and \\spad{...} and \\spad{fn} to \\spad{x.}") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x.}"))) │ │ │ NIL │ │ │ +(|ComplexRootPackage| UP |Par|) │ │ │ +((|constructor| (NIL "This package provides functions complexZeros for finding the complex zeros of univariate polynomials with complex rational number coefficients. The results are to any user specified precision and are returned as either complex rational number or complex floating point numbers depending on the type of the second argument which specifies the precision.")) (|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly, eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps."))) │ │ │ NIL │ │ │ -(|PatternMatchAssertions|) │ │ │ -((|constructor| (NIL "Attaching assertions to symbols for pattern matching.")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists, multiple(x) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity \\spad{(0} in a sum, 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x, \\spad{s)}} makes the assertion \\spad{s} about \\spad{x.}"))) │ │ │ NIL │ │ │ +(|SplittingNode| V C) │ │ │ +((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value, that is the current expression to evaluate. The second one is its condition, that is the hypothesis under which the value has to be evaluated. The last one is its status, that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(n1,n2,o2)} returns \\spad{true} iff \\axiom{value(n1) = value(n2)} and \\axiom{o2(condition(n1),condition(n2))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(n1,n2,o1,o2)} returns \\spad{true} iff \\axiom{o1(value(n1),value(n2))} or \\axiom{value(n1) = value(n2)} and \\axiom{o2(condition(n1),condition(n2))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(n)} replaces \\spad{n} by \\axiom{empty()$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(n,b)} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty, else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(n,t)} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty, else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(n,v)} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty, else an error is produced.")) (|copy| (($ $) "\\axiom{copy(n)} returns a copy of \\spad{n.}")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(v,lt)} returns the same as \\axiom{[construct(v,t) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,vt.tower) for \\spad{vt} in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(v,t)} returns the same as \\axiom{construct(v,t,false)}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(v,t,b)} returns the non-empty node with value \\spad{v,} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(n)} returns the status of the node \\spad{n.}")) (|condition| ((|#2| $) "\\axiom{condition(n)} returns the condition of the node \\spad{n.}")) (|value| ((|#1| $) "\\axiom{value(n)} returns the value of the node \\spad{n.}")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(n)} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()$V,empty()$C,false]$\\%}"))) │ │ │ NIL │ │ │ -(|PointFunctions2| R1 R2) │ │ │ -((|constructor| (NIL "This package has no description")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) │ │ │ NIL │ │ │ +(|IntegerNumberTheoryFunctions|) │ │ │ +((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n.} the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n.} The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n.} The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1,0} or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1, \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod \\spad{p}} \\spad{(p} prime), which is 0 if \\spad{a} is 0, 1 if \\spad{a} is a quadratic residue \\spad{mod \\spad{p}} and \\spad{-1} otherwise. Note that because the primality test is expensive, if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd, \\spad{J(a/b) = product(L(a/p) for \\spad{p} in factor \\spad{b} \\spad{)}.} Note that by convention, 0 is returned if \\spad{gcd(a,b) \\spad{^=} 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth, The Art of Computer Programming Vol 2, Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n.} This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)}, where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n.}")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w,} where \\spad{w} is such that \\spad{w = \\spad{x1} mod \\spad{m1}} and \\spad{w = \\spad{x2} mod m2}. Note that \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)}, where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) │ │ │ NIL │ │ │ -(|RadicalCategory&| S) │ │ │ -((|constructor| (NIL "The RadicalCategory is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x \\spad{**} \\spad{y}} is the rational exponentiation of \\spad{x} by the power \\spad{y.}")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x.}")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x.} The branch cut lies along the negative real axis, continuous with quadrant II."))) │ │ │ NIL │ │ │ +(|FullyRetractableTo&| A S) │ │ │ +((|constructor| (NIL "A is fully retractable to \\spad{B} means that A is retractable to \\spad{B} and if \\spad{B} is retractable to the integers or rational numbers then so is A. In particular, what we are asserting is that there are no integers (rationals) in A which don't retract into \\spad{B.}"))) │ │ │ NIL │ │ │ -(|RationalRetractions| S) │ │ │ -((|constructor| (NIL "Rational number testing and retraction functions.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number, \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number, \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) │ │ │ +((|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) │ │ │ +(|d01anfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF, a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x)} or sin(\\omega \\spad{x).} The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RadicalCategory|) │ │ │ -((|constructor| (NIL "The RadicalCategory is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x \\spad{**} \\spad{y}} is the rational exponentiation of \\spad{x} by the power \\spad{y.}")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x.}")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x.} The branch cut lies along the negative real axis, continuous with quadrant II."))) │ │ │ +(|FortranMachineTypeCategory|) │ │ │ +((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) │ │ │ +((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|LeftAlgebra| R) │ │ │ +((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|RadixUtilities|) │ │ │ -((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b.}"))) │ │ │ +(|SparseUnivariatePolynomialExpressions| R) │ │ │ +((|constructor| (NIL "This domain has no description"))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|additiveValuation| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|StepThrough|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|IntegerNumberSystem|) │ │ │ +((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)}, \\spad{0<=a1}, \\spad{(a,b)=1} means \\spad{1/a mod \\spad{b}.}")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)}, \\spad{0<=a,b

1}, means \\spad{a**b mod \\spad{p}.}")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)}, \\spad{0<=a,b

1}, means \\spad{a*b mod \\spad{p}.}")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)}, \\spad{0<=a,b

1}, means \\spad{a-b mod \\spad{p}.}")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)}, \\spad{0<=a,b

1}, means \\spad{a+b mod \\spad{p}.}")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n.}")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n.}")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number, or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ \\spad{-b/2} \\spad{<=} \\spad{r} < \\spad{b/2} \\spad{}.}")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 \\spad{<=} \\spad{r} < \\spad{b}} and \\spad{r \\spad{==} a rem \\spad{b}.}")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) │ │ │ +((|canonicalUnitNormal| . T) (|multiplicativeValuation| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|NagEigenPackage|) │ │ │ +((|constructor| (NIL "This package uses the NAG Library to compute\\br \\tab{5}eigenvalues and eigenvectors of a matrix\\br \\tab{5} eigenvalues and eigenvectors of generalized matrix eigenvalue problems\\br \\tab{5}singular values and singular vectors of a matrix.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all, or part, of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all, or part, of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "f02fjf(n,k,tol,novecs,nrx,lwork,lrwork, \\indented{7}{liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "f02fjf(n,k,tol,novecs,nrx,lwork,lrwork, \\indented{7}{liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and, if required, all the eigenvectors of the generalized eigenproblem Ax=(lambda)Bx where A and \\spad{B} are real, square matrices, using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form, bisection and inverse iteration, where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)Bx, where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)Bx, where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) │ │ │ NIL │ │ │ -(|UniversalSegmentFunctions2| R S) │ │ │ -((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s,} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of seg."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|OrderedRing|)))) │ │ │ -(|XFreeAlgebra| |vl| R) │ │ │ -((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y}, the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * \\spad{r}} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * \\spad{x}} returns the product of a variable \\spad{x} by \\spad{x}."))) │ │ │ -((|noZeroDivisors| |has| |#2| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|InnerEvalable| A B) │ │ │ +((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make \"evaluation\" substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f.}") (($ $ |#1| |#2|) "\\spad{eval(f, \\spad{x,} \\spad{v)}} replaces \\spad{x} by \\spad{v} in \\spad{f.}"))) │ │ │ NIL │ │ │ -(|UnivariatePuiseuxSeriesFunctions2| |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) │ │ │ -((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) │ │ │ NIL │ │ │ +(|ResidueRing| F |Expon| |VarSet| |FPol| |LFPol|) │ │ │ +((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) │ │ │ +(((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|IntegerLinearDependence| R) │ │ │ -((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + \\spad{...} + cn*vn = u}, \"failed\" if no such rational numbers ci's exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + \\spad{...} + cn*vn = 0} and not all the ci's are 0, \"failed\" if the vi's are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the vi's are linearly dependent over the integers, \\spad{false} otherwise."))) │ │ │ +(|Asp7| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs, needed for NAG routines d02bbf, d02gaf. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z,} and look like: \\blankline \\tab{5}SUBROUTINE FCN(X,Z,F)\\br \\tab{5}DOUBLE PRECISION F(*),X,Z(*)\\br \\tab{5}F(1)=DTAN(Z(3))\\br \\tab{5}F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2)\\br \\tab{4}&**2))/(Z(2)*DCOS(Z(3)))\\br \\tab{5}F(3)=-0.03199999999999999D0/(X*Z(2)**2)\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|TwoDimensionalArrayCategory&| S R |Row| |Col|) │ │ │ -((|constructor| (NIL "Two dimensional array categories and domains")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} \\indented{1}{for all \\spad{i, \\spad{j}}} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} map!(-,arr)")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $ |#2|) "\\spad{map(f,a,b,r)} returns \\spad{c}, where \\spad{c(i,j) = f(a(i,j),b(i,j))} \\indented{1}{when both \\spad{a(i,j)} and \\spad{b(i,j)} exist;} \\indented{1}{else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist;} \\indented{1}{else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist;} \\indented{1}{otherwise \\spad{c(i,j) = f(r,r)}.} \\blankline \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} \\spad{arr1} : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} \\spad{arr2} : \\spad{ARRAY2} INT \\spad{:=} new(3,3,10) \\spad{X} map(adder,arr1,arr2,17)") (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,a,b)} returns \\spad{c}, where \\spad{c(i,j) = f(a(i,j),b(i,j))} \\indented{1}{for all \\spad{i, \\spad{j}}} \\blankline \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} map(adder,arr,arr)") (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,a)} returns \\spad{b}, where \\spad{b(i,j) = f(a(i,j))} \\indented{1}{for all \\spad{i, \\spad{j}}} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} map(-,arr) \\spad{X} map((x \\spad{+->} \\spad{x} + x),arr)")) (|setColumn!| (($ $ (|Integer|) |#4|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v} \\blankline \\spad{X} T1:=TwoDimensionalArray Integer \\spad{X} arr:T1:= new(5,4,0) \\spad{X} T2:=OneDimensionalArray Integer \\spad{X} \\spad{acol:=construct([1,2,3,4,5]::List(INT))$T2} \\spad{X} \\spad{setColumn!(arr,1,acol)$T1}")) (|setRow!| (($ $ (|Integer|) |#3|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v} \\blankline \\spad{X} T1:=TwoDimensionalArray Integer \\spad{X} arr:T1:= new(5,4,0) \\spad{X} T2:=OneDimensionalArray Integer \\spad{X} \\spad{arow:=construct([1,2,3,4]::List(INT))$T2} \\spad{X} \\spad{setRow!(arr,1,arow)$T1}")) (|qsetelt!| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of \\spad{m} to \\spad{r}} \\indented{1}{NO error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,0) \\spad{X} qsetelt!(arr,1,1,17)")) (|setelt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of \\spad{m} to \\spad{r}} \\indented{1}{error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,0) \\spad{X} setelt(arr,1,1,17)")) (|parts| (((|List| |#2|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} parts(arr)")) (|column| ((|#4| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} \\indented{1}{error check to determine if index is in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} column(arr,1)")) (|row| ((|#3| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} \\indented{1}{error check to determine if index is in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} row(arr,1)")) (|qelt| ((|#2| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of the array \\spad{m}} \\indented{1}{NO error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} qelt(arr,1,1)")) (|elt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of the array \\spad{m,} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,} \\indented{1}{and returns \\spad{r} otherwise} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} elt(arr,1,1,6) \\spad{X} elt(arr,1,10,6)") ((|#2| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of the array \\spad{m}} \\indented{1}{error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} elt(arr,1,1)")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} ncols(arr)")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} nrows(arr)")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} maxColIndex(arr)")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} minColIndex(arr)")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} maxRowIndex(arr)")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} minRowIndex(arr)")) (|fill!| (($ $ |#2|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r's} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,0) \\spad{X} fill!(arr,10)")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{new(m,n,r)} is an m-by-n array all of whose entries are \\spad{r} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,0)")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) │ │ │ +(|RealZeroPackageQ| |Pol|) │ │ │ +((|constructor| (NIL "This package provides functions for finding the real zeros of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals, expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of pol, and returns an isolating interval which is contained within range, or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record int.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial pol.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial pol."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|OneDimensionalArrayAggregate&| A S) │ │ │ -((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically, these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property, that is, any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over, and access to, elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) │ │ │ +(|ExpressionToOpenMath| R) │ │ │ +((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|BalancedBinaryTree| S) │ │ │ -((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves, for some \\spad{k > 0}, is symmetric, that is, the left and right subtree of each interior node have identical shape. In general, the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" \\indented{1}{(node then left then right) fashion replacing the successive} \\indented{1}{interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and} \\indented{1}{right subtrees of \\spad{t.} The root value \\spad{x} of \\spad{t} is replaced by \\spad{p.}} \\indented{1}{Then f(value \\spad{l,} value \\spad{r,} \\spad{p),} where \\spad{l} and \\spad{r} denote the left} \\indented{1}{and right subtrees of \\spad{t,} is evaluated producing two values} \\indented{1}{pl and \\spad{pr.} Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)}} \\indented{1}{are evaluated.} \\blankline \\spad{X} T1:=BalancedBinaryTree Integer \\spad{X} t2:=balancedBinaryTree(4, 0)$T1 \\spad{X} setleaves!(t2,[1,2,3,4]::List(Integer)) \\spad{X} adder3(i:Integer,j:Integer,k:Integer):List Integer \\spad{==} [i+j,j+k] \\spad{X} mapDown!(t2,4::INT,adder3) \\spad{X} \\spad{t2}") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" \\indented{1}{(node then left then right) fashion replacing the successive} \\indented{1}{interior nodes as follows. The root value \\spad{x} is} \\indented{1}{replaced by \\spad{q} \\spad{:=} f(p,x). The mapDown!(l,q,f) and} \\indented{1}{mapDown!(r,q,f) are evaluated for the left and right subtrees} \\indented{1}{l and \\spad{r} of \\spad{t.}} \\blankline \\spad{X} T1:=BalancedBinaryTree Integer \\spad{X} t2:=balancedBinaryTree(4, 0)$T1 \\spad{X} setleaves!(t2,[1,2,3,4]::List(Integer)) \\spad{X} adder(i:Integer,j:Integer):Integer \\spad{==} i+j \\spad{X} mapDown!(t2,4::INT,adder) \\spad{X} \\spad{t2}")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" \\indented{1}{(left then right then node) fashion returning \\spad{t} with the value} \\indented{1}{at each successive interior node of \\spad{t} replaced \\spad{by}} \\indented{1}{f(l,r,l1,r1) where \\spad{l} and \\spad{r} are the values at the immediate} \\indented{1}{left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the} \\indented{1}{corresponding nodes of a balanced binary tree \\spad{t1,} of identical} \\indented{1}{shape at \\spad{t.}} \\blankline \\spad{X} T1:=BalancedBinaryTree Integer \\spad{X} t2:=balancedBinaryTree(4, 0)$T1 \\spad{X} setleaves!(t2,[1,2,3,4]::List(Integer)) \\spad{X} adder4(i:INT,j:INT,k:INT,l:INT):INT \\spad{==} i+j+k+l \\spad{X} mapUp!(t2,t2,adder4) \\spad{X} \\spad{t2}") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" \\indented{1}{(left then right then node) fashion returning \\spad{t} with the value} \\indented{1}{at each successive interior node of \\spad{t} replaced \\spad{by}} \\indented{1}{f(l,r) where \\spad{l} and \\spad{r} are the values at the immediate} \\indented{1}{left and right nodes.} \\blankline \\spad{X} T1:=BalancedBinaryTree Integer \\spad{X} t2:=balancedBinaryTree(4, 0)$T1 \\spad{X} setleaves!(t2,[1,2,3,4]::List(Integer)) \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} mapUp!(t2,adder) \\spad{X} \\spad{t2}")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order \\indented{1}{to the elements of ls.} \\blankline \\spad{X} t1:=balancedBinaryTree(4, 0) \\spad{X} setleaves!(t1,[1,2,3,4])")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, \\spad{s)}} creates a balanced binary tree with \\indented{1}{n nodes each with value \\spad{s.}} \\blankline \\spad{X} balancedBinaryTree(4, 0)"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|Asp34| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs, needed for NAG routine f04mbf, for example: \\blankline \\tab{5}SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK)\\br \\tab{5}DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N)\\br \\tab{5}INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK)\\br \\tab{5}DOUBLE PRECISION W1(3),W2(3),MS(3,3)\\br \\tab{5}IFLAG=-1\\br \\tab{5}MS(1,1)=2.0D0\\br \\tab{5}MS(1,2)=1.0D0\\br \\tab{5}MS(1,3)=0.0D0\\br \\tab{5}MS(2,1)=1.0D0\\br \\tab{5}MS(2,2)=2.0D0\\br \\tab{5}MS(2,3)=1.0D0\\br \\tab{5}MS(3,1)=0.0D0\\br \\tab{5}MS(3,2)=1.0D0\\br \\tab{5}MS(3,3)=2.0D0\\br \\tab{5}CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG)\\br \\tab{5}IFLAG=-IFLAG\\br \\tab{5}RETURN\\br \\tab{5}END"))) │ │ │ +(|MakeBinaryCompiledFunction| S D1 D2 I) │ │ │ +((|constructor| (NIL "Tools and transforms for making compiled functions from top-level expressions")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, \\spad{D2)} \\spad{->} I} \\indented{1}{defined by \\spad{f(x, \\spad{y)} \\spad{==} expr}.} \\indented{1}{Function \\spad{f} is compiled and directly} \\indented{1}{applicable to objects of type \\spad{(D1, D2)}} \\blankline \\spad{X} MBCF:=MakeBinaryCompiledFunction(POLY(FRAC(INT)),FLOAT,FLOAT,FLOAT) \\spad{X} f:=(x+3)*(y+4) \\spad{X} g:=compiledFunction(f,x,y)$MBCF \\spad{X} g(2.0,3.0)")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|BasicFunctions|) │ │ │ -((|constructor| (NIL "A Domain which implements a table containing details of points at which particular functions have evaluation problems.")) (|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) │ │ │ -((|finiteAggregate| . T)) │ │ │ +(|XRecursivePolynomial| |VarSet| R) │ │ │ +((|constructor| (NIL "This type supports multivariate polynomials whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) │ │ │ +((|noZeroDivisors| |has| |#2| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasAttribute| |#2| (QUOTE |noZeroDivisors|))) │ │ │ +(|FlexibleArray| S) │ │ │ +((|constructor| (NIL "A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a} \\spad{delete(a,n)} meaning delete the last item from the array \\spad{a} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However, these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50% larger) array. Conversely, when the array becomes less than 1/2 full, it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps, stacks and sets."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ +(|BlowUpMethodCategory|) │ │ │ NIL │ │ │ -(|BlasLevelOne|) │ │ │ -((|constructor| (NIL "This package provides an interface to the Blas library (level 1)")) (|zaxpy| (((|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|) (|Complex| (|DoubleFloat|)) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|)) "\\spad{zaxpy(n,da,x,incx,y,incy)} computes a \\spad{y} = a*x + \\spad{y} \\indented{1}{for each of the chosen elements of the vectors \\spad{x} and \\spad{y}} \\indented{1}{and a constant multiplier a} \\indented{1}{Note that the vector \\spad{y} is modified with the results.} \\blankline \\spad{X} a:PRIMARR(COMPLEX(DFLOAT)) \\spad{X} a:=[[3.+4.*\\%i, -4.+5.*\\%i, 5.+6.*%i, 7.-8.*%i, -9.-2.*\\%i]] \\spad{X} b:PRIMARR(COMPLEX(DFLOAT)) \\spad{X} b:=[[3.+4.*\\%i, -4.+5.*\\%i, 5.+6.*%i, 7.-8.*%i, -9.-2.*\\%i]] \\spad{X} zaxpy(3,2.0,a,1,b,1) \\spad{X} b:=[[3.+4.*\\%i, -4.+5.*\\%i, 5.+6.*%i, 7.-8.*%i, -9.-2.*\\%i]] \\spad{X} zaxpy(5,2.0,a,1,b,1) \\spad{X} b:=[[3.+4.*\\%i, -4.+5.*\\%i, 5.+6.*%i, 7.-8.*%i, -9.-2.*\\%i]] \\spad{X} zaxpy(3,2.0,a,3,b,3) \\spad{X} b:=[[3.+4.*\\%i, -4.+5.*\\%i, 5.+6.*%i, 7.-8.*%i, -9.-2.*\\%i]] \\spad{X} zaxpy(4,2.0,a,2,b,2)")) (|izamax| (((|Integer|) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|)) "\\spad{izamax computes} the largest absolute value of the elements \\indented{1}{of the array and returns the index of the first instance} \\indented{1}{of the maximum.} \\blankline \\spad{X} a:PRIMARR(COMPLEX(DFLOAT)) \\spad{X} a:=[[3.+4.*\\%i,-4.+5.*\\%i,5.+6.*\\%i,7.-8.*\\%i,-9.-2.*\\%i]] \\spad{X} izamax(5,a,1) \\spad{--} should be 3 \\spad{X} izamax(0,a,1) \\spad{--} should be \\spad{-1} \\spad{X} izamax(5,a,-1) \\spad{--} should be \\spad{-1} \\spad{X} izamax(3,a,1) \\spad{--} should be 2 \\spad{X} izamax(3,a,2) \\spad{--} should be 1")) (|isamax| (((|Integer|) (|Integer|) (|PrimitiveArray| (|Float|)) (|Integer|)) "\\spad{isamax computes} the largest absolute value of the elements \\indented{1}{of the array and returns the index of the first instance} \\indented{1}{of the maximum.} \\blankline \\spad{X} a:PRIMARR(FLOAT):=[[3.0, 4.0, -3.0, 5.0, -1.0]] \\spad{X} isamax(5,a,1) \\spad{--} should be 3 \\spad{X} isamax(3,a,1) \\spad{--} should be 1 \\spad{X} isamax(0,a,1) \\spad{--} should be \\spad{-1} \\spad{X} isamax(-5,a,1) \\spad{--} should be \\spad{-1} \\spad{X} isamax(5,a,-1) \\spad{--} should be \\spad{-1} \\spad{X} isamax(5,a,2) \\spad{--} should be 0 \\spad{X} isamax(1,a,0) \\spad{--} should be \\spad{-1} \\spad{X} isamax(1,a,-1) \\spad{--} should be \\spad{-1} \\spad{X} a:PRIMARR(FLOAT):=[[3.0, 4.0, -3.0, -5.0, -1.0]] \\spad{X} isamax(5,a,1) \\spad{--} should be 3")) (|idamax| (((|Integer|) (|Integer|) (|PrimitiveArray| (|DoubleFloat|)) (|Integer|)) "\\spad{idamax computes} the largest absolute value of the elements \\indented{1}{of the array and returns the index of the first instance} \\indented{1}{of the maximum.} \\blankline \\spad{X} a:PRIMARR(DFLOAT):=[[3.0, 4.0, -3.0, 5.0, -1.0]] \\spad{X} idamax(5,a,1) \\spad{--} should be 3 \\spad{X} idamax(3,a,1) \\spad{--} should be 1 \\spad{X} idamax(0,a,1) \\spad{--} should be \\spad{-1} \\spad{X} idamax(-5,a,1) \\spad{--} should be \\spad{-1} \\spad{X} idamax(5,a,-1) \\spad{--} should be \\spad{-1} \\spad{X} idamax(5,a,2) \\spad{--} should be 0 \\spad{X} idamax(1,a,0) \\spad{--} should be \\spad{-1} \\spad{X} idamax(1,a,-1) \\spad{--} should be \\spad{-1} \\spad{X} a:PRIMARR(DFLOAT):=[[3.0, 4.0, -3.0, -5.0, -1.0]] \\spad{X} idamax(5,a,1) \\spad{--} should be 3")) (|icamax| (((|Integer|) (|Integer|) (|PrimitiveArray| (|Complex| (|Float|))) (|Integer|)) "\\spad{icamax computes} the largest absolute value of the elements \\indented{1}{of the array and returns the index of the first instance} \\indented{1}{of the maximum} \\blankline \\spad{X} a:PRIMARR(COMPLEX(FLOAT)) \\spad{X} a:=[[3.+4.*\\%i,-4.+5.*\\%i,5.+6.*\\%i,7.-8.*\\%i,-9.-2.*\\%i]] \\spad{X} icamax(5,a,1) \\spad{--} should be 3 \\spad{X} icamax(0,a,1) \\spad{--} should be \\spad{-1} \\spad{X} icamax(5,a,-1) \\spad{--} should be \\spad{-1} \\spad{X} icamax(3,a,1) \\spad{--} should be 2 \\spad{X} icamax(3,a,2) \\spad{--} should be 1")) (|dznrm2| (((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|)) "\\spad{dznrm2 returns} the norm of a complex vector. It computes \\indented{1}{sqrt(sum(v*conjugate(v)))} \\blankline \\spad{X} a:PRIMARR(COMPLEX(DFLOAT)) \\spad{X} a:=[[3.+4.*\\%i,-4.+5.*\\%i,5.+6.*\\%i,7.-8.*\\%i,-9.-2.*\\%i]] \\spad{X} dznrm2(5,a,1) \\spad{--} should be 18.028 \\spad{X} dznrm2(3,a,2) \\spad{--} should be 13.077 \\spad{X} dznrm2(3,a,1) \\spad{--} should be 11.269 \\spad{X} dznrm2(3,a,-1) \\spad{--} should be 0.0 \\spad{X} dznrm2(-3,a,-1) \\spad{--} should be 0.0 \\spad{X} dznrm2(1,a,1) \\spad{--} should be 5.0 \\spad{X} dznrm2(1,a,2) \\spad{--} should be 5.0")) (|dzasum| (((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|)) "\\spad{dzasum takes} the sum over all of the array where each \\indented{1}{element of the array sum is the sum of the absolute} \\indented{1}{value of the real part and the absolute value of the} \\indented{1}{imaginary part of each array element:} \\indented{3}{for \\spad{i} in array do sum = sum + (real(a(i)) + imag(a(i)))} \\blankline \\spad{X} d:PRIMARR(COMPLEX(DFLOAT)):=[[1.0+2.0*\\%i,-3.0+4.0*\\%i,5.0-6.0*\\%i]] \\spad{X} dzasum(3,d,1) \\spad{--} 21.0 \\spad{X} dzasum(3,d,2) \\spad{--} 14.0 \\spad{X} dzasum(-3,d,1) \\spad{--} 0.0")) (|dswap| (((|List| (|PrimitiveArray| (|DoubleFloat|))) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\spad{dswap swaps} elements from the first vector with the second \\indented{1}{Note that the arrays are modified in place.} \\blankline \\spad{X} dx:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]] \\spad{X} dy:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]] \\spad{X} dswap(5,dx,1,dy,1) \\spad{X} dx:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]] \\spad{X} dy:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]] \\spad{X} dswap(3,dx,2,dy,2) \\spad{X} dx:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]] \\spad{X} dy:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]] \\spad{X} dswap(5,dx,1,dy,-1)")) (|dscal| (((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|DoubleFloat|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\spad{dscal scales} each element of the vector by the scalar so \\indented{1}{dscal(n,da,dx,incx) = da*dx for \\spad{n} elements, incremented by incx} \\indented{1}{Note that the \\spad{dx} array is modified in place.} \\blankline \\spad{X} dx:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]] \\spad{X} dscal(6,2.0,dx,1) \\spad{X} \\spad{dx} \\spad{X} dx:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]] \\spad{X} dscal(3,0.5,dx,1) \\spad{X} \\spad{dx}")) (|drot| (((|List| (|PrimitiveArray| (|DoubleFloat|))) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{drot computes} a 2D plane Givens rotation spanned by two \\indented{1}{coordinate axes. It modifies the arrays in place.} \\indented{1}{The call drot(n,dx,incx,dy,incy,c,s) has the \\spad{dx} array which} \\indented{1}{contains the \\spad{y} axis locations and dy which contains the} \\indented{1}{y axis locations. They are rotated in parallel where} \\indented{1}{c is the cosine of the angle and \\spad{s} is the sine of the angle and} \\indented{1}{\\spad{c^2+s^2 = 1}} \\blankline \\spad{X} dx:PRIMARR(DFLOAT):=[[6,0, 1.0, 4.0, -1.0, -1.0]] \\spad{X} dy:PRIMARR(DFLOAT):=[[5.0, 1.0, -4.0, 4.0, -4.0]] \\spad{X} drot(5,dx,1,dy,1,0.707106781,0.707106781) \\spad{--} rotate by 45 degrees \\spad{X} \\spad{dx} \\spad{--} \\spad{dx} has been modified \\spad{X} dy \\spad{--} dy has been modified \\spad{X} drot(5,dx,1,dy,1,0.707106781,-0.707106781) \\spad{--} rotate by \\spad{-45} degrees \\spad{X} \\spad{dx} \\spad{--} \\spad{dx} has been modified \\spad{X} dy \\spad{--} dy has been modified")) (|drotg| (((|PrimitiveArray| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{drotg computes} a 2D plane Givens rotation spanned by two \\indented{1}{coordinate axes.} \\blankline \\spad{X} a:MATRIX(DFLOAT):=[[6,5,0],[5,1,4],[0,4,3]] \\spad{X} drotg(elt(a,1,1),elt(a,1,2),0.0D0,0.0D0)")) (|dnrm2| (((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\spad{dnrm2 takes} the norm of the vector, ||x|| \\blankline \\spad{X} a:PRIMARR(DFLOAT):=[[3.0, -4.0, 5.0, -7.0, 9.0]] \\spad{X} dnrm2(3,a,1) \\spad{--} 7.0710678118654755 = \\spad{sqrt(3.0^2} + \\spad{-4.0^2} + 5.0^2) \\spad{X} dnrm2(5,a,1) \\spad{--} 13.416407864998739 = sqrt(180.0) \\spad{X} dnrm2(3,a,2) \\spad{--} 10.72380529476361 = sqrt(115.0)")) (|ddot| (((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\spad{ddot(n,x,incx,y,incy)} computes the vector dot product \\indented{1}{of elements from the vector \\spad{x} and the vector \\spad{y}} \\indented{1}{If the indicies are negative the elements are taken} \\indented{1}{relative to the far end of the vector.} \\blankline \\spad{X} x:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0]] \\spad{X} y:PRIMARR(DFLOAT):=[[5.0,6.0,7.0,8.0,9.0]] \\spad{X} ddot(0,a,1,b,1) \\spad{--} handle 0 elements \\spad{==>} 0 \\spad{X} ddot(3,a,1,b,1) \\spad{--} (1,2,3) * (5,6,7) \\spad{==>} 38.0 \\spad{X} ddot(3,a,1,b,2) \\spad{--} increment = 2 in \\spad{b} (1,2,3) * (5,7,9) \\spad{==>} 46.0 \\spad{X} ddot(3,a,2,b,1) \\spad{--} increment = 2 in a (1,3,5) * (5,6,7) \\spad{==>} 58.0 \\spad{X} ddot(3,a,1,b,-2) \\spad{--} increment = \\spad{-2} in \\spad{b} (1,2,3) * (9,7,5) \\spad{==>} 38.0 \\spad{X} ddot(2,a,-2,b,1) \\spad{--} increment = \\spad{-2} in a (5,3,1) * (5,6,7) \\spad{==>} 50.0 \\spad{X} ddot(3,a,-2,b,-2) \\spad{--} (5,3,1) * (9,7,5) \\spad{==>} 71.0")) (|dcopy| (((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\spad{dcopy(n,x,incx,y,incy)} copies \\spad{y} from \\spad{x} \\indented{1}{for each of the chosen elements of the vectors \\spad{x} and \\spad{y}} \\indented{1}{Note that the vector \\spad{y} is modified with the results.} \\blankline \\spad{X} x:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0,6.0]] \\spad{X} y:PRIMARR(DFLOAT):=[[0.0,0.0,0.0,0.0,0.0,0.0]] \\spad{X} dcopy(6,x,1,y,1) \\spad{X} \\spad{y} \\spad{X} m:PRIMARR(DFLOAT):=[[1.0,2.0,3.0]] \\spad{X} n:PRIMARR(DFLOAT):=[[0.0,0.0,0.0,0.0,0.0,0.0]] \\spad{X} dcopy(3,m,1,n,2) \\spad{X} \\spad{n}")) (|daxpy| (((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|DoubleFloat|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\spad{daxpy(n,da,x,incx,y,incy)} computes a \\spad{y} = a*x + \\spad{y} \\indented{1}{for each of the chosen elements of the vectors \\spad{x} and \\spad{y}} \\indented{1}{and a constant multiplier a} \\indented{1}{Note that the vector \\spad{y} is modified with the results.} \\blankline \\spad{X} x:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0,6.0]] \\spad{X} y:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0,6.0]] \\spad{X} daxpy(6,2.0,x,1,y,1) \\spad{X} \\spad{y} \\spad{X} m:PRIMARR(DFLOAT):=[[1.0,2.0,3.0]] \\spad{X} n:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0,6.0]] \\spad{X} daxpy(3,-2.0,m,1,n,2) \\spad{X} \\spad{n}")) (|dasum| (((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\spad{dasum(n,array,incx)} computes the sum of \\spad{n} elements in \\spad{array} \\indented{1}{using a stride of incx} \\blankline \\spad{X} dx:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0,6.0]] \\spad{X} dasum(6,dx,1) \\spad{X} dasum(3,dx,2)")) (|dcabs1| (((|DoubleFloat|) (|Complex| (|DoubleFloat|))) "\\spad{dcabs1(z)} computes \\spad{(+} (abs (realpart \\spad{z))} (abs (imagpart z))) \\blankline \\spad{X} t1:Complex DoubleFloat \\spad{:=} complex(1.0,0) \\spad{X} dcabs1(t1)"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|BalancedPAdicInteger| |p|) │ │ │ -((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} p-adic numbers are represented as sum(i = 0.., a[i] * p^i), where the a[i] lie in \\spad{-(p} - 1)/2,...,(p - 1)/2."))) │ │ │ -((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|RecurrenceOperator| R F) │ │ │ +((|constructor| (NIL "This package provides an operator for the \\spad{n}-th term of a recurrence and an operator for the coefficient of \\spad{x^n} in a function specified by a functional equation.")) (|getOp| (((|BasicOperator|) |#2|) "\\spad{getOp \\spad{f},} if \\spad{f} represents the coefficient of a recurrence or ADE, returns the operator representing the solution")) (|getEq| ((|#2| |#2|) "\\spad{getEq \\spad{f}} returns the defining equation, if \\spad{f} represents the coefficient of an ADE or a recurrence.")) (|evalADE| ((|#2| (|BasicOperator|) (|Symbol|) |#2| |#2| |#2| (|List| |#2|)) "\\spad{evalADE(f, dummy, \\spad{x,} \\spad{n,} eq, values)} creates an expression that stands for the coefficient of \\spad{x^n} in the Taylor expansion of f(x), where f(x) is given by the functional equation eq. However, for technical reasons the variable \\spad{x} has to be replaced by a \\spad{dummy} variable \\spad{dummy} in eq. The argument values specifies the first few Taylor coefficients.")) (|evalRec| ((|#2| (|BasicOperator|) (|Symbol|) |#2| |#2| |#2| (|List| |#2|)) "\\spad{evalRec(u, dummy, \\spad{n,} \\spad{n0,} eq, values)} creates an expression that stands for u(n0), where u(n) is given by the equation eq. However, for technical reasons the variable \\spad{n} has to be replaced by a \\spad{dummy} variable \\spad{dummy} in eq. The argument values specifies the initial values of the recurrence u(0), u(1),... For the moment we don't allow recursions that contain \\spad{u} inside of another operator."))) │ │ │ NIL │ │ │ -(|BinaryTree| S) │ │ │ -((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with \\indented{1}{value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r.}} \\blankline \\spad{X} t1:=binaryTree([1,2,3]) \\spad{X} t2:=binaryTree([4,5,6]) \\spad{X} binaryTree(t1,[7,8,9],t2)") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree \\indented{1}{with value \\spad{v,} and left and right empty.} \\blankline \\spad{X} t1:=binaryTree([1,2,3])"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|CRApackage| R) │ │ │ -((|constructor| (NIL "This package has no documentation")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values, each of which corresponds to the Chinese remainder of the associated element of \\axiom{llv} and axiom{lm}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{v} such that, if \\spad{x} is \\axiom{lv.i} modulo \\axiom{lm.i} for all \\axiom{i}, then \\spad{x} is \\axiom{v} modulo \\axiom{lm(1)*lm(2)*...*lm(n)}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) │ │ │ +((|HasCategory| |#1| (QUOTE (|Ring|)))) │ │ │ +(|RandomIntegerDistributions|) │ │ │ +((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} as \\indented{4}{l + \\spad{u0} + \\spad{w*u1} + \\spad{w**2*u2} +...+ \\spad{w**(n-1)*u-1} + w**n*m} where \\indented{4}{s = a..b} \\indented{4}{l = min(a,b)} \\indented{4}{m = abs(b-a) + 1} \\indented{4}{w**n < \\spad{m} < w**(n+1)} \\indented{4}{u0,...,un-1\\space{2}are uniform on\\space{2}0..w-1} \\indented{4}{m\\space{12}is\\space{2}uniform on\\space{2}0..(m quo w**n)-1}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Dequeue| S) │ │ │ -((|constructor| (NIL "Linked list implementation of a Dequeue")) (|member?| (((|Boolean|) |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} member?(3,a)")) (|members| (((|List| |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} members a")) (|parts| (((|List| |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} parts a")) (|#| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} \\#a")) (|count| (((|NonNegativeInteger|) |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} count(4,a)") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} count(x+->(x>2),a)")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} any?(x+->(x=4),a)")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} every?(x+->(x=4),a)")) (~= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} (a~=b)")) (= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} b:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} (a=b)@Boolean")) (|coerce| (((|OutputForm|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} coerce a")) (|hash| (((|SingleInteger|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} hash a")) (|latex| (((|String|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} latex a")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} map!(x+->x+10,a) \\spad{X} a")) (|top!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} top! a \\spad{X} a")) (|reverse!| (($ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} reverse! a \\spad{X} a")) (|push!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} push! a \\spad{X} a")) (|pop!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} pop! a \\spad{X} a")) (|insertTop!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} insertTop! a \\spad{X} a")) (|insertBottom!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} insertBottom! a \\spad{X} a")) (|extractTop!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} extractTop! a \\spad{X} a")) (|extractBottom!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} extractBottom! a \\spad{X} a")) (|bottom!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} bottom! a \\spad{X} a")) (|top| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} top a")) (|height| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} height a")) (|depth| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} depth a")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} map(x+->x+10,a) \\spad{X} a")) (|eq?| (((|Boolean|) $ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} eq?(a,b)")) (|copy| (($ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} copy a")) (|sample| (($) "\\blankline \\spad{X} sample()$Dequeue(INT)")) (|empty| (($) "\\blankline \\spad{X} b:=empty()$(Dequeue INT)")) (|empty?| (((|Boolean|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} empty? a")) (|bag| (($ (|List| |#1|)) "\\blankline \\spad{X} bag([1,2,3,4,5])$Dequeue(INT)")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} size?(a,5)")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} more?(a,9)")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} less?(a,9)")) (|length| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} length a")) (|rotate!| (($ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} rotate! a")) (|back| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} back a")) (|front| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} front a")) (|inspect| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} inspect a")) (|insert!| (($ |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} insert! (8,a) \\spad{X} a")) (|enqueue!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} enqueue! (9,a) \\spad{X} a")) (|extract!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} extract! a \\spad{X} a")) (|dequeue!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} dequeue! a \\spad{X} a")) (|dequeue| (($) "\\blankline \\spad{X} a:Dequeue INT:= dequeue \\spad{()}") (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) \\indented{1}{element \\spad{x,} second element y,...,and last (bottom or back) element \\spad{z.}} \\blankline \\spad{X} g:Dequeue INT:= dequeue [1,2,3,4,5]"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|DirichletRing| |Coef|) │ │ │ -((|constructor| (NIL "DirichletRing is the ring of arithmetical functions with Dirichlet convolution as multiplication")) (|additive?| (((|Boolean|) $ (|PositiveInteger|)) "\\spad{additive?(a, \\spad{n)}} returns \\spad{true} if the first \\spad{n} coefficients of a are additive")) (|multiplicative?| (((|Boolean|) $ (|PositiveInteger|)) "\\spad{multiplicative?(a, \\spad{n)}} returns \\spad{true} if the first \\spad{n} coefficients of a are multiplicative")) (|zeta| (($) "\\spad{zeta()} returns the function which is constantly one"))) │ │ │ -((|leftUnitary| |has| |#1| (|CommutativeRing|)) (|rightUnitary| |has| |#1| (|CommutativeRing|)) ((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|CommutativeRing|)) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CommutativeRing|)))) │ │ │ -(|TwoDimensionalArrayCategory| R |Row| |Col|) │ │ │ -((|constructor| (NIL "Two dimensional array categories and domains")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} \\indented{1}{for all \\spad{i, \\spad{j}}} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} map!(-,arr)")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c}, where \\spad{c(i,j) = f(a(i,j),b(i,j))} \\indented{1}{when both \\spad{a(i,j)} and \\spad{b(i,j)} exist;} \\indented{1}{else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist;} \\indented{1}{else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist;} \\indented{1}{otherwise \\spad{c(i,j) = f(r,r)}.} \\blankline \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} \\spad{arr1} : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} \\spad{arr2} : \\spad{ARRAY2} INT \\spad{:=} new(3,3,10) \\spad{X} map(adder,arr1,arr2,17)") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c}, where \\spad{c(i,j) = f(a(i,j),b(i,j))} \\indented{1}{for all \\spad{i, \\spad{j}}} \\blankline \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} map(adder,arr,arr)") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b}, where \\spad{b(i,j) = f(a(i,j))} \\indented{1}{for all \\spad{i, \\spad{j}}} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} map(-,arr) \\spad{X} map((x \\spad{+->} \\spad{x} + x),arr)")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v} \\blankline \\spad{X} T1:=TwoDimensionalArray Integer \\spad{X} arr:T1:= new(5,4,0) \\spad{X} T2:=OneDimensionalArray Integer \\spad{X} \\spad{acol:=construct([1,2,3,4,5]::List(INT))$T2} \\spad{X} \\spad{setColumn!(arr,1,acol)$T1}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v} \\blankline \\spad{X} T1:=TwoDimensionalArray Integer \\spad{X} arr:T1:= new(5,4,0) \\spad{X} T2:=OneDimensionalArray Integer \\spad{X} \\spad{arow:=construct([1,2,3,4]::List(INT))$T2} \\spad{X} \\spad{setRow!(arr,1,arow)$T1}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of \\spad{m} to \\spad{r}} \\indented{1}{NO error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,0) \\spad{X} qsetelt!(arr,1,1,17)")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of \\spad{m} to \\spad{r}} \\indented{1}{error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,0) \\spad{X} setelt(arr,1,1,17)")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} parts(arr)")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} \\indented{1}{error check to determine if index is in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} column(arr,1)")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} \\indented{1}{error check to determine if index is in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} row(arr,1)")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of the array \\spad{m}} \\indented{1}{NO error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} qelt(arr,1,1)")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of the array \\spad{m,} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,} \\indented{1}{and returns \\spad{r} otherwise} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} elt(arr,1,1,6) \\spad{X} elt(arr,1,10,6)") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of the array \\spad{m}} \\indented{1}{error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} elt(arr,1,1)")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} ncols(arr)")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} nrows(arr)")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} maxColIndex(arr)")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} minColIndex(arr)")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} maxRowIndex(arr)")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} minRowIndex(arr)")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r's} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,0) \\spad{X} fill!(arr,10)")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an m-by-n array all of whose entries are \\spad{r} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,0)")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ +(|MappingPackage3| A B C) │ │ │ +((|constructor| (NIL "Various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h \\spad{x=} \\spad{f(g} x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= \\spad{f} b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= \\spad{f} a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g \\spad{b} = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) │ │ │ NIL │ │ │ -(|Divisor| S) │ │ │ -((|constructor| (NIL "The following is part of the PAFF package"))) │ │ │ -((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ -((|HasCategory| (|Integer|) (QUOTE (|OrderedAbelianMonoid|)))) │ │ │ -(|DataList| S) │ │ │ -((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{l.\"count\"} returns the number of elements in \\axiom{l}.") (($ $ "sort") "\\axiom{l.sort} returns \\axiom{l} with elements sorted. Note: \\axiom{l.sort = sort(l)}") (($ $ "unique") "\\axiom{l.unique} returns \\axiom{l} with duplicates removed. Note: \\axiom{l.unique = removeDuplicates(l)}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ -(|OneDimensionalArrayAggregate| S) │ │ │ -((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically, these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property, that is, any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over, and access to, elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|DrawComplex|) │ │ │ -((|constructor| (NIL "\\axiomType{DrawComplex} provides some facilities for drawing complex functions.")) (|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x.}")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns i.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns i.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-d viewport control panel. Sample call: \\indented{3}{\\spad{f \\spad{z} \\spad{==} sin \\spad{z}}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{f : the function to draw} \\indented{2}{rRange : the range of the real values} \\indented{2}{iRange : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value. Sample call: \\indented{2}{\\spad{f \\spad{z} \\spad{==} exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*%pi, false)}} Parameter descriptions: \\indented{2}{f:\\space{2}the function to draw} \\indented{2}{rRange : the range of the real values} \\indented{2}{iRange : the range of imaginary values} \\indented{2}{arrows? : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) │ │ │ +(|FiniteFieldExtension| GF |n|) │ │ │ +((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF, \\spad{n)} implements an extension of the finite field \\spad{GF} of degree \\spad{n} generated by the extension polynomial constructed by createIrreduciblePoly from \\spadtype{FiniteFieldPolynomialPackage}."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))))) │ │ │ +(|ExtensionField| F) │ │ │ +((|constructor| (NIL "ExtensionField \\spad{F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()$F.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a \\spad{**} \\spad{q}} where \\spad{q} is the \\spad{size()$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension, 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic, and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F,} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F.}")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F.}")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F.}"))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|HomogeneousDirectProduct| |dim| S) │ │ │ +((|constructor| (NIL "This type represents the finite direct or cartesian product of an underlying ordered component type. The vectors are ordered first by the sum of their components, and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) │ │ │ +((|rightUnitary| |has| |#2| (|Ring|)) (|leftUnitary| |has| |#2| (|Ring|)) (|unitsKnown| |has| |#2| (ATTRIBUTE |unitsKnown|)) ((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|))) (OR (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (|HasCategory| |#2| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|)))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasAttribute| |#2| (QUOTE |unitsKnown|)) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))))) │ │ │ +(|Asp80| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs, needed for NAG routine d02kef, for example: \\blankline \\tab{5}SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR)\\br \\tab{5}DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3)\\br \\tab{5}YL(1)=XL\\br \\tab{5}YL(2)=2.0D0\\br \\tab{5}YR(1)=1.0D0\\br \\tab{5}YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM))\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ -(|TopLevelDrawFunctionsForPoints|) │ │ │ -((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{lz} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{lz} list onto the rectangular grid formed by the \\axiom{lx \\spad{x} ly}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp.} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp.}") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (x,y) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (x,y) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) │ │ │ NIL │ │ │ +(|MonadWithUnit&| S) │ │ │ +((|constructor| (NIL "MonadWithUnit is the class of multiplicative monads with unit, that is, sets with a binary operation and a unit element. \\blankline Axioms\\br \\tab{5}leftIdentity(\"*\":(\\%,\\%)->\\%,1) for example, 1*x=x\\br \\tab{5}rightIdentity(\"*\":(\\%,\\%)->\\%,1) for example, x*1=x \\blankline Common Additional Axioms\\br \\tab{5}unitsKnown - if \"recip\" says \"failed\", it PROVES input wasn't a unit")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element, which is a right inverse of \\spad{a}, or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element, which is a left inverse of \\spad{a}, or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element, which is both a left and a right inverse of \\spad{a}, or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}-th power of \\spad{a}, defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}-th left power of \\spad{a}, that is, \\spad{leftPower(a,n) \\spad{:=} a * leftPower(a,n-1)} and \\spad{leftPower(a,0) \\spad{:=} 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}-th right power of \\spad{a}, that is, \\spad{rightPower(a,n) \\spad{:=} rightPower(a,n-1) * a} and \\spad{rightPower(a,0) \\spad{:=} 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "\\spad{1} returns the unit element, denoted by 1."))) │ │ │ NIL │ │ │ -(|d01gbfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF, a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ NIL │ │ │ +(|OrderedAbelianGroup|) │ │ │ +((|constructor| (NIL "Ordered sets which are also abelian groups, such that the addition preserves the ordering."))) │ │ │ NIL │ │ │ -(|d03fafAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) │ │ │ NIL │ │ │ +(|HomogeneousAggregate&| A S) │ │ │ +((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system, all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of u. For collections, \\axiom{member?(x,u) = reduce(or,[x=y for \\spad{y} in u],false)}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of u. For collections, \\axiom{parts([x,y,...,z]) = (x,y,...,z)}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of u. For collections, \\axiom{parts([x,y,...,z]) = (x,y,...,z)}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in u. For collections, \\axiom{count(x,u) = reduce(+,[x=y for \\spad{y} in u],0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{p(x)} is true. For collections, \\axiom{count(p,u) = \\spad{reduce(+,[1} for \\spad{x} in \\spad{u} | p(x)],0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if p(x) is \\spad{true} for all elements \\spad{x} of u. Note that for collections, \\axiom{every?(p,u) = reduce(and,map(f,u),true,false)}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{p(x)} is \\spad{true} for any element \\spad{x} of u. Note that for collections, \\axiom{any?(p,u) = reduce(or,map(f,u),false,true)}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{f(x)}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by f(x). For collections, \\axiom{map(f,u) = [f(x) for \\spad{x} in u]}."))) │ │ │ NIL │ │ │ -(|d02ejfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF, a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) │ │ │ +((|HasAttribute| |#1| (QUOTE |finiteAggregate|)) (|HasAttribute| |#1| (QUOTE |shallowlyMutable|)) (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) │ │ │ +(|PseudoAlgebraicClosureOfAlgExtOfRationalNumberCategory|) │ │ │ +((|constructor| (NIL "This category exports the function for the domain PseudoAlgebraicClosureOfAlgExtOfRationalNumber which implement dynamic extension using the simple notion of tower extensions. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension \\spad{(T} : \\spad{K0,} \\spad{K1,} ..., Ki...,Kn) where \\spad{K0} = \\spad{K} and for \\spad{i} =1,2,...,n, \\spad{Ki} is an extension of K{i-1} of degree > 1 and defined by an irreducible polynomial p(Z) in K{i-1}. Two towers (T1: K01, K11,...,Ki1,...,Kn1) and (T2: K02, K12,...,Ki2,...,Kn2) are said to be related if \\spad{T1} \\spad{<=} \\spad{T2} (or \\spad{T1} \\spad{>=} T2), that is if \\spad{Ki1} = \\spad{Ki2} for \\spad{i=1,2,...,n1} (or i=1,2,...,n2). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|Eltable| S |Index|) │ │ │ +((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to I. Examples of eltable structures range from data structures, For example, those of type List, to algebraic structures like Polynomial.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,i)} (also written: \\spad{u} . i) returns the element of \\spad{u} indexed by i. Error: if \\spad{i} is not an index of u."))) │ │ │ NIL │ │ │ -(|FiniteAbelianMonoidRing&| S R E) │ │ │ -((|constructor| (NIL "This category is similar to AbelianMonoidRing, except that the sum is assumed to be finite. It is a useful model for polynomials, but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p.}")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p.}")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r,} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * \\spad{p2}} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial u.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p.} Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p.}")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p.}")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) │ │ │ -(|FiniteLinearAggregateSort| S V) │ │ │ -((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates. Sort package (in-place) for shallowlyMutable Finite Linear Aggregates")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) │ │ │ +(|NPCoef| BP E OV R P) │ │ │ +((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F,} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FiniteLinearAggregateFunctions2| S A R B) │ │ │ -((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely, if \\spad{a} is \\spad{[a1,a2,...]}, then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r.} For example, \\spad{reduce(_+$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note that third argument \\spad{r} may be regarded as the identity element for the function \\spad{f.}")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) │ │ │ +(|LinearlyExplicitRingOver| R) │ │ │ +((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, \\spad{v)}} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A \\spad{x} = \\spad{v}} and \\spad{B \\spad{x} = \\spad{w}} have the same solutions in \\spad{R.}") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A \\spad{x} = 0} and \\spad{B \\spad{x} = 0} have the same solutions in \\spad{R.}"))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|NewtonPolygon| K |PolyRing| E |dim|) │ │ │ +((|constructor| (NIL "The following is part of the PAFF package"))) │ │ │ NIL │ │ │ -(|FiniteAbelianMonoidRing| R E) │ │ │ -((|constructor| (NIL "This category is similar to AbelianMonoidRing, except that the sum is assumed to be finite. It is a useful model for polynomials, but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p.}")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p.}")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r,} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * \\spad{p2}} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial u.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p.} Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p.}")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p.}")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|FreeGroup| S) │ │ │ -((|constructor| (NIL "Free group on any set of generators The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si \\spad{**} ni])} where the si's are in \\spad{S,} and the ni's are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, \\spad{a1\\^e1} \\spad{...} an\\^en)} returns \\spad{f(a1)\\^e1 \\spad{...} f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, \\spad{a1\\^e1} \\spad{...} an\\^en)} returns \\spad{a1\\^f(e1) \\spad{...} an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, \\spad{n)}} returns the factor of the n^th monomial of \\spad{x.}")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, \\spad{n)}} returns the exponent of the n^th monomial of \\spad{x.}")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x.}")) (** (($ |#1| (|Integer|)) "\\spad{s \\spad{**} \\spad{n}} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * \\spad{s}} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * \\spad{x}} returns the product of \\spad{x} by \\spad{s} on the left."))) │ │ │ -((|unitsKnown| . T)) │ │ │ +(|ODEIntegration| R F) │ │ │ +((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x.}")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, \\spad{x)}} returns e^{the integral of \\spad{f} with respect to \\spad{x}.}")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, \\spad{x)}} returns the integral of \\spad{f} with respect to \\spad{x.}"))) │ │ │ NIL │ │ │ -(|FreeModule| R S) │ │ │ -((|constructor| (NIL "A bi-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) │ │ │ -((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CommutativeRing|)))) │ │ │ -(|FieldOfPrimeCharacteristic&| S) │ │ │ -((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic, for example, finite fields, algebraic closures of fields of prime characteristic, transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a**p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) │ │ │ NIL │ │ │ +(|HyperbolicFunctionCategory|) │ │ │ +((|constructor| (NIL "\\indented{1}{Date Last Updated: 14 May 1991} Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x.}")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x.}")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x.}")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x.}")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x.}")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x.}"))) │ │ │ NIL │ │ │ -(|FreeModule1| R S) │ │ │ -((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: XDistributedPolynomial, XRecursivePolynomial.")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) │ │ │ -((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CommutativeRing|)))) │ │ │ -(|FieldOfPrimeCharacteristic|) │ │ │ -((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic, for example, finite fields, algebraic closures of fields of prime characteristic, transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a**p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|IndexedExponents| |Varset|) │ │ │ -((|constructor| (NIL "converts entire exponents to OutputForm"))) │ │ │ +(|CentralAttribute|) │ │ │ +((|constructor| (NIL "Central is \\spad{true} if, given an algebra over a ring \\spad{R,} the image of \\spad{R} is the center of the algebra. For example, the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ +(|GenUFactorize| R) │ │ │ +((|constructor| (NIL "This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) │ │ │ NIL │ │ │ -(|FreeMonoid| S) │ │ │ -((|constructor| (NIL "Free monoid on any set of generators The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si \\spad{**} ni])} where the si's are in \\spad{S,} and the ni's are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, \\spad{a1\\^e1} \\spad{...} an\\^en)} returns \\spad{f(a1)\\^e1 \\spad{...} f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, \\spad{a1\\^e1} \\spad{...} an\\^en)} returns \\spad{a1\\^f(e1) \\spad{...} an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, \\spad{n)}} returns the factor of the n^th monomial of \\spad{x.}")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, \\spad{n)}} returns the exponent of the n^th monomial of \\spad{x.}")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x.}")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, \\spad{y)}} returns \\spad{[l, \\spad{m,} \\spad{r]}} such that \\spad{x = \\spad{l} * \\spad{m},} \\spad{y = \\spad{m} * \\spad{r}} and \\spad{l} and \\spad{r} have no overlap, \\spad{overlap(l, \\spad{r)} = \\spad{[l,} 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, \\spad{y)}} returns the left and right exact quotients of \\spad{x} by \\spad{y,} \\spad{[l, \\spad{r]}} such that \\spad{x = \\spad{l} * \\spad{y} * \\spad{r},} \"failed\" if \\spad{x} is not of the form \\spad{l * \\spad{y} * \\spad{r}.}")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, \\spad{y)}} returns the exact right quotient of \\spad{x} by \\spad{y} \\spad{q} such that \\spad{x = \\spad{q} * \\spad{y},} \"failed\" if \\spad{x} is not of the form \\spad{q * \\spad{y}.}")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, \\spad{y)}} returns the exact left quotient of \\spad{x} by \\spad{y} \\spad{q} such that \\spad{x = \\spad{y} * \\spad{q},} \"failed\" if \\spad{x} is not of the form \\spad{y * \\spad{q}.}")) (|hcrf| (($ $ $) "\\spad{hcrf(x, \\spad{y)}} returns the highest common right factor of \\spad{x} and \\spad{y,} the largest \\spad{d} such that \\spad{x = a \\spad{d}} and \\spad{y = \\spad{b} \\spad{d}.}")) (|hclf| (($ $ $) "\\spad{hclf(x, \\spad{y)}} returns the highest common left factor of \\spad{x} and \\spad{y,} the largest \\spad{d} such that \\spad{x = \\spad{d} a} and \\spad{y = \\spad{d} \\spad{b}.}")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s \\spad{**} \\spad{n}} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * \\spad{s}} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * \\spad{x}} returns the product of \\spad{x} by \\spad{s} on the left."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|OrderedSet|)))) │ │ │ -(|IntegerRoots| I) │ │ │ -((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\spad{n}th roots of integers efficiently.")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < \\spad{x} - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < \\spad{s} - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( \\spad{log(n)**2} \\spad{)}.}")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < \\spad{x} - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]}, where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) │ │ │ +(|ViewportPackage|) │ │ │ +((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage}, gi, into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points, \\spad{p0} throught \\spad{pn,} using the options specified in the list \\spad{options}") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points, \\spad{p0} throught \\spad{pn,} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor}, the line color is specified by \\spad{lineColor}, and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points, \\spad{p0} through \\spad{pn,} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn.}") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points, \\spad{p0} throught \\spad{pn,} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor}, the graph line color is specified by \\spad{lineColor}, and the size of the points is specified by \\spad{ptSize}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InnerPAdicInteger| |p| |unBalanced?|) │ │ │ -((|constructor| (NIL "This domain implements \\spad{Zp,} the p-adic completion of the integers. This is an internal domain."))) │ │ │ -((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|PrimitiveArrayFunctions2| A B) │ │ │ +((|constructor| (NIL "This package provides tools for operating on primitive arrays with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\indented{1}{\\spad{a} resulting in a new primitive array over a} \\indented{1}{possibly different underlying domain.} \\blankline \\spad{X} T1:=PrimitiveArrayFunctions2(Integer,Integer) \\spad{X} map(x+->x+2,[i for \\spad{i} in 1..10])$T1")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each \\indented{1}{successive element of the} \\indented{1}{primitive array \\spad{a} and an accumulant initialized to \\spad{r.}} \\indented{1}{For example, \\spad{reduce(_+$Integer,[1,2,3],0)}} \\indented{1}{does \\spad{3+(2+(1+0))}. Note that third argument \\spad{r}} \\indented{1}{may be regarded as the identity element for the function \\spad{f.}} \\blankline \\spad{X} T1:=PrimitiveArrayFunctions2(Integer,Integer) \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} reduce(adder,[i for \\spad{i} in 1..10],0)$T1")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\indented{1}{\\spad{reduce(f,x,r)} to more and more leading sub-arrays} \\indented{1}{x of primitive array \\spad{a}.} \\indented{1}{More precisely, if \\spad{a} is \\spad{[a1,a2,...]}, then} \\indented{1}{\\spad{scan(f,a,r)} returns} \\indented{1}{\\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.} \\blankline \\spad{X} T1:=PrimitiveArrayFunctions2(Integer,Integer) \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} scan(adder,[i for \\spad{i} in 1..10],0)$T1"))) │ │ │ NIL │ │ │ -(|IntegrationResultFunctions2| E F) │ │ │ -((|constructor| (NIL "Internally used by the integration packages")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) │ │ │ NIL │ │ │ +(|FullyRetractableTo| S) │ │ │ +((|constructor| (NIL "A is fully retractable to \\spad{B} means that A is retractable to \\spad{B} and if \\spad{B} is retractable to the integers or rational numbers then so is A. In particular, what we are asserting is that there are no integers (rationals) in A which don't retract into \\spad{B.}"))) │ │ │ NIL │ │ │ -(|LieExponentials| |VarSet| R |Order|) │ │ │ -((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind.")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(g,h)} returns the list of equations \\axiom{g_i = h_i}, where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{g} (resp. \\axiom{h}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(g)} returns the exponential coordinates of \\axiom{g}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(g)} returns the list of variables of \\axiom{g}.")) (|mirror| (($ $) "\\axiom{mirror(g)} is the mirror of the internal representation of \\axiom{g}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(g)} returns the internal representation of \\axiom{g}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(g)} returns the internal representation of \\axiom{g}.")) (|listOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{listOfTerms(p)} returns the internal representation of \\axiom{p}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(p)} returns the logarithm of \\axiom{p}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(p)} returns the exponential of \\axiom{p}."))) │ │ │ -((|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|LieAlgebra&| S R) │ │ │ -((|constructor| (NIL "The category of Lie Algebras. It is used by the domains of non-commutative algebra, LiePolynomial and XPBWPolynomial.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{x} by \\axiom{r}.")) (|construct| (($ $ $) "\\axiom{construct(x,y)} returns the Lie bracket of \\axiom{x} and \\axiom{y}."))) │ │ │ +(|NumericComplexEigenPackage| |Par|) │ │ │ +((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue, its algebraic multiplicity, and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision eps. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x.}") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ -(|LieAlgebra| R) │ │ │ -((|constructor| (NIL "The category of Lie Algebras. It is used by the domains of non-commutative algebra, LiePolynomial and XPBWPolynomial.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{x} by \\axiom{r}.")) (|construct| (($ $ $) "\\axiom{construct(x,y)} returns the Lie bracket of \\axiom{x} and \\axiom{y}."))) │ │ │ -((|JacobiIdentity| . T) (|NullSquare| . T) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ -(|ListFunctions2| A B) │ │ │ -((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists, each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * \\spad{(2} * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = \\spad{[2} * 1, 3 * \\spad{(2} * 1)]}."))) │ │ │ +(|LinearSystemMatrixPackage1| F) │ │ │ +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = \\spad{B}.} It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = \\spad{B}.}")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = \\spad{B}} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = \\spad{B}.}")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = \\spad{B}} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB.}") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = \\spad{B}} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB.}") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = \\spad{B}} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = \\spad{B}} and a basis of the associated homogeneous system \\spad{AX = 0}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ListToMap| A B) │ │ │ -((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x}, which appears in position \\spad{n} in the first list, is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults, an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, \\spad{lb,} a, \\spad{f)}} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb.} Argument \\spad{f} is a default function to call if a is not in la. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, \\spad{lb,} \\spad{f)}} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb.} Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, \\spad{lb,} a, \\spad{b)}} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb.} Argument \\spad{b} is the default target value if a is not in la. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, \\spad{lb,} \\spad{b)}} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length, where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb.} Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, \\spad{lb,} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length, where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb.} Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb.} Error: if \\spad{la} and \\spad{lb} are not of equal length. Note that when this map is applied, an error occurs when applied to a value missing from la."))) │ │ │ +(|d02bhfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF, a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ListMonoidOps| S E |un|) │ │ │ -((|constructor| (NIL "This internal package represents monoid (abelian or not, with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, \\spad{a1\\^e1} \\spad{...} an\\^en)} returns \\spad{f(a1)\\^e1 \\spad{...} f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, \\spad{a1\\^e1} \\spad{...} an\\^en)} returns \\spad{a1\\^f(e1) \\spad{...} an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, \\spad{y)}} returns \\spad{x + \\spad{y}} where \\spad{+} is the monoid operation, which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, \\spad{x)}} returns \\spad{e * \\spad{s} + \\spad{x}} where \\spad{+} is the monoid operation, which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation, which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, \\spad{s)}} returns \\spad{a * \\spad{s}} where \\spad{*} is the monoid operation, which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l.}")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l,} destroying the element \\spad{l.}")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l.} This has some effect if the monoid is non-abelian, \\spad{reverse(a1\\^e1 \\spad{...} an\\^en) = an\\^en \\spad{...} a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, \\spad{n)}} returns the factor of the n^th monomial of \\spad{l.}")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, \\spad{n)}} returns the exponent of the n^th monomial of \\spad{l.}")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l.}")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (for example, s^e or \\spad{e} * \\spad{s).}")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l.}")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (for example. 0 or 1), \\spad{fop(a, \\spad{b)}} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (for example \\spad{a + \\spad{b},} \\spad{a * \\spad{b},} \\spad{ab}), and \\spad{fexp(a, \\spad{n)}} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (for example \\spad{n a}, \\spad{n * a}, \\spad{a \\spad{**} \\spad{n},} \\spad{a\\^n})."))) │ │ │ +(|MultFiniteFactorize| OV E F PG) │ │ │ +((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Magma| |VarSet|) │ │ │ -((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(x)} returns the list of distinct entries of \\axiom{x}")) (|right| (($ $) "\\axiom{right(x)} returns right subtree of \\axiom{x} or error if retractable?(x) is true.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(x)} tests if \\axiom{x} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(x)} return \\axiom{x} without the first entry or error if retractable?(x) is true.")) (|mirror| (($ $) "\\axiom{mirror(x)} returns the reversed word of \\axiom{x}. That is \\axiom{x} itself if retractable?(x) is \\spad{true} and \\axiom{mirror(z) * mirror(y)} if \\axiom{x} is \\axiom{y*z}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(x,y)} returns \\axiom{true} iff \\axiom{x} is smaller than \\axiom{y} w.r.t. the lexicographical ordering induced by \\axiom{VarSet}. N.B. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(x)} returns the number of entries in \\axiom{x}.")) (|left| (($ $) "\\axiom{left(x)} returns left subtree of \\axiom{x} or error if retractable?(x) is true.")) (|first| ((|#1| $) "\\axiom{first(x)} returns the first entry of the tree \\axiom{x}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(x)} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) \\indented{1}{corresponding to \\axiom{x} by removing parentheses.}")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[x,y]}."))) │ │ │ +(|PatternMatch| |Base| |Subject| |Pat|) │ │ │ +((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match expr.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match expr.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match expr.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) │ │ │ NIL │ │ │ +((|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (AND (|not| (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|))))) (|not| (|HasCategory| |#2| (QUOTE (|Ring|))))) (AND (|HasCategory| |#2| (QUOTE (|Ring|))) (|not| (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|))))))) │ │ │ +(|BitAggregate|) │ │ │ +((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive-or of bit aggregates \\axiom{a} and \\axiom{b}.")) (|or| (($ $ $) "\\spad{a or \\spad{b}} returns the logical or of bit aggregates \\axiom{a} and \\axiom{b}.")) (|and| (($ $ $) "\\spad{a and \\spad{b}} returns the logical and of bit aggregates \\axiom{a} and \\axiom{b}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical nor of bit aggregates \\axiom{a} and \\axiom{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical nand of bit aggregates \\axiom{a} and \\axiom{b}.")) (^ (($ $) "\\spad{^ \\spad{b}} returns the logical not of bit aggregate \\axiom{b}.")) (|not| (($ $) "\\spad{not(b)} returns the logical not of bit aggregate \\axiom{b}."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|LazyStreamAggregate&| A S) │ │ │ -((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?', for example 'first' and 'rest', will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. \\indented{1}{this function should only be called on streams which are} \\indented{1}{known to be finite.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..] \\spad{X} n:=filterUntil(i+->i>100,m) \\spad{X} numberOfComputedEntries \\spad{n} \\spad{X} complete \\spad{n} \\spad{X} numberOfComputedEntries \\spad{n}")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed, if necessary, \\indented{1}{so that 'st' will have at least \\spad{'n'} explicit entries or so} \\indented{1}{that all entries of 'st' will be computed if 'st' is finite} \\indented{1}{with length \\spad{<=} \\spad{n.}} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} numberOfComputedEntries \\spad{m} \\spad{X} extend(m,20) \\spad{X} numberOfComputedEntries \\spad{m}")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly \\indented{1}{computed entries of stream \\spad{st} which exist immediately prior to the} \\indented{1}{time this function is called.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} numberOfComputedEntries \\spad{m}")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s.} \\indented{1}{Cautrion: this function should only be called after a \\spad{empty?}} \\indented{1}{test has been made since there no error check.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} \\spad{rst} \\spad{m}")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s.} \\indented{1}{Caution: this function should only be called after a \\spad{empty?}} \\indented{1}{test has been made since there no error check.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} frst \\spad{m}")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s.} \\indented{1}{Caution: the first node must be a lazy evaluation mechanism} \\indented{1}{(satisfies \\spad{lazy?(s) = true}) as there is no error check.} \\indented{1}{Note that a call to this function may} \\indented{1}{or may not produce an explicit first entry}")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} \\indented{1}{is a lazy evaluation mechanism which could produce an} \\indented{1}{additional entry to \\spad{s.}} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} lazy? \\spad{m}")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an \\indented{1}{(explicitly) empty stream.} \\indented{1}{Note that this is a null test which will not cause lazy evaluation.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} explicitlyEmpty? \\spad{m}")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has \\indented{1}{explicitly computed entries, and \\spad{false} otherwise.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} explicitEntries? \\spad{m}")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\indented{1}{st satisfying the predicate \\spad{f.}} \\indented{1}{Note that \\spad{select(f,st) = \\spad{[x} for \\spad{x} in \\spad{st} | f(x)]}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} select(x+->prime? x,m)")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\indented{1}{st which do not satisfy the predicate \\spad{f.}} \\indented{1}{Note that \\spad{remove(f,st) = \\spad{[x} for \\spad{x} in \\spad{st} | not f(x)]}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..] \\spad{X} f(i:PositiveInteger):Boolean \\spad{==} even? \\spad{i} \\spad{X} remove(f,m)"))) │ │ │ +(|Asp55| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs, needed for NAG routines e04dgf and e04ucf, for example: \\blankline \\tab{5}SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER\\br \\tab{4}&,USER)\\br \\tab{5}DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*)\\br \\tab{5}INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE\\br \\tab{5}IF(NEEDC(1).GT.0)THEN\\br \\tab{7}C(1)=X(6)**2+X(1)**2\\br \\tab{7}CJAC(1,1)=2.0D0*X(1)\\br \\tab{7}CJAC(1,2)=0.0D0\\br \\tab{7}CJAC(1,3)=0.0D0\\br \\tab{7}CJAC(1,4)=0.0D0\\br \\tab{7}CJAC(1,5)=0.0D0\\br \\tab{7}CJAC(1,6)=2.0D0*X(6)\\br \\tab{5}ENDIF\\br \\tab{5}IF(NEEDC(2).GT.0)THEN\\br \\tab{7}C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2\\br \\tab{7}CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1)\\br \\tab{7}CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1))\\br \\tab{7}CJAC(2,3)=0.0D0\\br \\tab{7}CJAC(2,4)=0.0D0\\br \\tab{7}CJAC(2,5)=0.0D0\\br \\tab{7}CJAC(2,6)=0.0D0\\br \\tab{5}ENDIF\\br \\tab{5}IF(NEEDC(3).GT.0)THEN\\br \\tab{7}C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2\\br \\tab{7}CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1)\\br \\tab{7}CJAC(3,2)=2.0D0*X(2)\\br \\tab{7}CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1))\\br \\tab{7}CJAC(3,4)=0.0D0\\br \\tab{7}CJAC(3,5)=0.0D0\\br \\tab{7}CJAC(3,6)=0.0D0\\br \\tab{5}ENDIF\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MeshCreationRoutinesForThreeDimensions|) │ │ │ -((|constructor| (NIL "This package has no description")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) │ │ │ +(|IntegerLinearDependence| R) │ │ │ +((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + \\spad{...} + cn*vn = u}, \"failed\" if no such rational numbers ci's exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + \\spad{...} + cn*vn = 0} and not all the ci's are 0, \"failed\" if the vi's are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the vi's are linearly dependent over the integers, \\spad{false} otherwise."))) │ │ │ +NIL │ │ │ +NIL │ │ │ +(|ParametrizationPackage| K |symb| |PolyRing| E |ProjPt| PCS |Plc|) │ │ │ +((|constructor| (NIL "The following is part of the PAFF package")) (|parametrize| ((|#6| |#3| |#7| (|Integer|)) "\\spad{parametrize(f,pl,n)} returns t**n * parametrize(f,p).") ((|#6| |#3| |#3| |#7|) "\\spad{parametrize(f,g,pl)} returns the local parametrization of the rational function \\spad{f/g} at the place \\spad{pl.} Note that local parametrization of the place must have first been compute and set. For simple point on a curve, this done with \\spad{pointToPlace}. The local parametrization places corresponding to a leaf in a desingularization tree are compute at the moment of their \"creation\". (See package \\spad{DesingTreePackage}.") ((|#6| |#3| |#7|) "\\spad{parametrize(f,pl)} returns the local parametrization of the polynomial function \\spad{f} at the place \\spad{pl.} Note that local parametrization of the place must have first been compute and set. For simple point on a curve, this done with \\spad{pointToPlace}. The local parametrization places corresponding to a leaf in a desingularization tree are compute at the moment of their \"creation\". (See package \\spad{DesingTreePackage}."))) │ │ │ +NIL │ │ │ +NIL │ │ │ +(|SparseMultivariateTaylorSeries| |Coef| |Var| SMP) │ │ │ +((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n.} SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|series| (($ (|Stream| |#3|)) "\\spad(series(st)) creates a series from a stream of coefficients")) (|coefficients| (((|Stream| |#3|) $) "\\spad{coefficients(s)) gives a stream of coefficients of \\spad{s,} for example, [coefficient(s,0), coefficient(s,1), ...]")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, \\spad{n)}} gives the terms of total degree \\spad{n.} \\blankline \\spad{X} xts:=x::TaylorSeries Fraction Integer \\spad{X} t1:=sin(xts) \\spad{X} coefficient(t1,3)"))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ +(|UnivariateTaylorSeriesCZero| |Coef| |var|) │ │ │ +((|constructor| (NIL "Part of the Package for Algebraic Function Fields in one variable PAFF")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)}, and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = \\spad{x}.} Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + \\spad{d))} + \\indented{1}{f(x^(a + 2 \\spad{d))} + \\spad{...} \\spad{}.} \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1, then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n)))=exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1, then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1, then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|)) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|)) (|devaluate| |#1|))))) (|HasCategory| (|NonNegativeInteger|) (QUOTE (|SemiGroup|))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ +(|MultivariateLifting| E OV R P) │ │ │ +((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\", using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F,} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) │ │ │ NIL │ │ │ NIL │ │ │ (|MoebiusTransform| F) │ │ │ ((|constructor| (NIL "MoebiusTransform(F) is the domain of fractional linear (Moebius) transformations over \\spad{F.} This a domain of 2-by-2 matrices acting on P1(F).")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + \\spad{d)}} where \\spad{m = moebius(a,b,c,d)} (see moebius from MoebiusTransform).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + \\spad{d)}} where \\spad{m = moebius(a,b,c,d)} (see moebius from MoebiusTransform).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x \\spad{->} 1 / \\spad{x}.}")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * \\spad{m}} (see shift from MoebiusTransform).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x \\spad{->} \\spad{k} * \\spad{x}.}")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * \\spad{m}} (see shift from MoebiusTransform).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x \\spad{->} \\spad{x} + \\spad{k}.}")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) │ │ │ ((|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|ModularField| R |Mod| |reduction| |merge| |exactQuo|) │ │ │ -((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing}, \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} is not documented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} is not documented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} is not documented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} is not documented"))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -NIL │ │ │ -(|MergeThing| S) │ │ │ -((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2.} Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1.}"))) │ │ │ -NIL │ │ │ +(|NAGLinkSupportPackage|) │ │ │ +((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) │ │ │ NIL │ │ │ -(|ModuleOperator| R M) │ │ │ -((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} is not documented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} is not documented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} is not documented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, \\spad{u} \\spad{+->} \\spad{g} u)} attaches the map \\spad{g} to \\spad{f.} \\spad{f} must be a basic operator \\spad{g} MUST be additive, \\spad{g(a + \\spad{b)} = g(a) + g(b)} for any \\spad{a}, \\spad{b} in \\spad{M.} This implies that \\spad{g(n a) = \\spad{n} g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) │ │ │ -((|leftUnitary| |has| |#1| (|CommutativeRing|)) (|rightUnitary| |has| |#1| (|CommutativeRing|)) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|)))) │ │ │ -(|MonoidRing| R M) │ │ │ -((|constructor| (NIL "\\spadtype{MonoidRing}(R,M), implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over f(a)g(b) such that ab = \\spad{c.} Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M.} Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol}, one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G,} where modules over \\spadtype{MonoidRing}(R,G) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f,} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f.}")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of u.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M.}")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m.}"))) │ │ │ -((|leftUnitary| |has| |#1| (|CommutativeRing|)) (|rightUnitary| |has| |#1| (|CommutativeRing|)) (|unitsKnown| . T)) │ │ │ -((AND (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|)))) │ │ │ -(|NumericContinuedFraction| F) │ │ │ -((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions for converting floating point numbers to continued fractions.")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) │ │ │ NIL │ │ │ +(|UnivariateFactorize| ZP) │ │ │ +((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m,} FinalFact is a Record s.t. FinalFact.contp=content \\spad{m,} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) │ │ │ NIL │ │ │ -(|NonCommutativeOperatorDivision| P F) │ │ │ -((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}s over a \\spadtype{Field}. Since the multiplication is in general non-commutative, these operations all have left- and right-hand versions. This package provides the operations based on left-division.\\br \\tab{5}[q,r] = leftDivide(a,b) means a=b*q+r")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q}, if it exists, \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''."))) │ │ │ NIL │ │ │ +(|TemplateUtilities|) │ │ │ +((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input, and removes comments, and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input, by parsing and interpreting it."))) │ │ │ NIL │ │ │ -(|NumericTubePlot| |Curve|) │ │ │ -((|constructor| (NIL "Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c.}"))) │ │ │ NIL │ │ │ +(|ComplexDoubleFloatVector|) │ │ │ +((|constructor| (NIL "This is a low-level domain which implements vectors (one dimensional arrays) of complex double precision floating point numbers. Indexing is 0 based, there is no bound checking (unless provided by lower level).")) (|vector| (($ (|List| (|Complex| (|DoubleFloat|)))) "\\spad{vector(l)} converts the list \\spad{l} to a vector. \\blankline \\spad{X} t1:List(Complex(DoubleFloat)):=[1+2*\\%i,3+4*\\%i,-5-6*\\%i] \\spad{X} t2:CDFVEC:=vector(t1)")) (|qnew| (($ (|Integer|)) "\\spad{qnew(n)} creates a new uninitialized vector of length \\spad{n.} \\blankline \\spad{X} t1:CDFVEC:=qnew 7"))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|SetCategory|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|OrderedSet|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|AbelianSemiGroup|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|AbelianMonoid|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|AbelianGroup|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|Monoid|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|Ring|))) (AND (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|RadicalCategory|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|Ring|)))) (AND (|HasCategory| (|Complex| (|DoubleFloat|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Complex|) (QUOTE (|DoubleFloat|))))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|Complex| (|DoubleFloat|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Complex|) (QUOTE (|DoubleFloat|))))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| (|Complex| (|DoubleFloat|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Complex|) (QUOTE (|DoubleFloat|))))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|SetCategory|)))))) │ │ │ +(|InnerCommonDenominator| R Q A B) │ │ │ +((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], \\spad{d]}} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the qi's.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the qi's.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for q1,...,qn."))) │ │ │ NIL │ │ │ -(|LazyStreamAggregate| S) │ │ │ -((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?', for example 'first' and 'rest', will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. \\indented{1}{this function should only be called on streams which are} \\indented{1}{known to be finite.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..] \\spad{X} n:=filterUntil(i+->i>100,m) \\spad{X} numberOfComputedEntries \\spad{n} \\spad{X} complete \\spad{n} \\spad{X} numberOfComputedEntries \\spad{n}")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed, if necessary, \\indented{1}{so that 'st' will have at least \\spad{'n'} explicit entries or so} \\indented{1}{that all entries of 'st' will be computed if 'st' is finite} \\indented{1}{with length \\spad{<=} \\spad{n.}} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} numberOfComputedEntries \\spad{m} \\spad{X} extend(m,20) \\spad{X} numberOfComputedEntries \\spad{m}")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly \\indented{1}{computed entries of stream \\spad{st} which exist immediately prior to the} \\indented{1}{time this function is called.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} numberOfComputedEntries \\spad{m}")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s.} \\indented{1}{Cautrion: this function should only be called after a \\spad{empty?}} \\indented{1}{test has been made since there no error check.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} \\spad{rst} \\spad{m}")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s.} \\indented{1}{Caution: this function should only be called after a \\spad{empty?}} \\indented{1}{test has been made since there no error check.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} frst \\spad{m}")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s.} \\indented{1}{Caution: the first node must be a lazy evaluation mechanism} \\indented{1}{(satisfies \\spad{lazy?(s) = true}) as there is no error check.} \\indented{1}{Note that a call to this function may} \\indented{1}{or may not produce an explicit first entry}")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} \\indented{1}{is a lazy evaluation mechanism which could produce an} \\indented{1}{additional entry to \\spad{s.}} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} lazy? \\spad{m}")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an \\indented{1}{(explicitly) empty stream.} \\indented{1}{Note that this is a null test which will not cause lazy evaluation.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} explicitlyEmpty? \\spad{m}")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has \\indented{1}{explicitly computed entries, and \\spad{false} otherwise.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} explicitEntries? \\spad{m}")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\indented{1}{st satisfying the predicate \\spad{f.}} \\indented{1}{Note that \\spad{select(f,st) = \\spad{[x} for \\spad{x} in \\spad{st} | f(x)]}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} select(x+->prime? x,m)")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\indented{1}{st which do not satisfy the predicate \\spad{f.}} \\indented{1}{Note that \\spad{remove(f,st) = \\spad{[x} for \\spad{x} in \\spad{st} | not f(x)]}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..] \\spad{X} f(i:PositiveInteger):Boolean \\spad{==} even? \\spad{i} \\spad{X} remove(f,m)"))) │ │ │ -((|nil| . T)) │ │ │ NIL │ │ │ -(|OrdinaryDifferentialRing| |Kernels| R |var|) │ │ │ -((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) │ │ │ -(((|commutative| "*") |has| |#2| (|Field|)) (|noZeroDivisors| |has| |#2| (|Field|)) (|canonicalUnitNormal| |has| |#2| (|Field|)) (|canonicalsClosed| |has| |#2| (|Field|)) (|unitsKnown| . T) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ -(|OrderedFreeMonoid| S) │ │ │ -((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si \\spad{**} ni])} where the si's are in \\spad{S,} and the ni's are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < \\spad{y}} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} w.r.t. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}. \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} varList \\spad{m1}")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}. \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} length \\spad{m1}")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\indented{1}{\\spad{[[a1, e1],...,[an, en]]}.} \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} factors \\spad{m1}")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, \\spad{n)}} returns the factor of the \\spad{n-th} \\indented{1}{monomial of \\spad{x}.} \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} nthFactor(m1,2)")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, \\spad{n)}} returns the exponent of the \\indented{1}{\\spad{n-th} monomial of \\spad{x}.} \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} nthExpon(m1,2)")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}. \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} size(m1,2)")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, \\spad{y)}} returns \\spad{[l, \\spad{m,} \\spad{r]}} such that \\indented{1}{\\spad{x = \\spad{l} * \\spad{m}} and \\spad{y = \\spad{m} * \\spad{r}} hold and such that} \\indented{1}{\\spad{l} and \\spad{r} have no overlap,} \\indented{1}{that is \\spad{overlap(l, \\spad{r)} = \\spad{[l,} 1, r]}.} \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} m2:=(x*y)$OFMONOID(Symbol) \\spad{X} overlap(m1,m2)")) (|divide| (((|Union| (|Record| (|:| |lm| (|Union| $ "failed")) (|:| |rm| (|Union| $ "failed"))) "failed") $ $) "\\spad{divide(x,y)} returns the left and right exact quotients of \\indented{1}{\\spad{x} by \\spad{y}, that is \\spad{[l,r]} such that \\spad{x = l*y*r}.} \\indented{1}{\"failed\" is returned iff \\spad{x} is not of the form \\spad{l * \\spad{y} * r}.} \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} m2:=(x*y)$OFMONOID(Symbol) \\spad{X} divide(m1,m2)")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, \\spad{s)}} returns the exact right quotient \\indented{1}{of \\spad{x} by \\spad{s}.} \\blankline \\spad{X} m1:=(x*y)$OFMONOID(Symbol) \\spad{X} div(m1,y)") (((|Union| $ "failed") $ $) "\\spad{rquo(x, \\spad{y)}} returns the exact right quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = \\spad{q} * y},} \\indented{1}{\"failed\" if \\spad{x} is not of the form \\spad{q * y}.} \\blankline \\spad{X} m1:=(q*y^3)$OFMONOID(Symbol) \\spad{X} m2:=(y^2)$OFMONOID(Symbol) \\spad{X} lquo(m1,m2)")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, \\spad{s)}} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{s}.} \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} lquo(m1,x)") (((|Union| $ "failed") $ $) "\\spad{lquo(x, \\spad{y)}} returns the exact left quotient of \\spad{x} \\indented{2}{by \\spad{y} that is \\spad{q} such that \\spad{x = \\spad{y} * q},} \\indented{1}{\"failed\" if \\spad{x} is not of the form \\spad{y * q}.} \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} m2:=(x*y)$OFMONOID(Symbol) \\spad{X} lquo(m1,m2)")) (|hcrf| (($ $ $) "\\spad{hcrf(x, \\spad{y)}} returns the highest common right \\indented{1}{factor of \\spad{x} and \\spad{y},} \\indented{1}{that is the largest \\spad{d} such that \\spad{x = a \\spad{d}}} \\indented{1}{and \\spad{y = \\spad{b} d}.} \\blankline \\spad{X} m1:=(x*y*z)$OFMONOID(Symbol) \\spad{X} m2:=(y*z)$OFMONOID(Symbol) \\spad{X} hcrf(m1,m2)")) (|hclf| (($ $ $) "\\spad{hclf(x, \\spad{y)}} returns the highest common left factor \\indented{1}{of \\spad{x} and \\spad{y},} \\indented{1}{that is the largest \\spad{d} such that \\spad{x = \\spad{d} a}} \\indented{1}{and \\spad{y = \\spad{d} b}.} \\blankline \\spad{X} m1:=(x*y*z)$OFMONOID(Symbol) \\spad{X} m2:=(x*y)$OFMONOID(Symbol) \\spad{X} hclf(m1,m2)")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} \\indented{1}{iff \\spad{x} is smaller than \\spad{y}} \\indented{1}{w.r.t. the pure lexicographical ordering induced by \\spad{S}.} \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} m2:=(x*y)$OFMONOID(Symbol) \\spad{X} lexico(m1,m2) \\spad{X} lexico(m2,m1)")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}. \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} mirror \\spad{m1}")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter. \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} rest \\spad{m1}")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}. \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} first \\spad{m1}")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s**n} returns the product of \\spad{s} by itself \\spad{n} times. \\blankline \\spad{X} m1:=(y**3)$OFMONOID(Symbol)")) (* (($ $ |#1|) "\\spad{x*s} returns the product of \\spad{x} by \\spad{s} on the right. \\blankline \\spad{X} m1:=(y**3)$OFMONOID(Symbol) \\spad{X} m1*x") (($ |#1| $) "\\spad{s*x} returns the product of \\spad{x} by \\spad{s} on the left. \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} \\spad{x*m1}"))) │ │ │ +(|Numeric| S) │ │ │ +((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, \\spad{n)}} returns a real approximation of \\spad{x} up to \\spad{n} decimal places, or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places, or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places, or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places, or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places, or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places, or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, \\spad{n)}} returns a complex approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places, or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places, or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x.}") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x.}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x.}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, \\spad{n)}} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x.}") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x.}") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x.}") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x.}") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x.}")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, \\spad{n)}} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x.}") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x.}") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x.}") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, \\spad{n)}} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x.}"))) │ │ │ NIL │ │ │ +((|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (AND (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (|HasCategory| |#1| (QUOTE (|Ring|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|)))) │ │ │ +(|AlgebraicIntegrate| R0 F UP UPUP R) │ │ │ +((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, \\spad{d)}} returns an algebraic function \\spad{g} such that \\spad{dg = \\spad{f}} if such a \\spad{g} exists, \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, \\spad{d)}} integrates \\spad{f} with respect to the derivation \\spad{d.} Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, \\spad{d)}} integrates \\spad{f} with respect to the derivation \\spad{d.}"))) │ │ │ NIL │ │ │ -(|OnePointCompletion| R) │ │ │ -((|constructor| (NIL "Completion with infinity. Adjunction of a complex infinity to a set.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one, \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) │ │ │ -((|unitsKnown| |has| |#1| (|OrderedRing|))) │ │ │ -((|HasCategory| |#1| (QUOTE (|OrderedRing|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|OrderedRing|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (OR (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|OrderedRing|))))) │ │ │ -(|OrderedCompletion| R) │ │ │ -((|constructor| (NIL "Completion with + and - infinity. Adjunction of two real infinites quantities to a set.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite, 1 if \\spad{x} is +infinity, and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) │ │ │ -((|unitsKnown| |has| |#1| (|OrderedRing|))) │ │ │ -((|HasCategory| |#1| (QUOTE (|OrderedRing|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|OrderedRing|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (OR (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|OrderedRing|))))) │ │ │ -(|UnivariateSkewPolynomialCategory&| S R) │ │ │ -((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) \\spad{x} + \\delta a}. This category is an evolution of the types MonogenicLinearOperator, OppositeMonogenicLinearOperator, and NonCommutativeOperatorDivision")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = \\spad{c} * a + \\spad{d} * \\spad{b} = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q}, if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = \\spad{q*b} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = \\spad{q*b} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{q*b} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * \\spad{c} + \\spad{b} * \\spad{d} = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q}, if it exists, \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * \\spad{l0}} for some a in \\spad{R,} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l.}")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{q*b} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a, returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, \\spad{c,} \\spad{m)}} returns \\spad{p(m)} where the action is given by \\spad{x \\spad{m} = \\spad{c} sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l.}")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator, \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\spad{^=} 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) │ │ │ -(|OrdinaryWeightedPolynomials| R |vl| |wl| |wtlevel|) │ │ │ -((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified, as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero, and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(R) into Weighted form, applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(R), ignoring weights"))) │ │ │ -((|leftUnitary| |has| |#1| (|CommutativeRing|)) (|rightUnitary| |has| |#1| (|CommutativeRing|)) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ -(|PseudoAlgebraicClosureOfPerfectFieldCategory|) │ │ │ -((|constructor| (NIL "This category exports the function for domains which implement dynamic extension using the simple notion of tower extensions. \\spad{++} A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension \\spad{(T} : K_0, K_1, ..., K_i...,K_n) where \\spad{K_0} = \\spad{K} and for \\spad{i} =1,2,...,n, K_i is an extension of K_{i-1} of degree > 1 and defined by an irreducible polynomial p(Z) in K_{i-1}. Two towers (T_1: K_01, K_11,...,K_i1,...,K_n1) and (T_2: K_02, K_12,...,K_i2,...,K_n2) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} T_2), that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1,2,...,n1} (or i=1,2,...,n2). Any algebraic operations defined for several elements are only defined if all of the concerned elements are coming from a set of related tower extensions.")) (|previousTower| (($ $) "\\spad{previousTower(a)} returns the previous tower extension over which the element a is defined.")) (|extDegree| (((|PositiveInteger|) $) "\\spad{extDegree(a)} returns the extension degree of the extension tower over which the element is defined.")) (|maxTower| (($ (|List| $)) "\\spad{maxTower(l)} returns the tower in the list having the maximal extension degree over the ground field. It has no meaning if the towers not related.")) (|distinguishedRootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) $) "\\spad{distinguishedRootsOf(p,a)} returns a (distinguised) root for each irreducible factor of the polynomial \\spad{p} (factored over the field defined by the element a)."))) │ │ │ +(|InnerPrimeField| |p|) │ │ │ +((|constructor| (NIL "InnerPrimeField(p) implements the field with \\spad{p} elements."))) │ │ │ ((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| $ (QUOTE (|CharacteristicZero|))) (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| $ (QUOTE (|Finite|)))) │ │ │ +(|NormRetractPackage| F |ExtF| |SUEx| |ExtP| |n|) │ │ │ +((|constructor| (NIL "This package has no description")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) │ │ │ NIL │ │ │ -(|PAdicInteger| |p|) │ │ │ -((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} p-adic numbers are represented as sum(i = 0.., a[i] * p^i), where the a[i] lie in 0,1,...,(p - 1)."))) │ │ │ -((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|PatternFunctions2| R S) │ │ │ -((|constructor| (NIL "Lifts maps to patterns")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, \\spad{p)}} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S.}"))) │ │ │ +(|LocalParametrizationOfSimplePointPackage| K |symb| |PolyRing| E |ProjPt| PCS |Plc|) │ │ │ +((|constructor| (NIL "This package is part of the PAFF package")) (|localize| (((|Record| (|:| |fnc| |#3|) (|:| |crv| |#3|) (|:| |chart| (|List| (|Integer|)))) |#3| |#5| |#3| (|Integer|)) "\\spad{localize(f,pt,crv,n)} returns a record containing the polynomials \\spad{f} and \\spad{crv} translate to the origin with respect to \\spad{pt.} The last element of the records, consisting of three integers contains information about the local parameter that will be used (either \\spad{x} or \\spad{y):} the first integer correspond to the variable that will be used as a local parameter.")) (|pointDominateBy| ((|#5| |#7|) "\\spad{pointDominateBy(pl)} returns the projective point dominated by the place \\spad{pl.}")) (|localParamOfSimplePt| (((|List| |#6|) |#5| |#3| (|Integer|)) "\\spad{localParamOfSimplePt(pt,pol,n)} computes the local parametrization of the simple point \\spad{pt} on the curve defined by pol. This local parametrization is done according to the standard open affine plane set by \\spad{n}")) (|pointToPlace| ((|#7| |#5| |#3|) "\\spad{pointToPlace(pt,pol)} takes for input a simple point \\spad{pt} on the curve defined by \\spad{pol} and set the local parametrization of the point.")) (|printInfo| (((|Boolean|)) "\\spad{printInfo()} returns the value of the \\spad{printInfo} flag.") (((|Boolean|) (|Boolean|)) "\\spad{printInfo(b)} set a flag such that when \\spad{true} \\spad{(b} \\spad{<-} true) prints some information during some critical computation."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PatternMatchListResult| R S L) │ │ │ -((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match, or a pair of PatternMatchResult, one for atoms (elements of the list), and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [r1,r2].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) │ │ │ +(|Quaternion| R) │ │ │ +((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a commutative ring. The main constructor function is \\spadfun{quatern} which takes 4 arguments: the real part, the \\spad{i} imaginary part, the \\spad{j} imaginary part and the \\spad{k} imaginary part."))) │ │ │ +((|noZeroDivisors| |has| |#1| (|EntireRing|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|EntireRing|))) (OR (|HasCategory| |#1| (QUOTE (|EntireRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Eltable|) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|RealNumberSystem|))) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|))))) │ │ │ +(|CommutativeRing|) │ │ │ +((|constructor| (NIL "The category of commutative rings with unity, rings where \\spadop{*} is commutative, and which have a multiplicative identity element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) │ │ │ +(((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|CoercibleTo| S) │ │ │ +((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S.}"))) │ │ │ NIL │ │ │ -(|PartitionsAndPermutations|) │ │ │ -((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions, and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,\\spad{l1} 1's,\\spad{l2} 2's,...,\\spad{ln} n's.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and l2.} \\indented{1}{For example,the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2}, 2 \\spad{3}'s, and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(l,u) on to all \\indented{1}{members \\spad{u} of \\spad{st,} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2,} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and l2.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions lp.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt.}")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l.}}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n.}") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,l,n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l.}}"))) │ │ │ NIL │ │ │ +(|IndexedBits| |mn|) │ │ │ +((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical And of \\spad{n} and \\spad{m.}")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical Or of \\spad{n} and \\spad{m.}")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical Not of \\spad{n.}"))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| (|Boolean|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Boolean|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Boolean|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Boolean|) (LIST (QUOTE |Evalable|) (QUOTE (|Boolean|)))) (|HasCategory| (|Boolean|) (QUOTE (|SetCategory|))))) │ │ │ +(|FiniteLinearAggregateSort| S V) │ │ │ +((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates. Sort package (in-place) for shallowlyMutable Finite Linear Aggregates")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) │ │ │ NIL │ │ │ -(|PoincareBirkhoffWittLyndonBasis| |VarSet|) │ │ │ -((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C.} Reutenauer (Oxford science publications).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|listOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{listOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, \\spad{l2,} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln}, where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) │ │ │ NIL │ │ │ +(|LieAlgebra| R) │ │ │ +((|constructor| (NIL "The category of Lie Algebras. It is used by the domains of non-commutative algebra, LiePolynomial and XPBWPolynomial.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{x} by \\axiom{r}.")) (|construct| (($ $ $) "\\axiom{construct(x,y)} returns the Lie bracket of \\axiom{x} and \\axiom{y}."))) │ │ │ +((|JacobiIdentity| . T) (|NullSquare| . T) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ -(|UnivariateSkewPolynomialCategory| R) │ │ │ -((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) \\spad{x} + \\delta a}. This category is an evolution of the types MonogenicLinearOperator, OppositeMonogenicLinearOperator, and NonCommutativeOperatorDivision")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = \\spad{c} * a + \\spad{d} * \\spad{b} = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q}, if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = \\spad{q*b} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = \\spad{q*b} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{q*b} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * \\spad{c} + \\spad{b} * \\spad{d} = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q}, if it exists, \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * \\spad{l0}} for some a in \\spad{R,} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l.}")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{q*b} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a, returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, \\spad{c,} \\spad{m)}} returns \\spad{p(m)} where the action is given by \\spad{x \\spad{m} = \\spad{c} sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l.}")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator, \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\spad{^=} 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}"))) │ │ │ -((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|BlowUpPackage| K |symb| |PolyRing| E BLMET) │ │ │ +((|constructor| (NIL "The following is part of the PAFF package")) (|stepBlowUp| (((|Record| (|:| |mult| (|NonNegativeInteger|)) (|:| |subMult| (|NonNegativeInteger|)) (|:| |blUpRec| (|List| (|Record| (|:| |recTransStr| (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|)) (|:| |recPoint| (|AffinePlane| |#1|)) (|:| |recChart| |#5|) (|:| |definingExtension| |#1|))))) (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|AffinePlane| |#1|) |#5| |#1|) "\\spad{stepBlowUp(pol,pt,n)} blow-up the point \\spad{pt} on the curve defined by \\spad{pol} in the affine neighbourhood specified by \\spad{n.}")) (|quadTransform| (((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|NonNegativeInteger|) |#5|) "\\spad{quadTransform(pol,n,chart)} apply the quadratique transformation to \\spad{pol} specified by \\spad{chart} has in quadTransform(pol,chart) and extract x**n to it, where \\spad{x} is the variable specified by the first integer in \\spad{chart} (blow-up exceptional coordinate).")) (|applyTransform| ((|#3| |#3| |#5|) "\\spad{applyTransform(pol,chart)} apply the quadratique transformation to \\spad{pol} specified by \\spad{chart} which consist of 3 integers. The last one indicates which varibles is set to 1, the first on indicates which variable remains unchange, and the second one indicates which variable oon which the transformation is applied. For example, [2,3,1] correspond to the following: \\spad{x} \\spad{->} 1, \\spad{y} \\spad{->} \\spad{y,} \\spad{z} \\spad{->} \\spad{yz} (here the variable are [x,y,z] in BlUpRing)."))) │ │ │ NIL │ │ │ -(|PendantTree| S) │ │ │ -((|constructor| (NIL "A PendantTree(S) is either a leaf? and is an \\spad{S} or has a left and a right both PendantTree(S)'s")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} is not documented \\blankline \\spad{X} t1:=ptree([1,2,3]) \\spad{X} t2:=ptree(t1,ptree([1,2,3])) \\spad{X} t2::Tree List PositiveInteger")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} is not documented \\blankline \\spad{X} t1:=ptree([1,2,3]) \\spad{X} ptree(t1,ptree([1,2,3]))") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree \\blankline \\spad{X} t1:=ptree([1,2,3])"))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|PermutationGroupExamples|) │ │ │ -((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric, alternating, dihedral, cyclic, direct products of cyclic, which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore, Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition lambda.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups Sn1,...,Snk.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6, 1 \\spad{<=} \\spad{j} \\spad{<=} 8. The faces of Rubik's Cube are labelled in the obvious way Front, Right, Up, Down, Left, Back and numbered from 1 to 6 in this given ordering, the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces, represented as a two digit integer ij where \\spad{i} is the numer of theface \\spad{(1} to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators, which represent a 90 degree turns of the faces, or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6, 1 \\spad{<=} \\spad{j} <=8. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,...,100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list li. Note that duplicates in the list will be removed. Error: if \\spad{li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,...,24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list li. Note that duplicates in the list will be removed. Error: if \\spad{li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,...,23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list li. Note that duplicates in the list will be removed. Error: if \\spad{li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,...,22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list li. Note that duplicates in the list will be removed. Error: if \\spad{li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,...,12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list li. Note that duplicates in the list will be removed Error: if \\spad{li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,...,11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list li. Note that duplicates in the list will be removed. error, if \\spad{li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of i1,...,ik. Note that duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,...,N.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers i1,...,ik. Note that duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,...,n.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order ni.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list li, generators are in general the n-2-cycle (li.3,...,li.n) and the 3-cycle (li.1,li.2,li.3), if \\spad{n} is odd and product of the 2-cycle (li.1,li.2) with n-2-cycle (li.3,...,li.n) and the 3-cycle (li.1,li.2,li.3), if \\spad{n} is even. Note that duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group An acting on the integers 1,...,n, generators are in general the n-2-cycle (3,...,n) and the 3-cycle (1,2,3) if \\spad{n} is odd and the product of the 2-cycle (1,2) with n-2-cycle (3,...,n) and the 3-cycle (1,2,3) if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list li, generators are the cycle given by \\spad{li} and the 2-cycle (li.1,li.2). Note that duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group \\spad{Sn} acting on the integers 1,...,n, generators are the n-cycle (1,...,n) and the 2-cycle (1,2)."))) │ │ │ +(|Plot3D|) │ │ │ +((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example, floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(false) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(false) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to i.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to i.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to i.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed, one list for each curve in the plot \\spad{p.}")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p.}")) (|refine| (($ $) "\\spad{refine(x)} is not documented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} is not documented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} is not documented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} is not documented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} is not documented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = f(t), \\spad{y} = g(t), \\spad{z} = h(t)} as \\spad{t} ranges over {/em[a,b]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} is not documented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = f(t), \\spad{y} = g(t), \\spad{z} = h(t)} as \\spad{t} ranges over {/em[a,b]}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PolyGroebner| F) │ │ │ -((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} This package is an interface package to the groebner basis package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain, but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis \\indented{1}{for the list of polynomials \\spad{lp} with the terms} \\indented{1}{ordered first by total degree and then} \\indented{1}{refined by reverse lexicographic ordering.} \\indented{1}{The variables are ordered by their position in the list lv.} \\blankline \\spad{X} totalGroebner([2*x^2+y, 2*y^2+x],[x,y])")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis \\indented{1}{for the list of polynomials \\spad{lp} in lexicographic order.} \\indented{1}{The variables are ordered by their position in the list lv.} \\blankline \\spad{X} lexGroebner([2*x^2+y, 2*y^2+x],[x,y])"))) │ │ │ +(|PolToPol| |lv| R) │ │ │ +((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PolynomialInterpolation| |xx| F) │ │ │ -((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) │ │ │ +(|GeneralSparseTable| |Key| |Entry| |Tbl| |dent|) │ │ │ +((|constructor| (NIL "A sparse table has a default entry, which is returned if no other value has been explicitly stored for a key."))) │ │ │ +((|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|)))) (OR (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) │ │ │ +(|UnivariateTaylorSeriesCategory| |Coef|) │ │ │ +((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) \\spad{**} a} computes a power of a power series. When the coefficient ring is a field, we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 \\spad{<=} \\spad{d} \\spad{<=} k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= \\spad{k}.}")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + \\spad{a1} \\spad{x} + \\spad{a2} \\spad{x**2} + ...)} returns \\spad{a1 + \\spad{a2} \\spad{x} + \\spad{a3} \\spad{x**2} + ...} Thus, this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + \\spad{a1} \\spad{x} + \\spad{a2} \\spad{x**2} + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + \\spad{a1} \\spad{x} + \\spad{a2} \\spad{x**2} + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms, where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|QuotientFieldCategory| S) │ │ │ +((|constructor| (NIL "QuotientField(S) is the category of fractions of an Integral Domain \\spad{S.}")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x.}")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x.}")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x.} \\spad{x} = wholePart(x) + fractionPart(x)")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\spad{%.}")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\spad{%.}")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x.}")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x.}")) (/ (($ |#1| |#1|) "\\spad{d1 / \\spad{d2}} returns the fraction \\spad{d1} divided by \\spad{d2.}"))) │ │ │ +((|nil| . T) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|PlotTools|) │ │ │ -((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) │ │ │ +(|MultiplicativeValuationAttribute|) │ │ │ +((|constructor| (NIL "The class of all euclidean domains such that \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}"))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ +(|BinarySearchTree| S) │ │ │ +((|constructor| (NIL "\\spad{BinarySearchTree(S)} is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S,} and a right and left which are both \\spad{BinaryTree(S)} Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees, one with elements \\indented{1}{greater than \\spad{x,} the other with elements less than \\spad{x.}} \\blankline \\spad{X} t1:=binarySearchTree [1,2,3,4] \\spad{X} split(3,t1)")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b.} \\blankline \\spad{X} t1:=binarySearchTree [1,2,3,4] \\spad{X} insertRoot!(5,t1)")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b.} \\blankline \\spad{X} t1:=binarySearchTree [1,2,3,4] \\spad{X} insert!(5,t1)")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} is not documented \\blankline \\spad{X} binarySearchTree [1,2,3,4]"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ +(|PositiveInteger|) │ │ │ +((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for positive integers.")) (|qcoerce| (($ (|Integer|)) "\\spad{qcoerce(n)} coerces \\spad{n} to \\spad{\\%} trusting that \\spad{n} is positive")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = yu*x")) (|gcd| (($ $ $) "\\spad{gcd(a, \\spad{b)}} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b.}"))) │ │ │ +(((|commutative| "*") . T)) │ │ │ NIL │ │ │ -(|PatternMatchPushDown| S A B) │ │ │ -((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression expr; res contains the variables of \\spad{pat} which are already matched and their matches. Note that this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by g(a) = f(a::B)."))) │ │ │ +(|IndexedMatrix| R |mnRow| |mnCol|) │ │ │ +((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasAttribute| |#1| (QUOTE (|commutative| "*"))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ +(|DistributedMultivariatePolynomial| |vl| R) │ │ │ +((|constructor| (NIL "\\indented{1}{Author: Barry Trager} Description: References: \\spad{Coxx07} Ideals, varieties and algorithms This type supports distributed multivariate polynomials whose variables are from a user specified list of symbols. The coefficient ring may be non commutative, but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) │ │ │ +(((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#2| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|))) (OR (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|OneDimensionalArrayAggregate&| A S) │ │ │ +((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically, these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property, that is, any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over, and access to, elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PartialFraction| R) │ │ │ -((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator, while the ``p-adic'' form expands each numerator p-adically via the prime \\spad{p} in the denominator. For computational efficiency, the compact form is used, though the p-adic form may be gotten by calling the function padicFraction}. For a general euclidean domain, it is not known how to factor the denominator. Thus the function partialFraction takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\indented{1}{\\spad{p}.} \\blankline \\spad{X} a:=(74/13)::PFR(INT) \\spad{X} wholePart(a)")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for \\indented{1}{constructing partial fractions. The second argument is the} \\indented{1}{denominator and should be factored.} \\blankline \\spad{X} partialFraction(1,factorial 10)")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction p-adically in the primes \\indented{1}{\\spad{p} in the denominator of \\spad{q}. For example,} \\indented{1}{\\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}.} \\indented{1}{Use compactFraction from PartialFraction to} \\indented{1}{return to compact form.} \\blankline \\spad{X} a:=partialFraction(1,factorial 10) \\spad{X} padicFraction(a)")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional \\indented{1}{terms in \\spad{p}. This returns 0 if there is no fractional} \\indented{1}{part.} \\blankline \\spad{X} a:=partialFraction(1,factorial 10) \\spad{X} b:=padicFraction(a) \\spad{X} numberOfFractionalTerms(b)")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from \\indented{1}{the partial fraction \\spad{p}.\\space{2}This returns 0 if the index} \\indented{1}{\\spad{n} is out of range.} \\blankline \\spad{X} a:=partialFraction(1,factorial 10) \\spad{X} b:=padicFraction(a) \\spad{X} nthFractionalTerm(b,3)")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional \\indented{1}{term. This returns 0 if there is no fractional part (use} \\indented{1}{wholePart from PartialFraction to get the whole part).} \\blankline \\spad{X} a:=partialFraction(1,factorial 10) \\spad{X} firstNumer(a)")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional \\indented{1}{term. This returns 1 if there is no fractional part (use} \\indented{1}{wholePart from PartialFraction to get the whole part).} \\blankline \\spad{X} a:=partialFraction(1,factorial 10) \\spad{X} firstDenom(a)")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} \\indented{1}{to the compact representation. In this form, the partial} \\indented{1}{fraction has only one fractional term per prime in the} \\indented{1}{denominator.} \\blankline \\spad{X} a:=partialFraction(1,factorial 10) \\spad{X} b:=padicFraction(a) \\spad{X} compactFraction(b)")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in \\indented{1}{factored form and creates a partial fraction.\\space{2}It is} \\indented{1}{necessary for the parts to be factored because it is not} \\indented{1}{known in general how to factor elements of \\spad{R} and} \\indented{1}{this is needed to decompose into partial fractions.} \\blankline \\spad{X} (13/74)::PFR(INT)") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and \\indented{1}{returns a single fraction.} \\blankline \\spad{X} a:=(13/74)::PFR(INT) \\spad{X} a::FRAC(INT)"))) │ │ │ +(|PseudoAlgebraicClosureOfRationalNumberCategory|) │ │ │ +((|constructor| (NIL "This category exports the function for the domain PseudoAlgebraicClosureOfRationalNumber which implement dynamic extension using the simple notion of tower extensions. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension \\spad{(T} : K_0, K_1, ..., K_i...,K_n) where \\spad{K_0} = \\spad{K} and for \\spad{i} =1,2,...,n, K_i is an extension of K_{i-1} of degree > 1 and defined by an irreducible polynomial p(Z) in K_{i-1}. Two towers (T_1: K_01, K_11,...,K_i1,...,K_n1) and (T_2: K_02, K_12,...,K_i2,...,K_n2) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} T_2), that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1,2,...,n1} (or i=1,2,...,n2). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) │ │ │ ((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|PatternMatchListAggregate| S R L) │ │ │ -((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l;} res contains the variables of \\spad{pat} which are already matched and their matches."))) │ │ │ -NIL │ │ │ -NIL │ │ │ -(|PatternMatchIntegerNumberSystem| I) │ │ │ -((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n;} res contains the variables of \\spad{pat} which are already matched and their matches."))) │ │ │ +(|LinearSystemPolynomialPackage| R E OV P) │ │ │ +((|constructor| (NIL "This package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols lvar."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PatternMatchTools| S R P) │ │ │ -((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P.}")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects lsubj, allowing for commutativity; \\spad{op} is the operator such that op(lpat) should match op(lsubj) at the end, \\spad{r} contains the previous matches, and match is a pattern-matching function on \\spad{P.}"))) │ │ │ +(|SystemSolvePackage| R) │ │ │ +((|constructor| (NIL "Symbolic solver for systems of rational functions with coefficients in an integral domain \\spad{R.} The systems are solved in the field of rational functions over \\spad{R.} Solutions are exact of the form variable = value when the value is a member of the coefficient domain \\spad{R.} Otherwise the solutions are implicitly expressed as roots of univariate polynomial equations over \\spad{R.} Care is taken to guarantee that the denominators of the input equations do not vanish on the solution sets. The arguments to solve can either be given as equations or as rational functions interpreted as equal to zero. The user can specify an explicit list of symbols to be solved for, treating all other symbols appearing as parameters or omit the list of symbols in which case the system tries to solve with respect to all symbols appearing in the input.")) (|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv;} the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf.} The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in eq.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p.}") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v.}") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation p=0, where \\spad{p} is a rational function with respect to the variable \\spad{v.}") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in le.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp.}") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv.}") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Partition|) │ │ │ -((|constructor| (NIL "Domain for partitions of positive integers Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus, \\spad{(5 2 2 1)} will represent \\spad{s5 * \\spad{s2**2} * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 \\spad{a2**n2} ...)} returns \\spad{n1! * \\spad{a1**n1} * \\spad{n2!} * \\spad{a2**n2} * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(li)} returns a list of 2-element lists. For each 2-element list, the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in li. There is a 2-element list for each value occurring in \\spad{l.}")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) │ │ │ +(|LeftOreRing|) │ │ │ +((|constructor| (NIL "This is the category of left ore rings, that is noncommutative rings without zero divisors where we can compute the least left common multiple.")) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) "\\spad{lcmCoef(c1, c2)} computes (llcm_res, coeff1, coeff2) such that llcm_res is least left common multiple of \\spad{c1} and \\spad{c2} and llcm_res = \\spad{coeff1*c1} = \\spad{coeff2*c2}"))) │ │ │ +((|noZeroDivisors| . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|CommutativeStarAttribute|) │ │ │ +((|constructor| (NIL "The class of all commutative semigroups in multiplicative notation. In other words domain \\spad{D} with \\spad{\"*\": (D,D) \\spad{->} \\spad{D}} which is commutative. Typically applied to rings."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|PowerSeriesCategory&| S |Coef| |Expon| |Var|) │ │ │ -((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note that this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f.}")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * \\spad{x1**n1} * \\spad{..} * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) │ │ │ +(|Localize| M R S) │ │ │ +((|constructor| (NIL "Localize(M,R,S) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R.}")) (|denom| ((|#3| $) "\\spad{denom \\spad{x}} returns the denominator of \\spad{x.}")) (|numer| ((|#1| $) "\\spad{numer \\spad{x}} returns the numerator of \\spad{x.}")) (/ (($ |#1| |#3|) "\\spad{m / \\spad{d}} divides the element \\spad{m} by \\spad{d.}") (($ $ |#3|) "\\spad{x / \\spad{d}} divides the element \\spad{x} by \\spad{d.}"))) │ │ │ +((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|OrderedAbelianGroup|)))) │ │ │ +(|CoerceVectorMatrixPackage| R) │ │ │ +((|constructor| (NIL "CoerceVectorMatrixPackage is an unexposed, technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix \\spad{R}} as vector over \\spadtype{Matrix Fraction Polynomial \\spad{R}}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix \\spad{R}} as vector over \\spadtype{Matrix Polynomial \\spad{R}}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|QuadraticForm| |n| K) │ │ │ -((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v,} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf.}")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric, square matrix \\spad{m.}"))) │ │ │ +(|PushVariables| R E OV PPR) │ │ │ +((|constructor| (NIL "This package has no description")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PowerSeriesCategory| |Coef| |Expon| |Var|) │ │ │ -((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note that this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f.}")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * \\spad{x1**n1} * \\spad{..} * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|d01WeightsPackage|) │ │ │ +((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type, and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x},} returning the value of \\omega (\\notequal 1) and the operator."))) │ │ │ NIL │ │ │ -(|Queue| S) │ │ │ -((|constructor| (NIL "Linked List implementation of a Queue")) (|member?| (((|Boolean|) |#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} member?(3,a)")) (|members| (((|List| |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} members a")) (|parts| (((|List| |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} parts a")) (|#| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} \\#a")) (|count| (((|NonNegativeInteger|) |#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} count(4,a)") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} count(x+->(x>2),a)")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} any?(x+->(x=4),a)")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} every?(x+->(x=4),a)")) (~= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} (a~=b)")) (= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} b:Queue INT:= queue [1,2,3,4,5] \\spad{X} (a=b)@Boolean")) (|coerce| (((|OutputForm|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} coerce a")) (|hash| (((|SingleInteger|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} hash a")) (|latex| (((|String|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} latex a")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} map!(x+->x+10,a) \\spad{X} a")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} map(x+->x+10,a) \\spad{X} a")) (|eq?| (((|Boolean|) $ $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} eq?(a,b)")) (|copy| (($ $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} copy a")) (|sample| (($) "\\blankline \\spad{X} sample()$Queue(INT)")) (|empty| (($) "\\blankline \\spad{X} b:=empty()$(Queue INT)")) (|empty?| (((|Boolean|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} empty? a")) (|bag| (($ (|List| |#1|)) "\\blankline \\spad{X} bag([1,2,3,4,5])$Queue(INT)")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} size?(a,5)")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} more?(a,9)")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} less?(a,9)")) (|length| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} length a")) (|rotate!| (($ $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} rotate! a")) (|back| ((|#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} back a")) (|front| ((|#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} front a")) (|inspect| ((|#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} inspect a")) (|insert!| (($ |#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} insert! (8,a) \\spad{X} a")) (|enqueue!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} enqueue! (9,a) \\spad{X} a")) (|extract!| ((|#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} extract! a \\spad{X} a")) (|dequeue!| ((|#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} dequeue! a \\spad{X} a")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) \\indented{1}{element \\spad{x,} second element y,...,and last (bottom) element \\spad{z.}} \\blankline \\spad{X} e:Queue INT:= queue [1,2,3,4,5]"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|SortedCache| S) │ │ │ -((|constructor| (NIL "A sorted cache of a cachable set \\spad{S} is a dynamic structure that keeps the elements of \\spad{S} sorted and assigns an integer to each element of \\spad{S} once it is in the cache. This way, equality and ordering on \\spad{S} are tested directly on the integers associated with the elements of \\spad{S,} once they have been entered in the cache.")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, \\spad{f)}} enters \\spad{x} in the cache, calling \\spad{f(x, \\spad{y)}} to determine whether \\spad{x < \\spad{y} (f(x,y) < 0), \\spad{x} = \\spad{y} (f(x,y) = 0)}, or \\spad{x > \\spad{y} (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, \\spad{f)}} enters \\spad{x} in the cache, calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y.} It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) │ │ │ NIL │ │ │ +(|FunctionSpace| R) │ │ │ +((|constructor| (NIL "Category for formal functions A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, \\spad{k)}} returns \\spad{f} viewed as a univariate fraction in \\spad{k.}")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\spad{%.}")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\spad{%.}")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R.}")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 \\spad{...} fm\\^em)} returns \\spad{(f1)\\^e1 \\spad{...} (fm)\\^em} as an element of \\spad{%,} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\spad{%.}")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not, then numer(f) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R.}")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\spad{%.}") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\spad{%.}") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\spad{%.}") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\spad{%.}")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, \\spad{x]}} if \\spad{p = \\spad{n} * \\spad{x}} and \\spad{n \\spad{<>} 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = \\spad{m1} +...+ \\spad{mn}} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * \\spad{...} * \\spad{x} \\spad{(n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, \\spad{s,} \\spad{n,} \\spad{f)}} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, \\spad{s,} \\spad{n,} \\spad{f)}} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,...,am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,...,am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], \\spad{y)}} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, \\spad{s,} \\spad{f,} \\spad{y)}} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f.}") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f.}") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f.}")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, \\spad{x,} \\spad{y,} \\spad{z,} \\spad{t)}} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, \\spad{x,} \\spad{y,} \\spad{z)}} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, \\spad{x,} \\spad{y)}} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, \\spad{x)}} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f.}")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R.} An error occurs if \\spad{f} is not an element of \\spad{R.}")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R.}"))) │ │ │ +((|unitsKnown| OR (|has| |#1| (|Ring|)) (|has| |#1| (|Group|))) (|leftUnitary| |has| |#1| (|CommutativeRing|)) (|rightUnitary| |has| |#1| (|CommutativeRing|)) ((|commutative| "*") |has| |#1| (|IntegralDomain|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|IntegralDomain|)) (|canonicalsClosed| |has| |#1| (|IntegralDomain|)) (|nil| . T)) │ │ │ NIL │ │ │ -(|Segment| S) │ │ │ -((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) │ │ │ +(|Reference| S) │ │ │ +((|constructor| (NIL "\\spadtype{Reference} is for making a changeable instance of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m.}")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n.}")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n.}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|OrderedRing|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) │ │ │ -(|SegmentFunctions2| R S) │ │ │ -((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s,} applying \\spad{f} to each value. For example, if \\spad{s = l..h by \\spad{k},} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed, where \\spad{lN \\spad{<=} \\spad{h} < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|)))) │ │ │ +(|AlgebraicallyClosedFunctionSpace| R) │ │ │ +((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, \\spad{y)}} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The yi's are expressed in radicals if possible, and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols y1,...,yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The yi's are expressed in radicals if possible. The returned symbols y1,...,yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, \\spad{y)}} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, \\spad{y)}} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},...,\\spad{'yn}. Note that the returned symbols y1,...,yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, \\spad{y)}} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note that the returned symbols y1,...,yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y.}")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y.}"))) │ │ │ +((|unitsKnown| . T) (|leftUnitary| . T) (|rightUnitary| . T) ((|commutative| "*") . T) (|noZeroDivisors| . T) (|canonicalUnitNormal| . T) (|canonicalsClosed| . T) (|nil| . T)) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|OrderedRing|)))) │ │ │ -(|SExpressionOf| |Str| |Sym| |Int| |Flt| |Expr|) │ │ │ -((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) │ │ │ +(|FunctionSpaceToUnivariatePowerSeries| R FE |Expon| UPS TRAN |x|) │ │ │ +((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x.} The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function, but the compiler won't allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is true, log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is false, these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))}, where \\spad{f(x)} has a pole, will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"}, \\spad{\"real: two sides\"}, \\spad{\"real: left side\"}, \\spad{\"real: right side\"}, and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"}, then no series expansion will be computed because, viewed as a function of a complex variable, \\spad{atan(f(x))} has an essential singularity. Otherwise, the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined, a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator), then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"}, no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series, we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a, the user should perform the substitution \\spad{x \\spad{->} \\spad{x} + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is true, log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is false, these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))}, where \\spad{f(x)} has a pole, will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"}, \\spad{\"real: two sides\"}, \\spad{\"real: left side\"}, \\spad{\"real: right side\"}, and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"}, then no series expansion will be computed because, viewed as a function of a complex variable, \\spad{atan(f(x))} has an essential singularity. Otherwise, the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined, a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator), then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"}, no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series, a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a, the user should perform the substitution \\spad{x \\spad{->} \\spad{x} + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Stack| S) │ │ │ -((|constructor| (NIL "Linked List implementation of a Stack")) (|member?| (((|Boolean|) |#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} member?(3,a)")) (|members| (((|List| |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} members a")) (|parts| (((|List| |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} parts a")) (|#| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} \\#a")) (|count| (((|NonNegativeInteger|) |#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} count(4,a)") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} count(x+->(x>2),a)")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} any?(x+->(x=4),a)")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} every?(x+->(x=4),a)")) (~= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} (a~=b)")) (= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} b:Stack INT:= stack [1,2,3,4,5] \\spad{X} (a=b)@Boolean")) (|coerce| (((|OutputForm|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} coerce a")) (|hash| (((|SingleInteger|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} hash a")) (|latex| (((|String|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} latex a")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} map!(x+->x+10,a) \\spad{X} a")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} map(x+->x+10,a) \\spad{X} a")) (|eq?| (((|Boolean|) $ $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} eq?(a,b)")) (|copy| (($ $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} copy a")) (|sample| (($) "\\blankline \\spad{X} sample()$Stack(INT)")) (|empty| (($) "\\blankline \\spad{X} b:=empty()$(Stack INT)")) (|empty?| (((|Boolean|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} empty? a")) (|bag| (($ (|List| |#1|)) "\\blankline \\spad{X} bag([1,2,3,4,5])$Stack(INT)")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} size?(a,5)")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} more?(a,9)")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} less?(a,9)")) (|depth| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} depth a")) (|top| ((|#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} top a")) (|inspect| ((|#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} inspect a")) (|insert!| (($ |#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} insert!(8,a) \\spad{X} a")) (|push!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} push!(9,a) \\spad{X} a")) (|extract!| ((|#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} extract! a \\spad{X} a")) (|pop!| ((|#1| $) "\\spad{pop! returns} the top element of the stack, destructively \\indented{1}{modifying the stack to remove that element.} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} pop! a \\spad{X} a")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) \\indented{1}{element \\spad{x,} second element y,...,and last element \\spad{z.}} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5]"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|TableauxBumpers| S) │ │ │ -((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row, producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls,} then zips (see map) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using slex, then creating a tableau using tab1.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau llp. Operation \\spad{bat1} is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau llp, using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<}, returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf,} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf,} and returns a record"))) │ │ │ +(|Partition|) │ │ │ +((|constructor| (NIL "Domain for partitions of positive integers Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus, \\spad{(5 2 2 1)} will represent \\spad{s5 * \\spad{s2**2} * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 \\spad{a2**n2} ...)} returns \\spad{n1! * \\spad{a1**n1} * \\spad{n2!} * \\spad{a2**n2} * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(li)} returns a list of 2-element lists. For each 2-element list, the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in li. There is a 2-element list for each value occurring in \\spad{l.}")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|StreamTaylorSeriesOperations| A) │ │ │ -((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic, where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r.}")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y'=sum(i=0 to \\spad{infinity,j=0} to infinity,b*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)}, and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + \\spad{d))} + f(x**(a + 2 \\spad{d))} + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1, then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If f(x) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b = sum(i+j=k,a)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b.}")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r.}")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 \\spad{a2,3} a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [r,r+1,r+2,...], where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient coef.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a}, or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / \\spad{b}} returns the power series quotient of \\spad{a} by \\spad{b.} An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b,} if the quotient exists, and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * \\spad{r}} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * \\spad{r} = \\spad{[a0} * \\spad{r,a1} * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = \\spad{[r} * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * \\spad{b}} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + \\spad{j} = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = \\spad{[-} a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - \\spad{b}} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = \\spad{[a0} - \\spad{b0,a1} - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + \\spad{b}} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = \\spad{[a0} + \\spad{b0,a1} + b1,..]}"))) │ │ │ +(|LinearOrdinaryDifferentialOperatorCategory&| S A) │ │ │ +((|constructor| (NIL "LinearOrdinaryDifferentialOperatorCategory is the category of differential operators with coefficients in a ring A with a given derivation. \\blankline Multiplication of operators corresponds to functional composition:\\br \\spad{(L1} * L2).(f) = \\spad{L1} \\spad{L2} \\spad{f}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) │ │ │ -(|Tableau| S) │ │ │ -((|constructor| (NIL "The tableau domain is for printing Young tableaux, and coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists \\spad{t}} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) │ │ │ +((|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ +(|PolynomialRing| R E) │ │ │ +((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring), and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used, for example, by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{x} : \\spad{p1} - \\spad{r} * x**e * \\spad{p2}"))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (AND (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|))) │ │ │ +(|FortranProgramCategory|) │ │ │ +((|constructor| (NIL "FortranProgramCategory provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(u)} translates \\axiom{u} into a legal FORTRAN subprogram."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ +(|ExtensibleLinearAggregate&| A S) │ │ │ +((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion, deletion, and concatenation efficient. However, access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from u.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{p(x)}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p.}")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position i.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position i.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from u.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{p(x)} is true.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements u.i through u.j.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{i}th element of u. \\blankline \\spad{X} Data:=Record(age:Integer,gender:String) \\spad{X} a1:AssociationList(String,Data):=table() \\spad{X} a1.\"tim\":=[55,\"male\"]$Data \\spad{X} delete!(a1,1)")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of u. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of u."))) │ │ │ NIL │ │ │ -(|TopLevelThreeSpace|) │ │ │ -((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point, curve, mesh components and any combination."))) │ │ │ +((|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) │ │ │ +(|PrincipalIdealDomain|) │ │ │ +((|constructor| (NIL "The category of constructive principal ideal domains, that is, where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the fi.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) │ │ │ +((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|CharacteristicPolynomialInMonogenicalAlgebra| R |PolR| E) │ │ │ +((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) │ │ │ NIL │ │ │ -(|TubePlot| |Curve|) │ │ │ -((|constructor| (NIL "Package for constructing tubes around 3-dimensional parametric curves. Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory}, a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube, or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is true, or if \\spad{b} is false, \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points, or the 'loops', of the given tube plot \\spad{t.}")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t.}"))) │ │ │ NIL │ │ │ +(|ElementaryFunction| R F) │ │ │ +((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) │ │ │ NIL │ │ │ -(|TranscendentalFunctionCategory&| S) │ │ │ -((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant pi."))) │ │ │ NIL │ │ │ +(|RadixUtilities|) │ │ │ +((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b.}"))) │ │ │ NIL │ │ │ -(|UserDefinedPartialOrdering| S) │ │ │ -((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, \\spad{b)}} compares a and \\spad{b} in the partial ordering induced by setOrder, and uses the ordering on \\spad{S} if a and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by setOrder is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest \\spad{l}} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S.}") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn.}")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, \\spad{b,} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder, and returns \\spad{fn(a, \\spad{b)}} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, \\spad{b)}} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < \\spad{b2} < \\spad{...} < \\spad{bm} < \\spad{a1} < \\spad{a2} < \\spad{...} < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < \\spad{c} < ai}\\space{2}for \\spad{c} not among the ai's and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the ai's,bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < \\spad{a2} < \\spad{...} < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for \\spad{i} = 1..n} and \\spad{b} not among the ai's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, \\spad{c)}} if neither is among the ai's.}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|OrderedSet|)))) │ │ │ -(|UniversalSegment| S) │ │ │ -((|constructor| (NIL "This domain provides segments which may be half open. That is, ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\spad{%.}")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment, that is, one with no upper bound."))) │ │ │ +(|StreamTranscendentalFunctionsNonCommutative| |Coef|) │ │ │ +((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring, where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st.}")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st.}")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st.}")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st.}")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st.}")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st.}")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st.}")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st.}")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st.}")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st.}")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st.}")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st.}")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st.}")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st.}")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st.}")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st.}")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st.}")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st.}")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st.}")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st.}")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st.}")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st.}")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st.}")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st.}")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 \\spad{**} st2} computes the power of a power series \\spad{st1} by another power series st2.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st.}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|OrderedRing|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) │ │ │ -(|TranscendentalFunctionCategory|) │ │ │ -((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant pi."))) │ │ │ NIL │ │ │ +(|UnivariatePolynomialCategory&| S R) │ │ │ +((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R.} No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(b)")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, \\spad{q)}} returns \\spad{[a, \\spad{b]}} such that polynomial \\spad{p = a \\spad{b}} and \\spad{a} is relatively prime to \\spad{q.}")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, \\spad{q,} r]}, when \\spad{p' \\spad{:=} p*lc(q)**(deg \\spad{p} - deg \\spad{q} + 1) = \\spad{c} * \\spad{p}} is pseudo right-divided by \\spad{q,} \\spad{p' = \\spad{s} \\spad{q} + \\spad{r}.}")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r,} the quotient when \\spad{p' \\spad{:=} p*lc(q)**(deg \\spad{p} - deg \\spad{q} + 1)} is pseudo right-divided by \\spad{q,} \\spad{p' = \\spad{s} \\spad{q} + \\spad{r}.}")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, \\spad{q)}} returns \\spad{h} if \\spad{f} = h(q), and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, \\spad{q)}} returns \\spad{h} if \\spad{p = h(q)}, and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, \\spad{q)}} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r.}") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b.}")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q.}")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p.}")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, \\spad{d,} x')} extends the R-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x',} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r,} for polynomials \\spad{p} and \\spad{q,} returns the remainder when \\spad{p' \\spad{:=} p*lc(q)**(deg \\spad{p} - deg \\spad{q} + 1)} is pseudo right-divided by \\spad{q,} \\spad{p' = \\spad{s} \\spad{q} + \\spad{r}.}")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q,} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n,} or \"failed\" if some exponent is not exactly divisible by \\spad{n.}")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n.}")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note that converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|unvectorise| (($ (|Vector| |#2|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the \\indented{1}{entries of \\spad{v} in the increasing order.} \\blankline \\spad{X} \\spad{t1:UP(x,FRAC(INT)):=3*x^3+4*x^2+5*x+6} \\spad{X} t2:=vectorise(t1,4) \\spad{X} t3:UP(x,FRAC(INT)):=unvectorise(t2)")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, \\spad{n)}} returns \\spad{[a0,...,a(n-1)]} where \\indented{1}{\\spad{p = \\spad{a0} + a1*x + \\spad{...} + a(n-1)*x**(n-1)} + higher order terms.} \\indented{1}{The degree of polynomial \\spad{p} can be different from \\spad{n-1}.} \\blankline \\spad{X} \\spad{t1:UP(x,FRAC(INT)):=3*x^3+4*x^2+5*x+6} \\spad{X} t2:=vectorise(t1,4)"))) │ │ │ NIL │ │ │ -(|VectorSpace&| A S) │ │ │ -((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y.}"))) │ │ │ +((|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|StepThrough|)))) │ │ │ +(|VectorCategory&| S R) │ │ │ +((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects, that is, finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(v,v)), that is, the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(v,v)), that is, the magnitude")) (|cross| (($ $ $) "\\spad{cross(u,v)} constructs the cross product of \\spad{u} and \\spad{v.} Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (i,j)'th element is u(i)*v(j).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y.} Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * \\spad{r}} multiplies each component of the vector \\spad{y} by the element \\spad{r.}") (($ |#2| $) "\\spad{r * \\spad{y}} multiplies the element \\spad{r} times each component of the vector \\spad{y.}") (($ (|Integer|) $) "\\spad{n * \\spad{y}} multiplies each component of the vector \\spad{y} by the integer \\spad{n.}")) (- (($ $ $) "\\spad{x - \\spad{y}} returns the component-wise difference of the vectors \\spad{x} and \\spad{y.} Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x.}")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n.}")) (+ (($ $ $) "\\spad{x + \\spad{y}} returns the component-wise sum of the vectors \\spad{x} and \\spad{y.} Error: if \\spad{x} and \\spad{y} are not of the same length."))) │ │ │ NIL │ │ │ +((|HasCategory| |#2| (QUOTE (|RadicalCategory|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|AbelianGroup|))) (|HasCategory| |#2| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) │ │ │ +(|e04fdfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF, a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) │ │ │ NIL │ │ │ -(|VectorSpace| S) │ │ │ -((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y.}"))) │ │ │ -((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ -(|ViewportPackage|) │ │ │ -((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage}, gi, into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points, \\spad{p0} throught \\spad{pn,} using the options specified in the list \\spad{options}") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points, \\spad{p0} throught \\spad{pn,} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor}, the line color is specified by \\spad{lineColor}, and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points, \\spad{p0} through \\spad{pn,} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn.}") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points, \\spad{p0} throught \\spad{pn,} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor}, the graph line color is specified by \\spad{lineColor}, and the size of the points is specified by \\spad{ptSize}."))) │ │ │ +(|RepeatedSquaring| S) │ │ │ +((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|XPolynomialsCat| |vl| R) │ │ │ -((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with variables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) │ │ │ -((|noZeroDivisors| |has| |#2| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|DirectProductFunctions2| |dim| A B) │ │ │ +((|constructor| (NIL "This package provides operations which all take as arguments direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B.} The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B.}")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, \\spad{v)}} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function func. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function func, increasing initial subsequences of the vector vec, and the element ident."))) │ │ │ NIL │ │ │ -(|XPolynomialRing| R E) │ │ │ -((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring), and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used, for instance, by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\indented{1}{\\spad{Sum(r_i w_i)}.}")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{# \\spad{p}} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) │ │ │ -((|unitsKnown| . T) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|noZeroDivisors| |has| |#1| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasAttribute| |#1| (QUOTE |unitsKnown|)) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (|HasAttribute| |#1| (QUOTE |noZeroDivisors|))) │ │ │ -(|AffineSpace| |dim| K) │ │ │ -((|constructor| (NIL "The following is all the categories and domains related to projective space and part of the PAFF package"))) │ │ │ NIL │ │ │ +(|Module| R) │ │ │ +((|constructor| (NIL "The category of modules over a commutative ring. \\blankline Axioms\\br \\tab{5}\\spad{1*x = x}\\br \\tab{5}\\spad{(a*b)*x = a*(b*x)}\\br \\tab{5}\\spad{(a+b)*x = (a*x)+(b*x)}\\br \\tab{5}\\spad{a*(x+y) = (a*x)+(a*y)}"))) │ │ │ +((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ -(|ApplyUnivariateSkewPolynomial| R M P) │ │ │ -((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, \\spad{f,} \\spad{m)}} returns \\spad{p(m)} where the action is given by \\spad{x \\spad{m} = f(m)}. \\spad{f} must be an R-pseudo linear map on \\spad{M.}"))) │ │ │ +(|List| S) │ │ │ +((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList}, this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and u2, then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|OpenMath|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ +(|AlgebraicFunctionField| F UP UPUP |modulus|) │ │ │ +((|constructor| (NIL "Function field defined by f(x, \\spad{y)} = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} is not documented"))) │ │ │ +((|noZeroDivisors| |has| (|Fraction| |#2|) (|Field|)) (|canonicalUnitNormal| |has| (|Fraction| |#2|) (|Field|)) (|canonicalsClosed| |has| (|Fraction| |#2|) (|Field|)) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| (|Fraction| |#2|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|FiniteFieldCategory|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|))) (OR (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|FiniteFieldCategory|)))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Finite|))) (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|Finite|))) (OR (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|)))) (AND (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|)))) (OR (AND (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|)))) (AND (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|FiniteFieldCategory|))))) (AND (|HasCategory| (|Fraction| |#2|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|)))) (OR (AND (|HasCategory| (|Fraction| |#2|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|)))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|FiniteFieldCategory|))))) │ │ │ +(|e04gcfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF, a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|OneDimensionalArrayFunctions2| A B) │ │ │ -((|constructor| (NIL "This package provides tools for operating on one-dimensional arrays with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\indented{1}{\\spad{a} resulting in a new one-dimensional array over a} \\indented{1}{possibly different underlying domain.} \\blankline \\spad{X} T1:=OneDimensionalArrayFunctions2(Integer,Integer) \\spad{X} map(x+->x+2,[i for \\spad{i} in 1..10])$T1")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each \\indented{1}{successive element of the} \\indented{1}{one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r.}} \\indented{1}{For example, \\spad{reduce(_+$Integer,[1,2,3],0)}} \\indented{1}{does \\spad{3+(2+(1+0))}. Note that third argument \\spad{r}} \\indented{1}{may be regarded as the identity element for the function \\spad{f.}} \\blankline \\spad{X} T1:=OneDimensionalArrayFunctions2(Integer,Integer) \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} reduce(adder,[i for \\spad{i} in 1..10],0)$T1")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\indented{1}{\\spad{reduce(f,x,r)} to more and more leading sub-arrays} \\indented{1}{x of one-dimensional array \\spad{a}.} \\indented{1}{More precisely, if \\spad{a} is \\spad{[a1,a2,...]}, then} \\indented{1}{\\spad{scan(f,a,r)} returns} \\indented{1}{\\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.} \\blankline \\spad{X} T1:=OneDimensionalArrayFunctions2(Integer,Integer) \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} scan(adder,[i for \\spad{i} in 1..10],0)$T1"))) │ │ │ +(|CartesianTensorFunctions2| |minix| |dim| S T$) │ │ │ +((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T.}")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|OneDimensionalArray| S) │ │ │ -((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s} \\blankline \\spad{X} oneDimensionalArray(10,0.0)") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l} \\blankline \\spad{X} oneDimensionalArray \\spad{[i**2} for \\spad{i} in 1..10]"))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ -(|TwoDimensionalArray| R) │ │ │ -((|constructor| (NIL "A TwoDimensionalArray is a two dimensional array with 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray's."))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|ArrayStack| S) │ │ │ -((|constructor| (NIL "A stack represented as a flexible array.")) (|member?| (((|Boolean|) |#1| $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} member?(3,a)")) (|members| (((|List| |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} members a")) (|parts| (((|List| |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} parts a")) (|#| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} \\#a")) (|count| (((|NonNegativeInteger|) |#1| $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} count(4,a)") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} count(x+->(x>2),a)")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} any?(x+->(x=4),a)")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} every?(x+->(x=4),a)")) (~= (((|Boolean|) $ $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} (a~=b)")) (= (((|Boolean|) $ $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} b:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} (a=b)@Boolean")) (|coerce| (((|OutputForm|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} coerce a")) (|hash| (((|SingleInteger|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} hash a")) (|latex| (((|String|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} latex a")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} map!(x+->x+10,a) \\spad{X} a")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} map(x+->x+10,a) \\spad{X} a")) (|eq?| (((|Boolean|) $ $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} eq?(a,b)")) (|copy| (($ $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} copy a")) (|sample| (($) "\\blankline \\spad{X} sample()$ArrayStack(INT)")) (|empty| (($) "\\blankline \\spad{X} b:=empty()$(ArrayStack INT)")) (|empty?| (((|Boolean|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} empty? a")) (|bag| (($ (|List| |#1|)) "\\blankline \\spad{X} bag([1,2,3,4,5])$ArrayStack(INT)")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} size?(a,5)")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} more?(a,9)")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} less?(a,9)")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth returns} the number of elements \\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} depth a")) (|top| ((|#1| $) "\\spad{top returns} the first item of the list without modifing the list \\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} top a")) (|inspect| ((|#1| $) "\\spad{inspect returns} the first item of the list without modifing the list \\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} inspect a")) (|insert!| (($ |#1| $) "\\spad{insert! destructively} modifies its argument and returns a new \\indented{1}{list with the element add to the front of the list} \\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} insert!(8,a) \\spad{X} a")) (|push!| ((|#1| |#1| $) "\\spad{push! destructively} modifies its argument and returns a new \\indented{1}{list with the element add to the front of the list} \\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} push!(9,a) \\spad{X} a")) (|extract!| ((|#1| $) "\\spad{extract! destructively} modifies its argument and returns the \\indented{1}{first item of the argument} \\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} extract! a \\spad{X} a")) (|pop!| ((|#1| $) "\\spad{pop! destructively} modifies its argument and returns the \\indented{1}{first item of the argument} \\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} pop! a \\spad{X} a")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) \\indented{1}{element \\spad{x,} second element y,...,and last element \\spad{z.}} \\blankline \\spad{X} c:ArrayStack INT:= arrayStack [1,2,3,4,5]"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|BitAggregate&| S) │ │ │ -((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive-or of bit aggregates \\axiom{a} and \\axiom{b}.")) (|or| (($ $ $) "\\spad{a or \\spad{b}} returns the logical or of bit aggregates \\axiom{a} and \\axiom{b}.")) (|and| (($ $ $) "\\spad{a and \\spad{b}} returns the logical and of bit aggregates \\axiom{a} and \\axiom{b}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical nor of bit aggregates \\axiom{a} and \\axiom{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical nand of bit aggregates \\axiom{a} and \\axiom{b}.")) (^ (($ $) "\\spad{^ \\spad{b}} returns the logical not of bit aggregate \\axiom{b}.")) (|not| (($ $) "\\spad{not(b)} returns the logical not of bit aggregate \\axiom{b}."))) │ │ │ +(|d01TransformFunctionType|) │ │ │ +((|constructor| (NIL "Since an infinite integral cannot be evaluated numerically it is necessary to transform the integral onto finite ranges. \\axiomType{d01TransformFunctionType} uses the mapping \\spad{x \\spad{->} 1/x} and contains the functions \\axiomFun{measure} and \\axiomFun{numericalIntegration}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|CyclicStreamTools| S ST) │ │ │ -((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,cycElt)}, where \\spad{cycElt} is a pointer to a \\indented{1}{node in the cyclic part of the cyclic stream \\spad{x,} returns a} \\indented{1}{pointer to the first node in the cycle} \\blankline \\spad{X} p:=repeating([1,2,3]) \\spad{X} q:=cons(4,p) \\spad{X} computeCycleEntry(q,cycleElt(q))")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a \\indented{1}{cyclic stream \\spad{t,} where \\spad{s} is a pointer to a node in the} \\indented{1}{cyclic part of \\spad{t.}} \\blankline \\spad{X} p:=repeating([1,2,3]) \\spad{X} q:=cons(4,p) \\spad{X} computeCycleLength(cycleElt(q))")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\indented{1}{s is cyclic and returns \"failed\" if \\spad{s} is not cyclic} \\blankline \\spad{X} p:=repeating([1,2,3]) \\spad{X} q:=cons(4,p) \\spad{X} cycleElt \\spad{q} \\spad{X} r:=[1,2,3]::Stream(Integer) \\spad{X} cycleElt \\spad{r}"))) │ │ │ +(|GaloisGroupPolynomialUtilities| R UP) │ │ │ +((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored}")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f.}")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f.} Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f.}")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p.}")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p.}")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p.}")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (leading coefficient equal to 1)."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|BitAggregate|) │ │ │ -((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive-or of bit aggregates \\axiom{a} and \\axiom{b}.")) (|or| (($ $ $) "\\spad{a or \\spad{b}} returns the logical or of bit aggregates \\axiom{a} and \\axiom{b}.")) (|and| (($ $ $) "\\spad{a and \\spad{b}} returns the logical and of bit aggregates \\axiom{a} and \\axiom{b}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical nor of bit aggregates \\axiom{a} and \\axiom{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical nand of bit aggregates \\axiom{a} and \\axiom{b}.")) (^ (($ $) "\\spad{^ \\spad{b}} returns the logical not of bit aggregate \\axiom{b}.")) (|not| (($ $) "\\spad{not(b)} returns the logical not of bit aggregate \\axiom{b}."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ +(|QuasiAlgebraicSet| R |Var| |Expon| |Dpoly|) │ │ │ +((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets, which is the intersection of a Zariski closed set, defined as the common zeros of a given list of polynomials (the defining polynomials for equations), and a principal Zariski open set, defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone, while the second, \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis, and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only, as it is inefficient compared to the other two, as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods, please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L.} While this may be obtained using the usual normal form algorithm, there is no canonical form for \\spad{q.} \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis, and the defining polynomial for the inequation reduced with respect to the basis, using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis, and the defining polynomial for the inequation reduced with respect to the basis, using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation, that is, the Zariski open part of \\spad{s.}")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations, that is, for the Zariski closed part of \\spad{s.}")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points, and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s,} but asserts the following: if \\spad{t} is true, then \\spad{s} is empty, if \\spad{t} is false, then \\spad{s} is non-empty, and if \\spad{t} = \"failed\", then no assertion is made (that is, \"don't know\"). Note: for internal use only, with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty, \\spad{false} if it is not, and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl,} and defining inequation \\spad{q} \\spad{^=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) │ │ │ NIL │ │ │ -(|IntegerCombinatoricFunctions| I) │ │ │ -((|constructor| (NIL "The \\spadtype{IntegerCombinatoricFunctions} package provides some standard functions in combinatorics.")) (|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,m)} returns the Stirling number of the second kind denoted \\spad{SS[n,m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,m)} returns the Stirling number of the first kind denoted \\spad{S[n,m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n.} This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,[m1,m2,...,mk])} returns the multinomial coefficient \\spad{n!/(m1! \\spad{m2!} \\spad{...} mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note that \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,r)} returns the binomial coefficient \\indented{1}{\\spad{C(n,r) = n!/(r! (n-r)!)}, where \\spad{n \\spad{>=} \\spad{r} \\spad{>=} 0}.} \\indented{1}{This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time.} \\blankline \\spad{X} [binomial(5,i) for \\spad{i} in 0..5]"))) │ │ │ +((AND (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))))) │ │ │ +(|FreeLieAlgebra| |VarSet| R) │ │ │ +((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}.")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(p, [x1,...,xn], [v1,...,vn])} replaces \\axiom{xi} by \\axiom{vi} in \\axiom{p}.") (($ $ |#1| $) "\\axiom{eval(p, \\spad{x,} \\spad{v)}} replaces \\axiom{x} by \\axiom{v} in \\axiom{p}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(x)} returns the list of distinct entries of \\axiom{x}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(p,n)} returns the polynomial \\axiom{p} truncated at order \\axiom{n}.")) (|mirror| (($ $) "\\axiom{mirror(x)} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{x} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(l)} returns the bracketed form of \\axiom{l} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(x,y)} returns the right simplification of \\axiom{x} by \\axiom{y}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(x,y)} returns the left simplification of \\axiom{x} by \\axiom{y}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(x)} returns the greatest length of a word in the support of \\axiom{x}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(x)} returns \\axiom{x} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(x)} returns \\axiom{x} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(x)} returns \\axiom{x} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(x,y)} returns the scalar product of \\axiom{x} by \\axiom{y}, the set of words being regarded as an orthogonal basis."))) │ │ │ +((|JacobiIdentity| . T) (|NullSquare| . T) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ +(|MonogenicLinearOperator| R) │ │ │ +((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience, call the generator \\spad{G}. Then each value is equal to \\spad{sum(a(i)*G**i, \\spad{i} = 0..n)} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact, if \\spad{a} is in \\spad{R}, it is quite normal to have \\spad{a*G \\spad{\\^=} G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator, \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\spad{\\^=} 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), \\spad{i} = 0..n)}.}"))) │ │ │ +((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|d01fcfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF, a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ +(|FunctionSpaceAssertions| R F) │ │ │ +((|constructor| (NIL "Attaching assertions to symbols for pattern matching.")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists, multiple(x) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity \\spad{(0} in a sum, 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x, \\spad{s)}} makes the assertion \\spad{s} about \\spad{x.} Error: if \\spad{x} is not a symbol."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FiniteAbelianMonoidRingFunctions2| E R1 A1 R2 A2) │ │ │ -((|constructor| (NIL "This package provides a mapping function for \\spadtype{FiniteAbelianMonoidRing} The packages defined in this file provide fast fraction free rational interpolation algorithms. (see FAMR2, FFFG, FFFGF, NEWTON)")) (|map| ((|#5| (|Mapping| |#4| |#2|) |#3|) "\\spad{map}(f, a) applies the map \\spad{f} to each coefficient in a. It is assumed that \\spad{f} maps 0 to 0"))) │ │ │ +(|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| K |symb| BLMET) │ │ │ +((|constructor| (NIL "This domain is part of the PAFF package")) (|fullOutput| (((|Boolean|)) "\\spad{fullOutput returns} the value of the flag set by fullOutput(b).") (((|Boolean|) (|Boolean|)) "\\spad{fullOutput(b)} sets a flag such that when true, a coerce to OutputForm \\indented{1}{yields the full output of \\spad{tr,} otherwise encode(tr) is output} (see encode function). The default is false.")) (|fullOut| (((|OutputForm|) $) "\\spad{fullOut(tr)} yields a full output of \\spad{tr} (see function fullOutput)."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FlexibleArray| S) │ │ │ -((|constructor| (NIL "A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a} \\spad{delete(a,n)} meaning delete the last item from the array \\spad{a} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However, these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50% larger) array. Conversely, when the array becomes less than 1/2 full, it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps, stacks and sets."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ -(|e04mbfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF, an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) │ │ │ +(|Exit|) │ │ │ +((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note that It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows, for example, errors to be raised in one half of a type-balanced \\spad{if}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FreeLieAlgebra| |VarSet| R) │ │ │ -((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}.")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(p, [x1,...,xn], [v1,...,vn])} replaces \\axiom{xi} by \\axiom{vi} in \\axiom{p}.") (($ $ |#1| $) "\\axiom{eval(p, \\spad{x,} \\spad{v)}} replaces \\axiom{x} by \\axiom{v} in \\axiom{p}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(x)} returns the list of distinct entries of \\axiom{x}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(p,n)} returns the polynomial \\axiom{p} truncated at order \\axiom{n}.")) (|mirror| (($ $) "\\axiom{mirror(x)} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{x} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(l)} returns the bracketed form of \\axiom{l} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(x,y)} returns the right simplification of \\axiom{x} by \\axiom{y}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(x,y)} returns the left simplification of \\axiom{x} by \\axiom{y}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(x)} returns the greatest length of a word in the support of \\axiom{x}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(x)} returns \\axiom{x} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(x)} returns \\axiom{x} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(x)} returns \\axiom{x} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(x,y)} returns the scalar product of \\axiom{x} by \\axiom{y}, the set of words being regarded as an orthogonal basis."))) │ │ │ -((|JacobiIdentity| . T) (|NullSquare| . T) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +(|PrimitiveRatRicDE| F UP L LQ) │ │ │ +((|constructor| (NIL "In-field solution of Riccati equations, primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], \\spad{...} ,{} [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the fi's (up to the constant coefficient), in which case the equation for \\spad{z=y e^{-int \\spad{p}}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP}, not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], \\spad{...} ,{} [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the pi's (up to the constant coefficient), in which case the equation for \\spad{z=y e^{-int \\spad{p}}} is \\spad{Li \\spad{z} =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], \\spad{...} ,{} [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op \\spad{y} = 0} must be one of the ai's in which case the equation for \\spad{z = \\spad{y} e^{-int ai}} is \\spad{Li \\spad{z} = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F}, whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], \\spad{...} ,{} [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op \\spad{y} = 0} must have degree \\spad{mj} for some \\spad{j,} and its leading coefficient is then a zero of \\spad{pj.} In addition,\\spad{m1>m2> \\spad{...} >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op \\spad{y} = 0} is of the form \\spad{p/d + q'/q + \\spad{r}} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r.} Also, \\spad{deg(p) < deg(d)} and {gcd(d,q) = 1}."))) │ │ │ NIL │ │ │ -(|GaloisGroupUtilities| R) │ │ │ -((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|FloatingPointSystem|)))) │ │ │ -(|Heap| S) │ │ │ -((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|member?| (((|Boolean|) |#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} member?(3,a)")) (|members| (((|List| |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} members a")) (|parts| (((|List| |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} parts a")) (|#| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} \\#a")) (|count| (((|NonNegativeInteger|) |#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} count(4,a)") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} count(x+->(x>2),a)")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} any?(x+->(x=4),a)")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} every?(x+->(x=4),a)")) (~= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} (a~=b)")) (= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} b:Heap INT:= heap [1,2,3,4,5] \\spad{X} (a=b)@Boolean")) (|coerce| (((|OutputForm|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} coerce a")) (|hash| (((|SingleInteger|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} hash a")) (|latex| (((|String|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} latex a")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} map!(x+->x+10,a) \\spad{X} a")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} size?(a,5)")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} more?(a,9)")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} less?(a,9)")) (|sample| (($) "\\blankline \\spad{X} sample()$Heap(INT)")) (|merge!| (($ $ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} b:Heap INT:= heap [6,7,8,9,10] \\spad{X} merge!(a,b) \\spad{X} a \\spad{X} \\spad{b}")) (|merge| (($ $ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} b:Heap INT:= heap [6,7,8,9,10] \\spad{X} merge(a,b)")) (|max| ((|#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} max a")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} map(x+->x+10,a) \\spad{X} a")) (|inspect| ((|#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} inspect a")) (|insert!| (($ |#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} insert!(8,a) \\spad{X} a")) (|extract!| ((|#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} extract! a \\spad{X} a")) (|eq?| (((|Boolean|) $ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} eq?(a,b)")) (|empty| (($) "\\blankline \\spad{X} b:=empty()$(Heap INT)")) (|empty?| (((|Boolean|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} empty? a")) (|copy| (($ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} copy a")) (|bag| (($ (|List| |#1|)) "\\blankline \\spad{X} bag([1,2,3,4,5])$Heap(INT)")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the \\indented{1}{elements of ls.} \\blankline \\spad{X} i:Heap INT \\spad{:=} heap [1,6,3,7,5,2,4]"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|FloatSpecialFunctions|) │ │ │ -((|Gamma| (((|Complex| (|Float|)) (|Complex| (|Float|))) "\\spad{Gamma(x)} is the Euler Gamma function \\blankline \\spad{X} a:Complex(Float):=3.5*\\%i \\spad{X} Gamma(a)") (((|Float|) (|Float|)) "\\spad{Gamma(x)} is the Euler Gamma function \\blankline \\spad{X} Gamma(3.5)")) (|logGamma| (((|Complex| (|Float|)) (|Complex| (|Float|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. \\blankline \\spad{X} a:Complex(Float):=3.5*\\%i \\spad{X} logGamma(a)") (((|Float|) (|Float|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. \\blankline \\spad{X} logGamma(3.5)"))) │ │ │ +(|NumericalIntegrationProblem|) │ │ │ +((|constructor| (NIL "\\axiomType{NumericalIntegrationProblem} is a \\axiom{domain} for the representation of Numerical Integration problems for use by ANNA. \\blankline The representation is a Union of two record types - one for integration of a function of one variable: \\blankline \\axiomType{Record}(var:\\axiomType{Symbol},\\br fn:\\axiomType{Expression DoubleFloat},\\br range:\\axiomType{Segment OrderedCompletion DoubleFloat},\\br abserr:\\axiomType{DoubleFloat},\\br relerr:\\axiomType{DoubleFloat},) \\blankline and one for multivariate integration: \\blankline \\axiomType{Record}(fn:\\axiomType{Expression DoubleFloat},\\br range:\\axiomType{List Segment OrderedCompletion DoubleFloat},\\br abserr:\\axiomType{DoubleFloat},\\br relerr:\\axiomType{DoubleFloat},).")) (|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} is not documented")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} is not documented") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} is not documented"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|IndexedOneDimensionalArray| S |mn|) │ │ │ -((|constructor| (NIL "This is the basic one dimensional array data type."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ -(|IndexedTwoDimensionalArray| R |mnRow| |mnCol|) │ │ │ -((|constructor| (NIL "This domain implements two dimensional arrays"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|IntervalCategory| R) │ │ │ -((|constructor| (NIL "This category implements of interval arithmetic and transcendental functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{f} is contained within the interval \\axiom{i}, \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{true} if every element of \\spad{u} is negative, \\axiom{false} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{true} if every element of \\spad{u} is positive, \\axiom{false} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(u) - inf(u)}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{u}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{u}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[inf,sup]}, without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f.}") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f.}") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval, either \\axiom{[inf,sup]} if \\axiom{inf \\spad{<=} sup} or \\axiom{[sup,in]} otherwise."))) │ │ │ -((|approximate| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|TranscendentalManipulations| R F) │ │ │ +((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(x)*sin(y)} by \\spad{(cos(x-y)-cos(x+y))/2}, \\axiom{cos(x)*cos(y)} by \\spad{(cos(x-y)+cos(x+y))/2}, and \\axiom{sin(x)*cos(y)} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2}, and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2}, and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2}, and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2}, and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)}, and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)}, every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,\\spad{cos}, \\spad{sinh}, \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh}, \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs, \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) │ │ │ NIL │ │ │ -(|IrredPolyOverFiniteField| GF) │ │ │ -((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) │ │ │ +((AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (|devaluate| |#1|))))) │ │ │ +(|Group&| S) │ │ │ +((|constructor| (NIL "The class of multiplicative groups, that is, monoids with multiplicative inverses. \\blankline Axioms\\br \\tab{5}\\spad{leftInverse(\"*\":(\\%,\\%)->\\%,inv)}\\tab{5}\\spad{inv(x)*x = 1}\\br \\tab{5}\\spad{rightInverse(\"*\":(\\%,\\%)->\\%,inv)}\\tab{4}\\spad{x*inv(x) = 1}")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * \\spad{p} * \\spad{q}.}")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * \\spad{p} * \\spad{q};} this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n.}")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n.}")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y.}")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|IndexedFlexibleArray| S |mn|) │ │ │ -((|constructor| (NIL "A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations\\br \\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}\\br \\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}\\br Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However, these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50% larger) array. Conversely, when the array becomes less than 1/2 full, it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps, stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} \\indented{1}{and returns the previous value} \\blankline \\spad{X} T1:=IndexedFlexibleArray(Integer,20) \\spad{X} \\spad{shrinkable(false)$T1}")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and \\indented{1}{returns the new array.} \\blankline \\spad{X} T1:=IndexedFlexibleArray(Integer,20) \\spad{X} t2:=flexibleArray([i for \\spad{i} in 1..10])$T1 \\spad{X} physicalLength!(t2,15)")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can \\indented{1}{accomodate before growing} \\blankline \\spad{X} T1:=IndexedFlexibleArray(Integer,20) \\spad{X} t2:=flexibleArray([i for \\spad{i} in 1..10])$T1 \\spad{X} physicalLength \\spad{t2}")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l} \\blankline \\spad{X} T1:=IndexedFlexibleArray(Integer,20) \\spad{X} flexibleArray([i for \\spad{i} in 1..10])$T1"))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ -(|LiouvillianFunctionCategory|) │ │ │ -((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|fresnelC| (($ $) "\\spad{fresnelC(x)} is the Fresnel integral \\spad{C,} defined by C(x) = integrate(cos(t^2),t=0..x)")) (|fresnelS| (($ $) "\\spad{fresnelS(x)} is the Fresnel integral \\spad{S,} defined by S(x) = integrate(sin(t^2),t=0..x)")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x,} that is, \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x,} that is, the integral of \\spad{log(x) / \\spad{(1} - \\spad{x)} dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x,} that is, the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x,} that is, the integral of \\spad{cos(x) / \\spad{x} dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x,} that is, the integral of \\spad{sin(x) / \\spad{x} dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x,} that is, the integral of \\spad{exp(x)/x dx}."))) │ │ │ +(|NonAssociativeAlgebra| R) │ │ │ +((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs).\\br \\blankline Axioms\\br \\tab{5}r*(a*b) = (r*a)*b = a*(r*b)")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) │ │ │ +((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ +(|Segment| S) │ │ │ +((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) │ │ │ NIL │ │ │ -(|IntegerNumberTheoryFunctions|) │ │ │ -((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n.} the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n.} The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n.} The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1,0} or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1, \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod \\spad{p}} \\spad{(p} prime), which is 0 if \\spad{a} is 0, 1 if \\spad{a} is a quadratic residue \\spad{mod \\spad{p}} and \\spad{-1} otherwise. Note that because the primality test is expensive, if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd, \\spad{J(a/b) = product(L(a/p) for \\spad{p} in factor \\spad{b} \\spad{)}.} Note that by convention, 0 is returned if \\spad{gcd(a,b) \\spad{^=} 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth, The Art of Computer Programming Vol 2, Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n.} This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)}, where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n.}")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w,} where \\spad{w} is such that \\spad{w = \\spad{x1} mod \\spad{m1}} and \\spad{w = \\spad{x2} mod m2}. Note that \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)}, where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) │ │ │ +((|HasCategory| |#1| (QUOTE (|OrderedRing|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) │ │ │ +(|PatternMatchListAggregate| S R L) │ │ │ +((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l;} res contains the variables of \\spad{pat} which are already matched and their matches."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|LinearOrdinaryDifferentialOperatorCategory&| S A) │ │ │ -((|constructor| (NIL "LinearOrdinaryDifferentialOperatorCategory is the category of differential operators with coefficients in a ring A with a given derivation. \\blankline Multiplication of operators corresponds to functional composition:\\br \\spad{(L1} * L2).(f) = \\spad{L1} \\spad{L2} \\spad{f}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) │ │ │ +(|EigenPackage| R) │ │ │ +((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m.} The rational eigenvalues and the correspondent eigenvectors are explicitely computed, while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m.}")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue eigen, as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue alpha. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue alpha. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m.}")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ -(|LinearOrdinaryDifferentialOperatorCategory| A) │ │ │ -((|constructor| (NIL "LinearOrdinaryDifferentialOperatorCategory is the category of differential operators with coefficients in a ring A with a given derivation. \\blankline Multiplication of operators corresponds to functional composition:\\br \\spad{(L1} * L2).(f) = \\spad{L1} \\spad{L2} \\spad{f}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) │ │ │ -((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|LyndonWord| |VarSet|) │ │ │ -((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C.} Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors w.r.t. the pure lexicographical ordering. If \\axiom{a} and \\axiom{b} are two Lyndon words such that \\axiom{a < \\spad{b}} holds w.r.t lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule:\\br \\axiom{[[a,b],c]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds.\\br Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic.")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl, \\spad{n)}} returns the list of Lyndon words over the alphabet \\axiom{vl}, up to order \\axiom{n}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(vl, \\spad{n)}} returns an array of lists of Lyndon words over the alphabet \\axiom{vl}, up to order \\axiom{n}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(x)} returns the list of distinct entries of \\axiom{x}")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(w)} convert \\axiom{w} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(w)} convert \\axiom{w} into a Lyndon word, error if \\axiom{w} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(w)} test if \\axiom{w} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(x)} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(x)} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{x}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(x)} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{x}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(x,y)} returns \\axiom{true} iff \\axiom{x} is smaller than \\axiom{y} w.r.t. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(x)} returns the number of entries in \\axiom{x}.")) (|right| (($ $) "\\axiom{right(x)} returns right subtree of \\axiom{x} or error if retractable?(x) is true.")) (|left| (($ $) "\\axiom{left(x)} returns left subtree of \\axiom{x} or error if retractable?(x) is true.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(x)} tests if \\axiom{x} is a tree with only one entry."))) │ │ │ +(|ExpertSystemContinuityPackage|) │ │ │ +((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{u}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MatrixCategory&| S R |Row| |Col|) │ │ │ -((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m.} \\indented{1}{If the matrix is not invertible, \"failed\" is returned.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} inverse matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|pfaffian| ((|#2| $) "\\spad{pfaffian(m)} returns the Pfaffian of the matrix \\spad{m.} \\indented{1}{Error if the matrix is not antisymmetric} \\blankline \\spad{X} pfaffian [[0,1,0,0],[-1,0,0,0],[0,0,0,1],[0,0,-1,0]]")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using \\indented{1}{minors. Error: if the matrix is not square.} \\blankline \\spad{X} minordet matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} determinant matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of \\indented{1}{the matrix \\spad{m.}} \\blankline \\spad{X} nullSpace matrix [[1,2,3],[4,5,6],[7,8,9]]")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m.} This is \\indented{1}{the dimension of the null space of the matrix \\spad{m.}} \\blankline \\spad{X} nullity matrix [[1,2,3],[4,5,6],[7,8,9]]")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m.} \\blankline \\spad{X} rank matrix [[1,2,3],[4,5,6],[7,8,9]]")) (|columnSpace| (((|List| |#4|) $) "\\spad{columnSpace(m)} returns a sublist of columns of the matrix \\spad{m} \\indented{1}{forming a basis of its column space} \\blankline \\spad{X} columnSpace matrix [[1,2,3],[4,5,6],[7,8,9],[1,1,1]]")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m.} \\blankline \\spad{X} rowEchelon matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r.} Error: if \\spad{r = 0}. \\blankline \\spad{X} m:=matrix [[2**i for \\spad{i} in 2..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m/4}")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements \\indented{1}{of \\spad{m} by \\spad{r,} returning \\axiom{\"failed\"} if this is not possible.} \\blankline \\spad{X} m:=matrix [[2**i for \\spad{i} in 2..4] for \\spad{j} in 1..5] \\spad{X} exquo(m,2)")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m.} \\indented{1}{Error: if matrix is not square or if the matrix} \\indented{1}{is square but not invertible.} \\blankline \\spad{X} (matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]) \\spad{**} 2") (($ $ (|NonNegativeInteger|)) "\\spad{x \\spad{**} \\spad{n}} computes a non-negative integral power of the matrix \\spad{x.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m**3}")) (* ((|#3| |#3| $) "\\spad{r * \\spad{x}} is the product of the row vector \\spad{r} and the matrix \\spad{x.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} r:=transpose([1,2,3,4,5])@Matrix(INT) \\spad{X} \\spad{r*m}") ((|#4| $ |#4|) "\\spad{x * \\spad{c}} is the product of the matrix \\spad{x} and the column vector \\spad{c.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} c:=coerce([1,2,3,4,5])@Matrix(INT) \\spad{X} \\spad{m*c}") (($ (|Integer|) $) "\\spad{n * \\spad{x}} is an integer multiple. \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} 3*m") (($ $ |#2|) "\\spad{x * \\spad{r}} is the right scalar multiple of the scalar \\spad{r} and the \\indented{1}{matrix \\spad{x.}} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m*1/3}") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the \\indented{1}{matrix \\spad{x.}} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} 1/3*m") (($ $ $) "\\spad{x * \\spad{y}} is the product of the matrices \\spad{x} and \\spad{y.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m*m}")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{-m}") (($ $ $) "\\spad{x - \\spad{y}} is the difference of the matrices \\spad{x} and \\spad{y.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m-m}")) (+ (($ $ $) "\\spad{x + \\spad{y}} is the sum of the matrices \\spad{x} and \\spad{y.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m+m}")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix!(x,i1,j1,y)} destructively alters the \\indented{1}{matrix \\spad{x.} Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for} \\indented{1}{\\spad{i = i1,...,i1-1+nrows \\spad{y}} and \\spad{j = j1,...,j1-1+ncols y}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} setsubMatrix!(m,2,2,matrix [[3,3],[3,3]])")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\indented{1}{\\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2}} \\indented{1}{and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} subMatrix(m,1,3,2,4)")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th \\indented{1}{columns of \\spad{m.} This destructively alters the matrix.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} swapColumns!(m,2,4)")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th \\indented{1}{rows of \\spad{m.} This destructively alters the matrix.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} swapRows!(m,2,4)")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x.} \\indented{1}{If \\spad{y} is \\spad{m}-by-\\spad{n}, \\spad{rowList = [i<1>,i<2>,...,i]}} \\indented{1}{and \\spad{colList = [j<1>,j<2>,...,j]}, then \\spad{x(i,j)}} \\indented{1}{is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} setelt(m,3,3,10)")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an m-by-n matrix consisting \\indented{1}{of elements of \\spad{x,} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}} \\indented{1}{If \\spad{rowList = [i<1>,i<2>,...,i]} and \\spad{colList \\spad{=}} \\indented{1}{[j<1>,j<2>,...,j]}, then the \\spad{(k,l)}th entry of} \\indented{1}{\\spad{elt(x,rowList,colList)} is \\spad{x(i,j)}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} elt(m,3,3)")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list \\indented{1}{of lists.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} listOfLists \\spad{m}")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an \\indented{1}{equal number of columns. The entries of \\spad{y} appear below} \\indented{1}{of the entries of x.\\space{2}Error: if the matrices} \\indented{1}{do not have the same number of columns.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} vertConcat(m,m)")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with \\indented{1}{an equal number of rows. The entries of \\spad{y} appear to the right} \\indented{1}{of the entries of x.\\space{2}Error: if the matrices} \\indented{1}{do not have the same number of rows.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} horizConcat(m,m)")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an n-by-n matrix consisting of the first \\indented{1}{n rows of the m-by-n matrix \\spad{m.} Error: if} \\indented{1}{\\spad{m < n}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..2] for \\spad{j} in 1..5] \\spad{X} squareTop \\spad{m}")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} transpose \\spad{m}") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix. \\blankline \\spad{X} transpose([1,2,3])@Matrix(INT)")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix. \\blankline \\spad{X} coerce([1,2,3])@Matrix(INT)")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\indented{1}{M with block matrices m1,...,mk down the diagonal,} \\indented{1}{with 0 block matrices elsewhere.} \\indented{1}{More precisly: if \\spad{ri \\spad{:=} nrows mi}, \\spad{ci \\spad{:=} ncols mi},} \\indented{1}{then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix\\space{2}with entries} \\indented{1}{\\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))}, if} \\indented{1}{\\spad{(r1+..+r(l-1)) < \\spad{i} \\spad{<=} r1+..+rl} and} \\indented{1}{\\spad{(c1+..+c(l-1)) < \\spad{i} \\spad{<=} c1+..+cl},} \\indented{1}{\\spad{m.i.j} = 0\\space{2}otherwise.} \\blankline \\spad{X} diagonalMatrix [matrix [[1,2],[3,4]], matrix [[4,5],[6,7]]]") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements \\indented{1}{of \\spad{l} on the diagonal.} \\blankline \\spad{X} diagonalMatrix [1,2,3]")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an n-by-n matrix with \\spad{r's} on the \\indented{1}{diagonal and zeroes elsewhere.} \\blankline \\spad{X} z:Matrix(INT):=scalarMatrix(3,5)")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} constructs an \\spad{n * \\spad{m}} matrix with \\indented{1}{the \\spad{(i,j)} entry equal to \\spad{f(i,j)}} \\blankline \\spad{X} f(i:INT,j:INT):INT \\spad{==} i+j \\spad{X} matrix(3,4,f)") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix, where the \\indented{1}{list of lists is viewed as a list of the rows of the matrix.} \\blankline \\spad{X} matrix [[1,2,3],[4,5,6],[7,8,9],[1,1,1]]")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an m-by-n zero matrix. \\blankline \\spad{X} z:Matrix(INT):=zero(3,3)")) (|zero?| (((|Boolean|) $) "\\spad{zero?(m)} returns \\spad{true} if \\spad{m} is a zero matrix \\blankline zero? matrix \\spad{[[0} for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and \\indented{1}{antisymmetric (that is, \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j)}} \\indented{1}{and \\spad{false} otherwise.} \\blankline \\spad{X} antisymmetric? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and \\indented{1}{symmetric (that is, \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j)} and false} \\indented{1}{otherwise.} \\blankline \\spad{X} symmetric? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and \\indented{1}{diagonal (that is, all entries of \\spad{m} not on the diagonal are zero) and} \\indented{1}{false otherwise.} \\blankline \\spad{X} diagonal? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix \\indented{1}{(if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.} \\blankline \\spad{X} square? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) │ │ │ +(|PAdicIntegerCategory| |p|) │ │ │ +((|constructor| (NIL "This is the category of stream-based representations of the p-adic integers.")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b.} Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = \\spad{x} (mod p^n)} when \\spad{n} is positive, and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b,} where \\spad{x = a + \\spad{b} \\spad{p}.}")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a, where \\spad{x = a + \\spad{b} \\spad{p}.}")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p.}")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n.}")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x.}")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of p-adic digits of \\spad{x.}"))) │ │ │ +((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasAttribute| |#2| (QUOTE (|commutative| "*"))) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) │ │ │ -(|StorageEfficientMatrixOperations| R) │ │ │ -((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices, rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x \\spad{**} \\spad{n}} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a}, \\spad{b,} \\spad{c,} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * \\spad{b}} and stores the result in the matrix \\spad{c.} Error: if \\spad{a}, \\spad{b,} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * \\spad{r}} and stores the result in the matrix \\spad{c.} Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c.} Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - \\spad{b}} and stores the result in the matrix \\spad{c.} Error: if \\spad{a}, \\spad{b,} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c.} Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + \\spad{b}} and stores the result in the matrix \\spad{c.} Error: if \\spad{a}, \\spad{b,} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c.} Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) │ │ │ +(|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| K) │ │ │ +((|constructor| (NIL "This is part of the PAFF package, related to projective space."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|SparseUnivariateSkewPolynomial| R |sigma| |delta|) │ │ │ -((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) \\spad{x} + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, \\spad{x)}} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) │ │ │ -((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ -(|UnivariateSkewPolynomialCategoryOps| R C) │ │ │ -((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and divisions of univariate skew polynomials.")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, \\spad{b,} sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{q*b} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, \\spad{b,} sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, \\spad{b,} sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{q*b} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, \\spad{b,} sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, \\spad{c,} \\spad{m,} sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x \\spad{m} = \\spad{c} sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, \\spad{q,} sigma, delta)} returns \\spad{p * \\spad{q}.} \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) │ │ │ +(|RationalUnivariateRepresentationPackage| R |ls|) │ │ │ +((|constructor| (NIL "A package for computing the rational univariate representation of a zero-dimensional algebraic variety given by a regular triangular set. This package is essentially an interface for the \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover, if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls}, called the coordinate of \\spad{c}, and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover, a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient w.r.t. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) │ │ │ -(|UnivariateSkewPolynomial| |x| R |sigma| |delta|) │ │ │ -((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) \\spad{x} + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) │ │ │ -((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ -(|PseudoAlgebraicClosureOfFiniteFieldCategory|) │ │ │ -((|constructor| (NIL "This category exports the function for the domain PseudoAlgebraicClosureOfFiniteField which implement dynamic extension using the simple notion of tower extensions. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension \\spad{(T} : K_0, K_1, ..., K_i...,K_n) where \\spad{K_0} = \\spad{K} and for \\spad{i} =1,2,...,n, K_i is an extension of K_{i-1} of degree > 1 and defined by an irreducible polynomial p(Z) in K_{i-1}. Two towers (T_1: K_01, K_11,...,K_i1,...,K_n1) and (T_2: K_02, K_12,...,K_i2,...,K_n2) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} T_2), that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1,2,...,n1} (or i=1,2,...,n2). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|PrimitiveArrayFunctions2| A B) │ │ │ -((|constructor| (NIL "This package provides tools for operating on primitive arrays with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\indented{1}{\\spad{a} resulting in a new primitive array over a} \\indented{1}{possibly different underlying domain.} \\blankline \\spad{X} T1:=PrimitiveArrayFunctions2(Integer,Integer) \\spad{X} map(x+->x+2,[i for \\spad{i} in 1..10])$T1")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each \\indented{1}{successive element of the} \\indented{1}{primitive array \\spad{a} and an accumulant initialized to \\spad{r.}} \\indented{1}{For example, \\spad{reduce(_+$Integer,[1,2,3],0)}} \\indented{1}{does \\spad{3+(2+(1+0))}. Note that third argument \\spad{r}} \\indented{1}{may be regarded as the identity element for the function \\spad{f.}} \\blankline \\spad{X} T1:=PrimitiveArrayFunctions2(Integer,Integer) \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} reduce(adder,[i for \\spad{i} in 1..10],0)$T1")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\indented{1}{\\spad{reduce(f,x,r)} to more and more leading sub-arrays} \\indented{1}{x of primitive array \\spad{a}.} \\indented{1}{More precisely, if \\spad{a} is \\spad{[a1,a2,...]}, then} \\indented{1}{\\spad{scan(f,a,r)} returns} \\indented{1}{\\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.} \\blankline \\spad{X} T1:=PrimitiveArrayFunctions2(Integer,Integer) \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} scan(adder,[i for \\spad{i} in 1..10],0)$T1"))) │ │ │ +(|CanonicalAttribute|) │ │ │ +((|constructor| (NIL "The class of all domains which have canonical represenntation, that is, mathematically equal elements have the same data structure."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ +(|BasicOperator|) │ │ │ +((|constructor| (NIL "Basic system operators. A basic operator is an object that can be applied to a list of arguments from a set, the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, \\spad{l)}} sets the property list of \\spad{op} to \\spad{l.} Argument \\spad{op} is modified \"in place\", no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op, \\spad{s,} \\spad{v)}} attaches property \\spad{s} to op, and sets its value to \\spad{v.} Argument \\spad{op} is modified \"in place\", no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, \\spad{s)}} returns the value of property \\spad{s} if it is attached to op, and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op, \\spad{s)}} unattaches property \\spad{s} from op. Argument \\spad{op} is modified \"in place\", no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op, \\spad{s)}} attaches property \\spad{s} to op. Argument \\spad{op} is modified \"in place\", no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op, \\spad{s)}} tests if property \\spad{s} is attached to op.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op, \\spad{s)}} tests if the name of \\spad{op} is \\spad{s.}")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached, \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of op. If \\spad{op} has a \"\\%input\" property \\spad{f,} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of op. If \\spad{op} has a \"\\%display\" property \\spad{f,} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of op. If \\spad{op} has a \"\\%display\" property \\spad{f,} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached, and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to op. If \\spad{op1} and \\spad{op2} have the same name, and one of them has a \"\\%less?\" property \\spad{f,} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to op. If \\spad{op1} and \\spad{op2} have the same name, and one of them has an \"\\%equal?\" property \\spad{f,} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1} and \\spad{op2} should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, \\spad{n)}} attaches the weight \\spad{n} to op.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to op.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is n-ary, and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, \\spad{n)}} makes \\spad{f} into an n-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of op.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to op.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of op."))) │ │ │ NIL │ │ │ -(|U32VectorPolynomialOperations|) │ │ │ -((|constructor| (NIL "This is a low-level package which implements operations on vectors treated as univariate modular polynomials. Most operations takes modulus as parameter. Modulus is machine sized prime which should be small enough to avoid overflow in intermediate calculations.")) (|resultant| (((|Integer|) (|U32Vector|) (|U32Vector|) (|Integer|)) "\\spad{resultant(v1, \\spad{v2,} \\spad{p)}} computes resultant of \\spad{v1} and \\spad{v2} modulo \\spad{p.}")) (|extendedgcd| (((|List| (|U32Vector|)) (|U32Vector|) (|U32Vector|) (|Integer|)) "extended_gcd(v1, \\spad{v2,} \\spad{p)} gives \\spad{[g,} \\spad{c1,} \\spad{c2]} such that \\spad{g} is \\spad{gcd(v1, \\spad{v2,} p)}, \\spad{g = \\spad{c1*v1} + c2*v2} and degree(c1) < max(degree(v2) - degree(g), 0) and degree(c2) < max(degree(v1) - degree(g), 1)")) (|degree| (((|Integer|) (|U32Vector|)) "\\spad{degree(v)} is degree of \\spad{v} treated as polynomial")) (|lcm| (((|U32Vector|) (|PrimitiveArray| (|U32Vector|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{lcm(a, lo, hi, \\spad{p)}} computes \\spad{lcm} of elements a(lo), a(lo+1), ..., a(hi).")) (|gcd| (((|U32Vector|) (|PrimitiveArray| (|U32Vector|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{gcd(a, lo, hi, \\spad{p)}} computes \\spad{gcd} of elements a(lo), a(lo+1), ..., a(hi).") (((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|)) "\\spad{gcd(v1, \\spad{v2,} \\spad{p)}} computes monic \\spad{gcd} of \\spad{v1} and \\spad{v2} modulo \\spad{p.}")) (|tomodpa| (((|U32Vector|) (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "to_mod_pa(s, \\spad{p)} reduces coefficients of polynomial \\spad{s} modulo prime \\spad{p} and converts the result to vector")) (|vectorcombination| (((|Void|) (|U32Vector|) (|Integer|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "vector_combination(v1, \\spad{c1,} \\spad{v2,} \\spad{c2,} \\spad{n,} delta, \\spad{p)} replaces first \\spad{n} + 1 entires of \\spad{v1} by corresponding entries of \\spad{c1*v1+c2*x^delta*v2} mod \\spad{p.}")) (|remainder!| (((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|)) "\\spad{remainder!(p1,p2,i)} does polynomial remainder")) (|divide!| (((|Void|) (|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|)) "\\spad{divide!(p1,p2,p3,i)} does polynomial division.")) (|differentiate| (((|U32Vector|) (|U32Vector|) (|NonNegativeInteger|) (|Integer|)) "\\spad{differentiate(p,n,i)} does polynomial differentiation.") (((|U32Vector|) (|U32Vector|) (|Integer|)) "\\spad{differentiate(p,i)} does polynomial differentiation.")) (|pow| (((|U32Vector|) (|U32Vector|) (|PositiveInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{pow(u, \\spad{n,} \\spad{d,} \\spad{p)}} returns u^n truncated after degree \\spad{d,} except if n=1, in which case \\spad{u} itself is returned")) (|truncatedmuladd| (((|Void|) (|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|)) "truncated_mul_add(x, \\spad{y,} \\spad{z,} \\spad{d,} \\spad{p)} adds to \\spad{z} the produce x*y truncated after degree \\spad{d}")) (|truncatedmultiplication| (((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|)) "truncated_multiplication(x, \\spad{y,} \\spad{d,} \\spad{p)} computes x*y truncated after degree \\spad{d}")) (|mul| (((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|)) "\\spad{mul(p1,p2,i)} does polynomial multiplication.")) (|mulbyscalar| (((|Void|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|)) "mul_by_scalar(v, deg, \\spad{c,} \\spad{p)} treats \\spad{v} as coefficients of polynomial of degree deg and multiplies in place this polynomial by scalar \\spad{c}")) (|mulbybinomial| (((|Void|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|)) "mul_by_binomial(v, deg, \\spad{pt,} \\spad{p)} treats \\spad{v} as coefficients of polynomial of degree deg and multiplies in place this polynomial by binomial \\spad{(x} + pt). Highest coefficient of product is ignored.") (((|Void|) (|U32Vector|) (|Integer|) (|Integer|)) "mul_by_binomial(v, \\spad{pt,} \\spad{p)} treats \\spad{v} a polynomial and multiplies in place this polynomial by binomial \\spad{(x} + pt). Highest coefficient of product is ignored.")) (|vectoraddmul| (((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "vector_add_mul(v1, \\spad{v2,} \\spad{m,} \\spad{n,} \\spad{c,} \\spad{p)} sets v1(m), ..., v1(n) to corresponding extries in \\spad{v1} + \\spad{c*v2} modulo \\spad{p.}")) (|evalat| (((|Integer|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|)) "eval_at(v, deg, \\spad{pt,} \\spad{p)} treats \\spad{v} as coefficients of \\indented{1}{polynomial of degree deg and evaluates the} \\indented{1}{polynomial at point \\spad{pt} modulo \\spad{p}} \\blankline \\spad{X} a:=new(3,1)$U32VEC \\spad{X} \\spad{a.1:=2} \\spad{X} eval_at(a,2,3,1024) \\spad{X} eval_at(a,2,2,8) \\spad{X} eval_at(a,2,3,10)")) (|copyslice| (((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|)) "copy_first(v1, \\spad{v2,} \\spad{m,} \\spad{n)} copies the slice of \\spad{v2} starting at \\spad{m} elements and having \\spad{n} elements into corresponding positions in \\spad{v1.}")) (|copyfirst| (((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|)) "copy_first(v1, \\spad{v2,} \\spad{n)} copies first \\spad{n} elements of \\spad{v2} into \\spad{n} first positions in \\spad{v1.}"))) │ │ │ NIL │ │ │ +(|OctonionCategory| R) │ │ │ +((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions, and eight-dimensional non-associative algebra, doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0, and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational, that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion, equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion, equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion o.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion o.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion o.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion o.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion o.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion o.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion o.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion o.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts i,j,k,E,I,J,K of octonian o."))) │ │ │ +((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|PolynomialRing| R E) │ │ │ -((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring), and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used, for example, by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{x} : \\spad{p1} - \\spad{r} * x**e * \\spad{p2}"))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (AND (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|))) │ │ │ -(|ProjectiveSpace| |dim| K) │ │ │ -((|constructor| (NIL "This is part of the PAFF package, related to projective space."))) │ │ │ +(|PointPackage| R) │ │ │ +((|constructor| (NIL "This package has no description")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point, \\spad{pt,} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically, shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point, \\spad{pt,} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically, hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point, \\spad{pt,} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically, color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point, \\spad{pt,} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point, \\spad{pt,} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point, \\spad{pt,} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point, \\spad{pt,} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point, \\spad{pt,} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point, \\spad{pt,} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Plot3D|) │ │ │ -((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example, floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(false) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(false) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to i.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to i.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to i.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed, one list for each curve in the plot \\spad{p.}")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p.}")) (|refine| (($ $) "\\spad{refine(x)} is not documented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} is not documented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} is not documented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} is not documented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} is not documented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = f(t), \\spad{y} = g(t), \\spad{z} = h(t)} as \\spad{t} ranges over {/em[a,b]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} is not documented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = f(t), \\spad{y} = g(t), \\spad{z} = h(t)} as \\spad{t} ranges over {/em[a,b]}."))) │ │ │ +(|Cell| |TheField|) │ │ │ NIL │ │ │ NIL │ │ │ -(|StringAggregate&| S) │ │ │ -((|constructor| (NIL "A string aggregate is a category for strings, that is, one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t.} It is provided to allow juxtaposition of strings to work as concatenation. For example, \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example, \\axiom{rightTrim(\"(abc)\", charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example, \\axiom{rightTrim(\" abc \\spad{\",} char \" \\spad{\")}} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example, \\axiom{leftTrim(\"(abc)\", charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example, \\axiom{leftTrim(\" abc \\spad{\",} char \" \\spad{\")}} returns \\axiom{\"abc \\spad{\"}.}")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example, \\axiom{trim(\"(abc)\", charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example, \\axiom{trim(\" abc \\spad{\",} char \" \\spad{\")}} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc.}") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c.}")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c.}")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{j \\spad{>=} i} in \\spad{t} of the first character belonging to \\spad{cc.}") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t,} where \\axiom{j \\spad{>=} i} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{s(i..j)} of \\spad{s} by string \\spad{t.}")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c.} Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{p} matches subject \\axiom{s} where \\axiom{wc} is a wild card character. If no match occurs, the index \\axiom{0} is returned; otheriwse, the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example, \\axiom{match(\"*to*\",\"yorktown\",\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index i. Note that \\axiom{substring?(s,t,0) = prefix?(s,t)}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t.} Note that \\axiom{suffix?(s,t) \\spad{==} \\indented{1}{reduce(and,[s.i = t.(n - \\spad{m} + i) for \\spad{i} in 0..maxIndex s])}} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t.} Note that \\axiom{prefix?(s,t) \\spad{==} \\indented{2}{reduce(and,[s.i = t.i for \\spad{i} in 0..maxIndex s])}.}")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) │ │ │ NIL │ │ │ +(|FiniteDivisorCategory| F UP UPUP R) │ │ │ +((|constructor| (NIL "This category describes finite rational divisors on a curve, that is finite formal sums SUM(n * \\spad{P)} where the \\spad{n's} are integers and the \\spad{P's} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = \\spad{d},} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, \\spad{f]}} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, \\spad{d,} \\spad{d',} \\spad{g,} \\spad{r)}} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, \\spad{b,} \\spad{n)}} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, \\spad{y} = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, \\spad{b)}} makes the divisor \\spad{P:} \\spad{(x = a, \\spad{y} = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g.}") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal I.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D.}"))) │ │ │ NIL │ │ │ -(|StringAggregate|) │ │ │ -((|constructor| (NIL "A string aggregate is a category for strings, that is, one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t.} It is provided to allow juxtaposition of strings to work as concatenation. For example, \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example, \\axiom{rightTrim(\"(abc)\", charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example, \\axiom{rightTrim(\" abc \\spad{\",} char \" \\spad{\")}} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example, \\axiom{leftTrim(\"(abc)\", charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example, \\axiom{leftTrim(\" abc \\spad{\",} char \" \\spad{\")}} returns \\axiom{\"abc \\spad{\"}.}")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example, \\axiom{trim(\"(abc)\", charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example, \\axiom{trim(\" abc \\spad{\",} char \" \\spad{\")}} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc.}") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c.}")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c.}")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{j \\spad{>=} i} in \\spad{t} of the first character belonging to \\spad{cc.}") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t,} where \\axiom{j \\spad{>=} i} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{s(i..j)} of \\spad{s} by string \\spad{t.}")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c.} Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{p} matches subject \\axiom{s} where \\axiom{wc} is a wild card character. If no match occurs, the index \\axiom{0} is returned; otheriwse, the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example, \\axiom{match(\"*to*\",\"yorktown\",\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index i. Note that \\axiom{substring?(s,t,0) = prefix?(s,t)}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t.} Note that \\axiom{suffix?(s,t) \\spad{==} \\indented{1}{reduce(and,[s.i = t.(n - \\spad{m} + i) for \\spad{i} in 0..maxIndex s])}} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t.} Note that \\axiom{prefix?(s,t) \\spad{==} \\indented{2}{reduce(and,[s.i = t.i for \\spad{i} in 0..maxIndex s])}.}")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|SymmetricPolynomial| R) │ │ │ -((|constructor| (NIL "This domain implements symmetric polynomial"))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (AND (|HasCategory| (|Partition|) (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|))) │ │ │ -(|Stream| S) │ │ │ -((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\indented{1}{\\spad{s = [x0,x1,x2,..]} and} \\indented{1}{n is the smallest index such that \\spad{p(xn) = true}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..] \\spad{X} f(x:PositiveInteger):Boolean \\spad{==} \\spad{x} < 5 \\spad{X} filterUntil(f,m)")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\indented{1}{\\spad{s = [x0,x1,x2,..]} and} \\indented{1}{n is the smallest index such that \\spad{p(xn) = false}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..] \\spad{X} f(x:PositiveInteger):Boolean \\spad{==} \\spad{x} < 5 \\spad{X} filterWhile(f,m)")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\indented{1}{x and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous} \\indented{1}{element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.} \\blankline \\spad{X} f(x:Integer):Integer \\spad{==} \\spad{x+10} \\spad{X} generate(f,10)") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are \\indented{1}{equal to \\spad{f()}.} \\indented{1}{Note: \\spad{generate(f) = [f(),f(),f(),...]}.} \\blankline \\spad{X} f():Integer \\spad{==} 1 \\spad{X} generate(f)")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(x,n) to \\spad{y.} The function will expand \\indented{1}{cycles if necessary.} \\blankline \\spad{X} p:=[i for \\spad{i} in 1..] \\spad{X} q:=[i for \\spad{i} in 9..] \\spad{X} setrest!(p,4,q) \\spad{X} \\spad{p}")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all \\indented{1}{computed elements.} \\blankline \\spad{X} m:=[1,2,3,4,5,6,7,8,9,10,11,12] \\spad{X} n:=m::Stream(PositiveInteger) \\spad{X} showAllElements \\spad{n}")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries \\indented{1}{of st.} \\blankline \\spad{X} m:=[1,2,3] \\spad{X} n:=repeating(m) \\spad{X} output(5,n)")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} \\indented{1}{and whose \\spad{rest} is \\spad{s.}} \\indented{1}{Note: \\spad{cons(a,s) = concat(a,s)}.} \\blankline \\spad{X} m:=[1,2,3] \\spad{X} n:=repeating(m) \\spad{X} cons(4,n)")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f.} Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n.} \\blankline \\spad{X} m:=[1,2,3] \\spad{X} n:=repeating(m) \\spad{X} findCycle(3,n) \\spad{X} findCycle(2,n)")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic \\indented{1}{with period \\spad{l,} and \\spad{false} otherwise.} \\blankline \\spad{X} m:=[1,2,3] \\spad{X} n:=repeating(m) \\spad{X} repeating?(m,n)")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l.} \\blankline \\spad{X} m:=repeating([-1,0,1,2,3])")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream. \\blankline \\spad{X} m:=[1,2,3,4,5,6,7,8,9,10,11,12] \\spad{X} coerce(m)@Stream(Integer) \\spad{X} m::Stream(Integer)")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) │ │ │ -((|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|)))) │ │ │ -(|TaylorSeries| |Coef|) │ │ │ -((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, \\spad{n)}} gives the terms of total degree \\spad{n.}"))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ -(|MatrixCategory| R |Row| |Col|) │ │ │ -((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m.} \\indented{1}{If the matrix is not invertible, \"failed\" is returned.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} inverse matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|pfaffian| ((|#1| $) "\\spad{pfaffian(m)} returns the Pfaffian of the matrix \\spad{m.} \\indented{1}{Error if the matrix is not antisymmetric} \\blankline \\spad{X} pfaffian [[0,1,0,0],[-1,0,0,0],[0,0,0,1],[0,0,-1,0]]")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using \\indented{1}{minors. Error: if the matrix is not square.} \\blankline \\spad{X} minordet matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} determinant matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of \\indented{1}{the matrix \\spad{m.}} \\blankline \\spad{X} nullSpace matrix [[1,2,3],[4,5,6],[7,8,9]]")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m.} This is \\indented{1}{the dimension of the null space of the matrix \\spad{m.}} \\blankline \\spad{X} nullity matrix [[1,2,3],[4,5,6],[7,8,9]]")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m.} \\blankline \\spad{X} rank matrix [[1,2,3],[4,5,6],[7,8,9]]")) (|columnSpace| (((|List| |#3|) $) "\\spad{columnSpace(m)} returns a sublist of columns of the matrix \\spad{m} \\indented{1}{forming a basis of its column space} \\blankline \\spad{X} columnSpace matrix [[1,2,3],[4,5,6],[7,8,9],[1,1,1]]")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m.} \\blankline \\spad{X} rowEchelon matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r.} Error: if \\spad{r = 0}. \\blankline \\spad{X} m:=matrix [[2**i for \\spad{i} in 2..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m/4}")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements \\indented{1}{of \\spad{m} by \\spad{r,} returning \\axiom{\"failed\"} if this is not possible.} \\blankline \\spad{X} m:=matrix [[2**i for \\spad{i} in 2..4] for \\spad{j} in 1..5] \\spad{X} exquo(m,2)")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m.} \\indented{1}{Error: if matrix is not square or if the matrix} \\indented{1}{is square but not invertible.} \\blankline \\spad{X} (matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]) \\spad{**} 2") (($ $ (|NonNegativeInteger|)) "\\spad{x \\spad{**} \\spad{n}} computes a non-negative integral power of the matrix \\spad{x.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m**3}")) (* ((|#2| |#2| $) "\\spad{r * \\spad{x}} is the product of the row vector \\spad{r} and the matrix \\spad{x.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} r:=transpose([1,2,3,4,5])@Matrix(INT) \\spad{X} \\spad{r*m}") ((|#3| $ |#3|) "\\spad{x * \\spad{c}} is the product of the matrix \\spad{x} and the column vector \\spad{c.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} c:=coerce([1,2,3,4,5])@Matrix(INT) \\spad{X} \\spad{m*c}") (($ (|Integer|) $) "\\spad{n * \\spad{x}} is an integer multiple. \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} 3*m") (($ $ |#1|) "\\spad{x * \\spad{r}} is the right scalar multiple of the scalar \\spad{r} and the \\indented{1}{matrix \\spad{x.}} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m*1/3}") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the \\indented{1}{matrix \\spad{x.}} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} 1/3*m") (($ $ $) "\\spad{x * \\spad{y}} is the product of the matrices \\spad{x} and \\spad{y.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m*m}")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{-m}") (($ $ $) "\\spad{x - \\spad{y}} is the difference of the matrices \\spad{x} and \\spad{y.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m-m}")) (+ (($ $ $) "\\spad{x + \\spad{y}} is the sum of the matrices \\spad{x} and \\spad{y.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m+m}")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix!(x,i1,j1,y)} destructively alters the \\indented{1}{matrix \\spad{x.} Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for} \\indented{1}{\\spad{i = i1,...,i1-1+nrows \\spad{y}} and \\spad{j = j1,...,j1-1+ncols y}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} setsubMatrix!(m,2,2,matrix [[3,3],[3,3]])")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\indented{1}{\\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2}} \\indented{1}{and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} subMatrix(m,1,3,2,4)")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th \\indented{1}{columns of \\spad{m.} This destructively alters the matrix.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} swapColumns!(m,2,4)")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th \\indented{1}{rows of \\spad{m.} This destructively alters the matrix.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} swapRows!(m,2,4)")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x.} \\indented{1}{If \\spad{y} is \\spad{m}-by-\\spad{n}, \\spad{rowList = [i<1>,i<2>,...,i]}} \\indented{1}{and \\spad{colList = [j<1>,j<2>,...,j]}, then \\spad{x(i,j)}} \\indented{1}{is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} setelt(m,3,3,10)")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an m-by-n matrix consisting \\indented{1}{of elements of \\spad{x,} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}} \\indented{1}{If \\spad{rowList = [i<1>,i<2>,...,i]} and \\spad{colList \\spad{=}} \\indented{1}{[j<1>,j<2>,...,j]}, then the \\spad{(k,l)}th entry of} \\indented{1}{\\spad{elt(x,rowList,colList)} is \\spad{x(i,j)}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} elt(m,3,3)")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list \\indented{1}{of lists.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} listOfLists \\spad{m}")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an \\indented{1}{equal number of columns. The entries of \\spad{y} appear below} \\indented{1}{of the entries of x.\\space{2}Error: if the matrices} \\indented{1}{do not have the same number of columns.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} vertConcat(m,m)")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with \\indented{1}{an equal number of rows. The entries of \\spad{y} appear to the right} \\indented{1}{of the entries of x.\\space{2}Error: if the matrices} \\indented{1}{do not have the same number of rows.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} horizConcat(m,m)")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an n-by-n matrix consisting of the first \\indented{1}{n rows of the m-by-n matrix \\spad{m.} Error: if} \\indented{1}{\\spad{m < n}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..2] for \\spad{j} in 1..5] \\spad{X} squareTop \\spad{m}")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} transpose \\spad{m}") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix. \\blankline \\spad{X} transpose([1,2,3])@Matrix(INT)")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix. \\blankline \\spad{X} coerce([1,2,3])@Matrix(INT)")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\indented{1}{M with block matrices m1,...,mk down the diagonal,} \\indented{1}{with 0 block matrices elsewhere.} \\indented{1}{More precisly: if \\spad{ri \\spad{:=} nrows mi}, \\spad{ci \\spad{:=} ncols mi},} \\indented{1}{then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix\\space{2}with entries} \\indented{1}{\\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))}, if} \\indented{1}{\\spad{(r1+..+r(l-1)) < \\spad{i} \\spad{<=} r1+..+rl} and} \\indented{1}{\\spad{(c1+..+c(l-1)) < \\spad{i} \\spad{<=} c1+..+cl},} \\indented{1}{\\spad{m.i.j} = 0\\space{2}otherwise.} \\blankline \\spad{X} diagonalMatrix [matrix [[1,2],[3,4]], matrix [[4,5],[6,7]]]") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements \\indented{1}{of \\spad{l} on the diagonal.} \\blankline \\spad{X} diagonalMatrix [1,2,3]")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an n-by-n matrix with \\spad{r's} on the \\indented{1}{diagonal and zeroes elsewhere.} \\blankline \\spad{X} z:Matrix(INT):=scalarMatrix(3,5)")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} constructs an \\spad{n * \\spad{m}} matrix with \\indented{1}{the \\spad{(i,j)} entry equal to \\spad{f(i,j)}} \\blankline \\spad{X} f(i:INT,j:INT):INT \\spad{==} i+j \\spad{X} matrix(3,4,f)") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix, where the \\indented{1}{list of lists is viewed as a list of the rows of the matrix.} \\blankline \\spad{X} matrix [[1,2,3],[4,5,6],[7,8,9],[1,1,1]]")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an m-by-n zero matrix. \\blankline \\spad{X} z:Matrix(INT):=zero(3,3)")) (|zero?| (((|Boolean|) $) "\\spad{zero?(m)} returns \\spad{true} if \\spad{m} is a zero matrix \\blankline zero? matrix \\spad{[[0} for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and \\indented{1}{antisymmetric (that is, \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j)}} \\indented{1}{and \\spad{false} otherwise.} \\blankline \\spad{X} antisymmetric? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and \\indented{1}{symmetric (that is, \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j)} and false} \\indented{1}{otherwise.} \\blankline \\spad{X} symmetric? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and \\indented{1}{diagonal (that is, all entries of \\spad{m} not on the diagonal are zero) and} \\indented{1}{false otherwise.} \\blankline \\spad{X} diagonal? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix \\indented{1}{(if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.} \\blankline \\spad{X} square? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ +(|RightOpenIntervalRootCharacterization| |TheField| |ThePolDom|) │ │ │ +((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,c,p) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(p,r)} is \\spad{false} if \\axiom{p.r} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "\\axiom{size(rootChar)} is the size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) │ │ │ NIL │ │ │ -(|Tuple| S) │ │ │ -((|constructor| (NIL "This domain is used to interface with the interpreter's notion of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x} \\blankline \\spad{X} t1:PrimitiveArray(Integer):= \\spad{[i} for \\spad{i} in 1..10] \\spad{X} t2:=coerce(t1)$Tuple(Integer) \\spad{X} length(t2)")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x.} \\indented{1}{tuples are 0-based} \\blankline \\spad{X} t1:PrimitiveArray(Integer):= \\spad{[i} for \\spad{i} in 1..10] \\spad{X} t2:=coerce(t1)$Tuple(Integer) \\spad{X} select(t2,3)")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a \\blankline \\spad{X} t1:PrimitiveArray(Integer):= \\spad{[i} for \\spad{i} in 1..10] \\spad{X} t2:=coerce(t1)$Tuple(Integer)"))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|)))) │ │ │ -(|UnivariatePowerSeriesCategory&| S |Coef| |Expon|) │ │ │ -((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note that this category exports a substitution function if it is possible to multiply exponents. Also note that this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 \\spad{<=} \\spad{d} \\spad{<=} k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= \\spad{k}.}")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)}, where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f.}") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f.} This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n.}")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f.}")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms, where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) │ │ │ +(|PackageForAlgebraicFunctionField| K |symb| BLMET) │ │ │ +((|constructor| (NIL "\\indented{1}{Author: Gaetan Hache} Date created: June 1995 Date Last Updated: May 2010 by Tim Daly Description: References: \\spad{Hach95} Effective construction of algebraic geometry codes \\spad{Walk78} Algebraic Curves \\spad{Vogl07} Genus of a Plane Curve \\spad{Fult08} Algebraic Curves: An Introduction to Algebraic Geometry A package that implements the Brill-Noether algorithm. Part of the PAFF package")) (|ZetaFunction| (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|) (|PositiveInteger|)) "\\spad{ZetaFunction(pi)} eturns the Zeta function of the curve in constant field extension. Calculated by using the L-Polynomial") (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|)) "\\spad{ZetaFunction ()}eturns the Zeta function of the curve. Calculated by using the L-Polynomial")) (|numberPlacesDegExtDeg| (((|Integer|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberPlacesDegExtDeg(d, \\spad{n)}} returns the number of places of degree \\spad{d} in the constant field extension of degree \\spad{n}")) (|numberRatPlacesExtDeg| (((|Integer|) (|PositiveInteger|)) "\\spad{numberRatPlacesExtDeg(n)} returns the number of rational places in the constant field extenstion of degree \\spad{n}")) (|numberOfPlacesOfDegree| (((|Integer|) (|PositiveInteger|)) "\\spad{numberOfPlacesOfDegree(pi)} returns the number of places of the given degree")) (|placesOfDegree| (((|List| (|Places| |#1|)) (|PositiveInteger|)) "\\spad{placesOfDegree(d)} returns all places of degree \\spad{d} of the curve.")) (|classNumber| (((|Integer|)) "\\spad{classNumber()} returns the class number of the curve.")) (|LPolynomial| (((|SparseUnivariatePolynomial| (|Integer|)) (|PositiveInteger|)) "\\spad{LPolynomial(d)} returns the L-Polynomial of the curve in constant field extension of degree \\spad{d.}") (((|SparseUnivariatePolynomial| (|Integer|))) "\\spad{LPolynomial()} returns the L-Polynomial of the curve.")) (|adjunctionDivisor| (((|Divisor| (|Places| |#1|))) "\\spad{adjunctionDivisor computes} the adjunction divisor of the plane curve given by the polynomial set with the function setCurve.")) (|intersectionDivisor| (((|Divisor| (|Places| |#1|)) (|DistributedMultivariatePolynomial| |#2| |#1|)) "\\spad{intersectionDivisor(pol)} compute the intersection divisor (the Cartier divisor) of the form \\spad{pol} with the curve. If some intersection points lie in an extension of the ground field, an error message is issued specifying the extension degree needed to find all the intersection points. (If \\spad{pol} is not homogeneous an error message is issued).")) (|evalIfCan| (((|Union| |#1| "failed") (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Places| |#1|)) "\\spad{evalIfCan(u,pl)} evaluate the function \\spad{u} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) "\\spad{evalIfCan(f,g,pl)} evaluate the function \\spad{f/g} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) "\\spad{evalIfCan(f,pl)} evaluate \\spad{f} at the place \\spad{pl} (returns \"failed\" if it is a pole).")) (|eval| ((|#1| (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Places| |#1|)) "\\spad{eval(u,pl)} evaluate the function \\spad{u} at the place \\spad{pl.}") ((|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) "\\spad{eval(f,g,pl)} evaluate the function \\spad{f/g} at the place \\spad{pl.}") ((|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) "\\spad{eval(f,pl)} evaluate \\spad{f} at the place \\spad{pl.}")) (|interpolateForms| (((|List| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Divisor| (|Places| |#1|)) (|NonNegativeInteger|)) "\\spad{interpolateForms(d,n)} returns a basis of the interpolate forms of degree \\spad{n} of the divisor \\spad{d.}")) (|lBasis| (((|Record| (|:| |num| (|List| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|:| |den| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|Divisor| (|Places| |#1|))) "\\spad{lBasis computes} a basis associated to the specified divisor")) (|parametrize| (((|NeitherSparseOrDensePowerSeries| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) "\\spad{parametrize(f,pl)} returns a local parametrization of \\spad{f} at the place \\spad{pl}")) (|singularPoints| (((|List| (|ProjectivePlane| |#1|))) "\\spad{singularPoints()} returns the singular points of the \\indented{1}{curve defined by the polynomial given to the package.} \\indented{1}{If the singular points lie in an extension of the specified} \\indented{1}{ground field an error message is issued specifying the extension} \\indented{1}{degree needed to find all singular points.} \\blankline \\spad{X} K:=PF 101 \\spad{X} R:=DMP([X,Y,Z],K) \\spad{X} P:=PAFF(K,[X,Y,Z],BLQT) \\spad{X} C:R:= \\spad{(X^2} + \\spad{Y^2)^3} - 4 * \\spad{X^2} * \\spad{Y^2} * \\spad{Z^2} \\spad{X} singularPoints()$P")) (|desingTree| (((|List| (|DesingTree| (|InfClsPt| |#1| |#2| |#3|)))) "\\spad{desingTree()} returns the desingularisation trees at all singular points of the curve defined by the polynomial given to the package.")) (|desingTreeWoFullParam| (((|List| (|DesingTree| (|InfClsPt| |#1| |#2| |#3|)))) "\\spad{desingTreeWoFullParam()} returns the desingularisation trees at all singular points of the curve defined by the polynomial given to the package. The local parametrizations are not computed.")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of the curve defined by the polynomial \\indented{1}{given to the package.} \\blankline \\spad{X} K:=PF 101 \\spad{X} R:=DMP([X,Y,Z],K) \\spad{X} P:=PAFF(K,[X,Y,Z],BLQT) \\spad{X} C:R:= \\spad{(X^2} + \\spad{Y^2)^3} - 4 * \\spad{X^2} * \\spad{Y^2} * \\spad{Z^2} \\spad{X} genus()$P")) (|theCurve| (((|DistributedMultivariatePolynomial| |#2| |#1|)) "\\spad{theCurve()} returns the specified polynomial for the package. \\blankline \\spad{X} K:=PF 101 \\spad{X} R:=DMP([X,Y,Z],K) \\spad{X} P:=PAFF(K,[X,Y,Z],BLQT) \\spad{X} C:R:= \\spad{(X^2} + \\spad{Y^2)^3} - 4 * \\spad{X^2} * \\spad{Y^2} * \\spad{Z^2} \\spad{X} theCurve(C)$P")) (|rationalPlaces| (((|List| (|Places| |#1|))) "\\spad{rationalPlaces()} returns all the rational places of the curve defined by the polynomial given to the package.")) (|pointDominateBy| (((|ProjectivePlane| |#1|) (|Places| |#1|)) "\\spad{pointDominateBy(pl)} returns the projective point dominated by the place \\spad{pl.}")) (|setCurve| (((|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|)) "\\spad{setCurve sets} the defining polynomial for the curve \\blankline \\spad{X} K:=PF 101 \\spad{X} R:=DMP([X,Y,Z],K) \\spad{X} P:=PAFF(K,[X,Y,Z],BLQT) \\spad{X} C:R:= \\spad{(X^2} + \\spad{Y^2)^3} - 4 * \\spad{X^2} * \\spad{Y^2} * \\spad{Z^2} \\spad{X} setCurve(C)$P"))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (|SemiGroup|))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#2|) (QUOTE (|Symbol|)))))) │ │ │ -(|UnivariatePowerSeriesCategory| |Coef| |Expon|) │ │ │ -((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note that this category exports a substitution function if it is possible to multiply exponents. Also note that this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 \\spad{<=} \\spad{d} \\spad{<=} k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= \\spad{k}.}")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)}, where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f.}") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f.} This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n.}")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f.}")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms, where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|Finite|)))) │ │ │ +(|LeftModule| R) │ │ │ +((|constructor| (NIL "The category of left modules over an \\spad{rng} \\spad{(ring not necessarily with unit)}. This is an abelian group which supports left multiplication by elements of the rng. \\blankline Axioms\\br \\tab{5}\\spad{(a*b)*x = a*(b*x)}\\br \\tab{5}\\spad{(a+b)*x = (a*x)+(b*x)}\\br \\tab{5}\\spad{a*(x+y) = (a*x)+(a*y)}")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r.}"))) │ │ │ NIL │ │ │ -(|U8Vector|) │ │ │ -((|constructor| (NIL "\\indented{2}{fill!(x, \\spad{s)} modifies a vector \\spad{x} so every element has value \\spad{s}} \\blankline \\spad{X} t1:=new(10,7)$U8Vector \\spad{X} fill!(t1,9)"))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| (|Integer|) (QUOTE (|SetCategory|))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))))) │ │ │ -(|U16Vector|) │ │ │ -((|constructor| (NIL "\\indented{2}{fill!(x, \\spad{s)} modifies a vector \\spad{x} so every element has value \\spad{s}} \\blankline \\spad{X} t1:=new(10,7)$U16Vector \\spad{X} fill!(t1,9)"))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| (|Integer|) (QUOTE (|SetCategory|))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))))) │ │ │ -(|U32Vector|) │ │ │ -((|constructor| (NIL "\\indented{2}{fill!(x, \\spad{s)} modifies a vector \\spad{x} so every element has value \\spad{s}} \\blankline \\spad{X} t1:=new(10,7)$U32Vector \\spad{X} fill!(t1,9)"))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| (|Integer|) (QUOTE (|SetCategory|))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))))) │ │ │ -(|VectorCategory&| S R) │ │ │ -((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects, that is, finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(v,v)), that is, the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(v,v)), that is, the magnitude")) (|cross| (($ $ $) "\\spad{cross(u,v)} constructs the cross product of \\spad{u} and \\spad{v.} Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (i,j)'th element is u(i)*v(j).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y.} Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * \\spad{r}} multiplies each component of the vector \\spad{y} by the element \\spad{r.}") (($ |#2| $) "\\spad{r * \\spad{y}} multiplies the element \\spad{r} times each component of the vector \\spad{y.}") (($ (|Integer|) $) "\\spad{n * \\spad{y}} multiplies each component of the vector \\spad{y} by the integer \\spad{n.}")) (- (($ $ $) "\\spad{x - \\spad{y}} returns the component-wise difference of the vectors \\spad{x} and \\spad{y.} Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x.}")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n.}")) (+ (($ $ $) "\\spad{x + \\spad{y}} returns the component-wise sum of the vectors \\spad{x} and \\spad{y.} Error: if \\spad{x} and \\spad{y} are not of the same length."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|RadicalCategory|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|AbelianGroup|))) (|HasCategory| |#2| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) │ │ │ -(|XExponentialPackage| R |VarSet| XPOLY) │ │ │ -((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables.")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,b,n)} returns log(exp(a)*exp(b)) truncated at order \\axiom{n}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(p, \\spad{n)}} returns the logarithm of \\axiom{p} truncated at order \\axiom{n}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(p, \\spad{n)}} returns the exponential of \\axiom{p} truncated at order \\axiom{n}."))) │ │ │ +(|BasicStochasticDifferential|) │ │ │ +((|constructor| (NIL "Based on Symbol: a domain of symbols representing basic stochastic differentials, used in StochasticDifferential(R) in the underlying sparse multivariate polynomial representation. \\blankline We create new \\spad{BSD} only by coercion from Symbol using a special function introduce! first of all to add to a private set SDset. We allow a separate function convertIfCan which will check whether the argument has previously been declared as a BSD.")) (|getSmgl| (((|Union| (|Symbol|) "failed") $) "\\spad{getSmgl(bsd)} returns the semimartingale \\axiom{S} related \\indented{1}{to the basic stochastic differential \\axiom{bsd} \\spad{by}} \\indented{1}{\\axiom{introduce!}} \\blankline \\spad{X} introduce!(t,dt) \\spad{--} \\spad{dt} is a new stochastic differential \\spad{X} getSmgl(dt::BSD)")) (|copyIto| (((|Table| (|Symbol|) $)) "\\spad{copyIto()} returns the table relating semimartingales \\indented{1}{to basic stochastic differentials.} \\blankline \\spad{X} introduce!(t,dt) \\spad{--} \\spad{dt} is a new stochastic differential \\spad{X} copyIto()")) (|copyBSD| (((|List| $)) "\\spad{copyBSD()} returns \\axiom{setBSD} as a list of \\axiom{BSD}. \\blankline \\spad{X} introduce!(t,dt) \\spad{--} \\spad{dt} is a new stochastic differential \\spad{X} copyBSD()")) (|d| (((|Union| $ (|Integer|)) (|Symbol|)) "\\spad{d(X)} returns \\axiom{dX} if \\axiom{tableIto(X)=dX} and otherwise returns \\axiom{0}")) (|introduce!| (((|Union| $ "failed") (|Symbol|) (|Symbol|)) "\\spad{introduce!(X,dX)} returns \\axiom{dX} as \\axiom{BSD} if it \\indented{1}{isn't already in \\axiom{BSD}} \\blankline \\spad{X} introduce!(t,dt) \\spad{--} \\spad{dt} is a new stochastic differential \\spad{X} copyBSD()")) (|convert| (($ (|Symbol|)) "\\spad{convert(dX)} transforms \\axiom{dX} into a \\axiom{BSD} if possible and otherwise produces an error.")) (|convertIfCan| (((|Union| $ "failed") (|Symbol|)) "\\spad{convertIfCan(ds)} transforms \\axiom{dX} into a \\axiom{BSD} if possible (if \\axiom{introduce(X,dX)} has been invoked previously)."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|XDistributedPolynomial| |vl| R) │ │ │ -((|constructor| (NIL "This type supports distributed multivariate polynomials whose variables do not commute. The coefficient ring may be non-commutative too. However, coefficients and variables commute."))) │ │ │ -((|unitsKnown| . T) (|noZeroDivisors| |has| |#2| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasAttribute| |#2| (QUOTE |noZeroDivisors|))) │ │ │ -(|ExtensionField&| S F) │ │ │ -((|constructor| (NIL "ExtensionField \\spad{F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()$F.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a \\spad{**} \\spad{q}} where \\spad{q} is the \\spad{size()$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension, 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic, and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F,} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F.}")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F.}")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F.}"))) │ │ │ +(|RetractSolvePackage| Q R) │ │ │ +((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv.} The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|)))) │ │ │ -(|ExtensionField| F) │ │ │ -((|constructor| (NIL "ExtensionField \\spad{F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()$F.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a \\spad{**} \\spad{q}} where \\spad{q} is the \\spad{size()$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension, 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic, and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F,} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F.}")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F.}")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F.}"))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|VectorCategory| R) │ │ │ -((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects, that is, finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(v,v)), that is, the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(v,v)), that is, the magnitude")) (|cross| (($ $ $) "\\spad{cross(u,v)} constructs the cross product of \\spad{u} and \\spad{v.} Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (i,j)'th element is u(i)*v(j).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y.} Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * \\spad{r}} multiplies each component of the vector \\spad{y} by the element \\spad{r.}") (($ |#1| $) "\\spad{r * \\spad{y}} multiplies the element \\spad{r} times each component of the vector \\spad{y.}") (($ (|Integer|) $) "\\spad{n * \\spad{y}} multiplies each component of the vector \\spad{y} by the integer \\spad{n.}")) (- (($ $ $) "\\spad{x - \\spad{y}} returns the component-wise difference of the vectors \\spad{x} and \\spad{y.} Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x.}")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n.}")) (+ (($ $ $) "\\spad{x + \\spad{y}} returns the component-wise sum of the vectors \\spad{x} and \\spad{y.} Error: if \\spad{x} and \\spad{y} are not of the same length."))) │ │ │ +(|PointCategory| R) │ │ │ +((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements, \\spad{l,} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s.}")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R.}"))) │ │ │ ((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|XPolynomial| R) │ │ │ -((|constructor| (NIL "This type supports multivariate polynomials whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However, coefficients and variables commute."))) │ │ │ -((|noZeroDivisors| |has| |#1| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasAttribute| |#1| (QUOTE |noZeroDivisors|))) │ │ │ -(|XPBWPolynomial| |VarSet| R) │ │ │ -((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations.")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(p,n)} returns the logarithm of \\axiom{p} (truncated up to order \\axiom{n}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(p,n)} returns the exponential of \\axiom{p} (truncated up to order \\axiom{n}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,b,n)} returns \\axiom{a*b} (truncated up to order \\axiom{n}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(p)} return \\axiom{p} if \\axiom{p} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(p)} returns \\axiom{p} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(p)} returns \\axiom{p} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(p)} returns \\axiom{p}."))) │ │ │ -((|noZeroDivisors| |has| |#2| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (LIST (QUOTE |Module|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasAttribute| |#2| (QUOTE |noZeroDivisors|))) │ │ │ -(|XRecursivePolynomial| |VarSet| R) │ │ │ -((|constructor| (NIL "This type supports multivariate polynomials whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) │ │ │ -((|noZeroDivisors| |has| |#2| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasAttribute| |#2| (QUOTE |noZeroDivisors|))) │ │ │ -(|AffinePlane| K) │ │ │ -((|constructor| (NIL "The following is all the categories and domains related to projective space and part of the PAFF package"))) │ │ │ +(|EquationFunctions2| S R) │ │ │ +((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Bits|) │ │ │ -((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| (|Boolean|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Boolean|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Boolean|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Boolean|) (LIST (QUOTE |Evalable|) (QUOTE (|Boolean|)))) (|HasCategory| (|Boolean|) (QUOTE (|SetCategory|))))) │ │ │ -(|DoubleFloatMatrix|) │ │ │ -((|constructor| (NIL "This is a low-level domain which implements matrices (two dimensional arrays) of double precision floating point numbers. Indexing is 0 based, there is no bound checking (unless provided by lower level).")) (|qnew| (($ (|Integer|) (|Integer|)) "\\spad{qnew(n, \\spad{m)}} creates a new uninitialized \\spad{n} by \\spad{m} matrix. \\blankline \\spad{X} t1:DFMAT:=qnew(3,4)"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|DoubleFloat|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|DoubleFloat|) (LIST (QUOTE |Evalable|) (QUOTE (|DoubleFloat|)))) (|HasCategory| (|DoubleFloat|) (QUOTE (|SetCategory|)))) (|HasCategory| (|DoubleFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|IntegralDomain|))) (|HasAttribute| (|DoubleFloat|) (QUOTE (|commutative| "*"))) (|HasCategory| (|DoubleFloat|) (QUOTE (|CommutativeRing|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|Field|)))) │ │ │ -(|DirectProductFunctions2| |dim| A B) │ │ │ -((|constructor| (NIL "This package provides operations which all take as arguments direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B.} The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B.}")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, \\spad{v)}} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function func. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function func, increasing initial subsequences of the vector vec, and the element ident."))) │ │ │ +(|LeadingCoefDetermination| OV E Z P) │ │ │ +((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)}, where \\spad{contm} is the content of the evaluated polynomial, \\spad{unilist} is the list of factors of the evaluated polynomial, \\spad{plead} is the complete factorization of the leading coefficient, \\spad{vl} is the list of factors of the leading coefficient evaluated, \\spad{lvar} is the list of variables, \\spad{lval} is the list of values, returns a record giving the list of leading coefficients to impose on the univariate factors.")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)}, where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial, \\spad{numFacts} is the number of factors of the leadingCoefficient, and evallcs is the list of the evaluated factors of the leadingCoefficient, returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|DoubleFloatVector|) │ │ │ -((|constructor| (NIL "This is a low-level domain which implements vectors (one dimensional arrays) of double precision floating point numbers. Indexing is 0 based, there is no bound checking (unless provided by lower level).")) (|qnew| (($ (|Integer|)) "\\spad{qnew(n)} creates a new uninitialized vector of length \\spad{n.} \\blankline \\spad{X} t1:DFVEC:=qnew(7)"))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| (|DoubleFloat|) (QUOTE (|SetCategory|))) (|HasCategory| (|DoubleFloat|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|DoubleFloat|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|DoubleFloat|) (QUOTE (|OrderedSet|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|AbelianSemiGroup|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|AbelianMonoid|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|AbelianGroup|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|Monoid|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|Ring|))) (AND (|HasCategory| (|DoubleFloat|) (QUOTE (|RadicalCategory|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|Ring|)))) (AND (|HasCategory| (|DoubleFloat|) (LIST (QUOTE |Evalable|) (QUOTE (|DoubleFloat|)))) (|HasCategory| (|DoubleFloat|) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|DoubleFloat|) (LIST (QUOTE |Evalable|) (QUOTE (|DoubleFloat|)))) (|HasCategory| (|DoubleFloat|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| (|DoubleFloat|) (LIST (QUOTE |Evalable|) (QUOTE (|DoubleFloat|)))) (|HasCategory| (|DoubleFloat|) (QUOTE (|SetCategory|)))))) │ │ │ -(|IndexedMatrix| R |mnRow| |mnCol|) │ │ │ -((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasAttribute| |#1| (QUOTE (|commutative| "*"))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ -(|IndexedVector| R |mn|) │ │ │ -((|constructor| (NIL "This type represents vector like objects with varying lengths and a user-specified initial index."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#1| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|Monoid|))) (|HasCategory| |#1| (QUOTE (|Ring|))) (AND (|HasCategory| |#1| (QUOTE (|RadicalCategory|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ -(|LocalPowerSeriesCategory| K) │ │ │ -((|printInfo| (((|Boolean|)) "\\spad{printInfo()} returns the value of the \\spad{printInfo} flag.") (((|Boolean|) (|Boolean|)) "\\spad{printInfo(b)} set a flag such that when \\spad{true} \\spad{(b} \\spad{<-} true) prints some information during some critical computation.")) (|coefOfFirstNonZeroTerm| ((|#1| $) "\\spad{coefOfFirstNonZeroTerm(s)} returns the first non zero coefficient of the series.")) (|filterUpTo| (($ $ (|Integer|)) "\\spad{filterUpTo(s,n)} returns the series consisting of the terms of \\spad{s} having degree strictly less than \\spad{n.}")) (|shift| (($ $ (|Integer|)) "\\spad{shift(s,n)} returns t**n * \\spad{s}")) (|series| (($ (|Integer|) |#1| $) "\\spad{series(e,c,s)} create the series c*t**e + \\spad{s.}")) (|removeZeroes| (($ $) "\\spad{removeZeroes(s)} removes the zero terms in \\spad{s.}") (($ (|Integer|) $) "\\spad{removeZeroes(n,s)} removes the zero terms in the first \\spad{n} terms of \\spad{s.}")) (|monomial2series| (($ (|List| $) (|List| (|NonNegativeInteger|)) (|Integer|)) "\\spad{monomial2series(ls,le,n)} returns t**n * reduce(\"*\",[s \\spad{**} \\spad{e} for \\spad{s} in \\spad{ls} for \\spad{e} in le])")) (|delay| (($ (|Mapping| $)) "\\spad{delay delayed} the computation of the next term of the series given by the input function.")) (|posExpnPart| (($ $) "\\spad{posExpnPart(s)} returns the series \\spad{s} less the terms with negative exponant.")) (|order| (((|Integer|) $) "\\spad{order(s)} returns the order of \\spad{s.}"))) │ │ │ -(((|commutative| "*") . T) (|noZeroDivisors| . T) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|TransSolvePackage| R) │ │ │ +((|constructor| (NIL "This package tries to find solutions of equations of type Expression(R). This means expressions involving transcendental, exponential, logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules, it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\spad{-2 \\spad{tan(x/2)**4} \\spad{-2} \\spad{tan(x/2)**3} \\spad{-4} \\spad{tan(x/2)**2} \\spad{+2} tan(x/2) \\spad{-2}} by using the function normalize and then to \\spad{-2 \\spad{tan(x)**2} + tan(x) \\spad{-2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\spad{sqrt(sin(x))+1} .")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 \\indented{1}{with respect to the symbol \\spad{x} where \\spad{expr} is a function} \\indented{1}{of type Expression(R).} \\blankline \\spad{X} solve(1/2*v*v*cos(theta+phi)*cos(theta+phi)+g*l*cos(phi)=g*l,phi) \\spad{X} definingPolynomial \\spad{%phi0} \\spad{X} definingPolynomial \\spad{%phi1}") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(R) with respect to the symbol \\spad{x.}") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(R) with respect to the unique symbol \\spad{x} appearing in eq.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(R) with respect to the unique symbol \\spad{x} appearing in eq."))) │ │ │ NIL │ │ │ -(|LinearOrdinaryDifferentialOperator1| A) │ │ │ -((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition:\\br \\spad{(L1 * L2).(f) = \\spad{L1} \\spad{L2} \\spad{f}}"))) │ │ │ -((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ -(|LinearOrdinaryDifferentialOperator2| A M) │ │ │ -((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M.} Multiplication of operators corresponds to functional composition:\\br \\spad{(L1 * L2).(f) = \\spad{L1} \\spad{L2} \\spad{f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) │ │ │ -((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ -(|Interval| R) │ │ │ -((|constructor| (NIL "This domain is an implementation of interval arithmetic and transcendental functions over intervals."))) │ │ │ -((|approximate| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|LinearSystemMatrixPackage1| F) │ │ │ -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = \\spad{B}.} It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = \\spad{B}.}")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = \\spad{B}} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = \\spad{B}.}")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = \\spad{B}} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB.}") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = \\spad{B}} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB.}") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = \\spad{B}} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = \\spad{B}} and a basis of the associated homogeneous system \\spad{AX = 0}."))) │ │ │ +(|RadicalCategory&| S) │ │ │ +((|constructor| (NIL "The RadicalCategory is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x \\spad{**} \\spad{y}} is the rational exponentiation of \\spad{x} by the power \\spad{y.}")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x.}")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x.} The branch cut lies along the negative real axis, continuous with quadrant II."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|LinearSystemMatrixPackage| F |Row| |Col| M) │ │ │ -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = \\spad{B}.}")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = \\spad{B}.}")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = \\spad{B}} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = \\spad{B}.}")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = \\spad{B}} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB.}") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = \\spad{B}} and a basis of the associated homogeneous system \\spad{AX = 0}."))) │ │ │ +(|Monoid|) │ │ │ +((|constructor| (NIL "The class of multiplicative monoids, that is, semigroups with a multiplicative identity element. \\blankline Axioms\\br \\tab{5}\\spad{leftIdentity(\"*\":(\\%,\\%)->\\%,1)}\\tab{5}\\spad{1*x=x}\\br \\tab{5}\\spad{rightIdentity(\"*\":(\\%,\\%)->\\%,1)}\\tab{4}\\spad{x*1=x} \\blankline Conditional attributes\\br \\tab{5}unitsKnown - \\spadfun{recip} only returns \"failed\" on non-units")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times, that is, exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times, that is, exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "\\axiom{1} is the multiplicative identity."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|LiePolynomial| |VarSet| R) │ │ │ -((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C.} Reutenauer (Oxford science publications).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(x,y)} returns the Lie bracket \\axiom{[x,y]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(x,y)} returns the Lie bracket \\axiom{[x,y]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(x,y)} returns the Lie bracket \\axiom{[x,y]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(p)} returns \\axiom{p} in Lyndon basis if \\axiom{p} is a Lie polynomial, otherwise \\axiom{\"failed\"} is returned."))) │ │ │ -((|JacobiIdentity| . T) (|NullSquare| . T) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) │ │ │ -(|MatrixCategoryFunctions2| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) │ │ │ -((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j.}")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m.}") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m.}"))) │ │ │ -NIL │ │ │ +(|RealClosedField|) │ │ │ +((|constructor| (NIL "\\axiomType{RealClosedField} provides common access functions for all real closed fields. provides computations with generic real roots of polynomials")) (|approximate| (((|Fraction| (|Integer|)) $ $) "that has precision \\axiom{p} \\axiom{approximate(n,p)} gives an approximation of \\axiom{n}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(x,name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(x,name)} changes the way \\axiom{x} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(x)} is \\axiom{x \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(x)} is \\axiom{x \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(x)} is \\axiom{x \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(x,n)} is \\axiom{x \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,n)} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,n,name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(x)} is the expression of \\axiom{x} in terms of \\axiom{SparseUnivariatePolynomial($)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(x)} is the defining polynomial for the main algebraic quantity of \\axiom{x}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(x)} is the main algebraic quantity name of \\axiom{x}"))) │ │ │ +((|noZeroDivisors| . T) (|canonicalUnitNormal| . T) (|canonicalsClosed| . T) (|leftUnitary| . T) (|rightUnitary| . T) ((|commutative| "*") . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|MatrixManipulation| R |Row| |Col| M) │ │ │ -((|constructor| (NIL "Some functions for manipulating (dense) matrices. Supported are various kinds of slicing, splitting and stacking of matrices. The functions resemble operations often used in numerical linear algebra algorithms.")) (|blockSplit| (((|List| (|List| |#4|)) |#4| (|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{blockSplit} splits a matrix into multiple \\indented{1}{submatrices row and column wise, dividing} \\indented{1}{a matrix into blocks.} \\blankline \\spad{X} \\spad{E} \\spad{:=} matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) \\spad{X} t1:= blockSplit(E, [1,2,1], [2,2])") (((|List| (|List| |#4|)) |#4| (|PositiveInteger|) (|List| (|PositiveInteger|))) "\\spad{blockSplit} splits a matrix into multiple \\indented{1}{submatrices row and column wise, dividing} \\indented{1}{a matrix into blocks.} \\blankline \\spad{X} \\spad{E} \\spad{:=} matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) \\spad{X} t1:= blockSplit(E, 4, [2,2])") (((|List| (|List| |#4|)) |#4| (|List| (|PositiveInteger|)) (|PositiveInteger|)) "\\spad{blockSplit} splits a matrix into multiple \\indented{1}{submatrices row and column wise, dividing} \\indented{1}{a matrix into blocks.} \\blankline \\spad{X} \\spad{E} \\spad{:=} matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) \\spad{X} t1:= blockSplit(E, [2,1,1], 2)") (((|List| (|List| |#4|)) |#4| (|PositiveInteger|) (|PositiveInteger|)) "\\spad{blockSplit} splits a matrix into multiple \\indented{1}{submatrices row and column wise, dividing} \\indented{1}{a matrix into blocks.} \\blankline \\spad{X} \\spad{E} \\spad{:=} matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) \\spad{X} t1:= blockSplit(E,2,2)")) (|horizSplit| (((|List| |#4|) |#4| (|List| (|PositiveInteger|))) "\\spad{horizSplit} splits a matrix into multiple \\indented{1}{submatrices column wise.} \\blankline \\spad{X} \\spad{E} \\spad{:=} matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) \\spad{X} t1:= horizSplit(E, [2,2]) \\spad{X} t2:= horizSplit(E, [1,2,1])") (((|List| |#4|) |#4| (|PositiveInteger|)) "\\spad{horizSplit} splits a matrix into multiple \\indented{1}{submatrices column wise.} \\blankline \\spad{X} \\spad{E} \\spad{:=} matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) \\spad{X} t1:= horizSplit(E, 2)")) (|vertSplit| (((|List| |#4|) |#4| (|List| (|PositiveInteger|))) "\\spad{vertSplit} splits a matrix into multiple \\indented{1}{submatrices row wise.} \\blankline \\spad{X} \\spad{E} \\spad{:=} matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) \\spad{X} t1:= vertSplit(E, [1,2,1])") (((|List| |#4|) |#4| (|PositiveInteger|)) "\\spad{vertSplit} splits a matrix into multiple \\indented{1}{submatrices row wise.} \\blankline \\spad{X} \\spad{E} \\spad{:=} matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) \\spad{X} t1:= vertSplit(E, 2)")) (|blockConcat| ((|#4| (|List| (|List| |#4|))) "\\spad{blockConcat} concatenates matrices row and \\indented{1}{column wise, building a block matrix. The order} \\indented{1}{is row major as in \\spad{matrix}.} \\blankline \\spad{X} A \\spad{:=} matrix([[a]]) \\spad{X} \\spad{B} \\spad{:=} matrix([[b]]) \\spad{X} \\spad{C} \\spad{:=} matrix([[c]]) \\spad{X} \\spad{A11} \\spad{:=} element(M, 3,3) \\spad{X} \\spad{A12} \\spad{:=} horizConcat([A,B,C]) \\spad{X} \\spad{A21} \\spad{:=} vertConcat([A,B,C]) \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} \\spad{E} \\spad{:=} blockConcat([[A11,A12],[A21,M]]) \\spad{X} \\spad{t1} \\spad{:=} blockSplit(E, 4, [2,2]) \\spad{X} \\spad{t2} \\spad{:=} blockConcat \\spad{t1} \\spad{X} zero?(E-t2) \\spad{X} \\spad{t3} \\spad{:=} blockSplit(E, [1,2,1], [2,2]) \\spad{X} \\spad{t4} \\spad{:=} blockConcat \\spad{t3} \\spad{X} zero?(E-t4)")) (|vertConcat| ((|#4| (|List| |#4|)) "\\spad{vertConcat} concatenates matrices row wise. \\blankline \\spad{X} A \\spad{:=} matrix([[a]]) \\spad{X} \\spad{B} \\spad{:=} matrix([[b]]) \\spad{X} \\spad{C} \\spad{:=} matrix([[c]]) \\spad{X} \\spad{A21} \\spad{:=} vertConcat([A,B,C])")) (|horizConcat| ((|#4| (|List| |#4|)) "\\spad{horizConcat} concatenates matrices column wise. \\blankline \\spad{X} A \\spad{:=} matrix([[a]]) \\spad{X} \\spad{B} \\spad{:=} matrix([[b]]) \\spad{X} \\spad{C} \\spad{:=} matrix([[c]]) \\spad{X} \\spad{A12} \\spad{:=} horizConcat([A,B,C])")) (|bandMatrix| ((|#4| |#4| (|Segment| (|Integer|))) "\\spad{bandMatrix} returns multiple diagonals out of a matrix. \\indented{1}{The diagonals are put into a matrix of same shape as the} \\indented{1}{original one. Positive integer arguments select upper} \\indented{1}{off-diagonals, negative ones lower off-diagonals.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} bandMatrix(M, -1..1)") ((|#4| |#4| (|List| (|Integer|))) "\\spad{bandMatrix} returns multiple diagonals out of a matrix. \\indented{1}{The diagonals are put into a matrix of same shape as the} \\indented{1}{original one. Positive integer arguments select upper} \\indented{1}{off-diagonals, negative ones lower off-diagonals.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} bandMatrix(M, [-1,1]) \\spad{X} bandMatrix(M, [-1,0,1])")) (|diagonalMatrix| ((|#4| |#4|) "\\spad{diagonalMatrix} returns the main diagonal out of \\indented{1}{a matrix. The diagonal is put into a matrix of same shape} \\indented{1}{as the original one.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} diagonalMatrix(M)") ((|#4| |#4| (|Integer|)) "\\spad{diagonalMatrix} returns a diagonal out of a matrix. \\indented{1}{The diagonal is put into a matrix of same shape as the} \\indented{1}{original one. Positive integer arguments select upper} \\indented{1}{off-diagonals, negative ones lower off-diagonals.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} diagonalMatrix(M, 1) \\spad{X} diagonalMatrix(M, 2) \\spad{X} diagonalMatrix(M, \\spad{-1)}")) (|subMatrix| ((|#4| |#4| (|Segment| (|PositiveInteger|)) (|Segment| (|PositiveInteger|))) "\\spad{subMatrix} returns several elements out of a matrix. \\indented{1}{The elements are stacked into a submatrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} subMatrix(M, 1..2,2..3)") ((|#4| |#4| (|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{subMatrix} returns several elements out of a matrix. \\indented{1}{The elements are stacked into a submatrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} subMatrix(M, [1,2],[1,2]) \\spad{X} subMatrix(M, [1,3],[1,3])")) (|columns| ((|#4| |#4| (|Segment| (|PositiveInteger|))) "\\spad{columns} returns several columns out of a matrix. \\indented{1}{The columns are stacked into a matrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} columns(M, 1..2)") ((|#4| |#4| (|List| (|PositiveInteger|))) "\\spad{columns} returns several columns out of a matrix. \\indented{1}{The columns are stacked into a matrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} columns(M, [1,2]) \\spad{X} columns(M, [3,2])")) (|aColumn| ((|#4| |#4| (|PositiveInteger|)) "\\spad{aColumn} returns a single column out of a matrix. \\indented{1}{The column is put into a one by \\spad{N} matrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} aColumn(M, 2)")) (|rows| ((|#4| |#4| (|Segment| (|PositiveInteger|))) "\\spad{rows} returns several rows out of a matrix. \\indented{1}{The rows are stacked into a matrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} rows(M, 2..3)") ((|#4| |#4| (|List| (|PositiveInteger|))) "\\spad{rows} returns several rows out of a matrix. \\indented{1}{The rows are stacked into a matrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} rows(M, [1,2]) \\spad{X} rows(M, [3,2])")) (|aRow| ((|#4| |#4| (|PositiveInteger|)) "\\spad{aRow} returns a single row out of a matrix. \\indented{1}{The row is put into a one by \\spad{N} matrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} aRow(M, 1) \\spad{X} aRow(M, 2)")) (|element| ((|#4| |#4| (|PositiveInteger|) (|PositiveInteger|)) "\\spad{element} returns a single element out of a matrix. \\indented{1}{The element is put into a one by one matrix.} \\blankline \\spad{X} \\spad{M} \\spad{:=} matrix([[a,b,c],[d,e,f],[g,h,i]]) \\spad{X} element(M,2,2)"))) │ │ │ +(|CommonDenominator| R Q A) │ │ │ +((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], \\spad{d]}} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the qi's.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the qi's.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for q1,...,qn."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ProjectivePlane| K) │ │ │ -((|constructor| (NIL "This is part of the PAFF package, related to projective space."))) │ │ │ +(|Float|) │ │ │ +((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,base)} for integer \\spad{mantissa}, \\spad{exponent} specifies the number \\spad{mantissa * base \\spad{**} exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place, that is, accurate to within \\spad{2**(-bits)}. Also, the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers, the mantissa and the exponent. The base of the representation is binary, hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 \\spad{**} e}. Though it is not assumed that the underlying integers are represented with a binary base, the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the base to be binary has some unfortunate consequences. First, decimal numbers like 0.3 cannot be represented exactly. Second, there is a further loss of accuracy during conversion to decimal for output. To compensate for this, if \\spad{d} digits of precision are specified, \\spad{1 + ceiling(log2(10^d))} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand, a significant efficiency loss would be incurred if we chose to use a decimal base when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions, the general approach is to apply identities so that the taylor series can be used, and, so that it will converge within \\spad{O( sqrt \\spad{n} \\spad{)}} steps. For example, using the identity \\spad{exp(x) = exp(x/2)**2}, we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = \\spad{exp(2} \\spad{**} (-sqrt \\spad{s)} / 3) \\spad{**} \\spad{(2} \\spad{**} sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt \\spad{n}} multiplications. Assuming integer multiplication costs \\spad{O( \\spad{n**2} \\spad{)}} the overall running time is \\spad{O( sqrt(n) \\spad{n**2} \\spad{)}.} This approach is the best known approach for precisions up to about 10,000 digits at which point the methods of Brent which are \\spad{O( log(n) \\spad{n**2} \\spad{)}} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage, relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following, \\spad{n} is the number of bits of precision\\br \\spad{*}, \\spad{/}, \\spad{sqrt}, \\spad{pi}, \\spad{exp1}, \\spad{log2}, \\spad{log10}: \\spad{ O( \\spad{n**2} \\spad{)}} \\spad{\\br} \\spad{exp}, \\spad{log}, \\spad{sin}, \\spad{atan}: \\spad{O(sqrt(n) n**2)}\\br The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation, with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation, \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa \\spad{E} exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y.}")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2}, \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, \\spad{n,} \\spad{b)}} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)}, that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, \\spad{n)}} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x.}")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - \\spad{y}} divided by \\spad{y,} when \\spad{y \\spad{\\^=} 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x \\spad{**} \\spad{y}} computes \\spad{exp(y log \\spad{x)}} where \\spad{x \\spad{>=} 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer i."))) │ │ │ +((|arbitraryExponent| . T) (|arbitraryPrecision| . T) (|approximate| . T) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|OrderedDirectProduct| |dim| S |f|) │ │ │ +((|constructor| (NIL "This type represents the finite direct or cartesian product of an underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) │ │ │ +((|rightUnitary| |has| |#2| (|Ring|)) (|leftUnitary| |has| |#2| (|Ring|)) (|unitsKnown| |has| |#2| (ATTRIBUTE |unitsKnown|)) ((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|))) (OR (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (|HasCategory| |#2| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|)))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasAttribute| |#2| (QUOTE |unitsKnown|)) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))))) │ │ │ +(|DrawNumericHack| R) │ │ │ +((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b.} This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables, but is meant for expressions involving \\%pi. Note that this package is meant for internal use only.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b.}"))) │ │ │ NIL │ │ │ -(|PointCategory| R) │ │ │ -((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements, \\spad{l,} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s.}")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R.}"))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|ReductionOfOrder| F L) │ │ │ -((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 \\spad{z} = 0}, \\spad{y = \\spad{gk} \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op \\spad{y} = 0}. Each \\spad{fi} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, \\spad{s)}} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 \\spad{z} = 0}, \\spad{y = \\spad{s} \\int \\spad{z}} is a solution of \\spad{op \\spad{y} = 0}. \\spad{s} must satisfy \\spad{op \\spad{s} = 0}."))) │ │ │ +(|StochasticDifferential| R) │ │ │ +((|constructor| (NIL "A basic implementation of StochasticDifferential(R) using the associated domain BasicStochasticDifferential in the underlying representation as sparse multivariate polynomials. The domain is a module over Expression(R), and is a ring without identity (AXIOM term is \"Rng\"). Note that separate instances, for example using R=Integer and R=Float, have different hidden structure (multiplication and drift tables).")) (|uncorrelated?| (((|Boolean|) (|List| (|List| $))) "\\spad{uncorrelated?(ll)} checks whether its argument is a list of lists of stochastic differentials of zero inter-list quadratic co-variation.") (((|Boolean|) (|List| $) (|List| $)) "\\spad{uncorrelated?(l1,l2)} checks whether its two arguments are lists of stochastic differentials of zero inter-list quadratic co-variation.") (((|Boolean|) $ $) "\\spad{uncorrelated?(dx,dy)} checks whether its two arguments have zero quadratic co-variation.")) (|statusIto| (((|OutputForm|)) "\\spad{statusIto()} displays the current state of \\axiom{setBSD}, \\indented{1}{\\axiom{tableDrift}, and \\axiom{tableQuadVar}. Question} \\indented{1}{marks are printed instead of undefined entries} \\blankline \\spad{X} dt:=introduce!(t,dt) \\spad{X} dX:=introduce!(X,dX) \\spad{X} dY:=introduce!(Y,dY) \\spad{X} copyBSD() \\spad{X} copyIto() \\spad{X} copyhQuadVar() \\spad{X} statusIto()")) (^ (($ $ (|PositiveInteger|)) "\\spad{dx^n} is \\spad{dx} multiplied by itself \\spad{n} times.")) (** (($ $ (|PositiveInteger|)) "\\spad{dx**n} is \\spad{dx} multiplied by itself \\spad{n} times.")) (/ (($ $ (|Expression| |#1|)) "\\spad{dx/y} divides the stochastic differential \\spad{dx} by the previsible function \\spad{y.}")) (|copyQuadVar| (((|Table| $ $)) "\\spad{copyQuadVar returns} private multiplication table of basic stochastic differentials for inspection")) (|copyDrift| (((|Table| $ $)) "\\spad{copyDrift returns} private table of drifts of basic stochastic differentials for inspection")) (|equation| (((|Union| (|Equation| $) "failed") |#1| $) "\\spad{equation(0,dx)} allows \\spad{LHS} of Equation \\% to be zero") (((|Union| (|Equation| $) "failed") $ |#1|) "\\spad{equation(dx,0)} allows \\spad{RHS} of Equation \\% to be zero")) (|listSD| (((|List| (|BasicStochasticDifferential|)) $) "\\spad{listSD(dx)} returns a list of all \\axiom{BSD} involved in the generation of \\axiom{dx} as a module element")) (|coefficient| (((|Expression| |#1|) $ (|BasicStochasticDifferential|)) "\\spad{coefficient(sd,dX)} returns the coefficient of \\axiom{dX} in the stochastic differential \\axiom{sd}")) (|freeOf?| (((|Boolean|) $ (|BasicStochasticDifferential|)) "\\spad{freeOf?(sd,dX)} checks whether \\axiom{dX} occurs in \\axiom{sd} as a module element")) (|drift| (($ $) "\\spad{drift(dx)} returns the drift of \\axiom{dx}")) (|alterDrift!| (((|Union| $ "failed") (|BasicStochasticDifferential|) $) "\\spad{alterDrift! adds} drift formula for a stochastic differential to a private table. Failure occurs if \\indented{1}{(a) first arguments is not basic} \\indented{1}{(b) second argument is not exactly of first degree}")) (|alterQuadVar!| (((|Union| $ "failed") (|BasicStochasticDifferential|) (|BasicStochasticDifferential|) $) "\\spad{alterQuadVar! adds} multiplication formula for a pair of stochastic differentials to a private table. Failure occurs if \\indented{1}{(a) either of first or second arguments is not basic} \\indented{1}{(b) third argument is not exactly of first degree}"))) │ │ │ +((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ +(|EllipticFunctionsUnivariateTaylorSeries| |Coef| UTS) │ │ │ +((|constructor| (NIL "The elliptic functions \\spad{sn,} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) │ │ │ NIL │ │ │ -(|StringCategory|) │ │ │ -((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|TriangularMatrixOperations| R |Row| |Col| M) │ │ │ -((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(B) also has entries in \\spad{R,} we return \\spad{d} * inv(B). Thus, it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M,} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = \\spad{d} * inv(B)} has entries in \\spad{R.}")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M,} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = \\spad{d} * inv(B)} has entries in \\spad{R.}"))) │ │ │ +(|XAlgebra| R) │ │ │ +((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as XPolynomialRing and XFreeAlgebra")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}."))) │ │ │ +((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|SortPackage| S A) │ │ │ +((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) │ │ │ NIL │ │ │ -(|U8Matrix|) │ │ │ -((|constructor| (NIL "This is a low-level domain which implements matrices (two dimensional arrays) of 8-bit integers. Indexing is 0 based, there is no bound checking (unless provided by lower level).")) (|qnew| (($ (|Integer|) (|Integer|)) "\\spad{qnew(n, \\spad{m)}} creates a new \\spad{n} by \\spad{m} matrix of zeros. \\blankline \\spad{X} qnew(3,4)$U8Matrix()"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|Integer|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|Integer|) (QUOTE (|IntegralDomain|))) (|HasAttribute| (|Integer|) (QUOTE (|commutative| "*"))) (|HasCategory| (|Integer|) (QUOTE (|CommutativeRing|))) (|HasCategory| (|Integer|) (QUOTE (|Field|)))) │ │ │ -(|U16Matrix|) │ │ │ -((|constructor| (NIL "This is a low-level domain which implements matrices (two dimensional arrays) of 16-bit integers. Indexing is 0 based, there is no bound checking (unless provided by lower level).")) (|qnew| (($ (|Integer|) (|Integer|)) "\\spad{qnew(n, \\spad{m)}} creates a new \\spad{n} by \\spad{m} matrix of zeros. \\blankline \\spad{X} qnew(3,4)$U16Matrix()"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|Integer|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|Integer|) (QUOTE (|IntegralDomain|))) (|HasAttribute| (|Integer|) (QUOTE (|commutative| "*"))) (|HasCategory| (|Integer|) (QUOTE (|CommutativeRing|))) (|HasCategory| (|Integer|) (QUOTE (|Field|)))) │ │ │ -(|U32Matrix|) │ │ │ -((|constructor| (NIL "This is a low-level domain which implements matrices (two dimensional arrays) of 32-bit integers. Indexing is 0 based, there is no bound checking (unless provided by lower level).")) (|qnew| (($ (|Integer|) (|Integer|)) "\\spad{qnew(n, \\spad{m)}} creates a new \\spad{n} by \\spad{m} matrix of zeros. \\blankline \\spad{X} qnew(3,4)$U32Matrix()"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|Integer|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|Integer|) (QUOTE (|IntegralDomain|))) (|HasAttribute| (|Integer|) (QUOTE (|commutative| "*"))) (|HasCategory| (|Integer|) (QUOTE (|CommutativeRing|))) (|HasCategory| (|Integer|) (QUOTE (|Field|)))) │ │ │ -(|PrecomputedAssociatedEquations| R L) │ │ │ -((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, \\spad{m)}} returns the matrix A such that \\spad{A \\spad{w} = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of op. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), \\spad{m}.}"))) │ │ │ +((|HasCategory| |#1| (QUOTE (|OrderedSet|)))) │ │ │ +(|MakeFloatCompiledFunction| S) │ │ │ +((|constructor| (NIL "Tools for making compiled functions from top-level expressions MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the Axiom compiler and interpreter, thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, \\spad{x,} \\spad{y)}} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) \\spad{->} \\axiomType{DoubleFloat}} defined by \\spad{f(x, \\spad{y)} \\spad{==} expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, \\spad{x)}} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} \\spad{->} \\axiomType{DoubleFloat}} defined by \\spad{f(x) \\spad{==} expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|AssociatedEquations| R L) │ │ │ -((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, \\spad{m)}} returns \\spad{[w, eq, \\spad{lw,} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor, and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = \\spad{M} \\spad{y},} then \\spad{[$y_j',y_j'',...,y_j^{(n)}$] = $A_j \\spad{y$}} for all j's.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, \\spad{m)}} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = \\spad{M} \\spad{w}.}"))) │ │ │ +(|PseudoAlgebraicClosureOfPerfectFieldCategory|) │ │ │ +((|constructor| (NIL "This category exports the function for domains which implement dynamic extension using the simple notion of tower extensions. \\spad{++} A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension \\spad{(T} : K_0, K_1, ..., K_i...,K_n) where \\spad{K_0} = \\spad{K} and for \\spad{i} =1,2,...,n, K_i is an extension of K_{i-1} of degree > 1 and defined by an irreducible polynomial p(Z) in K_{i-1}. Two towers (T_1: K_01, K_11,...,K_i1,...,K_n1) and (T_2: K_02, K_12,...,K_i2,...,K_n2) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} T_2), that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1,2,...,n1} (or i=1,2,...,n2). Any algebraic operations defined for several elements are only defined if all of the concerned elements are coming from a set of related tower extensions.")) (|previousTower| (($ $) "\\spad{previousTower(a)} returns the previous tower extension over which the element a is defined.")) (|extDegree| (((|PositiveInteger|) $) "\\spad{extDegree(a)} returns the extension degree of the extension tower over which the element is defined.")) (|maxTower| (($ (|List| $)) "\\spad{maxTower(l)} returns the tower in the list having the maximal extension degree over the ground field. It has no meaning if the towers not related.")) (|distinguishedRootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) $) "\\spad{distinguishedRootsOf(p,a)} returns a (distinguised) root for each irreducible factor of the polynomial \\spad{p} (factored over the field defined by the element a)."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ -(|CliffordAlgebra| |n| K Q) │ │ │ -((|constructor| (NIL "CliffordAlgebra(n, \\spad{K,} \\spad{Q)} defines a vector space of dimension \\spad{2**n} over \\spad{K,} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]}, \\spad{1<=i<=n} is a basis for \\spad{K**n} then 1, \\spad{e[i]} (\\spad{1<=i<=n}), \\spad{e[i1]*e[i2]} (\\spad{1<=i1} a= (((|Boolean|) $ $) "\\spad{x \\spad{>=} \\spad{y}} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > \\spad{y}} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < \\spad{y}} is a strict total ordering on the elements of the set."))) │ │ │ NIL │ │ │ -(|CoordinateSystems| R) │ │ │ -((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,b)} is a function which will map the point \\spad{(lambda,mu,nu)} to \\spad{x = lambda*mu*nu/(a*b)}, \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))}, \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,v,phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))}, \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))}, \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))}, \\spad{y = a*sin(u)/(cosh(v)-cos(u))}, \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))}, \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\indented{1}{\\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)}, \\indented{1}{\\spad{z = a*cosh(xi)*cos(eta)}.}")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)}, \\indented{1}{\\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*cosh(u)*cos(v)}, \\spad{y = a*sinh(u)*sin(v)}, \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*cosh(u)*cos(v)}, \\indented{1}{\\spad{y = a*sinh(u)*sin(v)}.}")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,phi)} to \\spad{x = u*v*cos(phi)}, \\spad{y = u*v*sin(phi)}, \\spad{z = 1/2 * \\spad{(u**2} - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,z)} to \\spad{x = 1/2*(u**2 - v**2)}, \\spad{y = u*v}, \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v)} to \\spad{x = 1/2*(u**2 - v**2)}, \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,phi)} to \\spad{x = r*sin(phi)*cos(theta)}, \\spad{y = r*sin(phi)*sin(theta)}, \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,z)} to \\spad{x = \\spad{r} * cos(theta)}, \\spad{y = \\spad{r} * sin(theta)}, \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta)} to \\spad{x = \\spad{r} * cos(theta)} ,{} \\spad{y = \\spad{r} * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt.}"))) │ │ │ NIL │ │ │ +(|IndexedDirectProductOrderedAbelianMonoid| A S) │ │ │ +((|constructor| (NIL "Indexed direct products of ordered abelian monoids \\spad{A} of generators indexed by the ordered set \\spad{S.} The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) │ │ │ NIL │ │ │ -(|Database| S) │ │ │ -((|constructor| (NIL "This domain implements a simple view of a database whose fields are indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end \\spad{)}} prints full details of entries in the range \\axiom{start..end} in \\axiom{db}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{db}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{db}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{s} field of each element of \\axiom{db}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{db} which satisfy \\axiom{q}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) │ │ │ NIL │ │ │ +(|NagFittingPackage|) │ │ │ +((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors, as of experimental measurement, which need to be smoothed out. To seek an approximation to the data, it is first necessary to specify for the approximating function a mathematical form (a polynomial, for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function, since these cover the most common needs. However, fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating, differentiating and integrating polynomial and spline curves and surfaces, once the numerical values of their coefficients have been determined.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx, \\spad{++} lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically, but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx, \\spad{++} lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values, given on a rectangular grid in the x-y plane. The knots of the spline are located automatically, but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal, weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically, but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its B-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its B-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation, allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) │ │ │ NIL │ │ │ -(|CartesianTensor| |minix| |dim| R) │ │ │ -((|constructor| (NIL "CartesianTensor(minix,dim,R) provides Cartesian tensors with components belonging to a commutative ring \\spad{R.} These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\spad{%.}")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{3}{\\spad{unravel(ravel(t)) = t}.} \\blankline \\spad{X} n:SquareMatrix(2,Integer):=matrix [[2,3],[0,1]] \\spad{X} tn:CartesianTensor(1,2,Integer):=n \\spad{X} ravel \\spad{tn}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\indented{1}{\\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1}} \\indented{1}{if \\spad{i1,...,idim} is an even/is nota /is an odd permutation} \\indented{1}{of \\spad{minix,...,minix+dim-1}.} \\blankline \\spad{X} lcs:CartesianTensor(1,2,Integer):=leviCivitaSymbol()")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{4}{\\spad{kroneckerDelta()(i,j)}} \\indented{7}{\\spad{= 1\\space{2}if \\spad{i} = \\spad{j}}} \\indented{7}{\\spad{= 0 if\\space{2}i \\spad{\\^=} \\spad{j}}} \\blankline \\spad{X} delta:CartesianTensor(1,2,Integer):=kroneckerDelta()")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t.} \\indented{1}{For example, if \\spad{r = reindex(t, [4,1,2,3])}} \\indented{1}{for a rank 4 tensor \\spad{t,}} \\indented{1}{then \\spad{r} is the rank for tensor given \\spad{by}} \\indented{5}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.} \\blankline \\spad{X} n:SquareMatrix(2,Integer):=matrix [[2,3],[0,1]] \\spad{X} tn:CartesianTensor(1,2,Integer):=n \\spad{X} p:=product(tn,tn) \\spad{X} reindex(p,[4,3,2,1])")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}-th and \\spad{j}-th \\indented{1}{indices of \\spad{t.} For example, if \\spad{r = transpose(t,2,3)}} \\indented{1}{for a rank 4 tensor \\spad{t,} then \\spad{r} is the rank 4 tensor} \\indented{1}{given \\spad{by}} \\indented{5}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.} \\blankline \\spad{X} m:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] \\spad{X} tm:CartesianTensor(1,2,Integer):=m \\spad{X} tn:CartesianTensor(1,2,Integer):=[tm,tm] \\spad{X} transpose(tn,1,2)") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t.} \\indented{1}{For example, if \\spad{r = transpose(t)} for a rank 4} \\indented{1}{tensor \\spad{t,} then \\spad{r} is the rank 4 tensor given \\spad{by}} \\indented{5}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.} \\blankline \\spad{X} m:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] \\spad{X} Tm:CartesianTensor(1,2,Integer):=m \\spad{X} transpose(Tm)")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which \\indented{1}{sums along the \\spad{i}-th and \\spad{j}-th indices.} \\indented{1}{For example,\\space{2}if} \\indented{1}{\\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t,} then} \\indented{1}{\\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given \\spad{by}} \\indented{5}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.} \\blankline \\spad{X} m:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] \\spad{X} Tm:CartesianTensor(1,2,Integer):=m \\spad{X} v:DirectProduct(2,Integer):=directProduct [3,4] \\spad{X} Tv:CartesianTensor(1,2,Integer):=v \\spad{X} Tmv:=contract(Tm,2,1)") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} \\indented{1}{which sums along the \\spad{k1}-th index of} \\indented{1}{t and the \\spad{k2}-th index of \\spad{s.}} \\indented{1}{For example, if \\spad{r = contract(s,2,t,1)} for rank 3 tensors} \\indented{1}{rank 3 tensors \\spad{s} and \\spad{t}, then \\spad{r} is} \\indented{1}{the rank 4 \\spad{(= 3 + 3 - 2)} tensor\\space{2}given \\spad{by}} \\indented{5}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.} \\blankline \\spad{X} m:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] \\spad{X} Tm:CartesianTensor(1,2,Integer):=m \\spad{X} v:DirectProduct(2,Integer):=directProduct [3,4] \\spad{X} Tv:CartesianTensor(1,2,Integer):=v \\spad{X} Tmv:=contract(Tm,2,Tv,1)")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts \\indented{1}{the last index of \\spad{s} with the first index of \\spad{t,} that is,} \\indented{5}{\\spad{t*s = contract(t,rank \\spad{t,} \\spad{s,} 1)}} \\indented{5}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} \\indented{1}{This is compatible with the use of \\spad{M*v} to denote} \\indented{1}{the matrix-vector inner product.} \\blankline \\spad{X} m:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] \\spad{X} Tm:CartesianTensor(1,2,Integer):=m \\spad{X} v:DirectProduct(2,Integer):=directProduct [3,4] \\spad{X} Tv:CartesianTensor(1,2,Integer):=v \\spad{X} Tm*Tv")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t.} \\indented{1}{For example, if \\spad{r = product(s,t)} for rank 2 tensors} \\indented{1}{s and \\spad{t,} then \\spad{r} is a rank 4 tensor given \\spad{by}} \\indented{5}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.} \\blankline \\spad{X} m:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] \\spad{X} Tm:CartesianTensor(1,2,Integer):=m \\spad{X} n:SquareMatrix(2,Integer):=matrix [[2,3],[0,1]] \\spad{X} Tn:CartesianTensor(1,2,Integer):=n \\spad{X} Tmn:=product(Tm,Tn)")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor. \\blankline \\spad{X} v:=[2,3] \\spad{X} tv:CartesianTensor(1,2,Integer):=v \\spad{X} tm:CartesianTensor(1,2,Integer):=[tv,tv] \\spad{X} tn:CartesianTensor(1,2,Integer):=[tm,tm] \\spad{X} tp:CartesianTensor(1,2,Integer):=[tn,tn] \\spad{X} tq:CartesianTensor(1,2,Integer):=[tp,tp] \\spad{X} elt(tq,[2,2,2,2,2])") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor. \\blankline \\spad{X} v:=[2,3] \\spad{X} tv:CartesianTensor(1,2,Integer):=v \\spad{X} tm:CartesianTensor(1,2,Integer):=[tv,tv] \\spad{X} tn:CartesianTensor(1,2,Integer):=[tm,tm] \\spad{X} tp:CartesianTensor(1,2,Integer):=[tn,tn] \\spad{X} elt(tp,2,2,2,2) \\spad{X} tp[2,2,2,2]") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor. \\blankline \\spad{X} v:=[2,3] \\spad{X} tv:CartesianTensor(1,2,Integer):=v \\spad{X} tm:CartesianTensor(1,2,Integer):=[tv,tv] \\spad{X} tn:CartesianTensor(1,2,Integer):=[tm,tm] \\spad{X} elt(tn,2,2,2) \\spad{X} tn[2,2,2]") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor. \\blankline \\spad{X} v:=[2,3] \\spad{X} tv:CartesianTensor(1,2,Integer):=v \\spad{X} tm:CartesianTensor(1,2,Integer):=[tv,tv] \\spad{X} elt(tm,2,2) \\spad{X} tm[2,2]") ((|#3| $ (|Integer|)) "\\spad{elt(t,i)} gives a component of a rank 1 tensor. \\blankline \\spad{X} v:=[2,3] \\spad{X} tv:CartesianTensor(1,2,Integer):=v \\spad{X} elt(tv,2) \\spad{X} tv[2]") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor. \\blankline \\spad{X} \\spad{tv:CartesianTensor(1,2,Integer):=8} \\spad{X} elt(tv) \\spad{X} tv[]")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is, the \\indented{1}{number of indices).\\space{2}This is the same as the graded module} \\indented{1}{degree.} \\blankline \\spad{X} CT:=CARTEN(1,2,Integer) \\spad{X} \\spad{t0:CT:=8} \\spad{X} rank \\spad{t0}")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed \\indented{1}{using lists.} \\blankline \\spad{X} v:=[2,3] \\spad{X} tv:CartesianTensor(1,2,Integer):=v \\spad{X} tm:CartesianTensor(1,2,Integer):=[tv,tv]") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed \\indented{1}{using lists.} \\blankline \\spad{X} v:=[2,3] \\spad{X} tv:CartesianTensor(1,2,Integer):=v") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor. \\blankline \\spad{X} v:SquareMatrix(2,Integer):=[[1,2],[3,4]] \\spad{X} tv:CartesianTensor(1,2,Integer):=v") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor. \\blankline \\spad{X} v:DirectProduct(2,Integer):=directProduct [3,4] \\spad{X} tv:CartesianTensor(1,2,Integer):=v"))) │ │ │ NIL │ │ │ +(|FiniteFieldPolynomialPackage2| F GF) │ │ │ +((|constructor| (NIL "FiniteFieldPolynomialPackage2(F,GF) exports some functions concerning finite fields, which depend on a finite field \\spad{GF} and an algebraic extension \\spad{F} of \\spad{GF,} for example, a zero of a polynomial over \\spad{GF} in \\spad{F.}")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic, irreducible polynomial \\spad{f,} which degree must divide the extension degree of \\spad{F} over \\spad{GF,} \\spad{f} splits into linear factors over \\spad{F.}")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) │ │ │ NIL │ │ │ -(|TwoDimensionalPlotClipping|) │ │ │ -((|constructor| (NIL "Automatic clipping for 2-dimensional plots The purpose of this package is to provide reasonable plots of functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points, \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin}, \\spad{xMax} and \\spad{yMin}, \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot, \\spad{p,} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine, which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot, \\spad{p,} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine, which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points, \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine, which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l,} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine, which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot, \\spad{p,} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot, \\spad{p,} from the domain \\spadtype{Plot} for the graph of one variable, \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) │ │ │ NIL │ │ │ +(|UnivariatePuiseuxSeriesWithExponentialSingularity| R FE |var| |cen|) │ │ │ +((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums, where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus, the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))}, where g(x) is a univariate Puiseux series and f(x) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var \\spad{->} cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var \\spad{->} cen+,f(var))}."))) │ │ │ +(((|commutative| "*") |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|CommutativeRing|)) (|noZeroDivisors| |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (QUOTE (|CommutativeRing|))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (QUOTE (|Field|))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (QUOTE (|GcdDomain|))) (OR (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (QUOTE (|IntegralDomain|)))) │ │ │ +(|NagRootFindingPackage|) │ │ │ +((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.)")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation, extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) │ │ │ NIL │ │ │ -(|DenavitHartenbergMatrix| R) │ │ │ -((|constructor| (NIL "4x4 Matrices for coordinate transformations\\br This package contains functions to create 4x4 matrices useful for rotating and transforming coordinate systems. These matrices are useful for graphics and robotics. (Reference: Robot Manipulators Richard Paul MIT Press 1981) \\blankline A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:\\br \\tab{5}\\spad{nx ox ax px}\\br \\tab{5}\\spad{ny oy ay py}\\br \\tab{5}\\spad{nz oz az pz}\\br \\tab{5}\\spad{0 0 0 1}\\br \\spad{(n,} o, and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(x,y,z)} returns a dhmatrix for translation by \\spad{x,} \\spad{y,} and \\spad{z} \\blankline \\spad{X} translate(1.0,2.0,3.0)")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{x,} \\spad{y} and \\spad{z} \\indented{1}{directions} \\blankline \\spad{X} scale(0.5,0.5,0.5)")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{z} for \\spad{r} degrees \\blankline \\spad{X} rotatez(30)")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{y} for \\spad{r} degrees \\blankline \\spad{X} rotatey(30)")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{x} for \\spad{r} degrees \\blankline \\spad{X} rotatex(30)")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix \\blankline identity()")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p} \\blankline \\spad{X} rotatex(30)*point([1,2,3])"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasAttribute| |#1| (QUOTE (|commutative| "*"))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ -(|DiophantineSolutionPackage|) │ │ │ -((|constructor| (NIL "Any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions, which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation, each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore, it suffices to compute two sets:\\br \\tab{5}1. all minimal inhomogeneous solutions\\br \\tab{5}2. all minimal homogeneous solutions\\br the algorithm implemented is a completion procedure, which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation u, then all minimal solutions of inhomogeneous equation"))) │ │ │ NIL │ │ │ +(|FortranVectorCategory|) │ │ │ +((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP, making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|DirectProductCategory&| S |dim| R) │ │ │ -((|constructor| (NIL "This category represents a finite cartesian product of a given type. Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * \\spad{r}} multiplies each component of the vector \\spad{y} by the element \\spad{r.}") (($ |#3| $) "\\spad{r * \\spad{y}} multiplies the element \\spad{r} times each component of the vector \\spad{y.}")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y.}")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) │ │ │ +(|FramedModule| R F UP A |ibasis|) │ │ │ +((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R.}") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R.}")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f.}")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) │ │ │ NIL │ │ │ -((|HasCategory| |#3| (QUOTE (|Field|))) (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#3| (QUOTE (|OrderedRing|))) (|HasAttribute| |#3| (QUOTE |unitsKnown|)) (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|Finite|))) (|HasCategory| |#3| (QUOTE (|Monoid|))) (|HasCategory| |#3| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#3| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#3| (QUOTE (|Ring|))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) │ │ │ -(|d02bbfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF, a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) │ │ │ +((|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (|devaluate| |#2|)))) │ │ │ +(|StreamAggregate| S) │ │ │ +((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams, a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example, see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note that for many datatypes, \\axiom{possiblyInfinite?(s) = not explictlyFinite?(s)}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements, and \\spad{false} otherwise. Note that for many datatypes, \\axiom{explicitlyFinite?(s) = not possiblyInfinite?(s)}."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ +(|UnaryRecursiveAggregate&| A S) │ │ │ +((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models, though not precisely, a linked list possibly with a single cycle. A node with one children models a non-empty list, with the \\spadfun{value} of the list designating the head, or \\spadfun{first}, of the list, and the child designating the tail, or \\spadfun{rest}, of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates, they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{v = rest(u,n)} \\indented{1}{and \\axiom{w = first(u,n)}, returning \\axiom{v}.} \\indented{1}{Note that afterwards \\axiom{rest(u,n)} returns \\axiom{empty()}.} \\blankline \\spad{X} t1:=[1,4,2,-6,0,3,5,4,2,3] \\spad{X} t2:=split!(t1,4) \\spad{X} \\spad{t1} \\spad{X} \\spad{t2}")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x.} \\blankline \\spad{X} t1:=[1,4,2,-6,0,3,5,4,2,3] \\spad{X} setlast!(t1,7) \\spad{X} \\spad{t1}")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} setrest!(t1,[4,5,6]) \\spad{X} \\spad{t1}")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{u.last \\spad{:=} \\spad{b})} \\indented{1}{is equivalent to \\axiom{setlast!(u,v)}.} \\blankline \\spad{X} t1:=[1,4,2,-6,0,3,5,4,2,3] \\spad{X} t1.last \\spad{:=} 7 \\spad{X} \\spad{t1}") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{u.rest \\spad{:=} \\spad{v})} is \\indented{1}{equivalent to \\axiom{setrest!(u,v)}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t1.rest:=[4,5,6] \\spad{X} \\spad{t1}") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{u.first \\spad{:=} \\spad{x})} is \\indented{1}{equivalent to \\axiom{setfirst!(u,x)}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} \\spad{t1.first:=7} \\spad{X} \\spad{t1}")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} setfirst!(t1,7) \\spad{X} \\spad{t1}")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. \\indented{1}{The value returned is the cycle entry, or nil if none exists.} \\indented{1}{For example, if \\axiom{w = concat(u,v)} is the cyclic list where} \\indented{1}{v is the head of the cycle, \\axiom{cycleSplit!(w)} will drop \\spad{v}} \\indented{1}{off \\spad{w} thus destructively changing \\spad{w} to u, and returning \\spad{v.}} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat!(t1,t1) \\spad{X} t3:=[1,2,3] \\spad{X} t4:=concat!(t3,t2) \\spad{X} t5:=cycleSplit!(t4) \\spad{X} \\spad{t4} \\spad{X} \\spad{t5}")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of u. \\indented{1}{Note that \\axiom{concat!(a,x) = setlast!(a,[x])}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} concat!(t1,7) \\spad{X} \\spad{t1}") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of u. \\indented{1}{Note that \\axiom{concat!(u,v) = setlast_!(u,v)}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=[4,5,6] \\spad{X} concat!(t1,t2) \\spad{X} \\spad{t1} \\spad{X} \\spad{t2}")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle, or \\indented{1}{empty if none exists.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat!(t1,t1) \\spad{X} cycleTail \\spad{t2}")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle \\indented{1}{contained\\space{2}in aggregate u, or 0 is \\spad{u} has no such cycle.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat!(t1,t1) \\spad{X} cycleLength \\spad{t2}")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in \\indented{1}{aggregate u, or \\axiom{empty()} if none exists.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat!(t1,t1) \\spad{X} cycleEntry \\spad{t2}")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of u. \\indented{1}{Note that \\axiom{third(u) = first(rest(rest(u)))}.} \\blankline \\spad{X} third [1,4,2,-6,0,3,5,4,2,3]")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of u. \\indented{1}{Note that \\axiom{second(u) = first(rest(u))}.} \\blankline \\spad{X} second [1,4,2,-6,0,3,5,4,2,3]")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of u. \\indented{1}{Note that if \\spad{u} is \\axiom{shallowlyMutable},} \\indented{1}{\\axiom{setrest(tail(u),v) = concat(u,v)}.} \\blankline \\spad{X} tail [1,4,2,-6,0,3,5,4,2,3]")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{n \\spad{>=} 0}) nodes of u. \\indented{1}{Note that \\axiom{last(u,n)} is a list of \\spad{n} elements.} \\blankline \\spad{X} last([1,4,2,-6,0,3,5,4,2,3],3)") ((|#2| $) "\\spad{last(u)} resturn the last element of u. \\indented{1}{Note that for lists, \\axiom{last(u)=u . (maxIndex u)=u . \\spad{(#} \\spad{u} - 1)}.} \\blankline \\spad{X} last [1,4,2,-6,0,3,5,4,2,3]")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{n}th \\spad{(n} \\spad{>=} 0) node of u. \\indented{1}{Note that \\axiom{rest(u,0) = u}.} \\blankline \\spad{X} rest([1,4,2,-6,0,3,5,4,2,3],3)") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first \\indented{1}{element of u} \\indented{1}{(equivalently, the next node of u).} \\blankline \\spad{X} rest [1,4,2,-6,0,3,5,4,2,3]")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{u . last}) is equivalent \\indented{1}{to last u.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t1.last") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{u.rest}) is \\indented{1}{equivalent to \\axiom{rest u}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t1.rest") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{u . first}) \\indented{1}{is equivalent to first u.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t1.first")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{n \\spad{>=} 0}) elements of u. \\blankline first([1,4,2,-6,0,3,5,4,2,3],3)") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} \\indented{1}{(equivalently, the value at the current node).} \\blankline \\spad{X} first [1,4,2,-6,0,3,5,4,2,3]")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by \\indented{1}{the elements of u.} \\indented{1}{Note that if \\axiom{v = concat(x,u)} then \\axiom{x = first \\spad{v}}} \\indented{1}{and \\axiom{u = rest v}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat(4,t1) \\spad{X} \\spad{t1} \\spad{X} \\spad{t2}") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} \\indented{1}{followed by the elements of \\spad{v.}} \\indented{1}{Note that \\axiom{v = rest(w,\\#a)}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat(t1,t1) \\spad{X} \\spad{t1} \\spad{X} \\spad{t2}"))) │ │ │ NIL │ │ │ -(|DirectProductCategory| |dim| R) │ │ │ -((|constructor| (NIL "This category represents a finite cartesian product of a given type. Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * \\spad{r}} multiplies each component of the vector \\spad{y} by the element \\spad{r.}") (($ |#2| $) "\\spad{r * \\spad{y}} multiplies the element \\spad{r} times each component of the vector \\spad{y.}")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y.}")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) │ │ │ -((|rightUnitary| |has| |#2| (|Ring|)) (|leftUnitary| |has| |#2| (|Ring|)) (|unitsKnown| |has| |#2| (ATTRIBUTE |unitsKnown|)) ((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|finiteAggregate| . T) (|nil| . T)) │ │ │ +((|HasAttribute| |#1| (QUOTE |shallowlyMutable|))) │ │ │ +(|GeneralDistributedMultivariatePolynomial| |vl| R E) │ │ │ +((|constructor| (NIL "This type supports distributed multivariate polynomials whose variables are from a user specified list of symbols. The coefficient ring may be non commutative, but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct}, \\spadtype{HomogeneousDirectProduct}, \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) │ │ │ +(((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#2| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|))) (OR (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|CoordinateSystems| R) │ │ │ +((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,b)} is a function which will map the point \\spad{(lambda,mu,nu)} to \\spad{x = lambda*mu*nu/(a*b)}, \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))}, \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,v,phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))}, \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))}, \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))}, \\spad{y = a*sin(u)/(cosh(v)-cos(u))}, \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))}, \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\indented{1}{\\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)}, \\indented{1}{\\spad{z = a*cosh(xi)*cos(eta)}.}")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)}, \\indented{1}{\\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*cosh(u)*cos(v)}, \\spad{y = a*sinh(u)*sin(v)}, \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*cosh(u)*cos(v)}, \\indented{1}{\\spad{y = a*sinh(u)*sin(v)}.}")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,phi)} to \\spad{x = u*v*cos(phi)}, \\spad{y = u*v*sin(phi)}, \\spad{z = 1/2 * \\spad{(u**2} - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,z)} to \\spad{x = 1/2*(u**2 - v**2)}, \\spad{y = u*v}, \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v)} to \\spad{x = 1/2*(u**2 - v**2)}, \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,phi)} to \\spad{x = r*sin(phi)*cos(theta)}, \\spad{y = r*sin(phi)*sin(theta)}, \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,z)} to \\spad{x = \\spad{r} * cos(theta)}, \\spad{y = \\spad{r} * sin(theta)}, \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta)} to \\spad{x = \\spad{r} * cos(theta)} ,{} \\spad{y = \\spad{r} * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt.}"))) │ │ │ NIL │ │ │ -(|d02bhfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF, a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) │ │ │ NIL │ │ │ +(|InnerPolySign| R UP) │ │ │ +((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) │ │ │ NIL │ │ │ -(|d02cjfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF, a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) │ │ │ NIL │ │ │ +(|NumericalPDEProblem|) │ │ │ +((|constructor| (NIL "\\axiomType{NumericalPDEProblem} is a \\axiom{domain} for the representation of Numerical PDE problems for use by ANNA. \\blankline The representation is of type: \\blankline \\axiomType{Record}(pde:\\axiomType{List Expression DoubleFloat}, \\spad{\\br} constraints:\\axiomType{List PDEC}, \\spad{\\br} f:\\axiomType{List List Expression DoubleFloat},\\br st:\\axiomType{String},\\br tol:\\axiomType{DoubleFloat}) \\blankline where \\axiomType{PDEC} is of type: \\blankline \\axiomType{Record}(start:\\axiomType{DoubleFloat}, \\spad{\\br} finish:\\axiomType{DoubleFloat},\\br grid:\\axiomType{NonNegativeInteger},\\br boundaryType:\\axiomType{Integer},\\br dStart:\\axiomType{Matrix DoubleFloat}, \\spad{\\br} dFinish:\\axiomType{Matrix DoubleFloat})")) (|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} is not documented")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} is not documented"))) │ │ │ NIL │ │ │ -(|FiniteFieldPolynomialPackage2| F GF) │ │ │ -((|constructor| (NIL "FiniteFieldPolynomialPackage2(F,GF) exports some functions concerning finite fields, which depend on a finite field \\spad{GF} and an algebraic extension \\spad{F} of \\spad{GF,} for example, a zero of a polynomial over \\spad{GF} in \\spad{F.}")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic, irreducible polynomial \\spad{f,} which degree must divide the extension degree of \\spad{F} over \\spad{GF,} \\spad{f} splits into linear factors over \\spad{F.}")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) │ │ │ NIL │ │ │ +(|NottinghamGroup| F) │ │ │ +((|constructor| (NIL "This is an implmenentation of the Nottingham Group"))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|FreeNilpotentLie| |n| |class| R) │ │ │ -((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P.} Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} is not documented")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} is not documented")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) │ │ │ -((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +(|RationalRetractions| S) │ │ │ +((|constructor| (NIL "Rational number testing and retraction functions.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number, \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number, \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) │ │ │ NIL │ │ │ -(|FiniteAlgebraicExtensionField&| S F) │ │ │ -((|constructor| (NIL "FiniteAlgebraicExtensionField \\spad{F} is the category of fields which are finite algebraic extensions of the field \\spad{F.} If \\spad{F} is finite then any finite algebraic extension of \\spad{F} is finite, too. Let \\spad{K} be a finite algebraic extension of the finite field \\spad{F.} The exponentiation of elements of \\spad{K} defines a Z-module structure on the multiplicative group of \\spad{K.} The additive group of \\spad{K} becomes a module over the ring of polynomials over \\spad{F} via the operation \\spadfun{linearAssociatedExp}(a:K,f:SparseUnivariatePolynomial \\spad{F)} which is linear over \\spad{F,} that is, for elements a from \\spad{K,} \\spad{c,d} from \\spad{F} and \\spad{f,g} univariate polynomials over \\spad{F} we have \\spadfun{linearAssociatedExp}(a,cf+dg) equals \\spad{c} times \\spadfun{linearAssociatedExp}(a,f) plus \\spad{d} times \\spadfun{linearAssociatedExp}(a,g). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from F[X]: \\spadfun{linearAssociatedExp}(a,monomial(1,k)\\$SUP(F)) is defined to be \\spadfun{Frobenius}(a,k) which is a**(q**k) where q=size()\\$F. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog}, respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial \\spad{g,} such that the \\spadfun{linearAssociatedExp}(b,g) equals a. If there is no such polynomial \\spad{g,} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial \\spad{g,} such that \\spadfun{linearAssociatedExp}(normalElement(),g) equals a.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial \\spad{g} of least degree, such that \\spadfun{linearAssociatedExp}(a,g) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over \\spad{F,} that is, for elements a from \\spad{\\$,} \\spad{c,d} form \\spad{F} and \\spad{f,g} univariate polynomials over \\spad{F} we have \\spadfun{linearAssociatedExp}(a,cf+dg) equals \\spad{c} times \\spadfun{linearAssociatedExp}(a,f) plus \\spad{d} times \\spadfun{linearAssociatedExp}(a,g). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from F[X]: \\spadfun{linearAssociatedExp}(a,monomial(1,k)\\$SUP(F)) is defined to be \\spadfun{Frobenius}(a,k) which is a**(q**k), where q=size()\\$F.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F,} that is, \\spad{a**(q**i), 0 \\spad{<=} \\spad{i} \\spad{<=} extensionDegree()-1} is an F-basis, where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element, normal over the ground field \\spad{F,} thus \\spad{a**(q**i), 0 \\spad{<=} \\spad{i} < extensionDegree()} is an F-basis, where \\spad{q = size()\\$F}. At the first call, the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls, the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F,} that is, \\spad{a**(q**i), 0 \\spad{<=} \\spad{i} < extensionDegree()} is an F-basis, where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q.} Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note that \\spad{trace(a,d)=reduce(+,[a**(q**(d*i)) for \\spad{i} in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F.}")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note that norm(a,d) = reduce(*,[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F.}")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F.}")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F.}") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F.}")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where v1,...,vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the vi's with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|Finite|)))) │ │ │ -(|GrayCode|) │ │ │ -((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set, only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector \\spad{ww} to start a loop using nextSubsetGray(ww,n)")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector \\spad{vv} whose components have the following meanings:\\br vv.1: a vector of length \\spad{n} whose entries are 0 or 1. This can be interpreted as a code for a subset of the set 1,...,n; \\spad{vv.1} differs from \\spad{ww.1} by exactly one entry;\\br \\spad{vv.2.1} is the number of the entry of \\spad{vv.1} which will be changed next time;\\br \\spad{vv.2.1} = \\spad{n+1} means that \\spad{vv.1} is the last subset; trying to compute nextSubsetGray(vv) if \\spad{vv.2.1} = \\spad{n+1} will produce an error!\\br \\blankline The other components of \\spad{vv.2} are needed to compute nextSubsetGray efficiently. Note that this is an implementation of [Williamson, Topic II, 3.54, \\spad{p.} 112] for the special case \\spad{r1} = \\spad{r2} = \\spad{...} = \\spad{rn} = 2; Note that nextSubsetGray produces a side-effect, nextSubsetGray(vv) and \\spad{vv} \\spad{:=} nextSubsetGray(vv) will have the same effect."))) │ │ │ +(|HexadecimalExpansion|) │ │ │ +((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|toint| (((|Integer|) (|String|)) "\\spad{toint(s)} converts a hex string to integer \\blankline \\spad{X} toint(\"FE\") \\spad{X} toint(\"BFD25E8C\")")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Integer|) (QUOTE (|RealConstant|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|StepThrough|))) (|HasCategory| (|Integer|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| (|Integer|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|Integer|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |Eltable|) (QUOTE (|Integer|)) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|Integer|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Integer|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|FortranCode|) │ │ │ +((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}'th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}'th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}'th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}'th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}'th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}'th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF \\spad{(s)} THEN \\spad{e} ELSE \\spad{f.}") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF \\spad{(s)} THEN e.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat \\spad{...} until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n.}") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|HallBasis|) │ │ │ -((|constructor| (NIL "Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P.} Hall as given in Serre's book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,weight,right] which represents a \\spad{P.} Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P.} Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of rightCandidate, we have left factor leftOfRight, and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free d-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(d,2) if \\spad{n} = 2"))) │ │ │ +(|U32Matrix|) │ │ │ +((|constructor| (NIL "This is a low-level domain which implements matrices (two dimensional arrays) of 32-bit integers. Indexing is 0 based, there is no bound checking (unless provided by lower level).")) (|qnew| (($ (|Integer|) (|Integer|)) "\\spad{qnew(n, \\spad{m)}} creates a new \\spad{n} by \\spad{m} matrix of zeros. \\blankline \\spad{X} qnew(3,4)$U32Matrix()"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|Integer|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|Integer|) (QUOTE (|IntegralDomain|))) (|HasAttribute| (|Integer|) (QUOTE (|commutative| "*"))) (|HasCategory| (|Integer|) (QUOTE (|CommutativeRing|))) (|HasCategory| (|Integer|) (QUOTE (|Field|)))) │ │ │ +(|UnivariateTaylorSeriesCategory&| S |Coef|) │ │ │ +((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) \\spad{**} a} computes a power of a power series. When the coefficient ring is a field, we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 \\spad{<=} \\spad{d} \\spad{<=} k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= \\spad{k}.}")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + \\spad{a1} \\spad{x} + \\spad{a2} \\spad{x**2} + ...)} returns \\spad{a1 + \\spad{a2} \\spad{x} + \\spad{a3} \\spad{x**2} + ...} Thus, this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + \\spad{a1} \\spad{x} + \\spad{a2} \\spad{x**2} + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + \\spad{a1} \\spad{x} + \\spad{a2} \\spad{x**2} + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms, where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) │ │ │ NIL │ │ │ +((|HasCategory| |#2| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#2| (QUOTE (|TranscendentalFunctionCategory|))) (|HasSignature| |#2| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (|Symbol|))))) (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ +(|BitAggregate&| S) │ │ │ +((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive-or of bit aggregates \\axiom{a} and \\axiom{b}.")) (|or| (($ $ $) "\\spad{a or \\spad{b}} returns the logical or of bit aggregates \\axiom{a} and \\axiom{b}.")) (|and| (($ $ $) "\\spad{a and \\spad{b}} returns the logical and of bit aggregates \\axiom{a} and \\axiom{b}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical nor of bit aggregates \\axiom{a} and \\axiom{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical nand of bit aggregates \\axiom{a} and \\axiom{b}.")) (^ (($ $) "\\spad{^ \\spad{b}} returns the logical not of bit aggregate \\axiom{b}.")) (|not| (($ $) "\\spad{not(b)} returns the logical not of bit aggregate \\axiom{b}."))) │ │ │ NIL │ │ │ -(|IrrRepSymNatPackage|) │ │ │ -((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {1,2,...,n} in Young's natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n,} a weakly decreasing sequence of integers summing up to \\spad{n,} for example, [3,3,3,1] labels an irreducible representation for \\spad{n} equals 10. Note that whenever a \\spadtype{List Integer} appears in a signature, a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to \\spad{lambda} in Young's natural form for the list of permutations given by listOfPerm.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition \\spad{lambda} in Young's natural form for the following two generators of the symmetric group, whose elements permute {1,2,...,n}, namely \\spad{(1} 2) (2-cycle) and \\spad{(1} 2 \\spad{...} \\spad{n)} (n-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition \\spad{lambda} in Young's natural form of the permutation \\spad{pi} in the symmetric group, whose elements permute {1,2,...,n}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to lambda. Note that the Robinson-Thrall hook formula is implemented."))) │ │ │ NIL │ │ │ +(|PlottablePlaneCurveCategory|) │ │ │ +((|constructor| (NIL "PlotablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points, representing the branches of the curve, and for determining the ranges of the x-coordinates and y-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the y-coordinates of the points on the curve \\spad{c.}")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the x-coordinates of the points on the curve \\spad{c.}")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points, representing the branches of the curve \\spad{c.}"))) │ │ │ NIL │ │ │ -(|LinesOpPack| K) │ │ │ -((|constructor| (NIL "A package that exports several linear algebra operations over lines of matrices. Part of the PAFF package.")) (|reduceRowOnList| (((|List| (|List| |#1|)) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{reduceRowOnList(v,lvec)} applies a row reduction on each of the element of \\spad{lv} using \\spad{v} according to a pivot in \\spad{v} which is set to be the first non nul element in \\spad{v.}")) (|reduceLineOverLine| (((|List| |#1|) (|List| |#1|) (|List| |#1|) |#1|) "\\spad{reduceLineOverLine(v1,v2,a)} returns \\spad{v1-a*v1} where \\indented{1}{v1 and \\spad{v2} are considered as vector space.}")) (|quotVecSpaceBasis| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{quotVecSpaceBasis(b1,b2)} returns a basis of \\spad{V1/V2} where \\spad{V1} and \\spad{V2} are vector space with basis \\spad{b1} and \\spad{b2} resp. and \\spad{V2} is suppose to be include in \\spad{V1;} Note that if it is not the case then it returs the basis of V1/W where \\spad{W} = intersection of \\spad{V1} and \\spad{V2}")) (|reduceRow| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{reduceRow(llk)} if the input is considered as a matrix, the output would be the row reduction matrix. It's almost the rowEchelon form except that no permution of lines is performed."))) │ │ │ NIL │ │ │ +(|DifferentialPolynomialCategory| R S V E) │ │ │ +((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition, it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader}, \\spadfun{initial}, \\spadfun{separant}, \\spadfun{differentialVariables}, and \\spadfun{isobaric?}. Furthermore, if the ground ring is a differential ring, then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor, one needs to provide a ground ring \\spad{R,} an ordered set \\spad{S} of differential indeterminates, a ranking \\spad{V} on the set of derivatives of the differential indeterminates, and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates.")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note that an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight, and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, \\spad{s)}} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p.}")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, \\spad{s)}} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p.}")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, \\spad{s)}} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p,} which is the maximum number of differentiations of a differential indeterminate, among all those appearing in \\spad{p.}") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s.}")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p.}")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring, in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z.n} where \\spad{z} \\spad{:=} makeVariable(p). Note that In the interpreter, \\spad{z} is given as an internal map, which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate, in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z.n} where \\spad{z} :=makeVariable(s). Note that In the interpreter, \\spad{z} is given as an internal map, which may be ignored."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|InnerNormalBasisFieldFunctions| GF) │ │ │ -((|constructor| (NIL "InnerNormalBasisFieldFunctions(GF) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv \\spad{x}} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{**}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)}, interpreting \\spad{v} as an element of normal basis field, \\spad{q} the size of the ground field. This is done by a cyclic e-shift of the vector \\spad{v.}")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)}, interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note that for a description of the algorithm, see T.Itoh and S.Tsujii, \"A fast algorithm for computing multiplicative inverses in GF(2^m) using normal bases\", Information and Computation 78, pp.171-177, 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring, interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from D.R.Stinson, \"Some observations on parallel Algorithms for fast exponentiation in GF(2^n)\", Siam \\spad{J.} Computation, Vol.19, No.4, pp.711-717, August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ \\spad{...} + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic, where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF.}"))) │ │ │ +(|CardinalNumber|) │ │ │ +((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets, both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\spad{#X}} and \\spad{y = \\spad{#Y}} then\\br \\tab{5}\\spad{x+y = \\#(X+Y)} \\tab{5}disjoint union\\br \\tab{5}\\spad{x-y = \\#(X-Y)} \\tab{5}relative complement\\br \\tab{5}\\spad{x*y = \\#(X*Y)} \\tab{5}cartesian product\\br \\tab{5}\\spad{x**y = \\#(X**Y)} \\tab{4}\\spad{X**Y = \\spad{g|} g:Y->X} \\blankline The non-negative integers have a natural construction as cardinals\\br \\spad{0 = \\#\\{\\}}, \\spad{1 = \\{0\\}}, \\spad{2 = \\{0, 1\\}}, ..., \\spad{n = \\{i| 0 \\spad{<=} \\spad{i} < n\\}}. \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\spad{\\br} \\spad{2**Aleph \\spad{i} = Aleph(i+1)} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are\\br \\tab{5}\\spad{a = \\spad{#Z}} \\tab{5}countable infinity\\br \\tab{5}\\spad{c = \\spad{#R}} \\tab{5}the continuum\\br \\tab{5}\\spad{f = \\# \\spad{g} | g:[0,1]->R\\} \\blankline In this domain, these values are obtained using\\br \\tab{5}\\spad{a \\spad{:=} Aleph 0}, \\spad{c \\spad{:=} 2**a}, \\spad{f \\spad{:=} 2**c}.")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} \\indented{1}{is used to dictate whether the hypothesis is to be assumed.} \\blankline \\spad{X} generalizedContinuumHypothesisAssumed \\spad{true} \\spad{X} a:=Aleph 0 \\spad{X} c:=2**a \\spad{X} f:=2**c")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} \\indented{1}{tests if the hypothesis is currently assumed.} \\blankline \\spad{X} generalizedContinuumHypothesisAssumed?")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines \\indented{1}{whether \\spad{\\spad{a}} is a countable cardinal,} \\indented{1}{for example, an integer or \\spad{Aleph 0}.} \\blankline \\spad{X} c2:=2::CardinalNumber \\spad{X} countable? \\spad{c2} \\spad{X} A0:=Aleph 0 \\spad{X} countable? \\spad{A0} \\spad{X} A1:=Aleph 1 \\spad{X} countable? \\spad{A1}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\indented{1}{\\spad{a} is a finite cardinal, for example, an integer.} \\blankline \\spad{X} c2:=2::CardinalNumber \\spad{X} finite? \\spad{c2} \\spad{X} A0:=Aleph 0 \\spad{X} finite? \\spad{A0}")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number. \\blankline \\spad{X} A0:=Aleph 0")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{2}{as \\spad{\\{g| g:Y->X\\}}.} \\blankline \\spad{X} c2:=2::CardinalNumber \\spad{X} \\spad{c2**c2} \\spad{X} A1:=Aleph 1 \\spad{X} \\spad{A1**c2} \\spad{X} generalizedContinuumHypothesisAssumed \\spad{true} \\spad{X} \\spad{A1**A1}")) (- (((|Union| $ "failed") $ $) "\\spad{x - \\spad{y}} returns an element \\spad{z} such that \\indented{1}{\\spad{z+y=x} or \"failed\" if no such element exists.} \\blankline \\spad{X} c2:=2::CardinalNumber \\spad{X} \\spad{c2-c2} \\spad{X} A1:=Aleph 1 \\spad{X} \\spad{A1-c2}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} implies a domain has \\spad{\"*\": (D,D) \\spad{->} \\spad{D}} which is commutative."))) │ │ │ +(((|commutative| "*") . T)) │ │ │ NIL │ │ │ +(|QuotientFieldCategoryFunctions2| A B R S) │ │ │ +((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of frac."))) │ │ │ NIL │ │ │ -(|FiniteAlgebraicExtensionField| F) │ │ │ -((|constructor| (NIL "FiniteAlgebraicExtensionField \\spad{F} is the category of fields which are finite algebraic extensions of the field \\spad{F.} If \\spad{F} is finite then any finite algebraic extension of \\spad{F} is finite, too. Let \\spad{K} be a finite algebraic extension of the finite field \\spad{F.} The exponentiation of elements of \\spad{K} defines a Z-module structure on the multiplicative group of \\spad{K.} The additive group of \\spad{K} becomes a module over the ring of polynomials over \\spad{F} via the operation \\spadfun{linearAssociatedExp}(a:K,f:SparseUnivariatePolynomial \\spad{F)} which is linear over \\spad{F,} that is, for elements a from \\spad{K,} \\spad{c,d} from \\spad{F} and \\spad{f,g} univariate polynomials over \\spad{F} we have \\spadfun{linearAssociatedExp}(a,cf+dg) equals \\spad{c} times \\spadfun{linearAssociatedExp}(a,f) plus \\spad{d} times \\spadfun{linearAssociatedExp}(a,g). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from F[X]: \\spadfun{linearAssociatedExp}(a,monomial(1,k)\\$SUP(F)) is defined to be \\spadfun{Frobenius}(a,k) which is a**(q**k) where q=size()\\$F. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog}, respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial \\spad{g,} such that the \\spadfun{linearAssociatedExp}(b,g) equals a. If there is no such polynomial \\spad{g,} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial \\spad{g,} such that \\spadfun{linearAssociatedExp}(normalElement(),g) equals a.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial \\spad{g} of least degree, such that \\spadfun{linearAssociatedExp}(a,g) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over \\spad{F,} that is, for elements a from \\spad{\\$,} \\spad{c,d} form \\spad{F} and \\spad{f,g} univariate polynomials over \\spad{F} we have \\spadfun{linearAssociatedExp}(a,cf+dg) equals \\spad{c} times \\spadfun{linearAssociatedExp}(a,f) plus \\spad{d} times \\spadfun{linearAssociatedExp}(a,g). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from F[X]: \\spadfun{linearAssociatedExp}(a,monomial(1,k)\\$SUP(F)) is defined to be \\spadfun{Frobenius}(a,k) which is a**(q**k), where q=size()\\$F.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F,} that is, \\spad{a**(q**i), 0 \\spad{<=} \\spad{i} \\spad{<=} extensionDegree()-1} is an F-basis, where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element, normal over the ground field \\spad{F,} thus \\spad{a**(q**i), 0 \\spad{<=} \\spad{i} < extensionDegree()} is an F-basis, where \\spad{q = size()\\$F}. At the first call, the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls, the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F,} that is, \\spad{a**(q**i), 0 \\spad{<=} \\spad{i} < extensionDegree()} is an F-basis, where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q.} Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note that \\spad{trace(a,d)=reduce(+,[a**(q**(d*i)) for \\spad{i} in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F.}")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note that norm(a,d) = reduce(*,[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F.}")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F.}")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F.}") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F.}")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where v1,...,vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the vi's with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|MultiVariableCalculusFunctions| S F FLAF FLAS) │ │ │ -((|constructor| (NIL "\\spadtype{MultiVariableCalculusFunctions} Package provides several functions for multivariable calculus. These include gradient, hessian and jacobian, divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian, the matrix of first partial derivatives, of the vector field \\spad{vf,} \\spad{vf} a vector function of the variables listed in xlist, \\spad{kl} is the number of nonzero subdiagonals, \\spad{ku} is the number of nonzero superdiagonals, \\spad{kl+ku+1} being actual bandwidth. Stores the nonzero band in a matrix, dimensions \\spad{kl+ku+1} by \\#xlist. The upper triangle is in the top \\spad{ku} rows, the diagonal is in row ku+1, the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to \\spad{LAPACK/NAG-F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian, the matrix of first partial derivatives, of the vector field \\spad{vf,} \\spad{vf} a vector function of the variables listed in xlist.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian, the matrix of second partial derivatives, of the scalar field \\spad{v,} \\spad{v} a function of the variables listed in xlist, \\spad{k} is the semi-bandwidth, the number of nonzero subdiagonals, 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix, dimensions \\spad{k+1} by \\#xlist, whose rows are the vectors formed by diagonal, subdiagonal, etc. of the real, full-matrix, hessian. (The notation conforms to \\spad{LAPACK/NAG-F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian, the matrix of second partial derivatives, of the scalar field \\spad{v,} \\spad{v} a function of the variables listed in xlist.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v,} \\spad{v} a function of the variables listed in xlist.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf,} \\spad{vf} a vector function of the variables listed in xlist.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient, the vector of first partial derivatives, of the scalar field \\spad{v,} \\spad{v} a function of the variables listed in xlist."))) │ │ │ +(|AttributeButtons|) │ │ │ +((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\", \"stability\" (how much affect the cosine or sine component of the solution has on the stability of the result), \"accuracy\" and \"expense\" (how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved.")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,routineName,n)} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\", \"stability\", \"accuracy\", \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,n)} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\", \"stability\", \"accuracy\", \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(n)} sets the value of the steps for increasing and decreasing the button values. \\axiom{n} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\", \"stability\", \"accuracy\", \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\", \"stability\", \"accuracy\", \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\", \"stability\", \"accuracy\", \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\", \"stability\", \"accuracy\", \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\", \"stability\", \"accuracy\", \"expense\" or \"functionEvaluations\"."))) │ │ │ +((|finiteAggregate| . T)) │ │ │ NIL │ │ │ +(|OrderedAbelianMonoidSup|) │ │ │ +((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a sup operation added. The purpose of the sup operator in this domain is to act as a supremum with respect to the partial order imposed by `-`, rather than with respect to the total \\spad{$>$} order (since that is \"max\"). \\blankline Axioms\\br \\tab{5}sup(a,b)-a \\~~= \"failed\"\\br \\tab{5}sup(a,b)-b \\~~= \"failed\"\\br \\tab{5}x-a \\~~= \"failed\" and \\spad{x-b} \\~~= \"failed\" \\spad{=>} \\spad{x} \\spad{>=} sup(a,b)\\br")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) │ │ │ NIL │ │ │ -(|ModularHermitianRowReduction| R) │ │ │ -((|constructor| (NIL "Modular hermitian row reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen, for example, positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, \\spad{d,} \\spad{p)}} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m,} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, \\spad{d)}} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[d\\space{5}]} \\indented{3}{[\\space{2}d\\space{3}]} \\indented{3}{[\\space{4}. \\spad{]}} \\indented{3}{[\\space{5}d]} \\indented{3}{[\\space{3}M\\space{2}]} where \\spad{M = \\spad{m} mod \\spad{d}.}")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m,} finding an appropriate modulus."))) │ │ │ NIL │ │ │ +(|Stream| S) │ │ │ +((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\indented{1}{\\spad{s = [x0,x1,x2,..]} and} \\indented{1}{n is the smallest index such that \\spad{p(xn) = true}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..] \\spad{X} f(x:PositiveInteger):Boolean \\spad{==} \\spad{x} < 5 \\spad{X} filterUntil(f,m)")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\indented{1}{\\spad{s = [x0,x1,x2,..]} and} \\indented{1}{n is the smallest index such that \\spad{p(xn) = false}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..] \\spad{X} f(x:PositiveInteger):Boolean \\spad{==} \\spad{x} < 5 \\spad{X} filterWhile(f,m)")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\indented{1}{x and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous} \\indented{1}{element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.} \\blankline \\spad{X} f(x:Integer):Integer \\spad{==} \\spad{x+10} \\spad{X} generate(f,10)") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are \\indented{1}{equal to \\spad{f()}.} \\indented{1}{Note: \\spad{generate(f) = [f(),f(),f(),...]}.} \\blankline \\spad{X} f():Integer \\spad{==} 1 \\spad{X} generate(f)")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(x,n) to \\spad{y.} The function will expand \\indented{1}{cycles if necessary.} \\blankline \\spad{X} p:=[i for \\spad{i} in 1..] \\spad{X} q:=[i for \\spad{i} in 9..] \\spad{X} setrest!(p,4,q) \\spad{X} \\spad{p}")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all \\indented{1}{computed elements.} \\blankline \\spad{X} m:=[1,2,3,4,5,6,7,8,9,10,11,12] \\spad{X} n:=m::Stream(PositiveInteger) \\spad{X} showAllElements \\spad{n}")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries \\indented{1}{of st.} \\blankline \\spad{X} m:=[1,2,3] \\spad{X} n:=repeating(m) \\spad{X} output(5,n)")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} \\indented{1}{and whose \\spad{rest} is \\spad{s.}} \\indented{1}{Note: \\spad{cons(a,s) = concat(a,s)}.} \\blankline \\spad{X} m:=[1,2,3] \\spad{X} n:=repeating(m) \\spad{X} cons(4,n)")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f.} Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n.} \\blankline \\spad{X} m:=[1,2,3] \\spad{X} n:=repeating(m) \\spad{X} findCycle(3,n) \\spad{X} findCycle(2,n)")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic \\indented{1}{with period \\spad{l,} and \\spad{false} otherwise.} \\blankline \\spad{X} m:=[1,2,3] \\spad{X} n:=repeating(m) \\spad{X} repeating?(m,n)")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l.} \\blankline \\spad{X} m:=repeating([-1,0,1,2,3])")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream. \\blankline \\spad{X} m:=[1,2,3,4,5,6,7,8,9,10,11,12] \\spad{X} coerce(m)@Stream(Integer) \\spad{X} m::Stream(Integer)")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) │ │ │ +((|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|)))) │ │ │ +(|NumericalIntegrationCategory|) │ │ │ +((|constructor| (NIL "\\axiomType{NumericalIntegrationCategory} is the \\axiom{category} for describing the set of Numerical Integration \\axiom{domains} with \\axiomFun{measure} and \\axiomFun{numericalIntegration}.")) (|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter, labelled \\axiom{sofar}, which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter, labelled \\axiom{sofar}, which would contain the best compatibility found so far."))) │ │ │ NIL │ │ │ -(|NumericalOrdinaryDifferentialEquations|) │ │ │ -((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables:\\br \\tab{5}dy/dx = f(y,x)\\tab{5}y is an n-vector\\br All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments:\\br \\spad{n,} the number of dependent variables;\\br \\spad{x1,} the initial point;\\br \\spad{h,} the step size;\\br \\spad{y,} a vector of initial conditions of length n\\br which upon exit contains the solution at \\spad{x1 + h};\\br \\blankline \\spad{derivs}, a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx}, a vector which contains the derivative information. \\blankline In order of increasing complexity:\\br \\tab{5}\\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to\\br \\tab{5}\\spad{x1 + \\spad{h}} and return the values in y.\\br \\blankline \\tab{5}\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as\\br \\tab{5}\\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch\\br \\tab{5}arrays \\spad{t1-t4} of size n.\\br \\blankline \\tab{5}Starting with \\spad{y} at \\spad{x1,} \\spad{rk4f(y,n,x1,x2,ns,derivs)}\\br \\tab{5}uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta\\br \\tab{5}integrator to advance the solution vector to \\spad{x2} and return\\br \\tab{5}the values in \\spad{y.} Argument \\spad{x2,} is the final point, and\\br \\tab{5}\\spad{ns}, the number of steps to take. \\blankline \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps}, the step is taken and the result is returned. If the error is not within \\spad{eps}, the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input, an trial step size must be given and upon return, an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as\\br \\tab{5}\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}\\br and this is compared against \\spad{eps}. If this is greater than \\spad{eps}, the step size is reduced accordingly to\\br \\tab{5}\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}\\br If the error criterion is satisfied, then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be\\br \\tab{5}\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(-1/5)}\\br Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by W.Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling published by Cambridge University Press. \\blankline Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)}, \\spad{eps} is the required accuracy, \\spad{yscal} is the scaling vector for the difference in solutions. On input, \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output, \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n.} \\blankline \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2,} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as\\br \\tab{5}\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}\\br where \\spad{y(i)} is the solution at location \\spad{x,} \\spad{dydx} is the ordinary differential equation's right hand side, \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. \\blankline The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point, \\spad{eps} is local truncation, \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use.")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation dy/dx = f(y,x) of \\spad{n} variables, where \\spad{y} is an n-vector. Starting with \\spad{y} at \\spad{x1,} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y.} For details, see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation dy/dx = f(y,x) of \\spad{n} variables, where \\spad{y} is an n-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details, see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation dy/dx = f(y,x) of \\spad{n} variables, where \\spad{y} is an n-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details, see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation dy/dx = f(y,x) of \\spad{n} variables, where \\spad{y} is an n-vector using a 4-th order Runge-Kutta method. For details, see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1-t4} of size \\spad{n.} For details, see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation dy/dx = f(y,x) of \\spad{n} variables, where \\spad{y} is an n-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + \\spad{h},} \\spad{n} is the number of dependent variables, \\spad{x1} is the initial point, \\spad{h} is the step size, and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details, see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) │ │ │ NIL │ │ │ +(|MathMLFormat|) │ │ │ +((|constructor| (NIL "This package is based on the TeXFormat domain by Robert \\spad{S.} Sutor \\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "\\spad{display(s)} prints the string returned by coerce, adding tags.")) (|exprex| (((|String|) (|OutputForm|)) "\\spad{exprex(e)} coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "\\spad{coerceL(o)} changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to MathML format."))) │ │ │ NIL │ │ │ -(|NumericalQuadrature|) │ │ │ -((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions), fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns, which contains value Float: estimate of the integral error Float: estimate of the error in the computation totalpts Integer: total number of function evaluations success Boolean: if the integral was computed within the user specified error criterion To produce this estimate, each routine generates an internal sequence of sub-estimates, denoted by S(i), depending on the routine, to which the various convergence criteria are applied. The user must supply a relative accuracy, \\spad{eps_r}, and an absolute accuracy, \\spad{eps_a}. Convergence is obtained when either\\br \\tab{5}\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}\\br \\tab{5}or \\spad{ABS(S(i) - S(i-1)) < eps_a} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: closed: romberg, simpson, trapezoidal open: rombergo, simpsono, trapezoidalo adaptive closed: aromberg, asimpson, atrapezoidal \\blankline The S(i) for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\blankline The S(i) for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\blankline The S(i) for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}-th level, this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the 2*(i+1) power only. \\blankline The three families come in a closed version, where the formulas include the endpoints, an open version where the formulas do not include the endpoints and an adaptive version, where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\blankline Each routine takes as arguments:\\br \\spad{f} integrand\\br a starting point\\br \\spad{b} ending point\\br eps_r relative error\\br eps_a absolute error\\br nmin refinement level when to start checking for convergence \\spad{(>} 1)\\br nmax maximum level of refinement\\br \\blankline The adaptive routines take as an additional parameter, nint, the number of independent intervals to apply a closed family integrator of the same name. \\blankline")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{fn} over the closed interval \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{fn} over the closed interval \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}, and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}, and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}, and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) │ │ │ NIL │ │ │ +(|ExpertSystemToolsPackage2| R1 R2) │ │ │ +((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping \\spad{f:R1} \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) │ │ │ NIL │ │ │ -(|SystemODESolver| F LO) │ │ │ -((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, \\spad{v,} solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m \\spad{x} = \\spad{v}} are \\spad{v_p + \\spad{c_1} \\spad{v_1} + \\spad{...} + \\spad{c_m} v_m} where the \\spad{c_i's} are constants, and the \\spad{v_i's} form a basis for the solutions of \\spad{m \\spad{x} = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, \\spad{v,} solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D \\spad{x} = \\spad{m} \\spad{x} + \\spad{v}} are \\spad{v_p + \\spad{c_1} \\spad{v_1} + \\spad{...} + \\spad{c_m} v_m} where the \\spad{c_i's} are constants, and the \\spad{v_i's} form a basis for the solutions of \\spad{D \\spad{x} = \\spad{m} \\spad{x}.} Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, \\spad{v)}} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 \\spad{x} = v_0} is equivalent to \\spad{m \\spad{x} = \\spad{v}.}") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A \\spad{z},} the first order linear system \\spad{D \\spad{y} = \\spad{M} \\spad{y} + \\spad{v}} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i \\spad{z_j} = h_i}."))) │ │ │ NIL │ │ │ +(|BezoutMatrix| R UP M |Row| |Col|) │ │ │ +((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q.}")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q.}"))) │ │ │ NIL │ │ │ -(|ODETools| F LODO) │ │ │ -((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, \\spad{g,} [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op \\spad{y} = \\spad{g}} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note that the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, \\spad{g,} [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op \\spad{y} = \\spad{g}} is \\spad{f1 int(u1) + \\spad{...} + \\spad{fm} int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < \\spad{n}} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], \\spad{q,} \\spad{D)}} returns the \\spad{q \\spad{x} \\spad{n}} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n \\spad{x} \\spad{n}} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) │ │ │ +((|HasAttribute| |#1| (QUOTE (|commutative| "*")))) │ │ │ +(|BinaryTree| S) │ │ │ +((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with \\indented{1}{value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r.}} \\blankline \\spad{X} t1:=binaryTree([1,2,3]) \\spad{X} t2:=binaryTree([4,5,6]) \\spad{X} binaryTree(t1,[7,8,9],t2)") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree \\indented{1}{with value \\spad{v,} and left and right empty.} \\blankline \\spad{X} t1:=binaryTree([1,2,3])"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ +(|UnivariateFormalPowerSeriesFunctions| |Coef|) │ │ │ +((|constructor| (NIL "This package has no description"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|OrderingFunctions| |dim| S) │ │ │ -((|constructor| (NIL "This package provides ordering functions on vectors which are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) │ │ │ +(|Automorphism| R) │ │ │ +((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R.}")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, \\spad{g)}} returns the invertible morphism given by \\spad{f,} where \\spad{g} is the inverse of \\spad{f..}") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f.}"))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|SemiGroup|) │ │ │ +((|constructor| (NIL "the class of all multiplicative semigroups, that is, a set with an associative operation \\spadop{*}. \\blankline Axioms\\br \\tab{5}\\spad{associative(\"*\":(\\%,\\%)->\\%)}\\tab{5}\\spad{(x*y)*z = x*(y*z)} \\blankline Conditional attributes\\br \\tab{5}\\spad{commutative(\"*\":(\\%,\\%)->\\%)}\\tab{5}\\spad{x*y = y*x}")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times, exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times, exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y.}"))) │ │ │ NIL │ │ │ -(|Permanent| |n| R) │ │ │ -((|constructor| (NIL "Permanent implements the functions permanent, the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x.} The permanent is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the determinant. The formula used is by H.J. Ryser, improved by [Nijenhuis and Wilf, \\spad{Ch.} 19]. Note that permanent(x) choose one of three algorithms, depending on the underlying ring \\spad{R} and on \\spad{n,} the number of rows (and columns) of x:\\br if 2 has an inverse in \\spad{R} we can use the algorithm of [Nijenhuis and Wilf, ch.19,p.158]; if 2 has no inverse, some modifications are necessary:\\br if \\spad{n} > 6 and \\spad{R} is an integral domain with characteristic different from 2 (the algorithm works if and only 2 is not a zero-divisor of \\spad{R} and characteristic()$R \\spad{^=} 2, but how to check that for any given \\spad{R} \\spad{?),} the local function \\spad{permanent2} is called;\\br else, the local function \\spad{permanent3} is called (works for all commutative rings \\spad{R).}"))) │ │ │ NIL │ │ │ +(|ArcHyperbolicFunctionCategory|) │ │ │ +((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x.}")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x.}")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x.}")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x.}")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x.}")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x.}"))) │ │ │ NIL │ │ │ -(|PolynomialFactorizationExplicit&| S) │ │ │ -((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields, it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}-th root of \\spad{r,} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements, not all zero, whose \\spad{p}-th powers \\spad{(p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m,} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], \\spad{g)}} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of ai's exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q.}")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p.}")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p.}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|)))) │ │ │ -(|PolynomialFactorizationExplicit|) │ │ │ -((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields, it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}-th root of \\spad{r,} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements, not all zero, whose \\spad{p}-th powers \\spad{(p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m,} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], \\spad{g)}} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of ai's exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q.}")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p.}")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p.}"))) │ │ │ -((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|AbelianMonoid&| S) │ │ │ +((|constructor| (NIL "The class of multiplicative monoids, that is, semigroups with an additive identity element. \\blankline Axioms\\br \\tab{5}\\spad{leftIdentity(\"+\":(\\%,\\%)->\\%,0)}\\tab{5}\\spad{0+x=x}\\br \\tab{5}\\spad{rightIdentity(\"+\":(\\%,\\%)->\\%,0)}\\tab{4}\\spad{x+0=x}")) (* (($ (|NonNegativeInteger|) $) "\\spad{n * \\spad{x}} is left-multiplication by a non negative integer")) (|zero?| (((|Boolean|) $) "\\spad{zero?(x)} tests if \\spad{x} is equal to 0.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|Zero|) (($) "\\spad{0} is the additive identity element."))) │ │ │ NIL │ │ │ -(|Point| R) │ │ │ -((|constructor| (NIL "This domain implements points in coordinate space"))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#1| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|Monoid|))) (|HasCategory| |#1| (QUOTE (|Ring|))) (AND (|HasCategory| |#1| (QUOTE (|RadicalCategory|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ -(|PseudoLinearNormalForm| K) │ │ │ -((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, \\spad{v)}} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that \\indented{1}{the pseudo-linear operator whose matrix in the basis \\spad{y} is} \\indented{1}{\\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}.} \\indented{1}{\\spad{der} is a \\spad{sig}-derivation.} \\blankline \\spad{X} f:HDMP([x,y],FRAC INT) \\spad{:=} \\spad{x^3} + 3*y^2 \\spad{X} g:HDMP([x,y],FRAC INT) \\spad{:=} \\spad{x^2} + \\spad{y} \\spad{X} h:HDMP([x,y],FRAC INT) \\spad{:=} \\spad{x} + 2*x*j \\spad{X} normalForm(f,[g,h]) \\spad{X} Lex \\spad{:=} DMP([x,y],FRAC INT) \\spad{X} normalForm(f::Lex,[g::Lex,h::Lex])"))) │ │ │ NIL │ │ │ +(|Module&| S R) │ │ │ +((|constructor| (NIL "The category of modules over a commutative ring. \\blankline Axioms\\br \\tab{5}\\spad{1*x = x}\\br \\tab{5}\\spad{(a*b)*x = a*(b*x)}\\br \\tab{5}\\spad{(a+b)*x = (a*x)+(b*x)}\\br \\tab{5}\\spad{a*(x+y) = (a*x)+(a*y)}"))) │ │ │ NIL │ │ │ -(|PointPackage| R) │ │ │ -((|constructor| (NIL "This package has no description")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point, \\spad{pt,} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically, shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point, \\spad{pt,} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically, hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point, \\spad{pt,} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically, color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point, \\spad{pt,} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point, \\spad{pt,} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point, \\spad{pt,} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point, \\spad{pt,} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point, \\spad{pt,} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point, \\spad{pt,} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) │ │ │ NIL │ │ │ +(|TransSolvePackageService| R) │ │ │ +((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} are given and \\spad{func1} = func3(func2) . If there is no solution then function \\spad{func1} will be returned. An example would be \\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and \\spad{func2:=2*X ::EXPR INT} convert them via univariate to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X} of type FRAC SUP EXPR INT")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, \\spad{n)}} returns \\spad{vect(1) + vect(2)*var + \\spad{...} + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = func3(func2) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) │ │ │ NIL │ │ │ -(|SExpression|) │ │ │ -((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) │ │ │ NIL │ │ │ +(|EuclideanGroebnerBasisPackage| |Dom| |Expon| |VarSet| |Dpol|) │ │ │ +((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given, a computational summary is given for each s-polynomial. If \"redcrit\" is given, the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial}, \\spadtype{HomogeneousDistributedMultivariatePolynomial}, \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis \\indented{1}{for a polynomial ideal generated by the list of polynomials lp.} \\indented{1}{If the second argument is \"info\",} \\indented{1}{a summary is given of the critical pairs.} \\indented{1}{If the third argument is \"redcrit\", critical pairs are printed.} \\blankline \\spad{X} a1:DMP([y,x],INT):= \\spad{(9*x**2} + 5*x - 3)+ \\spad{y*(3*x**2} + 2*x + 1) \\spad{X} a2:DMP([y,x],INT):= \\spad{(6*x**3} - 2*x**2 - 3*x \\spad{+3)} + \\spad{y*(2*x**3} - \\spad{x} - 1) \\spad{X} a3:DMP([y,x],INT):= \\spad{(3*x**3} + 2*x**2) + \\spad{y*(x**3} + x**2) \\spad{X} an:=[a1,a2,a3] \\spad{X} euclideanGroebner(an,\"info\",\"redcrit\")") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis \\indented{1}{for a polynomial ideal over a euclidean domain} \\indented{1}{generated by the list of polynomials lp.} \\indented{1}{During computation, additional information is printed out} \\indented{1}{if infoflag is given as} \\indented{1}{either \"info\" (for summary information) or} \\indented{1}{\"redcrit\" (for reduced critical pairs)} \\blankline \\spad{X} a1:DMP([y,x],INT):= \\spad{(9*x**2} + 5*x - 3)+ \\spad{y*(3*x**2} + 2*x + 1) \\spad{X} a2:DMP([y,x],INT):= \\spad{(6*x**3} - 2*x**2 - 3*x \\spad{+3)} + \\spad{y*(2*x**3} - \\spad{x} - 1) \\spad{X} a3:DMP([y,x],INT):= \\spad{(3*x**3} + 2*x**2) + \\spad{y*(x**3} + x**2) \\spad{X} an:=[a1,a2,a3] \\spad{X} euclideanGroebner(an,\"redcrit\") \\spad{X} euclideanGroebner(an,\"info\")") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial \\indented{1}{ideal over a euclidean domain generated by the list of polys lp.} \\blankline \\spad{X} a1:DMP([y,x],INT):= \\spad{(9*x**2} + 5*x - 3)+ \\spad{y*(3*x**2} + 2*x + 1) \\spad{X} a2:DMP([y,x],INT):= \\spad{(6*x**3} - 2*x**2 - 3*x \\spad{+3)} + \\spad{y*(2*x**3} - \\spad{x} - 1) \\spad{X} a3:DMP([y,x],INT):= \\spad{(3*x**3} + 2*x**2) + \\spad{y*(x**3} + x**2) \\spad{X} an:=[a1,a2,a3] \\spad{X} euclideanGroebner(an)")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) │ │ │ NIL │ │ │ -(|SetOfMIntegersInOneToN| |m| |n|) │ │ │ -((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S.}")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, \\spad{s)}} returns \\spad{true} is \\spad{p} is in \\spad{s,} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,...,a_m}. Error if {a_1,...,a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p,} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S,} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) │ │ │ NIL │ │ │ +(|OctonionCategory&| S R) │ │ │ +((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions, and eight-dimensional non-associative algebra, doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0, and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational, that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion, equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion, equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion o.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion o.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion o.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion o.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion o.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion o.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion o.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion o.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts i,j,k,E,I,J,K of octonian o."))) │ │ │ NIL │ │ │ -(|String|) │ │ │ -((|constructor| (NIL "This is the domain of character strings. Strings are 1 based."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| (|Character|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Character|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|)))))) │ │ │ -(|SymmetricFunctions| R) │ │ │ -((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, \\spad{n)}} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + \\spad{...} + \\spad{rn,} \\spad{r1} \\spad{r2} + \\spad{...} + r(n-1) \\spad{rn,} ..., \\spad{r1} \\spad{r2} \\spad{...} rn]}."))) │ │ │ +((|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#2| (QUOTE (|RealNumberSystem|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|Finite|)))) │ │ │ +(|DivisionRing|) │ │ │ +((|constructor| (NIL "A division ring (sometimes called a skew field), a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv \\spad{x}} returns the multiplicative inverse of \\spad{x.} Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n.}")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n.}"))) │ │ │ +((|noZeroDivisors| . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|UnivariatePolynomialCommonDenominator| R Q UP) │ │ │ +((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, \\spad{d]}} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q.}")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q.}")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q.}"))) │ │ │ NIL │ │ │ -(|RepresentationPackage2| R) │ │ │ -((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created, using ideas of \\spad{R.} Parker, (the meat-Axe) to get smaller representations from bigger ones, finding sub- and factormodules, or to show, that such the representations are irreducible. Note that most functions are randomized functions of Las Vegas type every answer is correct, but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the \\spad{n}-th one-dimensional subspace of the vector space generated by the elements of basis, all from R**n. The coefficients of the representative are of shape (0,...,0,1,*,...,*), * in \\spad{R.} If the size of \\spad{R} is \\spad{q,} then there are (q**n-1)/(q-1) of them. We first reduce \\spad{n} modulo this number, then find the largest \\spad{i} such that +/[q**i for \\spad{i} in 0..i-1] \\spad{<=} \\spad{n.} Subtracting this sum of powers from \\spad{n} results in an i-digit number to \\spad{basis} \\spad{q.} This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls meatAxe(aG,true,numberOfTries,7). Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls meatAxe(aG,false,6,7), only using Parker's fingerprints, if randomElemnts is false. If it is true, it calls meatAxe(aG,true,25,7), only using random elements. Note that the choice of 25 was rather arbitrary. Also, 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls meatAxe(aG,false,25,7) returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra, say \\spad{A}, of the algebra of all square matrices of dimension \\spad{n.} \\spad{V} \\spad{R} is an A-module in the usual way. meatAxe(aG) creates at most 25 random elements of the algebra, tests them for singularity. If singular, it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule, then a list of the representations of the factor module is returned. Otherwise, if we know that all the kernel is already scanned, Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also, 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra, say \\spad{A}, of the algebra of all square matrices of dimension \\spad{n.} \\spad{V} \\spad{R} is an A-module in the usual way. meatAxe(aG,numberOfTries, maxTests) creates at most \\spad{numberOfTries} random elements of the algebra, tests them for singularity. If singular, it tries at most maxTests elements of its kernel to generate a proper submodule. If successful, a 2-list is returned: first, a list containing first the list of the representations of the submodule, then a list of the representations of the factor module. Otherwise, if we know that all the kernel is already scanned, Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If \\spad{randomElements} is false, the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of R**n to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices, generated by the list of matrices aG, where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. \\spad{V} \\spad{R} is an A-module in the natural way. split(aG, vector) then checks whether the cyclic submodule generated by vector is a proper submodule of \\spad{V} \\spad{R.} If successful, it returns a two-element list, which contains first the list of the representations of the submodule, then the list of the representations of the factor module. If the vector generates the whole module, a one-element list of the old representation is given. Note that a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls isAbsolutelyIrreducible?(aG,25). Note that the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity, assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space, the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of meatAxe would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls areEquivalent?(aG0,aG1,true,25). Note that the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls areEquivalent?(aG0,aG1,true,25). Note that the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices, all assumed of same square shape, can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators, the representations are equivalent. The algorithm tries \\spad{numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ, they are not equivalent. If an isomorphism is assumed, then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (for example, irreducibility \\spad{!)} we use standardBasisOfCyclicSubmodule to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from aGi. The way to choose the singular matrices is as in meatAxe. If the two representations are equivalent, this routine returns the transformation matrix \\spad{TM} with aG0.i * \\spad{TM} = \\spad{TM} * aG1.i for all i. If the representations are not equivalent, a small 0-matrix is returned. Note that the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra, say \\spad{A}, of the algebra of all square matrices of dimension \\spad{n.} \\spad{V} \\spad{R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(lm,v) calculates a matrix whose non-zero column vectors are the R-Basis of Av achieved in the way as described in section 6 of \\spad{R.} A. Parker's \"The Meat-Axe\". Note that in contrast to cyclicSubmodule, the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra, say \\spad{A}, of the algebra of all square matrices of dimension \\spad{n.} \\spad{V} \\spad{R} is an \\spad{A}-module in the natural way. cyclicSubmodule(lm,v) generates the R-Basis of Av as described in section 6 of \\spad{R.} A. Parker's \"The Meat-Axe\". Note that in contrast to the description in \"The Meat-Axe\" and to standardBasisOfCyclicSubmodule the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by aG.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis \\spad{lv} assumed to be in echelon form of a subspace of R**n \\spad{(n} the length of all the vectors in \\spad{lv} with unit vectors to a basis of R**n. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note that the rows of the result correspond to the vectors of the basis."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|Field|))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|Finite|)))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|)))) │ │ │ -(|VectorFunctions2| A B) │ │ │ -((|constructor| (NIL "This package provides operations which all take as arguments vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B.} The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B.}")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, \\spad{v)}} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, \\spad{v)}} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function func. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function func, increasing initial subsequences of the vector vec, and the element ident."))) │ │ │ +(|FortranFunctionCategory|) │ │ │ +((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP, making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ +(|ComplexRootFindingPackage| R UP) │ │ │ +((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken's idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version, the precision (see digits) is not increased when this is necessary to avoid rounding errors. Hence it is the user's responsibility to increase the precision if necessary. Note also, if this package is called with, for example, Fraction Integer, the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage's variant of Graeffe's method to construct circles which separate roots to get a good start polynomial, one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in factors which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound, by default being 10 \\spad{**} (-3) to eps, if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal globalDigits is set to \\em \\spad{ceiling(1/r)**2*10} being 10**7 by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n,} the center of gravity, which is coeffient of \\spad{x**(n-1)} divided by \\spad{n} times coefficient of \\spad{x**n}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of 1+globalEps, where globalEps is the internal error bound, which can be set by setErrorBound.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of errQuot.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots, and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly, eps)} determines a start polynomial start by using \"startPolynomial then it increases the exponent \\spad{n} of start \\spad{**} \\spad{n} mod \\spad{poly} to get an approximate factor of poly, in general of degree \"degree \\spad{poly} -1\". Then a divisor cascade is calculated and the best splitting is chosen, as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,eps,info)} determines a start polynomial start by using \"startPolynomial then it increases the exponent \\spad{n} of start \\spad{**} \\spad{n} mod \\spad{poly} to get an approximate factor of poly, in general of degree \"degree \\spad{poly} -1\". Then a divisor cascade is calculated and the best splitting is chosen, as soon as the error is small enough. If \\spad{info} is true, then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note that this function depends on abs.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe \\spad{p}} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p.}")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost globalEps, the internal error bound, which can be set by setErrorBound. An overall error bound \\spad{eps0} is determined and iterated tree-like calls to pleskenSplit are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p, eps)} tries to factor \\spad{p} into linear factors with error atmost eps. An overall error bound \\spad{eps0} is determined and iterated tree-like calls to pleskenSplit are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p, eps, info)} tries to factor \\spad{p} into linear factors with error atmost eps. An overall error bound \\spad{eps0} is determined and iterated tree-like calls to pleskenSplit are used to get the factorization. If info is true, then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial \\spad{tp} is smaller than degree of polynomial \\spad{p,} both monic. A sequence of divisions is calculated using the remainder, made monic, as divisor for the the next division. The result contains also the error of the factorizations, the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial \\spad{tp} is smaller than degree of polynomial \\spad{p,} both monic. A sequence of divisions are calculated using the remainder, made monic, as divisor for the the next division. The result contains also the error of the factorizations, the norm of the remainder polynomial. If info is true, then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p, eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by eps.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant globalEps which you may change by setErrorBound."))) │ │ │ NIL │ │ │ -(|Asp1| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs, needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{x)} and turn it into a Fortran Function like the following: \\blankline \\tab{5}DOUBLE PRECISION FUNCTION F(X)\\br \\tab{5}DOUBLE PRECISION X\\br \\tab{5}F=DSIN(X)\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) │ │ │ NIL │ │ │ +(|GeneralPolynomialGcdPackage| E OV R P) │ │ │ +((|constructor| (NIL "Description:")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) │ │ │ NIL │ │ │ -(|Asp4| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs, which take an expression in X(1) \\spad{..} X(NDIM) and produce a real function of the form: \\blankline \\tab{5}DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X)\\br \\tab{5}DOUBLE PRECISION X(NDIM)\\br \\tab{5}INTEGER NDIM\\br \\tab{5}FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0*\\br \\tab{4}&X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0)\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) │ │ │ NIL │ │ │ +(|TopLevelDrawFunctions| |Ex|) │ │ │ +((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)}, \\spad{y = g(u,v)}, \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)}, \\spad{y = g(u,v)}, \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)}, \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)}, \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)}, \\spad{y = g(u,v)}, \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)}, \\spad{y = g(u,v)}, \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)}, \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)}, \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) │ │ │ NIL │ │ │ -(|Asp10| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs, needed for NAG routine d02kef. This ASP computes the values of a set of functions, for example: \\blankline \\tab{5}SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT)\\br \\tab{5}DOUBLE PRECISION ELAM,P,Q,X,DQDL\\br \\tab{5}INTEGER JINT\\br \\tab{5}P=1.0D0\\br \\tab{5}Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X)\\br \\tab{5}DQDL=1.0D0\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ +(|MatrixCommonDenominator| R Q) │ │ │ +((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, \\spad{d]}} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q.}")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q.}")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q.}"))) │ │ │ NIL │ │ │ -(|Asp24| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine e04jaf), for example: \\blankline \\tab{5}SUBROUTINE FUNCT1(N,XC,FC)\\br \\tab{5}DOUBLE PRECISION FC,XC(N)\\br \\tab{5}INTEGER N\\br \\tab{5}FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5\\br \\tab{4}&.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X\\br \\tab{4}&C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+\\br \\tab{4}&(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC(\\br \\tab{4}&2)+10.0D0*XC(1)**4+XC(1)**2\\br \\tab{5}RETURN\\br \\tab{5}END\\br")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) │ │ │ NIL │ │ │ +(|PrimitiveFunctionCategory|) │ │ │ +((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, \\spad{x} = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b.}") (($ $ (|Symbol|)) "\\spad{integral(f, \\spad{x)}} returns the formal integral of \\spad{f} \\spad{dx.}"))) │ │ │ NIL │ │ │ -(|Asp50| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs, needed for NAG routine e04fdf, for example: \\blankline \\tab{5}SUBROUTINE LSFUN1(M,N,XC,FVECC)\\br \\tab{5}DOUBLE PRECISION FVECC(M),XC(N)\\br \\tab{5}INTEGER I,M,N\\br \\tab{5}FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/(\\br \\tab{4}&XC(3)+15.0D0*XC(2))\\br \\tab{5}FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X\\br \\tab{4}&C(3)+7.0D0*XC(2))\\br \\tab{5}FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666\\br \\tab{4}&66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2))\\br \\tab{5}FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X\\br \\tab{4}&C(3)+3.0D0*XC(2))\\br \\tab{5}FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC\\br \\tab{4}&(2)+1.0D0)/(XC(3)+2.2D0*XC(2))\\br \\tab{5}FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X\\br \\tab{4}&C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2))\\br \\tab{5}FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142\\br \\tab{4}&85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2))\\br \\tab{5}FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999\\br \\tab{4}&99D0)*XC(2)+1.0D0)/(XC(3)+XC(2))\\br \\tab{5}FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999\\br \\tab{4}&99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2))\\br \\tab{5}FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666\\br \\tab{4}&67D0)/(XC(3)+XC(2))\\br \\tab{5}FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999\\br \\tab{4}&999D0)*XC(2)+2.2D0)/(XC(3)+XC(2))\\br \\tab{5}FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3)\\br \\tab{4}&+XC(2))\\br \\tab{5}FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333\\br \\tab{4}&3333D0)/(XC(3)+XC(2))\\br \\tab{5}FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X\\br \\tab{4}&C(2))\\br \\tab{5}FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3\\br \\tab{4}&)+XC(2))\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ +(|TaylorSeries| |Coef|) │ │ │ +((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, \\spad{n)}} gives the terms of total degree \\spad{n.}"))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ +(|FunctionSpaceReduce| R F) │ │ │ +((|constructor| (NIL "Reduction from a function space to the rational numbers This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) │ │ │ NIL │ │ │ -(|Asp6| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs, needed for NAG routines c05nbf, c05ncf. These represent vectors of functions of X(i) and look like: \\blankline \\tab{5}SUBROUTINE FCN(N,X,FVEC,IFLAG) \\tab{5}DOUBLE PRECISION X(N),FVEC(N) \\tab{5}INTEGER N,IFLAG \\tab{5}FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 \\tab{5}FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. \\tab{4}&0D0 \\tab{5}FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. \\tab{4}&0D0 \\tab{5}FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. \\tab{4}&0D0 \\tab{5}FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. \\tab{4}&0D0 \\tab{5}FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. \\tab{4}&0D0 \\tab{5}FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. \\tab{4}&0D0 \\tab{5}FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. \\tab{4}&0D0 \\tab{5}FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 \\tab{5}RETURN \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ +(|AssociationList| |Key| |Entry|) │ │ │ +((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example, the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (OR (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|OrderedSet|))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|)))))) │ │ │ +(|Evalable| R) │ │ │ +((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make \"evaluation\" substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, \\spad{[x1} = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f.}") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = \\spad{v)}} replaces \\spad{x} by \\spad{v} in \\spad{f.}"))) │ │ │ NIL │ │ │ -(|Asp73| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs, needed for NAG routine d03eef, for example: \\blankline \\tab{5}SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI)\\br \\tab{5}DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI\\br \\tab{5}ALPHA=DSIN(X)\\br \\tab{5}BETA=Y\\br \\tab{5}GAMMA=X*Y\\br \\tab{5}DELTA=DCOS(X)*DSIN(Y)\\br \\tab{5}EPSOLN=Y+X\\br \\tab{5}PHI=X\\br \\tab{5}PSI=Y\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ +(|FractionFunctions2| A B) │ │ │ +((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction frac."))) │ │ │ NIL │ │ │ -(|BalancedFactorisation| R UP) │ │ │ -((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = \\spad{p1^e1} \\spad{...} pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, \\spad{b)}} returns a factorisation \\spad{a = \\spad{p1^e1} \\spad{...} pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b.}"))) │ │ │ NIL │ │ │ +(|ExtensionField&| S F) │ │ │ +((|constructor| (NIL "ExtensionField \\spad{F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()$F.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a \\spad{**} \\spad{q}} where \\spad{q} is the \\spad{size()$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension, 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic, and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F,} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F.}")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F.}")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F.}"))) │ │ │ NIL │ │ │ -(|AxiomServer|) │ │ │ -((|constructor| (NIL "This package provides a functions to support a web server for the new Axiom Browser functions."))) │ │ │ +((|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|)))) │ │ │ +(|UnivariatePuiseuxSeriesFunctions2| |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) │ │ │ +((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|BezoutMatrix| R UP M |Row| |Col|) │ │ │ -((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q.}")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q.}"))) │ │ │ +(|SparseMultivariatePolynomial| R |VarSet|) │ │ │ +((|constructor| (NIL "This type is the basic representation of sparse recursive multivariate polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative, but the variables are assumed to commute."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|IndexedVector| R |mn|) │ │ │ +((|constructor| (NIL "This type represents vector like objects with varying lengths and a user-specified initial index."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#1| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|Monoid|))) (|HasCategory| |#1| (QUOTE (|Ring|))) (AND (|HasCategory| |#1| (QUOTE (|RadicalCategory|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ +(|NullSquareAttribute|) │ │ │ +((|constructor| (NIL "NullSquare means that \\spad{[x,x] = 0} holds. See LieAlgebra."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -((|HasAttribute| |#1| (QUOTE (|commutative| "*")))) │ │ │ -(|BinaryFile|) │ │ │ -((|constructor| (NIL "This domain provides an implementation of binary files. Data is accessed one byte at a time as a small integer.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "\\spad{position!(f, i)} sets the current byte-position to i.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{f.}")) (|readIfCan!| (((|Union| (|SingleInteger|) "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f,} if possible. If \\spad{f} is not open for reading, or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) │ │ │ +(|FindOrderFinite| F UP UPUP R) │ │ │ +((|constructor| (NIL "Finds the order of a divisor over a finite field")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|BinaryExpansion|) │ │ │ -((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion. \\blankline \\spad{X} binary(22/7)")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Integer|) (QUOTE (|RealConstant|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|StepThrough|))) (|HasCategory| (|Integer|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| (|Integer|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|Integer|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |Eltable|) (QUOTE (|Integer|)) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|Integer|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Integer|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|BoundIntegerRoots| F UP) │ │ │ -((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p,} and 0 if \\spad{p} has no negative integer roots."))) │ │ │ +(|Asp6| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs, needed for NAG routines c05nbf, c05ncf. These represent vectors of functions of X(i) and look like: \\blankline \\tab{5}SUBROUTINE FCN(N,X,FVEC,IFLAG) \\tab{5}DOUBLE PRECISION X(N),FVEC(N) \\tab{5}INTEGER N,IFLAG \\tab{5}FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 \\tab{5}FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. \\tab{4}&0D0 \\tab{5}FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. \\tab{4}&0D0 \\tab{5}FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. \\tab{4}&0D0 \\tab{5}FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. \\tab{4}&0D0 \\tab{5}FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. \\tab{4}&0D0 \\tab{5}FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. \\tab{4}&0D0 \\tab{5}FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. \\tab{4}&0D0 \\tab{5}FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 \\tab{5}RETURN \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|BrillhartTests| UP) │ │ │ -((|constructor| (NIL "This package has no description")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer, \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart, \\spad{false} else. If \\spad{noLinears} is \\spad{true}, we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart, \\spad{false} is inconclusive."))) │ │ │ +(|UnivariatePolynomialCategoryFunctions2| R PR S PS) │ │ │ +((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, \\spad{p)}} takes a function \\spad{f} from \\spad{R} to \\spad{S,} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R,} getting a new polynomial over \\spad{S.} Note that since the map is not applied to zero elements, it may map zero to zero."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|CylindricalAlgebraicDecompositionUtilities| R P) │ │ │ -((|gcdBasisAdd| (((|List| |#2|) |#2| (|List| |#2|)) "\\spad{gcdBasisAdd(p,lp)} adds one polynomial to list of pairwise relatively prime polynomials")) (|gcdBasis| (((|List| |#2|) (|List| |#2|)) "\\spad{gcdBasis(lp)} decomposes a list of polynomials into pairwise relatively prime polynomials")) (|squareFreeBasis| (((|List| |#2|) (|List| |#2|)) "\\blankline"))) │ │ │ +(|ResolveLatticeCompletion| S) │ │ │ +((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example, it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|BalancedPAdicRational| |p|) │ │ │ -((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(i = k.., a[i] * p^i), where the a[i] lie in \\spad{-(p} - 1)/2,...,(p - 1)/2."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|RealConstant|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|StepThrough|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (LIST (QUOTE |BalancedPAdicInteger|) (|devaluate| |#1|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |Evalable|) (LIST (QUOTE |BalancedPAdicInteger|) (|devaluate| |#1|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |Eltable|) (LIST (QUOTE |BalancedPAdicInteger|) (|devaluate| |#1|)) (LIST (QUOTE |BalancedPAdicInteger|) (|devaluate| |#1|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|CommonDenominator| R Q A) │ │ │ -((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], \\spad{d]}} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the qi's.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the qi's.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for q1,...,qn."))) │ │ │ +(|FreeModule| R S) │ │ │ +((|constructor| (NIL "A bi-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) │ │ │ +((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CommutativeRing|)))) │ │ │ +(|ArrayStack| S) │ │ │ +((|constructor| (NIL "A stack represented as a flexible array.")) (|member?| (((|Boolean|) |#1| $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} member?(3,a)")) (|members| (((|List| |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} members a")) (|parts| (((|List| |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} parts a")) (|#| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} \\#a")) (|count| (((|NonNegativeInteger|) |#1| $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} count(4,a)") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} count(x+->(x>2),a)")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} any?(x+->(x=4),a)")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} every?(x+->(x=4),a)")) (~= (((|Boolean|) $ $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} (a~=b)")) (= (((|Boolean|) $ $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} b:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} (a=b)@Boolean")) (|coerce| (((|OutputForm|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} coerce a")) (|hash| (((|SingleInteger|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} hash a")) (|latex| (((|String|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} latex a")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} map!(x+->x+10,a) \\spad{X} a")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} map(x+->x+10,a) \\spad{X} a")) (|eq?| (((|Boolean|) $ $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} eq?(a,b)")) (|copy| (($ $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} copy a")) (|sample| (($) "\\blankline \\spad{X} sample()$ArrayStack(INT)")) (|empty| (($) "\\blankline \\spad{X} b:=empty()$(ArrayStack INT)")) (|empty?| (((|Boolean|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} empty? a")) (|bag| (($ (|List| |#1|)) "\\blankline \\spad{X} bag([1,2,3,4,5])$ArrayStack(INT)")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} size?(a,5)")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} more?(a,9)")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} less?(a,9)")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth returns} the number of elements \\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} depth a")) (|top| ((|#1| $) "\\spad{top returns} the first item of the list without modifing the list \\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} top a")) (|inspect| ((|#1| $) "\\spad{inspect returns} the first item of the list without modifing the list \\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} inspect a")) (|insert!| (($ |#1| $) "\\spad{insert! destructively} modifies its argument and returns a new \\indented{1}{list with the element add to the front of the list} \\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} insert!(8,a) \\spad{X} a")) (|push!| ((|#1| |#1| $) "\\spad{push! destructively} modifies its argument and returns a new \\indented{1}{list with the element add to the front of the list} \\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} push!(9,a) \\spad{X} a")) (|extract!| ((|#1| $) "\\spad{extract! destructively} modifies its argument and returns the \\indented{1}{first item of the argument} \\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} extract! a \\spad{X} a")) (|pop!| ((|#1| $) "\\spad{pop! destructively} modifies its argument and returns the \\indented{1}{first item of the argument} \\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,2,3,4,5] \\spad{X} pop! a \\spad{X} a")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) \\indented{1}{element \\spad{x,} second element y,...,and last element \\spad{z.}} \\blankline \\spad{X} c:ArrayStack INT:= arrayStack [1,2,3,4,5]"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ +(|PendantTree| S) │ │ │ +((|constructor| (NIL "A PendantTree(S) is either a leaf? and is an \\spad{S} or has a left and a right both PendantTree(S)'s")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} is not documented \\blankline \\spad{X} t1:=ptree([1,2,3]) \\spad{X} t2:=ptree(t1,ptree([1,2,3])) \\spad{X} t2::Tree List PositiveInteger")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} is not documented \\blankline \\spad{X} t1:=ptree([1,2,3]) \\spad{X} ptree(t1,ptree([1,2,3]))") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree \\blankline \\spad{X} t1:=ptree([1,2,3])"))) │ │ │ NIL │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ +(|QueueAggregate| S) │ │ │ +((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note that \\axiom{length(q) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! \\spad{q}} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note that rotate! \\spad{q} is equivalent to enqueue!(dequeue!(q)).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! \\spad{s}} destructively extracts the first (top) element from queue \\spad{q.} The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|CommuteUnivariatePolynomialCategory| R UP UPUP) │ │ │ -((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,y))} returns p(y,x)."))) │ │ │ +(|QueryEquation|) │ │ │ +((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (right hand side) of \\axiom{q}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (left hand side) of \\axiom{q}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ChangeOfVariable| F UP UPUP) │ │ │ -((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), \\spad{n]}} such that under the change of variable \\spad{x = c1(z)}, \\spad{y = \\spad{t} * c2(z)}, one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, \\spad{y)} = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, \\spad{t)} = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), \\spad{y} * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, \\spad{q)}} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, \\spad{n)}} returns \\spad{[m, \\spad{c,} \\spad{P]}} such that \\spad{c * \\spad{g} \\spad{**} (1/n) = \\spad{P} \\spad{**} (1/m)} thus if \\spad{y**n = \\spad{g},} then \\spad{z**m = \\spad{P}} where \\spad{z = \\spad{c} * \\spad{y}.}")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), \\spad{n]}} if \\spad{p} is of the form \\spad{y**n - c(x)}, \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = \\spad{c} * \\spad{y}} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, \\spad{y)} = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, \\spad{z)} = 0}."))) │ │ │ +(|GroebnerSolve| |lv| F R) │ │ │ +((|constructor| (NIL "Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position, for system \\spad{lp} in variables \\spad{lv.}")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|CoerceVectorMatrixPackage| R) │ │ │ -((|constructor| (NIL "CoerceVectorMatrixPackage is an unexposed, technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix \\spad{R}} as vector over \\spadtype{Matrix Fraction Polynomial \\spad{R}}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix \\spad{R}} as vector over \\spadtype{Matrix Polynomial \\spad{R}}"))) │ │ │ +(|FunctionSpaceToExponentialExpansion| R FE |x| |cen|) │ │ │ +((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function, but the compiler won't allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is true, log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is false, these are allowed."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ContinuedFraction| R) │ │ │ -((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general continued fractions. This version is not restricted to simple, finite fractions and uses the \\spadtype{Stream} as a representation. The arithmetic functions assume that the approximants alternate below/above the convergence point. This is enforced by ensuring the partial numerators and partial denominators are greater than 0 in the Euclidean domain view of \\spad{R} (\\spad{sizeLess?(0, x)}).")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{x} to be computed. Normally entries are only computed as needed. If \\spadvar{x} is an infinite continued fraction, a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{n} entries in the continued fraction \\spadvar{x} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{x}. If the continued fraction is finite, then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{x}. If the continued fraction is finite, then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{x}. If the continued fraction is finite, then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{x}. If the continued fraction is finite, then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{x} in reduced form, the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{x}. That is, if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])}, then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{x}. That is, if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])}, then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{x}. That is, if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])}, then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{x}. That is, if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])}, then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is, the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + \\spad{a1/(b1} + \\spad{a2/(b2} + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{r} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) │ │ │ -(((|commutative| "*") . T) (|noZeroDivisors| . T) (|canonicalUnitNormal| . T) (|canonicalsClosed| . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|InverseLaplaceTransform| R F) │ │ │ +((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, \\spad{s,} \\spad{t)}} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form. Handles only rational \\spad{f(s)}."))) │ │ │ NIL │ │ │ -(|CyclotomicPolynomialPackage|) │ │ │ -((|constructor| (NIL "This package has no description")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) │ │ │ NIL │ │ │ +(|UnivariatePuiseuxSeriesConstructorCategory| |Coef| ULS) │ │ │ +((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]}, where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible, \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)}, which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|CycleIndicators|) │ │ │ -((|constructor| (NIL "Polya-Redfield enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,li2)} is the S-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(li)} is the S-function of the partition \\spad{li} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval \\spad{s}} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,s2)}, introduced by Redfield, \\indented{1}{is the scalar product of two cycle indices, in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,s2)}, introduced by Redfield, \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs \\spad{n}} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{n nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral \\spad{n}} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n.}}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic \\spad{n}} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n.}}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating \\spad{n}} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n.}}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary \\spad{n}} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum \\spad{n}} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete \\spad{n}} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n.}}"))) │ │ │ +(|ListFunctions2| A B) │ │ │ +((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists, each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * \\spad{(2} * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = \\spad{[2} * 1, 3 * \\spad{(2} * 1)]}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|DistinctDegreeFactorize| F FP) │ │ │ -((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus, modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of u**(2**i) for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v.}")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v.}")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by separateDegrees and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is true, the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p.}")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p.}"))) │ │ │ +(|FiniteSetAggregate&| A S) │ │ │ +((|constructor| (NIL "A finite-set aggregate models the notion of a finite set, that is, a collection of elements characterized by membership, but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate u.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate u.")) (|universe| (($) "\\spad{universe()}$D returns the universal set for finite set aggregate \\spad{D.}")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set u, that is, the set of all values not in u.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of u. Note that \\axiom{cardinality(u) = \\#u}."))) │ │ │ NIL │ │ │ +((|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|Finite|)))) │ │ │ +(|MatrixCategoryFunctions2| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) │ │ │ +((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j.}")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m.}") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m.}"))) │ │ │ NIL │ │ │ -(|DecimalExpansion|) │ │ │ -((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Integer|) (QUOTE (|RealConstant|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|StepThrough|))) (|HasCategory| (|Integer|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| (|Integer|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|Integer|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |Eltable|) (QUOTE (|Integer|)) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|Integer|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Integer|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|DictionaryOperations&| A S) │ │ │ -((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{p(x)} is not true.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{p(x)} is true.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{y = \\spad{x}.}")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{x,y,...,z}.") (($) "\\spad{dictionary()}$D creates an empty dictionary of type \\spad{D.}"))) │ │ │ NIL │ │ │ -((|HasAttribute| |#1| (QUOTE |finiteAggregate|))) │ │ │ -(|DictionaryOperations| S) │ │ │ -((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{p(x)} is not true.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{p(x)} is true.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{y = \\spad{x}.}")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{x,y,...,z}.") (($) "\\spad{dictionary()}$D creates an empty dictionary of type \\spad{D.}"))) │ │ │ -((|shallowlyMutable| . T) (|nil| . T)) │ │ │ +(|QuaternionCategoryFunctions2| QR R QS S) │ │ │ +((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion u. \\indented{1}{to convert an expression in Quaterion(R) to Quaternion(S)} \\blankline \\spad{X} f(a:FRAC(INT)):COMPLEX(FRAC(INT)) \\spad{==} a::COMPLEX(FRAC(INT)) \\spad{X} q:=quatern(2/11,-8,3/4,1) \\spad{X} map(f,q)"))) │ │ │ NIL │ │ │ -(|DisplayPackage|) │ │ │ -((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner, including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l,} and centers them within a list of strings which is \\spad{i} characters long, in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s.}") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s,} and centers it within a string of length i, in which the other elements of the string are composed of as many replications as possible of the second indicated string, \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s.}")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings, \\spad{l,} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) │ │ │ NIL │ │ │ +(|Permutation| S) │ │ │ +((|constructor| (NIL "Permutation(S) implements the group of all bijections on a set \\spad{S,} which move only a finite number of points. A permutation is considered as a map from \\spad{S} into \\spad{S.} In particular multiplication is defined as composition of maps:\\br \\spad{pi1} * \\spad{pi2} = \\spad{pi1} \\spad{o} pi2.\\br The internal representation of permuatations are two lists of equal length representing preimages and images.")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list \\spad{ls} to a permutation whose image is given by \\spad{ls} and the preimage is fixed to be [1,...,n]. Note: {coerceImages(ls)=coercePreimagesImages([1,...,n],ls)}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p.} \\spad{X} \\spad{p} \\spad{:=} coercePreimagesImages([[0,1,2,3],[3,0,2,1]])$PERM ZMOD 4 \\spad{X} fixedPoints \\spad{p}")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations \\spad{lp} according to cycle structure first according to length of cycles, second, if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation sign(p) is \\spad{-1.}")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation, \\indented{1}{sign(p) is 1.} \\blankline \\spad{X} \\spad{p} \\spad{:=} coercePreimagesImages([[1,2,3],[1,2,3]]) \\spad{X} even? \\spad{p}")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p,} \\spad{+1} or \\spad{-1.}")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p.}")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p.} \\blankline \\spad{X} \\spad{p} \\spad{:=} coercePreimagesImages([[1,2,3],[1,2,3]]) \\spad{X} movedPoints \\spad{p}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p.}")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs \\spad{lls} to a permutation. Error: if not consistent, the set of the first elements coincides with the set of second elements.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle \\spad{ls,} a list with not repetitions to a permutation, which maps ls.i to ls.i+1, indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles \\spad{lls} to a permutation, each cycle being a list with no repetitions, is coerced to the permutation, which maps ls.i to ls.i+1, indices modulo the length of the list, then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation \\spad{lls} \\indented{1}{of a permutation as a list of preimages and images to a permutation.} \\indented{1}{We assume that both preimage and image do not contain repetitions.} \\blankline \\spad{X} \\spad{p} \\spad{:=} coercePreimagesImages([[1,2,3],[1,2,3]]) \\spad{X} \\spad{q} \\spad{:=} coercePreimagesImages([[0,1,2,3],[3,0,2,1]])$PERM ZMOD 4")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation rep of the permutation \\spad{p} as a list of preimages and images, i.e \\spad{p} maps (rep.preimage).k to (rep.image).k for all indices \\spad{k.} Elements of \\spad{S} not in (rep.preimage).k are fixed points, and these are the only fixed points of the permutation."))) │ │ │ +((|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))))) │ │ │ +(|FortranProgram| |name| |returnType| |arguments| |symbols|) │ │ │ +((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} is not documented") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} is not documented") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} is not documented") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} is not documented") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} is not documented") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} is not documented") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} is not documented") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} is not documented") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} is not documented") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} is not documented") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} is not documented") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} is not documented") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} is not documented") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} is not documented") (($ (|FortranCode|)) "\\spad{coerce(fc)} is not documented"))) │ │ │ NIL │ │ │ -(|DirectProduct| |dim| R) │ │ │ -((|constructor| (NIL "This type represents the finite direct or cartesian product of an underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) │ │ │ -((|rightUnitary| |has| |#2| (|Ring|)) (|leftUnitary| |has| |#2| (|Ring|)) (|unitsKnown| |has| |#2| (ATTRIBUTE |unitsKnown|)) ((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|))) (OR (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (|HasCategory| |#2| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|)))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasAttribute| |#2| (QUOTE |unitsKnown|)) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))))) │ │ │ -(|DistributedMultivariatePolynomial| |vl| R) │ │ │ -((|constructor| (NIL "\\indented{1}{Author: Barry Trager} Description: References: \\spad{Coxx07} Ideals, varieties and algorithms This type supports distributed multivariate polynomials whose variables are from a user specified list of symbols. The coefficient ring may be non commutative, but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) │ │ │ -(((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#2| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|))) (OR (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|DirectProductModule| |n| R S) │ │ │ -((|constructor| (NIL "This constructor provides a direct product of R-modules with an R-module view."))) │ │ │ -((|unitsKnown| OR (|and| (|has| |#3| (|Ring|)) (|has| |#3| (|DifferentialRing|))) (|and| (|has| |#3| (|Ring|)) (|has| |#3| (|PartialDifferentialRing| (|Symbol|)))) (|has| |#3| (ATTRIBUTE |unitsKnown|)) (|and| (|has| |#3| (|Ring|)) (|has| |#3| (|LinearlyExplicitRingOver| (|Integer|))))) (|rightUnitary| |has| |#3| (|Ring|)) (|leftUnitary| |has| |#3| (|Ring|)) ((|commutative| "*") |has| |#3| (|CommutativeRing|)) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#3| (QUOTE (|Field|))) (|HasCategory| |#3| (QUOTE (|Ring|))) (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#3| (QUOTE (|OrderedRing|))) (OR (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#3| (QUOTE (|OrderedRing|)))) (|HasCategory| |#3| (QUOTE (|Monoid|))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|Field|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (OR (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|Field|)))) (OR (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (|HasCategory| |#3| (QUOTE (|Finite|))) (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|))) (OR (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (|HasCategory| |#3| (QUOTE (|SetCategory|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (QUOTE (|DifferentialRing|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (OR (AND (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (QUOTE (|DifferentialRing|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (|HasCategory| |#3| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Field|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Finite|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|SetCategory|))))) (OR (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|Field|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|Finite|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|SetCategory|))))) (OR (|HasAttribute| |#3| (QUOTE |unitsKnown|)) (AND (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (QUOTE (|DifferentialRing|))) (|HasCategory| |#3| (QUOTE (|Ring|))))) (|HasCategory| |#3| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#3| (QUOTE (|AbelianSemiGroup|))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|Field|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|Finite|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))))) │ │ │ -(|DesingTree| S) │ │ │ -((|constructor| (NIL "This category is part of the PAFF package")) (|fullOutput| (((|Boolean|)) "\\spad{fullOutput returns} the value of the flag set by fullOutput(b).") (((|Boolean|) (|Boolean|)) "\\spad{fullOutput(b)} sets a flag such that when true, a coerce to OutputForm yields the full output of \\spad{tr,} otherwise encode(tr) is output (see encode function). The default is false.")) (|fullOut| (((|OutputForm|) $) "\\spad{fullOut(tr)} yields a full output of \\spad{tr} (see function fullOutput).")) (|encode| (((|String|) $) "\\spad{encode(t)} returns a string indicating the \"shape\" of the tree"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|DifferentialPolynomialCategory&| A R S V E) │ │ │ -((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition, it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader}, \\spadfun{initial}, \\spadfun{separant}, \\spadfun{differentialVariables}, and \\spadfun{isobaric?}. Furthermore, if the ground ring is a differential ring, then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor, one needs to provide a ground ring \\spad{R,} an ordered set \\spad{S} of differential indeterminates, a ranking \\spad{V} on the set of derivatives of the differential indeterminates, and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates.")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note that an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight, and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, \\spad{s)}} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p.}")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, \\spad{s)}} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p.}")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, \\spad{s)}} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p,} which is the maximum number of differentiations of a differential indeterminate, among all those appearing in \\spad{p.}") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s.}")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p.}")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring, in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z.n} where \\spad{z} \\spad{:=} makeVariable(p). Note that In the interpreter, \\spad{z} is given as an internal map, which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate, in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z.n} where \\spad{z} :=makeVariable(s). Note that In the interpreter, \\spad{z} is given as an internal map, which may be ignored."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) │ │ │ -(|d01ajfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF, a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ +(|DefiniteIntegrationTools| R F) │ │ │ +((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, \\spad{b,} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b,} \\spad{false} otherwise, \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is true, exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, \\spad{x,} a, \\spad{b,} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b,} \\spad{false} otherwise, \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is true, exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, \\spad{g,} a, \\spad{b,} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b,} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b.} If \\spad{eval?} is true, then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b}, provided that they are finite values. Otherwise, limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|d01akfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF, a numerical integration routine which is is suitable for oscillating, non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ +(|InputForm|) │ │ │ +((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) \\spad{->} \\spad{?}.} returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter, or if the ti's are not valid types, or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t,} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parse| (($ (|String|)) "\\spad{parse(s)} is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f.} Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code, this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a \\spad{**} \\spad{b}} returns the input form corresponding to \\spad{a \\spad{**} \\spad{b}.}") (($ $ (|NonNegativeInteger|)) "\\spad{a \\spad{**} \\spad{b}} returns the input form corresponding to \\spad{a \\spad{**} \\spad{b}.}")) (/ (($ $ $) "\\spad{a / \\spad{b}} returns the input form corresponding to \\spad{a / \\spad{b}.}")) (* (($ $ $) "\\spad{a * \\spad{b}} returns the input form corresponding to \\spad{a * \\spad{b}.}")) (+ (($ $ $) "\\spad{a + \\spad{b}} returns the input form corresponding to \\spad{a + \\spad{b}.}")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) \\spad{+->} code} if \\spad{n > 1}, or to \\spad{x1 \\spad{+->} code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], \\spad{f)}} returns the input form corresponding to \\spad{f(x1,...,xn) \\spad{==} code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form \\indented{1}{corresponding \\spad{to\\space{2}\\spad{a1} \\spad{op} \\spad{a2} \\spad{op} \\spad{...} \\spad{op} an}.} \\blankline \\spad{X} a:=[1,2,3]::List(InputForm) \\spad{X} binary(_+::InputForm,a)")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|d01alfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF, a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ +(|PatternMatchResult| R S) │ │ │ +((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match, or a list of matches of the form (var, expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, \\spad{p)}} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p,} \\spad{false} if they don't, and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (v1,e1),...,(vn,en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var, expr) in \\spad{r.} Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, \\spad{r,} val)} adds the match (var, expr) in \\spad{r,} provided that \\spad{expr} satisfies the predicates attached to var, that \\spad{var} is not matched to another expression already, and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, \\spad{r)}} adds the match (var, expr) in \\spad{r,} without checking predicates or previous matches for var.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, \\spad{r)}} adds the match (var, expr) in \\spad{r,} provided that \\spad{expr} satisfies the predicates attached to var, and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, \\spad{r)}} returns the expression that \\spad{var} matches in the result \\spad{r,} and \"failed\" if \\spad{var} is not matched in \\spad{r.}")) (|union| (($ $ $) "\\spad{union(a, \\spad{b)}} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|d01amfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF, a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ +(|AlgFactor| UP) │ │ │ +((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients, and if \\spad{p(X) / \\spad{(X} - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,...,an."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|d01aqfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF, a general numerical integration routine which can solve an integral of the form /home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.xbm The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ +(|ExpressionSpaceODESolver| R F) │ │ │ +((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, \\spad{y,} \\spad{x} = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, \\spad{y,} \\spad{x} = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, \\spad{y,} \\spad{x} = a, \\spad{y} a = \\spad{b)}} is equivalent to \\spad{seriesSolve(eq=0, \\spad{y,} x=a, \\spad{y} a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, \\spad{y,} \\spad{x} = a, \\spad{b)}} is equivalent to \\spad{seriesSolve(eq = 0, \\spad{y,} \\spad{x} = a, \\spad{y} a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, \\spad{b)}} is equivalent to \\spad{seriesSolve(eq, \\spad{y,} x=a, \\spad{y} a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "seriesSolve([eq1,...,eqn], [y1,...,yn], \\spad{x} = \\spad{a,[y1} a = b1,..., \\spad{yn} a = bn]) is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], \\spad{x} = a, \\spad{[y1} a = b1,..., \\spad{yn} a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], \\spad{x} = a, \\spad{[y1} a = b1,..., \\spad{yn} a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = \\spad{a,[y1} a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note that eqi must be of the form \\spad{fi(x, \\spad{y1} \\spad{x,} \\spad{y2} x,..., \\spad{yn} \\spad{x)} y1'(x) + gi(x, \\spad{y1} \\spad{x,} \\spad{y2} x,..., \\spad{yn} \\spad{x)} = h(x, \\spad{y1} \\spad{x,} \\spad{y2} x,..., \\spad{yn} x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0}, \\spad{y'(a) = b1}, \\spad{y''(a) = b2}, ...,\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, \\spad{y} \\spad{x,} y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y \\spad{x,} y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, \\spad{y} a = \\spad{b)}} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = \\spad{b}.} Note that \\spad{eq} must be of the form \\spad{f(x, \\spad{y} \\spad{x)} y'(x) + g(x, \\spad{y} \\spad{x)} = h(x, \\spad{y} x)}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|DifferentialPolynomialCategory| R S V E) │ │ │ -((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition, it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader}, \\spadfun{initial}, \\spadfun{separant}, \\spadfun{differentialVariables}, and \\spadfun{isobaric?}. Furthermore, if the ground ring is a differential ring, then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor, one needs to provide a ground ring \\spad{R,} an ordered set \\spad{S} of differential indeterminates, a ranking \\spad{V} on the set of derivatives of the differential indeterminates, and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates.")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note that an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight, and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, \\spad{s)}} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p.}")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, \\spad{s)}} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p.}")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, \\spad{s)}} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p,} which is the maximum number of differentiations of a differential indeterminate, among all those appearing in \\spad{p.}") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s.}")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p.}")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring, in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z.n} where \\spad{z} \\spad{:=} makeVariable(p). Note that In the interpreter, \\spad{z} is given as an internal map, which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate, in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z.n} where \\spad{z} :=makeVariable(s). Note that In the interpreter, \\spad{z} is given as an internal map, which may be ignored."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|FractionalIdeal| R F UP A) │ │ │ +((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d.}")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal I.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|EuclideanModularRing| S R |Mod| |reduction| |merge| |exactQuo|) │ │ │ -((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing}, \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,r)} or \\spad{x.r} is not documented")) (|inv| (($ $) "\\spad{inv(x)} is not documented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} is not documented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} is not documented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} is not documented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} is not documented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} is not documented"))) │ │ │ -((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|BlowUpWithHamburgerNoether|) │ │ │ +((|constructor| (NIL "This domain is part of the PAFF package"))) │ │ │ +((|HamburgerNoether| . T)) │ │ │ NIL │ │ │ -(|ErrorFunctions|) │ │ │ -((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically, these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings, as above. When you use the one argument version in an interpreter function, the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function\\br \\tab{5}\\spad{f \\spad{x} \\spad{==} if \\spad{x} < 0 then error \"negative argument\" else x}\\br the call to error will actually be of the form\\br \\tab{5}\\spad{error(\"f\",\"negative argument\")}\\br because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them):\\br \\spad{\\%l}\\tab{6}start a new line\\br \\spad{\\%ceon}\\tab{3}start centering message lines\\br \\spad{\\%ceoff}\\tab{2}stop centering message lines\\br \\spad{\\%rjon}\\tab{3}start displaying lines \"ragged left\"\\br \\spad{\\%rjoff}\\tab{2}stop displaying lines \"ragged left\"\\br \\spad{\\%i}\\tab{6}indent following lines 3 additional spaces\\br \\spad{\\%u}\\tab{6}unindent following lines 3 additional spaces\\br \\spad{\\%xN}\\tab{5}insert \\spad{N} blanks (eg, \\spad{\\%x10} inserts 10 blanks) \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) │ │ │ +(|WuWenTsunTriangularSet| R E V P) │ │ │ +((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The construct operation does not check the previous requirement. Triangular sets are stored as sorted lists w.r.t. the main variables of their members. Furthermore, this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,initiallyReduced?,initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,redOp?,redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,redOp?,redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,initiallyReduced?,initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,redOp?,redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense w.r.t the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials w.r.t a \\axiom{redOp?} basic set), if no non-zero constant polynomial appear during those reductions, else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(p,q),q)} holds for every polynomials \\axiom{p,q} and there exists an integer \\axiom{e} and a polynomial \\axiom{f} such that we have \\axiom{init(q)^e*p = \\spad{f*q} + redOp(p,q)}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,initiallyReduced?,initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,redOp?,redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense w.r.t the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}), if no non-zero constant polynomials appear during the computatioms, else \\axiom{\"failed\"} is returned. In the former case, \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm, \\axiom{bs} is simply a basic set of \\axiom{ps}."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#4| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#4| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#3| (QUOTE (|Finite|)))) │ │ │ +(|UnaryRecursiveAggregate| S) │ │ │ +((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models, though not precisely, a linked list possibly with a single cycle. A node with one children models a non-empty list, with the \\spadfun{value} of the list designating the head, or \\spadfun{first}, of the list, and the child designating the tail, or \\spadfun{rest}, of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates, they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{v = rest(u,n)} \\indented{1}{and \\axiom{w = first(u,n)}, returning \\axiom{v}.} \\indented{1}{Note that afterwards \\axiom{rest(u,n)} returns \\axiom{empty()}.} \\blankline \\spad{X} t1:=[1,4,2,-6,0,3,5,4,2,3] \\spad{X} t2:=split!(t1,4) \\spad{X} \\spad{t1} \\spad{X} \\spad{t2}")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x.} \\blankline \\spad{X} t1:=[1,4,2,-6,0,3,5,4,2,3] \\spad{X} setlast!(t1,7) \\spad{X} \\spad{t1}")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} setrest!(t1,[4,5,6]) \\spad{X} \\spad{t1}")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{u.last \\spad{:=} \\spad{b})} \\indented{1}{is equivalent to \\axiom{setlast!(u,v)}.} \\blankline \\spad{X} t1:=[1,4,2,-6,0,3,5,4,2,3] \\spad{X} t1.last \\spad{:=} 7 \\spad{X} \\spad{t1}") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{u.rest \\spad{:=} \\spad{v})} is \\indented{1}{equivalent to \\axiom{setrest!(u,v)}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t1.rest:=[4,5,6] \\spad{X} \\spad{t1}") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{u.first \\spad{:=} \\spad{x})} is \\indented{1}{equivalent to \\axiom{setfirst!(u,x)}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} \\spad{t1.first:=7} \\spad{X} \\spad{t1}")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} setfirst!(t1,7) \\spad{X} \\spad{t1}")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. \\indented{1}{The value returned is the cycle entry, or nil if none exists.} \\indented{1}{For example, if \\axiom{w = concat(u,v)} is the cyclic list where} \\indented{1}{v is the head of the cycle, \\axiom{cycleSplit!(w)} will drop \\spad{v}} \\indented{1}{off \\spad{w} thus destructively changing \\spad{w} to u, and returning \\spad{v.}} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat!(t1,t1) \\spad{X} t3:=[1,2,3] \\spad{X} t4:=concat!(t3,t2) \\spad{X} t5:=cycleSplit!(t4) \\spad{X} \\spad{t4} \\spad{X} \\spad{t5}")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of u. \\indented{1}{Note that \\axiom{concat!(a,x) = setlast!(a,[x])}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} concat!(t1,7) \\spad{X} \\spad{t1}") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of u. \\indented{1}{Note that \\axiom{concat!(u,v) = setlast_!(u,v)}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=[4,5,6] \\spad{X} concat!(t1,t2) \\spad{X} \\spad{t1} \\spad{X} \\spad{t2}")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle, or \\indented{1}{empty if none exists.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat!(t1,t1) \\spad{X} cycleTail \\spad{t2}")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle \\indented{1}{contained\\space{2}in aggregate u, or 0 is \\spad{u} has no such cycle.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat!(t1,t1) \\spad{X} cycleLength \\spad{t2}")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in \\indented{1}{aggregate u, or \\axiom{empty()} if none exists.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat!(t1,t1) \\spad{X} cycleEntry \\spad{t2}")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of u. \\indented{1}{Note that \\axiom{third(u) = first(rest(rest(u)))}.} \\blankline \\spad{X} third [1,4,2,-6,0,3,5,4,2,3]")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of u. \\indented{1}{Note that \\axiom{second(u) = first(rest(u))}.} \\blankline \\spad{X} second [1,4,2,-6,0,3,5,4,2,3]")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of u. \\indented{1}{Note that if \\spad{u} is \\axiom{shallowlyMutable},} \\indented{1}{\\axiom{setrest(tail(u),v) = concat(u,v)}.} \\blankline \\spad{X} tail [1,4,2,-6,0,3,5,4,2,3]")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{n \\spad{>=} 0}) nodes of u. \\indented{1}{Note that \\axiom{last(u,n)} is a list of \\spad{n} elements.} \\blankline \\spad{X} last([1,4,2,-6,0,3,5,4,2,3],3)") ((|#1| $) "\\spad{last(u)} resturn the last element of u. \\indented{1}{Note that for lists, \\axiom{last(u)=u . (maxIndex u)=u . \\spad{(#} \\spad{u} - 1)}.} \\blankline \\spad{X} last [1,4,2,-6,0,3,5,4,2,3]")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{n}th \\spad{(n} \\spad{>=} 0) node of u. \\indented{1}{Note that \\axiom{rest(u,0) = u}.} \\blankline \\spad{X} rest([1,4,2,-6,0,3,5,4,2,3],3)") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first \\indented{1}{element of u} \\indented{1}{(equivalently, the next node of u).} \\blankline \\spad{X} rest [1,4,2,-6,0,3,5,4,2,3]")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{u . last}) is equivalent \\indented{1}{to last u.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t1.last") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{u.rest}) is \\indented{1}{equivalent to \\axiom{rest u}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t1.rest") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{u . first}) \\indented{1}{is equivalent to first u.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t1.first")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{n \\spad{>=} 0}) elements of u. \\blankline first([1,4,2,-6,0,3,5,4,2,3],3)") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} \\indented{1}{(equivalently, the value at the current node).} \\blankline \\spad{X} first [1,4,2,-6,0,3,5,4,2,3]")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by \\indented{1}{the elements of u.} \\indented{1}{Note that if \\axiom{v = concat(x,u)} then \\axiom{x = first \\spad{v}}} \\indented{1}{and \\axiom{u = rest v}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat(4,t1) \\spad{X} \\spad{t1} \\spad{X} \\spad{t2}") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} \\indented{1}{followed by the elements of \\spad{v.}} \\indented{1}{Note that \\axiom{v = rest(w,\\#a)}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat(t1,t1) \\spad{X} \\spad{t1} \\spad{X} \\spad{t2}"))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ +(|ListToMap| A B) │ │ │ +((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x}, which appears in position \\spad{n} in the first list, is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults, an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, \\spad{lb,} a, \\spad{f)}} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb.} Argument \\spad{f} is a default function to call if a is not in la. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, \\spad{lb,} \\spad{f)}} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb.} Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, \\spad{lb,} a, \\spad{b)}} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb.} Argument \\spad{b} is the default target value if a is not in la. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, \\spad{lb,} \\spad{b)}} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length, where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb.} Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, \\spad{lb,} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length, where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb.} Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb.} Error: if \\spad{la} and \\spad{lb} are not of equal length. Note that when this map is applied, an error occurs when applied to a value missing from la."))) │ │ │ NIL │ │ │ -(|Equation| S) │ │ │ -((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain, for example being an abelian group are carried over the equation domain, by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x.}")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side, if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side, if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x.}") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x.}")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of the equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x.}")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, \\spad{...} xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation eqn.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation eqn.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of eqn.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation eqn.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation eqn.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation eq.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) │ │ │ -((|unitsKnown| OR (|has| |#1| (|Ring|)) (|has| |#1| (|Group|))) (|rightUnitary| |has| |#1| (|Ring|)) (|leftUnitary| |has| |#1| (|Ring|))) │ │ │ -((|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (QUOTE (|Ring|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#1|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|ExpressionSpace|))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|Group|)))) (OR (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|Monoid|))) (OR (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (QUOTE (|Monoid|)))) (|HasCategory| |#1| (QUOTE (|SemiGroup|))) (OR (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (QUOTE (|Monoid|))) (|HasCategory| |#1| (QUOTE (|SemiGroup|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (OR (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (OR (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|Monoid|)))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (OR (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (QUOTE (|Monoid|))) (|HasCategory| |#1| (QUOTE (|Ring|))) (|HasCategory| |#1| (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|EvaluateCycleIndicators| F) │ │ │ -((|constructor| (NIL "This package is to be used in conjuction with the CycleIndicators package. It provides an evaluation function for SymmetricPolynomials.")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,} \\indented{1}{forms their product and sums the results over all monomials.}"))) │ │ │ NIL │ │ │ +(|SymmetricGroupCombinatoricFunctions|) │ │ │ +((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus, improper partitions, subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the \\spad{k}-th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first, in reverse lexicographically according to their non-zero parts, then according to their positions (lexicographical order using subSet: [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]. Note that counting of subtrees is done by numberOfImproperPartitionsInternal.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the \\spad{k}-th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]. Error: if \\spad{k} is negative or too big. Note that counting of subtrees is done by numberOfImproperPartitions")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the \\spad{k}-th m-subset of the set 0,1,...,(n-1) in the lexicographic order considered as a decreasing map from 0,...,(m-1) into 0,...,(n-1). See S.G. Williamson: Theorem 1.60. Error: if not \\spad{(0} \\spad{<=} \\spad{m} \\spad{<=} \\spad{n} and 0 < = \\spad{k} < \\spad{(n} choose m)).")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: numberOfImproperPartitions (3,3) is 10, since [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0] are the possibilities. Note that this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of \\spad{number} which follows \\spad{part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of gamma. the first partition is achieved by part=[]. Also, \\spad{[]} indicates that \\spad{part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of \\spad{number} which follows \\spad{part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of gamma. The first partition is achieved by part=[]. Also, \\spad{[]} indicates that \\spad{part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition \\spad{lambda} succeeding the lattice permutation \\spad{lattP} in lexicographical order as long as \\spad{constructNotFirst} is true. If \\spad{constructNotFirst} is false, the first lattice permutation is returned. The result nil indicates that \\spad{lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums \\spad{alpha} and row sums \\spad{beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by C=new(1,1,0). Also, new(1,1,0) indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation \\spad{gitter} and for an improper partition \\spad{lambda} the corresponding standard tableau of shape lambda. Notes: see listYoungTableaus. The entries are from 0,...,n-1.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where \\spad{lambda} is a proper partition generates the list of all standard tableaus of shape \\spad{lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of lambda. Notes: the functions nextLatticePermutation and makeYoungTableau are used. The entries are from 0,...,n-1.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums alpha, column sums \\spad{beta} to the set of Salpha - Sbeta double cosets of the symmetric group \\spad{Sn.} (Salpha is the Young subgroup corresponding to the improper partition alpha). For such a matrix \\spad{C,} inverseColeman(alpha,beta,C) calculates the lexicographical smallest \\spad{pi} in the corresponding double coset. Note that the resulting permutation \\spad{pi} of {1,2,...,n} is given in list form. Notes: the inverse of this map is coleman. For details, see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums alpha, column sums \\spad{beta} to the set of Salpha - Sbeta double cosets of the symmetric group \\spad{Sn.} (Salpha is the Young subgroup corresponding to the improper partition alpha). For a representing element \\spad{pi} of such a double coset, coleman(alpha,beta,pi) generates the Coleman-matrix corresponding to alpha, beta, pi. Note that The permutation \\spad{pi} of {1,2,...,n} has to be given in list form. Note that the inverse of this map is inverseColeman (if \\spad{pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) │ │ │ NIL │ │ │ -(|Export3D|) │ │ │ -((|constructor| (NIL "This package provides support for exporting SubSpace and ThreeSpace structures to files.")) (|writeObj| (((|Void|) (|SubSpace| 3 (|DoubleFloat|)) (|String|)) "\\spad{writeObj(sub,str)} writes 3D SubSpace to a file in Wavefront (.OBJ) format"))) │ │ │ NIL │ │ │ +(|PowerSeriesCategory&| S |Coef| |Expon| |Var|) │ │ │ +((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note that this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f.}")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * \\spad{x1**n1} * \\spad{..} * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) │ │ │ NIL │ │ │ -(|e04dgfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF, a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) │ │ │ NIL │ │ │ +(|PolynomialRoots| E V R P F) │ │ │ +((|constructor| (NIL "Computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, \\spad{n)}} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = \\spad{c} * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, \\spad{n)}} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = \\spad{c} * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, \\spad{n)}} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = \\spad{c} * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) │ │ │ NIL │ │ │ -(|d01apfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF, a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form w(x) = (x-a)^c * (b-x)^d. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ +((|HasCategory| |#3| (QUOTE (|GcdDomain|)))) │ │ │ +(|BasicType&| S) │ │ │ +((|constructor| (NIL "BasicType is the basic category for describing a collection of elements with = (equality).")) (~= (((|Boolean|) $ $) "\\spad{x~=y} tests if \\spad{x} and \\spad{y} are not equal.")) (= (((|Boolean|) $ $) "\\spad{x=y} tests if \\spad{x} and \\spad{y} are equal."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|e04fdfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF, a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) │ │ │ +(|AssociationListAggregate| |Key| |Entry|) │ │ │ +((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k,} or \"failed\" if \\spad{u} has no key \\spad{k.}"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ +(|LinearOrdinaryDifferentialOperatorCategory| A) │ │ │ +((|constructor| (NIL "LinearOrdinaryDifferentialOperatorCategory is the category of differential operators with coefficients in a ring A with a given derivation. \\blankline Multiplication of operators corresponds to functional composition:\\br \\spad{(L1} * L2).(f) = \\spad{L1} \\spad{L2} \\spad{f}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) │ │ │ +((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|e04gcfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF, a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) │ │ │ +(|SetCategory|) │ │ │ +((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes\\br \\tab{5}canonical\\tab{5}data structure equality is the same as \\spadop{=}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s.}")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|e04jafAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF, a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) │ │ │ +(|NonAssociativeRng|) │ │ │ +((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure, not necessarily commutative or associative, and not necessarily with unit.\\br Axioms\\br \\tab{5}x*(y+z) = x*y + x*z\\br \\tab{5}(x+y)*z = \\spad{x*z} + y*z\\br \\blankline Common Additional Axioms\\br \\tab{5}noZeroDivisors\\tab{5} ab = 0 \\spad{=>} \\spad{a=0} or \\spad{b=0}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FiniteField| |p| |n|) │ │ │ -((|constructor| (NIL "FiniteField(p,n) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version, see \\spadtype{InnerFiniteField}."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|Finite|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|Finite|))))) │ │ │ -(|FactoringUtilities| E OV R P) │ │ │ -((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as member of \\spad{R.}")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R.} An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of upoly.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R.}"))) │ │ │ +(|TopLevelThreeSpace|) │ │ │ +((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point, curve, mesh components and any combination."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|e04ucfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF, a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) │ │ │ +(|InnerPolySum| E V R P) │ │ │ +((|constructor| (NIL "Tools for the summation packages of polynomials")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), \\spad{n)}} returns \\spad{P(n)}, the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n,} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), \\spad{n} = a..b)} returns \\spad{p(a) + p(a+1) + \\spad{...} + p(b)}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FiniteFieldCyclicGroup| |p| |extdeg|) │ │ │ -((|constructor| (NIL "FiniteFieldCyclicGroup(p,n) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element, a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial, which is created by createPrimitivePoly from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size, and use \\spadtype{SingleInteger} for representing field elements, hence, there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|Finite|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|Finite|))))) │ │ │ -(|FiniteFieldCyclicGroupExtension| GF |extdeg|) │ │ │ -((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,n) implements a extension of degree \\spad{n} over the ground field \\spad{GF.} Its elements are represented by powers of a primitive element, a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial, which is created by createPrimitivePoly from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size, and use \\spadtype{SingleInteger} for representing field elements, hence, there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))))) │ │ │ -(|FiniteFieldFactorization| K |PolK|) │ │ │ -((|constructor| (NIL "Part of the PAFF package"))) │ │ │ +(|PatternMatchListResult| R S L) │ │ │ +((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match, or a pair of PatternMatchResult, one for atoms (elements of the list), and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [r1,r2].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FiniteFieldHomomorphisms| F1 GF F2) │ │ │ -((|constructor| (NIL "FiniteFieldHomomorphisms(F1,GF,F2) exports coercion functions of elements between the fields \\spad{F1} and \\spad{F2,} which both must be finite simple algebraic extensions of the finite ground field \\spad{GF.}")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from \\spad{F2} in \\spad{F1,} where coerce is a field homomorphism between the fields extensions \\spad{F2} and \\spad{F1} both over ground field \\spad{GF} (the second argument to the package). Error: if the extension degree of \\spad{F2} doesn't divide the extension degree of \\spad{F1.} Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from \\spad{F1} in \\spad{F2.} Thus coerce is a field homomorphism between the fields extensions \\spad{F1} and \\spad{F2} both over ground field \\spad{GF} (the second argument to the package). Error: if the extension degree of \\spad{F1} doesn't divide the extension degree of \\spad{F2.} Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) │ │ │ +(|UnivariatePuiseuxSeries| |Coef| |var| |cen|) │ │ │ +((|constructor| (NIL "Dense Puiseux series in one variable")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|))))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ +(|SturmHabichtPackage| R |x|) │ │ │ +((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R,} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has, counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with p2<0. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1.}")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with p2<0. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1.}")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) │ │ │ NIL │ │ │ +((|HasCategory| |#1| (QUOTE (|GcdDomain|)))) │ │ │ +(|NonLinearSolvePackage| R) │ │ │ +((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp.}") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv.}")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp.}") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv.}"))) │ │ │ NIL │ │ │ -(|FractionFreeFastGaussianFractions| D V VF) │ │ │ -((|constructor| (NIL "This package lifts the interpolation functions from \\spadtype{FractionFreeFastGaussian} to fractions. The packages defined in this file provide fast fraction free rational interpolation algorithms. (see FAMR2, FFFG, FFFGF, NEWTON)")) (|generalInterpolation| (((|Stream| (|Matrix| (|SparseUnivariatePolynomial| |#1|))) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#3|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalInterpolation(l, CA, \\spad{f,} sumEta, maxEta)} applies generalInterpolation(l, CA, \\spad{f,} eta) for all possible eta with maximal entry maxEta and sum of entries \\spad{sumEta}") (((|Matrix| (|SparseUnivariatePolynomial| |#1|)) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{generalInterpolation(l, CA, \\spad{f,} eta)} performs Hermite-Pade approximation using the given action \\spad{CA} of polynomials on the elements of \\spad{f.} The result is guaranteed to be correct up to order |eta|-1. Given that eta is a \"normal\" point, the degrees on the diagonal are given by eta. The degrees of column \\spad{i} are in this case eta + e.i - [1,1,...,1], where the degree of zero is \\spad{-1.}"))) │ │ │ NIL │ │ │ +(|UTSodetools| F UP L UTS) │ │ │ +((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series ODE solver when presented with linear ODEs.")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op \\spad{y} = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, \\spad{n)}} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) │ │ │ NIL │ │ │ -(|FiniteFieldNormalBasis| |p| |extdeg|) │ │ │ -((|constructor| (NIL "FiniteFieldNormalBasis(p,n) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis, a basis consisting of the conjugates (q-powers) of an element, in this case called normal element. This is chosen as a root of the extension polynomial created by createNormalPoly")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|Finite|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|Finite|))))) │ │ │ -(|FractionFreeFastGaussian| D V) │ │ │ -((|constructor| (NIL "This package implements the interpolation algorithm proposed in Beckermann, Bernhard and Labahn, George, Fraction-free computation of matrix rational interpolants and matrix GCDs, SIAM Journal on Matrix Analysis and Applications 22. The packages defined in this file provide fast fraction free rational interpolation algorithms. (see FAMR2, FFFG, FFFGF, NEWTON)")) (|qShiftC| (((|List| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{qShiftC} gives the coefficients c_{k,k} in the expansion \\spad{z} g(x) = sum_{i=0}^k c_{k,i} g(x), where \\spad{z} acts on g(x) by shifting. In fact, the result is [1,q,q^2,...]")) (|qShiftAction| ((|#1| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{qShiftAction(q, \\spad{k,} \\spad{l,} \\spad{g)}} gives the coefficient of \\spad{x^k} in \\spad{z^l} g(x), where z*(a+b*x+c*x^2+d*x^3+...) = (a+q*b*x+q^2*c*x^2+q^3*d*x^3+...). In terms of sequences, z*u(n)=q^n*u(n).")) (|DiffC| (((|List| |#1|) (|NonNegativeInteger|)) "\\spad{DiffC} gives the coefficients c_{k,k} in the expansion \\spad{z} g(x) = sum_{i=0}^k c_{k,i} g(x), where \\spad{z} acts on g(x) by shifting. In fact, the result is [0,0,0,...]")) (|DiffAction| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{DiffAction(k, \\spad{l,} \\spad{g)}} gives the coefficient of \\spad{x^k} in \\spad{z^l} g(x), where z*(a+b*x+c*x^2+d*x^3+...) = (a*x+b*x^2+c*x^3+...), multiplication with \\spad{x.}")) (|ShiftC| (((|List| |#1|) (|NonNegativeInteger|)) "\\spad{ShiftC} gives the coefficients c_{k,k} in the expansion \\spad{z} g(x) = sum_{i=0}^k c_{k,i} g(x), where \\spad{z} acts on g(x) by shifting. In fact, the result is [0,1,2,...]")) (|ShiftAction| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{ShiftAction(k, \\spad{l,} \\spad{g)}} gives the coefficient of \\spad{x^k} in \\spad{z^l} g(x), where \\spad{z*(a+b*x+c*x^2+d*x^3+...) = (b*x+2*c*x^2+3*d*x^3+...)}. In terms of sequences, z*u(n)=n*u(n).")) (|generalCoefficient| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#2|) (|NonNegativeInteger|) (|Vector| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalCoefficient(action, \\spad{f,} \\spad{k,} \\spad{p)}} gives the coefficient of \\spad{x^k} in p(z)\\dot f(x), where the \\spad{action} of \\spad{z^l} on a polynomial in \\spad{x} is given by action, action(k, \\spad{l,} \\spad{f)} should return the coefficient of \\spad{x^k} in \\spad{z^l} f(x).")) (|generalInterpolation| (((|Stream| (|Matrix| (|SparseUnivariatePolynomial| |#1|))) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#2|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalInterpolation(C, CA, \\spad{f,} sumEta, maxEta)} applies \\spad{generalInterpolation(C, CA, \\spad{f,} eta)} for all possible \\spad{eta} with maximal entry \\spad{maxEta} and sum of entries at most \\spad{sumEta}. \\blankline The first argument \\spad{C} is the list of coefficients c_{k,k} in the expansion \\spad{z} g(x) = sum_{i=0}^k c_{k,i} g(x). \\blankline The second argument, CA(k, \\spad{l,} \\spad{f),} should return the coefficient of \\spad{x^k} in \\spad{z^l} f(x).") (((|Matrix| (|SparseUnivariatePolynomial| |#1|)) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{generalInterpolation(C, CA, \\spad{f,} eta)} performs Hermite-Pade approximation using the given action \\spad{CA} of polynomials on the elements of \\spad{f.} The result is guaranteed to be correct up to order |eta|-1. Given that eta is a \"normal\" point, the degrees on the diagonal are given by eta. The degrees of column \\spad{i} are in this case eta + e.i - [1,1,...,1], where the degree of zero is \\spad{-1.} \\blankline The first argument \\spad{C} is the list of coefficients c_{k,k} in the expansion \\spad{z} g(x) = sum_{i=0}^k c_{k,i} g(x). \\blankline The second argument, CA(k, \\spad{l,} \\spad{f),} should return the coefficient of \\spad{x^k} in \\spad{z^l} f(x).")) (|interpolate| (((|Fraction| (|SparseUnivariatePolynomial| |#1|)) (|List| (|Fraction| |#1|)) (|List| (|Fraction| |#1|)) (|NonNegativeInteger|)) "\\spad{interpolate(xlist, ylist, deg} returns the rational function with numerator degree \\spad{deg} that interpolates the given points using fraction free arithmetic.") (((|Fraction| (|SparseUnivariatePolynomial| |#1|)) (|List| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{interpolate(xlist, ylist, deg} returns the rational function with numerator degree at most \\spad{deg} and denominator degree at most \\spad{\\#xlist-deg-1} that interpolates the given points using fraction free arithmetic. Note that rational interpolation does not guarantee that all given points are interpolated correctly: unattainable points may make this impossible.")) (|fffg| (((|Matrix| (|SparseUnivariatePolynomial| |#1|)) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|Vector| (|SparseUnivariatePolynomial| |#1|))) (|List| (|NonNegativeInteger|))) "\\spad{fffg} is the general algorithm as proposed by Beckermann and Labahn. \\blankline The first argument is the list of c_{i,i}. These are the only values of \\spad{C} explicitely needed in \\spad{fffg}. \\blankline The second argument \\spad{c,} computes c_k(M), c_k(.) is the dual basis of the vector space \\spad{V,} but also knows about the special multiplication rule as descibed in Equation (2). Note that the information about \\spad{f} is therefore encoded in \\spad{c.} \\blankline The third argument is the vector of degree bounds \\spad{n,} as introduced in Definition 2.1. In particular, the sum of the entries is the order of the Mahler system computed."))) │ │ │ +((|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) │ │ │ +(|CylindricalAlgebraicDecompositionPackage| |TheField|) │ │ │ NIL │ │ │ NIL │ │ │ -(|FiniteFieldNormalBasisExtension| GF |extdeg|) │ │ │ -((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,n) implements a finite extension field of degree \\spad{n} over the ground field \\spad{GF.} The elements are represented by coordinate vectors with respect to a normal basis, a basis consisting of the conjugates \\spad{(q-powers)} of an element, in this case called normal element. This is chosen as a root of the extension polynomial, created by createNormalPoly from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))))) │ │ │ -(|FiniteFieldSquareFreeDecomposition| K |PolK|) │ │ │ -((|constructor| (NIL "Part of the package for Algebraic Function Fields in one variable (PAFF)"))) │ │ │ NIL │ │ │ +(|LazyRepresentationAttribute|) │ │ │ +((|constructor| (NIL "The class of all domains which have a lazy representation"))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|FiniteFieldExtension| GF |n|) │ │ │ -((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF, \\spad{n)} implements an extension of the finite field \\spad{GF} of degree \\spad{n} generated by the extension polynomial constructed by createIrreduciblePoly from \\spadtype{FiniteFieldPolynomialPackage}."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))))) │ │ │ -(|FiniteFieldSolveLinearPolynomialEquation| F FP FPP) │ │ │ -((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], \\spad{g)}} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of ai's exists."))) │ │ │ +(|LazyStreamAggregate| S) │ │ │ +((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?', for example 'first' and 'rest', will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. \\indented{1}{this function should only be called on streams which are} \\indented{1}{known to be finite.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..] \\spad{X} n:=filterUntil(i+->i>100,m) \\spad{X} numberOfComputedEntries \\spad{n} \\spad{X} complete \\spad{n} \\spad{X} numberOfComputedEntries \\spad{n}")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed, if necessary, \\indented{1}{so that 'st' will have at least \\spad{'n'} explicit entries or so} \\indented{1}{that all entries of 'st' will be computed if 'st' is finite} \\indented{1}{with length \\spad{<=} \\spad{n.}} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} numberOfComputedEntries \\spad{m} \\spad{X} extend(m,20) \\spad{X} numberOfComputedEntries \\spad{m}")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly \\indented{1}{computed entries of stream \\spad{st} which exist immediately prior to the} \\indented{1}{time this function is called.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} numberOfComputedEntries \\spad{m}")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s.} \\indented{1}{Cautrion: this function should only be called after a \\spad{empty?}} \\indented{1}{test has been made since there no error check.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} \\spad{rst} \\spad{m}")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s.} \\indented{1}{Caution: this function should only be called after a \\spad{empty?}} \\indented{1}{test has been made since there no error check.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} frst \\spad{m}")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s.} \\indented{1}{Caution: the first node must be a lazy evaluation mechanism} \\indented{1}{(satisfies \\spad{lazy?(s) = true}) as there is no error check.} \\indented{1}{Note that a call to this function may} \\indented{1}{or may not produce an explicit first entry}")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} \\indented{1}{is a lazy evaluation mechanism which could produce an} \\indented{1}{additional entry to \\spad{s.}} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} lazy? \\spad{m}")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an \\indented{1}{(explicitly) empty stream.} \\indented{1}{Note that this is a null test which will not cause lazy evaluation.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} explicitlyEmpty? \\spad{m}")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has \\indented{1}{explicitly computed entries, and \\spad{false} otherwise.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} explicitEntries? \\spad{m}")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\indented{1}{st satisfying the predicate \\spad{f.}} \\indented{1}{Note that \\spad{select(f,st) = \\spad{[x} for \\spad{x} in \\spad{st} | f(x)]}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 0..] \\spad{X} select(x+->prime? x,m)")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\indented{1}{st which do not satisfy the predicate \\spad{f.}} \\indented{1}{Note that \\spad{remove(f,st) = \\spad{[x} for \\spad{x} in \\spad{st} | not f(x)]}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..] \\spad{X} f(i:PositiveInteger):Boolean \\spad{==} even? \\spad{i} \\spad{X} remove(f,m)"))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ +(|OrderedCompletion| R) │ │ │ +((|constructor| (NIL "Completion with + and - infinity. Adjunction of two real infinites quantities to a set.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite, 1 if \\spad{x} is +infinity, and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) │ │ │ +((|unitsKnown| |has| |#1| (|OrderedRing|))) │ │ │ +((|HasCategory| |#1| (QUOTE (|OrderedRing|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|OrderedRing|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (OR (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|OrderedRing|))))) │ │ │ +(|ProjectiveSpace| |dim| K) │ │ │ +((|constructor| (NIL "This is part of the PAFF package, related to projective space."))) │ │ │ NIL │ │ │ -(|File| S) │ │ │ -((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f,} if possible. If \\spad{f} is not open for reading, or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) │ │ │ NIL │ │ │ +(|SegmentCategory| S) │ │ │ +((|constructor| (NIL "This category provides operations on ranges, or segments as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n}, where \\spad{s} is a segment in which every \\spad{n}-th element is used. Note that \\spad{incr(l..h by \\spad{n)} = \\spad{n}.}")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s.} Note that \\spad{high(l..h) = \\spad{h}.}")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s.} Note that \\spad{low(l..h) = \\spad{l}.}")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s.} Note that \\spad{hi(l..h) = \\spad{h}.}")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s.} Note that \\spad{lo(l..h) = \\spad{l}.}")) (BY (($ $ (|Integer|)) "\\spad{s by \\spad{n}} creates a new segment in which only every \\spad{n}-th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|FGLMIfCanPackage| R |ls|) │ │ │ -((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial \\spad{R}} by the FGLM algorithm if this is possible (if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(lq1)} returns the lexicographical Groebner basis of \\axiom{lq1}. If \\axiom{lq1} generates a zero-dimensional ideal then the FGLM strategy is used, otherwise the Sugar strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(lq1)} returns the lexicographical Groebner basis of \\axiom{lq1} by using the FGLM strategy, if \\axiom{zeroDimensional?(lq1)} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(lq1)} returns \\spad{true} iff \\axiom{lq1} generates a zero-dimensional ideal w.r.t. the variables of \\axiom{ls}."))) │ │ │ +(|OrderedCancellationAbelianMonoid|) │ │ │ +((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids, such that the addition preserves the ordering."))) │ │ │ NIL │ │ │ NIL │ │ │ (|FiniteFieldPolynomialPackage| GF) │ │ │ ((|constructor| (NIL "This package provides a number of functions for generating, counting and testing irreducible, normal, primitive, random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()$GF} and \\spad{n = degree \\spad{f}.}")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field \\spad{GF,} a polynomial whose exponents are 0 or a power of \\spad{q,} the size of \\spad{GF.}")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field \\spad{GF,} \\spad{d} between \\spad{m} and \\spad{n.}") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field \\spad{GF.}")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field \\spad{GF} of the same degree as \\spad{f} in the following order, or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note that the input polynomial \\spad{f} is made monic. Also, \\spad{f < \\spad{g}} if the lookup of the constant term of \\spad{f} is less than this number for \\spad{g} or, in case these numbers are equal, if the lookup of the coefficient of the term of degree \\spad{n-1} of \\spad{f} is less than this number for \\spad{g.} If these numbers are equals, \\spad{f < \\spad{g}} if the number of monomials of \\spad{f} is less than that for \\spad{g,} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g.} If these lists are also equal, the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of \\spad{GF} given by lookup. This operation is equivalent to nextNormalPrimitivePoly(f).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field \\spad{GF} of the same degree as \\spad{f} in the following order, or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note that the input polynomial \\spad{f} is made monic. Also, \\spad{f < \\spad{g}} if the lookup of the constant term of \\spad{f} is less than this number for \\spad{g} or if lookup of the coefficient of the term of degree \\spad{n-1} of \\spad{f} is less than this number for \\spad{g.} Otherwise, \\spad{f < \\spad{g}} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g.} If these lists are also equal, the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of \\spad{GF} given by lookup. This operation is equivalent to nextPrimitiveNormalPoly(f).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field \\spad{GF} of the same degree as \\spad{f} in the following order, or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note that the input polynomial \\spad{f} is made monic. Also, \\spad{f < \\spad{g}} if the lookup of the coefficient of the term of degree \\spad{n-1} of \\spad{f} is less than that for \\spad{g.} In case these numbers are equal, \\spad{f < \\spad{g}} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g.} If these lists are also equal, the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of \\spad{GF} given by lookup.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field \\spad{GF} of the same degree as \\spad{f} in the following order, or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note that the input polynomial \\spad{f} is made monic. Also, \\spad{f < \\spad{g}} if the lookup of the constant term of \\spad{f} is less than this number for \\spad{g.} If these values are equal, then \\spad{f < \\spad{g}} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g.} If these lists are also equal, the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of \\spad{GF} given by lookup.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field \\spad{GF} of the same degree as \\spad{f} in the following order, or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note that the input polynomial \\spad{f} is made monic. Also, \\spad{f < \\spad{g}} if the number of monomials of \\spad{f} is less than this number for \\spad{g.} If \\spad{f} and \\spad{g} have the same number of monomials, the lists of exponents are compared lexicographically. If these lists are also equal, the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of \\spad{GF} given by lookup.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field \\spad{GF.} polynomial of degree \\spad{n} over the field \\spad{GF.}")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field \\spad{GF.} Note that this function is equivalent to createPrimitiveNormalPoly(n)")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field \\spad{GF.}")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field \\spad{GF.}")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field \\spad{GF.}")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field \\spad{GF.}")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field \\spad{GF.}")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field \\spad{GF.}")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal, its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive, all its roots are primitive."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FiniteRankAlgebra&| S R UP) │ │ │ -((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free R-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the n-by-n matrix ( Tr(vi * \\spad{vj)} )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1+...+an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the vi's with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) │ │ │ -NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ -(|FileName|) │ │ │ -((|constructor| (NIL "This domain provides an interface to names in the file system."))) │ │ │ +(|NonCommutativeOperatorDivision| P F) │ │ │ +((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}s over a \\spadtype{Field}. Since the multiplication is in general non-commutative, these operations all have left- and right-hand versions. This package provides the operations based on left-division.\\br \\tab{5}[q,r] = leftDivide(a,b) means a=b*q+r")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q}, if it exists, \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FloatingRealPackage| |Par|) │ │ │ -((|constructor| (NIL "This is a package for the approximation of real solutions for systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv,} with precision eps. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv.}")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in eq, with precision eps.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p,} with precision eps.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp,} with precision eps.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp,} with precision eps."))) │ │ │ +(|OpenMathConnection|) │ │ │ +((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}s.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FiniteRankNonAssociativeAlgebra&| S R) │ │ │ -((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit, similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left, respectively right, minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique), or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique), or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique), or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra, or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra, or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note that the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note that the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities, that is, finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0, for all \\spad{a},b,c in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element, which is a right inverse of \\spad{a}, or \\spad{\"failed\"} if there is no unit element, if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element, which is a left inverse of \\spad{a}, or \\spad{\"failed\"} if there is no unit element, if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element, which is both a left and a right inverse of \\spad{a}, or \\spad{\"failed\"} if there is no unit element, if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},b,c in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)}, where \\spad{a*b \\spad{:=} a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative, characteristic is not 2, and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},b,c in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)}, where \\spad{a*b \\spad{:=} (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra, that is, satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra, that is, satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},b,c in the algebra. For example, this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a}, \\spad{b} in the algebra. Note that we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a}, \\spad{b} in the algebra. Note that we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a}, \\spad{b} in the algebra. Note that we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a}, \\spad{b} in the algebra. Note that we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative, that is, \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},b,c in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note that this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the right trace of the product \\spad{vi*vj}. Note that this is the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the left trace of the product \\spad{vi*vj}. Note that this is the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + \\spad{...} + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},...,\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},...,\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for \\spad{k} in 1..m]} defined by \\spad{vi * \\spad{vj} = \\spad{gammaij1} * \\spad{v1} + \\spad{...} + gammaijm * vm}, where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},...,\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) │ │ │ +(|SparseEchelonMatrix| C D) │ │ │ +((|constructor| (NIL "\\spad{SparseEchelonMatrix(C, \\spad{D)}} implements sparse matrices whose columns are enumerated by the \\spadtype{OrderedSet} \\spad{C} and whose entries belong to the \\spadtype{GcdDomain} \\spad{D}. The basic operation of this domain is the computation of an row echelon form. The used algorithm tries to maintain the sparsity and is especially adapted to matrices who are already close to a row echelon form.")) (|horizSplit| (((|Record| (|:| |Left| $) (|:| |Right| $)) $ |#1|) "\\spad{horizSplit(A, \\spad{c)}} splits the matrix \\spad{A} into two at the column given by \\spad{c}. The first column of the right matrix is enumerated by the first index less or equal to \\spad{c}.")) (|horizJoin| (($ $ $) "\\spad{horizJoin(A, \\spad{B)}} horizontally concats the matrices \\spad{A} and \\spad{B}. It is assumed that all indices of \\spad{B} are smaller than those of \\spad{A}.")) (|join| (($ $ $) "\\spad{join(A, \\spad{B)}} vertically concats the matrices \\spad{A} and \\spad{B}.")) (* (($ (|Matrix| (|Fraction| |#2|)) $) "\\spad{L*A} implements left multiplication with a usual matrix over the quotient field of \\spad{D}.") (($ (|Matrix| |#2|) $) "\\spad{L*A} implements left multiplication with a usual matrix.")) (|pivots| (((|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|))) $) "\\spad{pivots(A)} returns all leading entries of the matrix \\spad{A} together with their indices.")) (|pivot| (((|Record| (|:| |Index| |#1|) (|:| |Entry| |#2|)) $ (|Integer|)) "\\spad{pivot(A, i)} returns the leading entry of the \\spad{i}-th row of the matrix \\spad{A} together with its index.")) (|primitiveRowEchelon| (((|Record| (|:| |Ech| $) (|:| |Lt| (|Matrix| (|Fraction| |#2|))) (|:| |Pivots| (|List| |#2|)) (|:| |Rank| (|NonNegativeInteger|))) $) "\\spad{primitiveRowEchelon(A)} computes a row echelon form for the matrix \\spad{A}. The algorithm used is fraction-free elimination. Every row is made primitive by division by the gcd. The algorithm is especially adapted to matrices already close to row echelon form. The transformation matrix, the used pivots and the rank of the matrix are also returned.")) (|setGcdMode| (((|Symbol|) (|Symbol|)) "\\spad{setGcdMode(s)} sets a new value for the flag deciding on the method used to compute gcd`s for lists. Possible values for \\spad{s} are \\spad{iterated} and \\spad{random}.")) (|rowEchelon| (((|Record| (|:| |Ech| $) (|:| |Lt| (|Matrix| |#2|)) (|:| |Pivots| (|List| |#2|)) (|:| |Rank| (|NonNegativeInteger|))) $) "\\spad{primitiveRowEchelon(A)} computes a row echelon form for the matrix \\spad{A}. The algorithm used is fraction-free elimination. It is especially adapted to matrices already close to row echelon form. The transformation matrix, the used pivots and the rank of the matrix are also returned.")) (|extract| (($ $ (|Integer|) (|Integer|)) "\\spad{extract(A, i1, i2)} extracts the rows \\spad{i1} to \\spad{i2} and returns them as a new matrix.")) (|appendRow!| (((|Void|) $ (|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|)))) "\\spad{appendRow!(A, \\spad{r)}} appends the row \\spad{r} at the end of the matrix \\spad{A}.")) (|consRow!| (((|Void|) $ (|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|)))) "\\spad{consRow!(A, \\spad{r)}} inserts the row \\spad{r} at the top of the matrix \\spad{A}.")) (|deleteRow!| (((|Void|) $ (|Integer|)) "\\spad{deleteRow(A, i)} deletes the \\spad{i}-th row of the matrix \\spad{A}.")) (|setRow!| (((|Void|) $ (|Integer|) (|List| |#1|) (|List| |#2|)) "\\spad{setRow!(A, i, ind, ent)} sets the \\spad{i}-th row of the matrix \\spad{A}. Its indices are \\spad{ind}; the entries \\spad{ent}.") (((|Void|) $ (|Integer|) (|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|)))) "\\spad{setRow!(A, i, ind, ent)} sets the \\spad{i}-th row of the matrix \\spad{A} to the value \\spad{r}.")) (|row| (((|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|))) $ (|Integer|)) "\\spad{row(A, i)} returns the \\spad{i}-th row of the matrix \\spad{A}.")) (|setelt!| (((|Void|) $ (|Integer|) |#1| |#2|) "\\spad{setelt!(A, i, \\spad{c,} \\spad{d)}} sets the entry of the matrix \\spad{A} in row \\spad{i} and in the column with index \\spad{c} to the value \\spad{d}.")) (|elt| ((|#2| $ (|Integer|) |#1|) "\\spad{elt(A, i, \\spad{c)}} returns the entry of the matrix \\spad{A} in row \\spad{i} and in the column with index \\spad{c}.")) (|new| (($ (|List| |#1|) (|Integer|)) "\\spad{new(inds, nrows)} generates a new matrix with \\spad{nrows} rows and columns enumerated by the indices \\spad{inds}. The matrix is empty, the zero matrix.")) (|sortedPurge!| (((|Void|) $ (|Mapping| (|Boolean|) |#1|)) "\\spad{sortedPurge!(A, crit)} is like \\spad{purge}, however, with the additional assumption that \\spad{crit} respects the ordering of the indices.")) (|purge!| (((|Void|) $ (|Mapping| (|Boolean|) |#1|)) "\\spad{purge!(A, crit)} eliminates all columns belonging to an index \\spad{c} such that \\spad{crit(c)} yields \\spad{true}.")) (|elimZeroCols!| (((|Void|) $) "\\spad{elimZeroCols!(A)} removes columns which contain only zeros. This effects basically only the value of \\spad{allIndices(A)}.")) (|allIndices| (((|List| |#1|) $) "\\spad{allIndices(A)} returns all indices used for enumerating the columns of the matrix \\spad{A}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(A)} returns the number of rows of the matrix \\spad{A}.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(A)} returns the number of columns of the matrix \\spad{A}.")) (|copy| (($ $) "\\spad{copy(A)} returns a copy of the matrix \\spad{A}.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(A)} yields the matrix \\spad{A} in the usual matrix type.")) (|finiteAggregate| ((|attribute|) "Matrices are finite.")) (|shallowlyMutable| ((|attribute|) "Matrices may be altered destructively."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) │ │ │ +(|SimplifyAlgebraicNumberConvertPackage|) │ │ │ +((|constructor| (NIL "Package to allow simplify to be called on AlgebraicNumbers by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) │ │ │ -(|FiniteRankAlgebra| R UP) │ │ │ -((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free R-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the n-by-n matrix ( Tr(vi * \\spad{vj)} )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1+...+an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the vi's with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) │ │ │ -((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|FortranOutputStackPackage|) │ │ │ -((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) │ │ │ +(|NumericalQuadrature|) │ │ │ +((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions), fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns, which contains value Float: estimate of the integral error Float: estimate of the error in the computation totalpts Integer: total number of function evaluations success Boolean: if the integral was computed within the user specified error criterion To produce this estimate, each routine generates an internal sequence of sub-estimates, denoted by S(i), depending on the routine, to which the various convergence criteria are applied. The user must supply a relative accuracy, \\spad{eps_r}, and an absolute accuracy, \\spad{eps_a}. Convergence is obtained when either\\br \\tab{5}\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}\\br \\tab{5}or \\spad{ABS(S(i) - S(i-1)) < eps_a} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: closed: romberg, simpson, trapezoidal open: rombergo, simpsono, trapezoidalo adaptive closed: aromberg, asimpson, atrapezoidal \\blankline The S(i) for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\blankline The S(i) for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\blankline The S(i) for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}-th level, this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the 2*(i+1) power only. \\blankline The three families come in a closed version, where the formulas include the endpoints, an open version where the formulas do not include the endpoints and an adaptive version, where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\blankline Each routine takes as arguments:\\br \\spad{f} integrand\\br a starting point\\br \\spad{b} ending point\\br eps_r relative error\\br eps_a absolute error\\br nmin refinement level when to start checking for convergence \\spad{(>} 1)\\br nmax maximum level of refinement\\br \\blankline The adaptive routines take as an additional parameter, nint, the number of independent intervals to apply a closed family integrator of the same name. \\blankline")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{fn} over the closed interval \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{fn} over the closed interval \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}, and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}, and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b}, with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs}, with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}, and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral, the estimate of the error in the computation, the total number of function evaluations, and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FiniteFieldFunctions| GF) │ │ │ -((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field \\spad{GF,} for example, Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree \\spad{n} over \\spad{GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(n) to produce a normal polynomial of degree \\spad{n} over \\spad{GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree \\spad{n} over \\spad{GF} and returns its multiplication matrix Fails, if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table \\spad{m.}")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table \\spad{m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by \\spad{f.} This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP}, \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial f(x), \\spad{Z(i)}, defined by x**Z(i) = 1+x**i is stored at index i. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP}, \\spadtype{FFCGX}."))) │ │ │ +(|RadicalEigenPackage|) │ │ │ +((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse \\spad{b)}} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible, the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse \\spad{b)}} is diagonal, or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m;} when possible, the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(s) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c;} when possible, values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m;} when possible, values are expressed in terms of radicals."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ScriptFormulaFormat|) │ │ │ -((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue, a formula part and an epilogue. The functions \\spadfun{prologue}, \\spadfun{formula} and \\spadfun{epilogue} extract these parts, respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!}, \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example, the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to strings.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to strings.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to strings.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t.}")) (|new| (($) "\\spad{new()} create a new, empty object. Use \\spadfun{setPrologue!}, \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t.}")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t.}")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{width}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) │ │ │ +(|NewSparseUnivariatePolynomial| R) │ │ │ +((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and, consequently, \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,b)} returns \\axiom{[r,ca]} such that \\axiom{extendedResultant(a,b)} returns \\axiom{[r,ca, cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,b)} returns \\axiom{[r,ca]} such that \\axiom{extendedResultant(a,b)} returns \\axiom{[r,ca, cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,b)} returns \\axiom{[r,ca,cb]} such that \\axiom{r} is the resultant of \\axiom{a} and \\axiom{b} and \\axiom{r = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,b)} returns \\axiom{[g,cb]} such that \\axiom{extendedSubResultantGcd(a,b)} returns \\axiom{[g,ca, cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,b)} returns \\axiom{[g,ca]} such that \\axiom{extendedSubResultantGcd(a,b)} returns \\axiom{[g,ca, cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,b)} returns \\axiom{[g,ca, cb]} such that \\axiom{g} is a \\spad{gcd} of \\axiom{a} and \\axiom{b} in \\axiom{R^(-1) \\spad{P}} and \\axiom{g = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,b)} returns \\axiom{resultant(a,b)} if \\axiom{a} and \\axiom{b} has no non-trivial \\spad{gcd} in \\axiom{R^(-1) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,b)} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{b} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,b)} returns \\axiom{q} if \\axiom{lazyPseudoDivide(a,b)} returns \\axiom{[c,g,q,r]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,b)} returns \\axiom{[c,g,q,r]} such that \\axiom{c^n * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,b)} returns \\axiom{[r,c,n]} where \\axiom{n + \\spad{g} = max(0, degree(b) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,b)} returns \\axiom{r} if \\axiom{lazyResidueClass(a,b)} returns \\axiom{[r,c,n]}. This lazy pseudo-remainder is computed by means of the fmecg from NewSparseUnivariatePolynomial operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,b)} returns \\axiom{[r,c,n]} such that \\axiom{r} is reduced w.r.t. \\axiom{b} and \\axiom{b} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{c} is \\axiom{leadingCoefficient(b)} and \\axiom{n} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,b)} returns \\axiom{r} such that \\axiom{r} is reduced w.r.t. \\axiom{b} and \\axiom{b} divides \\axiom{a \\spad{-r}} where \\axiom{b} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(p1,e,r,p2)} returns \\axiom{p1 - \\spad{r} * x**e * \\spad{p2}} where \\axiom{x} is \\axiom{monomial(1,1)}"))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|additiveValuation| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|StepThrough|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|U32VectorPolynomialOperations|) │ │ │ +((|constructor| (NIL "This is a low-level package which implements operations on vectors treated as univariate modular polynomials. Most operations takes modulus as parameter. Modulus is machine sized prime which should be small enough to avoid overflow in intermediate calculations.")) (|resultant| (((|Integer|) (|U32Vector|) (|U32Vector|) (|Integer|)) "\\spad{resultant(v1, \\spad{v2,} \\spad{p)}} computes resultant of \\spad{v1} and \\spad{v2} modulo \\spad{p.}")) (|extendedgcd| (((|List| (|U32Vector|)) (|U32Vector|) (|U32Vector|) (|Integer|)) "extended_gcd(v1, \\spad{v2,} \\spad{p)} gives \\spad{[g,} \\spad{c1,} \\spad{c2]} such that \\spad{g} is \\spad{gcd(v1, \\spad{v2,} p)}, \\spad{g = \\spad{c1*v1} + c2*v2} and degree(c1) < max(degree(v2) - degree(g), 0) and degree(c2) < max(degree(v1) - degree(g), 1)")) (|degree| (((|Integer|) (|U32Vector|)) "\\spad{degree(v)} is degree of \\spad{v} treated as polynomial")) (|lcm| (((|U32Vector|) (|PrimitiveArray| (|U32Vector|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{lcm(a, lo, hi, \\spad{p)}} computes \\spad{lcm} of elements a(lo), a(lo+1), ..., a(hi).")) (|gcd| (((|U32Vector|) (|PrimitiveArray| (|U32Vector|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{gcd(a, lo, hi, \\spad{p)}} computes \\spad{gcd} of elements a(lo), a(lo+1), ..., a(hi).") (((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|)) "\\spad{gcd(v1, \\spad{v2,} \\spad{p)}} computes monic \\spad{gcd} of \\spad{v1} and \\spad{v2} modulo \\spad{p.}")) (|tomodpa| (((|U32Vector|) (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "to_mod_pa(s, \\spad{p)} reduces coefficients of polynomial \\spad{s} modulo prime \\spad{p} and converts the result to vector")) (|vectorcombination| (((|Void|) (|U32Vector|) (|Integer|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "vector_combination(v1, \\spad{c1,} \\spad{v2,} \\spad{c2,} \\spad{n,} delta, \\spad{p)} replaces first \\spad{n} + 1 entires of \\spad{v1} by corresponding entries of \\spad{c1*v1+c2*x^delta*v2} mod \\spad{p.}")) (|remainder!| (((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|)) "\\spad{remainder!(p1,p2,i)} does polynomial remainder")) (|divide!| (((|Void|) (|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|)) "\\spad{divide!(p1,p2,p3,i)} does polynomial division.")) (|differentiate| (((|U32Vector|) (|U32Vector|) (|NonNegativeInteger|) (|Integer|)) "\\spad{differentiate(p,n,i)} does polynomial differentiation.") (((|U32Vector|) (|U32Vector|) (|Integer|)) "\\spad{differentiate(p,i)} does polynomial differentiation.")) (|pow| (((|U32Vector|) (|U32Vector|) (|PositiveInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{pow(u, \\spad{n,} \\spad{d,} \\spad{p)}} returns u^n truncated after degree \\spad{d,} except if n=1, in which case \\spad{u} itself is returned")) (|truncatedmuladd| (((|Void|) (|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|)) "truncated_mul_add(x, \\spad{y,} \\spad{z,} \\spad{d,} \\spad{p)} adds to \\spad{z} the produce x*y truncated after degree \\spad{d}")) (|truncatedmultiplication| (((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|)) "truncated_multiplication(x, \\spad{y,} \\spad{d,} \\spad{p)} computes x*y truncated after degree \\spad{d}")) (|mul| (((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|)) "\\spad{mul(p1,p2,i)} does polynomial multiplication.")) (|mulbyscalar| (((|Void|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|)) "mul_by_scalar(v, deg, \\spad{c,} \\spad{p)} treats \\spad{v} as coefficients of polynomial of degree deg and multiplies in place this polynomial by scalar \\spad{c}")) (|mulbybinomial| (((|Void|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|)) "mul_by_binomial(v, deg, \\spad{pt,} \\spad{p)} treats \\spad{v} as coefficients of polynomial of degree deg and multiplies in place this polynomial by binomial \\spad{(x} + pt). Highest coefficient of product is ignored.") (((|Void|) (|U32Vector|) (|Integer|) (|Integer|)) "mul_by_binomial(v, \\spad{pt,} \\spad{p)} treats \\spad{v} a polynomial and multiplies in place this polynomial by binomial \\spad{(x} + pt). Highest coefficient of product is ignored.")) (|vectoraddmul| (((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "vector_add_mul(v1, \\spad{v2,} \\spad{m,} \\spad{n,} \\spad{c,} \\spad{p)} sets v1(m), ..., v1(n) to corresponding extries in \\spad{v1} + \\spad{c*v2} modulo \\spad{p.}")) (|evalat| (((|Integer|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|)) "eval_at(v, deg, \\spad{pt,} \\spad{p)} treats \\spad{v} as coefficients of \\indented{1}{polynomial of degree deg and evaluates the} \\indented{1}{polynomial at point \\spad{pt} modulo \\spad{p}} \\blankline \\spad{X} a:=new(3,1)$U32VEC \\spad{X} \\spad{a.1:=2} \\spad{X} eval_at(a,2,3,1024) \\spad{X} eval_at(a,2,2,8) \\spad{X} eval_at(a,2,3,10)")) (|copyslice| (((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|)) "copy_first(v1, \\spad{v2,} \\spad{m,} \\spad{n)} copies the slice of \\spad{v2} starting at \\spad{m} elements and having \\spad{n} elements into corresponding positions in \\spad{v1.}")) (|copyfirst| (((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|)) "copy_first(v1, \\spad{v2,} \\spad{n)} copies first \\spad{n} elements of \\spad{v2} into \\spad{n} first positions in \\spad{v1.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FortranPackage|) │ │ │ -((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) │ │ │ +(|e04jafAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF, a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Fraction| S) │ │ │ -((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S.} If \\spad{S} is also a GcdDomain, then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) │ │ │ -((|canonical| AND (|has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (ATTRIBUTE |canonical|))) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|RealConstant|))) (|HasCategory| |#1| (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|StepThrough|))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Eltable|) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (AND (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|OpenMath|)))) (AND (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (|HasAttribute| |#1| (QUOTE |canonical|)) (|HasCategory| |#1| (QUOTE (|GcdDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (AND (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|OpenMath|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (AND (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|OpenMath|))))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (AND (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|OpenMath|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (OR (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|OpenMath|))))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (AND (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|OpenMath|))))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|FortranTemplate|) │ │ │ -((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream, followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp,} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp,} writing the result out to \\spad{fn.}"))) │ │ │ +(|NormalizedTriangularSetCategory| R E V P) │ │ │ +((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial select(ts,v) is normalized w.r.t. every polynomial in collectUnder(ts,v). A polynomial \\spad{p} is said normalized w.r.t. a non-constant polynomial \\spad{q} if \\spad{p} is constant or degree(p,mdeg(q)) = 0 and init(p) is normalized w.r.t. \\spad{q.} One of the important features of normalized triangular sets is that they are regular sets."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ +(|MultivariateSquareFree| E OV R P) │ │ │ +((|constructor| (NIL "This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + \\spad{Bg} = \\spad{h}} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p.}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p.}"))) │ │ │ NIL │ │ │ -(|GeneralizedMultivariateFactorize| OV E S R P) │ │ │ -((|constructor| (NIL "This is the top level package for doing multivariate factorization over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) │ │ │ NIL │ │ │ +(|AbelianGroup|) │ │ │ +((|constructor| (NIL "The class of abelian groups, additive monoids where each element has an additive inverse. \\blankline Axioms\\br \\tab{5}\\spad{-(-x) = x}\\br \\tab{5}\\spad{x+(-x) = 0}")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n.}")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x.}"))) │ │ │ NIL │ │ │ -(|GenExEuclid| R BP) │ │ │ -((|constructor| (NIL "\\indented{1}{Author : P.Gianni.} Date Created: January 1990 Description:")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp,} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h.}")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for lpol. Here the right side is \\spad{x**k}, for \\spad{k} less or equal to maxdeg. The operation returns \"failed\" when the elements are not coprime modulo prime.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p,} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R.} Note that this function is exported only because it's conditional."))) │ │ │ NIL │ │ │ +(|IntegerSolveLinearPolynomialEquation|) │ │ │ +((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], \\spad{g)}} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of ai's exists."))) │ │ │ NIL │ │ │ -(|GeneralPolynomialGcdPackage| E OV R P) │ │ │ -((|constructor| (NIL "Description:")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) │ │ │ NIL │ │ │ +(|SegmentFunctions2| R S) │ │ │ +((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s,} applying \\spad{f} to each value. For example, if \\spad{s = l..h by \\spad{k},} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed, where \\spad{lN \\spad{<=} \\spad{h} < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) │ │ │ NIL │ │ │ -(|GaloisGroupFactorizationUtilities| R UP F) │ │ │ -((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p.}")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p.}")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f.}")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f.}")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f.}")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p.} \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p.}")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p.}") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p.}")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p.}"))) │ │ │ +((|HasCategory| |#1| (QUOTE (|OrderedRing|)))) │ │ │ +(|IntegerBits|) │ │ │ +((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(n) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(n)")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(n)"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|GaloisGroupPolynomialUtilities| R UP) │ │ │ -((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored}")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f.}")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f.} Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f.}")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p.}")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p.}")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p.}")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (leading coefficient equal to 1)."))) │ │ │ +(|UnivariateTaylorSeries| |Coef| |var| |cen|) │ │ │ +((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring, the power series variable, and the center of the power series expansion. For example, \\spadtype{UnivariateTaylorSeries}(Integer,x,3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)}, and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = \\spad{x}.} Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + \\spad{d))} + \\indented{1}{f(x^(a + 2 \\spad{d))} + \\spad{...} \\spad{}.} \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1, then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1, then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1, then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|)) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|)) (|devaluate| |#1|))))) (|HasCategory| (|NonNegativeInteger|) (QUOTE (|SemiGroup|))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ +(|LinearSystemFromPowerSeriesPackage| K PCS) │ │ │ +((|constructor| (NIL "Part of the PAFF package")) (|finiteSeries2LinSys| (((|Matrix| |#1|) (|List| |#2|) (|Integer|)) "\\spad{finiteSeries2LinSys(ls,n)} returns a matrix which right kernel is the solution of the linear combinations of the series in \\spad{ls} which has order greater or equal to \\spad{n.} NOTE: All the series in \\spad{ls} must be finite and must have order at least 0: so one must first call on each of them the function filterUpTo(s,n) and apply an appropriate shift (mult by a power of \\spad{t).}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|GroebnerPackage| |Dom| |Expon| |VarSet| |Dpol|) │ │ │ -((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain, Dom, is not a field, the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients, but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each s-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial}, \\spadtype{HomogeneousDistributedMultivariatePolynomial}, \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the \\indented{1}{precomputed groebner basis \\spad{gb} giving a canonical representative} \\indented{1}{of the residue class.} \\blankline \\spad{X} f:HDMP([x,y],FRAC INT) \\spad{:=} \\spad{x^3} + 3*y^2 \\spad{X} g:HDMP([x,y],FRAC INT) \\spad{:=} \\spad{x^2} + \\spad{y} \\spad{X} h:HDMP([x,y],FRAC INT) \\spad{:=} \\spad{x} + 2*x*j \\spad{X} normalForm(f,[g,h]) \\spad{X} Lex \\spad{:=} DMP([x,y],FRAC INT) \\spad{X} normalForm(f::Lex,[g::Lex,h::Lex])")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis \\indented{1}{for a polynomial ideal generated by the list of polynomials lp,} \\indented{1}{displaying both a summary of the critical pairs considered (\"info\")} \\indented{1}{and the result of reducing each critical pair (\"redcrit\").} \\indented{1}{If the second or third arguments have any other string value,} \\indented{1}{the indicated information is suppressed.} \\blankline \\spad{X} s1:DMP([w,p,z,t,s,b],FRAC(INT)):= 45*p + 35*s - 165*b - 36 \\spad{X} s2:DMP([w,p,z,t,s,b],FRAC(INT)):= 35*p + 40*z + 25*t - 27*s \\spad{X} s3:DMP([w,p,z,t,s,b],FRAC(INT)):= 15*w + 25*p*s + 30*z - 18*t - 165*b**2 \\spad{X} s4:DMP([w,p,z,t,s,b],FRAC(INT)):= -9*w + 15*p*t + 20*z*s \\spad{X} s5:DMP([w,p,z,t,s,b],FRAC(INT)):= \\spad{w*p} + 2*z*t - 11*b**3 \\spad{X} s6:DMP([w,p,z,t,s,b],FRAC(INT)):= 99*w - 11*b*s + 3*b**2 \\spad{X} s7:DMP([w,p,z,t,s,b],FRAC(INT)):= \\spad{b**2} + 33/50*b + 2673/10000 \\spad{X} sn7:=[s1,s2,s3,s4,s5,s6,s7] \\spad{X} groebner(sn7,\"info\",\"redcrit\")") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis \\indented{1}{for a polynomial ideal} \\indented{1}{generated by the list of polynomials lp.} \\indented{1}{Argument infoflag is used to get information on the computation.} \\indented{1}{If infoflag is \"info\", then summary information} \\indented{1}{is displayed for each s-polynomial generated.} \\indented{1}{If infoflag is \"redcrit\", the reduced critical pairs are displayed.} \\indented{1}{If infoflag is any other string,} \\indented{1}{no information is printed during computation.} \\blankline \\spad{X} s1:DMP([w,p,z,t,s,b],FRAC(INT)):= 45*p + 35*s - 165*b - 36 \\spad{X} s2:DMP([w,p,z,t,s,b],FRAC(INT)):= 35*p + 40*z + 25*t - 27*s \\spad{X} s3:DMP([w,p,z,t,s,b],FRAC(INT)):= 15*w+25*p*s+30*z - 18*t - 165*b**2 \\spad{X} s4:DMP([w,p,z,t,s,b],FRAC(INT)):= -9*w + 15*p*t + 20*z*s \\spad{X} s5:DMP([w,p,z,t,s,b],FRAC(INT)):= \\spad{w*p} + 2*z*t - 11*b**3 \\spad{X} s6:DMP([w,p,z,t,s,b],FRAC(INT)):= 99*w - 11*b*s + 3*b**2 \\spad{X} s7:DMP([w,p,z,t,s,b],FRAC(INT)):= \\spad{b**2} + 33/50*b + 2673/10000 \\spad{X} sn7:=[s1,s2,s3,s4,s5,s6,s7] \\spad{X} groebner(sn7,\"info\") \\spad{X} groebner(sn7,\"redcrit\")") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal \\indented{1}{generated by the list of polynomials lp.} \\blankline \\spad{X} s1:DMP([w,p,z,t,s,b],FRAC(INT)):= 45*p + 35*s - 165*b - 36 \\spad{X} s2:DMP([w,p,z,t,s,b],FRAC(INT)):= 35*p + 40*z + 25*t - 27*s \\spad{X} s3:DMP([w,p,z,t,s,b],FRAC(INT)):= 15*w+25*p*s+30*z - 18*t - 165*b**2 \\spad{X} s4:DMP([w,p,z,t,s,b],FRAC(INT)):= -9*w + 15*p*t + 20*z*s \\spad{X} s5:DMP([w,p,z,t,s,b],FRAC(INT)):= \\spad{w*p} + 2*z*t - 11*b**3 \\spad{X} s6:DMP([w,p,z,t,s,b],FRAC(INT)):= 99*w - 11*b*s + 3*b**2 \\spad{X} s7:DMP([w,p,z,t,s,b],FRAC(INT)):= \\spad{b**2} + 33/50*b + 2673/10000 \\spad{X} sn7:=[s1,s2,s3,s4,s5,s6,s7] \\spad{X} groebner(sn7)"))) │ │ │ +(|ListAggregate&| A S) │ │ │ +((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x.}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ -(|EuclideanGroebnerBasisPackage| |Dom| |Expon| |VarSet| |Dpol|) │ │ │ -((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given, a computational summary is given for each s-polynomial. If \"redcrit\" is given, the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial}, \\spadtype{HomogeneousDistributedMultivariatePolynomial}, \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis \\indented{1}{for a polynomial ideal generated by the list of polynomials lp.} \\indented{1}{If the second argument is \"info\",} \\indented{1}{a summary is given of the critical pairs.} \\indented{1}{If the third argument is \"redcrit\", critical pairs are printed.} \\blankline \\spad{X} a1:DMP([y,x],INT):= \\spad{(9*x**2} + 5*x - 3)+ \\spad{y*(3*x**2} + 2*x + 1) \\spad{X} a2:DMP([y,x],INT):= \\spad{(6*x**3} - 2*x**2 - 3*x \\spad{+3)} + \\spad{y*(2*x**3} - \\spad{x} - 1) \\spad{X} a3:DMP([y,x],INT):= \\spad{(3*x**3} + 2*x**2) + \\spad{y*(x**3} + x**2) \\spad{X} an:=[a1,a2,a3] \\spad{X} euclideanGroebner(an,\"info\",\"redcrit\")") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis \\indented{1}{for a polynomial ideal over a euclidean domain} \\indented{1}{generated by the list of polynomials lp.} \\indented{1}{During computation, additional information is printed out} \\indented{1}{if infoflag is given as} \\indented{1}{either \"info\" (for summary information) or} \\indented{1}{\"redcrit\" (for reduced critical pairs)} \\blankline \\spad{X} a1:DMP([y,x],INT):= \\spad{(9*x**2} + 5*x - 3)+ \\spad{y*(3*x**2} + 2*x + 1) \\spad{X} a2:DMP([y,x],INT):= \\spad{(6*x**3} - 2*x**2 - 3*x \\spad{+3)} + \\spad{y*(2*x**3} - \\spad{x} - 1) \\spad{X} a3:DMP([y,x],INT):= \\spad{(3*x**3} + 2*x**2) + \\spad{y*(x**3} + x**2) \\spad{X} an:=[a1,a2,a3] \\spad{X} euclideanGroebner(an,\"redcrit\") \\spad{X} euclideanGroebner(an,\"info\")") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial \\indented{1}{ideal over a euclidean domain generated by the list of polys lp.} \\blankline \\spad{X} a1:DMP([y,x],INT):= \\spad{(9*x**2} + 5*x - 3)+ \\spad{y*(3*x**2} + 2*x + 1) \\spad{X} a2:DMP([y,x],INT):= \\spad{(6*x**3} - 2*x**2 - 3*x \\spad{+3)} + \\spad{y*(2*x**3} - \\spad{x} - 1) \\spad{X} a3:DMP([y,x],INT):= \\spad{(3*x**3} + 2*x**2) + \\spad{y*(x**3} + x**2) \\spad{X} an:=[a1,a2,a3] \\spad{X} euclideanGroebner(an)")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) │ │ │ NIL │ │ │ +(|IntegralBasisTools| R UP F) │ │ │ +((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with R-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2.}")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns e, where \\spad{e} is the smallest integer such that \\spad{p **e \\spad{>=} \\spad{n}}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful, 1 is returned and if not, \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) │ │ │ NIL │ │ │ -(|GroebnerFactorizationPackage| |Dom| |Expon| |VarSet| |Dpol|) │ │ │ -((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of Axiom to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact, that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases, whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial}, \\spadtype{HomogeneousDistributedMultivariatePolynomial}, \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by listOfPolys. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next S-polynomial) is factorized. For each irreducible factors of \\spad{p,} a new createGroebnerBasis is started doing the usual updates with the factor in place of \\spad{p.} If info is true, information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns \\indented{1}{a list of groebner bases. The union of their solutions} \\indented{1}{is the solution of the system of equations given by listOfPolys.} \\indented{1}{At each stage the polynomial \\spad{p} under consideration (either from} \\indented{1}{the given basis or obtained from a reduction of the next S-polynomial)} \\indented{1}{is factorized. For each irreducible factors of \\spad{p,} a} \\indented{1}{new createGroebnerBasis is started} \\indented{1}{doing the usual updates with the factor} \\indented{1}{in place of \\spad{p.}} \\blankline \\spad{X} mfzn : SQMATRIX(6,DMP([x,y,z],Fraction INT)) \\spad{:=} \\spad{X} [ [0,1,1,1,1,1], [1,0,1,8/3,x,8/3], [1,1,0,1,8/3,y], \\spad{X} [1,8/3,1,0,1,8/3], [1,x,8/3,1,0,1], [1,8/3,y,8/3,1,0] ] \\spad{X} eq \\spad{:=} determinant mfzn \\spad{X} groebnerFactorize \\spad{X} [eq,eval(eq, [x,y,z],[y,z,x]), eval(eq,[x,y,z],[z,x,y])]") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by \\spad{listOfPolys} under the restriction that the polynomials of \\spad{nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next S-polynomial) is factorized. For each irreducible factors of \\spad{p} a new createGroebnerBasis is started doing the usual updates with the factor in place of \\spad{p.} If argument info is true, information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by \\spad{listOfPolys} under the restriction that the polynomials of nonZeroRestrictions don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next S-polynomial) is factorized. For each irreducible factors of \\spad{p,} a new createGroebnerBasis is started doing the usual updates with the factor in place of \\spad{p.}")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the basis. If argument \\spad{info} is true, information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the basis."))) │ │ │ NIL │ │ │ +(|IntervalCategory| R) │ │ │ +((|constructor| (NIL "This category implements of interval arithmetic and transcendental functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{f} is contained within the interval \\axiom{i}, \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{true} if every element of \\spad{u} is negative, \\axiom{false} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{true} if every element of \\spad{u} is positive, \\axiom{false} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(u) - inf(u)}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{u}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{u}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[inf,sup]}, without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f.}") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f.}") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval, either \\axiom{[inf,sup]} if \\axiom{inf \\spad{<=} sup} or \\axiom{[sup,in]} otherwise."))) │ │ │ +((|approximate| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|GroebnerInternalPackage| |Dom| |Expon| |VarSet| |Dpol|) │ │ │ -((|constructor| (NIL "This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) │ │ │ +(|U32Vector|) │ │ │ +((|constructor| (NIL "\\indented{2}{fill!(x, \\spad{s)} modifies a vector \\spad{x} so every element has value \\spad{s}} \\blankline \\spad{X} t1:=new(10,7)$U32Vector \\spad{X} fill!(t1,9)"))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| (|Integer|) (QUOTE (|SetCategory|))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))))) │ │ │ +(|OrderedIntegralDomain|) │ │ │ +((|constructor| (NIL "The category of ordered commutative integral domains, where ordering and the arithmetic operations are compatible"))) │ │ │ +((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|BalancedPAdicRational| |p|) │ │ │ +((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(i = k.., a[i] * p^i), where the a[i] lie in \\spad{-(p} - 1)/2,...,(p - 1)/2."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|RealConstant|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|StepThrough|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (LIST (QUOTE |BalancedPAdicInteger|) (|devaluate| |#1|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |Evalable|) (LIST (QUOTE |BalancedPAdicInteger|) (|devaluate| |#1|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (LIST (QUOTE |Eltable|) (LIST (QUOTE |BalancedPAdicInteger|) (|devaluate| |#1|)) (LIST (QUOTE |BalancedPAdicInteger|) (|devaluate| |#1|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|BalancedPAdicInteger| |#1|) (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|BagAggregate&| A S) │ │ │ +((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects, and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks, queues, and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag u.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag u.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements x,y,...,z.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) │ │ │ NIL │ │ │ -(|GeneralModulePolynomial| |vl| R IS E |ff| P) │ │ │ -((|constructor| (NIL "This package is undocumented")) (* (($ |#6| $) "\\spad{p*x} is not documented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} is not documented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} is not documented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} is not documented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} is not documented")) (|reductum| (($ $) "\\spad{reductum(x)} is not documented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} is not documented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} is not documented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} is not documented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} is not documented"))) │ │ │ -((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ -(|GeneralHenselPackage| RP TP) │ │ │ -((|constructor| (NIL "General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts lfact, the factorization mod \\spad{prime} of pol, to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts lfacts, that are the factors of \\spad{pol} mod prime, to factors of \\spad{pol} mod prime**k > bound. No recombining is done ."))) │ │ │ +(|Asp8| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs, needed for NAG routine d02bbf. This ASP prints intermediate values of the computed solution of an ODE and might look like: \\blankline \\tab{5}SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD)\\br \\tab{5}DOUBLE PRECISION Y(N),RESULT(M,N),XSOL\\br \\tab{5}INTEGER M,N,COUNT\\br \\tab{5}LOGICAL FORWRD\\br \\tab{5}DOUBLE PRECISION X02ALF,POINTS(8)\\br \\tab{5}EXTERNAL X02ALF\\br \\tab{5}INTEGER I\\br \\tab{5}POINTS(1)=1.0D0\\br \\tab{5}POINTS(2)=2.0D0\\br \\tab{5}POINTS(3)=3.0D0\\br \\tab{5}POINTS(4)=4.0D0\\br \\tab{5}POINTS(5)=5.0D0\\br \\tab{5}POINTS(6)=6.0D0\\br \\tab{5}POINTS(7)=7.0D0\\br \\tab{5}POINTS(8)=8.0D0\\br \\tab{5}COUNT=COUNT+1\\br \\tab{5}DO 25001 I=1,N\\br \\tab{7} RESULT(COUNT,I)=Y(I)\\br 25001 CONTINUE\\br \\tab{5}IF(COUNT.EQ.M)THEN\\br \\tab{7}IF(FORWRD)THEN\\br \\tab{9}XSOL=X02ALF()\\br \\tab{7}ELSE\\br \\tab{9}XSOL=-X02ALF()\\br \\tab{7}ENDIF\\br \\tab{5}ELSE\\br \\tab{7} XSOL=POINTS(COUNT)\\br \\tab{5}ENDIF\\br \\tab{5}END"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Graphviz|) │ │ │ -((|constructor| (NIL "Low level tools for creating and viewing graphs using graphviz")) (|dotview| (((|Void|) (|String|) (|String|)) "\\spad{dotview(str1,str2)} runs \"viewer filename\". \\indented{1}{A file extension of \".eps\" is added.} \\blankline \\spad{X} dotview(\"evince\",\"NeuralNet\") \\spad{--} on Linux \\spad{X} dotview(\"gv\",\"NeuralNet\") \\spad{--} on MAC \\spad{X} dotview(\"firefox\",\"NeuralNet\") \\spad{--} most places")) (|dot2eps| (((|Void|) (|String|)) "\\spad{dot2eps(f)} runs dot \\spad{-T} eps filename.dot >filename.eps \\blankline \\spad{X} dot2eps \"NeuralNet\"")) (|writeDotGraph| (((|Void|) (|List| (|String|)) (|List| (|String|)) (|String|)) "\\spad{writeDotGraph(h,g,f)} creates a graphviz dot file and \\indented{1}{writes it out} \\blankline \\spad{X} header:=standardDotHeader() \\spad{X} graph:=sampleDotGraph() \\spad{X} writeDotGraph(header,graph,\"NeuralNet\")")) (|sampleDotGraph| (((|List| (|String|))) "\\spad{sampleDotGraph()} creates a sample graph file \\blankline \\spad{X} graph:=sampleDotGraph()")) (|standardDotHeader| (((|List| (|String|))) "\\spad{standardDotHeader()} create the standard dot file header \\blankline \\spad{X} header:=standardDotHeader()"))) │ │ │ +(|StringAggregate|) │ │ │ +((|constructor| (NIL "A string aggregate is a category for strings, that is, one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t.} It is provided to allow juxtaposition of strings to work as concatenation. For example, \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example, \\axiom{rightTrim(\"(abc)\", charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example, \\axiom{rightTrim(\" abc \\spad{\",} char \" \\spad{\")}} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example, \\axiom{leftTrim(\"(abc)\", charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example, \\axiom{leftTrim(\" abc \\spad{\",} char \" \\spad{\")}} returns \\axiom{\"abc \\spad{\"}.}")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example, \\axiom{trim(\"(abc)\", charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example, \\axiom{trim(\" abc \\spad{\",} char \" \\spad{\")}} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc.}") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c.}")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c.}")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{j \\spad{>=} i} in \\spad{t} of the first character belonging to \\spad{cc.}") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t,} where \\axiom{j \\spad{>=} i} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{s(i..j)} of \\spad{s} by string \\spad{t.}")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c.} Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{p} matches subject \\axiom{s} where \\axiom{wc} is a wild card character. If no match occurs, the index \\axiom{0} is returned; otheriwse, the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example, \\axiom{match(\"*to*\",\"yorktown\",\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index i. Note that \\axiom{substring?(s,t,0) = prefix?(s,t)}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t.} Note that \\axiom{suffix?(s,t) \\spad{==} \\indented{1}{reduce(and,[s.i = t.(n - \\spad{m} + i) for \\spad{i} in 0..maxIndex s])}} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t.} Note that \\axiom{prefix?(s,t) \\spad{==} \\indented{2}{reduce(and,[s.i = t.i for \\spad{i} in 0..maxIndex s])}.}")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ +(|EuclideanDomain&| S) │ │ │ +((|constructor| (NIL "A constructive euclidean domain, one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes\\br \\tab{5}multiplicativeValuation\\tab{5}Size(a*b)=Size(a)*Size(b)\\br \\tab{5}additiveValuation\\tab{11}Size(a*b)=Size(a)+Size(b)")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ \\spad{z} / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists, \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y.}") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y.} The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem \\spad{y}} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo \\spad{y}} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder}, where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y.}")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x.} Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) │ │ │ NIL │ │ │ -(|FiniteRankNonAssociativeAlgebra| R) │ │ │ -((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit, similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left, respectively right, minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique), or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique), or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique), or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra, or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra, or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note that the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note that the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities, that is, finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0, for all \\spad{a},b,c in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element, which is a right inverse of \\spad{a}, or \\spad{\"failed\"} if there is no unit element, if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element, which is a left inverse of \\spad{a}, or \\spad{\"failed\"} if there is no unit element, if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element, which is both a left and a right inverse of \\spad{a}, or \\spad{\"failed\"} if there is no unit element, if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},b,c in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)}, where \\spad{a*b \\spad{:=} a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative, characteristic is not 2, and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},b,c in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)}, where \\spad{a*b \\spad{:=} (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra, that is, satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra, that is, satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},b,c in the algebra. For example, this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a}, \\spad{b} in the algebra. Note that we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a}, \\spad{b} in the algebra. Note that we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a}, \\spad{b} in the algebra. Note that we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a}, \\spad{b} in the algebra. Note that we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative, that is, \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},b,c in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note that this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the right trace of the product \\spad{vi*vj}. Note that this is the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the left trace of the product \\spad{vi*vj}. Note that this is the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + \\spad{...} + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},...,\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},...,\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for \\spad{k} in 1..m]} defined by \\spad{vi * \\spad{vj} = \\spad{gammaij1} * \\spad{v1} + \\spad{...} + gammaijm * vm}, where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},...,\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) │ │ │ -((|unitsKnown| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ -(|GosperSummationMethod| E V R P Q) │ │ │ -((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, \\spad{n,} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n}, \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)}, where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note that \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) │ │ │ +(|LieExponentials| |VarSet| R |Order|) │ │ │ +((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind.")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(g,h)} returns the list of equations \\axiom{g_i = h_i}, where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{g} (resp. \\axiom{h}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(g)} returns the exponential coordinates of \\axiom{g}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(g)} returns the list of variables of \\axiom{g}.")) (|mirror| (($ $) "\\axiom{mirror(g)} is the mirror of the internal representation of \\axiom{g}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(g)} returns the internal representation of \\axiom{g}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(g)} returns the internal representation of \\axiom{g}.")) (|listOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{listOfTerms(p)} returns the internal representation of \\axiom{p}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(p)} returns the logarithm of \\axiom{p}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(p)} returns the exponential of \\axiom{p}."))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|SquareFreeRegularTriangularSetCategory| R E V P) │ │ │ +((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and differentiate(p,mvar(p)) w.r.t. collectUnder(ts,mvar(p)) has degree zero w.r.t. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|GroebnerSolve| |lv| F R) │ │ │ -((|constructor| (NIL "Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position, for system \\spad{lp} in variables \\spad{lv.}")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) │ │ │ +(|PartialDifferentialRing| S) │ │ │ +((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S.} \\blankline Axioms\\br \\tab{5}\\spad{differentiate(x+y,e)=differentiate(x,e)+differentiate(y,e)}\\br \\tab{5}\\spad{differentiate(x*y,e)=x*differentiate(y,e)+differentiate(x,e)*y}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives, that is, \\spad{D(...D(x, \\spad{s1,} n1)..., \\spad{sn,} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x, \\spad{s,} \\spad{n)}} computes multiple partial derivatives, that is, \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s.}") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives, that is, \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v.}")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives, that is, \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x, \\spad{s,} \\spad{n)}} computes multiple partial derivatives, that is, \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s.}") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives, that is, \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v.}"))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|Tableau| S) │ │ │ +((|constructor| (NIL "The tableau domain is for printing Young tableaux, and coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists \\spad{t}} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) │ │ │ NIL │ │ │ -(|GraphImage|) │ │ │ -((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points, \\spad{llp}, and returns the points with their hue and shade components set according to the list of palette colors, \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph, \\spad{gi}, of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(gi,pt) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp}, and whose point colors, line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault}, \\spadfun{lineColorDefault}, and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component, \\spad{pt} whose point color is set to be the palette color \\spad{pal}, and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph, \\spad{gi}, which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component, \\spad{pt} whose point color is set to the palette color \\spad{pal1}, line color is set to the palette color \\spad{pal2}, and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component, \\spad{pt} whose point color, line color and point size are determined by the default functions \\spadfun{pointColorDefault}, \\spadfun{lineColorDefault}, and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph, \\spad{gi} of the domain \\spadtype{GraphImage}, to the values given. The point list for \\spad{gi} is set to the list \\spad{lp}, the color of the points in \\spad{lp} is set to the palette color \\spad{pal1}, the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2}, and the size of the points in \\spad{lp} is given by the integer \\spad{p.}")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph, \\spad{gi} of the domain \\spadtype{GraphImage}, to be that of the list of unit increments, \\spad{lu}, and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph, \\spad{gi}, of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph, \\spad{gi} of the domain \\spadtype{GraphImage}, to be that of the list of range segments, \\spad{lr}, and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph, \\spad{gi}, of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph, \\spad{gi}, of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph, \\spad{gi}, of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points, \\spad{llp}, whose point colors are indicated by the list of palette colors, \\spad{lpal1}, and whose lines are colored according to the list of palette colors, \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points, and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points, \\spad{llp}, whose point colors are indicated by the list of palette colors, \\spad{lpal1}, and whose lines are colored according to the list of palette colors, \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points, \\spad{llp}, with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph, \\spad{gi} of the domain \\spadtype{GraphImage}, and sends it's data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph, and it's elements must have been created using the \\spadfun{point} or \\spadfun{component} functions, not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) │ │ │ NIL │ │ │ +(|PolynomialSetCategory| R E |VarSet| P) │ │ │ +((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore, for \\spad{R} being an integral domain, a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) \\spad{P},} or the set of its zeros (described for instance by the radical of the previous ideal, or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set, that is, two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases w.r.t. \\axiom{cs} and \\axiom{(lp,cs)} and \\axiom{(lr,cs)} generate the same ideal in \\axiom{(R)^(-1) \\spad{P}.}")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases w.r.t. \\axiom{cs} and \\axiom{(lp,cs)} and \\axiom{(lr,cs)} generate the same ideal in \\axiom{(R)^(-1) \\spad{P}.}")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,ps)} returns \\axiom{[c,b,r]} such that \\axiom{b} is fully reduced in the sense of Groebner bases w.r.t. \\axiom{ps}, \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore, if \\axiom{R} is a gcd-domain, \\axiom{b} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,ps)} returns \\axiom{[b,r]} such that the leading monomial of \\axiom{b} is reduced in the sense of Groebner bases w.r.t. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains \\indented{1}{some non null element lying in the base ring \\axiom{R}.}")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(ps1,ps2)} returns \\spad{true} iff it can proved that \\axiom{ps1} and \\axiom{ps2} generate the same ideal in \\axiom{(R)^(-1) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(ps1,ps2)} returns \\spad{true} iff it can proved that all polynomials in \\axiom{ps1} lie in the ideal generated by \\axiom{ps2} in \\axiom{\\axiom{(R)^(-1) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{p,q}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(v,ps)} returns \\axiom{us,vs,ws} such that \\axiom{us} is \\axiom{collectUnder(ps,v)}, \\axiom{vs} is \\axiom{collect(ps,v)} and \\axiom{ws} is \\axiom{collectUpper(ps,v)}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,v)} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{v}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,v)} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{v} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,v)} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{v}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(v,ps)} returns \\spad{true} iff \\axiom{v} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable, if any, else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists, otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists, otherwise \\axiom{\"failed\"} is returned."))) │ │ │ +((|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|HomogeneousDistributedMultivariatePolynomial| |vl| R) │ │ │ -((|constructor| (NIL "This type supports distributed multivariate polynomials whose variables are from a user specified list of symbols. The coefficient ring may be non commutative, but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) │ │ │ -(((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#2| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|))) (OR (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|HomogeneousDirectProduct| |dim| S) │ │ │ -((|constructor| (NIL "This type represents the finite direct or cartesian product of an underlying ordered component type. The vectors are ordered first by the sum of their components, and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) │ │ │ -((|rightUnitary| |has| |#2| (|Ring|)) (|leftUnitary| |has| |#2| (|Ring|)) (|unitsKnown| |has| |#2| (ATTRIBUTE |unitsKnown|)) ((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|))) (OR (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (|HasCategory| |#2| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|)))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasAttribute| |#2| (QUOTE |unitsKnown|)) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))))) │ │ │ -(|HexadecimalExpansion|) │ │ │ -((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|toint| (((|Integer|) (|String|)) "\\spad{toint(s)} converts a hex string to integer \\blankline \\spad{X} toint(\"FE\") \\spad{X} toint(\"BFD25E8C\")")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Integer|) (QUOTE (|RealConstant|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|StepThrough|))) (|HasCategory| (|Integer|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| (|Integer|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|Integer|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |Eltable|) (QUOTE (|Integer|)) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|Integer|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Integer|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|HeuGcd| BP) │ │ │ -((|constructor| (NIL "This package provides the functions for the heuristic integer gcd. Geddes's algorithm,for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = \\spad{gcd} of the polynomials fi. \\blankline \\spad{X} gcd([671*671*x^2-1,671*671*x^2+2*671*x+1]) \\spad{X} gcd([7*x^2+1,(7*x^2+1)^2])"))) │ │ │ +(|StreamTaylorSeriesOperations| A) │ │ │ +((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic, where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r.}")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y'=sum(i=0 to \\spad{infinity,j=0} to infinity,b*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)}, and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + \\spad{d))} + f(x**(a + 2 \\spad{d))} + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1, then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If f(x) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b = sum(i+j=k,a)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b.}")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r.}")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 \\spad{a2,3} a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [r,r+1,r+2,...], where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient coef.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a}, or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / \\spad{b}} returns the power series quotient of \\spad{a} by \\spad{b.} An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b,} if the quotient exists, and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * \\spad{r}} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * \\spad{r} = \\spad{[a0} * \\spad{r,a1} * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = \\spad{[r} * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * \\spad{b}} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + \\spad{j} = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = \\spad{[-} a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - \\spad{b}} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = \\spad{[a0} - \\spad{b0,a1} - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + \\spad{b}} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = \\spad{[a0} + \\spad{b0,a1} + b1,..]}"))) │ │ │ NIL │ │ │ +((|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) │ │ │ +(|DirectProductCategory| |dim| R) │ │ │ +((|constructor| (NIL "This category represents a finite cartesian product of a given type. Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * \\spad{r}} multiplies each component of the vector \\spad{y} by the element \\spad{r.}") (($ |#2| $) "\\spad{r * \\spad{y}} multiplies the element \\spad{r} times each component of the vector \\spad{y.}")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y.}")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) │ │ │ +((|rightUnitary| |has| |#2| (|Ring|)) (|leftUnitary| |has| |#2| (|Ring|)) (|unitsKnown| |has| |#2| (ATTRIBUTE |unitsKnown|)) ((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|IntegralBasisPolynomialTools| K R UP L) │ │ │ -((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for mapping functions on the coefficients of univariate and bivariate polynomials.")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible, and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}, if possible, and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) │ │ │ +(|Fraction| S) │ │ │ +((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S.} If \\spad{S} is also a GcdDomain, then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) │ │ │ +((|canonical| AND (|has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (ATTRIBUTE |canonical|))) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|RealConstant|))) (|HasCategory| |#1| (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|StepThrough|))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Eltable|) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (AND (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|OpenMath|)))) (AND (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (|HasAttribute| |#1| (QUOTE |canonical|)) (|HasCategory| |#1| (QUOTE (|GcdDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (AND (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|OpenMath|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (AND (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|OpenMath|))))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (AND (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|OpenMath|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (OR (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|OpenMath|))))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (AND (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|OpenMath|))))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|SemiGroup&| S) │ │ │ +((|constructor| (NIL "the class of all multiplicative semigroups, that is, a set with an associative operation \\spadop{*}. \\blankline Axioms\\br \\tab{5}\\spad{associative(\"*\":(\\%,\\%)->\\%)}\\tab{5}\\spad{(x*y)*z = x*(y*z)} \\blankline Conditional attributes\\br \\tab{5}\\spad{commutative(\"*\":(\\%,\\%)->\\%)}\\tab{5}\\spad{x*y = y*x}")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times, exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times, exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InnerFiniteField| |p| |n|) │ │ │ -((|constructor| (NIL "InnerFiniteField(p,n) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime, see \\spadtype{FiniteField}."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| (|InnerPrimeField| |#1|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|InnerPrimeField| |#1|) (QUOTE (|Finite|))) (|HasCategory| (|InnerPrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| (|InnerPrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|InnerPrimeField| |#1|) (QUOTE (|Finite|))))) │ │ │ -(|HTMLFormat|) │ │ │ -((|constructor| (NIL "HtmlFormat provides a coercion from OutputForm to html.")) (|display| (((|Void|) (|String|)) "\\spad{display(o)} prints the string returned by coerce. \\blankline \\spad{X} display(coerce(sqrt(3+x)::OutputForm)$HTMLFORM)$HTMLFORM")) (|exprex| (((|String|) (|OutputForm|)) "\\spad{exprex(o)} coverts \\spadtype{OutputForm} to \\spadtype{String} \\blankline \\spad{X} exprex(sqrt(3+x)::OutputForm)$HTMLFORM")) (|coerceL| (((|String|) (|OutputForm|)) "\\spad{coerceL(o)} changes \\spad{o} in the standard output format to html \\indented{1}{format and displays result as one long string.} \\blankline \\spad{X} coerceL(sqrt(3+x)::OutputForm)$HTMLFORM")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to html \\indented{1}{format and displays formatted result.} \\blankline \\spad{X} coerceS(sqrt(3+x)::OutputForm)$HTMLFORM")) (|coerce| (((|String|) (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to html format. \\blankline \\spad{X} coerce(sqrt(3+x)::OutputForm)$HTMLFORM"))) │ │ │ +(|CharacteristicNonZero|) │ │ │ +((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|AnnaNumericalOptimizationPackage|) │ │ │ +((|constructor| (NIL "\\axiomType{AnnaNumericalOptimizationPackage} is a \\axiom{package} of functions for the \\axiomType{NumericalOptimizationCategory} with \\axiom{measure} and \\axiom{optimize}.")) (|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model the minimization of a set of functions, \\axiom{lf}, of one or more variables without constraints. \\blankline The parameter \\axiom{start} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. \\blankline goodnessOfFit(lf,start) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{prob}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions, \\axiom{lf}, of one or more variables without constraints a least-squares problem. \\blankline The parameter \\axiom{start} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function, \\axiom{f}, of one or more variables without constraints. \\blankline The parameter \\axiom{start} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function, \\axiom{f}, of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{lower} and \\axiom{upper}. \\blankline The parameter \\axiom{start} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function, \\axiom{f}, of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{cons} would be an empty list and the bounds on those variables defined in \\axiom{lower} and \\axiom{upper}, or a mixture of simple, linear and non-linear constraints, where \\axiom{cons} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{upper} and \\axiom{lower}. \\blankline The parameter \\axiom{start} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{prob}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{prob}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{routines} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{prob} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{R} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{prob} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best the name of the most appropriate domain and any other relevant information."))) │ │ │ NIL │ │ │ -(|IndexedBits| |mn|) │ │ │ -((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical And of \\spad{n} and \\spad{m.}")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical Or of \\spad{n} and \\spad{m.}")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical Not of \\spad{n.}"))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| (|Boolean|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Boolean|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Boolean|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Boolean|) (LIST (QUOTE |Evalable|) (QUOTE (|Boolean|)))) (|HasCategory| (|Boolean|) (QUOTE (|SetCategory|))))) │ │ │ -(|IndexCard|) │ │ │ -((|constructor| (NIL "This domain implements a container of information about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{s} into an \\axiom{IndexCard}. Warning: if \\axiom{s} is not of the right format then an error will occur")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{ic}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of information contained in \\axiom{ic}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{ic}. Valid fields are \\axiom{name, nargs, exposed, type, abbreviation, kind, origin, params, condition, doc}."))) │ │ │ NIL │ │ │ +(|AssociatedEquations| R L) │ │ │ +((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, \\spad{m)}} returns \\spad{[w, eq, \\spad{lw,} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor, and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = \\spad{M} \\spad{y},} then \\spad{[$y_j',y_j'',...,y_j^{(n)}$] = $A_j \\spad{y$}} for all j's.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, \\spad{m)}} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = \\spad{M} \\spad{w}.}"))) │ │ │ NIL │ │ │ -(|InnerCommonDenominator| R Q A B) │ │ │ -((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], \\spad{d]}} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the qi's.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the qi's.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for q1,...,qn."))) │ │ │ +((|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ +(|IntersectionDivisorPackage| K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR |InfClsPoint| |DesTree| BLMET) │ │ │ +((|constructor| (NIL "The following is part of the PAFF package")) (|placesOfDegree| (((|Void|) (|PositiveInteger|) |#3| (|List| |#5|)) "\\spad{placesOfDegree(d, \\spad{f,} pts)} compute the places of degree dividing \\spad{d} of the curve \\spad{f.} \\spad{pts} should be the singular points of the curve \\spad{f.} For \\spad{d} > 1 this only works if \\spad{K} has \\axiomType{PseudoAlgebraicClosureOfFiniteFieldCategory}.")) (|intersectionDivisor| ((|#8| |#3| |#3| (|List| |#10|) (|List| |#5|)) "\\spad{intersectionDivisor(f,pol,listOfTree)} returns the intersection divisor of \\spad{f} with a curve defined by pol. \\spad{listOfTree} must contain all the desingularisation trees of all singular points on the curve \\indented{1}{defined by pol.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InnerIndexedTwoDimensionalArray| R |mnRow| |mnCol| |Row| |Col|) │ │ │ -((|constructor| (NIL "There is no description for this domain"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|InnerMatrixQuotientFieldFunctions| R |Row| |Col| M QF |Row2| |Col2| M2) │ │ │ -((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m.}")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m.} If the matrix is not invertible, \"failed\" is returned. Error: if the matrix is not square. Note that the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m.} the result will have entries in the quotient field."))) │ │ │ +(|NumericTubePlot| |Curve|) │ │ │ +((|constructor| (NIL "Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c.}"))) │ │ │ NIL │ │ │ -((|HasAttribute| |#7| (QUOTE |shallowlyMutable|))) │ │ │ -(|InnerMatrixLinearAlgebraFunctions| R |Row| |Col| M) │ │ │ -((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m.} If the matrix is not invertible, \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m,} the matrix \\spad{h} such that m*h*m=h, h*m*h=m, \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m.} an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m.}")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m.} This is the dimension of the null space of the matrix \\spad{m.}")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m.}")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m.}"))) │ │ │ NIL │ │ │ -((|HasAttribute| |#3| (QUOTE |shallowlyMutable|))) │ │ │ -(|InnerModularGcd| R BP |pMod| |nextMod|) │ │ │ -((|constructor| (NIL "This file contains the functions for modular \\spad{gcd} algorithm for univariate polynomials with coefficients in a non-trivial euclidean domain (not a field). The package parametrised by the coefficient domain, the polynomial domain, a prime, and a function for choosing the next prime")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p.}")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) │ │ │ +(|UserDefinedVariableOrdering|) │ │ │ +((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials, fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > \\spad{b2} > \\spad{...} > \\spad{bm} \\spad{>}} other variables \\spad{> \\spad{a1} > \\spad{a2} > \\spad{...} > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > \\spad{a2} > \\spad{...} > an > other variables}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|IdealDecompositionPackage| |vl| |nv|) │ │ │ -((|constructor| (NIL "This package provides functions for the primary decomposition of polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain, and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal I.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal I.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) │ │ │ +(|FiniteLinearAggregateFunctions2| S A R B) │ │ │ +((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely, if \\spad{a} is \\spad{[a1,a2,...]}, then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r.} For example, \\spad{reduce(_+$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note that third argument \\spad{r} may be regarded as the identity element for the function \\spad{f.}")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InnerPolySign| R UP) │ │ │ -((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) │ │ │ +(|GenExEuclid| R BP) │ │ │ +((|constructor| (NIL "\\indented{1}{Author : P.Gianni.} Date Created: January 1990 Description:")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp,} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h.}")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for lpol. Here the right side is \\spad{x**k}, for \\spad{k} less or equal to maxdeg. The operation returns \"failed\" when the elements are not coprime modulo prime.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p,} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R.} Note that this function is exported only because it's conditional."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InterfaceGroebnerPackage| K |symb| E OV R) │ │ │ -((|constructor| (NIL "Part of the Package for Algebraic Function Fields in one variable PAFF"))) │ │ │ +(|Asp30| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs, needed for NAG routine f04qaf, for example: \\blankline \\tab{5}SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK)\\br \\tab{5}DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK)\\br \\tab{5}INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE\\br \\tab{5}DOUBLE PRECISION A(5,5)\\br \\tab{5}EXTERNAL F06PAF\\br \\tab{5}A(1,1)=1.0D0\\br \\tab{5}A(1,2)=0.0D0\\br \\tab{5}A(1,3)=0.0D0\\br \\tab{5}A(1,4)=-1.0D0\\br \\tab{5}A(1,5)=0.0D0\\br \\tab{5}A(2,1)=0.0D0\\br \\tab{5}A(2,2)=1.0D0\\br \\tab{5}A(2,3)=0.0D0\\br \\tab{5}A(2,4)=0.0D0\\br \\tab{5}A(2,5)=-1.0D0\\br \\tab{5}A(3,1)=0.0D0\\br \\tab{5}A(3,2)=0.0D0\\br \\tab{5}A(3,3)=1.0D0\\br \\tab{5}A(3,4)=-1.0D0\\br \\tab{5}A(3,5)=0.0D0\\br \\tab{5}A(4,1)=-1.0D0\\br \\tab{5}A(4,2)=0.0D0\\br \\tab{5}A(4,3)=-1.0D0\\br \\tab{5}A(4,4)=4.0D0\\br \\tab{5}A(4,5)=-1.0D0\\br \\tab{5}A(5,1)=0.0D0\\br \\tab{5}A(5,2)=-1.0D0\\br \\tab{5}A(5,3)=0.0D0\\br \\tab{5}A(5,4)=-1.0D0\\br \\tab{5}A(5,5)=4.0D0\\br \\tab{5}IF(MODE.EQ.1)THEN\\br \\tab{7}CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1)\\br \\tab{5}ELSEIF(MODE.EQ.2)THEN\\br \\tab{7}CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1)\\br \\tab{5}ENDIF\\br \\tab{5}RETURN\\br \\tab{5}END"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InnerMultFact| OV E R P) │ │ │ -((|constructor| (NIL "This is an inner package for factoring multivariate polynomials over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer ufact. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer ufact."))) │ │ │ +(|RandomFloatDistributions|) │ │ │ +((|constructor| (NIL "This package exports random floating-point distributions")) (|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|TranscendentalHermiteIntegration| F UP) │ │ │ -((|constructor| (NIL "Hermite integration, transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, \\spad{D)}} returns \\spad{[g, \\spad{h,} \\spad{s,} \\spad{p]}} such that \\spad{f = \\spad{Dg} + \\spad{h} + \\spad{s} + \\spad{p},} \\spad{h} has a squarefree denominator normal w.r.t. \\spad{D,} and all the squarefree factors of the denominator of \\spad{s} are special w.r.t. \\spad{D.} Furthermore, \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) │ │ │ +(|StreamAggregate&| A S) │ │ │ +((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams, a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example, see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note that for many datatypes, \\axiom{possiblyInfinite?(s) = not explictlyFinite?(s)}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements, and \\spad{false} otherwise. Note that for many datatypes, \\axiom{explicitlyFinite?(s) = not possiblyInfinite?(s)}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RationalIntegration| F UP) │ │ │ -((|constructor| (NIL "Rational function integration This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the gi's are among \\spad{[g1,...,gn]}, \\spad{ci' = 0}, and \\spad{(h+sum(ci log(gi)))' = \\spad{f},} if possible, \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, \\spad{g)}} returns fractions \\spad{[h, \\spad{c]}} such that \\spad{c' = 0} and \\spad{h' = \\spad{f} - cg}, if \\spad{(h, \\spad{c)}} exist, \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = \\spad{f}} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = \\spad{f}.}"))) │ │ │ +(|RationalFunctionDefiniteIntegration| R) │ │ │ +((|constructor| (NIL "Definite integration of rational functions. \\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, \\spad{x} = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b.} If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters), then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, \\spad{x} = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b.} Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b.}") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, \\spad{x} = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b.} If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters), then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, \\spad{x} = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b.} Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b.}"))) │ │ │ NIL │ │ │ NIL │ │ │ (|RationalFunctionIntegration| F) │ │ │ ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, \\spad{x,} \\spad{g)}} returns fractions \\spad{[h, \\spad{c]}} such that \\spad{dc/dx = 0} and \\spad{dh/dx = \\spad{f} - cg}, if \\spad{(h, \\spad{c)}} exist, \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, \\spad{x,} [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the gi's are among \\spad{[g1,...,gn]}, \\spad{dci/dx = 0}, and \\spad{d(h + sum(ci log(gi)))/dx = \\spad{f}} if possible, \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, \\spad{x)}} returns a fraction \\spad{g} such that \\spad{dg/dx = \\spad{f}} if \\spad{g} exists, \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, \\spad{x)}} returns \\spad{g} such that \\spad{dg/dx = \\spad{f}.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|IntegerSolveLinearPolynomialEquation|) │ │ │ -((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], \\spad{g)}} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of ai's exists."))) │ │ │ -NIL │ │ │ +(|LocalAlgebra| A R S) │ │ │ +((|constructor| (NIL "LocalAlgebra produces the localization of an algebra, fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom \\spad{x}} returns the denominator of \\spad{x.}")) (|numer| ((|#1| $) "\\spad{numer \\spad{x}} returns the numerator of \\spad{x.}")) (/ (($ |#1| |#3|) "\\spad{a / \\spad{d}} divides the element \\spad{a} by \\spad{d.}") (($ $ |#3|) "\\spad{x / \\spad{d}} divides the element \\spad{x} by \\spad{d.}"))) │ │ │ +((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|OrderedRing|)))) │ │ │ +(|d01akfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF, a numerical integration routine which is is suitable for oscillating, non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ NIL │ │ │ -(|InnerPolySum| E V R P) │ │ │ -((|constructor| (NIL "Tools for the summation packages of polynomials")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), \\spad{n)}} returns \\spad{P(n)}, the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n,} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), \\spad{n} = a..b)} returns \\spad{p(a) + p(a+1) + \\spad{...} + p(b)}."))) │ │ │ NIL │ │ │ +(|PolynomialGcdPackage| E OV R P) │ │ │ +((|constructor| (NIL "This package computes multivariate polynomial gcd's using a hensel lifting strategy. The constraint on the coefficient domain is imposed by the lifting strategy. It is assumed that the coefficient domain has the property that almost all specializations preserve the degree of the gcd.")) (|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive \\spad{lp}} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp.}") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q.}") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q.}")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp.}") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q.}") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp.}") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q.} \\blankline \\spad{X} p1:=(x+1)*(x+6) \\spad{X} p2:=(x+1)*(x-6) \\spad{X} gcd(p1,p2)"))) │ │ │ NIL │ │ │ -(|LaurentPolynomial| R UP) │ │ │ -((|constructor| (NIL "Univariate polynomials with negative and positive exponents.")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} is not documented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} is not documented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} is not documented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient(p)} is not documented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} is not documented")) (|reductum| (($ $) "\\spad{reductum(x)} is not documented")) (|order| (((|Integer|) $) "\\spad{order(x)} is not documented \\blankline \\spad{X} \\spad{w:SparseUnivariateLaurentSeries(Fraction(Integer),'z,0):=0} \\spad{X} order(w,0)")) (|degree| (((|Integer|) $) "\\spad{degree(x)} is not documented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} is not documented"))) │ │ │ -((|leftUnitary| . T) (|rightUnitary| . T) ((|commutative| "*") . T) (|noZeroDivisors| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) │ │ │ -(|LeadingCoefDetermination| OV E Z P) │ │ │ -((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)}, where \\spad{contm} is the content of the evaluated polynomial, \\spad{unilist} is the list of factors of the evaluated polynomial, \\spad{plead} is the complete factorization of the leading coefficient, \\spad{vl} is the list of factors of the leading coefficient evaluated, \\spad{lvar} is the list of variables, \\spad{lval} is the list of values, returns a record giving the list of leading coefficients to impose on the univariate factors.")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)}, where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial, \\spad{numFacts} is the number of factors of the leadingCoefficient, and evallcs is the list of the evaluated factors of the leadingCoefficient, returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) │ │ │ NIL │ │ │ +(|TaylorSolve| F UTSF UTSSUPF) │ │ │ +((|constructor| (NIL "This package has no description"))) │ │ │ NIL │ │ │ -(|TranscendentalIntegration| F UP) │ │ │ -((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, \\spad{')}} returns \\spad{[q,} \\spad{r]} such that \\spad{p = \\spad{q'} + \\spad{r}} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, \\spad{')}} returns \\spad{[ir, \\spad{s,} \\spad{p]}} such that \\spad{f = ir' + \\spad{s} + \\spad{p}} and all the squarefree factors of the denominator of \\spad{s} are special w.r.t the derivation \\spad{'.}")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = \\spad{q}} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F.}")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, \\spad{',} t')} returns \\spad{q} such that \\spad{p' = \\spad{q}} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, \\spad{',} [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = \\spad{v'} + +/[ci * ui'/ui]}. Error: if \\spad{degree numer \\spad{f} \\spad{>=} degree denom \\spad{f}.}")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, \\spad{',} \\spad{g)}} returns \\spad{[v, \\spad{c]}} such that \\spad{f = \\spad{v'} + \\spad{c} \\spad{g}} and \\spad{c' = 0}. Error: if \\spad{degree numer \\spad{f} \\spad{>=} degree denom \\spad{f}} or if \\spad{degree numer \\spad{g} \\spad{>=} degree denom \\spad{g}} or if \\spad{denom \\spad{g}} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, \\spad{',} foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0}, \\spad{f = \\spad{v'} + a + reduce(+,[ci * ui'/ui])}, and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F.} Returns \"failed\" if no such \\spad{v,} ci, a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F.}")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, \\spad{',} foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0}, \\spad{f = \\spad{v'} + a + reduce(+,[ci * ui'/ui])}, and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v,} ci, a exist. Argument \\spad{foo} is an extended integration function on \\spad{F.}")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, \\spad{',} foo, \\spad{g)}} returns either \\spad{[v, \\spad{c]}} such that \\spad{f = \\spad{v'} + \\spad{c} \\spad{g}} and \\spad{c' = 0}, or \\spad{[v, a]} such that \\spad{f = \\spad{g'} + a}, and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F.} Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F.}")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, \\spad{',} foo, \\spad{g)}} returns either \\spad{[v, \\spad{c]}} such that \\spad{f = \\spad{v'} + \\spad{c} \\spad{g}} and \\spad{c' = 0}, or \\spad{[v, a]} such that \\spad{f = \\spad{g'} + a}, and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F.}")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, \\spad{',} foo)} returns \\spad{[g, a]} such that \\spad{f = \\spad{g'} + a}, and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F;} Argument foo is a Risch differential system solver on \\spad{F;}")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, \\spad{',} foo)} returns \\spad{[g, a]} such that \\spad{f = \\spad{g'} + a}, and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F;} Argument foo is a Risch differential equation solver on \\spad{F;}")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, \\spad{',} foo)} returns \\spad{[g, a]} such that \\spad{f = \\spad{g'} + a}, and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F.}"))) │ │ │ NIL │ │ │ +(|Asp42| |nameOne| |nameTwo| |nameThree|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs, needed for NAG routines d02raf and d02saf in particular. These ASPs are in fact three Fortran routines which return a vector of functions, and their derivatives \\spad{wrt} Y(i) and also a continuation parameter EPS, for example: \\blankline \\tab{5}SUBROUTINE G(EPS,YA,YB,BC,N)\\br \\tab{5}DOUBLE PRECISION EPS,YA(N),YB(N),BC(N)\\br \\tab{5}INTEGER N\\br \\tab{5}BC(1)=YA(1)\\br \\tab{5}BC(2)=YA(2)\\br \\tab{5}BC(3)=YB(2)-1.0D0\\br \\tab{5}RETURN\\br \\tab{5}END\\br \\tab{5}SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N)\\br \\tab{5}DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N)\\br \\tab{5}INTEGER N\\br \\tab{5}AJ(1,1)=1.0D0\\br \\tab{5}AJ(1,2)=0.0D0\\br \\tab{5}AJ(1,3)=0.0D0\\br \\tab{5}AJ(2,1)=0.0D0\\br \\tab{5}AJ(2,2)=1.0D0\\br \\tab{5}AJ(2,3)=0.0D0\\br \\tab{5}AJ(3,1)=0.0D0\\br \\tab{5}AJ(3,2)=0.0D0\\br \\tab{5}AJ(3,3)=0.0D0\\br \\tab{5}BJ(1,1)=0.0D0\\br \\tab{5}BJ(1,2)=0.0D0\\br \\tab{5}BJ(1,3)=0.0D0\\br \\tab{5}BJ(2,1)=0.0D0\\br \\tab{5}BJ(2,2)=0.0D0\\br \\tab{5}BJ(2,3)=0.0D0\\br \\tab{5}BJ(3,1)=0.0D0\\br \\tab{5}BJ(3,2)=1.0D0\\br \\tab{5}BJ(3,3)=0.0D0\\br \\tab{5}RETURN\\br \\tab{5}END\\br \\tab{5}SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N)\\br \\tab{5}DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N)\\br \\tab{5}INTEGER N\\br \\tab{5}BCEP(1)=0.0D0\\br \\tab{5}BCEP(2)=0.0D0\\br \\tab{5}BCEP(3)=0.0D0\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ -(|RationalFunctionLimitPackage| R) │ │ │ -((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(f(x),x,a,\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) │ │ │ NIL │ │ │ +(|ODETools| F LODO) │ │ │ +((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, \\spad{g,} [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op \\spad{y} = \\spad{g}} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note that the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, \\spad{g,} [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op \\spad{y} = \\spad{g}} is \\spad{f1 int(u1) + \\spad{...} + \\spad{fm} int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < \\spad{n}} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], \\spad{q,} \\spad{D)}} returns the \\spad{q \\spad{x} \\spad{n}} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n \\spad{x} \\spad{n}} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) │ │ │ NIL │ │ │ -(|LinGroebnerPackage| |lv| F) │ │ │ -((|constructor| (NIL "Given a Groebner basis \\spad{B} with respect to the total degree ordering for a zero-dimensional ideal I, compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) │ │ │ NIL │ │ │ +(|ProjectivePlane| K) │ │ │ +((|constructor| (NIL "This is part of the PAFF package, related to projective space."))) │ │ │ NIL │ │ │ -(|LinearSystemFromPowerSeriesPackage| K PCS) │ │ │ -((|constructor| (NIL "Part of the PAFF package")) (|finiteSeries2LinSys| (((|Matrix| |#1|) (|List| |#2|) (|Integer|)) "\\spad{finiteSeries2LinSys(ls,n)} returns a matrix which right kernel is the solution of the linear combinations of the series in \\spad{ls} which has order greater or equal to \\spad{n.} NOTE: All the series in \\spad{ls} must be finite and must have order at least 0: so one must first call on each of them the function filterUpTo(s,n) and apply an appropriate shift (mult by a power of \\spad{t).}"))) │ │ │ NIL │ │ │ +(|PointFunctions2| R1 R2) │ │ │ +((|constructor| (NIL "This package has no description")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) │ │ │ NIL │ │ │ -(|LinearDependence| S R) │ │ │ -((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + \\spad{...} + cn*vn = u}, \"failed\" if no such ci's exist in the quotient field of \\spad{S.}") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + \\spad{...} + cn*vn = u}, \"failed\" if no such ci's exist in \\spad{S.}")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + \\spad{...} + cn*vn = 0} and not all the ci's are 0, \"failed\" if the vi's are linearly independent over \\spad{S.}")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the vi's are linearly dependent over \\spad{S,} \\spad{false} otherwise."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|Field|))) (|not| (|HasCategory| |#1| (QUOTE (|Field|))))) │ │ │ -(|Localize| M R S) │ │ │ -((|constructor| (NIL "Localize(M,R,S) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R.}")) (|denom| ((|#3| $) "\\spad{denom \\spad{x}} returns the denominator of \\spad{x.}")) (|numer| ((|#1| $) "\\spad{numer \\spad{x}} returns the numerator of \\spad{x.}")) (/ (($ |#1| |#3|) "\\spad{m / \\spad{d}} divides the element \\spad{m} by \\spad{d.}") (($ $ |#3|) "\\spad{x / \\spad{d}} divides the element \\spad{x} by \\spad{d.}"))) │ │ │ -((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|OrderedAbelianGroup|)))) │ │ │ -(|LinearPolynomialEquationByFractions| R) │ │ │ -((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring, this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation, by moving into the field of fractions, and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], \\spad{g)}} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) │ │ │ +(|ApplyUnivariateSkewPolynomial| R M P) │ │ │ +((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, \\spad{f,} \\spad{m)}} returns \\spad{p(m)} where the action is given by \\spad{x \\spad{m} = f(m)}. \\spad{f} must be an R-pseudo linear map on \\spad{M.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|LinearSystemPolynomialPackage| R E OV P) │ │ │ -((|constructor| (NIL "This package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols lvar."))) │ │ │ +(|FreeModule1| R S) │ │ │ +((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: XDistributedPolynomial, XRecursivePolynomial.")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) │ │ │ +((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CommutativeRing|)))) │ │ │ +(|ModularRing| R |Mod| |reduction| |merge| |exactQuo|) │ │ │ +((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} is not documented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} is not documented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} is not documented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} is not documented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} is not documented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} is not documented"))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|UnivariateSkewPolynomialCategoryOps| R C) │ │ │ +((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and divisions of univariate skew polynomials.")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, \\spad{b,} sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{q*b} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, \\spad{b,} sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, \\spad{b,} sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{q*b} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, \\spad{b,} sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = \\spad{b*q} + \\spad{r}} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, \\spad{c,} \\spad{m,} sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x \\spad{m} = \\spad{c} sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, \\spad{q,} sigma, delta)} returns \\spad{p * \\spad{q}.} \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) │ │ │ NIL │ │ │ -(|MatrixCommonDenominator| R Q) │ │ │ -((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, \\spad{d]}} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q.}")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q.}")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q.}"))) │ │ │ +((|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) │ │ │ +(|RadicalSolvePackage| R) │ │ │ +((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R.}")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of \\indented{1}{radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x,}} \\indented{1}{where \\spad{rf} is a rational function. The result contains\\space{2}new} \\indented{1}{symbols for common subexpressions in order to reduce the} \\indented{1}{size of the output.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} contractSolve(b,x)") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of \\indented{1}{radicals of the equation of rational functions eq} \\indented{1}{with respect to the symbol x.\\space{2}The result contains new} \\indented{1}{symbols for common subexpressions in order to reduce the} \\indented{1}{size of the output.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} contractSolve(b=0,x)")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of \\indented{1}{radicals of the list of rational functions lrf} \\indented{1}{with respect to the list of symbols lvar.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} c:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1) \\spad{X} radicalRoots([b,c],[x,y])") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals \\indented{1}{of the rational function \\spad{rf} with respect to the symbol \\spad{x.}} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} radicalRoots(b,x)")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of \\indented{1}{radicals of the system of equations of rational functions leq} \\indented{1}{with respect to the unique symbol \\spad{x} appearing in leq.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} c:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1) \\spad{X} radicalSolve([b=0,c=0])") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of \\indented{1}{radicals of the system of equations of rational functions leq} \\indented{1}{with respect to the list of symbols lvar.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} c:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1) \\spad{X} radicalSolve([b=0,c=0],[x,y])") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of \\indented{1}{radicals of the system of equations \\spad{lrf} = 0, where \\spad{lrf} is a} \\indented{1}{system of univariate rational functions.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} c:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1) \\spad{X} radicalSolve([b,c])") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of \\indented{1}{radicals of the system of equations \\spad{lrf} = 0 with} \\indented{1}{respect to the list of symbols lvar,} \\indented{1}{where \\spad{lrf} is a list of rational functions.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} c:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1) \\spad{X} radicalSolve([b,c],[x,y])") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of \\indented{1}{radicals of the equation of rational functions eq} \\indented{1}{with respect to the unique symbol \\spad{x} appearing in eq.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} radicalSolve(b=0)") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of \\indented{1}{radicals of the equation of rational functions eq} \\indented{1}{with respect to the symbol \\spad{x.}} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} radicalSolve(b=0,x)") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of \\indented{1}{radicals of the equation \\spad{rf} = 0, where \\spad{rf} is a} \\indented{1}{univariate rational function.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} radicalSolve(b)") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of \\indented{1}{radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x,}} \\indented{1}{where \\spad{rf} is a rational function.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} radicalSolve(b,x)"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MatrixLinearAlgebraFunctions| R |Row| |Col| M) │ │ │ -((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible, \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen, for example, positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m.}")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (the matrix \\spad{n} such that \\spad{m*n} = determinant(m)*id) and the detrminant of \\spad{m.}")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m.}")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m.}")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m.} This is the dimension of the null space of the matrix \\spad{m.}")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m.}")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(m,j) : elementary operation of second kind. \\spad{(i} ^=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(m,j) : elementary operation of second kind. \\spad{(i} ^=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m.} an error message is returned if the matrix is not square."))) │ │ │ +(|InnerNumericEigenPackage| K F |Par|) │ │ │ +((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m.} The parameter \\spad{eps} determines the type of the output, \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned, if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K.} This function returns a polynomial over \\spad{K,} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) │ │ │ -(|ModularDistinctDegreeFactorizer| U) │ │ │ -((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p.}")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, \\spad{p)}} refines the distinct degree factorization produced by ddFact to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p,} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p.}")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p.} Error: if \\spad{f1} is not square-free modulo \\spad{p.}")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p.} Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p.}")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p.}"))) │ │ │ NIL │ │ │ +(|RealRootCharacterizationCategory&| S |TheField| |ThePols|) │ │ │ +((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common access functions for all real roots of polynomials")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,root,prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,root,prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,n)} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure, assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) │ │ │ NIL │ │ │ -(|MachineFloat|) │ │ │ -((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} is not documented")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) │ │ │ -((|approximate| . T) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|MachineInteger|) │ │ │ -((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) │ │ │ -((|multiplicativeValuation| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|AlgebraicHermiteIntegration| F UP UPUP R) │ │ │ +((|constructor| (NIL "Algebraic Hermite reduction.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, \\spad{')}} returns \\spad{[g,h]} such that \\spad{f = \\spad{g'} + \\spad{h}} and \\spad{h} has a only simple finite normal poles."))) │ │ │ NIL │ │ │ -(|MultipleMap| R1 UP1 UPUP1 R2 UP2 UPUP2) │ │ │ -((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, \\spad{p)}} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p.}"))) │ │ │ NIL │ │ │ +(|MappingPackage4| A B) │ │ │ +((|constructor| (NIL "Functional Composition. Given functions \\spad{f} and \\spad{g,} returns the applicable closure")) (/ (((|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|)) "\\spad(+) does functional addition \\blankline \\spad{X} p:=(x:EXPR(INT)):EXPR(INT)+->3*x \\spad{X} \\spad{q:=(x:EXPR(INT)):EXPR(INT)+->2*x+3} \\spad{X} (p/q)(4) \\spad{X} (p/q)(x)")) (* (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|)) "\\spad(+) does functional addition \\blankline \\spad{X} f:=(x:INT):INT \\spad{+->} 3*x \\spad{X} g:=(x:INT):INT \\spad{+->} 2*x+3 \\spad{X} (f*g)(4)")) (- (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|)) "\\spad(+) does functional addition \\blankline \\spad{X} f:=(x:INT):INT \\spad{+->} 3*x \\spad{X} g:=(x:INT):INT \\spad{+->} 2*x+3 \\spad{X} (f-g)(4)")) (+ (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|)) "\\spad(+) does functional addition \\blankline \\spad{X} f:=(x:INT):INT \\spad{+->} 3*x \\spad{X} g:=(x:INT):INT \\spad{+->} 2*x+3 \\spad{X} (f+g)(4)"))) │ │ │ NIL │ │ │ -(|MonomialExtensionTools| F UP) │ │ │ -((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, \\spad{D)}} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s}, all the squarefree factors of \\spad{denom(n)} are normal w.r.t. \\spad{D,} \\spad{denom(s)} is special w.r.t. \\spad{D,} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, \\spad{D)}} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, \\spad{D)}} returns \\spad{[n_1 \\spad{n_2\\^2} \\spad{...} n_m\\^m, \\spad{s_1} \\spad{s_2\\^2} \\spad{...} s_q\\^q]} such that \\spad{p = \\spad{n_1} \\spad{n_2\\^2} \\spad{...} n_m\\^m \\spad{s_1} \\spad{s_2\\^2} \\spad{...} s_q\\^q}, each \\spad{n_i} is normal w.r.t. \\spad{D} and each \\spad{s_i} is special w.r.t \\spad{D.} \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, \\spad{D)}} returns \\spad{[n,s]} such that \\spad{p = \\spad{n} \\spad{s},} all the squarefree factors of \\spad{n} are normal w.r.t. \\spad{D,} and \\spad{s} is special w.r.t. \\spad{D.} \\spad{D} is the derivation to use."))) │ │ │ NIL │ │ │ +(|ProjectiveSpaceCategory| K) │ │ │ +((|constructor| (NIL "This is part of the PAFF package, related to projective space.")) (|pointValue| (((|List| |#1|) $) "\\spad{pointValue returns} the coordinates of the point or of the point of origin that represent an infinitly close point")) (|setelt| ((|#1| $ (|Integer|) |#1|) "\\spad{setelt sets} the value of a specified coordinates")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt returns} the value of a specified coordinates")) (|list| (((|List| |#1|) $) "\\spad{list returns} the list of the coordinates")) (|lastNonNull| (((|Integer|) $) "\\spad{lastNonNull returns} the integer corresponding to the last non null coordinates.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(p)} test if the point is rational according to the characteristic of the ground field.") (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{rational?(p,n)} test if the point is rational according to \\spad{n.}")) (|removeConjugate| (((|List| $) (|List| $)) "\\spad{removeConjugate(lp)} returns removeConjugate(lp,n) where \\spad{n} is the characteristic of the ground field.") (((|List| $) (|List| $) (|NonNegativeInteger|)) "\\spad{removeConjugate(lp,n)} returns a list of points such that no points in the list is the conjugate (according to \\spad{n)} of another point.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns conjugate(p,n) where \\spad{n} is the characteristic of the ground field.") (($ $ (|NonNegativeInteger|)) "\\spad{conjugate(p,n)} returns p**n, that is all the coordinates of \\spad{p} to the power of \\spad{n}")) (|orbit| (((|List| $) $ (|NonNegativeInteger|)) "\\spad{orbit(p,n)} returns the orbit of the point \\spad{p} according to \\spad{n,} that is orbit(p,n) = \\spad{\\{} \\spad{p,} p**n, p**(n**2), p**(n**3), ..... \\spad{\\}}") (((|List| $) $) "\\spad{orbit(p)} returns the orbit of the point \\spad{p} according to the characteristic of \\spad{K,} that is, for \\spad{q=} char \\spad{K,} orbit(p) = \\spad{\\{} \\spad{p,} p**q, p**(q**2), p**(q**3), ..... \\spad{\\}}")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce a} list of \\spad{K} to a projective point.") (((|List| |#1|) $) "\\spad{coerce a} a projective point list of \\spad{K}")) (|projectivePoint| (($ (|List| |#1|)) "\\spad{projectivePoint creates} a projective point from a list")) (|homogenize| (($ $) "\\spad{homogenize(pt)} the point according to the coordinate which is the last non null.") (($ $ (|Integer|)) "\\spad{homogenize the} point according to the coordinate specified by the integer"))) │ │ │ NIL │ │ │ -(|MultFiniteFactorize| OV E F PG) │ │ │ -((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) │ │ │ NIL │ │ │ +(|GuessPolynomial|) │ │ │ +((|constructor| (NIL "This package exports guessing of sequences of rational functions"))) │ │ │ NIL │ │ │ -(|ModMonic| R |Rep|) │ │ │ -((|constructor| (NIL "This package has not been documented")) (|frobenius| (($ $) "\\spad{frobenius(x)} is not documented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} is not documented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} is not documented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} is not documented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} is not documented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} is not documented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} is not documented")) (|lift| ((|#2| $) "\\spad{lift(x)} is not documented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} is not documented")) (|modulus| ((|#2|) "\\spad{modulus()} is not documented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} is not documented"))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|additiveValuation| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|StepThrough|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|MPolyCatPolyFactorizer| E OV R PPR) │ │ │ -((|constructor| (NIL "This package exports a factor operation for multivariate polynomials with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) │ │ │ +((AND (|HasCategory| (|Fraction| (|Polynomial| (|Integer|))) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|Polynomial| (|Integer|)) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))))) │ │ │ +(|FullyEvalableOver&| S R) │ │ │ +((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex, applying \\spad{f} to values of type \\spad{R} in ex."))) │ │ │ NIL │ │ │ +((|HasCategory| |#2| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |Eltable|) (|devaluate| |#2|) (|devaluate| |#2|)))) │ │ │ +(|DoublyLinkedAggregate| S) │ │ │ +((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list, that is, a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v,} returning \\spad{v.}")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v,} returning \\spad{v.}")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate u.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note that \\axiom{next(l) = rest(l)} and \\axiom{previous(next(l)) = \\spad{l}.}")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note that \\axiom{next(previous(l)) = \\spad{l}.}")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l.} Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l.} Error: if \\spad{l} is empty."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|MPolyCatFunctions2| |VarSet| E1 E2 R S PR PS) │ │ │ -((|constructor| (NIL "Utilities for MPolyCat")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented"))) │ │ │ +(|Kovacic| F UP) │ │ │ +((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or P(u) such that \\spad{$e^{\\int(-a_1/2a_2)} e^{\\int u}$} is a solution of \\indented{5}{\\spad{$a_2 \\spad{y''} + \\spad{a_1} \\spad{y'} + \\spad{a0} \\spad{y} = 0$}} whenever \\spad{u} is a solution of \\spad{P \\spad{u} = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP}, not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or P(u) such that \\spad{$e^{\\int(-a_1/2a_2)} e^{\\int u}$} is a solution of \\indented{5}{\\spad{a_2 \\spad{y''} + \\spad{a_1} \\spad{y'} + \\spad{a0} \\spad{y} = 0}} whenever \\spad{u} is a solution of \\spad{P \\spad{u} = 0}. The equation must be already irreducible over the rational functions."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MPolyCatFunctions3| |Vars1| |Vars2| E1 E2 R PR1 PR2) │ │ │ -((|constructor| (NIL "This package has no description")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) │ │ │ +(|FunctionalSpecialFunction| R F) │ │ │ +((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiAiryBi| ((|#2| |#2|) "\\spad{iiAiryBi(x)} should be local but conditional.")) (|iiAiryAi| ((|#2| |#2|) "\\spad{iiAiryAi(x)} should be local but conditional.")) (|iiBesselK| ((|#2| (|List| |#2|)) "\\spad{iiBesselK(x)} should be local but conditional.")) (|iiBesselI| ((|#2| (|List| |#2|)) "\\spad{iiBesselI(x)} should be local but conditional.")) (|iiBesselY| ((|#2| (|List| |#2|)) "\\spad{iiBesselY(x)} should be local but conditional.")) (|iiBesselJ| ((|#2| (|List| |#2|)) "\\spad{iiBesselJ(x)} should be local but conditional.")) (|iipolygamma| ((|#2| (|List| |#2|)) "\\spad{iipolygamma(x)} should be local but conditional.")) (|iidigamma| ((|#2| |#2|) "\\spad{iidigamma(x)} should be local but conditional.")) (|iiBeta| ((|#2| (|List| |#2|)) "\\spad{iiBeta(x)} should be local but conditional.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F;} error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MultivariatePolynomial| |vl| R) │ │ │ -((|constructor| (NIL "This type is the basic representation of sparse recursive multivariate polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative, but the variables are assumed to commute."))) │ │ │ -(((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#2| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|))) (OR (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|MPolyCatRationalFunctionFactorizer| E OV R PRF) │ │ │ -((|constructor| (NIL "This package exports a factor operation for multivariate polynomials with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients, themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial monom.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial prf.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) │ │ │ +(|RetractableTo&| A S) │ │ │ +((|constructor| (NIL "A is retractable to \\spad{B} means that some elements if A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S.}")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S.}")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\spad{%.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MRationalFactorize| E OV R P) │ │ │ -((|constructor| (NIL "MRationalFactorize contains the factor function for multivariate polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R.}")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R.}"))) │ │ │ +(|GuessOptionFunctions0|) │ │ │ +((|constructor| (NIL "\\spad{GuessOptionFunctions0} provides operations that extract the values of options for Guess.")) (|checkOptions| (((|Void|) (|List| (|GuessOption|))) "\\spad{checkOptions checks} whether the given options are consistent, and yields an error otherwise")) (|debug| (((|Boolean|) (|List| (|GuessOption|))) "\\spad{debug returns} whether we want additional output on the progress, default being \\spad{false}")) (|displayAsGF| (((|Boolean|) (|List| (|GuessOption|))) "\\spad{displayAsGF specifies} whether the result is a generating function or a recurrence. This option should not be set by the user, but rather by the HP-specification, therefore, there is no default.")) (|indexName| (((|Symbol|) (|List| (|GuessOption|))) "\\spad{indexName returns} the name of the index variable used for the formulas, default being \\spad{n}")) (|variableName| (((|Symbol|) (|List| (|GuessOption|))) "\\spad{variableName returns} the name of the variable used in by the algebraic differential equation, default being \\spad{x}")) (|functionName| (((|Symbol|) (|List| (|GuessOption|))) "\\spad{functionName returns} the name of the function given by the algebraic differential equation, default being \\spad{f}")) (|one| (((|Boolean|) (|List| (|GuessOption|))) "\\spad{one returns} whether we need only one solution, default being true.")) (|checkExtraValues| (((|Boolean|) (|List| (|GuessOption|))) "\\spad{checkExtraValues(d)} specifies whether we want to check the solution beyond the order given by the degree bounds. The default is true.")) (|check| (((|Union| "skip" "MonteCarlo" "deterministic") (|List| (|GuessOption|))) "\\spad{check(d)} specifies how we want to check the solution. If the value is \"skip\", we return the solutions found by the interpolation routine without checking. If the value is \"MonteCarlo\", we use a probabilistic check. The default is \"deterministic\".")) (|safety| (((|NonNegativeInteger|) (|List| (|GuessOption|))) "\\spad{safety returns} the specified safety or 1 as default.")) (|allDegrees| (((|Boolean|) (|List| (|GuessOption|))) "\\spad{allDegrees returns} whether all possibilities of the degree vector should be tried, the default being false.")) (|maxMixedDegree| (((|NonNegativeInteger|) (|List| (|GuessOption|))) "\\spad{maxMixedDegree returns} the specified maxMixedDegree.")) (|maxDegree| (((|Union| (|NonNegativeInteger|) "arbitrary") (|List| (|GuessOption|))) "\\spad{maxDegree returns} the specified maxDegree.")) (|maxLevel| (((|Union| (|NonNegativeInteger|) "arbitrary") (|List| (|GuessOption|))) "\\spad{maxLevel returns} the specified maxLevel.")) (|Somos| (((|Union| (|PositiveInteger|) (|Boolean|)) (|List| (|GuessOption|))) "\\spad{Somos returns} whether we allow only Somos-like operators, default being \\spad{false}")) (|homogeneous| (((|Union| (|PositiveInteger|) (|Boolean|)) (|List| (|GuessOption|))) "\\spad{homogeneous returns} whether we allow only homogeneous algebraic differential equations, default being \\spad{false}")) (|maxPower| (((|Union| (|PositiveInteger|) "arbitrary") (|List| (|GuessOption|))) "\\spad{maxPower returns} the specified maxPower.")) (|maxSubst| (((|Union| (|PositiveInteger|) "arbitrary") (|List| (|GuessOption|))) "\\spad{maxSubst returns} the specified maxSubst.")) (|maxShift| (((|Union| (|NonNegativeInteger|) "arbitrary") (|List| (|GuessOption|))) "\\spad{maxShift returns} the specified maxShift.")) (|maxDerivative| (((|Union| (|NonNegativeInteger|) "arbitrary") (|List| (|GuessOption|))) "\\spad{maxDerivative returns} the specified maxDerivative."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NormRetractPackage| F |ExtF| |SUEx| |ExtP| |n|) │ │ │ -((|constructor| (NIL "This package has no description")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) │ │ │ +(|TriangularSetCategory&| S R E V P) │ │ │ +((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{R} be an integral domain and \\axiom{V} a finite ordered set of variables, say \\axiom{X1 < \\spad{X2} < \\spad{...} < Xn}. A set \\axiom{S} of polynomials in \\axiom{R[X1,X2,...,Xn]} is triangular if no elements of \\axiom{S} lies in \\axiom{R}, and if two distinct elements of \\axiom{S} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to \\spad{[1]} for more details. A polynomial \\axiom{P} is reduced w.r.t a non-constant polynomial \\axiom{Q} if the degree of \\axiom{P} in the main variable of \\axiom{Q} is less than the main degree of \\axiom{Q}. A polynomial \\axiom{P} is reduced w.r.t a triangular set \\axiom{T} if it is reduced w.r.t. every polynomial of \\axiom{T}.")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$V} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,p)} returns a triangular set which encodes the simple extension by \\axiom{p} of the extension of the base field defined by \\axiom{ts}, according to the properties of triangular sets of the current category. If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,p)} returns a triangular set which encodes the simple extension by \\axiom{p} of the extension of the base field defined by \\axiom{ts}, according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,v)} returns the polynomial of \\axiom{ts} with \\axiom{v} as main variable, if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(v,ts)} returns \\spad{true} iff \\axiom{v} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty, otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty, otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty, otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[ts1,qs1],...,[tsn,qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(p,ts)} returns the same as \\axiom{remainder(p,collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{R}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(p,ts)} returns \\axiom{0} if \\axiom{p} reduces to \\axiom{0} by pseudo-division w.r.t \\axiom{ts} otherwise returns a polynomial \\axiom{q} computed from \\axiom{p} by removing any coefficient in \\axiom{p} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(p,ts)} returns a polynomial \\axiom{r} such that \\axiom{initiallyReduced?(r,ts)} holds and there exists some product \\axiom{h} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(p,ts)} returns a polynomial \\axiom{r} such that \\axiom{headReduce?(r,ts)} holds and there exists some product \\axiom{h} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(p,ts)} returns a polynomial \\axiom{r} such that \\axiom{stronglyReduced?(r,ts)} holds and there exists some product \\axiom{h} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(p,ts,redOp,redOp?)} returns a polynomial \\axiom{r} such that \\axiom{redOp?(r,p)} holds for every \\axiom{p} of \\axiom{ts} and there exists some product \\axiom{h} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{p} and \\axiom{q} we have \\axiom{redOp?(redOp(p,q),q)} and there exists an integer \\axiom{e} and a polynomial \\axiom{f} such that \\axiom{init(q)^e*p = \\spad{f*q} + redOp(p,q)}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced w.r.t to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{p} of \\axiom{ts}. \\axiom{p} and all its iterated initials are reduced w.r.t. to the other elements of \\axiom{ts} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(p,ts)} returns \\spad{true} iff \\axiom{p} and all its iterated initials are reduced w.r.t. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{ts} is reduced w.r.t to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(p,ts)} returns \\spad{true} iff the head of \\axiom{p} is reduced w.r.t. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced w.r.t to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(p,ts)} returns \\spad{true} iff \\axiom{p} is reduced w.r.t. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(p,ts,redOp?)} returns \\spad{true} iff \\axiom{p} is reduced w.r.t.in the sense of the operation \\axiom{redOp?}, that is if for every \\axiom{t} in \\axiom{ts} \\axiom{redOp?(p,t)} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{p} in \\axiom{ts} we have \\axiom{normalized?(p,us)} where \\axiom{us} is \\axiom{collectUnder(ts,mvar(p))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(p,ts)} returns \\spad{true} iff \\axiom{p} and all its iterated initials have degree zero w.r.t. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,pred?,redOp?)} returns the same as \\axiom{basicSet(qs,redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,redOp?)} returns \\axiom{[bs,ts]} where \\axiom{concat(bs,ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} w.r.t the reduction-test \\axiom{redOp?}, if no non-zero constant polynomial lie in \\axiom{ps}, otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(ts1,ts2)} returns \\spad{true} iff \\axiom{ts2} has higher rank than \\axiom{ts1} in Wu Wen Tsun sense."))) │ │ │ NIL │ │ │ +((|HasCategory| |#4| (QUOTE (|Finite|)))) │ │ │ +(|RadicalCategory|) │ │ │ +((|constructor| (NIL "The RadicalCategory is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x \\spad{**} \\spad{y}} is the rational exponentiation of \\spad{x} by the power \\spad{y.}")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x.}")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x.} The branch cut lies along the negative real axis, continuous with quadrant II."))) │ │ │ NIL │ │ │ -(|MultivariateSquareFree| E OV R P) │ │ │ -((|constructor| (NIL "This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + \\spad{Bg} = \\spad{h}} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p.}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p.}"))) │ │ │ NIL │ │ │ +(|PolynomialSquareFree| |VarSet| E RC P) │ │ │ +((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p.} Each factor has no repeated roots, and the factors are pairwise relatively prime."))) │ │ │ NIL │ │ │ -(|NumberTheoreticPolynomialFunctions| R) │ │ │ -((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) │ │ │ -(|NPCoef| BP E OV R P) │ │ │ -((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F,} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) │ │ │ +(|FactoringUtilities| E OV R P) │ │ │ +((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as member of \\spad{R.}")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R.} An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of upoly.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NewSparseUnivariatePolynomial| R) │ │ │ -((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and, consequently, \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,b)} returns \\axiom{[r,ca]} such that \\axiom{extendedResultant(a,b)} returns \\axiom{[r,ca, cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,b)} returns \\axiom{[r,ca]} such that \\axiom{extendedResultant(a,b)} returns \\axiom{[r,ca, cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,b)} returns \\axiom{[r,ca,cb]} such that \\axiom{r} is the resultant of \\axiom{a} and \\axiom{b} and \\axiom{r = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,b)} returns \\axiom{[g,cb]} such that \\axiom{extendedSubResultantGcd(a,b)} returns \\axiom{[g,ca, cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,b)} returns \\axiom{[g,ca]} such that \\axiom{extendedSubResultantGcd(a,b)} returns \\axiom{[g,ca, cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,b)} returns \\axiom{[g,ca, cb]} such that \\axiom{g} is a \\spad{gcd} of \\axiom{a} and \\axiom{b} in \\axiom{R^(-1) \\spad{P}} and \\axiom{g = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,b)} returns \\axiom{resultant(a,b)} if \\axiom{a} and \\axiom{b} has no non-trivial \\spad{gcd} in \\axiom{R^(-1) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,b)} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{b} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,b)} returns \\axiom{q} if \\axiom{lazyPseudoDivide(a,b)} returns \\axiom{[c,g,q,r]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,b)} returns \\axiom{[c,g,q,r]} such that \\axiom{c^n * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,b)} returns \\axiom{[r,c,n]} where \\axiom{n + \\spad{g} = max(0, degree(b) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,b)} returns \\axiom{r} if \\axiom{lazyResidueClass(a,b)} returns \\axiom{[r,c,n]}. This lazy pseudo-remainder is computed by means of the fmecg from NewSparseUnivariatePolynomial operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,b)} returns \\axiom{[r,c,n]} such that \\axiom{r} is reduced w.r.t. \\axiom{b} and \\axiom{b} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{c} is \\axiom{leadingCoefficient(b)} and \\axiom{n} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,b)} returns \\axiom{r} such that \\axiom{r} is reduced w.r.t. \\axiom{b} and \\axiom{b} divides \\axiom{a \\spad{-r}} where \\axiom{b} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(p1,e,r,p2)} returns \\axiom{p1 - \\spad{r} * x**e * \\spad{p2}} where \\axiom{x} is \\axiom{monomial(1,1)}"))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|additiveValuation| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|StepThrough|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|MultivariateLifting| E OV R P) │ │ │ -((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\", using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F,} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) │ │ │ +(|DifferentialRing&| S) │ │ │ +((|constructor| (NIL "An ordinary differential ring, that is, a ring with an operation \\spadfun{differentiate}. \\blankline Axioms\\br \\tab{5}\\spad{differentiate(x+y) = differentiate(x)+differentiate(y)}\\br \\tab{5}\\spad{differentiate(x*y) = x*differentiate(y) + differentiate(x)*y}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, \\spad{n)}} returns the \\spad{n}-th derivative of \\spad{x.}") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x.} This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, \\spad{n)}} returns the \\spad{n}-th derivative of \\spad{x.}") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x.} This function is a simple differential operator where no variable needs to be specified."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|OrderedDirectProduct| |dim| S |f|) │ │ │ -((|constructor| (NIL "This type represents the finite direct or cartesian product of an underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) │ │ │ -((|rightUnitary| |has| |#2| (|Ring|)) (|leftUnitary| |has| |#2| (|Ring|)) (|unitsKnown| |has| |#2| (ATTRIBUTE |unitsKnown|)) ((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|))) (OR (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (|HasCategory| |#2| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|)))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasAttribute| |#2| (QUOTE |unitsKnown|)) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))))) │ │ │ -(|PrimitiveRatDE| F UP L LQ) │ │ │ -((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear ordinary differential equations, in the transcendental case. The derivation to use is given by the parameter \\spad{L}.")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op \\spad{y} = \\spad{c1} \\spad{g1} + \\spad{...} + \\spad{cm} \\spad{gm}} and \\spad{op0 \\spad{y} = \\spad{c1} \\spad{h1} + \\spad{...} + \\spad{cm} \\spad{hm}} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, \\spad{p)}} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p}, and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op}, and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, \\spad{p)}} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p}, and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op}, and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op \\spad{y} = \\spad{c1} \\spad{g1} + \\spad{...} + \\spad{cm} \\spad{gm}} is of the form \\spad{p/d} for some polynomial \\spad{p.}") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, \\spad{g)}} returns a polynomial \\spad{d} such that any rational solution of \\spad{op \\spad{y} = \\spad{g}} is of the form \\spad{p/d} for some polynomial \\spad{p,} and \"failed\", if the equation has no rational solution."))) │ │ │ +(|FiniteAbelianMonoidRing&| S R E) │ │ │ +((|constructor| (NIL "This category is similar to AbelianMonoidRing, except that the sum is assumed to be finite. It is a useful model for polynomials, but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p.}")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p.}")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r,} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * \\spad{p2}} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial u.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p.} Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p.}")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p.}")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) │ │ │ NIL │ │ │ +((|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) │ │ │ +(|InputFormFunctions1| R) │ │ │ +((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter, and transforms the result into an object of type \\spad{R.}")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to f$R."))) │ │ │ NIL │ │ │ -(|OpenMathPackage|) │ │ │ -((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{s} from \\spad{CD} \\axiom{cd}, \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{cd}, \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{cd}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{f} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{f} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{dev} and passes it to AXIOM."))) │ │ │ NIL │ │ │ +(|TranscendentalIntegration| F UP) │ │ │ +((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, \\spad{')}} returns \\spad{[q,} \\spad{r]} such that \\spad{p = \\spad{q'} + \\spad{r}} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, \\spad{')}} returns \\spad{[ir, \\spad{s,} \\spad{p]}} such that \\spad{f = ir' + \\spad{s} + \\spad{p}} and all the squarefree factors of the denominator of \\spad{s} are special w.r.t the derivation \\spad{'.}")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = \\spad{q}} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F.}")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, \\spad{',} t')} returns \\spad{q} such that \\spad{p' = \\spad{q}} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, \\spad{',} [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = \\spad{v'} + +/[ci * ui'/ui]}. Error: if \\spad{degree numer \\spad{f} \\spad{>=} degree denom \\spad{f}.}")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, \\spad{',} \\spad{g)}} returns \\spad{[v, \\spad{c]}} such that \\spad{f = \\spad{v'} + \\spad{c} \\spad{g}} and \\spad{c' = 0}. Error: if \\spad{degree numer \\spad{f} \\spad{>=} degree denom \\spad{f}} or if \\spad{degree numer \\spad{g} \\spad{>=} degree denom \\spad{g}} or if \\spad{denom \\spad{g}} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, \\spad{',} foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0}, \\spad{f = \\spad{v'} + a + reduce(+,[ci * ui'/ui])}, and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F.} Returns \"failed\" if no such \\spad{v,} ci, a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F.}")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, \\spad{',} foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0}, \\spad{f = \\spad{v'} + a + reduce(+,[ci * ui'/ui])}, and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v,} ci, a exist. Argument \\spad{foo} is an extended integration function on \\spad{F.}")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, \\spad{',} foo, \\spad{g)}} returns either \\spad{[v, \\spad{c]}} such that \\spad{f = \\spad{v'} + \\spad{c} \\spad{g}} and \\spad{c' = 0}, or \\spad{[v, a]} such that \\spad{f = \\spad{g'} + a}, and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F.} Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F.}")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, \\spad{',} foo, \\spad{g)}} returns either \\spad{[v, \\spad{c]}} such that \\spad{f = \\spad{v'} + \\spad{c} \\spad{g}} and \\spad{c' = 0}, or \\spad{[v, a]} such that \\spad{f = \\spad{g'} + a}, and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F.}")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, \\spad{',} foo)} returns \\spad{[g, a]} such that \\spad{f = \\spad{g'} + a}, and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F;} Argument foo is a Risch differential system solver on \\spad{F;}")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, \\spad{',} foo)} returns \\spad{[g, a]} such that \\spad{f = \\spad{g'} + a}, and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F;} Argument foo is a Risch differential equation solver on \\spad{F;}")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, \\spad{',} foo)} returns \\spad{[g, a]} such that \\spad{f = \\spad{g'} + a}, and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F.}"))) │ │ │ NIL │ │ │ -(|OpenMathServerPackage|) │ │ │ -((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server, reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls, for example, \\axiom{Omserve(4000,60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{portnum}. The parameter \\axiom{timeout} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{u} on \\axiom{c} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{c} and returns the appropriate AXIOM object."))) │ │ │ NIL │ │ │ +(|FiniteSetAggregateFunctions2| S A R B) │ │ │ +((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers, where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely, if \\spad{a} is \\spad{[a1,a2,...]}, then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r.} For example, \\spad{reduce(_+$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note that third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a}, creating a new aggregate with a possibly different underlying domain."))) │ │ │ NIL │ │ │ -(|PrimitiveRatRicDE| F UP L LQ) │ │ │ -((|constructor| (NIL "In-field solution of Riccati equations, primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], \\spad{...} ,{} [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the fi's (up to the constant coefficient), in which case the equation for \\spad{z=y e^{-int \\spad{p}}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP}, not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], \\spad{...} ,{} [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the pi's (up to the constant coefficient), in which case the equation for \\spad{z=y e^{-int \\spad{p}}} is \\spad{Li \\spad{z} =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], \\spad{...} ,{} [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op \\spad{y} = 0} must be one of the ai's in which case the equation for \\spad{z = \\spad{y} e^{-int ai}} is \\spad{Li \\spad{z} = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F}, whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], \\spad{...} ,{} [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op \\spad{y} = 0} must have degree \\spad{mj} for some \\spad{j,} and its leading coefficient is then a zero of \\spad{pj.} In addition,\\spad{m1>m2> \\spad{...} >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op \\spad{y} = 0} is of the form \\spad{p/d + q'/q + \\spad{r}} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r.} Also, \\spad{deg(p) < deg(d)} and {gcd(d,q) = 1}."))) │ │ │ NIL │ │ │ +(|ArbitraryExponentAttribute|) │ │ │ +((|constructor| (NIL "Approximate numbers with arbitrarily large exponents"))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|PseudoAlgebraicClosureOfRationalNumberCategory|) │ │ │ -((|constructor| (NIL "This category exports the function for the domain PseudoAlgebraicClosureOfRationalNumber which implement dynamic extension using the simple notion of tower extensions. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension \\spad{(T} : K_0, K_1, ..., K_i...,K_n) where \\spad{K_0} = \\spad{K} and for \\spad{i} =1,2,...,n, K_i is an extension of K_{i-1} of degree > 1 and defined by an irreducible polynomial p(Z) in K_{i-1}. Two towers (T_1: K_01, K_11,...,K_i1,...,K_n1) and (T_2: K_02, K_12,...,K_i2,...,K_n2) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} T_2), that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1,2,...,n1} (or i=1,2,...,n2). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|IntegralDomain|) │ │ │ +((|constructor| (NIL "The category of commutative integral domains, commutative rings with no zero divisors. \\blankline Conditional attributes\\br canonicalUnitNormal\\tab{5}the canonical field is the same for all associates\\br canonicalsClosed\\tab{5}the product of two canonicals is itself canonical")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit, is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates, differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x.} The attribute canonicalUnitNormal, if asserted, means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = \\spad{x},} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) │ │ │ +((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|PadeApproximantPackage| R |x| |pt|) │ │ │ -((|constructor| (NIL "This package computes reliable Pad&ea. approximants using a generalized Viskovatov continued fraction algorithm.")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant), \\spad{dd} (denominator degree of approximant), \\spad{ns} (numerator series of function), and \\spad{ds} (denominator series of function)."))) │ │ │ +(|HomogeneousAggregate| S) │ │ │ +((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system, all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of u. For collections, \\axiom{member?(x,u) = reduce(or,[x=y for \\spad{y} in u],false)}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of u. For collections, \\axiom{parts([x,y,...,z]) = (x,y,...,z)}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of u. For collections, \\axiom{parts([x,y,...,z]) = (x,y,...,z)}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in u. For collections, \\axiom{count(x,u) = reduce(+,[x=y for \\spad{y} in u],0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{p(x)} is true. For collections, \\axiom{count(p,u) = \\spad{reduce(+,[1} for \\spad{x} in \\spad{u} | p(x)],0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if p(x) is \\spad{true} for all elements \\spad{x} of u. Note that for collections, \\axiom{every?(p,u) = reduce(and,map(f,u),true,false)}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{p(x)} is \\spad{true} for any element \\spad{x} of u. Note that for collections, \\axiom{any?(p,u) = reduce(or,map(f,u),false,true)}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{f(x)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by f(x). For collections, \\axiom{map(f,u) = [f(x) for \\spad{x} in u]}."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ +(|ElementaryFunctionODESolver| R F) │ │ │ +((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, \\spad{y,} \\spad{x} = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = \\spad{y0,} y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, \\spad{y,} \\spad{x} = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = \\spad{y0,} y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, \\spad{y,} \\spad{x)}} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary, a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned, only the solutions which were found; If the equation is of the form {dy/dx = f(x,y)}, a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = \\spad{c}} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, \\spad{y,} \\spad{x)}} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary, a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned, only the solutions which were found; If the equation is of the form {dy/dx = f(x,y)}, a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = \\spad{c}} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], \\spad{x)}} returns either \"failed\" or, if the equations form a fist order linear system, a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], \\spad{x)}} returns either \"failed\" or, if the equations form a fist order linear system, a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, \\spad{x)}} returns a basis for the solutions of \\spad{D \\spad{y} = \\spad{m} \\spad{y}.} \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, \\spad{v,} \\spad{x)}} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D \\spad{y} = \\spad{m} \\spad{y} + \\spad{v}} are \\spad{v_p + \\spad{c_1} \\spad{v_1} + \\spad{...} + \\spad{c_m} v_m} where the \\spad{c_i's} are constants, and the \\spad{v_i's} form a basis for the solutions of \\spad{D \\spad{y} = \\spad{m} \\spad{y}.} \\spad{x} is the dependent variable."))) │ │ │ NIL │ │ │ -(|PAdicRational| |p|) │ │ │ -((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(i = k.., a[i] * p^i) where the a[i] lie in 0,1,...,(p - 1)."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|RealConstant|))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|StepThrough|))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (LIST (QUOTE |PAdicInteger|) (|devaluate| |#1|)))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |Evalable|) (LIST (QUOTE |PAdicInteger|) (|devaluate| |#1|)))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |Eltable|) (LIST (QUOTE |PAdicInteger|) (|devaluate| |#1|)) (LIST (QUOTE |PAdicInteger|) (|devaluate| |#1|)))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|PolynomialComposition| UP R) │ │ │ -((|constructor| (NIL "Polynomial composition and decomposition functions\\br If \\spad{f} = \\spad{g} \\spad{o} \\spad{h} then g=leftFactor(f,h) and h=rightFactor(f,g)")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) │ │ │ NIL │ │ │ +(|IntegerNumberSystem&| S) │ │ │ +((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)}, \\spad{0<=a1}, \\spad{(a,b)=1} means \\spad{1/a mod \\spad{b}.}")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)}, \\spad{0<=a,b

1}, means \\spad{a**b mod \\spad{p}.}")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)}, \\spad{0<=a,b

1}, means \\spad{a*b mod \\spad{p}.}")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)}, \\spad{0<=a,b

1}, means \\spad{a-b mod \\spad{p}.}")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)}, \\spad{0<=a,b

1}, means \\spad{a+b mod \\spad{p}.}")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n.}")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n.}")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number, or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ \\spad{-b/2} \\spad{<=} \\spad{r} < \\spad{b/2} \\spad{}.}")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 \\spad{<=} \\spad{r} < \\spad{b}} and \\spad{r \\spad{==} a rem \\spad{b}.}")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) │ │ │ NIL │ │ │ -(|ParametrizationPackage| K |symb| |PolyRing| E |ProjPt| PCS |Plc|) │ │ │ -((|constructor| (NIL "The following is part of the PAFF package")) (|parametrize| ((|#6| |#3| |#7| (|Integer|)) "\\spad{parametrize(f,pl,n)} returns t**n * parametrize(f,p).") ((|#6| |#3| |#3| |#7|) "\\spad{parametrize(f,g,pl)} returns the local parametrization of the rational function \\spad{f/g} at the place \\spad{pl.} Note that local parametrization of the place must have first been compute and set. For simple point on a curve, this done with \\spad{pointToPlace}. The local parametrization places corresponding to a leaf in a desingularization tree are compute at the moment of their \"creation\". (See package \\spad{DesingTreePackage}.") ((|#6| |#3| |#7|) "\\spad{parametrize(f,pl)} returns the local parametrization of the polynomial function \\spad{f} at the place \\spad{pl.} Note that local parametrization of the place must have first been compute and set. For simple point on a curve, this done with \\spad{pointToPlace}. The local parametrization places corresponding to a leaf in a desingularization tree are compute at the moment of their \"creation\". (See package \\spad{DesingTreePackage}."))) │ │ │ NIL │ │ │ +(|MonoidRingFunctions2| R S M) │ │ │ +((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b.}"))) │ │ │ NIL │ │ │ -(|PolynomialDecomposition| UP F) │ │ │ -((|constructor| (NIL "Polynomial composition and decomposition functions\\br If \\spad{f} = \\spad{g} \\spad{o} \\spad{h} then g=leftFactor(f,h) and h=rightFactor(f,g)")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) │ │ │ NIL │ │ │ +(|FullyLinearlyExplicitRingOver| R) │ │ │ +((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver \\spad{R}} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver \\spad{R}} and, in addition, if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer}, then so is \\spad{S}"))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|PrimeField| |p|) │ │ │ -((|constructor| (NIL "PrimeField(p) implements the field with \\spad{p} elements if \\spad{p} is a prime number."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| $ (QUOTE (|CharacteristicZero|))) (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| $ (QUOTE (|Finite|)))) │ │ │ -(|PAdicRationalConstructor| |p| PADIC) │ │ │ -((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp.}")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the p-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the p-adic rational \\spad{x}. A p-adic rational is represented by \\spad{(1)} an exponent and \\spad{(2)} a p-adic integer which may have leading zero digits. When the p-adic integer has a leading zero digit, a 'leading zero' is removed from the p-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the p-adic integer by \\spad{p.} Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f.}")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the p-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = \\spad{x} (mod p^n)}."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|RealConstant|))) (|HasCategory| |#2| (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|StepThrough|))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |Eltable|) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#2| (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|PolynomialFactorizationByRecursionUnivariate| R S) │ │ │ -((|constructor| (NIL "PolynomialFactorizationByRecursionUnivariate \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain, \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S,} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p.} This functions performs the recursion step for factorSquareFreePolynomial, as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p.} This function performs the recursion step for factorPolynomial, as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = \\spad{p} / prod pi}, a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists, then \"failed\" is returned."))) │ │ │ +(|PatternMatchSymbol| S) │ │ │ +((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression expr; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PointsOfFiniteOrderTools| UP UPUP) │ │ │ -((|constructor| (NIL "Utilities for PFOQ and PFO")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime \\spad{n}} returns the smallest prime not dividing \\spad{n}"))) │ │ │ +(|InterfaceGroebnerPackage| K |symb| E OV R) │ │ │ +((|constructor| (NIL "Part of the Package for Algebraic Function Fields in one variable PAFF"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PackageForPoly| R |PolyRing| E |dim|) │ │ │ -((|constructor| (NIL "The following is part of the PAFF package")) (|degreeOfMinimalForm| (((|NonNegativeInteger|) |#2|) "\\spad{degreeOfMinimalForm does} what it says")) (|listAllMono| (((|List| |#2|) (|NonNegativeInteger|)) "\\spad{listAllMono(l)} returns all the monomials of degree \\spad{l}")) (|listAllMonoExp| (((|List| |#3|) (|Integer|)) "\\spad{listAllMonoExp(l)} returns all the exponents of degree \\spad{l}")) (|homogenize| ((|#2| |#2| (|Integer|)) "\\spad{homogenize(pol,n)} returns the homogenized polynomial of \\spad{pol} with respect to the \\spad{n}-th variable.")) (|constant| ((|#1| |#2|) "\\spad{constant(pol)} returns the constant term of the polynomial.")) (|degOneCoef| ((|#1| |#2| (|PositiveInteger|)) "\\spad{degOneCoef(pol,n)} returns the coefficient in front of the monomial specified by the positive integer.")) (|translate| ((|#2| |#2| (|List| |#1|)) "\\spad{translate(pol,[a,b,c])} apply to \\spad{pol} the linear change of coordinates, x->x+a, y->y+b, z->z+c") ((|#2| |#2| (|List| |#1|) (|Integer|)) "\\spad{translate(pol,[a,b,c],3)} apply to \\spad{pol} the linear change of coordinates, x->x+a, y->y+b, z->1.")) (|replaceVarByOne| ((|#2| |#2| (|Integer|)) "\\spad{replaceVarByOne(pol,a)} evaluate to one the variable in \\spad{pol} specified by the integer a.")) (|replaceVarByZero| ((|#2| |#2| (|Integer|)) "\\spad{replaceVarByZero(pol,a)} evaluate to zero the variable in \\spad{pol} specified by the integer a.")) (|firstExponent| ((|#3| |#2|) "\\spad{firstExponent(pol)} returns the exponent of the first term in the representation of pol. Not to be confused with the leadingExponent \\indented{1}{which is the highest exponent according to the order} over the monomial.")) (|minimalForm| ((|#2| |#2|) "\\spad{minimalForm(pol)} returns the minimal forms of the polynomial pol."))) │ │ │ +(|StreamFunctions2| A B) │ │ │ +((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)}, where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]}, \\indented{1}{returns the value \\spad{r(n)} computed as follows:} \\indented{1}{\\spad{r0 = f(x0,b),} \\indented{1}{r1 = f(x1,r0),...,} \\indented{1}{r(n) = f(xn,r(n-1))}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..300]::Stream(Integer) \\spad{X} f(i:Integer,j:Integer):Integer==i+j \\spad{X} reduce(1,f,m)")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]}, where \\indented{1}{\\spad{y0 = h(x0,b)},} \\indented{1}{\\spad{y1 = h(x1,y0)},\\spad{...}} \\indented{1}{\\spad{yn = h(xn,y(n-1))}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..]::Stream(Integer) \\spad{X} f(i:Integer,j:Integer):Integer==i+j \\spad{X} scan(1,f,m)")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied \\indented{1}{to the corresponding elements of \\spad{s.}} \\indented{1}{Note that \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.} \\blankline \\spad{X} m:=[i for \\spad{i} in 1..] \\spad{X} \\spad{f(i:PositiveInteger):PositiveInteger==i**2} \\spad{X} map(f,m)"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PolynomialFactorizationByRecursion| R E |VarSet| S) │ │ │ -((|constructor| (NIL "PolynomialFactorizationByRecursion(R,E,VarSet,S) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R.}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion} {PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of solveLinearPolynomialEquationByRecursion its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p.} This functions performs the recursion step for factorSquareFreePolynomial, as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p.} This function performs the recursion step for factorPolynomial, as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = \\spad{p} / prod pi}, a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists, then \"failed\" is returned."))) │ │ │ +(|ElementaryFunctionCategory&| S) │ │ │ +((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y.}")) (|exp| (($ $) "\\spad{exp(x)} returns \\%e to the power \\spad{x.}")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x.} When evaluated into some subset of the complex numbers, the branch cut lies along the negative real axis, continuous with quadrant II. The domain does not contain the origin."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PartialFractionPackage| R) │ │ │ -((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials, and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition \\indented{1}{of the rational function \\spad{rf} with respect to the variable var.} \\blankline \\spad{X} a:=x+1/(y+1) \\spad{X} partialFraction(a,y)$PFRPAC(INT)"))) │ │ │ +(|PolynomialFactorizationExplicit&| S) │ │ │ +((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields, it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}-th root of \\spad{r,} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements, not all zero, whose \\spad{p}-th powers \\spad{(p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m,} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], \\spad{g)}} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of ai's exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q.}")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p.}")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p.}"))) │ │ │ NIL │ │ │ +((|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|)))) │ │ │ +(|NeitherSparseOrDensePowerSeries| K) │ │ │ +((|constructor| (NIL "This domain is part of the PAFF package"))) │ │ │ +(((|commutative| "*") . T) (|noZeroDivisors| . T) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|SemiGroup|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|))))) (|HasCategory| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |k|) (QUOTE (|Integer|))) (LIST (QUOTE |:|) (QUOTE |c|) (|devaluate| |#1|))))) (|HasCategory| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)) (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) │ │ │ +(|IndexedList| S |mn|) │ │ │ +((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate}, often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is, if \\spad{l} is a list, then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ +(|KeyedDictionary&| S |Key| |Entry|) │ │ │ +((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k,} returning the entry stored in \\spad{t} for key \\spad{k.} If \\spad{t} has no such key, \\axiom{search(k,t)} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key, \\axiom{remove!(k,t)} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t.}")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t.}"))) │ │ │ NIL │ │ │ -(|PolynomialInterpolationAlgorithms| F P) │ │ │ -((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) │ │ │ NIL │ │ │ +(|DirectProductCategory&| S |dim| R) │ │ │ +((|constructor| (NIL "This category represents a finite cartesian product of a given type. Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * \\spad{r}} multiplies each component of the vector \\spad{y} by the element \\spad{r.}") (($ |#3| $) "\\spad{r * \\spad{y}} multiplies the element \\spad{r} times each component of the vector \\spad{y.}")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y.}")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) │ │ │ NIL │ │ │ -(|PolynomialGcdPackage| E OV R P) │ │ │ -((|constructor| (NIL "This package computes multivariate polynomial gcd's using a hensel lifting strategy. The constraint on the coefficient domain is imposed by the lifting strategy. It is assumed that the coefficient domain has the property that almost all specializations preserve the degree of the gcd.")) (|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive \\spad{lp}} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp.}") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q.}") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q.}")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp.}") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q.}") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp.}") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q.} \\blankline \\spad{X} p1:=(x+1)*(x+6) \\spad{X} p2:=(x+1)*(x-6) \\spad{X} gcd(p1,p2)"))) │ │ │ +((|HasCategory| |#3| (QUOTE (|Field|))) (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#3| (QUOTE (|OrderedRing|))) (|HasAttribute| |#3| (QUOTE |unitsKnown|)) (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|Finite|))) (|HasCategory| |#3| (QUOTE (|Monoid|))) (|HasCategory| |#3| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#3| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#3| (QUOTE (|Ring|))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) │ │ │ +(|PAdicRationalConstructor| |p| PADIC) │ │ │ +((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp.}")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the p-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the p-adic rational \\spad{x}. A p-adic rational is represented by \\spad{(1)} an exponent and \\spad{(2)} a p-adic integer which may have leading zero digits. When the p-adic integer has a leading zero digit, a 'leading zero' is removed from the p-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the p-adic integer by \\spad{p.} Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f.}")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the p-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = \\spad{x} (mod p^n)}."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|RealConstant|))) (|HasCategory| |#2| (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|StepThrough|))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |Eltable|) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#2| (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|PolyGroebner| F) │ │ │ +((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} This package is an interface package to the groebner basis package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain, but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis \\indented{1}{for the list of polynomials \\spad{lp} with the terms} \\indented{1}{ordered first by total degree and then} \\indented{1}{refined by reverse lexicographic ordering.} \\indented{1}{The variables are ordered by their position in the list lv.} \\blankline \\spad{X} totalGroebner([2*x^2+y, 2*y^2+x],[x,y])")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis \\indented{1}{for the list of polynomials \\spad{lp} in lexicographic order.} \\indented{1}{The variables are ordered by their position in the list lv.} \\blankline \\spad{X} lexGroebner([2*x^2+y, 2*y^2+x],[x,y])"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PolynomialPackageForCurve| K |PolyRing| E |dim| |ProjPt|) │ │ │ -((|constructor| (NIL "The following is part of the PAFF package")) (|multiplicity| (((|NonNegativeInteger|) |#2| |#5| (|Integer|)) "\\spad{multiplicity returns} the multiplicity of the polynomial at given point.") (((|NonNegativeInteger|) |#2| |#5|) "\\spad{multiplicity returns} the multiplicity of the polynomial at given point.")) (|minimalForm| ((|#2| |#2| |#5| (|Integer|)) "\\spad{minimalForm returns} the minimal form after translation to the origin.") ((|#2| |#2| |#5|) "\\spad{minimalForm returns} the minimal form after translation to the origin.")) (|translateToOrigin| ((|#2| |#2| |#5|) "\\spad{translateToOrigin translate} the polynomial from the given point to the origin") ((|#2| |#2| |#5| (|Integer|)) "\\spad{translateToOrigin translate} the polynomial from the given point to the origin")) (|eval| ((|#1| |#2| |#5|) "\\spad{eval returns} the value at given point.")) (|pointInIdeal?| (((|Boolean|) (|List| |#2|) |#5|) "\\spad{pointInIdeal? test} if the given point is in the algebraic set defined by the given list of polynomials."))) │ │ │ +(|ComplexTrigonometricManipulations| R F) │ │ │ +((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real \\spad{f,} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real \\spad{f}.}")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, \\spad{x)}} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, \\spad{x)}} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ParametricLinearEquations| R |Var| |Expon| GR) │ │ │ -((|constructor| (NIL "This package completely solves a parametric linear system of equations by decomposing the set of all parametric values for which the linear system is consistent into a union of quasi-algebraic sets (which need not be irredundant, but most of the time is). Each quasi-algebraic set is described by a list of polynomials that vanish on the set, and a list of polynomials that vanish at no point of the set. For each quasi-algebraic set, the solution of the linear system is given, as a particular solution and a basis of the homogeneous system. \\blankline The parametric linear system should be given in matrix form, with a coefficient matrix and a right hand side vector. The entries of the coefficient matrix and right hand side vector should be polynomials in the parametric variables, over a Euclidean domain of characteristic zero. \\blankline If the system is homogeneous, the right hand side need not be given. The right hand side can also be replaced by an indeterminate vector, in which case, the conditions required for consistency will also be given. \\blankline The package has other facilities for saving results to external files, as well as solving the system for a specified minimum rank. Altogether there are 12 mode maps for psolve, as explained below.")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\spad{inconsistent?(pl)} returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "\\spad{inconsistent?(pl)} returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, \\spad{w,} \\spad{p,} \\spad{r,} \\spad{rm,} \\spad{m)}} returns a regime, a list of polynomials specifying the consistency conditions, a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant y.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm.} The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants, and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous, or the right hand side is arbitrary, or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl;} otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of k-subsets of \\spad{{1,} ..., \\spad{n}.}")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p.}")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (s.mat) \\spad{z} = s.vec for the variables given by the column indices of s.cols in terms of the other variables and the right hand side s.vec by assuming that the rank is s.rank, that the system is consistent, with the linearly independent equations indexed by the given row indices s.rows; the coefficients in s.mat involving parameters are treated as polynomials. B1solve(s) returns a particular solution to the system and a basis of the homogeneous system (s.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, \\spad{l)}} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{^=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, \\spad{w,} \\spad{r,} \\spad{s,} \\spad{m)}} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r;} depending on the mode \\spad{m} chosen, it writes the output to a file given by the string \\spad{s.}")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c,} writes the results to a file named \\spad{s,} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w,} writes the results to a file named \\spad{s,} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w,} writes the results to a file named \\spad{s,} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w,} writes the results to a file named \\spad{s,} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w,} writes the results to a file named \\spad{s,} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w,} writes the results to a file named \\spad{s,} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) │ │ │ +(|NoneFunctions1| S) │ │ │ +((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PatternMatchQuotientFieldCategory| S R Q) │ │ │ -((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient a/b; res contains the variables of \\spad{pat} which are already matched and their matches."))) │ │ │ +(|FunctionSpaceUnivariatePolynomialFactor| R F UP) │ │ │ +((|constructor| (NIL "This package is used internally by IR2F")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers, returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers, returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) │ │ │ NIL │ │ │ +((|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|AlgebraicNumber|))))) │ │ │ +(|FiniteFieldNormalBasisExtensionByPolynomial| GF |uni|) │ │ │ +((|constructor| (NIL "\\spad{FiniteFieldNormalBasisExtensionByPolynomial(GF,uni)} implements a finite extension of the ground field \\spad{GF.} The elements are represented by coordinate vectors with respect to a normal basis, a basis consisting of the conjugates (q-powers) of an element, in this case called normal element, where \\spad{q} is the size of \\spad{GF.} The normal element is chosen as a root of the extension polynomial, which MUST be normal over \\spad{GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))))) │ │ │ +(|StreamFunctions3| A B C) │ │ │ +((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the \\indented{1}{function \\spad{f} applied to the corresponding elements of \\spad{st1} and st2.} \\indented{1}{\\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.} \\blankline \\spad{S} \\spad{X} m:=[i for \\spad{i} in 1..]::Stream(Integer) \\spad{X} n:=[i for \\spad{i} in 1..]::Stream(Integer) \\spad{X} f(i:Integer,j:Integer):Integer \\spad{==} i+j \\spad{X} map(f,m,n)"))) │ │ │ NIL │ │ │ -(|PatternMatchPolynomialCategory| S E V R P) │ │ │ -((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p;} res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p.} \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) │ │ │ NIL │ │ │ -((|HasCategory| |#3| (LIST (QUOTE |PatternMatchable|) (|devaluate| |#1|)))) │ │ │ -(|RealPolynomialUtilitiesPackage| |TheField| |ThePols|) │ │ │ -((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(l,s1,sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn.")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(l)} is the number of sign variations in the list of numbers \\spad{l,} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(p)} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(p) = sylvesterSequence(p,p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(p,q)} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) │ │ │ +(|FreeNilpotentLie| |n| |class| R) │ │ │ +((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P.} Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} is not documented")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} is not documented")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) │ │ │ +((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|OrderedRing|)))) │ │ │ -(|PolynomialNumberTheoryFunctions|) │ │ │ -((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note that Legendre polynomials, denoted \\spad{P[n](x)}, are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note that Laguerre polynomials, denoted \\spad{L[n](x)}, are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note that Hermite polynomials, denoted \\spad{H[n](x)}, are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k.} Note that fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for \\spad{k} in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note that Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = \\spad{n} E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note that \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note that Chebyshev polynomials of the second kind, denoted \\spad{U[n](x)}, computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note that Chebyshev polynomials of the first kind, denoted \\spad{T[n](x)}, computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = \\spad{n} B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) │ │ │ +(|ElementaryFunctionStructurePackage| R F) │ │ │ +((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions, using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, \\spad{k)}} returns \\spad{f} rewriting either \\spad{k} which must be an nth-root in terms of radicals already in \\spad{f}, or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn}, and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, \\spad{x)}} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, \\spad{x)}} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, \\spad{x)}} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PolToPol| |lv| R) │ │ │ -((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) │ │ │ +(|LexTriangularPackage| R |ls|) │ │ │ +((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are lexTriangular and squareFreeLexTriangular. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the lexTriangular method described in [1]. They differ from the algorithm described in \\spad{[2]} by the fact that multiplicities of the roots are not kept. With the squareFreeLexTriangular operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets.")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp, norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{true} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp, norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{true} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base, norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{true} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base, norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{true} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the FGLM strategy is used, otherwise the Sugar strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the FGLM strategy, if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal w.r.t. the variables involved in \\axiom{lp}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PolynomialCategoryQuotientFunctions| E V R P F) │ │ │ -((|constructor| (NIL "Manipulations on polynomial quotients This package transforms multivariate polynomials or fractions into univariate polynomials or fractions, and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0}, \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0}, \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = \\spad{a1} \\spad{...} an} and \\spad{n > 1}, \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [m1,...,mn] if \\spad{p = \\spad{m1} + \\spad{...} + \\spad{mn}} and \\spad{n > 1}, \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, \\spad{v)}} applies both the numerator and denominator of \\spad{f} to \\spad{v.}")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, \\spad{x,} \\spad{p)}} returns \\spad{f} viewed as a univariate polynomial in \\spad{x,} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, \\spad{v)}} returns \\spad{f} viewed as a univariate rational function in \\spad{v.}")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f,} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f.}"))) │ │ │ +(|ArcTrigonometricFunctionCategory|) │ │ │ +((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x.} When evaluated into some subset of the complex numbers, one branch cut for atan lies along the positive imaginary axis above \\spad{%i} (exclusive), continuous with the left half plane, the other along the negative imaginary axis below -\\%i (exclusive) continuous with the right half plane. The domain does not contain \\spad{%i} and -\\%i")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x.} When evaluated into some subset of the complex numbers, one branch cut for asin lies along the negative real axis to the left of \\spad{-1} (inclusive), continuous with the upper half plane, the other along the positive real axis to the right of 1 (inclusive), continuous with the lower half plane.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x.}")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x.}")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x.}")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x.} When evaluated into some subset of the complex numbers, one branch cut for acos lies along the negative real axis to the left of \\spad{-1} (inclusive), continuous with the upper half plane, the other along the positive real axis to the right of 1 (inclusive), continuous with the lower half plane."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PolynomialCategoryLifting| E |Vars| R P S) │ │ │ -((|constructor| (NIL "This package provides a very general map function, which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S,} maps polynomials into \\spad{S.} \\spad{S} is assumed to support \\spad{+}, \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, \\spad{p)}} takes a varmap, a mapping from the variables of polynomial \\spad{p} into \\spad{S,} coefmap, a mapping from coefficients of \\spad{p} into \\spad{S,} and \\spad{p,} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) │ │ │ +(|LieAlgebra&| S R) │ │ │ +((|constructor| (NIL "The category of Lie Algebras. It is used by the domains of non-commutative algebra, LiePolynomial and XPBWPolynomial.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{x} by \\axiom{r}.")) (|construct| (($ $ $) "\\axiom{construct(x,y)} returns the Lie bracket of \\axiom{x} and \\axiom{y}."))) │ │ │ NIL │ │ │ +((|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ +(|OrderlyDifferentialPolynomial| R) │ │ │ +((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates, with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|OrderlyDifferentialVariable| (|Symbol|)) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|OrderlyDifferentialVariable| (|Symbol|)) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|OrderlyDifferentialVariable| (|Symbol|)) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|OrderlyDifferentialVariable| (|Symbol|)) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|OrderlyDifferentialVariable| (|Symbol|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|Asp28| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs, used in NAG routine f02fjf, for example: \\blankline \\tab{5}SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK)\\br \\tab{5}DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK)\\br \\tab{5}INTEGER N,LIWORK,IFLAG,LRWORK\\br \\tab{5}W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00\\br \\tab{4}&2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554\\br \\tab{4}&0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365\\br \\tab{4}&3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z(\\br \\tab{4}&8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0.\\br \\tab{4}&2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050\\br \\tab{4}&8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z\\br \\tab{4}&(1)\\br \\tab{5}W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010\\br \\tab{4}&94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136\\br \\tab{4}&72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D\\br \\tab{4}&0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8)\\br \\tab{4}&)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532\\br \\tab{4}&5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056\\br \\tab{4}&67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1\\br \\tab{4}&))\\br \\tab{5}W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0\\br \\tab{4}&06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033\\br \\tab{4}&305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502\\br \\tab{4}&9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D\\br \\tab{4}&0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(-\\br \\tab{4}&0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961\\br \\tab{4}&32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917\\br \\tab{4}&D0*Z(1))\\br \\tab{5}W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0.\\br \\tab{4}&01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688\\br \\tab{4}&97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315\\br \\tab{4}&6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z\\br \\tab{4}&(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0\\br \\tab{4}&.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802\\br \\tab{4}&68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0*\\br \\tab{4}&Z(1)\\br \\tab{5}W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+(\\br \\tab{4}&-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014\\br \\tab{4}&45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966\\br \\tab{4}&3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352\\br \\tab{4}&4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6))\\br \\tab{4}&+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718\\br \\tab{4}&5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851\\br \\tab{4}&6D0*Z(1)\\br \\tab{5}W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048\\br \\tab{4}&26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323\\br \\tab{4}&319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730\\br \\tab{4}&01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z(\\br \\tab{4}&8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583\\br \\tab{4}&09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700\\br \\tab{4}&4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1)\\br \\tab{5}W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0\\br \\tab{4}&2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843\\br \\tab{4}&8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017\\br \\tab{4}&95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z(\\br \\tab{4}&8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136\\br \\tab{4}&2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015\\br \\tab{4}&423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1\\br \\tab{4}&)\\br \\tab{5}W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05\\br \\tab{4}&581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338\\br \\tab{4}&45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869\\br \\tab{4}&52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8)\\br \\tab{4}&+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056\\br \\tab{4}&1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544\\br \\tab{4}&359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z(\\br \\tab{4}&1)\\br \\tab{5}W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(-\\br \\tab{4}&0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173\\br \\tab{4}&3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441\\br \\tab{4}&3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8\\br \\tab{4}&))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23\\br \\tab{4}&11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773\\br \\tab{4}&9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z(\\br \\tab{4}&1)\\br \\tab{5}W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0\\br \\tab{4}&.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246\\br \\tab{4}&3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609\\br \\tab{4}&48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8\\br \\tab{4}&))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032\\br \\tab{4}&98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688\\br \\tab{4}&615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z(\\br \\tab{4}&1)\\br \\tab{5}W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0\\br \\tab{4}&7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830\\br \\tab{4}&9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D\\br \\tab{4}&0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8)\\br \\tab{4}&)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493\\br \\tab{4}&1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054\\br \\tab{4}&65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1)\\br \\tab{5}W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(-\\br \\tab{4}&0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162\\br \\tab{4}&3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889\\br \\tab{4}&45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8\\br \\tab{4}&)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0.\\br \\tab{4}&01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226\\br \\tab{4}&501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763\\br \\tab{4}&75D0*Z(1)\\br \\tab{5}W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+(\\br \\tab{4}&-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169\\br \\tab{4}&742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453\\br \\tab{4}&5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z(\\br \\tab{4}&8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05\\br \\tab{4}&468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277\\br \\tab{4}&35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0\\br \\tab{4}&*Z(1)\\br \\tab{5}W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15))\\br \\tab{4}&+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236\\br \\tab{4}&679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278\\br \\tab{4}&87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D\\br \\tab{4}&0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0\\br \\tab{4}&.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660\\br \\tab{4}&7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903\\br \\tab{4}&02D0*Z(1)\\br \\tab{5}W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0\\br \\tab{4}&.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325\\br \\tab{4}&555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556\\br \\tab{4}&9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D\\br \\tab{4}&0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0.\\br \\tab{4}&0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122\\br \\tab{4}&10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z\\br \\tab{4}&(1)\\br \\tab{5}W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0.\\br \\tab{4}&1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669\\br \\tab{4}&47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114\\br \\tab{4}&625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z\\br \\tab{4}&(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0\\br \\tab{4}&07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739\\br \\tab{4}&00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0*\\br \\tab{4}&Z(1)\\br \\tab{5}RETURN\\br \\tab{5}END\\br"))) │ │ │ NIL │ │ │ -(|PolynomialRoots| E V R P F) │ │ │ -((|constructor| (NIL "Computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, \\spad{n)}} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = \\spad{c} * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, \\spad{n)}} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = \\spad{c} * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, \\spad{n)}} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = \\spad{c} * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) │ │ │ NIL │ │ │ -((|HasCategory| |#3| (QUOTE (|GcdDomain|)))) │ │ │ -(|PolynomialFunctions2| R S) │ │ │ -((|constructor| (NIL "This package takes a mapping between coefficient rings, and lifts it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, \\spad{p)}} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p.}"))) │ │ │ +(|BlowUpWithQuadTrans|) │ │ │ +((|constructor| (NIL "This domain is part of the PAFF package"))) │ │ │ +((|QuadraticTransform| . T)) │ │ │ NIL │ │ │ +(|UnivariatePolynomial| |x| R) │ │ │ +((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented. Note that if the coefficient ring is a field, then this domain forms a euclidean domain.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{x} : \\spad{p1} - \\spad{r} * x**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) │ │ │ +(((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|)) (|additiveValuation| |has| |#2| (|Field|)) (|canonicalUnitNormal| |has| |#2| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|StepThrough|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|UnivariatePolynomialCategory| R) │ │ │ +((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R.} No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(b)")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, \\spad{q)}} returns \\spad{[a, \\spad{b]}} such that polynomial \\spad{p = a \\spad{b}} and \\spad{a} is relatively prime to \\spad{q.}")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, \\spad{q,} r]}, when \\spad{p' \\spad{:=} p*lc(q)**(deg \\spad{p} - deg \\spad{q} + 1) = \\spad{c} * \\spad{p}} is pseudo right-divided by \\spad{q,} \\spad{p' = \\spad{s} \\spad{q} + \\spad{r}.}")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r,} the quotient when \\spad{p' \\spad{:=} p*lc(q)**(deg \\spad{p} - deg \\spad{q} + 1)} is pseudo right-divided by \\spad{q,} \\spad{p' = \\spad{s} \\spad{q} + \\spad{r}.}")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, \\spad{q)}} returns \\spad{h} if \\spad{f} = h(q), and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, \\spad{q)}} returns \\spad{h} if \\spad{p = h(q)}, and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, \\spad{q)}} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r.}") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b.}")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q.}")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p.}")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, \\spad{d,} x')} extends the R-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x',} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r,} for polynomials \\spad{p} and \\spad{q,} returns the remainder when \\spad{p' \\spad{:=} p*lc(q)**(deg \\spad{p} - deg \\spad{q} + 1)} is pseudo right-divided by \\spad{q,} \\spad{p' = \\spad{s} \\spad{q} + \\spad{r}.}")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q,} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n,} or \"failed\" if some exponent is not exactly divisible by \\spad{n.}")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n.}")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note that converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|unvectorise| (($ (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the \\indented{1}{entries of \\spad{v} in the increasing order.} \\blankline \\spad{X} \\spad{t1:UP(x,FRAC(INT)):=3*x^3+4*x^2+5*x+6} \\spad{X} t2:=vectorise(t1,4) \\spad{X} t3:UP(x,FRAC(INT)):=unvectorise(t2)")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, \\spad{n)}} returns \\spad{[a0,...,a(n-1)]} where \\indented{1}{\\spad{p = \\spad{a0} + a1*x + \\spad{...} + a(n-1)*x**(n-1)} + higher order terms.} \\indented{1}{The degree of polynomial \\spad{p} can be different from \\spad{n-1}.} \\blankline \\spad{X} \\spad{t1:UP(x,FRAC(INT)):=3*x^3+4*x^2+5*x+6} \\spad{X} t2:=vectorise(t1,4)"))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|additiveValuation| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|PolynomialToUnivariatePolynomial| |x| R) │ │ │ -((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, \\spad{x)}} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))}, ie. as a member of \\spad{R[...][x]}."))) │ │ │ +(|DoubleFloat|) │ │ │ +((|constructor| (NIL "\\spadtype{DoubleFloat} is intended to make accessible hardware floating point arithmetic in Axiom, either native double precision, or IEEE. On most machines, there will be hardware support for the arithmetic operations: \\spad{++} \\spad{+,} \\spad{*,} / and possibly also the sqrt operation. The operations exp, log, sin, cos, atan are normally coded in software based on minimax polynomial/rational approximations. \\blankline Some general comments about the accuracy of the operations: the operations \\spad{+,} \\spad{*,} / and sqrt are expected to be fully accurate. The operations exp, log, sin, cos and atan are not expected to be fully accurate. In particular, sin and cos will lose all precision for large arguments. \\blankline The Float domain provides an alternative to the DoubleFloat domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as erf, the error function in addition to the elementary functions. The disadvantage of Float is that it is much more expensive than small floats when the latter can be used.")) (|integerDecode| (((|List| (|Integer|)) $) "\\spad{integerDecode(x)} returns the multiple values of the common lisp integer-decode-float function. See Steele, ISBN 0-13-152414-3 p354. This function can be used to ensure that the results are bit-exact and do not depend on the binary-to-decimal conversions. \\blankline \\spad{X} \\spad{a:DFLOAT:=-1.0/3.0} \\spad{X} integerDecode a")) (|machineFraction| (((|Fraction| (|Integer|)) $) "\\spad{machineFraction(x)} returns a bit-exact fraction of the machine floating point number using the common lisp integer-decode-float function. See Steele, ISBN 0-13-152414-3 \\spad{p354} This function can be used to print results which do not depend on binary-to-decimal conversions \\blankline \\spad{X} \\spad{a:DFLOAT:=-1.0/3.0} \\spad{X} machineFraction a")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, \\spad{n,} \\spad{b)}} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is, \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, \\spad{n)}} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "\\spad{doubleFloatFormat changes} the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y.}")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x.}")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x.}")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x \\spad{**} \\spad{y}} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer i."))) │ │ │ +((|approximate| . T) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|DifferentialPolynomialCategory&| A R S V E) │ │ │ +((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition, it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader}, \\spadfun{initial}, \\spadfun{separant}, \\spadfun{differentialVariables}, and \\spadfun{isobaric?}. Furthermore, if the ground ring is a differential ring, then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor, one needs to provide a ground ring \\spad{R,} an ordered set \\spad{S} of differential indeterminates, a ranking \\spad{V} on the set of derivatives of the differential indeterminates, and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates.")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note that an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight, and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, \\spad{s)}} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p.}")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, \\spad{s)}} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p.}")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, \\spad{s)}} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p,} which is the maximum number of differentiations of a differential indeterminate, among all those appearing in \\spad{p.}") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s.}")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p.}")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring, in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z.n} where \\spad{z} \\spad{:=} makeVariable(p). Note that In the interpreter, \\spad{z} is given as an internal map, which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate, in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z.n} where \\spad{z} :=makeVariable(s). Note that In the interpreter, \\spad{z} is given as an internal map, which may be ignored."))) │ │ │ NIL │ │ │ -(|PushVariables| R E OV PPR) │ │ │ -((|constructor| (NIL "This package has no description")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) │ │ │ +((|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) │ │ │ +(|FractionalIdealFunctions2| R1 F1 U1 A1 R2 F2 U2 A2) │ │ │ +((|constructor| (NIL "Lifting of morphisms to fractional ideals.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PolynomialSquareFree| |VarSet| E RC P) │ │ │ -((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p.} Each factor has no repeated roots, and the factors are pairwise relatively prime."))) │ │ │ +(|PiCoercions| R) │ │ │ +((|constructor| (NIL "Provides a coercion from the symbolic fractions in \\%pi with integer coefficients to any Expression type.")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(R)."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|QuasiAlgebraicSet| R |Var| |Expon| |Dpoly|) │ │ │ -((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets, which is the intersection of a Zariski closed set, defined as the common zeros of a given list of polynomials (the defining polynomials for equations), and a principal Zariski open set, defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone, while the second, \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis, and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only, as it is inefficient compared to the other two, as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods, please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L.} While this may be obtained using the usual normal form algorithm, there is no canonical form for \\spad{q.} \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis, and the defining polynomial for the inequation reduced with respect to the basis, using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis, and the defining polynomial for the inequation reduced with respect to the basis, using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation, that is, the Zariski open part of \\spad{s.}")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations, that is, for the Zariski closed part of \\spad{s.}")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points, and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s,} but asserts the following: if \\spad{t} is true, then \\spad{s} is empty, if \\spad{t} is false, then \\spad{s} is non-empty, and if \\spad{t} = \"failed\", then no assertion is made (that is, \"don't know\"). Note: for internal use only, with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty, \\spad{false} if it is not, and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl,} and defining inequation \\spad{q} \\spad{^=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) │ │ │ +(|PrimeField| |p|) │ │ │ +((|constructor| (NIL "PrimeField(p) implements the field with \\spad{p} elements if \\spad{p} is a prime number."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| $ (QUOTE (|CharacteristicZero|))) (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| $ (QUOTE (|Finite|)))) │ │ │ +(|BalancedFactorisation| R UP) │ │ │ +((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = \\spad{p1^e1} \\spad{...} pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, \\spad{b)}} returns a factorisation \\spad{a = \\spad{p1^e1} \\spad{...} pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b.}"))) │ │ │ NIL │ │ │ -((AND (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))))) │ │ │ -(|QuotientFieldCategoryFunctions2| A B R S) │ │ │ -((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of frac."))) │ │ │ NIL │ │ │ +(|GuessFinite| F) │ │ │ +((|constructor| (NIL "This package exports guessing of sequences of numbers in a finite field"))) │ │ │ NIL │ │ │ -(|PseudoRemainderSequence| R |polR|) │ │ │ -((|constructor| (NIL "This package contains some functions: discriminant, resultant, subResultantGcd, chainSubResultants, degreeSubResultant, lastSubResultant, resultantEuclidean, subResultantGcdEuclidean, semiSubResultantGcdEuclidean1, semiSubResultantGcdEuclidean2\\br These procedures come from improvements of the subresultants algorithm.")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(P,Q)} returns the semi-extended resultant of \\axiom{P} and \\axiom{Q} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(P,Q)} returns the extended resultant of \\axiom{P} and \\axiom{Q} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(P,Q)} returns the resultant of \\axiom{P} and \\axiom{Q} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(P, \\spad{Q,} \\spad{Z,} \\spad{s)}} returns the subresultant \\axiom{S_{e-1}} where \\axiom{P ~ S_d, \\spad{Q} = S_{d-1}, \\spad{Z} = S_e, \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(F, \\spad{x,} \\spad{y,} \\spad{n)}} computes \\axiom{(x/y)**(n-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(x, \\spad{y,} \\spad{n)}} computes \\axiom{x**n/y**(n-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(F,G)} computes quotient and rest of the exact euclidean division of \\axiom{F} by \\axiom{G}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(P,Q)} computes the pseudoDivide of \\axiom{P} by \\axiom{Q}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{v exquo \\spad{r}} computes the exact quotient of \\axiom{v} by \\axiom{r}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{r * \\spad{v}} computes the product of \\axiom{r} and \\axiom{v}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(P, \\spad{Q)}} returns the \\spad{gcd} of \\axiom{P} and \\axiom{Q}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(P,Q)} returns the \"reduce resultant\" and carries out the equality \\axiom{...P + coef2*Q = resultantReduit(P,Q)}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(P,Q)} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(P,Q)}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(P,Q)} returns the \"reduce resultant\" of \\axiom{P} and \\axiom{Q}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(P,Q)} returns the list of degrees of non zero subresultants of \\axiom{P} and \\axiom{Q}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(P, \\spad{Q)}} computes the list of non zero subresultants of \\axiom{P} and \\axiom{Q}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(P)} carries out the equality \\axiom{...P + \\spad{coef2} * D(P) = discriminant(P)}. Warning. \\axiom{degree(P) \\spad{>=} degree(Q)}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(P)} carries out the equality \\axiom{coef1 * \\spad{P} + \\spad{coef2} * D(P) = discriminant(P)}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(P, \\spad{Q)}} returns the discriminant of \\axiom{P} and \\axiom{Q}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(P,Q)} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(P,Q)} where the degree (not the indice) of the subresultant \\axiom{S_i(P,Q)} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(P,Q)} carries out the equality \\axiom{...P + coef2*Q = \\spad{+/-} S_i(P,Q)} where the degree (not the indice) of the subresultant \\axiom{S_i(P,Q)} is the smaller as possible. Warning. \\axiom{degree(P) \\spad{>=} degree(Q)}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(P,Q)} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(P,Q)} where the degree (not the indice) of the subresultant \\axiom{S_i(P,Q)} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(P, \\spad{Q)}} returns the \\spad{gcd} of two primitive polynomials \\axiom{P} and \\axiom{Q}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(P, \\spad{Q)}} computes the last non zero subresultant \\axiom{S} and carries out the equality \\axiom{...P + coef2*Q = \\spad{S}.} Warning. \\axiom{degree(P) \\spad{>=} degree(Q)}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(P, \\spad{Q)}} computes the last non zero subresultant \\axiom{S} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}.}")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(P, \\spad{Q)}} computes the last non zero subresultant of \\axiom{P} and \\axiom{Q}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(P, \\spad{Q,} i)} returns a subresultant \\axiom{S} of degree \\axiom{d} and carries out the equality \\axiom{...P + coef2*Q = S_i}. Warning. \\axiom{degree(P) \\spad{>=} degree(Q)}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(P, \\spad{Q,} i)} returns a subresultant \\axiom{S} of degree \\axiom{d} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(P, \\spad{Q,} \\spad{d)}} computes a subresultant of degree \\axiom{d}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(P, \\spad{Q,} i)} returns the subresultant \\axiom{S_i(P,Q)} and carries out the equality \\axiom{...P + coef2*Q = S_i(P,Q)} Warning. \\axiom{degree(P) \\spad{>=} degree(Q)}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(P, \\spad{Q,} i)} returns the subresultant \\axiom{S_i(P,Q)} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(P,Q)}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(P, \\spad{Q,} i)} returns the subresultant of indice \\axiom{i}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(P,Q)} carries out the equality \\axiom{coef1.P + ? \\spad{Q} = resultant(P,Q)}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(P,Q)} carries out the equality \\axiom{...P + coef2*Q = resultant(P,Q)}. Warning. \\axiom{degree(P) \\spad{>=} degree(Q)}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(P,Q)} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(P,Q)}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(P, \\spad{Q)}} returns the resultant of \\axiom{P} and \\axiom{Q}"))) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|))))) │ │ │ +(|FramedNonAssociativeAlgebraFunctions2| AR R AS S) │ │ │ +((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|GcdDomain|)))) │ │ │ -(|RadixExpansion| |bb|) │ │ │ -((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. for example, \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example, \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example, if \\spad{x = 3/28 = 0.10 714285 714285 ...}, then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example, if \\spad{x = 3/28 = 0.10 714285 714285 ...}, then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Integer|) (QUOTE (|RealConstant|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|StepThrough|))) (|HasCategory| (|Integer|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| (|Integer|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|Integer|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |Eltable|) (QUOTE (|Integer|)) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|Integer|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Integer|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|RationalFactorize| RP) │ │ │ -((|constructor| (NIL "Factorization of extended polynomials with rational coefficients. This package implements factorization of extended polynomials whose coefficients are rational numbers. It does this by taking the \\spad{lcm} of the coefficients of the polynomial and creating a polynomial with integer coefficients. The algorithm in \\spadtype{GaloisGroupFactorizer} is then used to factor the integer polynomial. The result is normalized with respect to the original \\spad{lcm} of the denominators.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) │ │ │ NIL │ │ │ +(|OrdinaryDifferentialRing| |Kernels| R |var|) │ │ │ +((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) │ │ │ +(((|commutative| "*") |has| |#2| (|Field|)) (|noZeroDivisors| |has| |#2| (|Field|)) (|canonicalUnitNormal| |has| |#2| (|Field|)) (|canonicalsClosed| |has| |#2| (|Field|)) (|unitsKnown| . T) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ +(|StreamInfiniteProduct| |Coef|) │ │ │ +((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) │ │ │ NIL │ │ │ -(|RealClosedField&| S) │ │ │ -((|constructor| (NIL "\\axiomType{RealClosedField} provides common access functions for all real closed fields. provides computations with generic real roots of polynomials")) (|approximate| (((|Fraction| (|Integer|)) $ $) "that has precision \\axiom{p} \\axiom{approximate(n,p)} gives an approximation of \\axiom{n}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(x,name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(x,name)} changes the way \\axiom{x} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(x)} is \\axiom{x \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(x)} is \\axiom{x \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(x)} is \\axiom{x \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(x,n)} is \\axiom{x \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,n)} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,n,name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(x)} is the expression of \\axiom{x} in terms of \\axiom{SparseUnivariatePolynomial($)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(x)} is the defining polynomial for the main algebraic quantity of \\axiom{x}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(x)} is the main algebraic quantity name of \\axiom{x}"))) │ │ │ NIL │ │ │ +(|FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber| K) │ │ │ +((|constructor| (NIL "Part of the Package for Algebraic Function Fields in one variable PAFF"))) │ │ │ NIL │ │ │ -(|TranscendentalRischDE| F UP) │ │ │ -((|constructor| (NIL "Risch differential equation, transcendental case.")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, \\spad{B,} \\spad{C,} \\spad{n,} \\spad{D)}} returns either: 1. \\spad{[Q, \\spad{b]}} such that \\spad{degree(Q) \\spad{<=} \\spad{n}} and \\indented{3}{\\spad{a \\spad{Q'+} \\spad{B} \\spad{Q} = \\spad{C}} if \\spad{b = true}, \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, \\spad{C1,} \\spad{m,} \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A \\spad{Q'} + \\spad{BQ} = \\spad{C}} must be of the form} \\indented{3}{\\spad{Q = \\alpha \\spad{H} + \\beta} where \\spad{degree(H) \\spad{<=} \\spad{m}} and} \\indented{3}{H satisfies \\spad{H' + \\spad{B1} \\spad{H} = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, \\spad{g)}} returns a \\spad{[y, \\spad{b]}} such that \\spad{y' + fy = \\spad{g}} if \\spad{b = true}, \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, \\spad{B,} \\spad{C,} \\spad{T]}} such that \\spad{y' + \\spad{f} \\spad{y} = \\spad{g}} has a solution if and only if \\spad{y = \\spad{Q} / \\spad{T},} where \\spad{Q} satisfies \\spad{A \\spad{Q'} + \\spad{B} \\spad{Q} = \\spad{C}} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) │ │ │ NIL │ │ │ +(|RightUnitaryAttribute|) │ │ │ +((|constructor| (NIL "RightUnitary is \\spad{true} if \\spad{x * 1 = \\spad{x}} for all \\spad{x.}"))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|TranscendentalRischDESystem| F UP) │ │ │ -((|constructor| (NIL "Risch differential equation system, transcendental case.")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, \\spad{g1,} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), \\spad{(f,} 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist, \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, \\spad{B,} \\spad{H,} \\spad{C1,} \\spad{C2,} \\spad{T]}} such that \\spad{(y1', y2') + ((0, -f), \\spad{(f,} 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = \\spad{Q1} / \\spad{T,} \\spad{y2} = \\spad{Q2} / \\spad{T},} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), \\spad{(B,} \\spad{H))} (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) │ │ │ +(|ViewDefaultsPackage|) │ │ │ +((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r.}")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to i.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (for example, x=0..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (for example, x=0..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (for example, x=0..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (for example, x=0..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing, such as BITMAP, POSTSCRIPT, etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l;} a viewalone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewalone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h.}") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{x} and \\spad{y} position of a viewport window unless overriden explicityly, newly created viewports will have the \\spad{x} and \\spad{y} coordinates \\spad{x,} \\spad{y.}") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{x} and \\spad{y} position of a viewport window unless overriden explicityly, newly created viewports will have this \\spad{x} and \\spad{y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to i.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p.}") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p.}") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p.}") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p.}") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RealClosedField|) │ │ │ -((|constructor| (NIL "\\axiomType{RealClosedField} provides common access functions for all real closed fields. provides computations with generic real roots of polynomials")) (|approximate| (((|Fraction| (|Integer|)) $ $) "that has precision \\axiom{p} \\axiom{approximate(n,p)} gives an approximation of \\axiom{n}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(x,name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(x,name)} changes the way \\axiom{x} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(x)} is \\axiom{x \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(x)} is \\axiom{x \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(x)} is \\axiom{x \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(x,n)} is \\axiom{x \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,n)} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,n,name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(x)} is the expression of \\axiom{x} in terms of \\axiom{SparseUnivariatePolynomial($)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(x)} is the defining polynomial for the main algebraic quantity of \\axiom{x}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(x)} is the main algebraic quantity name of \\axiom{x}"))) │ │ │ -((|noZeroDivisors| . T) (|canonicalUnitNormal| . T) (|canonicalsClosed| . T) (|leftUnitary| . T) (|rightUnitary| . T) ((|commutative| "*") . T) (|unitsKnown| . T)) │ │ │ +(|AntiSymm| R |lVar|) │ │ │ +((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p.}")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form, if degree(p) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} \\spad{...} u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator, \\indented{1}{a basis term.} \\blankline \\spad{X} AS:=AntiSymm(Integer,[x,y,z]) \\spad{X} [dx,dy,dz]:=[generator(i)$AS for \\spad{i} in 1..3]")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists, and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)}, where \\spad{p} is an antisymmetric polynomial, returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms, and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p.}"))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|RealZeroPackage| |Pol|) │ │ │ -((|constructor| (NIL "This package provides functions for finding the real zeros of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals isolist.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval int.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of pol; the operation returns an isolating interval which is contained within range, or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record int.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial pol.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial pol."))) │ │ │ +(|IntegrationResultToFunction| R F) │ │ │ +((|constructor| (NIL "Conversion of integration results to top-level expressions This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents, provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to i.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to i.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + \\spad{...} + sum_{Pn(a)=0} Q(a,x)} where P1,...,Pn are the factors of \\spad{P.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RealZeroPackageQ| |Pol|) │ │ │ -((|constructor| (NIL "This package provides functions for finding the real zeros of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals, expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of pol, and returns an isolating interval which is contained within range, or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record int.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial pol.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial pol."))) │ │ │ +(|FunctionCalled| |f|) │ │ │ +((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RealSolvePackage|) │ │ │ -((|constructor| (NIL "This package provides numerical solutions of systems of polynomial equations for use in ACPLOT")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real \\indented{1}{solutions of the list \\spad{lp} of polynomials with integer} \\indented{1}{coefficients with respect to the variables in lv,} \\indented{1}{with precision eps.} \\blankline \\spad{X} \\spad{p1} \\spad{:=} x**2*y*z + \\spad{y*z} \\spad{X} \\spad{p2} \\spad{:=} x**2*y**2*z + \\spad{x} + \\spad{z} \\spad{X} \\spad{p3} \\spad{:=} \\spad{x**2*y**2*z**2} + \\spad{z} + 1 \\spad{X} \\spad{lp} \\spad{:=} [p1, \\spad{p2,} \\spad{p3]} \\spad{X} realSolve(lp,[x,y,z],0.01)")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate \\indented{1}{integer polynomial \\spad{p} with precision eps.} \\blankline \\spad{X} \\spad{p} \\spad{:=} 4*x^3 - 3*x^2 + 2*x - 4 \\spad{X} solve(p,0.01)$REALSOLV") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a \\indented{1}{univariate rational polynomial \\spad{p} with precision eps.} \\blankline \\spad{X} \\spad{p} \\spad{:=} 4*x^3 - 3*x^2 + 2*x - 4 \\spad{X} solve(p::POLY(FRAC(INT)),0.01)$REALSOLV"))) │ │ │ +(|PartialDifferentialRing&| A S) │ │ │ +((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S.} \\blankline Axioms\\br \\tab{5}\\spad{differentiate(x+y,e)=differentiate(x,e)+differentiate(y,e)}\\br \\tab{5}\\spad{differentiate(x*y,e)=x*differentiate(y,e)+differentiate(x,e)*y}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives, that is, \\spad{D(...D(x, \\spad{s1,} n1)..., \\spad{sn,} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x, \\spad{s,} \\spad{n)}} computes multiple partial derivatives, that is, \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s.}") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives, that is, \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v.}")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives, that is, \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x, \\spad{s,} \\spad{n)}} computes multiple partial derivatives, that is, \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s.}") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives, that is, \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ResidueRing| F |Expon| |VarSet| |FPol| |LFPol|) │ │ │ -((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) │ │ │ -(((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|PseudoLinearNormalForm| K) │ │ │ +((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, \\spad{v)}} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that \\indented{1}{the pseudo-linear operator whose matrix in the basis \\spad{y} is} \\indented{1}{\\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}.} \\indented{1}{\\spad{der} is a \\spad{sig}-derivation.} \\blankline \\spad{X} f:HDMP([x,y],FRAC INT) \\spad{:=} \\spad{x^3} + 3*y^2 \\spad{X} g:HDMP([x,y],FRAC INT) \\spad{:=} \\spad{x^2} + \\spad{y} \\spad{X} h:HDMP([x,y],FRAC INT) \\spad{:=} \\spad{x} + 2*x*j \\spad{X} normalForm(f,[g,h]) \\spad{X} Lex \\spad{:=} DMP([x,y],FRAC INT) \\spad{X} normalForm(f::Lex,[g::Lex,h::Lex])"))) │ │ │ NIL │ │ │ -(|RetractSolvePackage| Q R) │ │ │ -((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv.} The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) │ │ │ NIL │ │ │ +(|UnivariatePuiseuxSeriesConstructor| |Coef| ULS) │ │ │ +((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]}, where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|))))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ +(|HashTable| |Key| |Entry| |hashfn|) │ │ │ +((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter, tables suited for different purposes can be obtained."))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (OR (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) │ │ │ +(|BalancedBinaryTree| S) │ │ │ +((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves, for some \\spad{k > 0}, is symmetric, that is, the left and right subtree of each interior node have identical shape. In general, the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" \\indented{1}{(node then left then right) fashion replacing the successive} \\indented{1}{interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and} \\indented{1}{right subtrees of \\spad{t.} The root value \\spad{x} of \\spad{t} is replaced by \\spad{p.}} \\indented{1}{Then f(value \\spad{l,} value \\spad{r,} \\spad{p),} where \\spad{l} and \\spad{r} denote the left} \\indented{1}{and right subtrees of \\spad{t,} is evaluated producing two values} \\indented{1}{pl and \\spad{pr.} Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)}} \\indented{1}{are evaluated.} \\blankline \\spad{X} T1:=BalancedBinaryTree Integer \\spad{X} t2:=balancedBinaryTree(4, 0)$T1 \\spad{X} setleaves!(t2,[1,2,3,4]::List(Integer)) \\spad{X} adder3(i:Integer,j:Integer,k:Integer):List Integer \\spad{==} [i+j,j+k] \\spad{X} mapDown!(t2,4::INT,adder3) \\spad{X} \\spad{t2}") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" \\indented{1}{(node then left then right) fashion replacing the successive} \\indented{1}{interior nodes as follows. The root value \\spad{x} is} \\indented{1}{replaced by \\spad{q} \\spad{:=} f(p,x). The mapDown!(l,q,f) and} \\indented{1}{mapDown!(r,q,f) are evaluated for the left and right subtrees} \\indented{1}{l and \\spad{r} of \\spad{t.}} \\blankline \\spad{X} T1:=BalancedBinaryTree Integer \\spad{X} t2:=balancedBinaryTree(4, 0)$T1 \\spad{X} setleaves!(t2,[1,2,3,4]::List(Integer)) \\spad{X} adder(i:Integer,j:Integer):Integer \\spad{==} i+j \\spad{X} mapDown!(t2,4::INT,adder) \\spad{X} \\spad{t2}")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" \\indented{1}{(left then right then node) fashion returning \\spad{t} with the value} \\indented{1}{at each successive interior node of \\spad{t} replaced \\spad{by}} \\indented{1}{f(l,r,l1,r1) where \\spad{l} and \\spad{r} are the values at the immediate} \\indented{1}{left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the} \\indented{1}{corresponding nodes of a balanced binary tree \\spad{t1,} of identical} \\indented{1}{shape at \\spad{t.}} \\blankline \\spad{X} T1:=BalancedBinaryTree Integer \\spad{X} t2:=balancedBinaryTree(4, 0)$T1 \\spad{X} setleaves!(t2,[1,2,3,4]::List(Integer)) \\spad{X} adder4(i:INT,j:INT,k:INT,l:INT):INT \\spad{==} i+j+k+l \\spad{X} mapUp!(t2,t2,adder4) \\spad{X} \\spad{t2}") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" \\indented{1}{(left then right then node) fashion returning \\spad{t} with the value} \\indented{1}{at each successive interior node of \\spad{t} replaced \\spad{by}} \\indented{1}{f(l,r) where \\spad{l} and \\spad{r} are the values at the immediate} \\indented{1}{left and right nodes.} \\blankline \\spad{X} T1:=BalancedBinaryTree Integer \\spad{X} t2:=balancedBinaryTree(4, 0)$T1 \\spad{X} setleaves!(t2,[1,2,3,4]::List(Integer)) \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} mapUp!(t2,adder) \\spad{X} \\spad{t2}")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order \\indented{1}{to the elements of ls.} \\blankline \\spad{X} t1:=balancedBinaryTree(4, 0) \\spad{X} setleaves!(t1,[1,2,3,4])")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, \\spad{s)}} creates a balanced binary tree with \\indented{1}{n nodes each with value \\spad{s.}} \\blankline \\spad{X} balancedBinaryTree(4, 0)"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ +(|PointsOfFiniteOrderRational| UP UPUP R) │ │ │ +((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) │ │ │ NIL │ │ │ -(|RationalFunctionFactorizer| R) │ │ │ -((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r.}"))) │ │ │ NIL │ │ │ +(|Asp41| |nameOne| |nameTwo| |nameThree|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs, needed for NAG routines d02raf and d02saf in particular. These ASPs are in fact three Fortran routines which return a vector of functions, and their derivatives \\spad{wrt} Y(i) and also a continuation parameter EPS, for example: \\blankline \\tab{5}SUBROUTINE FCN(X,EPS,Y,F,N)\\br \\tab{5}DOUBLE PRECISION EPS,F(N),X,Y(N)\\br \\tab{5}INTEGER N\\br \\tab{5}F(1)=Y(2)\\br \\tab{5}F(2)=Y(3)\\br \\tab{5}F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS)\\br \\tab{5}RETURN\\br \\tab{5}END\\br \\tab{5}SUBROUTINE JACOBF(X,EPS,Y,F,N)\\br \\tab{5}DOUBLE PRECISION EPS,F(N,N),X,Y(N)\\br \\tab{5}INTEGER N\\br \\tab{5}F(1,1)=0.0D0\\br \\tab{5}F(1,2)=1.0D0\\br \\tab{5}F(1,3)=0.0D0\\br \\tab{5}F(2,1)=0.0D0\\br \\tab{5}F(2,2)=0.0D0\\br \\tab{5}F(2,3)=1.0D0\\br \\tab{5}F(3,1)=-1.0D0*Y(3)\\br \\tab{5}F(3,2)=4.0D0*EPS*Y(2)\\br \\tab{5}F(3,3)=-1.0D0*Y(1)\\br \\tab{5}RETURN\\br \\tab{5}END\\br \\tab{5}SUBROUTINE JACEPS(X,EPS,Y,F,N)\\br \\tab{5}DOUBLE PRECISION EPS,F(N),X,Y(N)\\br \\tab{5}INTEGER N\\br \\tab{5}F(1)=0.0D0\\br \\tab{5}F(2)=0.0D0\\br \\tab{5}F(3)=2.0D0*Y(2)**2-2.0D0\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ -(|RationalFunction| R) │ │ │ -((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R.}")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, \\spad{[v1} = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel, vi's appearing inside the gi's are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, \\spad{v} = \\spad{g)}} returns \\spad{f} with \\spad{v} replaced by \\spad{g.} Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel, vi's appearing inside the gi's are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, \\spad{v,} \\spad{g)}} returns \\spad{f} with \\spad{v} replaced by \\spad{g.}")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, \\spad{v)}} applies both the numerator and denominator of \\spad{f} to \\spad{v.}")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, \\spad{v)}} returns \\spad{f} viewed as a univariate rational function in \\spad{v.}")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f,} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f.}"))) │ │ │ NIL │ │ │ +(|Complex| R) │ │ │ +((|constructor| (NIL "\\spadtype{Complex(R)} creates the domain of elements of the form \\spad{a + \\spad{b} * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R,} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) │ │ │ +((|noZeroDivisors| OR (|has| |#1| (|IntegralDomain|)) (AND (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|additiveValuation| |has| |#1| (ATTRIBUTE |additiveValuation|)) (|multiplicativeValuation| |has| |#1| (ATTRIBUTE |multiplicativeValuation|)) (|complex| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|))) (AND (|HasCategory| |#1| (QUOTE (|RadicalCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (|HasCategory| |#1| (QUOTE (|RealConstant|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (OR (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (OR (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Eltable|) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OpenMath|))) (|HasCategory| |#1| (QUOTE (|RealNumberSystem|))) (AND (|HasCategory| |#1| (QUOTE (|RealNumberSystem|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Eltable|) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (AND (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|Finite|)))) (AND (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|OpenMath|)))) (AND (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|RealConstant|)))) (AND (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|))))) (AND (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|Field|))) (AND (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))))) (OR (AND (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))))) (OR (AND (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasAttribute| |#1| (QUOTE |additiveValuation|)) (|HasAttribute| |#1| (QUOTE |multiplicativeValuation|)) (AND (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))))) │ │ │ +(|RetractableTo| S) │ │ │ +((|constructor| (NIL "A is retractable to \\spad{B} means that some elements if A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S.}")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S.}")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\spad{%.}"))) │ │ │ NIL │ │ │ -(|RectangularMatrixCategory&| S |m| |n| R |Row| |Col|) │ │ │ -((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be R-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m.}")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m.} This is the dimension of the null space of the matrix \\spad{m.}")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m.}")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m.}")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r.} Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r,} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c,} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i}, \\spad{j.}") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b,} where \\spad{b(i,j) = a(i,j)} for all i, \\spad{j.}")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m.} Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m.} Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m.} Note that there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m,} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column, and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m.} Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m.}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m.}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m.}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m.}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m.}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m.}")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric. That is, \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j} and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (that is, \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j)} and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (that is, all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (that is, if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix, where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) │ │ │ NIL │ │ │ -((|HasCategory| |#4| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#4| (QUOTE (|Field|))) (|HasCategory| |#4| (QUOTE (|IntegralDomain|))) (|HasCategory| |#4| (QUOTE (|CommutativeRing|)))) │ │ │ -(|RealRootCharacterizationCategory&| S |TheField| |ThePols|) │ │ │ -((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common access functions for all real roots of polynomials")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,root,prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,root,prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,n)} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure, assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) │ │ │ +(|FGLMIfCanPackage| R |ls|) │ │ │ +((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial \\spad{R}} by the FGLM algorithm if this is possible (if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(lq1)} returns the lexicographical Groebner basis of \\axiom{lq1}. If \\axiom{lq1} generates a zero-dimensional ideal then the FGLM strategy is used, otherwise the Sugar strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(lq1)} returns the lexicographical Groebner basis of \\axiom{lq1} by using the FGLM strategy, if \\axiom{zeroDimensional?(lq1)} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(lq1)} returns \\spad{true} iff \\axiom{lq1} generates a zero-dimensional ideal w.r.t. the variables of \\axiom{ls}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RationalInterpolation| |xx| F) │ │ │ -((|constructor| (NIL "This package exports rational interpolation algorithms"))) │ │ │ +(|GaloisGroupFactorizationUtilities| R UP F) │ │ │ +((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p.}")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p.}")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f.}")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f.}")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f.}")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p.} \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p.}")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p.}") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p.}")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RealRootCharacterizationCategory| |TheField| |ThePols|) │ │ │ -((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common access functions for all real roots of polynomials")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,root,prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,root,prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,n)} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure, assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) │ │ │ +(|TranscendentalRischDESystem| F UP) │ │ │ +((|constructor| (NIL "Risch differential equation system, transcendental case.")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, \\spad{g1,} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), \\spad{(f,} 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist, \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, \\spad{B,} \\spad{H,} \\spad{C1,} \\spad{C2,} \\spad{T]}} such that \\spad{(y1', y2') + ((0, -f), \\spad{(f,} 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = \\spad{Q1} / \\spad{T,} \\spad{y2} = \\spad{Q2} / \\spad{T},} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), \\spad{(B,} \\spad{H))} (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RectangularMatrixCategory| |m| |n| R |Row| |Col|) │ │ │ -((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be R-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m.}")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m.} This is the dimension of the null space of the matrix \\spad{m.}")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m.}")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m.}")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r.} Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r,} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c,} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i}, \\spad{j.}") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b,} where \\spad{b(i,j) = a(i,j)} for all i, \\spad{j.}")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m.} Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m.} Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m.} Note that there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m,} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column, and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m.} Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m.}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m.}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m.}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m.}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m.}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m.}")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric. That is, \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j} and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (that is, \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j)} and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (that is, all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (that is, if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix, where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) │ │ │ -((|finiteAggregate| . T) (|nil| . T) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +(|FunctionSpaceSum| R F) │ │ │ +((|constructor| (NIL "Computes sums of top-level expressions")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), \\spad{n} = a..b)} returns f(a) + f(a+1) + \\spad{...} + f(b).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), \\spad{n)}} returns A(n) such that A(n+1) - A(n) = a(n)."))) │ │ │ NIL │ │ │ -(|SplitHomogeneousDirectProduct| |dimtot| |dim1| S) │ │ │ -((|constructor| (NIL "This type represents the finite direct or cartesian product of an underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) │ │ │ -((|rightUnitary| |has| |#3| (|Ring|)) (|leftUnitary| |has| |#3| (|Ring|)) (|unitsKnown| |has| |#3| (ATTRIBUTE |unitsKnown|)) ((|commutative| "*") |has| |#3| (|CommutativeRing|)) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#3| (QUOTE (|SetCategory|))) (|HasCategory| |#3| (QUOTE (|Field|))) (|HasCategory| |#3| (QUOTE (|Ring|))) (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#3| (QUOTE (|OrderedRing|))) (OR (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#3| (QUOTE (|OrderedRing|)))) (|HasCategory| |#3| (QUOTE (|Monoid|))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|Field|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (OR (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|Field|)))) (OR (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (|HasCategory| |#3| (QUOTE (|Finite|))) (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|))) (OR (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|))) (|HasCategory| |#3| (QUOTE (|Field|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (OR (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (QUOTE (|DifferentialRing|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) (|HasAttribute| |#3| (QUOTE |unitsKnown|)) (|HasCategory| |#3| (QUOTE (|CancellationAbelianMonoid|))) (OR (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|))) (|HasCategory| |#3| (QUOTE (|Field|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (|HasCategory| |#3| (QUOTE (|AbelianSemiGroup|))) (OR (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#3| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|))) (|HasCategory| |#3| (QUOTE (|Field|))) (|HasCategory| |#3| (QUOTE (|Finite|))) (|HasCategory| |#3| (QUOTE (|Monoid|))) (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#3| (QUOTE (|OrderedRing|))) (|HasCategory| |#3| (QUOTE (|Ring|))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) (OR (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#3| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|))) (|HasCategory| |#3| (QUOTE (|Field|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (OR (AND (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|Field|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|Finite|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|SetCategory|))))) (OR (AND (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Field|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Finite|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|SetCategory|))))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|Field|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|Finite|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))))) │ │ │ -(|StructuralConstantsPackage| R) │ │ │ -((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},...,\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra, for example the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note, that the it is not checked, whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt,} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls.} The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt,} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls.} The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) │ │ │ NIL │ │ │ +(|UnivariateSkewPolynomial| |x| R |sigma| |delta|) │ │ │ +((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) \\spad{x} + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) │ │ │ +((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ +(|Plcs| K PCS) │ │ │ +((|constructor| (NIL "The following is part of the PAFF package"))) │ │ │ NIL │ │ │ -(|RationalFunctionSign| R) │ │ │ -((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, \\spad{x,} a, \\spad{s)}} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"}, or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, \\spad{x,} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a}, from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign \\spad{f}} returns the sign of \\spad{f} if it is constant everywhere."))) │ │ │ NIL │ │ │ +(|OppositeMonogenicLinearOperator| P R) │ │ │ +((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P.} That is, as sets \\spad{P = \\spad{$}} but \\spad{a * \\spad{b}} in \\spad{$} is equal to \\spad{b * a} in \\spad{P.}")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\spad{$.}")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P.}"))) │ │ │ +((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|)))) │ │ │ +(|OrthogonalPolynomialFunctions| R) │ │ │ +((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial, \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, \\spad{n} = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial, \\spad{L[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial, \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, \\spad{n} = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial, \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, \\spad{n} = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind, \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, \\spad{n} = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind, \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, \\spad{n} = 0..)}."))) │ │ │ NIL │ │ │ -(|SmithNormalForm| R |Row| |Col| M) │ │ │ -((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = \\spad{B}.}")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m.}")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m.}"))) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) │ │ │ +(|Void|) │ │ │ +((|constructor| (NIL "This type is used when no value is needed, for example, in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void, it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|SturmHabichtPackage| R |x|) │ │ │ -((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R,} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has, counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with p2<0. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1.}")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with p2<0. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1.}")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) │ │ │ +(|NagSeriesSummationPackage|) │ │ │ +((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values, and applies it to calculate convolutions and correlations.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences, each containing \\spad{n} data values, and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates, each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences, each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences, each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences, each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n.} No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|GcdDomain|)))) │ │ │ -(|SparseMultivariateTaylorSeries| |Coef| |Var| SMP) │ │ │ -((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n.} SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|series| (($ (|Stream| |#3|)) "\\spad(series(st)) creates a series from a stream of coefficients")) (|coefficients| (((|Stream| |#3|) $) "\\spad{coefficients(s)) gives a stream of coefficients of \\spad{s,} for example, [coefficient(s,0), coefficient(s,1), ...]")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, \\spad{n)}} gives the terms of total degree \\spad{n.} \\blankline \\spad{X} xts:=x::TaylorSeries Fraction Integer \\spad{X} t1:=sin(xts) \\spad{X} coefficient(t1,3)"))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ -(|SparseMultivariatePolynomial| R |VarSet|) │ │ │ -((|constructor| (NIL "This type is the basic representation of sparse recursive multivariate polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative, but the variables are assumed to commute."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|PolynomialSolveByFormulas| UP F) │ │ │ -((|constructor| (NIL "This package factors the formulas out of the general solve code, allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) │ │ │ NIL │ │ │ +(|Operator| R) │ │ │ +((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) │ │ │ +((|leftUnitary| |has| |#1| (|CommutativeRing|)) (|rightUnitary| |has| |#1| (|CommutativeRing|)) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|)))) │ │ │ +(|AlgebraicNumber|) │ │ │ +((|constructor| (NIL "Algebraic closure of the rational numbers, with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a \\indented{1}{polynomial in the kernels over \\spad{Z.}} \\blankline \\spad{X} t1:=sqrt(3)/sqrt(5) \\spad{X} denom \\spad{t1}")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a \\indented{1}{polynomial in the kernels over \\spad{Z.}} \\blankline \\spad{X} t1:=sqrt(3)/sqrt(5) \\spad{X} numer \\spad{t1}")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| $ (QUOTE (|Ring|))) (|HasCategory| $ (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) │ │ │ +(|ElementaryFunctionsUnivariateLaurentSeries| |Coef| UTS ULS) │ │ │ +((|constructor| (NIL "This domain provides elementary functions on any Laurent series domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z.}")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z.}")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z.}")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z.}")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z.}")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z.}")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z.}")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z.}")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z.}")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z.}")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z.}")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z.}")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z.}")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z.}")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z.}")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z.}")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z.}")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z.}")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z.}")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z.}")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z.}")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z.}")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z.}")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z.}")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z.}")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z.}")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s \\spad{**} \\spad{r}} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) │ │ │ NIL │ │ │ -(|SplittingTree| V C) │ │ │ -((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{true}. Thus, if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{true}, then \\axiom{status(value(d))} is \\axiom{true} for any subtree \\axiom{d} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another, \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(l,a,ls,sub?)} returns \\axiom{a} where the children list of \\axiom{l} has been set to \\axiom{[[s]$% for \\spad{s} in \\spad{ls} | not subNodeOf?(s,a,sub?)]}. Thus, if \\axiom{l} is not a node of \\axiom{a}, this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(l,a,ls)} returns \\axiom{a} where the children list of \\axiom{l} has been set to \\axiom{[[s]$% for \\spad{s} in \\spad{ls} | not nodeOf?(s,a)]}. Thus, if \\axiom{l} is not a node of \\axiom{a}, this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(s,a)} replaces a by remove(s,a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(s,a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{b} such that \\axiom{value(b)} and \\axiom{s} have the same value, condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(s,a,sub?)} returns \\spad{true} iff for some node \\axiom{n} in \\axiom{a} we have \\axiom{s = \\spad{n}} or \\axiom{status(n)} and \\axiom{subNode?(s,n,sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(s,a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{s}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(s),condition(s)]$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(v1,t,v2,lt)} creates a splitting tree with value (root vertex) given by \\axiom{[v,t]$S} and with children list given by \\axiom{[[[v,t]$S]$% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(v,t,ls)} creates a splitting tree with value (root vertex) given by \\axiom{[v,t]$S} and with children list given by \\axiom{[[s]$% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(v,t,la)} creates a splitting tree with value (root vertex) given by \\axiom{[v,t]$S} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(s)} creates a splitting tree with value (root vertex) given by \\axiom{s} and no children. Thus, if the status of \\axiom{s} is false, \\axiom{[s]} represents the starting point of the evaluation \\axiom{value(s)} under the hypothesis \\axiom{condition(s)}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any, else \"failed\" is returned."))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|SplittingNode| |#1| |#2|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|SplittingNode| |#1| |#2|) (LIST (QUOTE |Evalable|) (LIST (QUOTE |SplittingNode|) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (|SplittingNode| |#1| |#2|) (QUOTE (|SetCategory|))))) │ │ │ -(|StreamInfiniteProduct| |Coef|) │ │ │ -((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) │ │ │ +((|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ +(|ArcTrigonometricFunctionCategory&| S) │ │ │ +((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x.} When evaluated into some subset of the complex numbers, one branch cut for atan lies along the positive imaginary axis above \\spad{%i} (exclusive), continuous with the left half plane, the other along the negative imaginary axis below -\\%i (exclusive) continuous with the right half plane. The domain does not contain \\spad{%i} and -\\%i")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x.} When evaluated into some subset of the complex numbers, one branch cut for asin lies along the negative real axis to the left of \\spad{-1} (inclusive), continuous with the upper half plane, the other along the positive real axis to the right of 1 (inclusive), continuous with the lower half plane.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x.}")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x.}")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x.}")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x.} When evaluated into some subset of the complex numbers, one branch cut for acos lies along the negative real axis to the left of \\spad{-1} (inclusive), continuous with the upper half plane, the other along the positive real axis to the right of 1 (inclusive), continuous with the lower half plane."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|StreamTranscendentalFunctionsNonCommutative| |Coef|) │ │ │ -((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring, where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st.}")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st.}")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st.}")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st.}")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st.}")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st.}")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st.}")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st.}")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st.}")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st.}")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st.}")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st.}")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st.}")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st.}")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st.}")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st.}")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st.}")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st.}")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st.}")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st.}")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st.}")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st.}")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st.}")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st.}")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 \\spad{**} st2} computes the power of a power series \\spad{st1} by another power series st2.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st.}"))) │ │ │ +(|TangentExpansions| R) │ │ │ +((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, \\spad{n)}} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, \\spad{n)}} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = \\spad{tan(u1} + \\spad{...} + un)}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|SubResultantPackage| R UP) │ │ │ -((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one.")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, \\spad{q)}} reduces the coefficient of \\spad{p} modulo \\spad{q,} takes the primitive part of the result, and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, \\spad{q)}} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q.} In particular, \\spad{p0 = resultant(p, q)}."))) │ │ │ +(|TrigonometricManipulations| R F) │ │ │ +((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms, and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real \\spad{f,} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real \\spad{f}.}")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, \\spad{x)}} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, \\spad{x)}} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|EuclideanDomain|)))) │ │ │ -(|StreamTranscendentalFunctions| |Coef|) │ │ │ -((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series, where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st.}")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st.}")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st.}")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st.}")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st.}")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st.}")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st.}")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st.}")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st.}")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st.}")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st.}")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st.}")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st.}")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st.}")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st.}")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st.}")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st.}")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st.}")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st.}")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st.}")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st.}")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st.}")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st.}")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st.}")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st.}")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st.}")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 \\spad{**} st2} computes the power of a power series \\spad{st1} by another power series st2.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st.}"))) │ │ │ NIL │ │ │ +(|PatternMatchResultFunctions2| R A B) │ │ │ +((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(v1,f(a1)),...,(vn,f(an))]."))) │ │ │ NIL │ │ │ -(|RationalFunctionSum| R) │ │ │ -((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), \\spad{n} = a..b)} returns \\spad{f(a) + f(a+1) + \\spad{...} f(b)}. \\blankline \\spad{X} sum(i::Fraction(Polynomial(Integer)),i=1..n)") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), \\spad{n} = a..b)} returns \\spad{f(a) + f(a+1) + \\spad{...} f(b)}. \\blankline \\spad{X} sum(i,i=1..n)") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), \\spad{n)}} returns \\spad{A} which \\indented{1}{is the indefinite sum of \\spad{a} with respect to} \\indented{1}{upward difference on \\spad{n}, \\spad{A(n+1) - A(n) = a(n)}.} \\blankline \\spad{X} sum(i::Fraction(Polynomial(Integer)),i::Symbol)") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), \\spad{n)}} returns \\spad{A} which \\indented{1}{is the indefinite sum of \\spad{a} with respect to} \\indented{1}{upward difference on \\spad{n}, \\spad{A(n+1) - A(n) = a(n)}.} \\blankline \\spad{X} sum(i::Polynomial(Integer),variable(i=1..n))"))) │ │ │ NIL │ │ │ +(|Asp27| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs, needed for NAG routine f02fjf ,for example: \\blankline \\tab{5}FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK)\\br \\tab{5}DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK)\\br \\tab{5}INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK)\\br \\tab{5}DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1\\br \\tab{4}&4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W(\\br \\tab{4}&14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1\\br \\tab{4}&1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W(\\br \\tab{4}&11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8))\\br \\tab{4}&)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7)\\br \\tab{4}&+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0.\\br \\tab{4}&5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3\\br \\tab{4}&)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W(\\br \\tab{4}&2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1)\\br \\tab{5}RETURN\\br \\tab{5}END"))) │ │ │ NIL │ │ │ -(|SubSpace| |n| R) │ │ │ -((|constructor| (NIL "This domain is not documented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s.}")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s.} If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s.}")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s.}")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s.} If the property is closed, \\spad{True} is returned, otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s.}")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s.}")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace, \\spad{s,} along the path dictated by the list of non negative integers, li, which points to the component which has been traversed to. The subspace, \\spad{s,} is returned, where \\spad{s} is now the subspace pointed to by li.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace, \\spad{s,} to be that of \\spad{p,} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers, li, dictates the path to follow, or, to look at it another way, points to the component whose property is being defined. The subspace, \\spad{s,} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace, \\spad{s,} to be closed if \\spad{b} is true, or open if \\spad{b} is false. The list of non negative integers, li, dictates the path to follow, or, to look at it another way, points to the component whose closed property is to be set. The subspace, \\spad{s,} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location, ind, by replacing it with the point, \\spad{p} in the 3 dimensional subspace, \\spad{s.} An error message occurs if \\spad{s} is empty, otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace, \\spad{s,} with the 4 dimensional point indicated by the index location, i. The list of non negative integers, li, dictates the path to follow, or, to look at it another way, points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty, otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace, \\spad{s,} with the 4 dimensional point, \\spad{p.} The list of non negative integers, li, dictates the path to follow, or, to look at it another way, points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty, otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point, \\spad{p,} to the 3 dimensional subspace, \\spad{s.} \\spad{s2} point to the end of the subspace \\spad{s.} \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point, \\spad{p,} to the 3 dimensional subspace, \\spad{s.} The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point, \\spad{p,} to the 3 dimensional subspace, \\spad{s,} and returns the new total number of points in \\spad{s.}") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location, i, to the 3 dimensional subspace, \\spad{s.} The list of non negative integers, li, dictates the path to follow, or, to look at it another way, points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1}, then a specific lowest level component is being referenced. If it is less than \\spad{n - 1}, then some higher level component \\spad{(0} indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point, \\spad{p,} to the 3 dimensional subspace, \\spad{s.} The list of non negative integers, li, dictates the path to follow, or, to look at it another way, points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1}, then a specific lowest level component is being referenced. If it is less than \\spad{n - 1}, then some higher level component \\spad{(0} indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace}, \\spad{s,} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces, \\spad{ls,} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} is not documented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} is not documented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} is not documented")) (|children| (((|List| $) $) "\\spad{children(x)} is not documented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} is not documented")) (|birth| (($ $) "\\spad{birth(x)} is not documented")) (|subspace| (($) "\\spad{subspace()} is not documented")) (|new| (($) "\\spad{new()} is not documented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} is not documented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} is not documented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} is not documented"))) │ │ │ NIL │ │ │ +(|OrdinaryWeightedPolynomials| R |vl| |wl| |wtlevel|) │ │ │ +((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified, as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero, and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(R) into Weighted form, applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(R), ignoring weights"))) │ │ │ +((|leftUnitary| |has| |#1| (|CommutativeRing|)) (|rightUnitary| |has| |#1| (|CommutativeRing|)) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ +(|FunctionSpaceFunctions2| R A S B) │ │ │ +((|constructor| (NIL "Lifting of maps to function spaces This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S;}")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) │ │ │ NIL │ │ │ -(|SparseUnivariatePolynomialExpressions| R) │ │ │ -((|constructor| (NIL "This domain has no description"))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|additiveValuation| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|StepThrough|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|SupFractionFactorizer| E OV R P) │ │ │ -((|constructor| (NIL "SupFractionFactorize contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R.} Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R.}"))) │ │ │ NIL │ │ │ +(|AffineAlgebraicSetComputeWithGroebnerBasis| K |symb| |PolyRing| E |ProjPt|) │ │ │ +((|constructor| (NIL "The following is part of the PAFF package")) (|affineRationalPoints| (((|List| |#5|) |#3| (|PositiveInteger|)) "\\axiom{rationalPoints(f,d)} returns all points on the curve \\axiom{f} in the extension of the ground field of degree \\axiom{d}. For \\axiom{d > 1} this only works if \\axiom{K} is a \\axiomType{LocallyAlgebraicallyClosedField}"))) │ │ │ NIL │ │ │ -(|SparseUnivariatePolynomial| R) │ │ │ -((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name, use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented. Note that if the coefficient ring is a field, this domain forms a euclidean domain.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{x} : \\spad{p1} - \\spad{r} * x**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|additiveValuation| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|StepThrough|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|TemplateUtilities|) │ │ │ -((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input, and removes comments, and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input, by parsing and interpreting it."))) │ │ │ NIL │ │ │ +(|KernelFunctions2| R S) │ │ │ +((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) │ │ │ NIL │ │ │ -(|TangentExpansions| R) │ │ │ -((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, \\spad{n)}} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, \\spad{n)}} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = \\spad{tan(u1} + \\spad{...} + un)}."))) │ │ │ NIL │ │ │ +(|ModuleMonomial| IS E |ff|) │ │ │ +((|constructor| (NIL "This package has no documentation")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} is not documented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} is not documented")) (|index| ((|#1| $) "\\spad{index(x)} is not documented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} is not documented"))) │ │ │ NIL │ │ │ -(|TextFile|) │ │ │ -((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output, then this test is always true.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f,} if possible. If \\spad{f} is not readable or if it is positioned at the end of file, then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f,} if possible. If \\spad{f} is not readable or if it is positioned at the end of file, then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f.}")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f.} An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f.} The value of \\spad{s} is returned."))) │ │ │ NIL │ │ │ +(|Point| R) │ │ │ +((|constructor| (NIL "This domain implements points in coordinate space"))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#1| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|Monoid|))) (|HasCategory| |#1| (QUOTE (|Ring|))) (AND (|HasCategory| |#1| (QUOTE (|RadicalCategory|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ +(|AbelianMonoidRing| R E) │ │ │ +((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i, elements of the ordered abelian monoid, are thought of as exponents or monomials. The monomials commute with each other, and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least, only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p,} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent e.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of u.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p.}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p.}"))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ (|Tree| S) │ │ │ ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a node consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t.} \\blankline \\spad{X} t1:=tree [1,2,3,4] \\spad{X} cyclicParents \\spad{t1}")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have \\indented{1}{the same structure.} \\blankline \\spad{X} t1:=tree [1,2,3,4] \\spad{X} t2:=tree [1,2,3,4] \\spad{X} cyclicEqual?(t1,t2)")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t.} \\blankline \\spad{X} t1:=tree [1,2,3,4] \\spad{X} cyclicEntries \\spad{t1}")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l.} \\blankline \\spad{X} t1:=tree [1,2,3,4] \\spad{X} cyclicCopy \\spad{t1}")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree. \\blankline \\spad{X} t1:=tree [1,2,3,4] \\spad{X} cyclic? \\spad{t1}")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd,} and no children \\blankline \\spad{X} tree 6") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s.} \\blankline \\spad{X} tree [1,2,3,4]") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd,} and children \\spad{ls.} \\blankline \\spad{X} t1:=tree [1,2,3,4] \\spad{X} tree(5,[t1])"))) │ │ │ ((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ ((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|TexFormat|) │ │ │ -((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue, a tex part and an epilogue. The functions \\spadfun{prologue}, \\spadfun{tex} and \\spadfun{epilogue} extract these parts, respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!}, \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example, the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'', respectively, so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to strings.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to strings.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to strings.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t.}")) (|new| (($) "\\spad{new()} create a new, empty object. Use \\spadfun{setPrologue!}, \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t.}")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t.}")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{width}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and type. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) │ │ │ +(|MPolyCatPolyFactorizer| E OV R PPR) │ │ │ +((|constructor| (NIL "This package exports a factor operation for multivariate polynomials with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|TwoFactorize| F) │ │ │ -((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p,} a sparse univariate polynomial (sup) over a sup over \\spad{F.} Also, \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p).}")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p,} a sparse univariate polynomial (sup) over a sup over \\spad{F.}")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p,} a sparse univariate polynomial (sup) over a sup over \\spad{F.}"))) │ │ │ +(|DictionaryOperations| S) │ │ │ +((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{p(x)} is not true.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{p(x)} is true.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{y = \\spad{x}.}")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{x,y,...,z}.") (($) "\\spad{dictionary()}$D creates an empty dictionary of type \\spad{D.}"))) │ │ │ +((|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ +(|ReductionOfOrder| F L) │ │ │ +((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 \\spad{z} = 0}, \\spad{y = \\spad{gk} \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op \\spad{y} = 0}. Each \\spad{fi} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, \\spad{s)}} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 \\spad{z} = 0}, \\spad{y = \\spad{s} \\int \\spad{z}} is a solution of \\spad{op \\spad{y} = 0}. \\spad{s} must satisfy \\spad{op \\spad{s} = 0}."))) │ │ │ NIL │ │ │ -(|UnivariateFactorize| ZP) │ │ │ -((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m,} FinalFact is a Record s.t. FinalFact.contp=content \\spad{m,} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) │ │ │ NIL │ │ │ +(|RectangularMatrixCategory&| S |m| |n| R |Row| |Col|) │ │ │ +((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be R-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m.}")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m.} This is the dimension of the null space of the matrix \\spad{m.}")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m.}")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m.}")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r.} Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r,} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c,} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i}, \\spad{j.}") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b,} where \\spad{b(i,j) = a(i,j)} for all i, \\spad{j.}")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m.} Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m.} Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m.} Note that there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m,} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column, and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m.} Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m.}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m.}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m.}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m.}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m.}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m.}")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric. That is, \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j} and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (that is, \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j)} and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (that is, all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (that is, if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix, where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) │ │ │ NIL │ │ │ -(|UnivariatePolynomial| |x| R) │ │ │ -((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented. Note that if the coefficient ring is a field, then this domain forms a euclidean domain.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{x} : \\spad{p1} - \\spad{r} * x**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) │ │ │ -(((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|)) (|additiveValuation| |has| |#2| (|Field|)) (|canonicalUnitNormal| |has| |#2| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|StepThrough|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|UnivariatePolynomialCommonDenominator| R Q UP) │ │ │ -((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, \\spad{d]}} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q.}")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q.}")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q.}"))) │ │ │ +((|HasCategory| |#4| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#4| (QUOTE (|Field|))) (|HasCategory| |#4| (QUOTE (|IntegralDomain|))) (|HasCategory| |#4| (QUOTE (|CommutativeRing|)))) │ │ │ +(|Heap| S) │ │ │ +((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|member?| (((|Boolean|) |#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} member?(3,a)")) (|members| (((|List| |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} members a")) (|parts| (((|List| |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} parts a")) (|#| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} \\#a")) (|count| (((|NonNegativeInteger|) |#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} count(4,a)") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} count(x+->(x>2),a)")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} any?(x+->(x=4),a)")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} every?(x+->(x=4),a)")) (~= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} (a~=b)")) (= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} b:Heap INT:= heap [1,2,3,4,5] \\spad{X} (a=b)@Boolean")) (|coerce| (((|OutputForm|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} coerce a")) (|hash| (((|SingleInteger|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} hash a")) (|latex| (((|String|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} latex a")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} map!(x+->x+10,a) \\spad{X} a")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} size?(a,5)")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} more?(a,9)")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} less?(a,9)")) (|sample| (($) "\\blankline \\spad{X} sample()$Heap(INT)")) (|merge!| (($ $ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} b:Heap INT:= heap [6,7,8,9,10] \\spad{X} merge!(a,b) \\spad{X} a \\spad{X} \\spad{b}")) (|merge| (($ $ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} b:Heap INT:= heap [6,7,8,9,10] \\spad{X} merge(a,b)")) (|max| ((|#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} max a")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} map(x+->x+10,a) \\spad{X} a")) (|inspect| ((|#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} inspect a")) (|insert!| (($ |#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} insert!(8,a) \\spad{X} a")) (|extract!| ((|#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} extract! a \\spad{X} a")) (|eq?| (((|Boolean|) $ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} eq?(a,b)")) (|empty| (($) "\\blankline \\spad{X} b:=empty()$(Heap INT)")) (|empty?| (((|Boolean|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} empty? a")) (|copy| (($ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,2,3,4,5] \\spad{X} copy a")) (|bag| (($ (|List| |#1|)) "\\blankline \\spad{X} bag([1,2,3,4,5])$Heap(INT)")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the \\indented{1}{elements of ls.} \\blankline \\spad{X} i:Heap INT \\spad{:=} heap [1,6,3,7,5,2,4]"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ +(|Dictionary| S) │ │ │ +((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted, searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) │ │ │ +((|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ +(|Stack| S) │ │ │ +((|constructor| (NIL "Linked List implementation of a Stack")) (|member?| (((|Boolean|) |#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} member?(3,a)")) (|members| (((|List| |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} members a")) (|parts| (((|List| |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} parts a")) (|#| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} \\#a")) (|count| (((|NonNegativeInteger|) |#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} count(4,a)") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} count(x+->(x>2),a)")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} any?(x+->(x=4),a)")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} every?(x+->(x=4),a)")) (~= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} (a~=b)")) (= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} b:Stack INT:= stack [1,2,3,4,5] \\spad{X} (a=b)@Boolean")) (|coerce| (((|OutputForm|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} coerce a")) (|hash| (((|SingleInteger|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} hash a")) (|latex| (((|String|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} latex a")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} map!(x+->x+10,a) \\spad{X} a")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} map(x+->x+10,a) \\spad{X} a")) (|eq?| (((|Boolean|) $ $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} eq?(a,b)")) (|copy| (($ $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} copy a")) (|sample| (($) "\\blankline \\spad{X} sample()$Stack(INT)")) (|empty| (($) "\\blankline \\spad{X} b:=empty()$(Stack INT)")) (|empty?| (((|Boolean|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} empty? a")) (|bag| (($ (|List| |#1|)) "\\blankline \\spad{X} bag([1,2,3,4,5])$Stack(INT)")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} size?(a,5)")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} more?(a,9)")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} less?(a,9)")) (|depth| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} depth a")) (|top| ((|#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} top a")) (|inspect| ((|#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} inspect a")) (|insert!| (($ |#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} insert!(8,a) \\spad{X} a")) (|push!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} push!(9,a) \\spad{X} a")) (|extract!| ((|#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} extract! a \\spad{X} a")) (|pop!| ((|#1| $) "\\spad{pop! returns} the top element of the stack, destructively \\indented{1}{modifying the stack to remove that element.} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} pop! a \\spad{X} a")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) \\indented{1}{element \\spad{x,} second element y,...,and last element \\spad{z.}} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5]"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ +(|InternalRationalUnivariateRepresentationPackage| R E V P TS) │ │ │ +((|constructor| (NIL "\\indented{1}{Author: Marc Moreno Maza} Date Created: 01/1999 Date Last Updated: 23/01/1999 References: \\indented{1}{[1] \\spad{D.} LAZARD \"Solving Zero-dimensional Algebraic Systems\"} \\indented{5}{Journal of Symbolic Computation, 1992, 13, 117-131} Description:")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) │ │ │ NIL │ │ │ -(|UnivariatePolynomialDecompositionPackage| R UP) │ │ │ -((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition (\\spad{[ \\spad{f1,} ..., \\spad{fn} \\spad{]}} means \\spad{f} = \\spad{f1} \\spad{o} \\spad{...} \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor \\spad{(g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h)} of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor \\spad{(h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h)} of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor \\spad{(h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h)} of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) │ │ │ NIL │ │ │ +(|InnerEvalable&| S A B) │ │ │ +((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make \"evaluation\" substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f.}") (($ $ |#2| |#3|) "\\spad{eval(f, \\spad{x,} \\spad{v)}} replaces \\spad{x} by \\spad{v} in \\spad{f.}"))) │ │ │ NIL │ │ │ -(|UnivariatePolynomialDivisionPackage| R UP) │ │ │ -((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) │ │ │ NIL │ │ │ +(|d01asfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF, a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x)} or sin(\\omega \\spad{x)} on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ NIL │ │ │ -(|UnivariatePolynomialCategoryFunctions2| R PR S PS) │ │ │ -((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, \\spad{p)}} takes a function \\spad{f} from \\spad{R} to \\spad{S,} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R,} getting a new polynomial over \\spad{S.} Note that since the map is not applied to zero elements, it may map zero to zero."))) │ │ │ NIL │ │ │ +(|GroebnerFactorizationPackage| |Dom| |Expon| |VarSet| |Dpol|) │ │ │ +((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of Axiom to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact, that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases, whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial}, \\spadtype{HomogeneousDistributedMultivariatePolynomial}, \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by listOfPolys. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next S-polynomial) is factorized. For each irreducible factors of \\spad{p,} a new createGroebnerBasis is started doing the usual updates with the factor in place of \\spad{p.} If info is true, information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns \\indented{1}{a list of groebner bases. The union of their solutions} \\indented{1}{is the solution of the system of equations given by listOfPolys.} \\indented{1}{At each stage the polynomial \\spad{p} under consideration (either from} \\indented{1}{the given basis or obtained from a reduction of the next S-polynomial)} \\indented{1}{is factorized. For each irreducible factors of \\spad{p,} a} \\indented{1}{new createGroebnerBasis is started} \\indented{1}{doing the usual updates with the factor} \\indented{1}{in place of \\spad{p.}} \\blankline \\spad{X} mfzn : SQMATRIX(6,DMP([x,y,z],Fraction INT)) \\spad{:=} \\spad{X} [ [0,1,1,1,1,1], [1,0,1,8/3,x,8/3], [1,1,0,1,8/3,y], \\spad{X} [1,8/3,1,0,1,8/3], [1,x,8/3,1,0,1], [1,8/3,y,8/3,1,0] ] \\spad{X} eq \\spad{:=} determinant mfzn \\spad{X} groebnerFactorize \\spad{X} [eq,eval(eq, [x,y,z],[y,z,x]), eval(eq,[x,y,z],[z,x,y])]") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by \\spad{listOfPolys} under the restriction that the polynomials of \\spad{nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next S-polynomial) is factorized. For each irreducible factors of \\spad{p} a new createGroebnerBasis is started doing the usual updates with the factor in place of \\spad{p.} If argument info is true, information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by \\spad{listOfPolys} under the restriction that the polynomials of nonZeroRestrictions don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next S-polynomial) is factorized. For each irreducible factors of \\spad{p,} a new createGroebnerBasis is started doing the usual updates with the factor in place of \\spad{p.}")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the basis. If argument \\spad{info} is true, information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the basis."))) │ │ │ NIL │ │ │ -(|UnivariatePolynomialMultiplicationPackage| R U) │ │ │ -((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath, but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all."))) │ │ │ NIL │ │ │ +(|DivisionRing&| S) │ │ │ +((|constructor| (NIL "A division ring (sometimes called a skew field), a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv \\spad{x}} returns the multiplicative inverse of \\spad{x.} Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n.}")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n.}"))) │ │ │ NIL │ │ │ -(|UnivariatePuiseuxSeriesCategory| |Coef|) │ │ │ -((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r.}")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms, where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|UnivariatePolynomialSquareFree| RC P) │ │ │ -((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings, a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero, the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic, then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case, the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function, exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p,} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p.} Each factor has no repeated roots, and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q.}"))) │ │ │ +(|MachineInteger|) │ │ │ +((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) │ │ │ +((|multiplicativeValuation| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|GeneralModulePolynomial| |vl| R IS E |ff| P) │ │ │ +((|constructor| (NIL "This package is undocumented")) (* (($ |#6| $) "\\spad{p*x} is not documented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} is not documented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} is not documented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} is not documented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} is not documented")) (|reductum| (($ $) "\\spad{reductum(x)} is not documented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} is not documented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} is not documented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} is not documented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} is not documented"))) │ │ │ +((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ -(|ViewDefaultsPackage|) │ │ │ -((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r.}")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to i.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (for example, x=0..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (for example, x=0..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (for example, x=0..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (for example, x=0..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing, such as BITMAP, POSTSCRIPT, etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l;} a viewalone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewalone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h.}") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{x} and \\spad{y} position of a viewport window unless overriden explicityly, newly created viewports will have the \\spad{x} and \\spad{y} coordinates \\spad{x,} \\spad{y.}") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{x} and \\spad{y} position of a viewport window unless overriden explicityly, newly created viewports will have this \\spad{x} and \\spad{y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to i.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p.}") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p.}") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p.}") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p.}") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) │ │ │ +(|IntegrationTools| R F) │ │ │ +((|constructor| (NIL "Tools for the integrator")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, \\spad{x,} int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int}, and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, \\spad{x)}} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x.}")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, \\spad{x)}} returns \\spad{f} minus any additive constant with respect to \\spad{x.}")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2.}")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], \\spad{x)}} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x.}")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], \\spad{x)}} returns the \\spad{ki} which involve \\spad{x.}"))) │ │ │ NIL │ │ │ +((AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|ElementaryFunctionCategory|))) (|HasCategory| |#2| (QUOTE (|LiouvillianFunctionCategory|)))) (AND (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|ElementaryFunctionCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) │ │ │ +(|PrimitiveRatDE| F UP L LQ) │ │ │ +((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear ordinary differential equations, in the transcendental case. The derivation to use is given by the parameter \\spad{L}.")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op \\spad{y} = \\spad{c1} \\spad{g1} + \\spad{...} + \\spad{cm} \\spad{gm}} and \\spad{op0 \\spad{y} = \\spad{c1} \\spad{h1} + \\spad{...} + \\spad{cm} \\spad{hm}} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, \\spad{p)}} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p}, and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op}, and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, \\spad{p)}} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p}, and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op}, and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op \\spad{y} = \\spad{c1} \\spad{g1} + \\spad{...} + \\spad{cm} \\spad{gm}} is of the form \\spad{p/d} for some polynomial \\spad{p.}") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, \\spad{g)}} returns a polynomial \\spad{d} such that any rational solution of \\spad{op \\spad{y} = \\spad{g}} is of the form \\spad{p/d} for some polynomial \\spad{p,} and \"failed\", if the equation has no rational solution."))) │ │ │ NIL │ │ │ -(|Void|) │ │ │ -((|constructor| (NIL "This type is used when no value is needed, for example, in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void, it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object."))) │ │ │ NIL │ │ │ +(|SAERationalFunctionAlgFactor| UP SAE UPA) │ │ │ +((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p.}"))) │ │ │ NIL │ │ │ -(|WeierstrassPreparation| R) │ │ │ -((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(v,p) where \\spad{v} is a variable, and \\spad{p} is a TaylorSeries(R) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,s>0, is a list of TaylorSeries coefficients A[i] of the equivalent polynomial A = A[0] + A[1]*v + \\spad{A[2]*v**2} + \\spad{...} + A[s-1]*v**(s-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries, impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst \\spad{n}} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest \\spad{n}} is used internally."))) │ │ │ NIL │ │ │ +(|d03fafAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) │ │ │ NIL │ │ │ -(|WeightedPolynomials| R |VarSet| E P |vl| |wl| |wtlevel|) │ │ │ -((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified, as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero, and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form, applying weights and ignoring terms") ((|#4| $) "\\spad{coerce(wp)} convert back into a \"P\", ignoring weights"))) │ │ │ -((|leftUnitary| |has| |#1| (|CommutativeRing|)) (|rightUnitary| |has| |#1| (|CommutativeRing|)) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ -(|TwoDimensionalViewport|) │ │ │ -((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, and creates a directory indicated by \\spad{s,} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf.}") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, and creates a directory indicated by \\spad{s,} which contains the graph data files for \\spad{v} and an optional file type \\spad{f.}") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, and creates a directory indicated by \\spad{s,} which contains the graph data files for \\spad{v.}")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, with a width of \\spad{w} and a height of \\spad{h,} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x,} \\spad{y.}")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, if \\spad{s} is \"on\", or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, translated by \\spad{dx} in the x-coordinate direction from the center of the viewport, and by \\spad{dy} in the y-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, scaled by the factor \\spad{sx} in the x-coordinate direction and by the factor \\spad{sy} in the y-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, to the window coordinate \\spad{x,} \\spad{y,} and sets the dimensions of the window to that of \\spad{width}, \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v.}")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, if \\spad{s} is \"on\", or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, if \\spad{s} is \"on\", or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, if \\spad{s} is \"on\", or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, if \\spad{s} is \"on\", or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, with the units color set to the given palette color \\spad{c.}") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, if \\spad{s} is \"on\", or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, with the axes color set to the given palette color \\spad{c.}") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, if \\spad{s} is \"on\", or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport, \\spad{v,} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n,} of the indicated two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}, to be the graph, \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport, \\spad{v,} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v.}")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window, \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector, or list, which is a union of all the graphs, of the domain \\spadtype{GraphImage}, which are allocated for the two-dimensional viewport, \\spad{v,} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\", otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport, \\spad{v,} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v,} of domain \\spadtype{TwoDimensionalViewport}, to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points, lines, bounding box, axes, or units will be shown in the viewport if their given parameters \\spad{pts}, \\spad{lns}, \\spad{box}, \\spad{axes} or \\spad{un} are set to be \\spad{1}, but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed, set \\spad{cP} to \\spad{1}, otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport, \\spad{v,} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list, \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport, \\spad{v,} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v.}")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph, \\spad{gi}, of domain \\spadtype{GraphImage}, and whose options field is set to be the list of options, \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport, \\spad{v,} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v.}")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system, some design issues need to be addressed: for example, how to go through the GraphImage interface, how to default to graphs, etc."))) │ │ │ NIL │ │ │ +(|d02AgentsPackage|) │ │ │ +((|constructor| (NIL "\\indented{1}{Author: Brian Dupee} Date Created: May 1994 Date Last Updated: January 1997 Description:")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and, therefore, an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units''. It returns a value in the range [0,1].\\indent{20} 400 ``operation units'' \\spad{->} 0.75 200 ``operation units'' \\spad{->} 0.5 83 ``operation units'' \\spad{->} 0.25 \\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which O(10) equates to mildly stiff wheras stiffness ratios of O(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which O(10) equates to mildly stiff wheras stiffness ratios of O(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,symbols,values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,C2)} is for interacting attributes"))) │ │ │ NIL │ │ │ -(|Dictionary&| A S) │ │ │ -((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted, searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) │ │ │ NIL │ │ │ +(|PlaneAlgebraicCurvePlot|) │ │ │ +((|constructor| (NIL "Plot a NON-SINGULAR plane algebraic curve p(x,y) = 0.")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} is not documented \\blankline \\spad{X} sketch:=makeSketch(x+y,x,y,-1/2..1/2,-1/2..1/2)$ACPLOT \\spad{X} refined:=refine(sketch,0.1)")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the \\indented{1}{curve \\spad{p = 0} in the region a \\spad{<=} \\spad{x} \\spad{<=} \\spad{b,} \\spad{c} \\spad{<=} \\spad{y} \\spad{<=} \\spad{d.}} \\indented{1}{More specifically, 'makeSketch' plots a non-singular algebraic curve} \\indented{1}{\\spad{p = 0} in an rectangular region xMin \\spad{<=} \\spad{x} \\spad{<=} xMax,} \\indented{1}{yMin \\spad{<=} \\spad{y} \\spad{<=} yMax. The user inputs} \\indented{1}{\\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}.} \\indented{1}{Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with} \\indented{1}{integer coefficients \\spad{(p} belongs to the domain} \\indented{1}{\\spad{Polynomial Integer}). The case} \\indented{1}{where \\spad{p} is a polynomial in only one of the variables is} \\indented{1}{allowed.\\space{2}The variables \\spad{x} and \\spad{y} are input to specify the} \\indented{1}{the coordinate axes.\\space{2}The horizontal axis is the x-axis and} \\indented{1}{the vertical axis is the y-axis.\\space{2}The rational numbers} \\indented{1}{xMin,...,yMax specify the boundaries of the region in} \\indented{1}{which the curve is to be plotted.} \\blankline \\spad{X} makeSketch(x+y,x,y,-1/2..1/2,-1/2..1/2)$ACPLOT"))) │ │ │ NIL │ │ │ -(|ExponentialOfUnivariatePuiseuxSeries| FE |var| |cen|) │ │ │ -((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))}, where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity, with functions which tend more rapidly to zero or infinity considered to be larger. Thus, if \\spad{order(f(x)) < order(g(x))}, the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)}, then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))}, then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * \\spad{x} **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) │ │ │ +NIL │ │ │ +(|IndexedTwoDimensionalArray| R |mnRow| |mnCol|) │ │ │ +((|constructor| (NIL "This domain implements two dimensional arrays"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ +(|UnivariatePuiseuxSeriesCategory| |Coef|) │ │ │ +((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r.}")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms, where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) │ │ │ (((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|))))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ -(|Dictionary| S) │ │ │ -((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted, searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) │ │ │ -((|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|DifferentialSparseMultivariatePolynomial| R S V) │ │ │ -((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#3| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#3| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#3| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|FactorisationOverPseudoAlgebraicClosureOfRationalNumber| K) │ │ │ -((|constructor| (NIL "Part of the Package for Algebraic Function Fields in one variable PAFF"))) │ │ │ +(|MultipleMap| R1 UP1 UPUP1 R2 UP2 UPUP2) │ │ │ +((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, \\spad{p)}} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FramedAlgebra&| S R UP) │ │ │ -((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed R-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the n-by-n matrix \\spad{(Tr(vi * vj))}, where \\spad{v1,} ..., \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where \\spad{v1,} ..., \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed R-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where \\spad{v1,} ..., \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the vi's with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed R-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed R-module basis."))) │ │ │ +(|OrderingFunctions| |dim| S) │ │ │ +((|constructor| (NIL "This package provides ordering functions on vectors which are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FiniteFieldFactorizationWithSizeParseBySideEffect| K |PolK|) │ │ │ -((|constructor| (NIL "Part of the package for Algebraic Function Fields in one variable (PAFF) It has been modified (very slitely) so that each time the \"factor\" function is used, the variable related to the size of the field over which the polynomial is factorized is reset. This is done in order to be used with a \"dynamic extension field\" which size is not fixed but set before calling the \"factor\" function and which is parse by side effect to this package via the function \"size\". See the local function \"initialize\" of this package."))) │ │ │ +(|GuessAlgebraicNumber|) │ │ │ +((|constructor| (NIL "This package exports guessing of sequences of rational functions"))) │ │ │ NIL │ │ │ +((|HasCategory| (|AlgebraicNumber|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|))))) │ │ │ +(|ChangeOfVariable| F UP UPUP) │ │ │ +((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), \\spad{n]}} such that under the change of variable \\spad{x = c1(z)}, \\spad{y = \\spad{t} * c2(z)}, one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, \\spad{y)} = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, \\spad{t)} = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), \\spad{y} * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, \\spad{q)}} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, \\spad{n)}} returns \\spad{[m, \\spad{c,} \\spad{P]}} such that \\spad{c * \\spad{g} \\spad{**} (1/n) = \\spad{P} \\spad{**} (1/m)} thus if \\spad{y**n = \\spad{g},} then \\spad{z**m = \\spad{P}} where \\spad{z = \\spad{c} * \\spad{y}.}")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), \\spad{n]}} if \\spad{p} is of the form \\spad{y**n - c(x)}, \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = \\spad{c} * \\spad{y}} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, \\spad{y)} = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, \\spad{z)} = 0}."))) │ │ │ NIL │ │ │ -(|InterpolateFormsPackage| K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR) │ │ │ -((|constructor| (NIL "The following is part of the PAFF package")) (|interpolateForms| (((|List| |#3|) |#8| (|NonNegativeInteger|) |#3| (|List| |#3|)) "\\spad{interpolateForms(D,n,pol,base)} compute the basis of the sub-vector space \\spad{W} of \\spad{V} = , such that for all \\spad{G} in \\spad{W,} the divisor \\spad{(G)} \\spad{>=} \\spad{D.} All the elements in \\spad{base} must be homogeneous polynomial of degree \\spad{n.} Typicaly, \\spad{base} is the set of all monomial of degree \\spad{n:} in that case, interpolateForms(D,n,pol,base) returns the basis of the vector space of all forms of degree \\spad{d} that interpolated \\spad{D.} The argument \\spad{pol} must be the same polynomial that defined the curve form which the divisor \\spad{D} is defined."))) │ │ │ NIL │ │ │ +(|AlgebraGivenByStructuralConstants| R |n| |ls| |gamma|) │ │ │ +((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring, given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]}, where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for \\spad{k} in 1..rank()]} defined by \\spad{ai * aj = \\spad{gammaij1} * \\spad{a1} + \\spad{...} + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) │ │ │ +((|unitsKnown| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) │ │ │ +(|NagInterpolationPackage|) │ │ │ +((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(s), the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions, there are supporting routines to evaluate, differentiate or integrate them.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points, using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points, using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values, given on a rectangular grid in the x-y plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,b]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) │ │ │ NIL │ │ │ -(|MultiDictionary| S) │ │ │ -((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary, its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d.}")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d.}"))) │ │ │ -((|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|FramedAlgebra| R UP) │ │ │ -((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed R-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the n-by-n matrix \\spad{(Tr(vi * vj))}, where \\spad{v1,} ..., \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where \\spad{v1,} ..., \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed R-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where \\spad{v1,} ..., \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the vi's with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed R-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed R-module basis."))) │ │ │ -((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|SortedCache| S) │ │ │ +((|constructor| (NIL "A sorted cache of a cachable set \\spad{S} is a dynamic structure that keeps the elements of \\spad{S} sorted and assigns an integer to each element of \\spad{S} once it is in the cache. This way, equality and ordering on \\spad{S} are tested directly on the integers associated with the elements of \\spad{S,} once they have been entered in the cache.")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, \\spad{f)}} enters \\spad{x} in the cache, calling \\spad{f(x, \\spad{y)}} to determine whether \\spad{x < \\spad{y} (f(x,y) < 0), \\spad{x} = \\spad{y} (f(x,y) = 0)}, or \\spad{x > \\spad{y} (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, \\spad{f)}} enters \\spad{x} in the cache, calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y.} It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) │ │ │ NIL │ │ │ -(|NewtonPolygon| K |PolyRing| E |dim|) │ │ │ -((|constructor| (NIL "The following is part of the PAFF package"))) │ │ │ NIL │ │ │ +(|OpenMathErrorKind|) │ │ │ +((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors, unknown \\spad{CD} or symbol errors, and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{u} is one of \\axiom{OMParseError}, \\axiom{OMReadError}, \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol}, otherwise it raises a runtime error."))) │ │ │ NIL │ │ │ -(|LocalParametrizationOfSimplePointPackage| K |symb| |PolyRing| E |ProjPt| PCS |Plc|) │ │ │ -((|constructor| (NIL "This package is part of the PAFF package")) (|localize| (((|Record| (|:| |fnc| |#3|) (|:| |crv| |#3|) (|:| |chart| (|List| (|Integer|)))) |#3| |#5| |#3| (|Integer|)) "\\spad{localize(f,pt,crv,n)} returns a record containing the polynomials \\spad{f} and \\spad{crv} translate to the origin with respect to \\spad{pt.} The last element of the records, consisting of three integers contains information about the local parameter that will be used (either \\spad{x} or \\spad{y):} the first integer correspond to the variable that will be used as a local parameter.")) (|pointDominateBy| ((|#5| |#7|) "\\spad{pointDominateBy(pl)} returns the projective point dominated by the place \\spad{pl.}")) (|localParamOfSimplePt| (((|List| |#6|) |#5| |#3| (|Integer|)) "\\spad{localParamOfSimplePt(pt,pol,n)} computes the local parametrization of the simple point \\spad{pt} on the curve defined by pol. This local parametrization is done according to the standard open affine plane set by \\spad{n}")) (|pointToPlace| ((|#7| |#5| |#3|) "\\spad{pointToPlace(pt,pol)} takes for input a simple point \\spad{pt} on the curve defined by \\spad{pol} and set the local parametrization of the point.")) (|printInfo| (((|Boolean|)) "\\spad{printInfo()} returns the value of the \\spad{printInfo} flag.") (((|Boolean|) (|Boolean|)) "\\spad{printInfo(b)} set a flag such that when \\spad{true} \\spad{(b} \\spad{<-} true) prints some information during some critical computation."))) │ │ │ NIL │ │ │ +(|WeightedPolynomials| R |VarSet| E P |vl| |wl| |wtlevel|) │ │ │ +((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified, as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero, and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form, applying weights and ignoring terms") ((|#4| $) "\\spad{coerce(wp)} convert back into a \"P\", ignoring weights"))) │ │ │ +((|leftUnitary| |has| |#1| (|CommutativeRing|)) (|rightUnitary| |has| |#1| (|CommutativeRing|)) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ +(|PolynomialFactorizationExplicit|) │ │ │ +((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields, it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}-th root of \\spad{r,} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements, not all zero, whose \\spad{p}-th powers \\spad{(p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m,} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], \\spad{g)}} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of ai's exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q.}")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p.}")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p.}"))) │ │ │ +((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|OrderlyDifferentialPolynomial| R) │ │ │ -((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates, with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|OrderlyDifferentialVariable| (|Symbol|)) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|OrderlyDifferentialVariable| (|Symbol|)) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|OrderlyDifferentialVariable| (|Symbol|)) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|OrderlyDifferentialVariable| (|Symbol|)) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|OrderlyDifferentialVariable| (|Symbol|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|RectangularMatrixCategoryFunctions2| |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) │ │ │ -((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{i} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) │ │ │ +(|SquareFreeRegularTriangularSetGcdPackage| R E V P TS) │ │ │ +((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RootsFindingPackage| K) │ │ │ -((|constructor| (NIL "This pacackage finds all the roots of a polynomial. If the constant field is not large enough then it returns the list of found zeros and the degree of the extension need to find the other roots missing. If the return degree is 1 then all the roots have been found. If 0 is return for the extension degree then there are an infinite number of zeros, that is you ask for the zeroes of 0. In the case of infinite field a list of all found zeros is kept and for each other call of a function that finds zeroes, a check is made on that list; this is to keep a kind of \"canonical\" representation of the elements.")) (|setFoundZeroes| (((|List| |#1|) (|List| |#1|)) "\\spad{setFoundZeroes sets} the list of foundZeroes to the given one.")) (|foundZeroes| (((|List| |#1|)) "\\spad{foundZeroes returns} the list of already found zeros by the functions distinguishedRootsOf and distinguishedCommonRootsOf.")) (|distinguishedCommonRootsOf| (((|Record| (|:| |zeros| (|List| |#1|)) (|:| |extDegree| (|Integer|))) (|List| (|SparseUnivariatePolynomial| |#1|)) |#1|) "\\spad{distinguishedCommonRootsOf returns} the common zeros of a list of polynomial. It returns a record as in distinguishedRootsOf. If 0 is returned as extension degree then there are an infinite number of common zeros (in this case, the polynomial 0 was given in the list of input polynomials).")) (|distinguishedRootsOf| (((|Record| (|:| |zeros| (|List| |#1|)) (|:| |extDegree| (|Integer|))) (|SparseUnivariatePolynomial| |#1|) |#1|) "\\spad{distinguishedRootsOf returns} a record consisting of a list of zeros of the input polynomial followed by the smallest extension degree needed to find all the zeros. If \\spad{K} has \\spad{PseudoAlgebraicClosureOfFiniteFieldCategory} or \\spad{PseudoAlgebraicClosureOfRationalNumberCategory} then a root is created for each irreducible factor, and only these roots are returns and not their conjugate."))) │ │ │ +(|QuasiAlgebraicSet2| |vl| |nv|) │ │ │ +((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set, defined as the common zeros of a given list of polynomials (the defining polynomials for equations), and a principal Zariski open set, defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet}, where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals, it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer}, and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis, and the defining polynomial for the inequation reduced with respect to the basis, using using groebner basis of radical ideals"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Plot|) │ │ │ -((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} is not documented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} is not documented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} is not documented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t)*cos(t)}, \\spad{y = f(t)*sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t)*cos(t)}, \\spad{y = f(t)*sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t \\spad{+->} (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; x-range of \\spad{[c,d]} and y-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t \\spad{+->} (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} is not documented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; x-range of \\spad{[c,d]} and y-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},..., \\spad{y = fm(x)} on the interval \\spad{a..b}; y-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},..., \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; y-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} \\indented{1}{on the interval \\spad{[a,b]}.} \\blankline \\spad{X} fp:=(t:DFLOAT):DFLOAT \\spad{+->} sin(t) \\spad{X} plot(fp,-1.0..1.0)$PLOT"))) │ │ │ +(|ProjectiveAlgebraicSetPackage| K |symb| |PolyRing| E |ProjPt|) │ │ │ +((|constructor| (NIL "The following is part of the PAFF package")) (|rationalPoints| (((|List| |#5|) |#3| (|PositiveInteger|)) "\\axiom{rationalPoints(f,d)} returns all points on the curve \\axiom{f} in the extension of the ground field of degree \\axiom{d}. For \\axiom{d > 1} this only works if \\axiom{K} is a \\axiomType{LocallyAlgebraicallyClosedField}")) (|algebraicSet| (((|List| |#5|) (|List| |#3|)) "\\spad{algebraicSet(lp)} returns the algebraic set if finite (dimension 0).")) (|singularPoints| (((|List| |#5|) |#3|) "\\spad{singularPoints(p)} returns the singular points")) (|singularPointsWithRestriction| (((|List| |#5|) |#3| (|List| |#3|)) "\\spad{singularPointsWithRestriction(p,lp)} return the singular points that annihilate"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|SequentialDifferentialPolynomial| R) │ │ │ -((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates, with coefficients in a ring. The ranking on the differential indeterminate is sequential."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|SequentialDifferentialVariable| (|Symbol|)) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|SequentialDifferentialVariable| (|Symbol|)) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|SequentialDifferentialVariable| (|Symbol|)) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|SequentialDifferentialVariable| (|Symbol|)) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|SequentialDifferentialVariable| (|Symbol|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|TubePlotTools|) │ │ │ -((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r,} around the center point indicated by the point \\spad{p,} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n,} and the binormal vector given by the point(vector) \\spad{b,} and a list of lists, lls, which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n,} in the form \\spad{[[cos(n-1) a,sin(n-1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note that \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note that \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates, and keeping the color of the first point \\spad{p.} The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates, and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - \\spad{q}} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q}, using the color, or fourth coordinate, of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + \\spad{q}} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q}, using the color, or fourth coordinate, of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * \\spad{p}} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s,} preserving the color, or fourth coordinate, of \\spad{p.}")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1}, \\spad{x2}, \\spad{x3}, and also a fourth coordinate, \\spad{c,} which is generally used to specify the color of the point."))) │ │ │ +(|NumericRealEigenPackage| |Par|) │ │ │ +((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue, its algebraic multiplicity, and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision eps. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x.} Fraction \\spad{P} \\spad{RN.}") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|SquareMatrixCategory&| S |ndim| R |Row| |Col|) │ │ │ -((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m.} Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m,} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m.}")) (* ((|#4| |#4| $) "\\spad{r * \\spad{x}} is the product of the row vector \\spad{r} and the matrix \\spad{x.} Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * \\spad{c}} is the product of the matrix \\spad{x} and the column vector \\spad{c.} Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m.}")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m.} this is the sum of the elements on the diagonal of the matrix \\spad{m.}")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m.}")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an n-by-n matrix with \\spad{r's} on the diagonal and zeroes elsewhere."))) │ │ │ +(|DoubleFloatVector|) │ │ │ +((|constructor| (NIL "This is a low-level domain which implements vectors (one dimensional arrays) of double precision floating point numbers. Indexing is 0 based, there is no bound checking (unless provided by lower level).")) (|qnew| (($ (|Integer|)) "\\spad{qnew(n)} creates a new uninitialized vector of length \\spad{n.} \\blankline \\spad{X} t1:DFVEC:=qnew(7)"))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| (|DoubleFloat|) (QUOTE (|SetCategory|))) (|HasCategory| (|DoubleFloat|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|DoubleFloat|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|DoubleFloat|) (QUOTE (|OrderedSet|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|AbelianSemiGroup|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|AbelianMonoid|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|AbelianGroup|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|Monoid|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|Ring|))) (AND (|HasCategory| (|DoubleFloat|) (QUOTE (|RadicalCategory|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|Ring|)))) (AND (|HasCategory| (|DoubleFloat|) (LIST (QUOTE |Evalable|) (QUOTE (|DoubleFloat|)))) (|HasCategory| (|DoubleFloat|) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|DoubleFloat|) (LIST (QUOTE |Evalable|) (QUOTE (|DoubleFloat|)))) (|HasCategory| (|DoubleFloat|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| (|DoubleFloat|) (LIST (QUOTE |Evalable|) (QUOTE (|DoubleFloat|)))) (|HasCategory| (|DoubleFloat|) (QUOTE (|SetCategory|)))))) │ │ │ +(|FourierSeries| R E) │ │ │ +((|constructor| (NIL "This domain converts terms into Fourier series")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) │ │ │ +((|canonical| AND (|has| |#1| (ATTRIBUTE |canonical|)) (|has| |#2| (ATTRIBUTE |canonical|))) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((AND (|HasAttribute| |#1| (QUOTE |canonical|)) (|HasAttribute| |#2| (QUOTE |canonical|)))) │ │ │ +(|UnitsKnownAttribute|) │ │ │ +((|constructor| (NIL "The class of all monoids (multiplicative semigroups with a 1) such that the operation recop can only return \"failed\" if its argument is not a unit."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -((|HasCategory| |#3| (QUOTE (|Field|))) (|HasAttribute| |#3| (QUOTE (|commutative| "*"))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|)))) │ │ │ -(|UnivariatePuiseuxSeriesConstructorCategory&| S |Coef| ULS) │ │ │ -((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]}, where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible, \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)}, which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) │ │ │ +(|CancellationAbelianMonoid|) │ │ │ +((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property, \\spad{\\br} \\tab{5}\\spad{ a+b = a+c \\spad{=>} \\spad{b=c} }.\\br This is formalised by the partial subtraction operator, which satisfies the Axioms\\br \\tab{5}\\spad{c = a+b \\spad{<=>} \\spad{c-b} = a}")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x, \\spad{y)}} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RightOpenIntervalRootCharacterization| |TheField| |ThePolDom|) │ │ │ -((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,c,p) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(p,r)} is \\spad{false} if \\axiom{p.r} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "\\axiom{size(rootChar)} is the size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) │ │ │ +(|IntegerMod| |p|) │ │ │ +((|constructor| (NIL "IntegerMod(n) creates the ring of integers reduced modulo the integer \\spad{n.}"))) │ │ │ +(((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|TwoFactorize| F) │ │ │ +((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p,} a sparse univariate polynomial (sup) over a sup over \\spad{F.} Also, \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p).}")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p,} a sparse univariate polynomial (sup) over a sup over \\spad{F.}")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p,} a sparse univariate polynomial (sup) over a sup over \\spad{F.}"))) │ │ │ NIL │ │ │ -(|UnivariatePuiseuxSeriesConstructorCategory| |Coef| ULS) │ │ │ -((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]}, where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible, \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)}, which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|SquareMatrixCategory| |ndim| R |Row| |Col|) │ │ │ -((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m.} Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m,} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m.}")) (* ((|#3| |#3| $) "\\spad{r * \\spad{x}} is the product of the row vector \\spad{r} and the matrix \\spad{x.} Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * \\spad{c}} is the product of the matrix \\spad{x} and the column vector \\spad{c.} Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m.}")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m.} this is the sum of the elements on the diagonal of the matrix \\spad{m.}")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m.}")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an n-by-n matrix with \\spad{r's} on the diagonal and zeroes elsewhere."))) │ │ │ -((|nil| . T) (|finiteAggregate| . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|d01apfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF, a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form w(x) = (x-a)^c * (b-x)^d. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ NIL │ │ │ -(|AffineAlgebraicSetComputeWithGroebnerBasis| K |symb| |PolyRing| E |ProjPt|) │ │ │ -((|constructor| (NIL "The following is part of the PAFF package")) (|affineRationalPoints| (((|List| |#5|) |#3| (|PositiveInteger|)) "\\axiom{rationalPoints(f,d)} returns all points on the curve \\axiom{f} in the extension of the ground field of degree \\axiom{d}. For \\axiom{d > 1} this only works if \\axiom{K} is a \\axiomType{LocallyAlgebraicallyClosedField}"))) │ │ │ NIL │ │ │ +(|FiniteFieldCyclicGroupExtension| GF |extdeg|) │ │ │ +((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,n) implements a extension of degree \\spad{n} over the ground field \\spad{GF.} Its elements are represented by powers of a primitive element, a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial, which is created by createPrimitivePoly from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size, and use \\spadtype{SingleInteger} for representing field elements, hence, there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))))) │ │ │ +(|MPolyCatFunctions2| |VarSet| E1 E2 R S PR PS) │ │ │ +((|constructor| (NIL "Utilities for MPolyCat")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented"))) │ │ │ NIL │ │ │ -(|AffineAlgebraicSetComputeWithResultant| K |symb| |PolyRing| E |ProjPt|) │ │ │ -((|constructor| (NIL "The following is part of the PAFF package"))) │ │ │ NIL │ │ │ +(|d01amfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF, a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ NIL │ │ │ -(|DirectProductMatrixModule| |n| R M S) │ │ │ -((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) │ │ │ -((|unitsKnown| OR (|and| (|has| |#4| (|Ring|)) (|has| |#4| (|DifferentialRing|))) (|and| (|has| |#4| (|Ring|)) (|has| |#4| (|PartialDifferentialRing| (|Symbol|)))) (|has| |#4| (ATTRIBUTE |unitsKnown|)) (|and| (|has| |#4| (|Ring|)) (|has| |#4| (|LinearlyExplicitRingOver| (|Integer|))))) (|rightUnitary| |has| |#4| (|Ring|)) (|leftUnitary| |has| |#4| (|Ring|)) ((|commutative| "*") |has| |#4| (|CommutativeRing|)) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#4| (QUOTE (|Field|))) (|HasCategory| |#4| (QUOTE (|Ring|))) (|HasCategory| |#4| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#4| (QUOTE (|OrderedRing|))) (OR (|HasCategory| |#4| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#4| (QUOTE (|OrderedRing|)))) (|HasCategory| |#4| (QUOTE (|Monoid|))) (|HasCategory| |#4| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#4| (QUOTE (|CommutativeRing|))) (|HasCategory| |#4| (QUOTE (|Field|))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (OR (|HasCategory| |#4| (QUOTE (|CommutativeRing|))) (|HasCategory| |#4| (QUOTE (|Field|)))) (OR (|HasCategory| |#4| (QUOTE (|CommutativeRing|))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (|HasCategory| |#4| (QUOTE (|Finite|))) (|HasCategory| |#4| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#4| (QUOTE (|DifferentialRing|))) (OR (|HasCategory| |#4| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#4| (QUOTE (|CommutativeRing|))) (|HasCategory| |#4| (QUOTE (|DifferentialRing|))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (|HasCategory| |#4| (QUOTE (|SetCategory|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#4| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (QUOTE (|DifferentialRing|))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (OR (AND (|HasCategory| |#4| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (QUOTE (|DifferentialRing|))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (|HasCategory| |#4| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#4| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#4| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|Field|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|Finite|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|SetCategory|))))) (OR (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#4| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#4| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|Field|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|Finite|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|SetCategory|))))) (OR (|HasAttribute| |#4| (QUOTE |unitsKnown|)) (AND (|HasCategory| |#4| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (QUOTE (|DifferentialRing|))) (|HasCategory| |#4| (QUOTE (|Ring|))))) (|HasCategory| |#4| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#4| (QUOTE (|AbelianSemiGroup|))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|Field|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|Finite|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))))) │ │ │ -(|FunctionFieldIntegralBasis| R UP F) │ │ │ -((|constructor| (NIL "Integral bases for function fields of dimension one In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R.} The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F.} It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R.} A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R.}")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F,} where \\spad{F} is a framed algebra with R-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F,} where \\spad{F} is a framed algebra with R-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) │ │ │ NIL │ │ │ +(|ArbitraryPrecisionAttribute|) │ │ │ +((|constructor| (NIL "Approximate numbers for which the user can set the precision for subsequent calculations."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|FractionalIdeal| R F UP A) │ │ │ -((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d.}")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal I.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) │ │ │ -((|unitsKnown| . T)) │ │ │ +(|FortranType|) │ │ │ +((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types, including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER, an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX, an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX, an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL, an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER, an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION, an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL, an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) │ │ │ NIL │ │ │ -(|FractionalIdealFunctions2| R1 F1 U1 A1 R2 F2 U2 A2) │ │ │ -((|constructor| (NIL "Lifting of morphisms to fractional ideals.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) │ │ │ NIL │ │ │ +(|FunctionFieldCategory&| S F UP UPUP) │ │ │ +((|constructor| (NIL "Function field of a curve This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,...,un of \\indented{1}{an affine non-singular model for the curve.}")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, \\spad{D)}} returns \\spad{[h,d,d',g]} such that \\indented{1}{\\spad{f=h/d},} \\indented{1}{\\spad{h} is integral at all the normal places w.r.t. \\spad{D},} \\indented{1}{\\spad{d' = Dd}, \\spad{g = gcd(d, discriminant())} and \\spad{D}} \\indented{1}{is the derivation to use. \\spad{f} must have at most simple finite} \\indented{1}{poles.}")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the \\indented{1}{hyperelliptic} \\indented{1}{defined by \\spad{y**2 = p(x)}, \"failed\" otherwise.}")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic \\indented{1}{defined by \\spad{y**2 = p(x)}, \"failed\" otherwise.}")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or f(a, \\spad{b)} returns the value of \\spad{f} \\indented{1}{at the point \\spad{(x = a, \\spad{y} = b)}} \\indented{1}{if it is not singular.}")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and \\indented{1}{the common content of the numerator of \\spad{f.}}")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, \\spad{d)}} extends the derivation \\spad{d} from UP to \\$ and \\indented{1}{applies it to \\spad{x.}}")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ \\indented{1}{and returns \\spad{(M,} \\spad{Q)} such that the i^th row of \\spad{M} divided by \\spad{Q} form} \\indented{1}{the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)}} \\indented{1}{where \\spad{(w1,...,wn)} is the integral basis returned} \\indented{1}{by integralBasis().}")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], \\spad{D)}} returns \\indented{1}{\\spad{(A1 w1+...+An wn)/D}} \\indented{1}{where \\spad{(w1,...,wn)} is the integral} \\indented{1}{basis of \\spad{integralBasis()}.}")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], \\spad{D]}} such that \\indented{1}{\\spad{f = \\spad{(A1} \\spad{w1} +...+ An \\spad{wn)} / D}\\space{2}where \\spad{(w1,...,wn)} is the} \\indented{1}{integral basis returned by \\spad{integralBasis()}.}")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\indented{1}{\\spad{(A0 + \\spad{A1} \\spad{y} +...+ A(n-1)*y**(n-1))/D}.}") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\indented{1}{\\spad{(A0 + \\spad{A1} \\spad{y} +...+ A(n-1)*y**(n-1))/D}.}")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], \\spad{D]}} such that \\indented{1}{\\spad{f = \\spad{(A1} + \\spad{A2} \\spad{y} +...+ An y**(n-1)) / D}.}")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such \\indented{1}{that \\spad{M (v1,...,vn) = \\spad{(1,} \\spad{y,} ..., y**(n-1))}} \\indented{1}{where \\spad{(v1,...,vn)} is the local integral basis at infinity} \\indented{1}{returned by \\spad{infIntBasis()}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} inverseIntegralMatrixAtInfinity()$R")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\indented{1}{\\spad{(v1,...,vn) = \\spad{M} \\spad{(1,} \\spad{y,} ..., y**(n-1))}} \\indented{1}{where \\spad{(v1,...,vn)} is the local integral basis at infinity} \\indented{1}{returned by \\spad{infIntBasis()}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} integralMatrixAtInfinity()$R")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\indented{1}{\\spad{M (w1,...,wn) = \\spad{(1,} \\spad{y,} ..., y**(n-1))}} \\indented{1}{where \\spad{(w1,...,wn)} is the integral basis of} \\indented{1}{\\spadfunFrom{integralBasis}{FunctionFieldCategory}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} inverseIntegralMatrix()$R")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\indented{1}{\\spad{(w1,...,wn) = \\spad{M} \\spad{(1,} \\spad{y,} ..., y**(n-1))},} \\indented{1}{where \\spad{(w1,...,wn)} is the integral basis of} \\indented{1}{\\spadfunFrom{integralBasis}{FunctionFieldCategory}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} integralMatrix()$R")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} \\indented{1}{for all i,j such that \\spad{x**i*bj} is locally integral} \\indented{1}{at infinity.}")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\indented{1}{\\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.}")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, \\spad{p)}} tests whether \\spad{f} is locally integral at \\indented{1}{\\spad{p(x) = 0}}") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis \\indented{1}{at infinity} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} integralBasisAtInfinity()$R")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve. \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} integralBasis()$R")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point \\indented{1}{at infinity.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} branchPointAtInfinity?()$R \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 2 * x**2, 4) \\spad{X} branchPointAtInfinity?()$R")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, \\spad{b)}} tests if \\spad{(x=a,y=b)} is on the curve. \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} rationalPoint?(0,0)$R \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 2 * x**2, 4) \\spad{X} \\spad{rationalPoint?(0,0)$R2}")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible? \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 2 * x**2, 4) \\spad{X} \\spad{absolutelyIrreducible?()$R2}")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} genus()$R")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible \\indented{1}{components.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} numberOfComponents()$R"))) │ │ │ NIL │ │ │ -(|FramedModule| R F UP A |ibasis|) │ │ │ -((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R.}") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R.}")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f.}")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) │ │ │ +((|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ +(|RecursivePolynomialCategory&| S R E V) │ │ │ +((|constructor| (NIL "\\indented{1}{Author: Marc Moreno Maza} Date Created: 04/22/1994 Date Last Updated: 14/12/1998 Description:")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(p)} returns the square free part of \\axiom{p} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{R}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(p)} returns the primitive part of \\axiom{p} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{R}.")) (|mainContent| (($ $) "\\axiom{mainContent(p)} returns the content of \\axiom{p} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{R}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(p)} replaces \\axiom{p} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(r,p)} returns the \\spad{gcd} of \\axiom{r} and the content of \\axiom{p}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(p,q,z,s)} is the multivariate version of the operation \\spad{next_sousResultant2} from PseudoRemainderSequence from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(p,a,b,n)} returns \\axiom{(a**(n-1) * \\spad{p)} exquo b**(n-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,b,n)} returns \\axiom{a**n exquo b**(n-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,b)} returns the last non-zero subresultant of \\axiom{a} and \\axiom{b} where \\axiom{a} and \\axiom{b} are assumed to have the same main variable \\axiom{v} and are viewed as univariate polynomials in \\axiom{v}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,b)}, where \\axiom{a} and \\axiom{b} are not contant polynomials with the same main variable, returns the subresultant chain of \\axiom{a} and \\axiom{b}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,b)} computes the resultant of \\axiom{a} and \\axiom{b} where \\axiom{a} and \\axiom{b} are assumed to have the same main variable \\axiom{v} and are viewed as univariate polynomials in \\axiom{v}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,b)} returns \\axiom{[g,cb]} if \\axiom{extendedSubResultantGcd(a,b)} returns \\axiom{[g,ca,cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,b)} returns \\axiom{[g,ca]} if \\axiom{extendedSubResultantGcd(a,b)} returns \\axiom{[g,ca,cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,b)} returns \\axiom{[ca,cb,r]} such that \\axiom{r} is \\axiom{subResultantGcd(a,b)} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,b)} computes a \\spad{gcd} of \\axiom{a} and \\axiom{b} where \\axiom{a} and \\axiom{b} are assumed to have the same main variable \\axiom{v} and are viewed as univariate polynomials in \\axiom{v} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{R}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,b)} replaces \\axiom{a} by \\axiom{exactQuotient(a,b)}") (($ $ |#2|) "\\axiom{exactQuotient!(p,r)} replaces \\axiom{p} by \\axiom{exactQuotient(p,r)}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,b)} computes the exact quotient of \\axiom{a} by \\axiom{b}, which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(p,r)} computes the exact quotient of \\axiom{p} by \\axiom{r}, which is assumed to be a divisor of \\axiom{p}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(p)} replaces \\axiom{p} by \\axiom{primPartElseUnitCanonical(p)}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(p)} returns \\axiom{primitivePart(p)} if \\axiom{R} is a gcd-domain, otherwise \\axiom{unitCanonical(p)}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}, otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(p)} returns the same as \\axiom{retract(p)}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(p)} returns the same as \\axiom{retract(p)}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(p)} returns the same as \\axiom{retract(p)}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,b)} returns a polynomial \\axiom{r} such that \\axiom{initiallyReduced?(r,b)} holds and there exists an integer \\axiom{e} such that \\axiom{init(b)^e a - \\spad{r}} is zero modulo \\axiom{b}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,b)} returns a polynomial \\axiom{r} such that \\axiom{headReduced?(r,b)} holds and there exists an integer \\axiom{e} such that \\axiom{init(b)^e a - \\spad{r}} is zero modulo \\axiom{b}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,b)} returns \\axiom{[p,q,n]} where \\axiom{p / q**n} represents the residue class of \\axiom{a} modulo \\axiom{b} and \\axiom{p} is reduced w.r.t. \\axiom{b} and \\axiom{q} is \\axiom{init(b)}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,b)} computes \\axiom{a mod \\spad{b},} if \\axiom{b} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,b)} computes \\axiom{[pquo(a,b),prem(a,b)]}, both polynomials viewed as univariate polynomials in the main variable of \\axiom{b}, if \\axiom{b} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,b,v)} returns \\axiom{[c,g,q,r]} such that \\axiom{r = lazyPrem(a,b,v)}, \\axiom{(c**g)*r = prem(a,b,v)} and \\axiom{q} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,b)} returns \\axiom{[c,g,q,r]} such that \\axiom{[c,g,r] = lazyPremWithDefault(a,b)} and \\axiom{q} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,b,v)} returns \\axiom{[c,g,r]} such that \\axiom{r = lazyPrem(a,b,v)} and \\axiom{(c**g)*r = prem(a,b,v)}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,b)} returns \\axiom{[c,g,r]} such that \\axiom{r = lazyPrem(a,b)} and \\axiom{(c**g)*r = prem(a,b)}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,b,v)} returns the polynomial \\axiom{q} such that \\axiom{lazyPseudoDivide(a,b,v)} returns \\axiom{[c,g,q,r]}.") (($ $ $) "\\axiom{lazyPquo(a,b)} returns the polynomial \\axiom{q} such that \\axiom{lazyPseudoDivide(a,b)} returns \\axiom{[c,g,q,r]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,b,v)} returns the polynomial \\axiom{r} reduced w.r.t. \\axiom{b} viewed as univariate polynomials in the variable \\axiom{v} such that \\axiom{b} divides \\axiom{init(b)^e a - \\spad{r}} where \\axiom{e} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,b)} returns the polynomial \\axiom{r} reduced w.r.t. \\axiom{b} and such that \\axiom{b} divides \\axiom{init(b)^e a - \\spad{r}} where \\axiom{e} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,b,v)} computes the pseudo-quotient of \\axiom{a} by \\axiom{b}, both viewed as univariate polynomials in \\axiom{v}.") (($ $ $) "\\axiom{pquo(a,b)} computes the pseudo-quotient of \\axiom{a} by \\axiom{b}, both viewed as univariate polynomials in the main variable of \\axiom{b}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,b,v)} computes the pseudo-remainder of \\axiom{a} by \\axiom{b}, both viewed as univariate polynomials in \\axiom{v}.") (($ $ $) "\\axiom{prem(a,b)} computes the pseudo-remainder of \\axiom{a} by \\axiom{b}, both viewed as univariate polynomials in the main variable of \\axiom{b}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(q,lp)} returns \\spad{true} iff \\axiom{normalized?(q,p)} holds for every \\axiom{p} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,b)} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero w.r.t. the main variable of \\axiom{b}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(q,lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(q,p)} holds for every \\axiom{p} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,b)} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced w.r.t \\axiom{b}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(q,lp)} returns \\spad{true} iff \\axiom{headReduced?(q,p)} holds for every \\axiom{p} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,b)} returns \\spad{true} iff \\axiom{degree(head(a),mvar(b)) < mdeg(b)}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(q,lp)} returns \\spad{true} iff \\axiom{reduced?(q,p)} holds for every \\axiom{p} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,b)} returns \\spad{true} iff \\axiom{degree(a,mvar(b)) < mdeg(b)}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,b)} returns \\spad{true} if \\axiom{a} is greater than \\axiom{b} w.r.t. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,b)} returns \\spad{true} if \\axiom{a} is less than \\axiom{b} w.r.t. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,b)} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{b} have same rank w.r.t. Ritt and Wu Wen Tsun ordering using the refinement of Lazard, otherwise returns \\axiom{infRittWu?(a,b)}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(p)} returns an error if \\axiom{p} is \\axiom{O}, otherwise, if \\axiom{p} belongs to \\axiom{R} returns [1], otherwise returns the list of the monomials of \\axiom{p}, where \\axiom{p} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(p)} returns an error if \\axiom{p} is \\axiom{O}, otherwise, if \\axiom{p} belongs to \\axiom{R} returns [p], otherwise returns the list of the coefficients of \\axiom{p}, where \\axiom{p} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(p)} returns an error if \\axiom{p} is \\axiom{O}, otherwise, if \\axiom{p} belongs to \\axiom{R} returns \\axiom{1}, otherwise, the monomial of \\axiom{p} with lowest degree, where \\axiom{p} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(p)} returns an error if \\axiom{p} is \\axiom{O}, otherwise, if \\axiom{p} belongs to \\axiom{R} returns \\axiom{1}, otherwise, \\axiom{mvar(p)} raised to the power \\axiom{mdeg(p)}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(p)} returns \\spad{false} if \\axiom{p} belongs to \\axiom{R}, otherwise returns \\spad{true} iff the initial of \\axiom{p} lies in the base ring \\axiom{R}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(p)} returns \\spad{false} if \\axiom{p} belongs to \\axiom{R}, otherwise returns \\spad{true} iff \\axiom{p} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(p,v)} returns the reductum of \\axiom{p}, where \\axiom{p} is viewed as a univariate polynomial in \\axiom{v}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(p,v)} returns the leading coefficient of \\axiom{p}, where \\axiom{p} is viewed as A univariate polynomial in \\axiom{v}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(p)} returns an error if \\axiom{p} belongs to \\axiom{R}, otherwise returns the last term of \\axiom{iteratedInitials(p)}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(p)} returns \\axiom{[]} if \\axiom{p} belongs to \\axiom{R}, otherwise returns the list of the iterated initials of \\axiom{p}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(p)} returns \\axiom{0} if \\axiom{p} belongs to \\axiom{R}, otherwise returns tail(p), if \\axiom{tail(p)} belongs to \\axiom{R} or \\axiom{mvar(tail(p)) < mvar(p)}, otherwise returns \\axiom{deepestTail(tail(p))}.")) (|tail| (($ $) "\\axiom{tail(p)} returns its reductum, where \\axiom{p} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(p)} returns \\axiom{p} if \\axiom{p} belongs to \\axiom{R}, otherwise returns its leading term (monomial in the AXIOM sense), where \\axiom{p} is viewed as a univariate polynomial \\indented{1}{in its main variable.}")) (|init| (($ $) "\\axiom{init(p)} returns an error if \\axiom{p} belongs to \\axiom{R}, otherwise returns its leading coefficient, where \\axiom{p} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(p)} returns an error if \\axiom{p} is \\axiom{0}, otherwise, if \\axiom{p} belongs to \\axiom{R} returns \\axiom{0}, otherwise, returns the degree of \\axiom{p} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(p)} returns an error if \\axiom{p} belongs to \\axiom{R}, otherwise returns its main variable \\spad{w.} \\spad{r.} \\spad{t.} to the total ordering on the elements in \\axiom{V}."))) │ │ │ NIL │ │ │ -((|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (|devaluate| |#2|)))) │ │ │ -(|FiniteSetAggregate&| A S) │ │ │ -((|constructor| (NIL "A finite-set aggregate models the notion of a finite set, that is, a collection of elements characterized by membership, but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate u.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate u.")) (|universe| (($) "\\spad{universe()}$D returns the universal set for finite set aggregate \\spad{D.}")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set u, that is, the set of all values not in u.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of u. Note that \\axiom{cardinality(u) = \\#u}."))) │ │ │ +((|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |QuotientFieldCategory|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|))))) │ │ │ +(|PolynomialCategoryQuotientFunctions| E V R P F) │ │ │ +((|constructor| (NIL "Manipulations on polynomial quotients This package transforms multivariate polynomials or fractions into univariate polynomials or fractions, and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0}, \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0}, \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = \\spad{a1} \\spad{...} an} and \\spad{n > 1}, \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [m1,...,mn] if \\spad{p = \\spad{m1} + \\spad{...} + \\spad{mn}} and \\spad{n > 1}, \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, \\spad{v)}} applies both the numerator and denominator of \\spad{f} to \\spad{v.}")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, \\spad{x,} \\spad{p)}} returns \\spad{f} viewed as a univariate polynomial in \\spad{x,} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, \\spad{v)}} returns \\spad{f} viewed as a univariate rational function in \\spad{v.}")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f,} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f.}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|Finite|)))) │ │ │ -(|IntegerFactorizationPackage| I) │ │ │ -((|constructor| (NIL "This Package contains basic methods for integer factorization. The factor operation employs trial division up to 10,000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail, the result of factor may contain composite factors. We should also employ Lenstra's eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) │ │ │ NIL │ │ │ +(|Expression| R) │ │ │ +((|constructor| (NIL "Top-level mathematical expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} is not documented")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} is not documented")) (|simplifyPower| (($ $ (|Integer|)) "\\spad{simplifyPower(f,n)} is not documented")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) │ │ │ +((|unitsKnown| OR (|and| (|has| |#1| (|Ring|)) (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (AND (|has| |#1| (|IntegralDomain|)) (OR (|and| (|has| |#1| (|Ring|)) (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (|has| |#1| (|Ring|)) (|has| |#1| (|Group|)))) (|has| |#1| (|Ring|)) (|has| |#1| (|Group|))) (|leftUnitary| |has| |#1| (|CommutativeRing|)) (|rightUnitary| |has| |#1| (|CommutativeRing|)) ((|commutative| "*") |has| |#1| (|IntegralDomain|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|IntegralDomain|)) (|canonicalsClosed| |has| |#1| (|IntegralDomain|))) │ │ │ +((|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|Ring|))) (OR (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (AND (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (OR (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (OR (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|)))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (OR (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|)))) (|HasCategory| |#1| (QUOTE (|SemiGroup|))) (OR (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (QUOTE (|SemiGroup|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (|HasCategory| |#1| (QUOTE (|SemiGroup|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#1| (QUOTE (|SemiGroup|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))))) (|HasCategory| $ (QUOTE (|Ring|))) (|HasCategory| $ (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) │ │ │ +(|GaloisGroupUtilities| R) │ │ │ +((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) │ │ │ NIL │ │ │ -(|IntegralBasisTools| R UP F) │ │ │ -((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with R-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2.}")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns e, where \\spad{e} is the smallest integer such that \\spad{p **e \\spad{>=} \\spad{n}}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful, 1 is returned and if not, \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) │ │ │ +((|HasCategory| |#1| (QUOTE (|FloatingPointSystem|)))) │ │ │ +(|ExpressionSolve| R F UTSF UTSSUPF) │ │ │ +((|constructor| (NIL "This package has no description"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FiniteSetAggregate| S) │ │ │ -((|constructor| (NIL "A finite-set aggregate models the notion of a finite set, that is, a collection of elements characterized by membership, but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate u.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate u.")) (|universe| (($) "\\spad{universe()}$D returns the universal set for finite set aggregate \\spad{D.}")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set u, that is, the set of all values not in u.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of u. Note that \\axiom{cardinality(u) = \\#u}."))) │ │ │ -((|finiteAggregate| . T) (|partiallyOrderedSet| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ +(|Asp77| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs, needed for NAG routine d02gbf, for example: \\blankline \\tab{5}SUBROUTINE FCNF(X,F)\\br \\tab{5}DOUBLE PRECISION X\\br \\tab{5}DOUBLE PRECISION F(2,2)\\br \\tab{5}F(1,1)=0.0D0\\br \\tab{5}F(1,2)=1.0D0\\br \\tab{5}F(2,1)=0.0D0\\br \\tab{5}F(2,2)=-10.0D0\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ -(|KeyedDictionary&| S |Key| |Entry|) │ │ │ -((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k,} returning the entry stored in \\spad{t} for key \\spad{k.} If \\spad{t} has no such key, \\axiom{search(k,t)} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key, \\axiom{remove!(k,t)} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t.}")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t.}"))) │ │ │ NIL │ │ │ +(|GuessUnivariatePolynomial| |q|) │ │ │ +((|constructor| (NIL "This package exports guessing of sequences of univariate rational functions")) (|shiftHP| (((|Mapping| HPSPEC (|List| (|GuessOption|))) (|Symbol|)) "\\spad{shiftHP options} returns a specification for Hermite-Pade approximation with the $q$-shift operator") ((HPSPEC (|List| (|GuessOption|))) "\\spad{shiftHP options} returns a specification for Hermite-Pade approximation with the shift operator")) (|diffHP| (((|Mapping| HPSPEC (|List| (|GuessOption|))) (|Symbol|)) "\\spad{diffHP options} returns a specification for Hermite-Pade approximation with the $q$-dilation operator") ((HPSPEC (|List| (|GuessOption|))) "\\spad{diffHP options} returns a specification for Hermite-Pade approximation with the differential operator")) (|guessRat| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessRat \\spad{q}} returns a guesser that tries to find a q-rational function whose first values are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessRec} with \\spad{(l, maxShift \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true)}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessRat \\spad{l}} tries to find a rational function whose first values are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessRec}\\spad{(l, maxShift \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true)}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessRat(l, options)} tries to find a rational function whose first values are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(l, maxShift \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true)}.")) (|guessPRec| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessPRec \\spad{q}} returns a guesser that tries to find a linear q-recurrence with polynomial coefficients whose first values are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(q)} with \\spad{maxPower \\spad{==} 1}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessPRec \\spad{l}} tries to find a linear recurrence with polynomial coefficients whose first values are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessRec}\\spad{(l, maxPower \\spad{==} 1)}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessPRec(l, options)} tries to find a linear recurrence with polynomial coefficients whose first values are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(l, options)} with \\spad{maxPower \\spad{==} 1}.")) (|guessRec| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessRec \\spad{q}} returns a guesser that finds an ordinary q-difference equation whose first values are given by \\spad{l,} using the given options.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessRec(l, options)} tries to find an ordinary difference equation whose first values are given by \\spad{l,} using the given options.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessRec \\spad{l}} tries to find an ordinary difference equation whose first values are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}.")) (|guessPade| (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessPade(l, options)} tries to find a rational function whose first Taylor coefficients are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}\\spad{(l, options)} with \\spad{maxDerivative \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessPade(l, options)} tries to find a rational function whose first Taylor coefficients are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessADE}\\spad{(l, maxDerivative \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true)}.")) (|guessHolo| (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessHolo(l, options)} tries to find an ordinary linear differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessADE}\\spad{(l, options)} with \\spad{maxPower \\spad{==} 1}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessHolo \\spad{l}} tries to find an ordinary linear differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}\\spad{(l, maxPower \\spad{==} 1)}.")) (|guessAlg| (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessAlg(l, options)} tries to find an algebraic equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessADE}(l, options) with \\spad{maxDerivative \\spad{==} 0}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessAlg \\spad{l}} tries to find an algebraic equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}(l, maxDerivative \\spad{==} 0).")) (|guessADE| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessADE \\spad{q}} returns a guesser that tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the given options.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessADE(l, options)} tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the given options.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessADE \\spad{l}} tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}.")) (|guessHP| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Mapping| HPSPEC (|List| (|GuessOption|)))) "\\spad{guessHP \\spad{f}} constructs an operation that applies Hermite-Pade approximation to the series generated by the given function \\spad{f.}")) (|guessBinRat| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessBinRat \\spad{q}} returns a guesser that tries to find a function of the form n+->qbinomial(a+b \\spad{n,} \\spad{n)} r(n), where r(q^n) is a q-rational function, that fits \\spad{l.}") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessBinRat(l, options)} tries to find a function of the form n+->binomial(a+b \\spad{n,} \\spad{n)} r(n), where r(n) is a rational function, that fits \\spad{l.}") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessBinRat(l, options)} tries to find a function of the form n+->binomial(a+b \\spad{n,} \\spad{n)} r(n), where r(n) is a rational function, that fits \\spad{l.}")) (|guessExpRat| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessExpRat \\spad{q}} returns a guesser that tries to find a function of the form n+->(a+b q^n)^n r(q^n), where r(q^n) is a q-rational function, that fits \\spad{l.}") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessExpRat(l, options)} tries to find a function of the form n+->(a+b n)^n r(n), where r(n) is a rational function, that fits \\spad{l.}") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessExpRat \\spad{l}} tries to find a function of the form n+->(a+b n)^n r(n), where r(n) is a rational function, that fits \\spad{l.}")) (|guess| (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|)))) (|List| (|Symbol|)) (|List| (|GuessOption|))) "\\spad{guess(l, guessers, ops)} applies recursively the given \\spad{guessers} to the successive differences if ops contains the symbol \\spad{guessSum} and quotients if ops contains the symbol \\spad{guessProduct} to the list. The given options are used.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|)))) (|List| (|Symbol|))) "\\spad{guess(l, guessers, ops)} applies recursively the given \\spad{guessers} to the successive differences if ops contains the symbol guessSum and quotients if ops contains the symbol guessProduct to the list. Default options as described in \\spadtype{GuessOptionFunctions0} are used.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guess(l, options)} applies recursively \\spadfun{guessRec} and \\spadfun{guessADE} to the successive differences and quotients of the list. The given options are used.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guess \\spad{l}} applies recursively \\spadfun{guessRec} and \\spadfun{guessADE} to the successive differences and quotients of the list. Default options as described in \\spadtype{GuessOptionFunctions0} are used."))) │ │ │ NIL │ │ │ -(|KeyedDictionary| |Key| |Entry|) │ │ │ -((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k,} returning the entry stored in \\spad{t} for key \\spad{k.} If \\spad{t} has no such key, \\axiom{search(k,t)} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key, \\axiom{remove!(k,t)} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t.}")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t.}"))) │ │ │ -((|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|MultisetAggregate| S) │ │ │ -((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) │ │ │ -((|partiallyOrderedSet| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ +(|UnivariatePolynomialMultiplicationPackage| R U) │ │ │ +((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath, but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all."))) │ │ │ NIL │ │ │ -(|MonogenicAlgebra&| S R UP) │ │ │ -((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, \\spad{')}} returns \\spad{M} such that \\spad{b' = \\spad{M} \\spad{b}.}")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element, reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element, reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Finite|)))) │ │ │ -(|NumberFieldIntegralBasis| UP F) │ │ │ -((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F.}")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F,} where \\spad{F} is a framed algebra with Z-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F,} where \\spad{F} is a framed algebra with Z-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F.}"))) │ │ │ +(|AnnaOrdinaryDifferentialEquationPackage|) │ │ │ +((|constructor| (NIL "\\axiomType{AnnaOrdinaryDifferentialEquationPackage} is a \\axiom{package} of functions for the \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} with \\axiom{measure}, and \\axiom{solve}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{prob}. \\blankline It calls each \\axiom{domain} listed in \\axiom{R} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{prob}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations, \\axiom{f}, equations for the derivatives y[1]'..y[n]' defined in terms of x,y[1]..y[n] from \\axiom{xStart} to \\axiom{xEnd} with the initial values for y[1]..y[n] (\\axiom{yInitial}) to an absolute error requirement \\axiom{epsabs} and relative error \\axiom{epsrel}. The values of y[1]..y[n] will be output for the values of \\spad{x} in \\axiom{intVals}. The calculation will stop if the function G(x,y[1],..,y[n]) evaluates to zero before \\spad{x} = xEnd. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{R} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations, \\axiom{f}, equations for the derivatives y[1]'..y[n]' defined in terms of x,y[1]..y[n] from \\axiom{xStart} to \\axiom{xEnd} with the initial values for y[1]..y[n] (\\axiom{yInitial}) to a tolerance \\axiom{tol}. The values of y[1]..y[n] will be output for the values of \\spad{x} in \\axiom{intVals}. The calculation will stop if the function G(x,y[1],..,y[n]) evaluates to zero before \\spad{x} = xEnd. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{R} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations, \\axiom{f}, equations for the derivatives y[1]'..y[n]' defined in terms of x,y[1]..y[n] from \\axiom{xStart} to \\axiom{xEnd} with the initial values for y[1]..y[n] (\\axiom{yInitial}) to a tolerance \\axiom{tol}. The values of y[1]..y[n] will be output for the values of \\spad{x} in \\axiom{intVals}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{R} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations, \\axiom{f}, equations for the derivatives y[1]'..y[n]' defined in terms of x,y[1]..y[n] from \\axiom{xStart} to \\axiom{xEnd} with the initial values for y[1]..y[n] (\\axiom{yInitial}) to a tolerance \\axiom{tol}. The calculation will stop if the function G(x,y[1],..,y[n]) evaluates to zero before \\spad{x} = xEnd. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{R} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations, \\axiom{f}, equations for the derivatives y[1]'..y[n]' defined in terms of x,y[1]..y[n] from \\axiom{xStart} to \\axiom{xEnd} with the initial values for y[1]..y[n] (\\axiom{yInitial}) to a tolerance \\axiom{tol}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{R} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations equations for the derivatives y[1]'..y[n]' defined in terms of x,y[1]..y[n], together with a starting value for \\spad{x} and y[1]..y[n] (called the initial conditions) and a final value of \\spad{x.} A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{R} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations equations for the derivatives y[1]'..y[n]' defined in terms of x,y[1]..y[n], together with starting values for \\spad{x} and y[1]..y[n] (called the initial conditions), a final value of \\spad{x,} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{R} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations equations for the derivatives y[1]'..y[n]' defined in terms of x,y[1]..y[n], together with starting values for \\spad{x} and y[1]..y[n] (called the initial conditions), a final value of \\spad{x,} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MonogenicAlgebra| R UP) │ │ │ -((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, \\spad{')}} returns \\spad{M} such that \\spad{b' = \\spad{M} \\spad{b}.}")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element, reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element, reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) │ │ │ -((|noZeroDivisors| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|LaplaceTransform| R F) │ │ │ +((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, \\spad{t,} \\spad{s)}} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), \\spad{t} = 0..%plusInfinity)}. Returns the formal object \\spad{laplace(f, \\spad{t,} \\spad{s)}} if it cannot compute the transform."))) │ │ │ NIL │ │ │ -(|ElementaryFunctionsUnivariatePuiseuxSeries| |Coef| ULS UPXS EFULS) │ │ │ -((|constructor| (NIL "This package provides elementary functions on any Laurent series domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z.}")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z.}")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z.}")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z.}")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z.}")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z.}")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z.}")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z.}")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z.}")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z.}")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z.}")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z.}")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z.}")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z.}")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z.}")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z.}")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z.}")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z.}")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z.}")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z.}")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z.}")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z.}")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z.}")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z.}")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z.}")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z.}")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z \\spad{**} \\spad{r}} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ -(|BasicStochasticDifferential|) │ │ │ -((|constructor| (NIL "Based on Symbol: a domain of symbols representing basic stochastic differentials, used in StochasticDifferential(R) in the underlying sparse multivariate polynomial representation. \\blankline We create new \\spad{BSD} only by coercion from Symbol using a special function introduce! first of all to add to a private set SDset. We allow a separate function convertIfCan which will check whether the argument has previously been declared as a BSD.")) (|getSmgl| (((|Union| (|Symbol|) "failed") $) "\\spad{getSmgl(bsd)} returns the semimartingale \\axiom{S} related \\indented{1}{to the basic stochastic differential \\axiom{bsd} \\spad{by}} \\indented{1}{\\axiom{introduce!}} \\blankline \\spad{X} introduce!(t,dt) \\spad{--} \\spad{dt} is a new stochastic differential \\spad{X} getSmgl(dt::BSD)")) (|copyIto| (((|Table| (|Symbol|) $)) "\\spad{copyIto()} returns the table relating semimartingales \\indented{1}{to basic stochastic differentials.} \\blankline \\spad{X} introduce!(t,dt) \\spad{--} \\spad{dt} is a new stochastic differential \\spad{X} copyIto()")) (|copyBSD| (((|List| $)) "\\spad{copyBSD()} returns \\axiom{setBSD} as a list of \\axiom{BSD}. \\blankline \\spad{X} introduce!(t,dt) \\spad{--} \\spad{dt} is a new stochastic differential \\spad{X} copyBSD()")) (|d| (((|Union| $ (|Integer|)) (|Symbol|)) "\\spad{d(X)} returns \\axiom{dX} if \\axiom{tableIto(X)=dX} and otherwise returns \\axiom{0}")) (|introduce!| (((|Union| $ "failed") (|Symbol|) (|Symbol|)) "\\spad{introduce!(X,dX)} returns \\axiom{dX} as \\axiom{BSD} if it \\indented{1}{isn't already in \\axiom{BSD}} \\blankline \\spad{X} introduce!(t,dt) \\spad{--} \\spad{dt} is a new stochastic differential \\spad{X} copyBSD()")) (|convert| (($ (|Symbol|)) "\\spad{convert(dX)} transforms \\axiom{dX} into a \\axiom{BSD} if possible and otherwise produces an error.")) (|convertIfCan| (((|Union| $ "failed") (|Symbol|)) "\\spad{convertIfCan(ds)} transforms \\axiom{dX} into a \\axiom{BSD} if possible (if \\axiom{introduce(X,dX)} has been invoked previously)."))) │ │ │ +(|DivisorCategory| S) │ │ │ +((|constructor| (NIL "This category exports the function for domains")) (|divOfPole| (($ $) "\\spad{divOfPole(d)} returns the negative part of \\spad{d.}")) (|divOfZero| (($ $) "\\spad{divOfZero(d)} returns the positive part of \\spad{d.}")) (|suppOfPole| (((|List| |#1|) $) "\\spad{suppOfPole(d)} returns the elements of the support of \\spad{d} that have a negative coefficient.")) (|suppOfZero| (((|List| |#1|) $) "\\spad{suppOfZero(d)} returns the elements of the support of \\spad{d} that have a positive coefficient.")) (|supp| (((|List| |#1|) $) "\\spad{supp(d)} returns the support of the divisor \\spad{d.}")) (|effective?| (((|Boolean|) $) "\\spad{effective?(d)} returns \\spad{true} if \\spad{d} \\spad{>=} 0.")) (|concat| (($ $ $) "\\spad{concat(a,b)} concats the divisor a and \\spad{b} without collecting the duplicative points.")) (|collect| (($ $) "\\spad{collect collects} the duplicative points in the divisor.")) (|split| (((|List| $) $) "\\spad{split(d)} splits the divisor \\spad{d.} For example, \\spad{split( 2 \\spad{p1} + 3p2 \\spad{)}} returns the list \\spad{[ 2 \\spad{p1,} 3 \\spad{p2} \\spad{]}.}")) (|degree| (((|Integer|) $) "\\spad{degree(d)} returns the degree of the divisor \\spad{d}"))) │ │ │ +((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ +(|TopLevelDrawFunctionsForPoints|) │ │ │ +((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{lz} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{lz} list onto the rectangular grid formed by the \\axiom{lx \\spad{x} ly}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp.} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp.}") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (x,y) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (x,y) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) │ │ │ NIL │ │ │ -(|CharacterClass|) │ │ │ -((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which alphanumeric? is true.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which alphabetic? is true.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which lowerCase? is true.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which upperCase? is true.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which hexDigit? is true.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which digit? is true.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l.}") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s.}"))) │ │ │ -((|finiteAggregate| . T) (|partiallyOrderedSet| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|Character|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Character|) (QUOTE (|Finite|))) (|HasCategory| (|Character|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|Finite|)))) (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|)))))) │ │ │ -(|CharacteristicPolynomialInMonogenicalAlgebra| R |PolR| E) │ │ │ -((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) │ │ │ NIL │ │ │ +(|InfiniteProductFiniteField| K UP |Coef| UTS) │ │ │ +((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) │ │ │ NIL │ │ │ -(|FiniteSetAggregateFunctions2| S A R B) │ │ │ -((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers, where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely, if \\spad{a} is \\spad{[a1,a2,...]}, then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r.} For example, \\spad{reduce(_+$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note that third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a}, creating a new aggregate with a possibly different underlying domain."))) │ │ │ NIL │ │ │ +(|DataList| S) │ │ │ +((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{l.\"count\"} returns the number of elements in \\axiom{l}.") (($ $ "sort") "\\axiom{l.sort} returns \\axiom{l} with elements sorted. Note: \\axiom{l.sort = sort(l)}") (($ $ "unique") "\\axiom{l.unique} returns \\axiom{l} with duplicates removed. Note: \\axiom{l.unique = removeDuplicates(l)}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ +(|IrredPolyOverFiniteField| GF) │ │ │ +((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) │ │ │ NIL │ │ │ -(|InnerAlgFactor| F UP |AlExt| |AlPol|) │ │ │ -((|constructor| (NIL "Factorisation in a simple algebraic extension Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, \\spad{f)}} returns a prime factorisation of \\spad{p;} \\spad{f} is a factorisation map for elements of UP."))) │ │ │ NIL │ │ │ +(|SimpleCell| |TheField| |ThePols|) │ │ │ NIL │ │ │ -(|NormInMonogenicAlgebra| R |PolR| E |PolE|) │ │ │ -((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm \\spad{q}} returns the norm of \\spad{q,} the product of all the conjugates of \\spad{q.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ReduceLODE| F L UP A LO) │ │ │ -((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, \\spad{g)}} returns \\spad{[m, \\spad{v]}} such that any solution in \\spad{A} of \\spad{op \\spad{z} = \\spad{g}} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A}, and the \\spad{z_i's} satisfy the differential system \\spad{M.z = \\spad{v}.}"))) │ │ │ +(|BalancedPAdicInteger| |p|) │ │ │ +((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} p-adic numbers are represented as sum(i = 0.., a[i] * p^i), where the a[i] lie in \\spad{-(p} - 1)/2,...,(p - 1)/2."))) │ │ │ +((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|SquareFreeRegularTriangularSet| R E V P) │ │ │ +((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover, the operation zeroSetSplit is an implementation of a new algorithm for solving polynomial systems by means of regular chains.")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,b1,b2)} is an internal subroutine, exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,b1,b2,b3)} is an internal subroutine, exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,b1,b2.b3,b4)} is an internal subroutine, exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,clos?,info?)} has the same specifications as zeroSetSplit from RegularTriangularSetCategory from \\spadtype{RegularTriangularSetCategory} Moreover, if clos? then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(p,ts,b1,b2,b3,b4,b5)} is an internal subroutine, exported only for developement."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#4| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#4| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#3| (QUOTE (|Finite|)))) │ │ │ +(|UnivariateLaurentSeriesConstructorCategory&| S |Coef| UTS) │ │ │ +((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]}, where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series, if possible. If this is not possible, \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series, if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by \\spad{(1)} an exponent and \\spad{(2)} a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient, the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by \\spad{(1)} an exponent and \\spad{(2)} a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient, the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note that \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)}, where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)}, which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) │ │ │ NIL │ │ │ -(|ChineseRemainderToolsForIntegralBases| K R UP) │ │ │ -((|constructor| (NIL "This package has no description")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]}, where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) │ │ │ +((|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ +(|ExpertSystemContinuityPackage1| A B) │ │ │ +((|constructor| (NIL "\\spad{ExpertSystemContinuityPackage1} exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MathMLFormat|) │ │ │ -((|constructor| (NIL "This package is based on the TeXFormat domain by Robert \\spad{S.} Sutor \\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "\\spad{display(s)} prints the string returned by coerce, adding tags.")) (|exprex| (((|String|) (|OutputForm|)) "\\spad{exprex(e)} coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "\\spad{coerceL(o)} changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to MathML format."))) │ │ │ +(|RuleCalled| |f|) │ │ │ +((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|OrderedMultisetAggregate| S) │ │ │ -((|constructor| (NIL "An ordered-multiset aggregate is a multiset built over an ordered set \\spad{S} so that the relative sizes of its entries can be assessed. These aggregates serve as models for priority queues.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate u."))) │ │ │ -((|finiteAggregate| . T) (|partiallyOrderedSet| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ +(|DoubleFloatMatrix|) │ │ │ +((|constructor| (NIL "This is a low-level domain which implements matrices (two dimensional arrays) of double precision floating point numbers. Indexing is 0 based, there is no bound checking (unless provided by lower level).")) (|qnew| (($ (|Integer|) (|Integer|)) "\\spad{qnew(n, \\spad{m)}} creates a new uninitialized \\spad{n} by \\spad{m} matrix. \\blankline \\spad{X} t1:DFMAT:=qnew(3,4)"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|DoubleFloat|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|DoubleFloat|) (LIST (QUOTE |Evalable|) (QUOTE (|DoubleFloat|)))) (|HasCategory| (|DoubleFloat|) (QUOTE (|SetCategory|)))) (|HasCategory| (|DoubleFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|IntegralDomain|))) (|HasAttribute| (|DoubleFloat|) (QUOTE (|commutative| "*"))) (|HasCategory| (|DoubleFloat|) (QUOTE (|CommutativeRing|))) (|HasCategory| (|DoubleFloat|) (QUOTE (|Field|)))) │ │ │ +(|UnivariateLaurentSeriesConstructor| |Coef| UTS) │ │ │ +((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]}, where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| (|Integer|) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))))) (OR (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|))))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|RealConstant|)))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|OrderedIntegralDomain|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|StepThrough|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |Eltable|) (|devaluate| |#2|) (|devaluate| |#2|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#2|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|OrderedIntegralDomain|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |Eltable|) (|devaluate| |#2|) (|devaluate| |#2|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#2|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|OrderedIntegralDomain|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|RealConstant|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|StepThrough|))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|)))))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|)))))) │ │ │ +(|PatternMatchPushDown| S A B) │ │ │ +((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression expr; res contains the variables of \\spad{pat} which are already matched and their matches. Note that this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by g(a) = f(a::B)."))) │ │ │ NIL │ │ │ -(|ProjectiveAlgebraicSetPackage| K |symb| |PolyRing| E |ProjPt|) │ │ │ -((|constructor| (NIL "The following is part of the PAFF package")) (|rationalPoints| (((|List| |#5|) |#3| (|PositiveInteger|)) "\\axiom{rationalPoints(f,d)} returns all points on the curve \\axiom{f} in the extension of the ground field of degree \\axiom{d}. For \\axiom{d > 1} this only works if \\axiom{K} is a \\axiomType{LocallyAlgebraicallyClosedField}")) (|algebraicSet| (((|List| |#5|) (|List| |#3|)) "\\spad{algebraicSet(lp)} returns the algebraic set if finite (dimension 0).")) (|singularPoints| (((|List| |#5|) |#3|) "\\spad{singularPoints(p)} returns the singular points")) (|singularPointsWithRestriction| (((|List| |#5|) |#3| (|List| |#3|)) "\\spad{singularPointsWithRestriction(p,lp)} return the singular points that annihilate"))) │ │ │ NIL │ │ │ +(|FullyLinearlyExplicitRingOver&| S R) │ │ │ +((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver \\spad{R}} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver \\spad{R}} and, in addition, if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer}, then so is \\spad{S}"))) │ │ │ NIL │ │ │ -(|IntegerPrimesPackage| I) │ │ │ -((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime}, \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a \\spad{<=} \\spad{p} \\spad{<=} \\spad{b}}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? \\spad{n}} returns false, \\spad{n} is proven composite. If \\spad{prime? \\spad{n}} returns true, prime? may be in error however, the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al), below 10**12 and 10**13 due to results of Pinch, and below 341550071728321 due to a result of Jaeschke. Specifically, this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n,} that is \\spad{O( (log \\spad{n)**3} \\spad{)},} for n<10**20. beyond that, the algorithm is quartic, \\spad{O( (log \\spad{n)**4} \\spad{)}.} Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes, such as [Jaeschke, 1991] 1377161253229053 * 413148375987157, which the original algorithm regards as prime"))) │ │ │ +((|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) │ │ │ +(|VectorSpace| S) │ │ │ +((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y.}"))) │ │ │ +((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ +(|MappingPackageInternalHacks3| A B C) │ │ │ +((|constructor| (NIL "Various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) │ │ │ NIL │ │ │ -(|Permutation| S) │ │ │ -((|constructor| (NIL "Permutation(S) implements the group of all bijections on a set \\spad{S,} which move only a finite number of points. A permutation is considered as a map from \\spad{S} into \\spad{S.} In particular multiplication is defined as composition of maps:\\br \\spad{pi1} * \\spad{pi2} = \\spad{pi1} \\spad{o} pi2.\\br The internal representation of permuatations are two lists of equal length representing preimages and images.")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list \\spad{ls} to a permutation whose image is given by \\spad{ls} and the preimage is fixed to be [1,...,n]. Note: {coerceImages(ls)=coercePreimagesImages([1,...,n],ls)}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p.} \\spad{X} \\spad{p} \\spad{:=} coercePreimagesImages([[0,1,2,3],[3,0,2,1]])$PERM ZMOD 4 \\spad{X} fixedPoints \\spad{p}")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations \\spad{lp} according to cycle structure first according to length of cycles, second, if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation sign(p) is \\spad{-1.}")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation, \\indented{1}{sign(p) is 1.} \\blankline \\spad{X} \\spad{p} \\spad{:=} coercePreimagesImages([[1,2,3],[1,2,3]]) \\spad{X} even? \\spad{p}")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p,} \\spad{+1} or \\spad{-1.}")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p.}")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p.} \\blankline \\spad{X} \\spad{p} \\spad{:=} coercePreimagesImages([[1,2,3],[1,2,3]]) \\spad{X} movedPoints \\spad{p}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p.}")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs \\spad{lls} to a permutation. Error: if not consistent, the set of the first elements coincides with the set of second elements.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle \\spad{ls,} a list with not repetitions to a permutation, which maps ls.i to ls.i+1, indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles \\spad{lls} to a permutation, each cycle being a list with no repetitions, is coerced to the permutation, which maps ls.i to ls.i+1, indices modulo the length of the list, then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation \\spad{lls} \\indented{1}{of a permutation as a list of preimages and images to a permutation.} \\indented{1}{We assume that both preimage and image do not contain repetitions.} \\blankline \\spad{X} \\spad{p} \\spad{:=} coercePreimagesImages([[1,2,3],[1,2,3]]) \\spad{X} \\spad{q} \\spad{:=} coercePreimagesImages([[0,1,2,3],[3,0,2,1]])$PERM ZMOD 4")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation rep of the permutation \\spad{p} as a list of preimages and images, i.e \\spad{p} maps (rep.preimage).k to (rep.image).k for all indices \\spad{k.} Elements of \\spad{S} not in (rep.preimage).k are fixed points, and these are the only fixed points of the permutation."))) │ │ │ -((|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))))) │ │ │ -(|RandomDistributions| S) │ │ │ -((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) │ │ │ NIL │ │ │ +(|OrderedRing&| S) │ │ │ +((|constructor| (NIL "Ordered sets which are also rings, that is, domains where the ring operations are compatible with the ordering. \\blankline Axiom\\br \\tab{5}\\spad{0} ab< ac}")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x.}")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive, \\spad{-1} if \\spad{x} is negative, 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) │ │ │ NIL │ │ │ -(|SimpleAlgebraicExtensionAlgFactor| UP SAE UPA) │ │ │ -((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p.}"))) │ │ │ NIL │ │ │ +(|MappingPackageInternalHacks1| A) │ │ │ +((|constructor| (NIL "Various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f \\spad{n}} times to \\spad{x}."))) │ │ │ NIL │ │ │ -(|PAdicWildFunctionFieldIntegralBasis| K R UP F) │ │ │ -((|constructor| (NIL "In this package \\spad{K} is a finite field, \\spad{R} is a ring of univariate polynomials over \\spad{K,} and \\spad{F} is a monogenic algebra over \\spad{R.} We require that \\spad{F} is monogenic, that \\spad{F = K[x,y]/(f(x,y))}, because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{localIntegralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F.} \\spad{F} is a framed algebra with R-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F.} \\spad{F} is a framed algebra with R-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}."))) │ │ │ NIL │ │ │ +(|MyExpression| |q| R) │ │ │ +((|constructor| (NIL "This domain has no description"))) │ │ │ +((|canonicalUnitNormal| |has| |#2| (|IntegralDomain|)) (|canonicalsClosed| |has| |#2| (|IntegralDomain|)) (|unitsKnown| OR (|has| |#2| (|Group|)) (|has| |#2| (|Ring|))) (|leftUnitary| |has| |#2| (|CommutativeRing|)) (|rightUnitary| |has| |#2| (|CommutativeRing|)) ((|commutative| "*") |has| |#2| (|IntegralDomain|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|))) │ │ │ +((|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Group|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (OR (|HasCategory| |#2| (QUOTE (|Group|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (|HasCategory| |#2| (QUOTE (|Group|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| |#2| (QUOTE (|AbelianGroup|))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#2| (QUOTE (|SemiGroup|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (OR (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))))) (|HasCategory| $ (QUOTE (|Ring|))) (|HasCategory| $ (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) │ │ │ +(|OrderedMonoid|) │ │ │ +((|constructor| (NIL "Ordered sets which are also monoids, such that multiplication preserves the ordering. \\blankline Axioms\\br \\tab{5}\\spad{x < \\spad{y} \\spad{=>} \\spad{x*z} < y*z}\\br \\tab{5}\\spad{x < \\spad{y} \\spad{=>} \\spad{z*x} < z*y}"))) │ │ │ NIL │ │ │ -(|SimpleAlgebraicExtension| R UP M) │ │ │ -((|constructor| (NIL "Algebraic extension of a ring by a single polynomial. Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain, \\spad{R,} is the underlying ring, the second argument is a domain of univariate polynomials over \\spad{K,} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R.} The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) │ │ │ -((|noZeroDivisors| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))))) │ │ │ -(|SAERationalFunctionAlgFactor| UP SAE UPA) │ │ │ -((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p.}"))) │ │ │ NIL │ │ │ +(|WildFunctionFieldIntegralBasis| K R UP F) │ │ │ +((|constructor| (NIL "In this package \\spad{K} is a finite field, \\spad{R} is a ring of univariate polynomials over \\spad{K,} and \\spad{F} is a framed algebra over \\spad{R.} The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F,} where \\spad{F} is a framed algebra with R-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F,} where \\spad{F} is a framed algebra with R-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}."))) │ │ │ NIL │ │ │ -(|SymmetricGroupCombinatoricFunctions|) │ │ │ -((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus, improper partitions, subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the \\spad{k}-th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first, in reverse lexicographically according to their non-zero parts, then according to their positions (lexicographical order using subSet: [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]. Note that counting of subtrees is done by numberOfImproperPartitionsInternal.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the \\spad{k}-th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]. Error: if \\spad{k} is negative or too big. Note that counting of subtrees is done by numberOfImproperPartitions")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the \\spad{k}-th m-subset of the set 0,1,...,(n-1) in the lexicographic order considered as a decreasing map from 0,...,(m-1) into 0,...,(n-1). See S.G. Williamson: Theorem 1.60. Error: if not \\spad{(0} \\spad{<=} \\spad{m} \\spad{<=} \\spad{n} and 0 < = \\spad{k} < \\spad{(n} choose m)).")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: numberOfImproperPartitions (3,3) is 10, since [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0] are the possibilities. Note that this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of \\spad{number} which follows \\spad{part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of gamma. the first partition is achieved by part=[]. Also, \\spad{[]} indicates that \\spad{part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of \\spad{number} which follows \\spad{part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of gamma. The first partition is achieved by part=[]. Also, \\spad{[]} indicates that \\spad{part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition \\spad{lambda} succeeding the lattice permutation \\spad{lattP} in lexicographical order as long as \\spad{constructNotFirst} is true. If \\spad{constructNotFirst} is false, the first lattice permutation is returned. The result nil indicates that \\spad{lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums \\spad{alpha} and row sums \\spad{beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by C=new(1,1,0). Also, new(1,1,0) indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation \\spad{gitter} and for an improper partition \\spad{lambda} the corresponding standard tableau of shape lambda. Notes: see listYoungTableaus. The entries are from 0,...,n-1.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where \\spad{lambda} is a proper partition generates the list of all standard tableaus of shape \\spad{lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of lambda. Notes: the functions nextLatticePermutation and makeYoungTableau are used. The entries are from 0,...,n-1.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums alpha, column sums \\spad{beta} to the set of Salpha - Sbeta double cosets of the symmetric group \\spad{Sn.} (Salpha is the Young subgroup corresponding to the improper partition alpha). For such a matrix \\spad{C,} inverseColeman(alpha,beta,C) calculates the lexicographical smallest \\spad{pi} in the corresponding double coset. Note that the resulting permutation \\spad{pi} of {1,2,...,n} is given in list form. Notes: the inverse of this map is coleman. For details, see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums alpha, column sums \\spad{beta} to the set of Salpha - Sbeta double cosets of the symmetric group \\spad{Sn.} (Salpha is the Young subgroup corresponding to the improper partition alpha). For a representing element \\spad{pi} of such a double coset, coleman(alpha,beta,pi) generates the Coleman-matrix corresponding to alpha, beta, pi. Note that The permutation \\spad{pi} of {1,2,...,n} has to be given in list form. Note that the inverse of this map is inverseColeman (if \\spad{pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) │ │ │ NIL │ │ │ +(|TextFile|) │ │ │ +((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output, then this test is always true.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f,} if possible. If \\spad{f} is not readable or if it is positioned at the end of file, then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f,} if possible. If \\spad{f} is not readable or if it is positioned at the end of file, then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f.}")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f.} An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f.} The value of \\spad{s} is returned."))) │ │ │ NIL │ │ │ -(|ThreeSpace| R) │ │ │ -((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points, curves, polygons, constructs and the subspaces containing them."))) │ │ │ NIL │ │ │ +(|Product| A B) │ │ │ +((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} is not documented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} is not documented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} computes the product of two functions \\blankline \\spad{X} f:=(x:INT):INT \\spad{+->} 3*x \\spad{X} g:=(x:INT):INT \\spad{+->} \\spad{x^3} \\spad{X} h(x:INT):Product(INT,INT) \\spad{==} makeprod(f \\spad{x,} \\spad{g} \\spad{x)} \\spad{X} h(3)"))) │ │ │ +((|unitsKnown| AND (|has| |#2| (|Group|)) (|has| |#1| (|Group|)))) │ │ │ +((AND (|HasCategory| |#1| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#2| (QUOTE (|AbelianGroup|)))) (AND (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#2| (QUOTE (|Group|)))) (AND (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#1| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#2| (QUOTE (|Group|)))) (AND (|HasCategory| |#1| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|Monoid|))))) (AND (|HasCategory| |#1| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|AbelianMonoid|)))) (AND (|HasCategory| |#1| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#2| (QUOTE (|AbelianGroup|)))) (AND (|HasCategory| |#1| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#1| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))))) (OR (AND (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#2| (QUOTE (|AbelianGroup|)))) (AND (|HasCategory| |#1| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|AbelianMonoid|)))) (AND (|HasCategory| |#1| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#1| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))))) (OR (AND (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#2| (QUOTE (|AbelianGroup|)))) (AND (|HasCategory| |#1| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|AbelianMonoid|)))) (AND (|HasCategory| |#1| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#2| (QUOTE (|Group|)))) (AND (|HasCategory| |#1| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#1| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))))) (AND (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|)))))) │ │ │ +(|RadixExpansion| |bb|) │ │ │ +((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. for example, \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example, \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example, if \\spad{x = 3/28 = 0.10 714285 714285 ...}, then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example, if \\spad{x = 3/28 = 0.10 714285 714285 ...}, then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Integer|) (QUOTE (|RealConstant|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|StepThrough|))) (|HasCategory| (|Integer|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| (|Integer|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|Integer|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |Eltable|) (QUOTE (|Integer|)) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|Integer|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Integer|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|SingletonAsOrderedSet|) │ │ │ +((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) │ │ │ NIL │ │ │ -(|TableAggregate&| S |Key| |Entry|) │ │ │ -((|constructor| (NIL "A table aggregate is a model of a table, that is, a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements fn(x,y) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{x,y,...,z}.") (($) "\\spad{table()}$T creates an empty table of type \\spad{T.} \\blankline \\spad{X} Data:=Record(age:Integer,gender:String) \\spad{X} a1:AssociationList(String,Data):=table() \\spad{X} a1.\"tim\":=[55,\"male\"]$Data")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{t.k \\spad{:=} e}) is equivalent to \\axiom{(insert([k,e],t); e)}."))) │ │ │ NIL │ │ │ +(|PAdicWildFunctionFieldIntegralBasis| K R UP F) │ │ │ +((|constructor| (NIL "In this package \\spad{K} is a finite field, \\spad{R} is a ring of univariate polynomials over \\spad{K,} and \\spad{F} is a monogenic algebra over \\spad{R.} We require that \\spad{F} is monogenic, that \\spad{F = K[x,y]/(f(x,y))}, because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{localIntegralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F.} \\spad{F} is a framed algebra with R-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F.} \\spad{F} is a framed algebra with R-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}."))) │ │ │ NIL │ │ │ -(|PermutationGroup| S) │ │ │ -((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S,} all subgroups of the symmetric group of \\spad{S,} represented as a list of permutations (generators). Note that therefore the objects are not members of the Axiom category \\spadtype{Group}. Using the idea of base and strong generators by Sims, basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group \\spad{gp} for the word problem. Notes: \\spad{(1)} with a small integer you get shorter words, but the routine takes longer than the standard routine for longer words. \\spad{(2)} be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). \\spad{(3)} users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group \\spad{gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: initializeGroupForWordProblem(gp,0,1). Notes: \\spad{(1)} be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) \\spad{(2)} users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 \\spad{<=} gp2} returns \\spad{true} if and only if \\spad{gp1} is a subgroup of gp2. Note: because of a bug in the parser you have to call this function explicitly by \\spad{gp1} <=$(PERMGRP \\spad{S)} gp2.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if \\spad{gp1} is a proper subgroup of gp2.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group \\spad{gp.} \\blankline \\spad{X} \\spad{x} : PERM INT \\spad{:=} [[1,3,5],[7,11,9]] \\spad{X} \\spad{z} : PERM INT \\spad{:=} [1,3,11] \\spad{X} \\spad{g} : PERMGRP INT \\spad{:=} [ \\spad{x} ,{} \\spad{z} ] \\spad{X} movedPoints \\spad{g}")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group \\spad{gp,} represented by the indices of the list, given by generators.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group \\spad{gp,} represented by the indices of the list, given by strongGenerators.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question, whether the \\indented{1}{permutation \\spad{pp} is in the group \\spad{gp} or not.} \\blankline \\spad{X} \\spad{x} : PERM INT \\spad{:=} [[1,3,5],[7,11,9]] \\spad{X} \\spad{y} : PERM INT \\spad{:=} [[3,5,7,9]] \\spad{X} \\spad{z} : PERM INT \\spad{:=} [1,3,11] \\spad{X} \\spad{g} : PERMGRP INT \\spad{:=} [ \\spad{x} ,{} \\spad{z} ] \\spad{X} member? ( \\spad{y} ,{} \\spad{g} )")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group \\spad{gp,} \\indented{1}{it partitions the (finite) of all moved points.} \\blankline \\spad{X} \\spad{y} : PERM INT \\spad{:=} [[3,5,7,9]] \\spad{X} \\spad{z} : PERM INT \\spad{:=} [1,3,11] \\spad{X} \\spad{g} : PERMGRP INT \\spad{:=} [ \\spad{y} ,{} \\spad{z} ] \\spad{X} orbits \\spad{g}")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered \\indented{1}{list \\spad{ls} under the group gp.} \\indented{1}{Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.} \\blankline \\spad{X} S:List(Integer) \\spad{:=} [1,2,3,4] \\spad{X} \\spad{G} \\spad{:=} symmetricGroup(S) \\spad{X} orbit(G,[1,2,3])") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set \\spad{els} under the group \\spad{gp.}") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element \\spad{el} under the \\indented{1}{group \\spad{gp,} the set of all points gained by applying} \\indented{1}{each group element to el.} \\blankline \\spad{X} S:List(Integer) \\spad{:=} [1,2,3,4] \\spad{X} \\spad{G} \\spad{:=} symmetricGroup(S) \\spad{X} orbit(G,[1,2,3]) \\spad{X} \\spad{x} : PERM INT \\spad{:=} [[1,3,5],[7,11,9]] \\spad{X} \\spad{y} : PERM INT \\spad{:=} [[3,5,7,9]] \\spad{X} \\spad{g} : PERMGRP INT \\spad{:=} [ \\spad{x} ,{} \\spad{y} ] \\spad{X} orbit(g, 3)")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations \\spad{ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group \\spad{gp} in the original generators of \\spad{gp,} represented by their indices in the list, given by generators.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for \\indented{1}{the group gp.} \\blankline \\spad{X} S:List(Integer) \\spad{:=} [1,2,3,4] \\spad{X} \\spad{G} \\spad{:=} symmetricGroup(S) \\spad{X} strongGenerators(G)")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group \\spad{gp.} \\blankline \\spad{X} S:List(Integer) \\spad{:=} [1,2,3,4] \\spad{X} \\spad{G} \\spad{:=} symmetricGroup(S) \\spad{X} base(G)")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations \\indented{1}{of the group gp.} \\blankline \\spad{X} \\spad{y} : PERM INT \\spad{:=} [[3,5,7,9]] \\spad{X} \\spad{z} : PERM INT \\spad{:=} [1,3,11] \\spad{X} \\spad{g} : PERMGRP INT \\spad{:=} [ \\spad{y} ,{} \\spad{z} ] \\spad{X} degree \\spad{g}")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group \\spad{gp.} \\blankline \\spad{X} \\spad{x} : PERM INT \\spad{:=} [[1,3,5],[7,11,9]] \\spad{X} \\spad{y} : PERM INT \\spad{:=} [[3,5,7,9]] \\spad{X} \\spad{g} : PERMGRP INT \\spad{:=} [ \\spad{x} ,{} \\spad{y} ] \\spad{X} order \\spad{g}")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators \\indented{1}{of the group gp.} \\indented{1}{Note: random(gp)=random(gp,20).} \\blankline \\spad{X} S:List(Integer) \\spad{:=} [1,2,3,4] \\spad{X} \\spad{G} \\spad{:=} symmetricGroup(S) \\spad{X} random(G)") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators \\indented{1}{of the group gp.} \\blankline \\spad{X} S:List(Integer) \\spad{:=} [1,2,3,4] \\spad{X} \\spad{G} \\spad{:=} symmetricGroup(S) \\spad{X} random(G,2)")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group \\spad{gp.} \\blankline \\spad{X} S:List(Integer) \\spad{:=} [1,2,3,4] \\spad{X} \\spad{G} \\spad{:=} symmetricGroup(S) \\spad{X} \\spad{G.2}")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group \\spad{gp.} \\blankline \\spad{X} S:List(Integer) \\spad{:=} [1,2,3,4] \\spad{X} \\spad{G} \\spad{:=} symmetricGroup(S) \\spad{X} generators(G)")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations \\spad{ls} to the group \\indented{1}{generated by this list.} \\blankline \\spad{X} \\spad{y} : PERM INT \\spad{:=} [[3,5,7,9]] \\spad{X} \\spad{z} : PERM INT \\spad{:=} [1,3,11] \\spad{X} \\spad{g} : PERMGRP INT \\spad{:=} [ \\spad{y} ,{} \\spad{z} ]") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group \\spad{gp.} \\blankline \\spad{X} \\spad{x} : PERM INT \\spad{:=} [[1,3,5],[7,11,9]]"))) │ │ │ NIL │ │ │ +(|DifferentialSparseMultivariatePolynomial| R S V) │ │ │ +((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#3| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#3| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#3| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|SExpressionCategory| |Str| |Sym| |Int| |Flt| |Expr|) │ │ │ +((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,...,an), [i1,...,im])} returns \\spad{(a_i1,...,a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,...,an), i)} returns \\spad{ai}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n.}")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x.}") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x.}") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x.}") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x.}") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x;}") (($ (|List| $)) "\\spad{convert([a1,...,an])} returns an S-expression \\spad{(a1,...,an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,...,an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list, possibly \\spad{().}")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the S-expression \\spad{().}")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, \\spad{t)}} is \\spad{true} if EQ(s,t) is \\spad{true} in Lisp."))) │ │ │ NIL │ │ │ -(|TableAggregate| |Key| |Entry|) │ │ │ -((|constructor| (NIL "A table aggregate is a model of a table, that is, a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements fn(x,y) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{x,y,...,z}.") (($) "\\spad{table()}$T creates an empty table of type \\spad{T.} \\blankline \\spad{X} Data:=Record(age:Integer,gender:String) \\spad{X} a1:AssociationList(String,Data):=table() \\spad{X} a1.\"tim\":=[55,\"male\"]$Data")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{t.k \\spad{:=} e}) is equivalent to \\axiom{(insert([k,e],t); e)}."))) │ │ │ -((|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|ThreeDimensionalViewport|) │ │ │ -((|constructor| (NIL "ThreeDimensionalViewport creates viewports to display graphs")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, and creates a directory indicated by \\spad{s,} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf.}") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, and creates a directory indicated by \\spad{s,} which contains the graph data file for \\spad{v} and an optional file type \\spad{f.}") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, and creates a directory indicated by \\spad{s,} which contains the graph data file for \\spad{v.}")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2}, for the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to i, for the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x,} \\spad{y,} and \\spad{z} and displays the graph for the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\", or displays the graph without clipping implemented if \\spad{s} is \"off\", for the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, if \\spad{s} is \"on\", or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, if \\spad{s} is \"on\", or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h,} for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d,} for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\", or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy}, for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the x-coordinate axis to \\spad{sx}, the y-coordinate axis to \\spad{sy} and the z-coordinate axis to \\spad{sz} for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s,} for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v.}") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s.} If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"}, \\spad{\"solid\"} or \\spad{\"opaque\"}, \\spad{\"smooth\"}, and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set, for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport}, if \\spad{s} is \"on\", or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline, for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport}, if \\spad{s} is \"on\", or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, if \\spad{s} is \"on\", or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, if \\spad{s} is \"on\", or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the x-axis to be \\spad{rotx} radians, sets the rotation about the y-axis to be \\spad{roty} radians, and sets the rotation about the z-axis to be \\spad{rotz} radians, for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v.}") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees, the latitudinal view angle to \\spad{phi} degrees, the scale factor to \\spad{s}, the horizontal viewport offset to \\spad{dx}, and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v.}") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles, the zoom factor, the x,y and \\spad{z} scales, and the \\spad{x} and \\spad{y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport, \\spad{v.} This function is useful in the situation where the user has created a viewport, proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians, the latitudinal view angle to \\spad{phi} radians, the scale factor to \\spad{s}, the horizontal viewport offset to \\spad{dx}, and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v.}")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, to the window coordinate \\spad{x,} \\spad{y,} and sets the dimensions of the window to that of \\spad{width}, \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v.}")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window, \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, with a width of \\spad{w} and a height of \\spad{h,} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x,} \\spad{y.}")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport, \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list, \\spad{lopt}, which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport, \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v.}")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport, \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}, and places the data point, \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}, in the subspace \\spad{sp}, which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}, as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space, \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp}, and whose draw options are indicated by the list \\spad{lopt}, which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space, \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp}, and whose title is given by \\spad{s.}") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport, \\spad{v,} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v.}")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s.}") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p.}") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t.}") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) │ │ │ +(|UnivariatePolynomialDecompositionPackage| R UP) │ │ │ +((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition (\\spad{[ \\spad{f1,} ..., \\spad{fn} \\spad{]}} means \\spad{f} = \\spad{f1} \\spad{o} \\spad{...} \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor \\spad{(g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h)} of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor \\spad{(h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h)} of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor \\spad{(h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h)} of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|WildFunctionFieldIntegralBasis| K R UP F) │ │ │ -((|constructor| (NIL "In this package \\spad{K} is a finite field, \\spad{R} is a ring of univariate polynomials over \\spad{K,} and \\spad{F} is a framed algebra over \\spad{R.} The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F,} where \\spad{F} is a framed algebra with R-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F,} where \\spad{F} is a framed algebra with R-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}."))) │ │ │ +(|FiniteRankAlgebra| R UP) │ │ │ +((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free R-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the n-by-n matrix ( Tr(vi * \\spad{vj)} )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1+...+an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the vi's with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) │ │ │ +((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|ParametricPlaneCurve| |ComponentFunction|) │ │ │ +((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to i. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) │ │ │ NIL │ │ │ -(|EqTable| |Key| |Entry|) │ │ │ -((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (OR (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) │ │ │ -(|GeneralSparseTable| |Key| |Entry| |Tbl| |dent|) │ │ │ -((|constructor| (NIL "A sparse table has a default entry, which is returned if no other value has been explicitly stored for a key."))) │ │ │ -((|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|)))) (OR (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) │ │ │ -(|HashTable| |Key| |Entry| |hashfn|) │ │ │ -((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter, tables suited for different purposes can be obtained."))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (OR (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) │ │ │ -(|AssociationList| |Key| |Entry|) │ │ │ -((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example, the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (OR (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|OrderedSet|))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|)))))) │ │ │ -(|InnerTable| |Key| |Entry| |addDom|) │ │ │ -((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (OR (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) │ │ │ -(|IntegrationFunctionsTable|) │ │ │ -((|constructor| (NIL "There is no description for this domain")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} is not documented")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} is not documented")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} is not documented")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l.}")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) │ │ │ NIL │ │ │ +(|PackageForPoly| R |PolyRing| E |dim|) │ │ │ +((|constructor| (NIL "The following is part of the PAFF package")) (|degreeOfMinimalForm| (((|NonNegativeInteger|) |#2|) "\\spad{degreeOfMinimalForm does} what it says")) (|listAllMono| (((|List| |#2|) (|NonNegativeInteger|)) "\\spad{listAllMono(l)} returns all the monomials of degree \\spad{l}")) (|listAllMonoExp| (((|List| |#3|) (|Integer|)) "\\spad{listAllMonoExp(l)} returns all the exponents of degree \\spad{l}")) (|homogenize| ((|#2| |#2| (|Integer|)) "\\spad{homogenize(pol,n)} returns the homogenized polynomial of \\spad{pol} with respect to the \\spad{n}-th variable.")) (|constant| ((|#1| |#2|) "\\spad{constant(pol)} returns the constant term of the polynomial.")) (|degOneCoef| ((|#1| |#2| (|PositiveInteger|)) "\\spad{degOneCoef(pol,n)} returns the coefficient in front of the monomial specified by the positive integer.")) (|translate| ((|#2| |#2| (|List| |#1|)) "\\spad{translate(pol,[a,b,c])} apply to \\spad{pol} the linear change of coordinates, x->x+a, y->y+b, z->z+c") ((|#2| |#2| (|List| |#1|) (|Integer|)) "\\spad{translate(pol,[a,b,c],3)} apply to \\spad{pol} the linear change of coordinates, x->x+a, y->y+b, z->1.")) (|replaceVarByOne| ((|#2| |#2| (|Integer|)) "\\spad{replaceVarByOne(pol,a)} evaluate to one the variable in \\spad{pol} specified by the integer a.")) (|replaceVarByZero| ((|#2| |#2| (|Integer|)) "\\spad{replaceVarByZero(pol,a)} evaluate to zero the variable in \\spad{pol} specified by the integer a.")) (|firstExponent| ((|#3| |#2|) "\\spad{firstExponent(pol)} returns the exponent of the first term in the representation of pol. Not to be confused with the leadingExponent \\indented{1}{which is the highest exponent according to the order} over the monomial.")) (|minimalForm| ((|#2| |#2|) "\\spad{minimalForm(pol)} returns the minimal forms of the polynomial pol."))) │ │ │ NIL │ │ │ -(|KeyedAccessFile| |Entry|) │ │ │ -((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object. The KeyedAccessFile format is a directory containing a single file called ``index.kaf''. This file is a random access file. The first thing in the file is an integer which is the byte offset of an association list (the dictionary) at the end of the file. The association list is of the form ((key . byteoffset) (key . byteoffset)...) where the byte offset is the number of bytes from the beginning of the file. This offset contains an s-expression for the value of the key.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|String|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (QUOTE (|String|))) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (QUOTE (|SetCategory|))))) │ │ │ -(|PatternMatchResult| R S) │ │ │ -((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match, or a list of matches of the form (var, expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, \\spad{p)}} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p,} \\spad{false} if they don't, and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (v1,e1),...,(vn,en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var, expr) in \\spad{r.} Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, \\spad{r,} val)} adds the match (var, expr) in \\spad{r,} provided that \\spad{expr} satisfies the predicates attached to var, that \\spad{var} is not matched to another expression already, and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, \\spad{r)}} adds the match (var, expr) in \\spad{r,} without checking predicates or previous matches for var.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, \\spad{r)}} adds the match (var, expr) in \\spad{r,} provided that \\spad{expr} satisfies the predicates attached to var, and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, \\spad{r)}} returns the expression that \\spad{var} matches in the result \\spad{r,} and \"failed\" if \\spad{var} is not matched in \\spad{r.}")) (|union| (($ $ $) "\\spad{union(a, \\spad{b)}} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) │ │ │ NIL │ │ │ +(|Asp29| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs, needed for NAG routine f02fjf, for example: \\blankline \\tab{5}SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D)\\br \\tab{5}DOUBLE PRECISION D(K),F(K)\\br \\tab{5}INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE\\br \\tab{5}CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D)\\br \\tab{5}RETURN\\br \\tab{5}END\\br")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) │ │ │ NIL │ │ │ -(|InnerPrimeField| |p|) │ │ │ -((|constructor| (NIL "InnerPrimeField(p) implements the field with \\spad{p} elements."))) │ │ │ +NIL │ │ │ +(|PadeApproximants| R PS UP) │ │ │ +((|constructor| (NIL "This package computes reliable Pad&ea. approximants using a generalized Viskovatov continued fraction algorithm.")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant), \\spad{dd} (denominator degree of approximant), \\spad{ns} (numerator series of function), and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant), \\spad{dd} (denominator degree of approximant), \\spad{ns} (numerator series of function), and \\spad{ds} (denominator series of function)."))) │ │ │ +NIL │ │ │ +NIL │ │ │ +(|String|) │ │ │ +((|constructor| (NIL "This is the domain of character strings. Strings are 1 based."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| (|Character|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Character|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|)))))) │ │ │ +(|FiniteFieldNormalBasisExtension| GF |extdeg|) │ │ │ +((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,n) implements a finite extension field of degree \\spad{n} over the ground field \\spad{GF.} The elements are represented by coordinate vectors with respect to a normal basis, a basis consisting of the conjugates \\spad{(q-powers)} of an element, in this case called normal element. This is chosen as a root of the extension polynomial, created by createNormalPoly from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) │ │ │ ((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| $ (QUOTE (|CharacteristicZero|))) (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| $ (QUOTE (|Finite|)))) │ │ │ -(|GaloisGroupFactorizer| UP) │ │ │ -((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p,} the result is a Record such that \\spad{contp=}content \\spad{p,} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p.} Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p,} the result is a Record such that \\spad{contp=}content \\spad{p,} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree listOfDegrees, and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree listOfDegrees, and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree listOfDegrees.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d.}")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm, knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm, knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree listOfDegrees. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm, knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm, knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree listOfDegrees.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion, \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it, \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound, \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization, \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by completeHensel. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit \\spad{(1} or -1). \\spad{f} shall be primitive (content(p)=1) and square free (without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by ddFact for some prime \\spad{p.}")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by ddFact for some prime \\spad{p.}")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) │ │ │ +((|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))))) │ │ │ +(|IntegralDomain&| S) │ │ │ +((|constructor| (NIL "The category of commutative integral domains, commutative rings with no zero divisors. \\blankline Conditional attributes\\br canonicalUnitNormal\\tab{5}the canonical field is the same for all associates\\br canonicalsClosed\\tab{5}the product of two canonicals is itself canonical")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit, is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates, differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x.} The attribute canonicalUnitNormal, if asserted, means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = \\spad{x},} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|SparseTable| |Key| |Ent| |dent|) │ │ │ -((|constructor| (NIL "A sparse table has a default entry, which is returned if no other value has been explicitly stored for a key."))) │ │ │ -((|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|)))) (OR (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) │ │ │ -(|StringTable| |Entry|) │ │ │ -((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (QUOTE (|String|))) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (QUOTE (|SetCategory|)))) (|HasCategory| (|String|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))) (OR (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (QUOTE (|SetCategory|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|Table| |Key| |Entry|) │ │ │ -((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (OR (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) │ │ │ -(|TabulatedComputationPackage| |Key| |Entry|) │ │ │ -((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However, onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(x,y)} stores the item whose key is \\axiom{x} and whose entry is \\axiom{y}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(x)} searches the item whose key is \\axiom{x}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(x)} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(x,y)} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{x} is displayed. If an item is stored then \\axiom{y} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) │ │ │ +(|OneDimensionalArrayFunctions2| A B) │ │ │ +((|constructor| (NIL "This package provides tools for operating on one-dimensional arrays with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\indented{1}{\\spad{a} resulting in a new one-dimensional array over a} \\indented{1}{possibly different underlying domain.} \\blankline \\spad{X} T1:=OneDimensionalArrayFunctions2(Integer,Integer) \\spad{X} map(x+->x+2,[i for \\spad{i} in 1..10])$T1")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each \\indented{1}{successive element of the} \\indented{1}{one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r.}} \\indented{1}{For example, \\spad{reduce(_+$Integer,[1,2,3],0)}} \\indented{1}{does \\spad{3+(2+(1+0))}. Note that third argument \\spad{r}} \\indented{1}{may be regarded as the identity element for the function \\spad{f.}} \\blankline \\spad{X} T1:=OneDimensionalArrayFunctions2(Integer,Integer) \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} reduce(adder,[i for \\spad{i} in 1..10],0)$T1")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\indented{1}{\\spad{reduce(f,x,r)} to more and more leading sub-arrays} \\indented{1}{x of one-dimensional array \\spad{a}.} \\indented{1}{More precisely, if \\spad{a} is \\spad{[a1,a2,...]}, then} \\indented{1}{\\spad{scan(f,a,r)} returns} \\indented{1}{\\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.} \\blankline \\spad{X} T1:=OneDimensionalArrayFunctions2(Integer,Integer) \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} scan(adder,[i for \\spad{i} in 1..10],0)$T1"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Any|) │ │ │ -((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : \\spad{S}} then when converted to \\spadtype{Any}, the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\indented{1}{\\spadtype{Any} are displayed. If \\spad{bool} is true} \\indented{1}{then the type of the original object that was converted} \\indented{1}{to \\spadtype{Any} will be printed. If \\spad{bool} is} \\indented{1}{false, it will not be printed.} \\blankline \\spad{X} u:=[1,7.2,3/2,x**2,\"wally\"] \\spad{X} showTypeInOutput(true) \\spad{X} \\spad{u}")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) │ │ │ +(|LaurentPolynomial| R UP) │ │ │ +((|constructor| (NIL "Univariate polynomials with negative and positive exponents.")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} is not documented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} is not documented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} is not documented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient(p)} is not documented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} is not documented")) (|reductum| (($ $) "\\spad{reductum(x)} is not documented")) (|order| (((|Integer|) $) "\\spad{order(x)} is not documented \\blankline \\spad{X} \\spad{w:SparseUnivariateLaurentSeries(Fraction(Integer),'z,0):=0} \\spad{X} order(w,0)")) (|degree| (((|Integer|) $) "\\spad{degree(x)} is not documented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} is not documented"))) │ │ │ +((|leftUnitary| . T) (|rightUnitary| . T) ((|commutative| "*") . T) (|noZeroDivisors| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) │ │ │ +(|SimpleAlgebraicExtensionAlgFactor| UP SAE UPA) │ │ │ +((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|AlgebraicallyClosedField&| S) │ │ │ -((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, \\spad{y)}} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{The yi's are expressed in radicals if possible, and otherwise} \\indented{1}{as implicit algebraic quantities} \\indented{1}{which display as \\spad{'yi}.} \\indented{1}{The returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} zerosOf(a,x)") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{The yi's are expressed in radicals if possible, and otherwise} \\indented{1}{as implicit algebraic quantities.} \\indented{1}{The returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} zerosOf(a)") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{The yi's are expressed in radicals if possible.} \\indented{1}{Otherwise they are implicit algebraic quantities.} \\indented{1}{The returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y.}} \\blankline \\spad{X} \\spad{a:Polynomial(Integer):=-3*x^2+2*x-13} \\spad{X} zerosOf(a)")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, \\spad{y)}} returns \\spad{y} such that \\spad{p(y) = 0}; \\indented{1}{if possible, \\spad{y} is expressed in terms of radicals.} \\indented{1}{Otherwise it is an implicit algebraic quantity which} \\indented{1}{displays as \\spad{'y}.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} zeroOf(a,x)") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; \\indented{1}{if possible, \\spad{y} is expressed in terms of radicals.} \\indented{1}{Otherwise it is an implicit algebraic quantity.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} zeroOf(a)") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. \\indented{1}{If possible, \\spad{y} is expressed in terms of radicals.} \\indented{1}{Otherwise it is an implicit algebraic quantity.} \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y.}} \\blankline \\spad{X} \\spad{a:Polynomial(Integer):=-3*x^2+2*x-13} \\spad{X} zeroOf(a)")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, \\spad{y)}} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; \\indented{1}{The returned roots display as \\spad{'y1},...,\\spad{'yn}.} \\indented{1}{Note that the returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootsOf(a,x)") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{Note that the returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootsOf(a)") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{Note that the returned symbols y1,...,yn are bound in the} \\indented{1}{interpreter to respective root values.} \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y.}} \\blankline \\spad{X} \\spad{a:Polynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootsOf(a)")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, \\spad{y)}} returns \\spad{y} such that \\spad{p(y) = 0}. \\indented{1}{The object returned displays as \\spad{'y}.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootOf(a,x)") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootOf(a)") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y.}} \\blankline \\spad{X} \\spad{a:Polynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootOf(a)"))) │ │ │ +(|SquareFreeQuasiComponentPackage| R E V P TS) │ │ │ +((|constructor| (NIL "A internal package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets.")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,ts,lineq,b1,b2,b3,b4,b5)} is an internal subroutine, exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,lts,b1,b2)} is an internal subroutine, exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine, exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,lpwt2)} is an internal subroutine, exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,us)} returns \\spad{true} iff internalSubQuasiComponent?(ts,us) from QuasiComponentPackage returns true.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{b} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(lp1,lp2)} is an internal subroutine, exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(lp1,lp2)} is an internal subroutine, exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(lp1,lp2)} returns \\spad{true} iff \\axiom{lp1} is a sub-set of \\axiom{lp2} assuming that these lists are sorted increasingly w.r.t. infRittWu? from RecursivePolynomialCategory.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(lp1,lp2)} returns \\spad{true} iff \\axiom{lp1} is a sub-set of \\axiom{lp2}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty, or \\axiom{ts} has less elements than \\axiom{us}, or some variable is algebraic w.r.t. \\axiom{us} and is not w.r.t. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} w.r.t supDimElseRittWu from QuasiComponentPackage.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} w.r.t. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine, exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(s1,s2,s3)} is an internal subroutine, exported only for developement."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|AntiSymm| R |lVar|) │ │ │ -((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p.}")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form, if degree(p) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} \\spad{...} u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator, \\indented{1}{a basis term.} \\blankline \\spad{X} AS:=AntiSymm(Integer,[x,y,z]) \\spad{X} [dx,dy,dz]:=[generator(i)$AS for \\spad{i} in 1..3]")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists, and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)}, where \\spad{p} is an antisymmetric polynomial, returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms, and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p.}"))) │ │ │ -((|unitsKnown| . T)) │ │ │ +(|CombinatorialFunction| R F) │ │ │ +((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), \\spad{n} = a..b)} returns f(a) * \\spad{...} * f(b) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), \\spad{n)}} returns the formal product P(n) which verifies P(n+1)/P(n) = f(n).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), \\spad{n} = a..b)} returns f(a) + \\spad{...} + f(b) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), \\spad{n)}} returns the formal sum S(n) which verifies S(n+1) - S(n) = f(n).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, \\spad{x)}} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n,} \\spad{n!;}")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, \\spad{r)}} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time, n!/(n-r)!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, \\spad{r)}} returns the number of subsets of \\spad{r} objects \\indented{1}{taken among \\spad{n} objects, n!/(r! * (n-r)!);} \\blankline \\spad{X} [binomial(5,i) for \\spad{i} in 0..5]")) (** ((|#2| |#2| |#2|) "\\spad{a \\spad{**} \\spad{b}} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F;} error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) │ │ │ NIL │ │ │ -(|Asp12| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs, needed for NAG routine d02kef etc., for example: \\blankline \\tab{5}SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO)\\br \\tab{5}DOUBLE PRECISION ELAM,FINFO(15)\\br \\tab{5}INTEGER MAXIT,IFLAG\\br \\tab{5}IF(MAXIT.EQ.-1)THEN\\br \\tab{7}PRINT*,\"Output from Monit\"\\br \\tab{5}ENDIF\\br \\tab{5}PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4)\\br \\tab{5}RETURN\\br \\tab{5}END\\")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) │ │ │ NIL │ │ │ +(|LiouvillianFunction| R F) │ │ │ +((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b.}") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x.}")) (|fresnelC| ((|#2| |#2|) "\\spad{fresnelC(f)} denotes the Fresnel integral \\spad{C}")) (|fresnelS| ((|#2| |#2|) "\\spad{fresnelS(f)} denotes the Fresnel integral \\spad{S}")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) │ │ │ NIL │ │ │ -(|Asp27| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs, needed for NAG routine f02fjf ,for example: \\blankline \\tab{5}FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK)\\br \\tab{5}DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK)\\br \\tab{5}INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK)\\br \\tab{5}DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1\\br \\tab{4}&4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W(\\br \\tab{4}&14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1\\br \\tab{4}&1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W(\\br \\tab{4}&11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8))\\br \\tab{4}&)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7)\\br \\tab{4}&+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0.\\br \\tab{4}&5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3\\br \\tab{4}&)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W(\\br \\tab{4}&2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1)\\br \\tab{5}RETURN\\br \\tab{5}END"))) │ │ │ NIL │ │ │ +(|XDistributedPolynomial| |vl| R) │ │ │ +((|constructor| (NIL "This type supports distributed multivariate polynomials whose variables do not commute. The coefficient ring may be non-commutative too. However, coefficients and variables commute."))) │ │ │ +((|unitsKnown| . T) (|noZeroDivisors| |has| |#2| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasAttribute| |#2| (QUOTE |noZeroDivisors|))) │ │ │ +(|SingleInteger|) │ │ │ +((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical or of the single integers \\spad{n} and \\spad{m.}")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical and of the single integers \\spad{n} and \\spad{m.}")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical not of the single integer \\spad{n.}")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical xor of the single integers \\spad{n} and \\spad{m.}")) (|\\/| (($ $ $) "\\axiom{n \\spad{\\/} \\spad{m}} returns the bit-by-bit logical or of the single integers \\spad{n} and \\spad{m.}")) (|/\\| (($ $ $) "\\axiom{n \\spad{/\\} \\spad{m}} returns the bit-by-bit logical and of the single integers \\spad{n} and \\spad{m.}")) (~ (($ $) "\\spad{~ \\spad{n}} returns the bit-by-bit logical not of the single integer \\spad{n.}")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical not of the single integer \\spad{n.}")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) │ │ │ +((|noetherian| . T) (|canonicalsClosed| . T) (|canonical| . T) (|canonicalUnitNormal| . T) (|multiplicativeValuation| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|Asp28| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs, used in NAG routine f02fjf, for example: \\blankline \\tab{5}SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK)\\br \\tab{5}DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK)\\br \\tab{5}INTEGER N,LIWORK,IFLAG,LRWORK\\br \\tab{5}W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00\\br \\tab{4}&2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554\\br \\tab{4}&0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365\\br \\tab{4}&3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z(\\br \\tab{4}&8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0.\\br \\tab{4}&2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050\\br \\tab{4}&8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z\\br \\tab{4}&(1)\\br \\tab{5}W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010\\br \\tab{4}&94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136\\br \\tab{4}&72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D\\br \\tab{4}&0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8)\\br \\tab{4}&)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532\\br \\tab{4}&5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056\\br \\tab{4}&67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1\\br \\tab{4}&))\\br \\tab{5}W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0\\br \\tab{4}&06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033\\br \\tab{4}&305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502\\br \\tab{4}&9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D\\br \\tab{4}&0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(-\\br \\tab{4}&0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961\\br \\tab{4}&32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917\\br \\tab{4}&D0*Z(1))\\br \\tab{5}W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0.\\br \\tab{4}&01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688\\br \\tab{4}&97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315\\br \\tab{4}&6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z\\br \\tab{4}&(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0\\br \\tab{4}&.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802\\br \\tab{4}&68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0*\\br \\tab{4}&Z(1)\\br \\tab{5}W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+(\\br \\tab{4}&-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014\\br \\tab{4}&45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966\\br \\tab{4}&3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352\\br \\tab{4}&4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6))\\br \\tab{4}&+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718\\br \\tab{4}&5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851\\br \\tab{4}&6D0*Z(1)\\br \\tab{5}W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048\\br \\tab{4}&26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323\\br \\tab{4}&319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730\\br \\tab{4}&01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z(\\br \\tab{4}&8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583\\br \\tab{4}&09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700\\br \\tab{4}&4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1)\\br \\tab{5}W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0\\br \\tab{4}&2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843\\br \\tab{4}&8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017\\br \\tab{4}&95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z(\\br \\tab{4}&8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136\\br \\tab{4}&2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015\\br \\tab{4}&423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1\\br \\tab{4}&)\\br \\tab{5}W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05\\br \\tab{4}&581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338\\br \\tab{4}&45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869\\br \\tab{4}&52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8)\\br \\tab{4}&+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056\\br \\tab{4}&1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544\\br \\tab{4}&359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z(\\br \\tab{4}&1)\\br \\tab{5}W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(-\\br \\tab{4}&0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173\\br \\tab{4}&3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441\\br \\tab{4}&3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8\\br \\tab{4}&))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23\\br \\tab{4}&11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773\\br \\tab{4}&9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z(\\br \\tab{4}&1)\\br \\tab{5}W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0\\br \\tab{4}&.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246\\br \\tab{4}&3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609\\br \\tab{4}&48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8\\br \\tab{4}&))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032\\br \\tab{4}&98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688\\br \\tab{4}&615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z(\\br \\tab{4}&1)\\br \\tab{5}W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0\\br \\tab{4}&7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830\\br \\tab{4}&9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D\\br \\tab{4}&0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8)\\br \\tab{4}&)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493\\br \\tab{4}&1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054\\br \\tab{4}&65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1)\\br \\tab{5}W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(-\\br \\tab{4}&0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162\\br \\tab{4}&3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889\\br \\tab{4}&45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8\\br \\tab{4}&)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0.\\br \\tab{4}&01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226\\br \\tab{4}&501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763\\br \\tab{4}&75D0*Z(1)\\br \\tab{5}W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+(\\br \\tab{4}&-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169\\br \\tab{4}&742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453\\br \\tab{4}&5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z(\\br \\tab{4}&8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05\\br \\tab{4}&468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277\\br \\tab{4}&35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0\\br \\tab{4}&*Z(1)\\br \\tab{5}W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15))\\br \\tab{4}&+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236\\br \\tab{4}&679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278\\br \\tab{4}&87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D\\br \\tab{4}&0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0\\br \\tab{4}&.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660\\br \\tab{4}&7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903\\br \\tab{4}&02D0*Z(1)\\br \\tab{5}W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0\\br \\tab{4}&.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325\\br \\tab{4}&555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556\\br \\tab{4}&9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D\\br \\tab{4}&0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0.\\br \\tab{4}&0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122\\br \\tab{4}&10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z\\br \\tab{4}&(1)\\br \\tab{5}W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0.\\br \\tab{4}&1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669\\br \\tab{4}&47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114\\br \\tab{4}&625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z\\br \\tab{4}&(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0\\br \\tab{4}&07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739\\br \\tab{4}&00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0*\\br \\tab{4}&Z(1)\\br \\tab{5}RETURN\\br \\tab{5}END\\br"))) │ │ │ +(|MeshCreationRoutinesForThreeDimensions|) │ │ │ +((|constructor| (NIL "This package has no description")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|AlgebraicallyClosedField|) │ │ │ -((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, \\spad{y)}} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{The yi's are expressed in radicals if possible, and otherwise} \\indented{1}{as implicit algebraic quantities} \\indented{1}{which display as \\spad{'yi}.} \\indented{1}{The returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} zerosOf(a,x)") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{The yi's are expressed in radicals if possible, and otherwise} \\indented{1}{as implicit algebraic quantities.} \\indented{1}{The returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} zerosOf(a)") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{The yi's are expressed in radicals if possible.} \\indented{1}{Otherwise they are implicit algebraic quantities.} \\indented{1}{The returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y.}} \\blankline \\spad{X} \\spad{a:Polynomial(Integer):=-3*x^2+2*x-13} \\spad{X} zerosOf(a)")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, \\spad{y)}} returns \\spad{y} such that \\spad{p(y) = 0}; \\indented{1}{if possible, \\spad{y} is expressed in terms of radicals.} \\indented{1}{Otherwise it is an implicit algebraic quantity which} \\indented{1}{displays as \\spad{'y}.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} zeroOf(a,x)") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; \\indented{1}{if possible, \\spad{y} is expressed in terms of radicals.} \\indented{1}{Otherwise it is an implicit algebraic quantity.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} zeroOf(a)") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. \\indented{1}{If possible, \\spad{y} is expressed in terms of radicals.} \\indented{1}{Otherwise it is an implicit algebraic quantity.} \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y.}} \\blankline \\spad{X} \\spad{a:Polynomial(Integer):=-3*x^2+2*x-13} \\spad{X} zeroOf(a)")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, \\spad{y)}} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; \\indented{1}{The returned roots display as \\spad{'y1},...,\\spad{'yn}.} \\indented{1}{Note that the returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootsOf(a,x)") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{Note that the returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootsOf(a)") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{Note that the returned symbols y1,...,yn are bound in the} \\indented{1}{interpreter to respective root values.} \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y.}} \\blankline \\spad{X} \\spad{a:Polynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootsOf(a)")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, \\spad{y)}} returns \\spad{y} such that \\spad{p(y) = 0}. \\indented{1}{The object returned displays as \\spad{'y}.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootOf(a,x)") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootOf(a)") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y.}} \\blankline \\spad{X} \\spad{a:Polynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootOf(a)"))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|HyperellipticFiniteDivisor| F UP UPUP R) │ │ │ +((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve, that is finite formal sums SUM(n * \\spad{P)} where the \\spad{n's} are integers and the \\spad{P's} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = f(x) and \\spad{f} must have odd degree."))) │ │ │ NIL │ │ │ -(|Asp30| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs, needed for NAG routine f04qaf, for example: \\blankline \\tab{5}SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK)\\br \\tab{5}DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK)\\br \\tab{5}INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE\\br \\tab{5}DOUBLE PRECISION A(5,5)\\br \\tab{5}EXTERNAL F06PAF\\br \\tab{5}A(1,1)=1.0D0\\br \\tab{5}A(1,2)=0.0D0\\br \\tab{5}A(1,3)=0.0D0\\br \\tab{5}A(1,4)=-1.0D0\\br \\tab{5}A(1,5)=0.0D0\\br \\tab{5}A(2,1)=0.0D0\\br \\tab{5}A(2,2)=1.0D0\\br \\tab{5}A(2,3)=0.0D0\\br \\tab{5}A(2,4)=0.0D0\\br \\tab{5}A(2,5)=-1.0D0\\br \\tab{5}A(3,1)=0.0D0\\br \\tab{5}A(3,2)=0.0D0\\br \\tab{5}A(3,3)=1.0D0\\br \\tab{5}A(3,4)=-1.0D0\\br \\tab{5}A(3,5)=0.0D0\\br \\tab{5}A(4,1)=-1.0D0\\br \\tab{5}A(4,2)=0.0D0\\br \\tab{5}A(4,3)=-1.0D0\\br \\tab{5}A(4,4)=4.0D0\\br \\tab{5}A(4,5)=-1.0D0\\br \\tab{5}A(5,1)=0.0D0\\br \\tab{5}A(5,2)=-1.0D0\\br \\tab{5}A(5,3)=0.0D0\\br \\tab{5}A(5,4)=-1.0D0\\br \\tab{5}A(5,5)=4.0D0\\br \\tab{5}IF(MODE.EQ.1)THEN\\br \\tab{7}CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1)\\br \\tab{5}ELSEIF(MODE.EQ.2)THEN\\br \\tab{7}CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1)\\br \\tab{5}ENDIF\\br \\tab{5}RETURN\\br \\tab{5}END"))) │ │ │ NIL │ │ │ +(|OrderedCompletionFunctions2| R S) │ │ │ +((|constructor| (NIL "Lifting of maps to ordered completions.")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, \\spad{r,} \\spad{p,} \\spad{m)}} lifts \\spad{f} and applies it to \\spad{r,} assuming that f(plusInfinity) = \\spad{p} and that f(minusInfinity) = \\spad{m.}") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, \\spad{r)}} lifts \\spad{f} and applies it to \\spad{r,} assuming that f(plusInfinity) = plusInfinity and that f(minusInfinity) = minusInfinity."))) │ │ │ NIL │ │ │ -(|Asp33| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs, needed for NAG routine d02kef. The code is a dummy ASP: \\blankline \\tab{5}SUBROUTINE REPORT(X,V,JINT)\\br \\tab{5}DOUBLE PRECISION V(3),X\\br \\tab{5}INTEGER JINT\\br \\tab{5}RETURN\\br \\tab{5}END")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) │ │ │ NIL │ │ │ +(|IndexCard|) │ │ │ +((|constructor| (NIL "This domain implements a container of information about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{s} into an \\axiom{IndexCard}. Warning: if \\axiom{s} is not of the right format then an error will occur")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{ic}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of information contained in \\axiom{ic}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{ic}. Valid fields are \\axiom{name, nargs, exposed, type, abbreviation, kind, origin, params, condition, doc}."))) │ │ │ NIL │ │ │ -(|PlaneAlgebraicCurvePlot|) │ │ │ -((|constructor| (NIL "Plot a NON-SINGULAR plane algebraic curve p(x,y) = 0.")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} is not documented \\blankline \\spad{X} sketch:=makeSketch(x+y,x,y,-1/2..1/2,-1/2..1/2)$ACPLOT \\spad{X} refined:=refine(sketch,0.1)")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the \\indented{1}{curve \\spad{p = 0} in the region a \\spad{<=} \\spad{x} \\spad{<=} \\spad{b,} \\spad{c} \\spad{<=} \\spad{y} \\spad{<=} \\spad{d.}} \\indented{1}{More specifically, 'makeSketch' plots a non-singular algebraic curve} \\indented{1}{\\spad{p = 0} in an rectangular region xMin \\spad{<=} \\spad{x} \\spad{<=} xMax,} \\indented{1}{yMin \\spad{<=} \\spad{y} \\spad{<=} yMax. The user inputs} \\indented{1}{\\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}.} \\indented{1}{Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with} \\indented{1}{integer coefficients \\spad{(p} belongs to the domain} \\indented{1}{\\spad{Polynomial Integer}). The case} \\indented{1}{where \\spad{p} is a polynomial in only one of the variables is} \\indented{1}{allowed.\\space{2}The variables \\spad{x} and \\spad{y} are input to specify the} \\indented{1}{the coordinate axes.\\space{2}The horizontal axis is the x-axis and} \\indented{1}{the vertical axis is the y-axis.\\space{2}The rational numbers} \\indented{1}{xMin,...,yMax specify the boundaries of the region in} \\indented{1}{which the curve is to be plotted.} \\blankline \\spad{X} makeSketch(x+y,x,y,-1/2..1/2,-1/2..1/2)$ACPLOT"))) │ │ │ NIL │ │ │ +(|ExpressionToUnivariatePowerSeries| R FE) │ │ │ +((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of \\spad{(x} - a); terms will be computed up to order at least \\spad{n.}") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of \\spad{(x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f.} Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n.}") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f.} Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n.}") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f.} Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n.}") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f.} Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n.}") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f.} Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n.}") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f.} Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n.}") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f.} Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n.}") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f.} Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) │ │ │ NIL │ │ │ -(|Asp7| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs, needed for NAG routines d02bbf, d02gaf. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z,} and look like: \\blankline \\tab{5}SUBROUTINE FCN(X,Z,F)\\br \\tab{5}DOUBLE PRECISION F(*),X,Z(*)\\br \\tab{5}F(1)=DTAN(Z(3))\\br \\tab{5}F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2)\\br \\tab{4}&**2))/(Z(2)*DCOS(Z(3)))\\br \\tab{5}F(3)=-0.03199999999999999D0/(X*Z(2)**2)\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ +(|FourierComponent| E) │ │ │ +((|constructor| (NIL "This domain creates kernels for use in Fourier series")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin, otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) │ │ │ NIL │ │ │ -(|Asp49| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs, needed for NAG routines e04dgf, e04ucf, for example: \\blankline \\tab{5}SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER)\\br \\tab{5}DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*)\\br \\tab{5}INTEGER N,IUSER(*),MODE,NSTATE\\br \\tab{5}OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7)\\br \\tab{4}&+(-1.0D0*X(2)*X(6))\\br \\tab{5}OBJGRD(1)=X(7)\\br \\tab{5}OBJGRD(2)=-1.0D0*X(6)\\br \\tab{5}OBJGRD(3)=X(8)+(-1.0D0*X(7))\\br \\tab{5}OBJGRD(4)=X(9)\\br \\tab{5}OBJGRD(5)=-1.0D0*X(8)\\br \\tab{5}OBJGRD(6)=-1.0D0*X(2)\\br \\tab{5}OBJGRD(7)=(-1.0D0*X(3))+X(1)\\br \\tab{5}OBJGRD(8)=(-1.0D0*X(5))+X(3)\\br \\tab{5}OBJGRD(9)=X(4)\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) │ │ │ NIL │ │ │ +(|DegreeReductionPackage| R1 R2) │ │ │ +((|constructor| (NIL "This package has no description")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) │ │ │ NIL │ │ │ -(|Asp55| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs, needed for NAG routines e04dgf and e04ucf, for example: \\blankline \\tab{5}SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER\\br \\tab{4}&,USER)\\br \\tab{5}DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*)\\br \\tab{5}INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE\\br \\tab{5}IF(NEEDC(1).GT.0)THEN\\br \\tab{7}C(1)=X(6)**2+X(1)**2\\br \\tab{7}CJAC(1,1)=2.0D0*X(1)\\br \\tab{7}CJAC(1,2)=0.0D0\\br \\tab{7}CJAC(1,3)=0.0D0\\br \\tab{7}CJAC(1,4)=0.0D0\\br \\tab{7}CJAC(1,5)=0.0D0\\br \\tab{7}CJAC(1,6)=2.0D0*X(6)\\br \\tab{5}ENDIF\\br \\tab{5}IF(NEEDC(2).GT.0)THEN\\br \\tab{7}C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2\\br \\tab{7}CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1)\\br \\tab{7}CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1))\\br \\tab{7}CJAC(2,3)=0.0D0\\br \\tab{7}CJAC(2,4)=0.0D0\\br \\tab{7}CJAC(2,5)=0.0D0\\br \\tab{7}CJAC(2,6)=0.0D0\\br \\tab{5}ENDIF\\br \\tab{5}IF(NEEDC(3).GT.0)THEN\\br \\tab{7}C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2\\br \\tab{7}CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1)\\br \\tab{7}CJAC(3,2)=2.0D0*X(2)\\br \\tab{7}CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1))\\br \\tab{7}CJAC(3,4)=0.0D0\\br \\tab{7}CJAC(3,5)=0.0D0\\br \\tab{7}CJAC(3,6)=0.0D0\\br \\tab{5}ENDIF\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ +(|GradedAlgebra&| S R E) │ │ │ +((|constructor| (NIL "GradedAlgebra(R,E) denotes ``E-graded R-algebra''. A graded algebra is a graded module together with a degree preserving R-linear map, called the product. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving R-linear product: \\blankline \\spad{degree product(a,b) = degree a + degree \\spad{b}} \\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)} \\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)} \\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)} \\spad{product(a,product(b,c)) = product(product(a,b),c)}")) ((|One|) (($) "\\spad{1} is the identity for \\spad{product}."))) │ │ │ NIL │ │ │ -(|Asp78| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs, needed for NAG routine d02gbf, for example: \\blankline \\tab{5}SUBROUTINE FCNG(X,G)\\br \\tab{5}DOUBLE PRECISION G(*),X\\br \\tab{5}G(1)=0.0D0\\br \\tab{5}G(2)=0.0D0\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ +(|PseudoAlgebraicClosureOfRationalNumber|) │ │ │ +((|constructor| (NIL "This domain implements dynamic extension using the simple notion of tower extensions. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension \\spad{(T} : K_0, K_1, ..., K_i...,K_n) where \\spad{K_0} = \\spad{K} and for \\spad{i} =1,2,...,n, K_i is an extension of K_{i-1} of degree > 1 and defined by an irreducible polynomial p(Z) in K_{i-1}. Two towers (T_1: K_01, K_11,...,K_i1,...,K_n1) and (T_2: K_02, K_12,...,K_i2,...,K_n2) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} T_2), that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1,2,...,n1} (or i=1,2,...,n2). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|Finite|))) (OR (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|Finite|))))) │ │ │ +(|StackAggregate| S) │ │ │ +((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s.} \\indented{1}{Note that \\axiom{depth(s) = \\#s}.} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} depth a")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s;} \\spad{s} remains unchanged. \\indented{1}{Note that Use \\axiom{pop!(s)} to obtain \\spad{x} and remove it from \\spad{s.}} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} top a")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x,} destructively removing \\spad{x} from \\spad{s.} \\indented{1}{Note that Use \\axiom{top(s)} to obtain \\spad{x} without removing it from \\spad{s.}} \\indented{1}{Error: if \\spad{s} is empty.} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} pop! a \\spad{X} a")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s,} that is, destructively changing \\spad{s} \\indented{1}{so as to have a new first (top) element \\spad{x.}} \\indented{1}{Afterwards, pop!(s) produces \\spad{x} and pop!(s) produces the original \\spad{s.}} \\blankline \\spad{X} a:Stack INT:= stack [1,2,3,4,5] \\spad{X} push! a \\spad{X} a"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|Asp8| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs, needed for NAG routine d02bbf. This ASP prints intermediate values of the computed solution of an ODE and might look like: \\blankline \\tab{5}SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD)\\br \\tab{5}DOUBLE PRECISION Y(N),RESULT(M,N),XSOL\\br \\tab{5}INTEGER M,N,COUNT\\br \\tab{5}LOGICAL FORWRD\\br \\tab{5}DOUBLE PRECISION X02ALF,POINTS(8)\\br \\tab{5}EXTERNAL X02ALF\\br \\tab{5}INTEGER I\\br \\tab{5}POINTS(1)=1.0D0\\br \\tab{5}POINTS(2)=2.0D0\\br \\tab{5}POINTS(3)=3.0D0\\br \\tab{5}POINTS(4)=4.0D0\\br \\tab{5}POINTS(5)=5.0D0\\br \\tab{5}POINTS(6)=6.0D0\\br \\tab{5}POINTS(7)=7.0D0\\br \\tab{5}POINTS(8)=8.0D0\\br \\tab{5}COUNT=COUNT+1\\br \\tab{5}DO 25001 I=1,N\\br \\tab{7} RESULT(COUNT,I)=Y(I)\\br 25001 CONTINUE\\br \\tab{5}IF(COUNT.EQ.M)THEN\\br \\tab{7}IF(FORWRD)THEN\\br \\tab{9}XSOL=X02ALF()\\br \\tab{7}ELSE\\br \\tab{9}XSOL=-X02ALF()\\br \\tab{7}ENDIF\\br \\tab{5}ELSE\\br \\tab{7} XSOL=POINTS(COUNT)\\br \\tab{5}ENDIF\\br \\tab{5}END"))) │ │ │ +(|IntegralBasisPolynomialTools| K R UP L) │ │ │ +((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for mapping functions on the coefficients of univariate and bivariate polynomials.")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible, and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}, if possible, and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|AttributeButtons|) │ │ │ -((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\", \"stability\" (how much affect the cosine or sine component of the solution has on the stability of the result), \"accuracy\" and \"expense\" (how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved.")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,routineName,n)} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\", \"stability\", \"accuracy\", \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,n)} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\", \"stability\", \"accuracy\", \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(n)} sets the value of the steps for increasing and decreasing the button values. \\axiom{n} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\", \"stability\", \"accuracy\", \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\", \"stability\", \"accuracy\", \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\", \"stability\", \"accuracy\", \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\", \"stability\", \"accuracy\", \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\", \"stability\", \"accuracy\", \"expense\" or \"functionEvaluations\"."))) │ │ │ -((|finiteAggregate| . T)) │ │ │ +(|IntegerFactorizationPackage| I) │ │ │ +((|constructor| (NIL "This Package contains basic methods for integer factorization. The factor operation employs trial division up to 10,000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail, the result of factor may contain composite factors. We should also employ Lenstra's eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) │ │ │ NIL │ │ │ -(|Asp9| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs, needed for NAG routines d02bhf, d02cjf, d02ejf. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y,} for example: \\blankline \\tab{5}DOUBLE PRECISION FUNCTION G(X,Y)\\br \\tab{5}DOUBLE PRECISION X,Y(*)\\br \\tab{5}G=X+Y(1)\\br \\tab{5}RETURN\\br \\tab{5}END \\blankline If the user provides a constant value for \\spad{G,} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) │ │ │ NIL │ │ │ +(|BasicType|) │ │ │ +((|constructor| (NIL "BasicType is the basic category for describing a collection of elements with = (equality).")) (~= (((|Boolean|) $ $) "\\spad{x~=y} tests if \\spad{x} and \\spad{y} are not equal.")) (= (((|Boolean|) $ $) "\\spad{x=y} tests if \\spad{x} and \\spad{y} are equal."))) │ │ │ NIL │ │ │ -(|BasicOperatorFunctions1| A) │ │ │ -((|constructor| (NIL "This package exports functions to set some commonly used properties of operators, including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a}, \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one, and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of op. If \\spad{op} has an \"\\%diff\" property \\spad{f,} then applying a derivation \\spad{D} to op(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [foo1,...,foon] as the \"\\%diff\" property of op. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + \\spad{...} + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one, and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of op. If \\spad{op} has an \"\\%eval\" property \\spad{f,} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of op. If \\spad{op} has an \"\\%eval\" property \\spad{f,} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f.} If it has, then \\spad{f(a1,...,an)} is returned, and \"failed\" otherwise."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|OrderedSet|)))) │ │ │ -(|BasicOperator|) │ │ │ -((|constructor| (NIL "Basic system operators. A basic operator is an object that can be applied to a list of arguments from a set, the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, \\spad{l)}} sets the property list of \\spad{op} to \\spad{l.} Argument \\spad{op} is modified \"in place\", no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op, \\spad{s,} \\spad{v)}} attaches property \\spad{s} to op, and sets its value to \\spad{v.} Argument \\spad{op} is modified \"in place\", no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, \\spad{s)}} returns the value of property \\spad{s} if it is attached to op, and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op, \\spad{s)}} unattaches property \\spad{s} from op. Argument \\spad{op} is modified \"in place\", no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op, \\spad{s)}} attaches property \\spad{s} to op. Argument \\spad{op} is modified \"in place\", no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op, \\spad{s)}} tests if property \\spad{s} is attached to op.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op, \\spad{s)}} tests if the name of \\spad{op} is \\spad{s.}")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached, \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of op. If \\spad{op} has a \"\\%input\" property \\spad{f,} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of op. If \\spad{op} has a \"\\%display\" property \\spad{f,} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of op. If \\spad{op} has a \"\\%display\" property \\spad{f,} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached, and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to op. If \\spad{op1} and \\spad{op2} have the same name, and one of them has a \"\\%less?\" property \\spad{f,} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to op. If \\spad{op1} and \\spad{op2} have the same name, and one of them has an \"\\%equal?\" property \\spad{f,} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1} and \\spad{op2} should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, \\spad{n)}} attaches the weight \\spad{n} to op.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to op.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is n-ary, and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, \\spad{n)}} makes \\spad{f} into an n-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of op.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to op.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of op."))) │ │ │ +(|IntegerRoots| I) │ │ │ +((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\spad{n}th roots of integers efficiently.")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < \\spad{x} - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < \\spad{s} - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( \\spad{log(n)**2} \\spad{)}.}")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < \\spad{x} - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]}, where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|BlowUpPackage| K |symb| |PolyRing| E BLMET) │ │ │ -((|constructor| (NIL "The following is part of the PAFF package")) (|stepBlowUp| (((|Record| (|:| |mult| (|NonNegativeInteger|)) (|:| |subMult| (|NonNegativeInteger|)) (|:| |blUpRec| (|List| (|Record| (|:| |recTransStr| (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|)) (|:| |recPoint| (|AffinePlane| |#1|)) (|:| |recChart| |#5|) (|:| |definingExtension| |#1|))))) (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|AffinePlane| |#1|) |#5| |#1|) "\\spad{stepBlowUp(pol,pt,n)} blow-up the point \\spad{pt} on the curve defined by \\spad{pol} in the affine neighbourhood specified by \\spad{n.}")) (|quadTransform| (((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|NonNegativeInteger|) |#5|) "\\spad{quadTransform(pol,n,chart)} apply the quadratique transformation to \\spad{pol} specified by \\spad{chart} has in quadTransform(pol,chart) and extract x**n to it, where \\spad{x} is the variable specified by the first integer in \\spad{chart} (blow-up exceptional coordinate).")) (|applyTransform| ((|#3| |#3| |#5|) "\\spad{applyTransform(pol,chart)} apply the quadratique transformation to \\spad{pol} specified by \\spad{chart} which consist of 3 integers. The last one indicates which varibles is set to 1, the first on indicates which variable remains unchange, and the second one indicates which variable oon which the transformation is applied. For example, [2,3,1] correspond to the following: \\spad{x} \\spad{->} 1, \\spad{y} \\spad{->} \\spad{y,} \\spad{z} \\spad{->} \\spad{yz} (here the variable are [x,y,z] in BlUpRing)."))) │ │ │ +(|IndexedDirectProductCategory| A S) │ │ │ +((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z.} Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z.} Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z.} Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|CommonOperators|) │ │ │ -((|constructor| (NIL "This package exports the elementary operators, with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s,} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known, the result has no semantics."))) │ │ │ +(|PolynomialComposition| UP R) │ │ │ +((|constructor| (NIL "Polynomial composition and decomposition functions\\br If \\spad{f} = \\spad{g} \\spad{o} \\spad{h} then g=leftFactor(f,h) and h=rightFactor(f,g)")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|TopLevelDrawFunctions| |Ex|) │ │ │ -((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)}, \\spad{y = g(u,v)}, \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)}, \\spad{y = g(u,v)}, \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)}, \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)}, \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)}, \\spad{y = g(u,v)}, \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)}, \\spad{y = g(u,v)}, \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)}, \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)}, \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) │ │ │ +(|SquareFreeNormalizedTriangularSetCategory| R E V P) │ │ │ +((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus, up to the primitivity axiom of [1], these sets are Lazard triangular sets."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ +(|CombinatorialFunctionCategory|) │ │ │ +((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n, \\spad{m)}} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note that \\spad{permutation(n,m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note that \\spad{n! = \\spad{n} (n-1)! when \\spad{n} > 0}; also, \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,r)} returns the \\spad{(n,r)} binomial coefficient \\indented{1}{(often denoted in the literature by \\spad{C(n,r)}).} \\indented{1}{Note that \\spad{C(n,r) = n!/(r!(n-r)!)} where \\spad{n \\spad{>=} \\spad{r} \\spad{>=} 0}.} \\blankline \\spad{X} [binomial(5,i) for \\spad{i} in 0..5]"))) │ │ │ NIL │ │ │ -(|TopLevelDrawFunctionsForCompiledFunctions|) │ │ │ -((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()}, uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)}, \\spad{y = g(u,v)}, \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)}, \\spad{y = g(u,v)}, \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t), \\spad{z} = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t), \\spad{z} = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t), \\spad{z} = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t), \\spad{z} = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)}, \\spad{y = g(u,v)}, \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)}, \\spad{y = g(u,v)}, \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t), \\spad{z} = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t), \\spad{z} = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) │ │ │ NIL │ │ │ +(|ModularAlgebraicGcdOperations| MPT MD) │ │ │ +((|constructor| (NIL "This category specifies operations needed by ModularAlgebraicGcd package. Since we have multiple implementations we specify interface here and put implementations in separate packages. Most operations are done using special purpose abstract representation. Apropriate types are passesd as parametes: \\spad{MPT} is type of modular polynomials in one variable with coefficients in some algebraic extension. \\spad{MD} is type of modulus. Final results are converted to packed representation, with coefficients (from prime field) stored in one array and exponents (in main variable and in auxilary variables representing generators of algebrac extension) stored in parallel array.")) (|repack1| (((|Void|) |#1| (|U32Vector|) (|Integer|) |#2|) "\\spad{repack1(x, a, \\spad{d,} \\spad{m)}} stores coefficients of \\spad{x} in a. \\spad{d} is degree of \\spad{x.} Corresponding exponents are given by packExps.")) (|packExps| ((|SortedExponentVector| (|Integer|) (|Integer|) |#2|) "\\spad{packExps(d, \\spad{s,} \\spad{m)}} produces vector of exponents up to degree \\spad{d.} \\spad{s} is size (degree) of algebraic extension. Use together with repack1.")) (|degree| (((|Integer|) |#1|) "\\spad{degree(x)} gives degree of \\spad{x.}")) (|zero?| (((|Boolean|) |#1|) "\\spad{zero?(x)} checks if \\spad{x} is zero.")) (|MPtoMPT| ((|#1| (|Polynomial| (|Integer|)) (|Symbol|) (|List| (|Symbol|)) |#2|) "\\spad{MPtoMPT(p, \\spad{s,} \\spad{ls,} \\spad{m)}} coverts \\spad{p} to packed represntation.")) (|packModulus| (((|Union| |#2| "failed") (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Integer|)) "\\spad{packModulus(lp, \\spad{ls,} \\spad{p)}} converts \\spad{lp,} \\spad{ls} and prime \\spad{p} which together describe algebraic extension to packed representation.")) (|canonicalIfCan| (((|Union| |#1| "failed") |#1| |#2|) "\\spad{canonicalIfCan(x, \\spad{m)}} tries to divide \\spad{x} by its leading coefficient modulo \\spad{m.}")) (|pseudoRem| ((|#1| |#1| |#1| |#2|) "\\spad{pseudoRem(x, \\spad{y,} \\spad{m)}} computes pseudoremainder of \\spad{x} by \\spad{y} modulo \\spad{m.}"))) │ │ │ NIL │ │ │ -(|ComplexCategory&| S R) │ │ │ -((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1.}")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number, or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns \\spad{(r,} phi) such that \\spad{x} = \\spad{r} * exp(\\%i * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,1) and (0,x).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(x)).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, \\spad{r)}} returns the exact quotient of \\spad{x} by \\spad{r,} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(x)")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x.}")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x.}")) (|conjugate| (($ $) "\\spad{conjugate(x + \\spad{%i} \\spad{y)}} returns \\spad{x} - \\spad{%i} \\spad{y.}")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(-1) = \\%i.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(-1)"))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#2| (QUOTE (|RadicalCategory|))) (|HasCategory| |#2| (QUOTE (|TranscendentalFunctionCategory|))) (|HasCategory| |#2| (QUOTE (|RealNumberSystem|))) (|HasCategory| |#2| (QUOTE (|RealConstant|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasAttribute| |#2| (QUOTE |additiveValuation|)) (|HasAttribute| |#2| (QUOTE |multiplicativeValuation|)) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|)))) │ │ │ -(|DrawOption|) │ │ │ -((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command, or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf.} This option is expressed in the form \\spad{unit \\spad{==} [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p.} This option is expressed in the form \\spad{coord \\spad{==} \\spad{p}.}")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points, \\spad{n,} defining the circle which creates the tube around a 3D curve, the default is 6. This option is expressed in the form \\spad{tubePoints \\spad{==} \\spad{n}.}")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions, \\spad{n,} of the second range variable. This option is expressed in the form \\spad{var2Steps \\spad{==} \\spad{n}.}")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions, \\spad{n,} of the first range variable. This option is expressed in the form \\spad{var1Steps \\spad{==} \\spad{n}.}")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l.} This option is expressed in the form \\spad{ranges \\spad{==} \\spad{l}.}")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range i. This option is expressed in the form \\spad{range \\spad{==} [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l.} This option is expressed in the form \\spad{range \\spad{==} [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius, \\spad{r,} for a tube plot around a 3D curve is expressed in the form \\spad{tubeRadius \\spad{==} 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x,} \\spad{y,} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction \\spad{==} f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction \\spad{==} f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the z-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction \\spad{==} f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p.} This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color, \\spad{v,} for 2D graph curves. This option is expressed in the form \\spad{curveColor \\spad{==} \\spad{v}.}")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p.} This option is expressed in the form \\spad{pointColor \\spad{==} \\spad{p}.}") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color, \\spad{v,} for 2D graph points. This option is expressed in the form \\spad{pointColor \\spad{==} \\spad{v}.}")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p.} This option is expressed in the form \\spad{coordinates \\spad{==} \\spad{p}.}")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale, if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale \\spad{==} \\spad{b}.}")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s.} This option is expressed in the form \\spad{style \\spad{==} \\spad{s}.}")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s.} This option is expressed in the form \\spad{title \\spad{==} \\spad{s}.}")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta, phi, scale, scaleX, scaleY, scaleZ, deltaX, deltaY]. This option is expressed in the form \\spad{viewpoint \\spad{==} ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l.} This option is expressed in the form \\spad{clip \\spad{==} [l]}") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is true, or off if \\spad{b} is false. This option is expressed in the form \\spad{clip \\spad{==} \\spad{b}.}")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is true, or off if \\spad{b} is false. This option is expressed in the form \\spad{adaptive \\spad{==} \\spad{b}.}"))) │ │ │ +(|Queue| S) │ │ │ +((|constructor| (NIL "Linked List implementation of a Queue")) (|member?| (((|Boolean|) |#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} member?(3,a)")) (|members| (((|List| |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} members a")) (|parts| (((|List| |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} parts a")) (|#| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} \\#a")) (|count| (((|NonNegativeInteger|) |#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} count(4,a)") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} count(x+->(x>2),a)")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} any?(x+->(x=4),a)")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} every?(x+->(x=4),a)")) (~= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} (a~=b)")) (= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} b:Queue INT:= queue [1,2,3,4,5] \\spad{X} (a=b)@Boolean")) (|coerce| (((|OutputForm|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} coerce a")) (|hash| (((|SingleInteger|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} hash a")) (|latex| (((|String|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} latex a")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} map!(x+->x+10,a) \\spad{X} a")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} map(x+->x+10,a) \\spad{X} a")) (|eq?| (((|Boolean|) $ $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} eq?(a,b)")) (|copy| (($ $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} copy a")) (|sample| (($) "\\blankline \\spad{X} sample()$Queue(INT)")) (|empty| (($) "\\blankline \\spad{X} b:=empty()$(Queue INT)")) (|empty?| (((|Boolean|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} empty? a")) (|bag| (($ (|List| |#1|)) "\\blankline \\spad{X} bag([1,2,3,4,5])$Queue(INT)")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} size?(a,5)")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} more?(a,9)")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} less?(a,9)")) (|length| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} length a")) (|rotate!| (($ $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} rotate! a")) (|back| ((|#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} back a")) (|front| ((|#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} front a")) (|inspect| ((|#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} inspect a")) (|insert!| (($ |#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} insert! (8,a) \\spad{X} a")) (|enqueue!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} enqueue! (9,a) \\spad{X} a")) (|extract!| ((|#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} extract! a \\spad{X} a")) (|dequeue!| ((|#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,2,3,4,5] \\spad{X} dequeue! a \\spad{X} a")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) \\indented{1}{element \\spad{x,} second element y,...,and last (bottom) element \\spad{z.}} \\blankline \\spad{X} e:Queue INT:= queue [1,2,3,4,5]"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ +(|ElementaryRischDE| R F) │ │ │ +((|constructor| (NIL "Risch differential equation, elementary case.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, \\spad{f,} \\spad{g,} \\spad{x,} lim, ext)} returns \\spad{[y, \\spad{h,} \\spad{b]}} such that \\spad{dy/dx + \\spad{n} df/dx \\spad{y} = \\spad{h}} and \\spad{b \\spad{:=} \\spad{h} = \\spad{g}.} The equation \\spad{dy/dx + \\spad{n} df/dx \\spad{y} = \\spad{g}} has no solution if \\spad{h \\~~= \\spad{g}} (y is a partial solution in that case). Notes: \\spad{lim} is a limited integration function, and ext is an extended integration function."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|DrawOptionFunctions0|) │ │ │ -((|constructor| (NIL "This package has no description")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value, \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value, \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value, \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value, \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options, \\spad{l,} and checks to see if it contains the option \\spad{space}. If the the option doesn't exist, then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value, \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value, \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value, \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value, \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value, \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value, \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value, \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value, \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist, the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value, \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options, \\spad{l,} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value, \\spad{b} is returned."))) │ │ │ +(|SpecialOutputPackage|) │ │ │ +((|constructor| (NIL "SpecialOutputPackage allows FORTRAN, Tex and Script Formula Formatter output from programs.")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l)} output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l)} output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l)} output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|d01anfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF, a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x)} or sin(\\omega \\spad{x).} The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ +(|InnerModularGcd| R BP |pMod| |nextMod|) │ │ │ +((|constructor| (NIL "This file contains the functions for modular \\spad{gcd} algorithm for univariate polynomials with coefficients in a non-trivial euclidean domain (not a field). The package parametrised by the coefficient domain, the polynomial domain, a prime, and a function for choosing the next prime")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p.}")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|d01asfAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF, a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x)} or sin(\\omega \\spad{x)} on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ +(|Library|) │ │ │ +((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|close!| (($ $) "\\spad{close!(f)} returns the library \\spad{f} closed to input and output.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k \\spad{:=} \\spad{v}} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,k)} or lib.k extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) │ │ │ +((|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|String|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Any|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Any|) (LIST (QUOTE |Evalable|) (QUOTE (|Any|)))) (|HasCategory| (|Any|) (QUOTE (|SetCategory|)))) (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (QUOTE (|String|))) (LIST (QUOTE |:|) (QUOTE |entry|) (QUOTE (|Any|)))))) (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|)))) (OR (|HasCategory| (|Any|) (QUOTE (|SetCategory|))) (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|))))) │ │ │ +(|AlgebraicallyClosedFunctionSpace&| S R) │ │ │ +((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, \\spad{y)}} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The yi's are expressed in radicals if possible, and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols y1,...,yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The yi's are expressed in radicals if possible. The returned symbols y1,...,yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, \\spad{y)}} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, \\spad{y)}} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},...,\\spad{'yn}. Note that the returned symbols y1,...,yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, \\spad{y)}} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note that the returned symbols y1,...,yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y.}")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|d03AgentsPackage|) │ │ │ -((|constructor| (NIL "\\axiom{d03AgentsPackage} contains a set of computational agents for use with Partial Differential Equation solvers.")) (|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,g,l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,n)} \\undocumented{}"))) │ │ │ +(|Monad&| S) │ │ │ +((|constructor| (NIL "Monad is the class of all multiplicative monads, that is sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}-th power of \\spad{a}, defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}-th left power of \\spad{a}, that is, \\spad{leftPower(a,n) \\spad{:=} a * leftPower(a,n-1)} and \\spad{leftPower(a,1) \\spad{:=} a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}-th right power of \\spad{a}, that is, \\spad{rightPower(a,n) \\spad{:=} rightPower(a,n-1) * a} and \\spad{rightPower(a,1) \\spad{:=} a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FortranCodePackage1|) │ │ │ -((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and, where appropriate, naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1, I2, and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran, \\spad{I1} and \\spad{I2}")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}"))) │ │ │ +(|MatrixLinearAlgebraFunctions| R |Row| |Col| M) │ │ │ +((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible, \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen, for example, positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m.}")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (the matrix \\spad{n} such that \\spad{m*n} = determinant(m)*id) and the detrminant of \\spad{m.}")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m.}")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m.}")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m.} This is the dimension of the null space of the matrix \\spad{m.}")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m.}")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(m,j) : elementary operation of second kind. \\spad{(i} ^=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(m,j) : elementary operation of second kind. \\spad{(i} ^=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m.} an error message is returned if the matrix is not square."))) │ │ │ NIL │ │ │ +((|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) │ │ │ +(|EntireRing|) │ │ │ +((|constructor| (NIL "Entire Rings (non-commutative Integral Domains), a ring not necessarily commutative which has no zero divisors. \\blankline Axioms\\br \\tab{5}\\spad{ab=0 \\spad{=>} \\spad{a=0} or b=0} \\spad{--} known as noZeroDivisors\\br \\tab{5}\\spad{not(1=0)}")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) │ │ │ +((|noZeroDivisors| . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|EigenPackage| R) │ │ │ -((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m.} The rational eigenvalues and the correspondent eigenvectors are explicitely computed, while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m.}")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue eigen, as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue alpha. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue alpha. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m.}")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) │ │ │ +(|ApproximateAttribute|) │ │ │ +((|constructor| (NIL "An approximation to the real numbers."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ +(|U8Vector|) │ │ │ +((|constructor| (NIL "\\indented{2}{fill!(x, \\spad{s)} modifies a vector \\spad{x} so every element has value \\spad{s}} \\blankline \\spad{X} t1:=new(10,7)$U8Vector \\spad{X} fill!(t1,9)"))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| (|Integer|) (QUOTE (|SetCategory|))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))))) │ │ │ +(|InnerNumericFloatSolvePackage| K F |Par|) │ │ │ +((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float}, \\spad{Fraction(Integer)}, \\spad{Complex(Float)}, \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and lsol.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials lnum, with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by eps.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision eps.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision eps."))) │ │ │ NIL │ │ │ -(|e04AgentsPackage|) │ │ │ -((|constructor| (NIL "\\axiomType{e04AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical optimization routine.")) (|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units''. It returns a value in the range [0,1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,r)} changes the name of item \\axiom{s} in \\axiom{r} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,n)} returns a list of \\axiom{n} indexed variables with name as in \\axiom{e}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{args.lfn}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{e} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\spad{l.}")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{l}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,n)} returns a matrix of coefficients of the linear functions in \\axiom{l}. If \\spad{l} is empty, the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{e} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course, it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,b)} repaces all instances of an infinite entry in \\axiom{l} by a finite entry \\axiom{b} or \\axiom{-b}."))) │ │ │ NIL │ │ │ +(|QuaternionCategory&| S R) │ │ │ +((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number, or \"failed\" if this is not possible. Note that if \\spad{rational?(q)} is true, the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is true, the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it true} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number, and {\\it false} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) │ │ │ NIL │ │ │ -(|FortranExpression| |basicSymbols| |subscriptedSymbols| R) │ │ │ -((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77, with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of pi}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function \\spad{LOG10}")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} is not documented")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it is one of the given basic symbols or subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it is one of the given basic symbols or subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively."))) │ │ │ -((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Float|)))) (|HasCategory| $ (QUOTE (|Ring|))) (|HasCategory| $ (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) │ │ │ -(|FiniteFieldCyclicGroupExtensionByPolynomial| GF |defpol|) │ │ │ -((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,defpol) implements a finite extension field of the ground field \\spad{GF.} Its elements are represented by powers of a primitive element, a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial defpol, which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size, and use \\spadtype{SingleInteger} for representing field elements, hence, there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))))) │ │ │ +((|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#2| (QUOTE (|RealNumberSystem|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|EntireRing|)))) │ │ │ (|FiniteFieldExtensionByPolynomial| GF |defpol|) │ │ │ ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF, defpol) implements the extension of the finite field \\spad{GF} generated by the extension polynomial defpol which MUST be irreducible."))) │ │ │ ((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ ((|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))))) │ │ │ -(|FiniteFieldNormalBasisExtensionByPolynomial| GF |uni|) │ │ │ -((|constructor| (NIL "\\spad{FiniteFieldNormalBasisExtensionByPolynomial(GF,uni)} implements a finite extension of the ground field \\spad{GF.} The elements are represented by coordinate vectors with respect to a normal basis, a basis consisting of the conjugates (q-powers) of an element, in this case called normal element, where \\spad{q} is the size of \\spad{GF.} The normal element is chosen as a root of the extension polynomial, which MUST be normal over \\spad{GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) │ │ │ +(|BinaryExpansion|) │ │ │ +((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion. \\blankline \\spad{X} binary(22/7)")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) │ │ │ ((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Finite|))))) │ │ │ -(|ComplexCategory| R) │ │ │ -((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1.}")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number, or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns \\spad{(r,} phi) such that \\spad{x} = \\spad{r} * exp(\\%i * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,1) and (0,x).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(x)).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, \\spad{r)}} returns the exact quotient of \\spad{x} by \\spad{r,} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(x)")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x.}")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x.}")) (|conjugate| (($ $) "\\spad{conjugate(x + \\spad{%i} \\spad{y)}} returns \\spad{x} - \\spad{%i} \\spad{y.}")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(-1) = \\%i.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(-1)"))) │ │ │ -((|noZeroDivisors| OR (|has| |#1| (|IntegralDomain|)) (AND (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|additiveValuation| |has| |#1| (ATTRIBUTE |additiveValuation|)) (|multiplicativeValuation| |has| |#1| (ATTRIBUTE |multiplicativeValuation|)) (|complex| . T) (|nil| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -NIL │ │ │ -(|Float|) │ │ │ -((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,base)} for integer \\spad{mantissa}, \\spad{exponent} specifies the number \\spad{mantissa * base \\spad{**} exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place, that is, accurate to within \\spad{2**(-bits)}. Also, the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers, the mantissa and the exponent. The base of the representation is binary, hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 \\spad{**} e}. Though it is not assumed that the underlying integers are represented with a binary base, the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the base to be binary has some unfortunate consequences. First, decimal numbers like 0.3 cannot be represented exactly. Second, there is a further loss of accuracy during conversion to decimal for output. To compensate for this, if \\spad{d} digits of precision are specified, \\spad{1 + ceiling(log2(10^d))} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand, a significant efficiency loss would be incurred if we chose to use a decimal base when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions, the general approach is to apply identities so that the taylor series can be used, and, so that it will converge within \\spad{O( sqrt \\spad{n} \\spad{)}} steps. For example, using the identity \\spad{exp(x) = exp(x/2)**2}, we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = \\spad{exp(2} \\spad{**} (-sqrt \\spad{s)} / 3) \\spad{**} \\spad{(2} \\spad{**} sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt \\spad{n}} multiplications. Assuming integer multiplication costs \\spad{O( \\spad{n**2} \\spad{)}} the overall running time is \\spad{O( sqrt(n) \\spad{n**2} \\spad{)}.} This approach is the best known approach for precisions up to about 10,000 digits at which point the methods of Brent which are \\spad{O( log(n) \\spad{n**2} \\spad{)}} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage, relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following, \\spad{n} is the number of bits of precision\\br \\spad{*}, \\spad{/}, \\spad{sqrt}, \\spad{pi}, \\spad{exp1}, \\spad{log2}, \\spad{log10}: \\spad{ O( \\spad{n**2} \\spad{)}} \\spad{\\br} \\spad{exp}, \\spad{log}, \\spad{sin}, \\spad{atan}: \\spad{O(sqrt(n) n**2)}\\br The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation, with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation, \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa \\spad{E} exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y.}")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2}, \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, \\spad{n,} \\spad{b)}} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)}, that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, \\spad{n)}} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x.}")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - \\spad{y}} divided by \\spad{y,} when \\spad{y \\spad{\\^=} 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x \\spad{**} \\spad{y}} computes \\spad{exp(y log \\spad{x)}} where \\spad{x \\spad{>=} 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer i."))) │ │ │ -((|arbitraryExponent| . T) (|arbitraryPrecision| . T) (|approximate| . T) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Integer|) (QUOTE (|RealConstant|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|StepThrough|))) (|HasCategory| (|Integer|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| (|Integer|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|Integer|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |Eltable|) (QUOTE (|Integer|)) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|Integer|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Integer|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|KeyedDictionary| |Key| |Entry|) │ │ │ +((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k,} returning the entry stored in \\spad{t} for key \\spad{k.} If \\spad{t} has no such key, \\axiom{search(k,t)} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key, \\axiom{remove!(k,t)} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t.}")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t.}"))) │ │ │ +((|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|Factored| R) │ │ │ -((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others, like addition require somewhat more work, and unless the argument domain provides a factor function, the result may not be completely factored. Each object consists of a unit and a list of factors, where a factor has a member of \\spad{R} (the \"base\"), and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\", \"sqfr\", \"irred\" or \"prime\", which respectively mean that nothing is known about the base, it is square-free, it is irreducible, or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one, and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{u} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{u} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{fn} across the factors of \\indented{1}{\\spadvar{u} and creates a new factored object. Note: this clears} \\indented{1}{the information flags (sets them to \"nil\") because the effect of} \\indented{1}{\\userfun{fn} is clearly not known in general.} \\blankline \\spad{X} m(a:Factored Polynomial Integer):Factored Polynomial Integer \\spad{==} \\spad{a^2} \\spad{X} \\spad{f:=x*y^3-3*x^2*y^2+3*x^3*y-x^4} \\spad{X} map(m,f) \\spad{X} g:=makeFR(z,factorList \\spad{f)} \\spad{X} map(m,g)")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example, when working with factored integers, this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization. \\blankline \\spad{X} \\spad{f:=x*y^3-3*x^2*y^2+3*x^3*y-x^4} \\spad{X} unit \\spad{f} \\spad{X} g:=makeFR(z,factorList \\spad{f)} \\spad{X} unit \\spad{g}")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information flag.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with \\indented{1}{a single factor whose \\spad{base} is asserted to be square-free} \\indented{1}{(flag = \"sqfr\").} \\blankline \\spad{X} a:=sqfrFactor(3,5) \\spad{X} nthFlag(a,1)")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with \\indented{1}{a single factor whose \\spad{base} is asserted to be prime} \\indented{1}{(flag = \"prime\").} \\blankline \\spad{X} a:=primeFactor(3,4) \\spad{X} nthFlag(a,1)")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{u}. \\blankline \\spad{X} a:=factor 9720000 \\spad{X} numberOfFactors a")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\indented{1}{\\spadvar{u}.\\space{2}If \\spadvar{n} is not a valid index for a factor} \\indented{1}{(for example, less than 1 or too big), \"nil\" is returned.} \\blankline \\spad{X} a:=factor 9720000 \\spad{X} nthFlag(a,2)")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\indented{1}{\\spadvar{u}.\\space{2}If \\spadvar{n} is not a valid index for a factor} \\indented{1}{(for example, less than 1 or too big), 1 is returned.\\space{2}If} \\indented{1}{\\spadvar{u} consists only of a unit, the unit is returned.} \\blankline \\spad{X} a:=factor 9720000 \\spad{X} nthFactor(a,2)")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\indented{1}{\\spadvar{u}.\\space{2}If \\spadvar{n} is not a valid index for a factor} \\indented{1}{(for example, less than 1 or too big), 0 is returned.} \\blankline \\spad{X} a:=factor 9720000 \\spad{X} nthExponent(a,2)")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with \\indented{1}{a single factor whose \\spad{base} is asserted to be irreducible} \\indented{1}{(flag = \"irred\").} \\blankline \\spad{X} a:=irreducibleFactor(3,1) \\spad{X} nthFlag(a,1)")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable \\indented{1}{for iteration. That is, it returns a list where each element} \\indented{1}{is a record containing a base and exponent.\\space{2}The original} \\indented{1}{object is the product of all the factors and the unit (which} \\indented{1}{can be extracted by \\axiom{unit(u)}).} \\blankline \\spad{X} \\spad{f:=x*y^3-3*x^2*y^2+3*x^3*y-x^4} \\spad{X} factors \\spad{f} \\spad{X} g:=makeFR(z,factorList \\spad{f)} \\spad{X} factors \\spad{g}")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with \\indented{1}{a single factor with no information about the kind of} \\indented{1}{base (flag = \"nil\").} \\blankline \\spad{X} nilFactor(24,2) \\spad{X} nilFactor(x-y,3)")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for \\indented{1}{use by factoring code).} \\blankline \\spad{X} f:=nilFactor(x-y,3) \\spad{X} factorList \\spad{f}")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for \\indented{1}{use by factoring code).} \\blankline \\spad{X} f:=nilFactor(x-y,3) \\spad{X} g:=factorList \\spad{f} \\spad{X} makeFR(z,g)")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\indented{1}{\\spadvar{u}, or 0 if the factored form consists solely of a unit.} \\blankline \\spad{X} f:=nilFactor(y-x,3) \\spad{X} exponent(f)")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together, yielding an \\indented{1}{\"unfactored\" object. Note: this is purposely not called} \\indented{1}{\\spadfun{coerce} which would cause the interpreter to do this} \\indented{1}{automatically.} \\blankline \\spad{X} f:=nilFactor(y-x,3) \\spad{X} expand(f)"))) │ │ │ -((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE |Eltable|) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|UniqueFactorizationDomain|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|UniqueFactorizationDomain|)))) (|HasCategory| |#1| (QUOTE (|RealConstant|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Eltable|) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|)))) │ │ │ -(|FramedNonAssociativeAlgebra&| S R) │ │ │ -((|constructor| (NIL "FramedNonAssociativeAlgebra(R) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication, this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra, defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra, defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the right trace of the product \\spad{vi*vj}, where \\spad{v1},...,\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by left trace of the product \\spad{vi*vj}, where \\spad{v1},...,\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the right trace of the product \\spad{vi*vj}, where \\spad{v1},...,\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note that the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the left trace of the product \\spad{vi*vj}, where \\spad{v1},...,\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note that the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where \\spad{v1}, ..., \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where \\spad{v1}, ..., \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for \\spad{k} in 1..rank()]} defined by \\spad{vi * \\spad{vj} = \\spad{gammaij1} * \\spad{v1} + \\spad{...} + gammaijn * vn}, where \\spad{v1},...,\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) │ │ │ +(|Field&| S) │ │ │ +((|constructor| (NIL "The category of commutative fields, commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline Axioms\\br \\tab{5}\\spad{a*(b/a) = b}\\br \\tab{5}\\spad{inv(a) = 1/a}")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0}, \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y.} Error: if \\spad{y} is 0."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ -(|FullPartialFractionExpansion| F UP) │ │ │ -((|constructor| (NIL "Full partial fraction expansion of rational functions")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, \\spad{n)}} returns the \\spad{n}-th derivative of \\spad{f.}") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f.}")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, \\spad{n)}} returns the \\spad{n}-th derivative of \\spad{f.}") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f.}")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f.}")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, \\spad{Dj,} Hj]...]]} such that \\spad{f = p(x) + sum_{[j,Dj,Hj] in \\spad{l}} sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + \\spad{x}} returns the sum of \\spad{p} and \\spad{x}"))) │ │ │ NIL │ │ │ +(|BoundIntegerRoots| F UP) │ │ │ +((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p,} and 0 if \\spad{p} has no negative integer roots."))) │ │ │ NIL │ │ │ -(|FunctionSpace&| S R) │ │ │ -((|constructor| (NIL "Category for formal functions A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, \\spad{k)}} returns \\spad{f} viewed as a univariate fraction in \\spad{k.}")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\spad{%.}")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\spad{%.}")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R.}")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 \\spad{...} fm\\^em)} returns \\spad{(f1)\\^e1 \\spad{...} (fm)\\^em} as an element of \\spad{%,} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\spad{%.}")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not, then numer(f) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R.}")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\spad{%.}") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\spad{%.}") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\spad{%.}") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\spad{%.}")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, \\spad{x]}} if \\spad{p = \\spad{n} * \\spad{x}} and \\spad{n \\spad{<>} 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = \\spad{m1} +...+ \\spad{mn}} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * \\spad{...} * \\spad{x} \\spad{(n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, \\spad{s,} \\spad{n,} \\spad{f)}} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, \\spad{s,} \\spad{n,} \\spad{f)}} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,...,am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,...,am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], \\spad{y)}} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, \\spad{s,} \\spad{f,} \\spad{y)}} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f.}") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f.}") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f.}")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, \\spad{x,} \\spad{y,} \\spad{z,} \\spad{t)}} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, \\spad{x,} \\spad{y,} \\spad{z)}} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, \\spad{x,} \\spad{y)}} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, \\spad{x)}} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f.}")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R.} An error occurs if \\spad{f} is not an element of \\spad{R.}")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R.}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|AbelianGroup|))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#2| (QUOTE (|Group|))) (|HasCategory| |#2| (QUOTE (|SemiGroup|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) │ │ │ -(|FunctionFieldCategory&| S F UP UPUP) │ │ │ -((|constructor| (NIL "Function field of a curve This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,...,un of \\indented{1}{an affine non-singular model for the curve.}")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, \\spad{D)}} returns \\spad{[h,d,d',g]} such that \\indented{1}{\\spad{f=h/d},} \\indented{1}{\\spad{h} is integral at all the normal places w.r.t. \\spad{D},} \\indented{1}{\\spad{d' = Dd}, \\spad{g = gcd(d, discriminant())} and \\spad{D}} \\indented{1}{is the derivation to use. \\spad{f} must have at most simple finite} \\indented{1}{poles.}")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the \\indented{1}{hyperelliptic} \\indented{1}{defined by \\spad{y**2 = p(x)}, \"failed\" otherwise.}")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic \\indented{1}{defined by \\spad{y**2 = p(x)}, \"failed\" otherwise.}")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or f(a, \\spad{b)} returns the value of \\spad{f} \\indented{1}{at the point \\spad{(x = a, \\spad{y} = b)}} \\indented{1}{if it is not singular.}")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and \\indented{1}{the common content of the numerator of \\spad{f.}}")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, \\spad{d)}} extends the derivation \\spad{d} from UP to \\$ and \\indented{1}{applies it to \\spad{x.}}")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ \\indented{1}{and returns \\spad{(M,} \\spad{Q)} such that the i^th row of \\spad{M} divided by \\spad{Q} form} \\indented{1}{the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)}} \\indented{1}{where \\spad{(w1,...,wn)} is the integral basis returned} \\indented{1}{by integralBasis().}")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], \\spad{D)}} returns \\indented{1}{\\spad{(A1 w1+...+An wn)/D}} \\indented{1}{where \\spad{(w1,...,wn)} is the integral} \\indented{1}{basis of \\spad{integralBasis()}.}")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], \\spad{D]}} such that \\indented{1}{\\spad{f = \\spad{(A1} \\spad{w1} +...+ An \\spad{wn)} / D}\\space{2}where \\spad{(w1,...,wn)} is the} \\indented{1}{integral basis returned by \\spad{integralBasis()}.}")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\indented{1}{\\spad{(A0 + \\spad{A1} \\spad{y} +...+ A(n-1)*y**(n-1))/D}.}") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\indented{1}{\\spad{(A0 + \\spad{A1} \\spad{y} +...+ A(n-1)*y**(n-1))/D}.}")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], \\spad{D]}} such that \\indented{1}{\\spad{f = \\spad{(A1} + \\spad{A2} \\spad{y} +...+ An y**(n-1)) / D}.}")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such \\indented{1}{that \\spad{M (v1,...,vn) = \\spad{(1,} \\spad{y,} ..., y**(n-1))}} \\indented{1}{where \\spad{(v1,...,vn)} is the local integral basis at infinity} \\indented{1}{returned by \\spad{infIntBasis()}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} inverseIntegralMatrixAtInfinity()$R")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\indented{1}{\\spad{(v1,...,vn) = \\spad{M} \\spad{(1,} \\spad{y,} ..., y**(n-1))}} \\indented{1}{where \\spad{(v1,...,vn)} is the local integral basis at infinity} \\indented{1}{returned by \\spad{infIntBasis()}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} integralMatrixAtInfinity()$R")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\indented{1}{\\spad{M (w1,...,wn) = \\spad{(1,} \\spad{y,} ..., y**(n-1))}} \\indented{1}{where \\spad{(w1,...,wn)} is the integral basis of} \\indented{1}{\\spadfunFrom{integralBasis}{FunctionFieldCategory}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} inverseIntegralMatrix()$R")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\indented{1}{\\spad{(w1,...,wn) = \\spad{M} \\spad{(1,} \\spad{y,} ..., y**(n-1))},} \\indented{1}{where \\spad{(w1,...,wn)} is the integral basis of} \\indented{1}{\\spadfunFrom{integralBasis}{FunctionFieldCategory}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} integralMatrix()$R")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} \\indented{1}{for all i,j such that \\spad{x**i*bj} is locally integral} \\indented{1}{at infinity.}")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\indented{1}{\\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.}")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, \\spad{p)}} tests whether \\spad{f} is locally integral at \\indented{1}{\\spad{p(x) = 0}}") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis \\indented{1}{at infinity} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} integralBasisAtInfinity()$R")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve. \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} integralBasis()$R")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point \\indented{1}{at infinity.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} branchPointAtInfinity?()$R \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 2 * x**2, 4) \\spad{X} branchPointAtInfinity?()$R")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, \\spad{b)}} tests if \\spad{(x=a,y=b)} is on the curve. \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} rationalPoint?(0,0)$R \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 2 * x**2, 4) \\spad{X} \\spad{rationalPoint?(0,0)$R2}")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible? \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 2 * x**2, 4) \\spad{X} \\spad{absolutelyIrreducible?()$R2}")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} genus()$R")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible \\indented{1}{components.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} numberOfComponents()$R"))) │ │ │ +(|RegularSetDecompositionPackage| R E V P TS) │ │ │ +((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu, Wang or Lazard methods). This algorithm is valid for any type of regular set. It does not care about the way a polynomial is added in an regular set, or how two quasi-components are compared (by an inclusion-test), or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(R,E,V,P,TS) and \\axiomType{RSETGCD}(R,E,V,P,TS). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call directly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus, the operations of this package are not documented."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ -(|FramedNonAssociativeAlgebra| R) │ │ │ -((|constructor| (NIL "FramedNonAssociativeAlgebra(R) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication, this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra, defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra, defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the right trace of the product \\spad{vi*vj}, where \\spad{v1},...,\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by left trace of the product \\spad{vi*vj}, where \\spad{v1},...,\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the right trace of the product \\spad{vi*vj}, where \\spad{v1},...,\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note that the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the left trace of the product \\spad{vi*vj}, where \\spad{v1},...,\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note that the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where \\spad{v1}, ..., \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where \\spad{v1}, ..., \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for \\spad{k} in 1..rank()]} defined by \\spad{vi * \\spad{vj} = \\spad{gammaij1} * \\spad{v1} + \\spad{...} + gammaijn * vn}, where \\spad{v1},...,\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) │ │ │ -((|unitsKnown| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ -(|FortranScalarType|) │ │ │ -((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL, INTEGER, COMPLEX, LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the s-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real, complex,double precision, logical, integer, character, REAL, COMPLEX, LOGICAL, INTEGER, CHARACTER, DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\", \"double precision\", \"complex\", \"logical\", \"integer\", \"character\", \"REAL\", \"COMPLEX\", \"LOGICAL\", \"INTEGER\", \"CHARACTER\", \"DOUBLE PRECISION\""))) │ │ │ +(|TriangularMatrixOperations| R |Row| |Col| M) │ │ │ +((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(B) also has entries in \\spad{R,} we return \\spad{d} * inv(B). Thus, it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M,} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = \\spad{d} * inv(B)} has entries in \\spad{R.}")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M,} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = \\spad{d} * inv(B)} has entries in \\spad{R.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FunctionCalled| |f|) │ │ │ -((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) │ │ │ +(|FramedNonAssociativeAlgebra&| S R) │ │ │ +((|constructor| (NIL "FramedNonAssociativeAlgebra(R) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication, this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra, defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra, defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the right trace of the product \\spad{vi*vj}, where \\spad{v1},...,\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by left trace of the product \\spad{vi*vj}, where \\spad{v1},...,\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the right trace of the product \\spad{vi*vj}, where \\spad{v1},...,\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note that the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the left trace of the product \\spad{vi*vj}, where \\spad{v1},...,\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note that the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where \\spad{v1}, ..., \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where \\spad{v1}, ..., \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for \\spad{k} in 1..rank()]} defined by \\spad{vi * \\spad{vj} = \\spad{gammaij1} * \\spad{v1} + \\spad{...} + gammaijn * vn}, where \\spad{v1},...,\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) │ │ │ NIL │ │ │ +((|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ +(|FloatingRealPackage| |Par|) │ │ │ +((|constructor| (NIL "This is a package for the approximation of real solutions for systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv,} with precision eps. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv.}")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in eq, with precision eps.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p,} with precision eps.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp,} with precision eps.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp,} with precision eps."))) │ │ │ NIL │ │ │ -(|GuessOption|) │ │ │ -((|constructor| (NIL "GuessOption is a domain whose elements are various options used by Guess.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option(l, option)} returns which options are given.")) (|displayKind| (($ (|Symbol|)) "\\spad{displayKind(d)} specifies kind of the result: generating function, recurrence or equation. This option should not be set by the user, but rather by the HP-specification.")) (|indexName| (($ (|Symbol|)) "\\spad{indexName(d)} specifies the index variable used for the formulas. This option is expressed in the form \\spad{indexName \\spad{==} \\spad{d}.}")) (|variableName| (($ (|Symbol|)) "\\spad{variableName(d)} specifies the variable used in by the algebraic differential equation. This option is expressed in the form \\spad{variableName \\spad{==} \\spad{d}.}")) (|functionNames| (($ (|List| (|Symbol|))) "\\spad{functionNames(d)} specifies the names for the function in algebraic dependence. This option is expressed in the form \\spad{functionNames \\spad{==} \\spad{d}.}")) (|functionName| (($ (|Symbol|)) "\\spad{functionName(d)} specifies the name of the function given by the algebraic differential equation or recurrence. This option is expressed in the form \\spad{functionName \\spad{==} \\spad{d}.}")) (|debug| (($ (|Boolean|)) "\\spad{debug(d)} specifies whether we want additional output on the progress. This option is expressed in the form \\spad{debug \\spad{==} \\spad{d}.}")) (|one| (($ (|Boolean|)) "\\spad{one(d)} specifies whether we are happy with one solution. This option is expressed in the form \\spad{one \\spad{==} \\spad{d}.}")) (|checkExtraValues| (($ (|Boolean|)) "\\spad{checkExtraValues(d)} specifies whether we want to check the solution beyond the order given by the degree bounds. This option is expressed in the form \\spad{checkExtraValues \\spad{==} \\spad{d}}")) (|check| (($ (|Union| "skip" "MonteCarlo" "deterministic")) "\\spad{check(d)} specifies how we want to check the solution. If the value is \"skip\", we return the solutions found by the interpolation routine without checking. If the value is \"MonteCarlo\", we use a probabilistic check. This option is expressed in the form \\spad{check \\spad{==} \\spad{d}}")) (|safety| (($ (|NonNegativeInteger|)) "\\spad{safety(d)} specifies the number of values reserved for testing any solutions found. This option is expressed in the form \\spad{safety \\spad{==} \\spad{d}.}")) (|allDegrees| (($ (|Boolean|)) "\\spad{allDegrees(d)} specifies whether all possibilities of the degree vector - taking into account maxDegree - should be tried. This is mainly interesting for rational interpolation. This option is expressed in the form \\spad{allDegrees \\spad{==} \\spad{d}.}")) (|maxMixedDegree| (($ (|NonNegativeInteger|)) "\\spad{maxMixedDegree(d)} specifies the maximum q-degree of the coefficient polynomials in a recurrence with polynomial coefficients, in the case of mixed shifts. Although slightly inconsistent, maxMixedDegree(0) specifies that no mixed shifts are allowed. This option is expressed in the form \\spad{maxMixedDegree \\spad{==} \\spad{d}.}")) (|maxDegree| (($ (|Union| (|NonNegativeInteger|) "arbitrary")) "\\spad{maxDegree(d)} specifies the maximum degree of the coefficient polynomials in an algebraic differential equation or a recursion with polynomial coefficients. For rational functions with an exponential term, \\spad{maxDegree} bounds the degree of the denominator polynomial. This option is expressed in the form \\spad{maxDegree \\spad{==} \\spad{d}.}")) (|maxLevel| (($ (|Union| (|NonNegativeInteger|) "arbitrary")) "\\spad{maxLevel(d)} specifies the maximum number of recursion levels operators guessProduct and guessSum will be applied. This option is expressed in the form spad{maxLevel \\spad{==} \\spad{d}.}")) (|Somos| (($ (|Union| (|PositiveInteger|) (|Boolean|))) "\\spad{Somos(d)} specifies whether we want that the total degree of the differential operators is constant, and equal to \\spad{d,} or maxDerivative if true. If true, maxDerivative must be set, too.")) (|homogeneous| (($ (|Union| (|PositiveInteger|) (|Boolean|))) "\\spad{homogeneous(d)} specifies whether we allow only homogeneous algebraic differential equations. This option is expressed in the form \\spad{homogeneous \\spad{==} \\spad{d}.} If true, then maxPower must be set, too, and ADEs with constant total degree are allowed. If a PositiveInteger is given, only ADE's with this total degree are allowed.")) (|maxPower| (($ (|Union| (|PositiveInteger|) "arbitrary")) "\\spad{maxPower(d)} specifies the maximum degree in an algebraic differential equation. For example, the degree of \\spad{(f'')^3} \\spad{f'} is 4. maxPower(-1) specifies that the maximum exponent can be arbitrary. This option is expressed in the form \\spad{maxPower \\spad{==} \\spad{d}.}")) (|maxSubst| (($ (|Union| (|PositiveInteger|) "arbitrary")) "\\spad{maxSubst(d)} specifies the maximum degree of the monomial substituted into the function we are looking for. That is, if \\spad{maxSubst \\spad{==} \\spad{d},} we look for polynomials such that $p(f(x), f(x^2), ..., f(x^d))=0$. equation. This option is expressed in the form \\spad{maxSubst \\spad{==} \\spad{d}.}")) (|maxShift| (($ (|Union| (|NonNegativeInteger|) "arbitrary")) "\\spad{maxShift(d)} specifies the maximum shift in a recurrence equation. This option is expressed in the form \\spad{maxShift \\spad{==} \\spad{d}.}")) (|maxDerivative| (($ (|Union| (|NonNegativeInteger|) "arbitrary")) "\\spad{maxDerivative(d)} specifies the maximum derivative in an algebraic differential equation. This option is expressed in the form \\spad{maxDerivative \\spad{==} \\spad{d}.}"))) │ │ │ NIL │ │ │ +(|UnivariatePolynomialDivisionPackage| R UP) │ │ │ +((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) │ │ │ NIL │ │ │ -(|GuessOptionFunctions0|) │ │ │ -((|constructor| (NIL "\\spad{GuessOptionFunctions0} provides operations that extract the values of options for Guess.")) (|checkOptions| (((|Void|) (|List| (|GuessOption|))) "\\spad{checkOptions checks} whether the given options are consistent, and yields an error otherwise")) (|debug| (((|Boolean|) (|List| (|GuessOption|))) "\\spad{debug returns} whether we want additional output on the progress, default being \\spad{false}")) (|displayAsGF| (((|Boolean|) (|List| (|GuessOption|))) "\\spad{displayAsGF specifies} whether the result is a generating function or a recurrence. This option should not be set by the user, but rather by the HP-specification, therefore, there is no default.")) (|indexName| (((|Symbol|) (|List| (|GuessOption|))) "\\spad{indexName returns} the name of the index variable used for the formulas, default being \\spad{n}")) (|variableName| (((|Symbol|) (|List| (|GuessOption|))) "\\spad{variableName returns} the name of the variable used in by the algebraic differential equation, default being \\spad{x}")) (|functionName| (((|Symbol|) (|List| (|GuessOption|))) "\\spad{functionName returns} the name of the function given by the algebraic differential equation, default being \\spad{f}")) (|one| (((|Boolean|) (|List| (|GuessOption|))) "\\spad{one returns} whether we need only one solution, default being true.")) (|checkExtraValues| (((|Boolean|) (|List| (|GuessOption|))) "\\spad{checkExtraValues(d)} specifies whether we want to check the solution beyond the order given by the degree bounds. The default is true.")) (|check| (((|Union| "skip" "MonteCarlo" "deterministic") (|List| (|GuessOption|))) "\\spad{check(d)} specifies how we want to check the solution. If the value is \"skip\", we return the solutions found by the interpolation routine without checking. If the value is \"MonteCarlo\", we use a probabilistic check. The default is \"deterministic\".")) (|safety| (((|NonNegativeInteger|) (|List| (|GuessOption|))) "\\spad{safety returns} the specified safety or 1 as default.")) (|allDegrees| (((|Boolean|) (|List| (|GuessOption|))) "\\spad{allDegrees returns} whether all possibilities of the degree vector should be tried, the default being false.")) (|maxMixedDegree| (((|NonNegativeInteger|) (|List| (|GuessOption|))) "\\spad{maxMixedDegree returns} the specified maxMixedDegree.")) (|maxDegree| (((|Union| (|NonNegativeInteger|) "arbitrary") (|List| (|GuessOption|))) "\\spad{maxDegree returns} the specified maxDegree.")) (|maxLevel| (((|Union| (|NonNegativeInteger|) "arbitrary") (|List| (|GuessOption|))) "\\spad{maxLevel returns} the specified maxLevel.")) (|Somos| (((|Union| (|PositiveInteger|) (|Boolean|)) (|List| (|GuessOption|))) "\\spad{Somos returns} whether we allow only Somos-like operators, default being \\spad{false}")) (|homogeneous| (((|Union| (|PositiveInteger|) (|Boolean|)) (|List| (|GuessOption|))) "\\spad{homogeneous returns} whether we allow only homogeneous algebraic differential equations, default being \\spad{false}")) (|maxPower| (((|Union| (|PositiveInteger|) "arbitrary") (|List| (|GuessOption|))) "\\spad{maxPower returns} the specified maxPower.")) (|maxSubst| (((|Union| (|PositiveInteger|) "arbitrary") (|List| (|GuessOption|))) "\\spad{maxSubst returns} the specified maxSubst.")) (|maxShift| (((|Union| (|NonNegativeInteger|) "arbitrary") (|List| (|GuessOption|))) "\\spad{maxShift returns} the specified maxShift.")) (|maxDerivative| (((|Union| (|NonNegativeInteger|) "arbitrary") (|List| (|GuessOption|))) "\\spad{maxDerivative returns} the specified maxDerivative."))) │ │ │ NIL │ │ │ +(|RealClosedField&| S) │ │ │ +((|constructor| (NIL "\\axiomType{RealClosedField} provides common access functions for all real closed fields. provides computations with generic real roots of polynomials")) (|approximate| (((|Fraction| (|Integer|)) $ $) "that has precision \\axiom{p} \\axiom{approximate(n,p)} gives an approximation of \\axiom{n}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(x,name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(x,name)} changes the way \\axiom{x} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(x)} is \\axiom{x \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(x)} is \\axiom{x \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(x)} is \\axiom{x \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(x,n)} is \\axiom{x \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,n)} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,n,name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(x)} is the expression of \\axiom{x} in terms of \\axiom{SparseUnivariatePolynomial($)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(x)} is the defining polynomial for the main algebraic quantity of \\axiom{x}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(x)} is the main algebraic quantity name of \\axiom{x}"))) │ │ │ NIL │ │ │ -(|Pi|) │ │ │ -((|constructor| (NIL "Symbolic fractions in \\%pi with integer coefficients; The point for using \\spad{Pi} as the default domain for those fractions is that \\spad{Pi} is coercible to the float types, and not Expression.")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%pi."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|GeneralDistributedMultivariatePolynomial| |vl| R E) │ │ │ -((|constructor| (NIL "This type supports distributed multivariate polynomials whose variables are from a user specified list of symbols. The coefficient ring may be non commutative, but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct}, \\spadtype{HomogeneousDirectProduct}, \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) │ │ │ -(((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#2| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|))) (OR (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|InfinitlyClosePointCategory| K |symb| |PolyRing| E |ProjPt| PCS |Plc| |Divisor| BLMET) │ │ │ -((|constructor| (NIL "This category is part of the PAFF package")) (|excpDivV| ((DIVISOR $) "\\spad{excpDivV returns} the exceptional divisor of the infinitly close point.")) (|chartV| ((|#9| $) "\\spad{chartV(p)} is the chart of the infinitly close point. The first integer correspond to variable defining the exceptional line, the last one the affine neighboorhood and the second one is the remaining integer. For example [1,2,3] means that Z=1, \\spad{X=X} and Y=XY. [2,3,1] means that X=1, \\spad{Y=Y} and Z=YZ.")) (|multV| (((|NonNegativeInteger|) $) "\\spad{multV(p)} returns the multiplicity of the infinitly close point.")) (|localPointV| (((|AffinePlane| |#1|) $) "\\spad{localPointV(p)} returns the coordinates of the local infinitly close point")) (|curveV| (((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) $) "\\spad{curveV(p)} returns the defining polynomial of the strict transform on which lies the corresponding infinitly close point.")) (|pointV| ((|#5| $) "\\spad{pointV(p)} returns the infinitly close point.")) (|create| (($ |#5| (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|AffinePlane| |#1|) (|NonNegativeInteger|) |#9| (|NonNegativeInteger|) DIVISOR |#1| (|Symbol|)) "\\spad{create(p,b,a,n1,c,n2,d,k,s)} an infinitly close point"))) │ │ │ +(|EuclideanModularRing| S R |Mod| |reduction| |merge| |exactQuo|) │ │ │ +((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing}, \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,r)} or \\spad{x.r} is not documented")) (|inv| (($ $) "\\spad{inv(x)} is not documented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} is not documented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} is not documented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} is not documented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} is not documented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} is not documented"))) │ │ │ +((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|GradedModule| R E) │ │ │ +((|constructor| (NIL "GradedModule(R,E) denotes ``E-graded R-module'', that is, collection of R-modules indexed by an abelian monoid E. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with degree \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h.} Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h.} Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g.}")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "\\spad{0} denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g.} The set of all elements of a given degree form an R-module."))) │ │ │ NIL │ │ │ -(|FunctionFieldCategory| F UP UPUP) │ │ │ -((|constructor| (NIL "Function field of a curve This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,...,un of \\indented{1}{an affine non-singular model for the curve.}")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, \\spad{D)}} returns \\spad{[h,d,d',g]} such that \\indented{1}{\\spad{f=h/d},} \\indented{1}{\\spad{h} is integral at all the normal places w.r.t. \\spad{D},} \\indented{1}{\\spad{d' = Dd}, \\spad{g = gcd(d, discriminant())} and \\spad{D}} \\indented{1}{is the derivation to use. \\spad{f} must have at most simple finite} \\indented{1}{poles.}")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the \\indented{1}{hyperelliptic} \\indented{1}{defined by \\spad{y**2 = p(x)}, \"failed\" otherwise.}")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic \\indented{1}{defined by \\spad{y**2 = p(x)}, \"failed\" otherwise.}")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or f(a, \\spad{b)} returns the value of \\spad{f} \\indented{1}{at the point \\spad{(x = a, \\spad{y} = b)}} \\indented{1}{if it is not singular.}")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and \\indented{1}{the common content of the numerator of \\spad{f.}}")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, \\spad{d)}} extends the derivation \\spad{d} from UP to \\$ and \\indented{1}{applies it to \\spad{x.}}")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ \\indented{1}{and returns \\spad{(M,} \\spad{Q)} such that the i^th row of \\spad{M} divided by \\spad{Q} form} \\indented{1}{the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)}} \\indented{1}{where \\spad{(w1,...,wn)} is the integral basis returned} \\indented{1}{by integralBasis().}")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], \\spad{D)}} returns \\indented{1}{\\spad{(A1 w1+...+An wn)/D}} \\indented{1}{where \\spad{(w1,...,wn)} is the integral} \\indented{1}{basis of \\spad{integralBasis()}.}")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], \\spad{D]}} such that \\indented{1}{\\spad{f = \\spad{(A1} \\spad{w1} +...+ An \\spad{wn)} / D}\\space{2}where \\spad{(w1,...,wn)} is the} \\indented{1}{integral basis returned by \\spad{integralBasis()}.}")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\indented{1}{\\spad{(A0 + \\spad{A1} \\spad{y} +...+ A(n-1)*y**(n-1))/D}.}") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\indented{1}{\\spad{(A0 + \\spad{A1} \\spad{y} +...+ A(n-1)*y**(n-1))/D}.}")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], \\spad{D]}} such that \\indented{1}{\\spad{f = \\spad{(A1} + \\spad{A2} \\spad{y} +...+ An y**(n-1)) / D}.}")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such \\indented{1}{that \\spad{M (v1,...,vn) = \\spad{(1,} \\spad{y,} ..., y**(n-1))}} \\indented{1}{where \\spad{(v1,...,vn)} is the local integral basis at infinity} \\indented{1}{returned by \\spad{infIntBasis()}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} inverseIntegralMatrixAtInfinity()$R")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\indented{1}{\\spad{(v1,...,vn) = \\spad{M} \\spad{(1,} \\spad{y,} ..., y**(n-1))}} \\indented{1}{where \\spad{(v1,...,vn)} is the local integral basis at infinity} \\indented{1}{returned by \\spad{infIntBasis()}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} integralMatrixAtInfinity()$R")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\indented{1}{\\spad{M (w1,...,wn) = \\spad{(1,} \\spad{y,} ..., y**(n-1))}} \\indented{1}{where \\spad{(w1,...,wn)} is the integral basis of} \\indented{1}{\\spadfunFrom{integralBasis}{FunctionFieldCategory}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} inverseIntegralMatrix()$R")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\indented{1}{\\spad{(w1,...,wn) = \\spad{M} \\spad{(1,} \\spad{y,} ..., y**(n-1))},} \\indented{1}{where \\spad{(w1,...,wn)} is the integral basis of} \\indented{1}{\\spadfunFrom{integralBasis}{FunctionFieldCategory}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} integralMatrix()$R")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} \\indented{1}{for all i,j such that \\spad{x**i*bj} is locally integral} \\indented{1}{at infinity.}")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\indented{1}{\\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.}")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, \\spad{p)}} tests whether \\spad{f} is locally integral at \\indented{1}{\\spad{p(x) = 0}}") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis \\indented{1}{at infinity} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} integralBasisAtInfinity()$R")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve. \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} integralBasis()$R")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point \\indented{1}{at infinity.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} branchPointAtInfinity?()$R \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 2 * x**2, 4) \\spad{X} branchPointAtInfinity?()$R")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, \\spad{b)}} tests if \\spad{(x=a,y=b)} is on the curve. \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} rationalPoint?(0,0)$R \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 2 * x**2, 4) \\spad{X} \\spad{rationalPoint?(0,0)$R2}")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible? \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 2 * x**2, 4) \\spad{X} \\spad{absolutelyIrreducible?()$R2}")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} genus()$R")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible \\indented{1}{components.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(x, Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(y, Fraction \\spad{P0)} \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT, \\spad{P0,} \\spad{P1,} 1 - x**20, 20) \\spad{X} numberOfComponents()$R"))) │ │ │ -((|noZeroDivisors| |has| (|Fraction| |#2|) (|Field|)) (|canonicalUnitNormal| |has| (|Fraction| |#2|) (|Field|)) (|canonicalsClosed| |has| (|Fraction| |#2|) (|Field|)) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|PolynomialIdeals| F |Expon| |VarSet| |DPoly|) │ │ │ -((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations, including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in polyList.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f.}")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal I.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials polyList.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal I.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal I. in the ring \\spad{F[lvar]}, where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal I, in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by generalPosition from PolynomialIdeals and performs the inverse transformation, returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = I.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for I.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f,} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J,} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals LI.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J.}")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional, all its associated primes are maximal, in the ring \\spad{F[lvar]}, where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional, all its associated primes are maximal, in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal I.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J.}")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal I.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal, contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J.}")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal I.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J.}"))) │ │ │ +(|U16Matrix|) │ │ │ +((|constructor| (NIL "This is a low-level domain which implements matrices (two dimensional arrays) of 16-bit integers. Indexing is 0 based, there is no bound checking (unless provided by lower level).")) (|qnew| (($ (|Integer|) (|Integer|)) "\\spad{qnew(n, \\spad{m)}} creates a new \\spad{n} by \\spad{m} matrix of zeros. \\blankline \\spad{X} qnew(3,4)$U16Matrix()"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|Integer|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|Integer|) (QUOTE (|IntegralDomain|))) (|HasAttribute| (|Integer|) (QUOTE (|commutative| "*"))) (|HasCategory| (|Integer|) (QUOTE (|CommutativeRing|))) (|HasCategory| (|Integer|) (QUOTE (|Field|)))) │ │ │ +(|ThreeDimensionalMatrix| R) │ │ │ +((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-D matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R)} to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or x.i.j.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-D matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices, term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) │ │ │ NIL │ │ │ -((|HasCategory| |#3| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|))))) │ │ │ -(|InputFormFunctions1| R) │ │ │ -((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter, and transforms the result into an object of type \\spad{R.}")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to f$R."))) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (QUOTE (|Ring|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ +(|RationalFunctionSum| R) │ │ │ +((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), \\spad{n} = a..b)} returns \\spad{f(a) + f(a+1) + \\spad{...} f(b)}. \\blankline \\spad{X} sum(i::Fraction(Polynomial(Integer)),i=1..n)") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), \\spad{n} = a..b)} returns \\spad{f(a) + f(a+1) + \\spad{...} f(b)}. \\blankline \\spad{X} sum(i,i=1..n)") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), \\spad{n)}} returns \\spad{A} which \\indented{1}{is the indefinite sum of \\spad{a} with respect to} \\indented{1}{upward difference on \\spad{n}, \\spad{A(n+1) - A(n) = a(n)}.} \\blankline \\spad{X} sum(i::Fraction(Polynomial(Integer)),i::Symbol)") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), \\spad{n)}} returns \\spad{A} which \\indented{1}{is the indefinite sum of \\spad{a} with respect to} \\indented{1}{upward difference on \\spad{n}, \\spad{A(n+1) - A(n) = a(n)}.} \\blankline \\spad{X} sum(i::Polynomial(Integer),variable(i=1..n))"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InputForm|) │ │ │ -((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) \\spad{->} \\spad{?}.} returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter, or if the ti's are not valid types, or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t,} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parse| (($ (|String|)) "\\spad{parse(s)} is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f.} Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code, this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a \\spad{**} \\spad{b}} returns the input form corresponding to \\spad{a \\spad{**} \\spad{b}.}") (($ $ (|NonNegativeInteger|)) "\\spad{a \\spad{**} \\spad{b}} returns the input form corresponding to \\spad{a \\spad{**} \\spad{b}.}")) (/ (($ $ $) "\\spad{a / \\spad{b}} returns the input form corresponding to \\spad{a / \\spad{b}.}")) (* (($ $ $) "\\spad{a * \\spad{b}} returns the input form corresponding to \\spad{a * \\spad{b}.}")) (+ (($ $ $) "\\spad{a + \\spad{b}} returns the input form corresponding to \\spad{a + \\spad{b}.}")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) \\spad{+->} code} if \\spad{n > 1}, or to \\spad{x1 \\spad{+->} code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], \\spad{f)}} returns the input form corresponding to \\spad{f(x1,...,xn) \\spad{==} code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form \\indented{1}{corresponding \\spad{to\\space{2}\\spad{a1} \\spad{op} \\spad{a2} \\spad{op} \\spad{...} \\spad{op} an}.} \\blankline \\spad{X} a:=[1,2,3]::List(InputForm) \\spad{X} binary(_+::InputForm,a)")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) │ │ │ +(|InnerMultFact| OV E R P) │ │ │ +((|constructor| (NIL "This is an inner package for factoring multivariate polynomials over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer ufact. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer ufact."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|AnnaNumericalIntegrationPackage|) │ │ │ -((|constructor| (NIL "\\axiomType{AnnaNumericalIntegrationPackage} is a \\axiom{package} of functions for the \\axiom{category} \\axiomType{NumericalIntegrationCategory} with \\axiom{measure}, and \\axiom{integrate}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{prob}. \\blankline It calls each \\axiom{domain} listed in \\axiom{R} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{prob}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, \\spad{x} = a..b, numerical)} is a top level ANNA function to integrate an expression, {\\tt exp}, over a given range, {\\tt a} to {\\tt \\spad{b}.} \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\tt numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, \\spad{x} = a..b, \"numerical\")} is a top level ANNA function to integrate an expression, {\\tt exp}, over a given range, {\\tt a} to {\\tt \\spad{b}.} \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\tt \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression, {\\tt exp}, over a given set of ranges to the required absolute and relative accuracy, using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression, {\\tt exp}, over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression, {\\tt exp}, over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0, a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression, {\\tt exp}, over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression, {\\tt exp}, over a given range {\\tt a} to {\\tt \\spad{b}.} \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression, {\\tt exp}, over a given range {\\tt a} to {\\tt \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0, a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression, {\\tt exp}, over a given range {\\tt a} to {\\tt \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression, {\\tt exp}, over a given range {\\tt a} to {\\tt \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) │ │ │ -NIL │ │ │ +(|NonNegativeInteger|) │ │ │ +((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non negative integers.")) (|qcoerce| (($ (|Integer|)) "\\spad{qcoerce(n)} coerces \\spad{n} to \\spad{\\%} trusting that \\spad{n} is nonnegative")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a, i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b,} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a, \\spad{b)}} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a, \\spad{b)}} computes the greatest common divisor of two \\indented{1}{non negative integers \\spad{a} and \\spad{b.}} \\blankline \\spad{X} gcd(2415,945) \\spad{X} gcd(945,2415) \\spad{X} gcd(2415,0) \\spad{X} gcd(0,945) \\spad{X} gcd(15,15) \\spad{X} gcd(0,0)")) (|rem| (($ $ $) "\\spad{a rem \\spad{b}} returns the remainder of \\spad{a} and \\spad{b.}")) (|quo| (($ $ $) "\\spad{a quo \\spad{b}} returns the quotient of \\spad{a} and \\spad{b,} forgetting the remainder."))) │ │ │ NIL │ │ │ -(|InternalPrintPackage|) │ │ │ -((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(s)} prints \\axiom{s} at the current position of the cursor."))) │ │ │ NIL │ │ │ +(|RealZeroPackage| |Pol|) │ │ │ +((|constructor| (NIL "This package provides functions for finding the real zeros of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals isolist.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval int.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of pol; the operation returns an isolating interval which is contained within range, or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record int.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial pol.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial pol."))) │ │ │ NIL │ │ │ -(|FunctionSpace| R) │ │ │ -((|constructor| (NIL "Category for formal functions A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, \\spad{k)}} returns \\spad{f} viewed as a univariate fraction in \\spad{k.}")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\spad{%.}")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\spad{%.}")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R.}")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 \\spad{...} fm\\^em)} returns \\spad{(f1)\\^e1 \\spad{...} (fm)\\^em} as an element of \\spad{%,} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\spad{%.}")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not, then numer(f) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R.}")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\spad{%.}") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\spad{%.}") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\spad{%.}") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\spad{%.}")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, \\spad{x]}} if \\spad{p = \\spad{n} * \\spad{x}} and \\spad{n \\spad{<>} 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = \\spad{m1} +...+ \\spad{mn}} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * \\spad{...} * \\spad{x} \\spad{(n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, \\spad{s,} \\spad{n,} \\spad{f)}} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, \\spad{s,} \\spad{n,} \\spad{f)}} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,...,am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,...,am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], \\spad{y)}} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, \\spad{s,} \\spad{f,} \\spad{y)}} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f.}") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f.}") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f.}")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, \\spad{x,} \\spad{y,} \\spad{z,} \\spad{t)}} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, \\spad{x,} \\spad{y,} \\spad{z)}} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, \\spad{x,} \\spad{y)}} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, \\spad{x)}} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f.}")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R.} An error occurs if \\spad{f} is not an element of \\spad{R.}")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R.}"))) │ │ │ -((|unitsKnown| OR (|has| |#1| (|Ring|)) (|has| |#1| (|Group|))) (|leftUnitary| |has| |#1| (|CommutativeRing|)) (|rightUnitary| |has| |#1| (|CommutativeRing|)) ((|commutative| "*") |has| |#1| (|IntegralDomain|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|IntegralDomain|)) (|canonicalsClosed| |has| |#1| (|IntegralDomain|)) (|nil| . T)) │ │ │ NIL │ │ │ -(|IntegrationResult| F) │ │ │ -((|constructor| (NIL "The result of a transcendental integration. If a function \\spad{f} has an elementary integral \\spad{g,} then \\spad{g} can be written in the form \\spad{g = \\spad{h} + \\spad{c1} log(u1) + \\spad{c2} log(u2) + \\spad{...} + \\spad{cn} log(un)} where \\spad{h,} which is in the same field than \\spad{f,} is called the rational part of the integral, and \\spad{c1 log(u1) + \\spad{...} \\spad{cn} log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form, by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r,} a logarithmic part \\spad{l,} and a non-elementary part ne."))) │ │ │ -((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|))))) │ │ │ -(|Kernel| S) │ │ │ -((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S.}")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), \\spad{s)}} tests if the name of op is \\spad{s.}") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), \\spad{f)}} tests if op = \\spad{f.}")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol, and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], \\spad{m)}} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m.} Error: if \\spad{op} is k-ary for some \\spad{k} not equal to \\spad{m.}")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k.}")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,...,an))} returns the name of op."))) │ │ │ +(|SimpleAlgebraicExtension| R UP M) │ │ │ +((|constructor| (NIL "Algebraic extension of a ring by a single polynomial. Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain, \\spad{R,} is the underlying ring, the second argument is a domain of univariate polynomials over \\spad{K,} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R.} The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) │ │ │ +((|noZeroDivisors| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))))) │ │ │ +(|FunctionSpaceAttachPredicates| R F D) │ │ │ +((|constructor| (NIL "Attaching predicates to symbols for pattern matching.")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, \\spad{f2,} ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and \\spad{...} and \\spad{fn} to \\spad{x.} Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x;} error if \\spad{x} is not a symbol."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) │ │ │ -(|Library|) │ │ │ -((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|close!| (($ $) "\\spad{close!(f)} returns the library \\spad{f} closed to input and output.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k \\spad{:=} \\spad{v}} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,k)} or lib.k extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) │ │ │ -((|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|String|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Any|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Any|) (LIST (QUOTE |Evalable|) (QUOTE (|Any|)))) (|HasCategory| (|Any|) (QUOTE (|SetCategory|)))) (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (QUOTE (|String|))) (LIST (QUOTE |:|) (QUOTE |entry|) (QUOTE (|Any|)))))) (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|)))) (OR (|HasCategory| (|Any|) (QUOTE (|SetCategory|))) (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|))))) │ │ │ -(|ListMultiDictionary| S) │ │ │ -((|constructor| (NIL "The \\spadtype{ListMultiDictionary} domain implements a dictionary with duplicates allowed. The representation is a list with duplicates represented explicitly. Hence most operations will be relatively inefficient when the number of entries in the dictionary becomes large. If the objects in the dictionary belong to an ordered set, the entries are maintained in ascending order.")) (|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x's} with \\spad{y's} in dictionary \\spad{d.}")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) │ │ │ -(|LinearOrdinaryDifferentialOperator| A |diff|) │ │ │ -((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition:\\br \\spad{(L1 * L2).(f) = \\spad{L1} \\spad{L2} \\spad{f}}"))) │ │ │ -((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ -(|LinearOrdinaryDifferentialOperatorsOps| A L) │ │ │ -((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) │ │ │ NIL │ │ │ +(|None|) │ │ │ +((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (for example, the interpreter and some of the internal \\spadtype{Expression} code)."))) │ │ │ NIL │ │ │ -(|Matrix| R) │ │ │ -((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m.} If the matrix is not invertible, \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasAttribute| |#1| (QUOTE (|commutative| "*"))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ -(|MakeFloatCompiledFunction| S) │ │ │ -((|constructor| (NIL "Tools for making compiled functions from top-level expressions MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the Axiom compiler and interpreter, thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, \\spad{x,} \\spad{y)}} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) \\spad{->} \\axiomType{DoubleFloat}} defined by \\spad{f(x, \\spad{y)} \\spad{==} expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, \\spad{x)}} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} \\spad{->} \\axiomType{DoubleFloat}} defined by \\spad{f(x) \\spad{==} expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) │ │ │ NIL │ │ │ +(|PolynomialSolveByFormulas| UP F) │ │ │ +((|constructor| (NIL "This package factors the formulas out of the general solve code, allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) │ │ │ NIL │ │ │ -(|Multiset| S) │ │ │ -((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} \\indented{1}{copies of elements \\spad{x} such that \\spad{p(x)} is} \\indented{1}{\\spadfun{true} if \\spad{number} is positive, all of them if} \\indented{1}{\\spad{number} equals zero, and all but at most \\spad{-number} if} \\indented{1}{\\spad{number} is negative.} \\blankline \\spad{X} f(x) \\spad{==} \\spad{x} < 4 \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} remove!(f,s,2) \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} remove!(f,s,0) \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} remove!(f,s,-2)") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} \\indented{1}{copies of element \\spad{x} if \\spad{number} is positive, all} \\indented{1}{of them if \\spad{number} equals zero, and all but at most} \\indented{1}{\\spad{-number} if \\spad{number} is negative.} \\blankline \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} remove!(3,s,2) \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} remove!(3,s,0) \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} remove!(3,s,-2)")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of \\indented{1}{elements \\spad{x} such that \\spad{p(x)} is \\spadfun{true}} \\indented{1}{if \\spad{number} is positive, all of them if} \\indented{1}{\\spad{number} equals zero, and all but at most \\spad{-number} if} \\indented{1}{\\spad{number} is negative.} \\blankline \\spad{X} f(x) \\spad{==} \\spad{x} < 4 \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} remove(f,s,2) \\spad{X} remove(f,s,0) \\spad{X} remove(f,s,-2)") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of \\indented{1}{element \\spad{x} if \\spad{number} is positive, all of them if} \\indented{1}{\\spad{number} equals zero, and all but at most \\spad{-number} if} \\indented{1}{\\spad{number} is negative.} \\blankline \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} remove(3,s,2) \\spad{X} remove(3,s,0) \\spad{X} remove(3,s,-2)")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} \\indented{1}{without their multiplicity. See also \\spadfun{parts}.} \\blankline \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] \\spad{X} members(s)")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}. \\blankline \\spad{X} \\spad{s} \\spad{:=} multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s.} \\blankline \\spad{X} multiset(3)") (($) "\\spad{multiset()}$D creates an empty multiset of domain \\spad{D.} \\blankline \\spad{X} m:=multiset()@Multiset(Integer)"))) │ │ │ -((|finiteAggregate| . T) (|partiallyOrderedSet| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ -(|NagPolynomialRootsPackage|) │ │ │ -((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation, using a variant of Laguerre's Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation, using a variant of Laguerre's Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) │ │ │ NIL │ │ │ +(|ExpertSystemToolsPackage1| R1) │ │ │ +((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) │ │ │ NIL │ │ │ -(|NagRootFindingPackage|) │ │ │ -((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.)")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation, extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) │ │ │ NIL │ │ │ +(|Permanent| |n| R) │ │ │ +((|constructor| (NIL "Permanent implements the functions permanent, the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x.} The permanent is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the determinant. The formula used is by H.J. Ryser, improved by [Nijenhuis and Wilf, \\spad{Ch.} 19]. Note that permanent(x) choose one of three algorithms, depending on the underlying ring \\spad{R} and on \\spad{n,} the number of rows (and columns) of x:\\br if 2 has an inverse in \\spad{R} we can use the algorithm of [Nijenhuis and Wilf, ch.19,p.158]; if 2 has no inverse, some modifications are necessary:\\br if \\spad{n} > 6 and \\spad{R} is an integral domain with characteristic different from 2 (the algorithm works if and only 2 is not a zero-divisor of \\spad{R} and characteristic()$R \\spad{^=} 2, but how to check that for any given \\spad{R} \\spad{?),} the local function \\spad{permanent2} is called;\\br else, the local function \\spad{permanent3} is called (works for all commutative rings \\spad{R).}"))) │ │ │ NIL │ │ │ -(|ThreeDimensionalMatrix| R) │ │ │ -((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-D matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R)} to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or x.i.j.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-D matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices, term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (QUOTE (|Ring|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ -(|NagSeriesSummationPackage|) │ │ │ -((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values, and applies it to calculate convolutions and correlations.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences, each containing \\spad{n} data values, and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates, each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences, each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences, each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences, each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n.} No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) │ │ │ +(|OrderlyDifferentialVariable| S) │ │ │ +((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v,} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v.} This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order}, and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(u), \\spadfun{variable}(u))."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InnerSparseUnivariatePowerSeries| |Coef|) │ │ │ -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain used for creating sparse Taylor and Laurent series.")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f.} For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r}, where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1.}")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + \\spad{a1} \\spad{x} + \\spad{a2} \\spad{x**2} + ...)} returns \\spad{a1 + \\spad{a2} \\spad{x} + \\spad{a3} \\spad{x**2} + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g.} If \\spad{taylor?} is \\spad{true}, then we must have \\spad{order(f) \\spad{>=} order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)}, where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms, where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f.}")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|))))) (|HasCategory| (|Integer|) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|))))))) │ │ │ -(|NagIntegrationPackage|) │ │ │ -((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region, using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points, over the whole of its specified range, using third-order finite-difference formulae with error estimates, according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions), with constant and finite limits, to a specified relative accuracy, using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre, Gauss-Rational, Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function g(x) over [a,b]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function g(x)w(x) over a finite interval [a,b]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,b]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function f(x) over an infinite or semi-infinite interval [a,b]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function f(x) over a finite interval [a,b]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator, especially suited to oscillating, non-singular integrands, which calculates an approximation to the integral of a function f(x) over a finite interval [a,b]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function f(x) over a finite interval [a,b]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) │ │ │ +(|BinaryFile|) │ │ │ +((|constructor| (NIL "This domain provides an implementation of binary files. Data is accessed one byte at a time as a small integer.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "\\spad{position!(f, i)} sets the current byte-position to i.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{f.}")) (|readIfCan!| (((|Union| (|SingleInteger|) "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f,} if possible. If \\spad{f} is not open for reading, or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NagOrdinaryDifferentialEquationsPackage|) │ │ │ -((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem, those in which all boundary conditions are specified at one point (initial-value problems), and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems, two-point boundary-value problems and Sturm-Liouville eigenvalue problems.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork, \\indented{7}{liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations, using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "d02kef(xpoint,m,k,tol,maxfun,match,elam,delam, \\indented{7}{hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range, using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "d02kef(xpoint,m,k,tol,maxfun,match,elam,delam, \\indented{7}{hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range, using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains \\spad{Asp12} and \\spad{Asp33} are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations, using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions, using a variable-order, variable-step method implementing the Backward Differentiation Formulae (BDF), until a user-specified function, if supplied, of the solution is zero, and returns the solution at points specified by the user, if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions, using a variable-order, variable-step Adams method until a user-specified function, if supplied, of the solution is zero, and returns the solution at points specified by the user, if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions, using a Runge-Kutta-Merson method, until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions, using a Runge-Kutta-Merson method, and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) │ │ │ +(|OrderedAbelianSemiGroup|) │ │ │ +((|constructor| (NIL "Ordered sets which are also abelian semigroups, such that the addition preserves the ordering.\\br \\blankline Axiom\\br \\tab{5} \\spad{x} < \\spad{y} \\spad{=>} \\spad{x+z} < \\spad{y+z}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NagPartialDifferentialEquationsPackage|) │ │ │ -((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs, \\indented{7}{zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) │ │ │ +(|Ruleset| |Base| R F) │ │ │ +((|constructor| (NIL "Sets of rules for the pattern matcher. A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or r(f, \\spad{n)} applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r.}")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NagInterpolationPackage|) │ │ │ -((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(s), the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions, there are supporting routines to evaluate, differentiate or integrate them.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points, using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points, using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values, given on a rectangular grid in the x-y plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,b]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) │ │ │ +(|PermutationCategory| S) │ │ │ +((|constructor| (NIL "PermutationCategory provides a categorial environment for subgroups of bijections of a set (that is, permutations)")) (< (((|Boolean|) $ $) "\\spad{p < \\spad{q}} is an order relation on permutations. Note that this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of el under the permutation \\spad{p,} that is, the set which is given by applications of the powers of \\spad{p} to el.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p, el)} returns the image of el under the permutation \\spad{p.}")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p, el)} returns the image of el under the permutation \\spad{p.}")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles \\spad{lls} to a permutation, each cycle being a list with not repetitions, is coerced to the permutation, which maps ls.i to ls.i+1, indices modulo the length of the list, then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle \\spad{ls,} that is, a list with not repetitions to a permutation, which maps ls.i to ls.i+1, indices modulo the length of the list. Error: if repetitions occur."))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|LinearOrdinaryDifferentialOperator| A |diff|) │ │ │ +((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition:\\br \\spad{(L1 * L2).(f) = \\spad{L1} \\spad{L2} \\spad{f}}"))) │ │ │ +((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ +(|SparseUnivariateLaurentSeries| |Coef| |var| |cen|) │ │ │ +((|constructor| (NIL "Sparse Laurent series in one variable \\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring, the power series variable, and the center of the power series expansion. For example, \\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent series in \\spad{(x - 3)} with integer coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) │ │ │ +(((|commutative| "*") OR (|and| (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|OrderedIntegralDomain|))) (|has| |#1| (|CommutativeRing|)) (|and| (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|PolynomialFactorizationExplicit|)))) (|noZeroDivisors| OR (|and| (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|OrderedIntegralDomain|))) (|has| |#1| (|IntegralDomain|)) (|and| (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|PolynomialFactorizationExplicit|)))) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| (|Integer|) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|)))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|)))))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|))))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|RealConstant|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|StepThrough|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |Eltable|) (LIST (QUOTE |SparseUnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE |SparseUnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |Evalable|) (LIST (QUOTE |SparseUnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (LIST (QUOTE |SparseUnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|)))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|Field|))))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |Eltable|) (LIST (QUOTE |SparseUnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE |SparseUnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |Evalable|) (LIST (QUOTE |SparseUnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (LIST (QUOTE |SparseUnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|RealConstant|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|StepThrough|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|)))))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|KeyedAccessFile| |Entry|) │ │ │ +((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object. The KeyedAccessFile format is a directory containing a single file called ``index.kaf''. This file is a random access file. The first thing in the file is an integer which is the byte offset of an association list (the dictionary) at the end of the file. The association list is of the form ((key . byteoffset) (key . byteoffset)...) where the byte offset is the number of bytes from the beginning of the file. This offset contains an s-expression for the value of the key.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|String|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (QUOTE (|String|))) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (QUOTE (|SetCategory|))))) │ │ │ +(|SymbolTable|) │ │ │ +((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l.}")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from tab, on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} is not documented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in tab, declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in tab, declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new, empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) │ │ │ NIL │ │ │ -(|NagFittingPackage|) │ │ │ -((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors, as of experimental measurement, which need to be smoothed out. To seek an approximation to the data, it is first necessary to specify for the approximating function a mathematical form (a polynomial, for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function, since these cover the most common needs. However, fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating, differentiating and integrating polynomial and spline curves and surfaces, once the numerical values of their coefficients have been determined.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx, \\spad{++} lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically, but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx, \\spad{++} lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values, given on a rectangular grid in the x-y plane. The knots of the spline are located automatically, but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal, weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically, but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its B-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its B-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation, allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) │ │ │ NIL │ │ │ +(|UnivariateTaylorSeriesODESolver| |Coef| UTS) │ │ │ +((|constructor| (NIL "Taylor series solutions of explicit ODE's. This package provides Taylor series solutions to regular linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]}, \\spad{y[i](a) = r[i]} for \\spad{i} in 1..n.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y=f(y,y',..,y)} such that \\spad{y(a) = cl.i} for \\spad{i} in 1..n.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = \\spad{c0}} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = \\spad{c}.}")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) │ │ │ NIL │ │ │ -(|NagOptimisationPackage|) │ │ │ -((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables, possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only, since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1.}")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function f(x) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta, \\indented{7}{cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,} \\indented{7}{minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,} \\indented{7}{clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables, linear constraints. (E04UCF may be used for unconstrained, bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense, and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl, bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess) is a comprehensive programming (QP) or linear programming (LP) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu, \\indented{7}{cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems, or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F(x} \\spad{,x} ,...,x \\spad{),} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}n} lower bounds of the independent variables \\spad{x} \\spad{,x} ,...,x ,{} using \\indented{43}{1\\space{2}2\\space{6}n} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned, limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) │ │ │ NIL │ │ │ +(|FramedAlgebra&| S R UP) │ │ │ +((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed R-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the n-by-n matrix \\spad{(Tr(vi * vj))}, where \\spad{v1,} ..., \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where \\spad{v1,} ..., \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed R-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where \\spad{v1,} ..., \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the vi's with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed R-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed R-module basis."))) │ │ │ NIL │ │ │ -(|NagLapack|) │ │ │ -((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations, and to solve systems of linear equations following the matrix factorizations.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides, AX=B, where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{T} multiple right-hand sides, AX=B or A X=B, where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) │ │ │ NIL │ │ │ +(|SquareMatrixCategory&| S |ndim| R |Row| |Col|) │ │ │ +((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m.} Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m,} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m.}")) (* ((|#4| |#4| $) "\\spad{r * \\spad{x}} is the product of the row vector \\spad{r} and the matrix \\spad{x.} Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * \\spad{c}} is the product of the matrix \\spad{x} and the column vector \\spad{c.} Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m.}")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m.} this is the sum of the elements on the diagonal of the matrix \\spad{m.}")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m.}")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an n-by-n matrix with \\spad{r's} on the diagonal and zeroes elsewhere."))) │ │ │ NIL │ │ │ -(|NAGLinkSupportPackage|) │ │ │ -((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) │ │ │ +((|HasCategory| |#3| (QUOTE (|Field|))) (|HasAttribute| |#3| (QUOTE (|commutative| "*"))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|)))) │ │ │ +(|GraphImage|) │ │ │ +((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points, \\spad{llp}, and returns the points with their hue and shade components set according to the list of palette colors, \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph, \\spad{gi}, of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(gi,pt) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp}, and whose point colors, line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault}, \\spadfun{lineColorDefault}, and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component, \\spad{pt} whose point color is set to be the palette color \\spad{pal}, and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph, \\spad{gi}, which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component, \\spad{pt} whose point color is set to the palette color \\spad{pal1}, line color is set to the palette color \\spad{pal2}, and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component, \\spad{pt} whose point color, line color and point size are determined by the default functions \\spadfun{pointColorDefault}, \\spadfun{lineColorDefault}, and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph, \\spad{gi} of the domain \\spadtype{GraphImage}, to the values given. The point list for \\spad{gi} is set to the list \\spad{lp}, the color of the points in \\spad{lp} is set to the palette color \\spad{pal1}, the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2}, and the size of the points in \\spad{lp} is given by the integer \\spad{p.}")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph, \\spad{gi} of the domain \\spadtype{GraphImage}, to be that of the list of unit increments, \\spad{lu}, and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph, \\spad{gi}, of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph, \\spad{gi} of the domain \\spadtype{GraphImage}, to be that of the list of range segments, \\spad{lr}, and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph, \\spad{gi}, of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph, \\spad{gi}, of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph, \\spad{gi}, of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points, \\spad{llp}, whose point colors are indicated by the list of palette colors, \\spad{lpal1}, and whose lines are colored according to the list of palette colors, \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points, and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points, \\spad{llp}, whose point colors are indicated by the list of palette colors, \\spad{lpal1}, and whose lines are colored according to the list of palette colors, \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points, \\spad{llp}, with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph, \\spad{gi} of the domain \\spadtype{GraphImage}, and sends it's data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph, and it's elements must have been created using the \\spadfun{point} or \\spadfun{component} functions, not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NagSpecialFunctionsPackage|) │ │ │ -((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind, via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind, via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind, via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral, which occurs as a degenerate case of an elliptic integral of the first kind, via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral C(x), via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral S(x), via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(x) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(x), via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(x) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(x) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{I\\space{6}(z) for complex \\spad{z,} non-negative (nu) and} \\indented{2}{(nu)+n} n=0,1,...,N-1, with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{K\\space{6}(z) for complex \\spad{z,} non-negative (nu) and} \\indented{2}{(nu)+n} n=0,1,...,N-1, with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{I (x), via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{I (x), via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{K (x), via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{K (x), via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{H\\space{6}(z) or H\\space{6}(z) for complex \\spad{z,} non-negative (nu) and} \\indented{2}{(nu)+n\\space{8}(nu)+n} n=0,1,...,N-1, with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function Bi(z) or its derivative Bi'(z) for complex \\spad{z,} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function Ai(z) or its derivative Ai'(z) for complex \\spad{z,} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{J\\space{6}(z) for complex \\spad{z,} non-negative (nu) and n=0,1,...,N-1,} \\indented{2}{(nu)+n} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{Y\\space{6}(z) for complex \\spad{z,} non-negative (nu) and n=0,1,...,N-1,} \\indented{2}{(nu)+n} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function Bi(x), via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function Ai(x), via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function, Bi(x), via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function, Ai(x), via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{J (x), via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{J (x), via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{Y (x), via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{Y (x), via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(x), via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function, erfc(x), via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions P(a,x) and Q(a,x). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log, ln(Gamma(x)), via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(x), via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{E (x), via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(z) ,{} for complex \\spad{z.} See \\downlink{Manual Page}{manpageXXs01eaf}."))) │ │ │ +(|NewtonInterpolation| F) │ │ │ +((|constructor| (NIL "This package exports Newton interpolation for the special case where the result is known to be in the original integral domain The packages defined in this file provide fast fraction free rational interpolation algorithms. (see FAMR2, FFFG, FFFGF, NEWTON)")) (|newton| (((|SparseUnivariatePolynomial| |#1|) (|List| |#1|)) "\\spad{newton}(l) returns the interpolating polynomial for the values \\spad{l,} where the x-coordinates are assumed to be [1,2,3,...,n] and the coefficients of the interpolating polynomial are known to be in the domain \\spad{F.,} it is a very streamlined version for a special case of interpolation."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NumericRealEigenPackage| |Par|) │ │ │ -((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue, its algebraic multiplicity, and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision eps. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x.} Fraction \\spad{P} \\spad{RN.}") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) │ │ │ +(|ModuleOperator| R M) │ │ │ +((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} is not documented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} is not documented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} is not documented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, \\spad{u} \\spad{+->} \\spad{g} u)} attaches the map \\spad{g} to \\spad{f.} \\spad{f} must be a basic operator \\spad{g} MUST be additive, \\spad{g(a + \\spad{b)} = g(a) + g(b)} for any \\spad{a}, \\spad{b} in \\spad{M.} This implies that \\spad{g(n a) = \\spad{n} g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) │ │ │ +((|leftUnitary| |has| |#1| (|CommutativeRing|)) (|rightUnitary| |has| |#1| (|CommutativeRing|)) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|)))) │ │ │ +(|HeuGcd| BP) │ │ │ +((|constructor| (NIL "This package provides the functions for the heuristic integer gcd. Geddes's algorithm,for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = \\spad{gcd} of the polynomials fi. \\blankline \\spad{X} gcd([671*671*x^2-1,671*671*x^2+2*671*x+1]) \\spad{X} gcd([7*x^2+1,(7*x^2+1)^2])"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NeitherSparseOrDensePowerSeries| K) │ │ │ -((|constructor| (NIL "This domain is part of the PAFF package"))) │ │ │ -(((|commutative| "*") . T) (|noZeroDivisors| . T) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|SemiGroup|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|))))) (|HasCategory| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |k|) (QUOTE (|Integer|))) (LIST (QUOTE |:|) (QUOTE |c|) (|devaluate| |#1|))))) (|HasCategory| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)) (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) │ │ │ -(|NumberFormats|) │ │ │ -((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers, to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s.}")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n.}")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s.}")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n.}"))) │ │ │ +(|ListAggregate| S) │ │ │ +((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x.}"))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ +(|d01ajfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF, a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ NIL │ │ │ -(|OctonionCategory&| S R) │ │ │ -((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions, and eight-dimensional non-associative algebra, doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0, and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational, that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion, equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion, equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion o.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion o.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion o.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion o.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion o.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion o.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion o.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion o.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts i,j,k,E,I,J,K of octonian o."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#2| (QUOTE (|RealNumberSystem|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|Finite|)))) │ │ │ -(|AnnaOrdinaryDifferentialEquationPackage|) │ │ │ -((|constructor| (NIL "\\axiomType{AnnaOrdinaryDifferentialEquationPackage} is a \\axiom{package} of functions for the \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} with \\axiom{measure}, and \\axiom{solve}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{prob}. \\blankline It calls each \\axiom{domain} listed in \\axiom{R} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{prob}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations, \\axiom{f}, equations for the derivatives y[1]'..y[n]' defined in terms of x,y[1]..y[n] from \\axiom{xStart} to \\axiom{xEnd} with the initial values for y[1]..y[n] (\\axiom{yInitial}) to an absolute error requirement \\axiom{epsabs} and relative error \\axiom{epsrel}. The values of y[1]..y[n] will be output for the values of \\spad{x} in \\axiom{intVals}. The calculation will stop if the function G(x,y[1],..,y[n]) evaluates to zero before \\spad{x} = xEnd. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{R} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations, \\axiom{f}, equations for the derivatives y[1]'..y[n]' defined in terms of x,y[1]..y[n] from \\axiom{xStart} to \\axiom{xEnd} with the initial values for y[1]..y[n] (\\axiom{yInitial}) to a tolerance \\axiom{tol}. The values of y[1]..y[n] will be output for the values of \\spad{x} in \\axiom{intVals}. The calculation will stop if the function G(x,y[1],..,y[n]) evaluates to zero before \\spad{x} = xEnd. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{R} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations, \\axiom{f}, equations for the derivatives y[1]'..y[n]' defined in terms of x,y[1]..y[n] from \\axiom{xStart} to \\axiom{xEnd} with the initial values for y[1]..y[n] (\\axiom{yInitial}) to a tolerance \\axiom{tol}. The values of y[1]..y[n] will be output for the values of \\spad{x} in \\axiom{intVals}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{R} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations, \\axiom{f}, equations for the derivatives y[1]'..y[n]' defined in terms of x,y[1]..y[n] from \\axiom{xStart} to \\axiom{xEnd} with the initial values for y[1]..y[n] (\\axiom{yInitial}) to a tolerance \\axiom{tol}. The calculation will stop if the function G(x,y[1],..,y[n]) evaluates to zero before \\spad{x} = xEnd. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{R} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations, \\axiom{f}, equations for the derivatives y[1]'..y[n]' defined in terms of x,y[1]..y[n] from \\axiom{xStart} to \\axiom{xEnd} with the initial values for y[1]..y[n] (\\axiom{yInitial}) to a tolerance \\axiom{tol}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{R} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations equations for the derivatives y[1]'..y[n]' defined in terms of x,y[1]..y[n], together with a starting value for \\spad{x} and y[1]..y[n] (called the initial conditions) and a final value of \\spad{x.} A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{R} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations equations for the derivatives y[1]'..y[n]' defined in terms of x,y[1]..y[n], together with starting values for \\spad{x} and y[1]..y[n] (called the initial conditions), a final value of \\spad{x,} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{R} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations equations for the derivatives y[1]'..y[n]' defined in terms of x,y[1]..y[n], together with starting values for \\spad{x} and y[1]..y[n] (called the initial conditions), a final value of \\spad{x,} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) │ │ │ +(|FramedAlgebra| R UP) │ │ │ +((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed R-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the n-by-n matrix \\spad{(Tr(vi * vj))}, where \\spad{v1,} ..., \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where \\spad{v1,} ..., \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed R-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where \\spad{v1,} ..., \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the vi's with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed R-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed R-module basis."))) │ │ │ +((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|MultivariatePolynomial| |vl| R) │ │ │ +((|constructor| (NIL "This type is the basic representation of sparse recursive multivariate polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative, but the variables are assumed to commute."))) │ │ │ +(((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#2| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|))) (OR (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|MappingPackageInternalHacks2| A C) │ │ │ +((|constructor| (NIL "Various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) │ │ │ NIL │ │ │ -(|RationalLODE| F UP) │ │ │ -((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear ordinary differential equations, in the rational case.")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], \\spad{M]}} such that any rational solution of \\spad{op \\spad{y} = \\spad{c1} \\spad{g1} + \\spad{...} + \\spad{cm} \\spad{gm}} is of the form \\spad{d1 \\spad{h1} + \\spad{...} + \\spad{dq} \\spad{hq}} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, \\spad{g)}} returns \\spad{[\"failed\", []]} if the equation \\spad{op \\spad{y} = \\spad{g}} has no rational solution. Otherwise, it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the yi's form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], \\spad{M]}} such that any rational solution of \\spad{op \\spad{y} = \\spad{c1} \\spad{g1} + \\spad{...} + \\spad{cm} \\spad{gm}} is of the form \\spad{d1 \\spad{h1} + \\spad{...} + \\spad{dq} \\spad{hq}} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, \\spad{g)}} returns \\spad{[\"failed\", []]} if the equation \\spad{op \\spad{y} = \\spad{g}} has no rational solution. Otherwise, it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the yi's form a basis for the rational solutions of the homogeneous equation."))) │ │ │ NIL │ │ │ +(|BiModule| R S) │ │ │ +((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline Axiom\\br \\tab{5}\\spad{r*(x*s) = (r*x)*s}")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = \\spad{x}}")) (|leftUnitary| ((|attribute|) "\\spad{1 * \\spad{x} = \\spad{x}}"))) │ │ │ +((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ -(|OpenMathError|) │ │ │ -((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error u.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) │ │ │ +(|SetAggregate| S) │ │ │ +((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both, the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x,} \\axiom{union(x,u)} returns a copy of u.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x,} \\axiom{union(u,x)} returns a copy of u.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v.}")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v.} Note that equivalent to \\axiom{reduce(and,{member?(x,v) for \\spad{x} in u},true,false)}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common, \\axiom{symmetricDifference(u,v)} returns a copy of u. Note that \\axiom{symmetricDifference(u,v) = \\indented{1}{union(difference(u,v),difference(v,u))}}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x,} a copy of \\spad{u} is returned. Note that \\axiom{difference(s, \\spad{x)} = difference(s, {x})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v.} If \\spad{u} and \\spad{v} have no elements in common, \\axiom{difference(u,v)} returns a copy of u. Note that equivalent to the notation (not currently supported) \\axiom{{x for \\spad{x} in \\spad{u} | not member?(x,v)}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v.} Note that equivalent to the notation (not currently supported) \\spad{{x} for \\spad{x} in \\spad{u} | member?(x,v)}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items x,y,...,z.") (($) "\\spad{set()}$D creates an empty set aggregate of type \\spad{D.}")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items x,y,...,z. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}$D (otherwise written {}$D) creates an empty set aggregate of type \\spad{D.} This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < \\spad{t}} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t.}"))) │ │ │ +((|partiallyOrderedSet| . T) (|nil| . T)) │ │ │ NIL │ │ │ +(|Aggregate|) │ │ │ +((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate, designating any collection of objects, with heterogenous or homogeneous members, with a finite or infinite number of members, explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation r(x)\" An attribute \"finiteAggregate\" is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{# u} returns the number of items in u.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}$D creates an aggregate of type \\spad{D} with 0 elements. Note that The \\spad{$D} can be dropped if understood by context, for example \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of u. Note that for collections, \\axiom{copy(u) \\spad{==} \\spad{[x} for \\spad{x} in u]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|OpenMathErrorKind|) │ │ │ -((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors, unknown \\spad{CD} or symbol errors, and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{u} is one of \\axiom{OMParseError}, \\axiom{OMReadError}, \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol}, otherwise it raises a runtime error."))) │ │ │ +(|Database| S) │ │ │ +((|constructor| (NIL "This domain implements a simple view of a database whose fields are indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end \\spad{)}} prints full details of entries in the range \\axiom{start..end} in \\axiom{db}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{db}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{db}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{s} field of each element of \\axiom{db}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{db} which satisfy \\axiom{q}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|OrdSetInts|) │ │ │ -((|constructor| (NIL "A domain used in order to take the free R-module on the Integers I. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) │ │ │ +(|InfiniteProductCharacteristicZero| |Coef| UTS) │ │ │ +((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|OrderedVariableList| |VariableList|) │ │ │ -((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) │ │ │ +(|RightModule| R) │ │ │ +((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplication by elements of the rng. \\blankline Axioms\\br \\tab{5}\\spad{x*(a*b) = (x*a)*b}\\br \\tab{5}\\spad{x*(a+b) = (x*a)+(x*b)}\\br \\tab{5}\\spad{(x+y)*x = (x*a)+(y*a)}")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|AnnaNumericalOptimizationPackage|) │ │ │ -((|constructor| (NIL "\\axiomType{AnnaNumericalOptimizationPackage} is a \\axiom{package} of functions for the \\axiomType{NumericalOptimizationCategory} with \\axiom{measure} and \\axiom{optimize}.")) (|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model the minimization of a set of functions, \\axiom{lf}, of one or more variables without constraints. \\blankline The parameter \\axiom{start} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. \\blankline goodnessOfFit(lf,start) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{prob}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions, \\axiom{lf}, of one or more variables without constraints a least-squares problem. \\blankline The parameter \\axiom{start} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function, \\axiom{f}, of one or more variables without constraints. \\blankline The parameter \\axiom{start} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function, \\axiom{f}, of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{lower} and \\axiom{upper}. \\blankline The parameter \\axiom{start} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function, \\axiom{f}, of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{cons} would be an empty list and the bounds on those variables defined in \\axiom{lower} and \\axiom{upper}, or a mixture of simple, linear and non-linear constraints, where \\axiom{cons} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{upper} and \\axiom{lower}. \\blankline The parameter \\axiom{start} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{prob}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{prob}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{routines} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{prob} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{R} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{prob} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best the name of the most appropriate domain and any other relevant information."))) │ │ │ +(|Logic&| S) │ │ │ +((|constructor| (NIL "Logic provides the basic operations for lattices, for example, boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{\\/} returns the logical `join', for example, `or'.")) (|/\\| (($ $ $) "\\spadignore{/\\} returns the logical `meet', for example, `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PseudoAlgebraicClosureOfFiniteField| K) │ │ │ -((|constructor| (NIL "This domain implement dynamic extension using the simple notion of tower extensions. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension \\spad{(T} : K_0, K_1, ..., K_i...,K_n) where \\spad{K_0} = \\spad{K} and for \\spad{i} =1,2,...,n, K_i is an extension of K_{i-1} of degree > 1 and defined by an irreducible polynomial p(Z) in K_{i-1}. Two towers (T_1: K_01, K_11,...,K_i1,...,K_n1) and (T_2: K_02, K_12,...,K_i2,...,K_n2) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} T_2), that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1,2,...,n1} (or i=1,2,...,n2). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Finite|)))) │ │ │ -(|PseudoAlgebraicClosureOfRationalNumber|) │ │ │ -((|constructor| (NIL "This domain implements dynamic extension using the simple notion of tower extensions. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension \\spad{(T} : K_0, K_1, ..., K_i...,K_n) where \\spad{K_0} = \\spad{K} and for \\spad{i} =1,2,...,n, K_i is an extension of K_{i-1} of degree > 1 and defined by an irreducible polynomial p(Z) in K_{i-1}. Two towers (T_1: K_01, K_11,...,K_i1,...,K_n1) and (T_2: K_02, K_12,...,K_i2,...,K_n2) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} T_2), that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1,2,...,n1} (or i=1,2,...,n2). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|Finite|))) (OR (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|Finite|))))) │ │ │ -(|Pattern| R) │ │ │ -((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, \\spad{b]}} and a is optional, and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p.}")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p.} Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, \\spad{v)}} adds \\spad{v} to the list of \"bad values\" for \\spad{p.} Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], \\spad{f]}} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], \\spad{f)}} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, \\spad{c?,} o?, m?)} creates a pattern variable \\spad{x,} which is constant if \\spad{c? = true}, optional if \\spad{o? = true}, and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and \\spad{...} and \\spad{pn} to the copy, which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and \\spad{...} and \\spad{pn} to \\spad{p.}")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and \\spad{...} and \\spad{pn.}")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s.}")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (an element of \\spad{R).}")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p.}")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p.}")) (/ (($ $ $) "\\spad{a / \\spad{b}} returns the pattern \\spad{a / \\spad{b}.}")) (** (($ $ $) "\\spad{a \\spad{**} \\spad{b}} returns the pattern \\spad{a \\spad{**} \\spad{b}.}") (($ $ (|NonNegativeInteger|)) "\\spad{a \\spad{**} \\spad{n}} returns the pattern \\spad{a \\spad{**} \\spad{n}.}")) (* (($ $ $) "\\spad{a * \\spad{b}} returns the pattern \\spad{a * \\spad{b}.}")) (+ (($ $ $) "\\spad{a + \\spad{b}} returns the pattern \\spad{a + \\spad{b}.}")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, \\spad{b]}} if \\spad{p = a \\spad{**} \\spad{b},} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]}, \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, \\spad{b]}} if \\spad{p = a / \\spad{b},} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, \\spad{n]}} if \\spad{n > 0} and \\spad{p = \\spad{q} \\spad{**} \\spad{n},} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)}, and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)}, and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = \\spad{a1} * \\spad{...} * an}, and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = \\spad{a1} + \\spad{...} + an},} and \"failed\" otherwise.")) ((|One|) (($) "\\spad{1} is constant")) ((|Zero|) (($) "\\spad{0} is constant"))) │ │ │ +(|NumberFieldIntegralBasis| UP F) │ │ │ +((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F.}")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F,} where \\spad{F} is a framed algebra with Z-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F,} where \\spad{F} is a framed algebra with Z-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|AnnaPartialDifferentialEquationPackage|) │ │ │ -((|constructor| (NIL "AnnaPartialDifferentialEquationPackage is an uncompleted package for the interface to NAG PDE routines. It has been realised that a new approach to solving PDEs will need to be created.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{prob}. \\blankline It calls each \\axiom{domain} listed in \\axiom{R} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{prob}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{pde}), a grid (\\axiom{xmin}, \\axiom{ymin}, \\axiom{xmax}, \\axiom{ymax}, \\axiom{ngx}, \\axiom{ngy}) and the boundary values (\\axiom{bounds}). A default value for tolerance is used. There is also a parameter (\\axiom{st}) which should contain the value \"elliptic\" if the PDE is known to be elliptic, or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment, only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{pde}), a grid (\\axiom{xmin}, \\axiom{ymin}, \\axiom{xmax}, \\axiom{ymax}, \\axiom{ngx}, \\axiom{ngy}), the boundary values (\\axiom{bounds}) and a tolerance requirement (\\axiom{tol}). There is also a parameter (\\axiom{st}) which should contain the value \"elliptic\" if the PDE is known to be elliptic, or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment, only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment, only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment, only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) │ │ │ +(|FiniteLinearAggregate| S) │ │ │ +((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse}, \\spadfun{sort}, and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p.}")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element i.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{i \\spad{>=} \\spad{n},} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a, and \\axiom{minIndex(a) - 1} if there is no such \\spad{x.}") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{p(x)} is true, and \\axiom{minIndex(a) - 1} if there is no such \\spad{x.}")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p.}")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note that \\axiom{sort(u) = sort(<=,u)}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p.}")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note that \\axiom{merge(u,v) = merge(<=,u,v)}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b.} The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{p(x,y)} is true, then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen, the next element of \\axiom{a} is examined, and so on. When all the elements of one aggregate are examined, the remaining elements of the other are appended. For example, \\axiom{merge(<,[1,3],[2,7,5])} returns \\axiom{[1,2,3,7,5]}."))) │ │ │ +((|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ +(|SegmentExpansionCategory| S L) │ │ │ +((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by \\spad{k)}} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment, that is, \\spad{[f(l), f(l+k), ..., f(lN)]}, where \\spad{lN \\spad{<=} \\spad{h} < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by \\spad{k)}} creates value of type \\spad{L} with elements \\spad{l, l+k, \\spad{...} \\spad{lN}} where \\spad{lN \\spad{<=} \\spad{h} < lN+k}. For example, \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by \\spad{k}} is replaced with \\spad{l, l+k, \\spad{...} lN}, where \\spad{lN \\spad{<=} \\spad{h} < lN+k}. For example, \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|OctonionCategory| R) │ │ │ -((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions, and eight-dimensional non-associative algebra, doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0, and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational, that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion, equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion, equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion o.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion o.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion o.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion o.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion o.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion o.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion o.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion o.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts i,j,k,E,I,J,K of octonian o."))) │ │ │ -((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|d01aqfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF, a general numerical integration routine which can solve an integral of the form /home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.xbm The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ NIL │ │ │ -(|Plcs| K PCS) │ │ │ -((|constructor| (NIL "The following is part of the PAFF package"))) │ │ │ NIL │ │ │ +(|TranscendentalHermiteIntegration| F UP) │ │ │ +((|constructor| (NIL "Hermite integration, transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, \\spad{D)}} returns \\spad{[g, \\spad{h,} \\spad{s,} \\spad{p]}} such that \\spad{f = \\spad{Dg} + \\spad{h} + \\spad{s} + \\spad{p},} \\spad{h} has a squarefree denominator normal w.r.t. \\spad{D,} and all the squarefree factors of the denominator of \\spad{s} are special w.r.t. \\spad{D.} Furthermore, \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) │ │ │ NIL │ │ │ -(|PatternMatchSymbol| S) │ │ │ -((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression expr; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) │ │ │ NIL │ │ │ +(|GeneralTriangularSet| R E V P) │ │ │ +((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists w.r.t. the main variables of their members but they are displayed in reverse order."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#4| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#4| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#3| (QUOTE (|Finite|)))) │ │ │ +(|LinearAggregate&| A S) │ │ │ +((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings, lists, and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example, \\spadfun{concat} of two lists needs only to copy its first argument, whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (for example, streams) as well to finite ones. For finite linear aggregates, see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{u(i..j) \\spad{:=} \\spad{x})} destructively replaces each element in the segment \\axiom{u(i..j)} by \\spad{x.} The value \\spad{x} is returned. Note that \\spad{u} is destructively change so that \\axiom{u.k \\spad{:=} \\spad{x} for \\spad{k} in i..j}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{i}th element. Note that \\axiom{insert(v,u,k) = concat( u(0..k-1), \\spad{v,} u(k..) \\spad{)}.}") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{i}th element. Note that \\axiom{insert(x,a,k) = concat(concat(a(0..k-1),x),a(k..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{i}th through \\axiom{j}th element deleted. Note that \\axiom{delete(a,i..j) = concat(a(0..i-1),a(j+1..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{i}th element deleted. Note that for lists, \\axiom{delete(a,i) \\spad{==} concat(a(0..i - 1),a(i + 1,..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(i..j)}) returns the aggregate of elements \\axiom{u} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note that in general, \\axiom{a.s = [a.k for \\spad{i} in s]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{z = f(x,y)} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v.} Note that for linear aggregates, \\axiom{w.i = f(u.i,v.i)}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)}, where \\spad{u} is a lists of aggregates \\axiom{[a,b,...,c]}, returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed \\spad{...} by the elements of \\spad{c.} Note that \\axiom{concat(a,b,...,c) = concat(a,concat(b,...,c))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v.} Note that if \\axiom{w = concat(u,v)} then \\axiom{w.i = u.i for \\spad{i} in indices u} and \\axiom{w.(j + maxIndex u) = \\spad{v.j} for \\spad{j} in indices \\spad{v}.}") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note that for lists: \\axiom{concat(x,u) \\spad{==} concat([x],u)}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note that for lists, \\axiom{concat(u,x) \\spad{==} concat(u,[x])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new n,x)}."))) │ │ │ NIL │ │ │ -(|PatternMatchKernel| S E) │ │ │ -((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) │ │ │ +((|HasAttribute| |#1| (QUOTE |shallowlyMutable|))) │ │ │ +(|DesingTreePackage| K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR |InfClsPoint| |DesTree| BLMET) │ │ │ +((|constructor| (NIL "The following is all the categories, domains and package used for the desingularisation be means of monoidal transformation (Blowing-up)")) (|genusTreeNeg| (((|Integer|) (|NonNegativeInteger|) (|List| |#10|)) "\\spad{genusTreeNeg(n,listOfTrees)} computes the \"genus\" of a curve that may be not absolutly irreducible, where \\spad{n} is the degree of a polynomial pol defining the curve and \\spad{listOfTrees} is all the desingularisation trees at all singular points on the curve defined by pol. A \"negative\" genus means that the curve is reducible \\spad{!!.}")) (|genusTree| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|List| |#10|)) "\\spad{genusTree(n,listOfTrees)} computes the genus of a curve, where \\spad{n} is the degree of a polynomial pol defining the curve and \\spad{listOfTrees} is all the desingularisation trees at all singular points on the curve defined by pol.")) (|genusNeg| (((|Integer|) |#3|) "\\spad{genusNeg(pol)} computes the \"genus\" of a curve that may be not absolutly irreducible. A \"negative\" genus means that the curve is reducible \\spad{!!.}")) (|genus| (((|NonNegativeInteger|) |#3|) "\\spad{genus(pol)} computes the genus of the curve defined by pol.")) (|initializeParamOfPlaces| (((|Void|) |#10| (|List| |#3|)) "\\spad{initializeParamOfPlaces(tr,listOfFnc)} initialize the local parametrization at places corresponding to the leaves of \\spad{tr} according to the given list of functions in listOfFnc.") (((|Void|) |#10|) "\\spad{initializeParamOfPlaces(tr)} initialize the local parametrization at places corresponding to the leaves of \\spad{tr.}")) (|initParLocLeaves| (((|Void|) |#10|) "\\spad{initParLocLeaves(tr)} initialize the local parametrization at simple points corresponding to the leaves of \\spad{tr.}")) (|fullParamInit| (((|Void|) |#10|) "\\spad{fullParamInit(tr)} initialize the local parametrization at all places (leaves of tr), computes the local exceptional divisor at each infinytly close points in the tree. This function is equivalent to the following called: initParLocLeaves(tr) initializeParamOfPlaces(tr) blowUpWithExcpDiv(tr)")) (|desingTree| (((|List| |#10|) |#3|) "\\spad{desingTree(pol)} returns all the desingularisation trees of all singular points on the curve defined by pol.")) (|desingTreeAtPoint| ((|#10| |#5| |#3|) "\\spad{desingTreeAtPoint(pt,pol)} computes the desingularisation tree at the point \\spad{pt} on the curve defined by pol. This function recursively compute the tree.")) (|adjunctionDivisor| ((|#8| |#10|) "\\spad{adjunctionDivisor(tr)} compute the local adjunction divisor of a desingularisation tree \\spad{tr} of a singular point.")) (|divisorAtDesingTree| ((|#8| |#3| |#10|) "\\spad{divisorAtDesingTree(f,tr)} computes the local divisor of \\spad{f} at a desingularisation tree \\spad{tr} of a singular point."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Polynomial| R) │ │ │ -((|constructor| (NIL "This type is the basic representation of sparse recursive multivariate polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative, but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx}, integrates the polynomial \\spad{p} with respect to the variable \\spad{x.}"))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|Symbol|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|Symbol|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|Symbol|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|Symbol|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|Symbol|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|PrimitiveElement| F) │ │ │ -((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], \\spad{q]}} such that then \\spad{k(a1,...,an) = k(a)}, where \\spad{a = \\spad{a1} \\spad{c1} + \\spad{...} + an cn}, \\spad{ai = qi(a)}, and \\spad{q(a) = 0}. The pi's are the defining polynomials for the ai's. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], \\spad{q]}} such that then \\spad{k(a1,...,an) = k(a)}, where \\spad{a = \\spad{a1} \\spad{c1} + \\spad{...} + an cn}, \\spad{ai = qi(a)}, and \\spad{q(a) = 0}. The pi's are the defining polynomials for the ai's. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, \\spad{p2,} a2)} returns \\spad{[c1, \\spad{c2,} \\spad{q]}} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = \\spad{c1} \\spad{a1} + \\spad{c2} a2, and q(a) = 0}. The pi's are the defining polynomials for the ai's. The \\spad{p2} may involve a1, but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) │ │ │ +(|ZeroDimensionalSolvePackage| R |ls| |ls2|) │ │ │ +((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING. The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see \\spadtype{LexTriangularPackage} package constructor). For that purpose, the operations univariateSolve, realSolve and positiveSolve admit an optional argument.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover, each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts}, which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING. \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover, if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see zeroSetSplit from LexTriangularPackage(lp,false)). Otherwise, the triangular decomposition is computed directly from the input system by using the zeroSetSplit from \\spadtype{RegularChain}. WARNING. For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed w.r.t. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover, if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see zeroSetSplit from LexTriangularPackage(lp,false)). Otherwise, the triangular decomposition is computed directly from the input system by using the zeroSetSplit from \\spadtype{RegularChain}. WARNING. For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed w.r.t. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING. For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed w.r.t. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover, if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See rur from RationalUnivariateRepresentationPackage(lp,true). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see zeroSetSplit from LexTriangularPackage(lp,false)). Otherwise, the triangular decomposition is computed directly from the input system by using the zeroSetSplit from RegularChain") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See rur from RationalUnivariateRepresentationPackage(lp,true).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{lp} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (w.r.t. Zarisky topology). Moreover, if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See zeroSetSplit from RegularTriangularSetCategory(lp,true,info?). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see zeroSetSplit from LexTriangularPackage(lp,false)). Otherwise, the triangular decomposition is computed directly from the input system by using the zeroSetSplit from RegularChain"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|QuasiAlgebraicSet2| |vl| |nv|) │ │ │ -((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set, defined as the common zeros of a given list of polynomials (the defining polynomials for equations), and a principal Zariski open set, defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet}, where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals, it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer}, and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis, and the defining polynomial for the inequation reduced with respect to the basis, using using groebner basis of radical ideals"))) │ │ │ +(|OrdSetInts|) │ │ │ +((|constructor| (NIL "A domain used in order to take the free R-module on the Integers I. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|QueryEquation|) │ │ │ -((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (right hand side) of \\axiom{q}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (left hand side) of \\axiom{q}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) │ │ │ +(|StringCategory|) │ │ │ +((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ +(|PureAlgebraicLODE| F UP UPUP R) │ │ │ +((|constructor| (NIL "In-field solution of an linear ordinary differential equation, pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, \\spad{g)}} returns \\spad{[\"failed\", []]} if the equation \\spad{op \\spad{y} = \\spad{g}} has no solution in \\spad{R}. Otherwise, it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) │ │ │ NIL │ │ │ -(|QuaternionCategory&| S R) │ │ │ -((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number, or \"failed\" if this is not possible. Note that if \\spad{rational?(q)} is true, the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is true, the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it true} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number, and {\\it false} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#2| (QUOTE (|RealNumberSystem|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|EntireRing|)))) │ │ │ -(|Result|) │ │ │ -((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types, though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (QUOTE (|Symbol|))) (LIST (QUOTE |:|) (QUOTE |entry|) (QUOTE (|Any|)))))) (|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|)))) (|HasCategory| (|Symbol|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Any|) (QUOTE (|SetCategory|))) (OR (|HasCategory| (|Any|) (QUOTE (|SetCategory|))) (|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|)))) (AND (|HasCategory| (|Any|) (LIST (QUOTE |Evalable|) (QUOTE (|Any|)))) (|HasCategory| (|Any|) (QUOTE (|SetCategory|))))) │ │ │ -(|RepresentationPackage1| R) │ │ │ -((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note that instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: for example \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices [(deltai,pi1(i)),...,(deltai,pik(i))] if the permutations pi1,...,pik are in list notation and are permuting {1,2,...,n}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices [(deltai,pi1(i)),...,(deltai,pik(i))] (Kronecker delta) for the permutations pi1,...,pik of {1,2,...,n}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix (deltai,pi(i)) (Kronecker delta) if the permutation \\spad{pi} is in list notation and permutes {1,2,...,n}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix (deltai,pi(i)) (Kronecker delta) for a permutation \\spad{pi} of {1,2,...,n}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix \\spad{ai} with itself for \\spad{{1} \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}.} Note that if the list of matrices corresponds to a group representation (repr. of generators) of one group, then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix a with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices \\spad{ai} and \\spad{bi} for \\spad{{1} \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}.} Note that if each list of matrices corresponds to a group representation (repr. of generators) of one group, then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices a and \\spad{b.} Note that if each matrix corresponds to a group representation (repr. of generators) of one group, then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each m-by-m square matrix in the list \\spad{la} the irreducible, polynomial representation of the general linear group \\spad{GLm} which corresponds to the partition (n,0,...,0) of \\spad{n.} Error: if the matrices in \\spad{la} are not square matrices. Note that this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group \\spad{Sn.} The carrier spaces of the representation are the symmetric tensors of the n-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the m-by-m square matrix a the irreducible, polynomial representation of the general linear group \\spad{GLm} which corresponds to the partition (n,0,...,0) of \\spad{n.} Error: if a is not a square matrix. Note that this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group \\spad{Sn.} The carrier spaces of the representation are the symmetric tensors of the n-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate x[i,j] (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each m-by-m square matrix in the list \\spad{la} the irreducible, polynomial representation of the general linear group \\spad{GLm} which corresponds to the partition (1,1,...,1,0,0,...,0) of \\spad{n.} Error: if \\spad{n} is greater than \\spad{m.} Note that this corresponds to the symmetrization of the representation with the sign representation of the symmetric group \\spad{Sn.} The carrier spaces of the representation are the antisymmetric tensors of the n-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix \\indented{1}{a the irreducible, polynomial representation of the} \\indented{1}{general linear group GLm, where \\spad{m} is the number of} \\indented{1}{rows of a, which corresponds to the partition} \\indented{1}{(1,1,...,1,0,0,...,0) of \\spad{n.}} \\indented{1}{Error: if \\spad{n} is greater than \\spad{m.}} \\indented{1}{Note that this corresponds to the symmetrization of the} \\indented{1}{representation with the sign representation of the symmetric group} \\indented{1}{Sn. The carrier spaces of the representation are the antisymmetric} \\indented{1}{tensors of the n-fold tensor product.} \\blankline \\spad{X} t1:=matrix [[a,b,c],[d,e,f]] \\spad{X} antisymmetricTensors(t1,2)"))) │ │ │ +(|Algebra| R) │ │ │ +((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline Axioms\\br \\tab{5}\\spad{(b+c)::% = (b::\\%) + (c::\\%)}\\br \\tab{5}\\spad{(b*c)::% = (b::\\%) * (c::\\%)}\\br \\tab{5}\\spad{(1::R)::% = 1::%}\\br \\tab{5}\\spad{b*x = (b::\\%)*x}\\br \\tab{5}\\spad{r*(a*b) = (r*a)*b = a*(r*b)}")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) │ │ │ +((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -((|HasAttribute| |#1| (QUOTE (|commutative| "*")))) │ │ │ -(|RealClosure| |TheField|) │ │ │ -((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(n,p)} gives a relative approximation of \\axiom{n} that has precision \\axiom{p}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(x)} is the main algebraic quantity of \\axiom{x} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) │ │ │ -((|noZeroDivisors| . T) (|canonicalUnitNormal| . T) (|canonicalsClosed| . T) (|leftUnitary| . T) (|rightUnitary| . T) ((|commutative| "*") . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|Fraction| (|Integer|)) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|Fraction| (|Integer|)) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (OR (|HasCategory| (|Fraction| (|Integer|)) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))))) │ │ │ -(|RationalFunctionFactor| UP) │ │ │ -((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p.}"))) │ │ │ +(|TexFormat1| S) │ │ │ +((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RectangularMatrix| |m| |n| R) │ │ │ -((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) │ │ │ -((|finiteAggregate| . T) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ -((|HasCategory| |#3| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#3| (QUOTE (|Field|))) (|HasCategory| |#3| (QUOTE (|SetCategory|))) (|HasCategory| |#3| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#3| (QUOTE (|IntegralDomain|))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|Field|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|Field|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))))) │ │ │ -(|RomanNumeral|) │ │ │ -((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting integers to roman numerals.")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n.}") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n.}")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n.}")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) │ │ │ -((|noetherian| . T) (|canonicalsClosed| . T) (|canonical| . T) (|canonicalUnitNormal| . T) (|multiplicativeValuation| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|BasicFunctions|) │ │ │ +((|constructor| (NIL "A Domain which implements a table containing details of points at which particular functions have evaluation problems.")) (|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) │ │ │ +((|finiteAggregate| . T)) │ │ │ NIL │ │ │ -(|RoutinesTable|) │ │ │ -((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which, given a NAG routine generating a higher measure, the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE's")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE's")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (QUOTE (|Symbol|))) (LIST (QUOTE |:|) (QUOTE |entry|) (QUOTE (|Any|)))))) (|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|)))) (|HasCategory| (|Symbol|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Any|) (QUOTE (|SetCategory|))) (OR (|HasCategory| (|Any|) (QUOTE (|SetCategory|))) (|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|)))) (AND (|HasCategory| (|Any|) (LIST (QUOTE |Evalable|) (QUOTE (|Any|)))) (|HasCategory| (|Any|) (QUOTE (|SetCategory|))))) │ │ │ -(|RuleCalled| |f|) │ │ │ -((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) │ │ │ +(|Asp34| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs, needed for NAG routine f04mbf, for example: \\blankline \\tab{5}SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK)\\br \\tab{5}DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N)\\br \\tab{5}INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK)\\br \\tab{5}DOUBLE PRECISION W1(3),W2(3),MS(3,3)\\br \\tab{5}IFLAG=-1\\br \\tab{5}MS(1,1)=2.0D0\\br \\tab{5}MS(1,2)=1.0D0\\br \\tab{5}MS(1,3)=0.0D0\\br \\tab{5}MS(2,1)=1.0D0\\br \\tab{5}MS(2,2)=2.0D0\\br \\tab{5}MS(2,3)=1.0D0\\br \\tab{5}MS(3,1)=0.0D0\\br \\tab{5}MS(3,2)=1.0D0\\br \\tab{5}MS(3,3)=2.0D0\\br \\tab{5}CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG)\\br \\tab{5}IFLAG=-IFLAG\\br \\tab{5}RETURN\\br \\tab{5}END"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|SingletonAsOrderedSet|) │ │ │ -((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) │ │ │ +(|NagMatrixOperationsPackage|) │ │ │ +((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q,} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A, where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q,} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A, where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow, \\indented{7}{eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix, or, optionally, first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RecursivePolynomialCategory&| S R E V) │ │ │ -((|constructor| (NIL "\\indented{1}{Author: Marc Moreno Maza} Date Created: 04/22/1994 Date Last Updated: 14/12/1998 Description:")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(p)} returns the square free part of \\axiom{p} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{R}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(p)} returns the primitive part of \\axiom{p} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{R}.")) (|mainContent| (($ $) "\\axiom{mainContent(p)} returns the content of \\axiom{p} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{R}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(p)} replaces \\axiom{p} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(r,p)} returns the \\spad{gcd} of \\axiom{r} and the content of \\axiom{p}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(p,q,z,s)} is the multivariate version of the operation \\spad{next_sousResultant2} from PseudoRemainderSequence from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(p,a,b,n)} returns \\axiom{(a**(n-1) * \\spad{p)} exquo b**(n-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,b,n)} returns \\axiom{a**n exquo b**(n-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,b)} returns the last non-zero subresultant of \\axiom{a} and \\axiom{b} where \\axiom{a} and \\axiom{b} are assumed to have the same main variable \\axiom{v} and are viewed as univariate polynomials in \\axiom{v}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,b)}, where \\axiom{a} and \\axiom{b} are not contant polynomials with the same main variable, returns the subresultant chain of \\axiom{a} and \\axiom{b}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,b)} computes the resultant of \\axiom{a} and \\axiom{b} where \\axiom{a} and \\axiom{b} are assumed to have the same main variable \\axiom{v} and are viewed as univariate polynomials in \\axiom{v}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,b)} returns \\axiom{[g,cb]} if \\axiom{extendedSubResultantGcd(a,b)} returns \\axiom{[g,ca,cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,b)} returns \\axiom{[g,ca]} if \\axiom{extendedSubResultantGcd(a,b)} returns \\axiom{[g,ca,cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,b)} returns \\axiom{[ca,cb,r]} such that \\axiom{r} is \\axiom{subResultantGcd(a,b)} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,b)} computes a \\spad{gcd} of \\axiom{a} and \\axiom{b} where \\axiom{a} and \\axiom{b} are assumed to have the same main variable \\axiom{v} and are viewed as univariate polynomials in \\axiom{v} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{R}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,b)} replaces \\axiom{a} by \\axiom{exactQuotient(a,b)}") (($ $ |#2|) "\\axiom{exactQuotient!(p,r)} replaces \\axiom{p} by \\axiom{exactQuotient(p,r)}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,b)} computes the exact quotient of \\axiom{a} by \\axiom{b}, which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(p,r)} computes the exact quotient of \\axiom{p} by \\axiom{r}, which is assumed to be a divisor of \\axiom{p}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(p)} replaces \\axiom{p} by \\axiom{primPartElseUnitCanonical(p)}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(p)} returns \\axiom{primitivePart(p)} if \\axiom{R} is a gcd-domain, otherwise \\axiom{unitCanonical(p)}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}, otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(p)} returns the same as \\axiom{retract(p)}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(p)} returns the same as \\axiom{retract(p)}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(p)} returns the same as \\axiom{retract(p)}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(p)} returns \\axiom{p} as an element of the current domain if \\axiom{retractIfCan(p)} does not return \"failed\", otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(p)} returns \\axiom{p} as an element of the current domain if all its variables belong to \\axiom{V}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,b)} returns a polynomial \\axiom{r} such that \\axiom{initiallyReduced?(r,b)} holds and there exists an integer \\axiom{e} such that \\axiom{init(b)^e a - \\spad{r}} is zero modulo \\axiom{b}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,b)} returns a polynomial \\axiom{r} such that \\axiom{headReduced?(r,b)} holds and there exists an integer \\axiom{e} such that \\axiom{init(b)^e a - \\spad{r}} is zero modulo \\axiom{b}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,b)} returns \\axiom{[p,q,n]} where \\axiom{p / q**n} represents the residue class of \\axiom{a} modulo \\axiom{b} and \\axiom{p} is reduced w.r.t. \\axiom{b} and \\axiom{q} is \\axiom{init(b)}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,b)} computes \\axiom{a mod \\spad{b},} if \\axiom{b} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,b)} computes \\axiom{[pquo(a,b),prem(a,b)]}, both polynomials viewed as univariate polynomials in the main variable of \\axiom{b}, if \\axiom{b} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,b,v)} returns \\axiom{[c,g,q,r]} such that \\axiom{r = lazyPrem(a,b,v)}, \\axiom{(c**g)*r = prem(a,b,v)} and \\axiom{q} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,b)} returns \\axiom{[c,g,q,r]} such that \\axiom{[c,g,r] = lazyPremWithDefault(a,b)} and \\axiom{q} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,b,v)} returns \\axiom{[c,g,r]} such that \\axiom{r = lazyPrem(a,b,v)} and \\axiom{(c**g)*r = prem(a,b,v)}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,b)} returns \\axiom{[c,g,r]} such that \\axiom{r = lazyPrem(a,b)} and \\axiom{(c**g)*r = prem(a,b)}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,b,v)} returns the polynomial \\axiom{q} such that \\axiom{lazyPseudoDivide(a,b,v)} returns \\axiom{[c,g,q,r]}.") (($ $ $) "\\axiom{lazyPquo(a,b)} returns the polynomial \\axiom{q} such that \\axiom{lazyPseudoDivide(a,b)} returns \\axiom{[c,g,q,r]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,b,v)} returns the polynomial \\axiom{r} reduced w.r.t. \\axiom{b} viewed as univariate polynomials in the variable \\axiom{v} such that \\axiom{b} divides \\axiom{init(b)^e a - \\spad{r}} where \\axiom{e} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,b)} returns the polynomial \\axiom{r} reduced w.r.t. \\axiom{b} and such that \\axiom{b} divides \\axiom{init(b)^e a - \\spad{r}} where \\axiom{e} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,b,v)} computes the pseudo-quotient of \\axiom{a} by \\axiom{b}, both viewed as univariate polynomials in \\axiom{v}.") (($ $ $) "\\axiom{pquo(a,b)} computes the pseudo-quotient of \\axiom{a} by \\axiom{b}, both viewed as univariate polynomials in the main variable of \\axiom{b}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,b,v)} computes the pseudo-remainder of \\axiom{a} by \\axiom{b}, both viewed as univariate polynomials in \\axiom{v}.") (($ $ $) "\\axiom{prem(a,b)} computes the pseudo-remainder of \\axiom{a} by \\axiom{b}, both viewed as univariate polynomials in the main variable of \\axiom{b}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(q,lp)} returns \\spad{true} iff \\axiom{normalized?(q,p)} holds for every \\axiom{p} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,b)} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero w.r.t. the main variable of \\axiom{b}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(q,lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(q,p)} holds for every \\axiom{p} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,b)} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced w.r.t \\axiom{b}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(q,lp)} returns \\spad{true} iff \\axiom{headReduced?(q,p)} holds for every \\axiom{p} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,b)} returns \\spad{true} iff \\axiom{degree(head(a),mvar(b)) < mdeg(b)}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(q,lp)} returns \\spad{true} iff \\axiom{reduced?(q,p)} holds for every \\axiom{p} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,b)} returns \\spad{true} iff \\axiom{degree(a,mvar(b)) < mdeg(b)}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,b)} returns \\spad{true} if \\axiom{a} is greater than \\axiom{b} w.r.t. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,b)} returns \\spad{true} if \\axiom{a} is less than \\axiom{b} w.r.t. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,b)} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{b} have same rank w.r.t. Ritt and Wu Wen Tsun ordering using the refinement of Lazard, otherwise returns \\axiom{infRittWu?(a,b)}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(p)} returns an error if \\axiom{p} is \\axiom{O}, otherwise, if \\axiom{p} belongs to \\axiom{R} returns [1], otherwise returns the list of the monomials of \\axiom{p}, where \\axiom{p} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(p)} returns an error if \\axiom{p} is \\axiom{O}, otherwise, if \\axiom{p} belongs to \\axiom{R} returns [p], otherwise returns the list of the coefficients of \\axiom{p}, where \\axiom{p} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(p)} returns an error if \\axiom{p} is \\axiom{O}, otherwise, if \\axiom{p} belongs to \\axiom{R} returns \\axiom{1}, otherwise, the monomial of \\axiom{p} with lowest degree, where \\axiom{p} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(p)} returns an error if \\axiom{p} is \\axiom{O}, otherwise, if \\axiom{p} belongs to \\axiom{R} returns \\axiom{1}, otherwise, \\axiom{mvar(p)} raised to the power \\axiom{mdeg(p)}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(p)} returns \\spad{false} if \\axiom{p} belongs to \\axiom{R}, otherwise returns \\spad{true} iff the initial of \\axiom{p} lies in the base ring \\axiom{R}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(p)} returns \\spad{false} if \\axiom{p} belongs to \\axiom{R}, otherwise returns \\spad{true} iff \\axiom{p} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(p,v)} returns the reductum of \\axiom{p}, where \\axiom{p} is viewed as a univariate polynomial in \\axiom{v}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(p,v)} returns the leading coefficient of \\axiom{p}, where \\axiom{p} is viewed as A univariate polynomial in \\axiom{v}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(p)} returns an error if \\axiom{p} belongs to \\axiom{R}, otherwise returns the last term of \\axiom{iteratedInitials(p)}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(p)} returns \\axiom{[]} if \\axiom{p} belongs to \\axiom{R}, otherwise returns the list of the iterated initials of \\axiom{p}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(p)} returns \\axiom{0} if \\axiom{p} belongs to \\axiom{R}, otherwise returns tail(p), if \\axiom{tail(p)} belongs to \\axiom{R} or \\axiom{mvar(tail(p)) < mvar(p)}, otherwise returns \\axiom{deepestTail(tail(p))}.")) (|tail| (($ $) "\\axiom{tail(p)} returns its reductum, where \\axiom{p} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(p)} returns \\axiom{p} if \\axiom{p} belongs to \\axiom{R}, otherwise returns its leading term (monomial in the AXIOM sense), where \\axiom{p} is viewed as a univariate polynomial \\indented{1}{in its main variable.}")) (|init| (($ $) "\\axiom{init(p)} returns an error if \\axiom{p} belongs to \\axiom{R}, otherwise returns its leading coefficient, where \\axiom{p} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(p)} returns an error if \\axiom{p} is \\axiom{0}, otherwise, if \\axiom{p} belongs to \\axiom{R} returns \\axiom{0}, otherwise, returns the degree of \\axiom{p} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(p)} returns an error if \\axiom{p} belongs to \\axiom{R}, otherwise returns its main variable \\spad{w.} \\spad{r.} \\spad{t.} to the total ordering on the elements in \\axiom{V}."))) │ │ │ +(|TwoDimensionalArray| R) │ │ │ +((|constructor| (NIL "A TwoDimensionalArray is a two dimensional array with 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray's."))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ +(|AbelianGroup&| S) │ │ │ +((|constructor| (NIL "The class of abelian groups, additive monoids where each element has an additive inverse. \\blankline Axioms\\br \\tab{5}\\spad{-(-x) = x}\\br \\tab{5}\\spad{x+(-x) = 0}")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n.}")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x.}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |QuotientFieldCategory|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|))))) │ │ │ -(|QuaternionCategory| R) │ │ │ -((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number, or \"failed\" if this is not possible. Note that if \\spad{rational?(q)} is true, the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is true, the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it true} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number, and {\\it false} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) │ │ │ -((|noZeroDivisors| |has| |#1| (|EntireRing|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|SimpleCell| |TheField| |ThePols|) │ │ │ +(|ExpertSystemToolsPackage|) │ │ │ +((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{p} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions, multiplications, exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) │ │ │ NIL │ │ │ NIL │ │ │ +(|RationalFunctionSign| R) │ │ │ +((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, \\spad{x,} a, \\spad{s)}} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"}, or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, \\spad{x,} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a}, from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign \\spad{f}} returns the sign of \\spad{f} if it is constant everywhere."))) │ │ │ NIL │ │ │ -(|SegmentBinding| S) │ │ │ -((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used, for example, by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example, if \\spad{segb} is \\spad{v=a..b}, then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example, if \\spad{segb} is \\spad{v=a..b}, then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|)))) │ │ │ -(|SpecialOutputPackage|) │ │ │ -((|constructor| (NIL "SpecialOutputPackage allows FORTRAN, Tex and Script Formula Formatter output from programs.")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l)} output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l)} output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l)} output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) │ │ │ +(|DrawOptionFunctions1| S) │ │ │ +((|constructor| (NIL "This package has no description")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option, \\spad{s,} is contained in the list of drawing options, \\spad{l,} which is defined by the draw command."))) │ │ │ NIL │ │ │ NIL │ │ │ (|Set| S) │ │ │ ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D.} Sets are unordered collections of distinct elements (that is, order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation, \\Language{} maintains the entries in sorted order. Specifically, the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = \\spad{m}} and \\spad{\\#t = \\spad{n},} the complexity of\\br \\tab{5}\\spad{s = \\spad{t}} is \\spad{O(min(n,m))}\\br \\tab{5}\\spad{s < \\spad{t}} is \\spad{O(max(n,m))}\\br \\tab{5}\\spad{union(s,t)}, \\spad{intersect(s,t)}, \\spad{minus(s,t)},\\br \\tab{10 \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}\\br \\tab{5}\\spad{member(x,t)} is \\spad{O(n log n)}\\br \\tab{5}\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}"))) │ │ │ ((|finiteAggregate| . T) (|partiallyOrderedSet| . T) (|shallowlyMutable| . T)) │ │ │ ((|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|Finite|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ -(|SparseEchelonMatrix| C D) │ │ │ -((|constructor| (NIL "\\spad{SparseEchelonMatrix(C, \\spad{D)}} implements sparse matrices whose columns are enumerated by the \\spadtype{OrderedSet} \\spad{C} and whose entries belong to the \\spadtype{GcdDomain} \\spad{D}. The basic operation of this domain is the computation of an row echelon form. The used algorithm tries to maintain the sparsity and is especially adapted to matrices who are already close to a row echelon form.")) (|horizSplit| (((|Record| (|:| |Left| $) (|:| |Right| $)) $ |#1|) "\\spad{horizSplit(A, \\spad{c)}} splits the matrix \\spad{A} into two at the column given by \\spad{c}. The first column of the right matrix is enumerated by the first index less or equal to \\spad{c}.")) (|horizJoin| (($ $ $) "\\spad{horizJoin(A, \\spad{B)}} horizontally concats the matrices \\spad{A} and \\spad{B}. It is assumed that all indices of \\spad{B} are smaller than those of \\spad{A}.")) (|join| (($ $ $) "\\spad{join(A, \\spad{B)}} vertically concats the matrices \\spad{A} and \\spad{B}.")) (* (($ (|Matrix| (|Fraction| |#2|)) $) "\\spad{L*A} implements left multiplication with a usual matrix over the quotient field of \\spad{D}.") (($ (|Matrix| |#2|) $) "\\spad{L*A} implements left multiplication with a usual matrix.")) (|pivots| (((|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|))) $) "\\spad{pivots(A)} returns all leading entries of the matrix \\spad{A} together with their indices.")) (|pivot| (((|Record| (|:| |Index| |#1|) (|:| |Entry| |#2|)) $ (|Integer|)) "\\spad{pivot(A, i)} returns the leading entry of the \\spad{i}-th row of the matrix \\spad{A} together with its index.")) (|primitiveRowEchelon| (((|Record| (|:| |Ech| $) (|:| |Lt| (|Matrix| (|Fraction| |#2|))) (|:| |Pivots| (|List| |#2|)) (|:| |Rank| (|NonNegativeInteger|))) $) "\\spad{primitiveRowEchelon(A)} computes a row echelon form for the matrix \\spad{A}. The algorithm used is fraction-free elimination. Every row is made primitive by division by the gcd. The algorithm is especially adapted to matrices already close to row echelon form. The transformation matrix, the used pivots and the rank of the matrix are also returned.")) (|setGcdMode| (((|Symbol|) (|Symbol|)) "\\spad{setGcdMode(s)} sets a new value for the flag deciding on the method used to compute gcd`s for lists. Possible values for \\spad{s} are \\spad{iterated} and \\spad{random}.")) (|rowEchelon| (((|Record| (|:| |Ech| $) (|:| |Lt| (|Matrix| |#2|)) (|:| |Pivots| (|List| |#2|)) (|:| |Rank| (|NonNegativeInteger|))) $) "\\spad{primitiveRowEchelon(A)} computes a row echelon form for the matrix \\spad{A}. The algorithm used is fraction-free elimination. It is especially adapted to matrices already close to row echelon form. The transformation matrix, the used pivots and the rank of the matrix are also returned.")) (|extract| (($ $ (|Integer|) (|Integer|)) "\\spad{extract(A, i1, i2)} extracts the rows \\spad{i1} to \\spad{i2} and returns them as a new matrix.")) (|appendRow!| (((|Void|) $ (|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|)))) "\\spad{appendRow!(A, \\spad{r)}} appends the row \\spad{r} at the end of the matrix \\spad{A}.")) (|consRow!| (((|Void|) $ (|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|)))) "\\spad{consRow!(A, \\spad{r)}} inserts the row \\spad{r} at the top of the matrix \\spad{A}.")) (|deleteRow!| (((|Void|) $ (|Integer|)) "\\spad{deleteRow(A, i)} deletes the \\spad{i}-th row of the matrix \\spad{A}.")) (|setRow!| (((|Void|) $ (|Integer|) (|List| |#1|) (|List| |#2|)) "\\spad{setRow!(A, i, ind, ent)} sets the \\spad{i}-th row of the matrix \\spad{A}. Its indices are \\spad{ind}; the entries \\spad{ent}.") (((|Void|) $ (|Integer|) (|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|)))) "\\spad{setRow!(A, i, ind, ent)} sets the \\spad{i}-th row of the matrix \\spad{A} to the value \\spad{r}.")) (|row| (((|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|))) $ (|Integer|)) "\\spad{row(A, i)} returns the \\spad{i}-th row of the matrix \\spad{A}.")) (|setelt!| (((|Void|) $ (|Integer|) |#1| |#2|) "\\spad{setelt!(A, i, \\spad{c,} \\spad{d)}} sets the entry of the matrix \\spad{A} in row \\spad{i} and in the column with index \\spad{c} to the value \\spad{d}.")) (|elt| ((|#2| $ (|Integer|) |#1|) "\\spad{elt(A, i, \\spad{c)}} returns the entry of the matrix \\spad{A} in row \\spad{i} and in the column with index \\spad{c}.")) (|new| (($ (|List| |#1|) (|Integer|)) "\\spad{new(inds, nrows)} generates a new matrix with \\spad{nrows} rows and columns enumerated by the indices \\spad{inds}. The matrix is empty, the zero matrix.")) (|sortedPurge!| (((|Void|) $ (|Mapping| (|Boolean|) |#1|)) "\\spad{sortedPurge!(A, crit)} is like \\spad{purge}, however, with the additional assumption that \\spad{crit} respects the ordering of the indices.")) (|purge!| (((|Void|) $ (|Mapping| (|Boolean|) |#1|)) "\\spad{purge!(A, crit)} eliminates all columns belonging to an index \\spad{c} such that \\spad{crit(c)} yields \\spad{true}.")) (|elimZeroCols!| (((|Void|) $) "\\spad{elimZeroCols!(A)} removes columns which contain only zeros. This effects basically only the value of \\spad{allIndices(A)}.")) (|allIndices| (((|List| |#1|) $) "\\spad{allIndices(A)} returns all indices used for enumerating the columns of the matrix \\spad{A}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(A)} returns the number of rows of the matrix \\spad{A}.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(A)} returns the number of columns of the matrix \\spad{A}.")) (|copy| (($ $) "\\spad{copy(A)} returns a copy of the matrix \\spad{A}.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(A)} yields the matrix \\spad{A} in the usual matrix type.")) (|finiteAggregate| ((|attribute|) "Matrices are finite.")) (|shallowlyMutable| ((|attribute|) "Matrices may be altered destructively."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) │ │ │ -(|SquareMatrix| |ndim| R) │ │ │ -((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices, where the number of rows \\spad{(=} number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R.}")) (|central| ((|attribute|) "the elements of the Ring \\spad{R,} viewed as diagonal matrices, commute with all matrices and, indeed, are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m.}"))) │ │ │ -((|unitsKnown| . T) (|central| |has| |#2| (ATTRIBUTE (|commutative| "*"))) (|finiteAggregate| . T) (|rightUnitary| . T) (|leftUnitary| . T)) │ │ │ -((|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#2| (QUOTE (|commutative| "*"))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|Field|))) (OR (|HasAttribute| |#2| (QUOTE (|commutative| "*"))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) │ │ │ -(|Switch|) │ │ │ -((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and \\spad{y}.}")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = \\spad{y}.}")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or \\spad{y}.}")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned, limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Asp31| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs, needed for NAG routine d02ejf, for example: \\blankline \\tab{5}SUBROUTINE PEDERV(X,Y,PW)\\br \\tab{5}DOUBLE PRECISION X,Y(*)\\br \\tab{5}DOUBLE PRECISION PW(3,3)\\br \\tab{5}PW(1,1)=-0.03999999999999999D0\\br \\tab{5}PW(1,2)=10000.0D0*Y(3)\\br \\tab{5}PW(1,3)=10000.0D0*Y(2)\\br \\tab{5}PW(2,1)=0.03999999999999999D0\\br \\tab{5}PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2))\\br \\tab{5}PW(2,3)=-10000.0D0*Y(2)\\br \\tab{5}PW(3,1)=0.0D0\\br \\tab{5}PW(3,2)=60000000.0D0*Y(2)\\br \\tab{5}PW(3,3)=0.0D0\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ +(|CharacterClass|) │ │ │ +((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which alphanumeric? is true.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which alphabetic? is true.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which lowerCase? is true.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which upperCase? is true.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which hexDigit? is true.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which digit? is true.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l.}") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s.}"))) │ │ │ +((|finiteAggregate| . T) (|partiallyOrderedSet| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|Character|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Character|) (QUOTE (|Finite|))) (|HasCategory| (|Character|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|Finite|)))) (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|)))))) │ │ │ +(|DisplayPackage|) │ │ │ +((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner, including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l,} and centers them within a list of strings which is \\spad{i} characters long, in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s.}") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s,} and centers it within a string of length i, in which the other elements of the string are composed of as many replications as possible of the second indicated string, \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s.}")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings, \\spad{l,} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Asp35| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs, needed for NAG routines c05pbf, c05pcf, for example: \\blankline \\tab{5}SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)\\br \\tab{5}DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)\\br \\tab{5}INTEGER LDFJAC,N,IFLAG\\br \\tab{5}IF(IFLAG.EQ.1)THEN\\br \\tab{7}FVEC(1)=(-1.0D0*X(2))+X(1)\\br \\tab{7}FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2)\\br \\tab{7}FVEC(3)=3.0D0*X(3)\\br \\tab{5}ELSEIF(IFLAG.EQ.2)THEN\\br \\tab{7}FJAC(1,1)=1.0D0\\br \\tab{7}FJAC(1,2)=-1.0D0\\br \\tab{7}FJAC(1,3)=0.0D0\\br \\tab{7}FJAC(2,1)=0.0D0\\br \\tab{7}FJAC(2,2)=2.0D0\\br \\tab{7}FJAC(2,3)=-1.0D0\\br \\tab{7}FJAC(3,1)=0.0D0\\br \\tab{7}FJAC(3,2)=0.0D0\\br \\tab{7}FJAC(3,3)=3.0D0\\br \\tab{5}ENDIF\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ +(|RationalFunctionFactor| UP) │ │ │ +((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Asp74| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs, needed for NAG routine d03eef, for example: \\blankline \\tab{5} SUBROUTINE BNDY(X,Y,A,B,C,IBND)\\br \\tab{5} DOUBLE PRECISION A,B,C,X,Y\\br \\tab{5} INTEGER IBND\\br \\tab{5} IF(IBND.EQ.0)THEN\\br \\tab{7} A=0.0D0\\br \\tab{7} B=1.0D0\\br \\tab{7} C=-1.0D0*DSIN(X)\\br \\tab{5} ELSEIF(IBND.EQ.1)THEN\\br \\tab{7} A=1.0D0\\br \\tab{7} B=0.0D0\\br \\tab{7} C=DSIN(X)*DSIN(Y)\\br \\tab{5} ELSEIF(IBND.EQ.2)THEN\\br \\tab{7} A=1.0D0\\br \\tab{7} B=0.0D0\\br \\tab{7} C=DSIN(X)*DSIN(Y)\\br \\tab{5} ELSEIF(IBND.EQ.3)THEN\\br \\tab{7} A=0.0D0\\br \\tab{7} B=1.0D0\\br \\tab{7} C=-1.0D0*DSIN(Y)\\br \\tab{5} ENDIF\\br \\tab{5} END")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ +(|FiniteRankNonAssociativeAlgebra&| S R) │ │ │ +((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit, similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left, respectively right, minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique), or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique), or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique), or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra, or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra, or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note that the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note that the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities, that is, finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0, for all \\spad{a},b,c in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element, which is a right inverse of \\spad{a}, or \\spad{\"failed\"} if there is no unit element, if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element, which is a left inverse of \\spad{a}, or \\spad{\"failed\"} if there is no unit element, if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element, which is both a left and a right inverse of \\spad{a}, or \\spad{\"failed\"} if there is no unit element, if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},b,c in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)}, where \\spad{a*b \\spad{:=} a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative, characteristic is not 2, and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},b,c in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)}, where \\spad{a*b \\spad{:=} (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra, that is, satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra, that is, satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},b,c in the algebra. For example, this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a}, \\spad{b} in the algebra. Note that we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a}, \\spad{b} in the algebra. Note that we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a}, \\spad{b} in the algebra. Note that we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a}, \\spad{b} in the algebra. Note that we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative, that is, \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},b,c in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note that this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the right trace of the product \\spad{vi*vj}. Note that this is the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the left trace of the product \\spad{vi*vj}. Note that this is the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + \\spad{...} + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},...,\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},...,\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for \\spad{k} in 1..m]} defined by \\spad{vi * \\spad{vj} = \\spad{gammaij1} * \\spad{v1} + \\spad{...} + gammaijm * vm}, where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},...,\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) │ │ │ NIL │ │ │ +((|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) │ │ │ +(|PAdicRational| |p|) │ │ │ +((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(i = k.., a[i] * p^i) where the a[i] lie in 0,1,...,(p - 1)."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|RealConstant|))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|StepThrough|))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (LIST (QUOTE |PAdicInteger|) (|devaluate| |#1|)))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |Evalable|) (LIST (QUOTE |PAdicInteger|) (|devaluate| |#1|)))) (|HasCategory| (|PAdicInteger| |#1|) (LIST (QUOTE |Eltable|) (LIST (QUOTE |PAdicInteger|) (|devaluate| |#1|)) (LIST (QUOTE |PAdicInteger|) (|devaluate| |#1|)))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|PAdicInteger| |#1|) (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|FloatingPointSystem&| S) │ │ │ +((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact, it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline 1: base of the exponent where the actual implemenations are usually binary or decimal)\\br 2: precision of the mantissa (arbitrary or fixed)\\br 3: rounding error for operations \\blankline Because a Float is an approximation to the real numbers, even though it is defined to be a join of a Field and OrderedRing, some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x.}")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x.}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order \\spad{x}} is the order of magnitude of \\spad{x.} Note that \\spad{base \\spad{**} order \\spad{x} \\spad{<=} \\spad{|x|} < base \\spad{**} \\spad{(1} + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * \\spad{b} \\spad{**} e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() \\spad{**} e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) │ │ │ NIL │ │ │ -(|Asp42| |nameOne| |nameTwo| |nameThree|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs, needed for NAG routines d02raf and d02saf in particular. These ASPs are in fact three Fortran routines which return a vector of functions, and their derivatives \\spad{wrt} Y(i) and also a continuation parameter EPS, for example: \\blankline \\tab{5}SUBROUTINE G(EPS,YA,YB,BC,N)\\br \\tab{5}DOUBLE PRECISION EPS,YA(N),YB(N),BC(N)\\br \\tab{5}INTEGER N\\br \\tab{5}BC(1)=YA(1)\\br \\tab{5}BC(2)=YA(2)\\br \\tab{5}BC(3)=YB(2)-1.0D0\\br \\tab{5}RETURN\\br \\tab{5}END\\br \\tab{5}SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N)\\br \\tab{5}DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N)\\br \\tab{5}INTEGER N\\br \\tab{5}AJ(1,1)=1.0D0\\br \\tab{5}AJ(1,2)=0.0D0\\br \\tab{5}AJ(1,3)=0.0D0\\br \\tab{5}AJ(2,1)=0.0D0\\br \\tab{5}AJ(2,2)=1.0D0\\br \\tab{5}AJ(2,3)=0.0D0\\br \\tab{5}AJ(3,1)=0.0D0\\br \\tab{5}AJ(3,2)=0.0D0\\br \\tab{5}AJ(3,3)=0.0D0\\br \\tab{5}BJ(1,1)=0.0D0\\br \\tab{5}BJ(1,2)=0.0D0\\br \\tab{5}BJ(1,3)=0.0D0\\br \\tab{5}BJ(2,1)=0.0D0\\br \\tab{5}BJ(2,2)=0.0D0\\br \\tab{5}BJ(2,3)=0.0D0\\br \\tab{5}BJ(3,1)=0.0D0\\br \\tab{5}BJ(3,2)=1.0D0\\br \\tab{5}BJ(3,3)=0.0D0\\br \\tab{5}RETURN\\br \\tab{5}END\\br \\tab{5}SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N)\\br \\tab{5}DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N)\\br \\tab{5}INTEGER N\\br \\tab{5}BCEP(1)=0.0D0\\br \\tab{5}BCEP(2)=0.0D0\\br \\tab{5}BCEP(3)=0.0D0\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ +((|HasAttribute| |#1| (QUOTE |arbitraryExponent|)) (|HasAttribute| |#1| (QUOTE |arbitraryPrecision|))) │ │ │ +(|MultivariateFactorize| OV E R P) │ │ │ +((|constructor| (NIL "This is the top level package for doing multivariate factorization over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Asp41| |nameOne| |nameTwo| |nameThree|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs, needed for NAG routines d02raf and d02saf in particular. These ASPs are in fact three Fortran routines which return a vector of functions, and their derivatives \\spad{wrt} Y(i) and also a continuation parameter EPS, for example: \\blankline \\tab{5}SUBROUTINE FCN(X,EPS,Y,F,N)\\br \\tab{5}DOUBLE PRECISION EPS,F(N),X,Y(N)\\br \\tab{5}INTEGER N\\br \\tab{5}F(1)=Y(2)\\br \\tab{5}F(2)=Y(3)\\br \\tab{5}F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS)\\br \\tab{5}RETURN\\br \\tab{5}END\\br \\tab{5}SUBROUTINE JACOBF(X,EPS,Y,F,N)\\br \\tab{5}DOUBLE PRECISION EPS,F(N,N),X,Y(N)\\br \\tab{5}INTEGER N\\br \\tab{5}F(1,1)=0.0D0\\br \\tab{5}F(1,2)=1.0D0\\br \\tab{5}F(1,3)=0.0D0\\br \\tab{5}F(2,1)=0.0D0\\br \\tab{5}F(2,2)=0.0D0\\br \\tab{5}F(2,3)=1.0D0\\br \\tab{5}F(3,1)=-1.0D0*Y(3)\\br \\tab{5}F(3,2)=4.0D0*EPS*Y(2)\\br \\tab{5}F(3,3)=-1.0D0*Y(1)\\br \\tab{5}RETURN\\br \\tab{5}END\\br \\tab{5}SUBROUTINE JACEPS(X,EPS,Y,F,N)\\br \\tab{5}DOUBLE PRECISION EPS,F(N),X,Y(N)\\br \\tab{5}INTEGER N\\br \\tab{5}F(1)=0.0D0\\br \\tab{5}F(2)=0.0D0\\br \\tab{5}F(3)=2.0D0*Y(2)**2-2.0D0\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ +(|GeneralHenselPackage| RP TP) │ │ │ +((|constructor| (NIL "General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts lfact, the factorization mod \\spad{prime} of pol, to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts lfacts, that are the factors of \\spad{pol} mod prime, to factors of \\spad{pol} mod prime**k > bound. No recombining is done ."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Asp77| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs, needed for NAG routine d02gbf, for example: \\blankline \\tab{5}SUBROUTINE FCNF(X,F)\\br \\tab{5}DOUBLE PRECISION X\\br \\tab{5}DOUBLE PRECISION F(2,2)\\br \\tab{5}F(1,1)=0.0D0\\br \\tab{5}F(1,2)=1.0D0\\br \\tab{5}F(2,1)=0.0D0\\br \\tab{5}F(2,2)=-10.0D0\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ +(|HTMLFormat|) │ │ │ +((|constructor| (NIL "HtmlFormat provides a coercion from OutputForm to html.")) (|display| (((|Void|) (|String|)) "\\spad{display(o)} prints the string returned by coerce. \\blankline \\spad{X} display(coerce(sqrt(3+x)::OutputForm)$HTMLFORM)$HTMLFORM")) (|exprex| (((|String|) (|OutputForm|)) "\\spad{exprex(o)} coverts \\spadtype{OutputForm} to \\spadtype{String} \\blankline \\spad{X} exprex(sqrt(3+x)::OutputForm)$HTMLFORM")) (|coerceL| (((|String|) (|OutputForm|)) "\\spad{coerceL(o)} changes \\spad{o} in the standard output format to html \\indented{1}{format and displays result as one long string.} \\blankline \\spad{X} coerceL(sqrt(3+x)::OutputForm)$HTMLFORM")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to html \\indented{1}{format and displays formatted result.} \\blankline \\spad{X} coerceS(sqrt(3+x)::OutputForm)$HTMLFORM")) (|coerce| (((|String|) (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to html format. \\blankline \\spad{X} coerce(sqrt(3+x)::OutputForm)$HTMLFORM"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|AlgebraGivenByStructuralConstants| R |n| |ls| |gamma|) │ │ │ -((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring, given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]}, where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for \\spad{k} in 1..rank()]} defined by \\spad{ai * aj = \\spad{gammaij1} * \\spad{a1} + \\spad{...} + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) │ │ │ -((|unitsKnown| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) │ │ │ -(|Asp80| |name|) │ │ │ -((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs, needed for NAG routine d02kef, for example: \\blankline \\tab{5}SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR)\\br \\tab{5}DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3)\\br \\tab{5}YL(1)=XL\\br \\tab{5}YL(2)=2.0D0\\br \\tab{5}YR(1)=1.0D0\\br \\tab{5}YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM))\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ +(|PlacesOverPseudoAlgebraicClosureOfFiniteField| K) │ │ │ +((|constructor| (NIL "The following is part of the PAFF package"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ComplexDoubleFloatMatrix|) │ │ │ -((|constructor| (NIL "This is a low-level domain which implements matrices (two dimensional arrays) of complex double precision floating point numbers. Indexing is 0 based, there is no bound checking (unless provided by lower level).")) (|qnew| (($ (|Integer|) (|Integer|)) "\\spad{qnew(n, \\spad{m)}} creates a new uninitialized \\spad{n} by \\spad{m} matrix. \\blankline \\spad{X} t1:CDFMAT:=qnew(3,4)"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ -((|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Complex| (|DoubleFloat|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Complex|) (QUOTE (|DoubleFloat|))))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|SetCategory|)))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|IntegralDomain|))) (|HasAttribute| (|Complex| (|DoubleFloat|)) (QUOTE (|commutative| "*"))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|CommutativeRing|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|Field|)))) │ │ │ -(|ComplexDoubleFloatVector|) │ │ │ -((|constructor| (NIL "This is a low-level domain which implements vectors (one dimensional arrays) of complex double precision floating point numbers. Indexing is 0 based, there is no bound checking (unless provided by lower level).")) (|vector| (($ (|List| (|Complex| (|DoubleFloat|)))) "\\spad{vector(l)} converts the list \\spad{l} to a vector. \\blankline \\spad{X} t1:List(Complex(DoubleFloat)):=[1+2*\\%i,3+4*\\%i,-5-6*\\%i] \\spad{X} t2:CDFVEC:=vector(t1)")) (|qnew| (($ (|Integer|)) "\\spad{qnew(n)} creates a new uninitialized vector of length \\spad{n.} \\blankline \\spad{X} t1:CDFVEC:=qnew 7"))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|SetCategory|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|OrderedSet|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|AbelianSemiGroup|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|AbelianMonoid|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|AbelianGroup|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|Monoid|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|Ring|))) (AND (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|RadicalCategory|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|Ring|)))) (AND (|HasCategory| (|Complex| (|DoubleFloat|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Complex|) (QUOTE (|DoubleFloat|))))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|Complex| (|DoubleFloat|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Complex|) (QUOTE (|DoubleFloat|))))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| (|Complex| (|DoubleFloat|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Complex|) (QUOTE (|DoubleFloat|))))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|SetCategory|)))))) │ │ │ -(|Cell| |TheField|) │ │ │ +(|Asp9| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs, needed for NAG routines d02bhf, d02cjf, d02ejf. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y,} for example: \\blankline \\tab{5}DOUBLE PRECISION FUNCTION G(X,Y)\\br \\tab{5}DOUBLE PRECISION X,Y(*)\\br \\tab{5}G=X+Y(1)\\br \\tab{5}RETURN\\br \\tab{5}END \\blankline If the user provides a constant value for \\spad{G,} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) │ │ │ NIL │ │ │ NIL │ │ │ +(|TableauxBumpers| S) │ │ │ +((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row, producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls,} then zips (see map) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using slex, then creating a tableau using tab1.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau llp. Operation \\spad{bat1} is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau llp, using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<}, returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf,} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf,} and returns a record"))) │ │ │ NIL │ │ │ -(|ComplexIntegerSolveLinearPolynomialEquation| R CR) │ │ │ -((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], \\spad{g)}} where (fi relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} \\spad{(j} \\spad{\\=} i) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists"))) │ │ │ NIL │ │ │ +(|SubSpaceComponentProperty|) │ │ │ +((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} is not documented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,b)} is not documented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,b)} is not documented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} is not documented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} is not documented")) (|new| (($) "\\spad{new()} is not documented"))) │ │ │ NIL │ │ │ -(|ComplexFactorization| RR PR) │ │ │ -((|constructor| (NIL "This package has no description")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) │ │ │ NIL │ │ │ +(|GrayCode|) │ │ │ +((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set, only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector \\spad{ww} to start a loop using nextSubsetGray(ww,n)")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector \\spad{vv} whose components have the following meanings:\\br vv.1: a vector of length \\spad{n} whose entries are 0 or 1. This can be interpreted as a code for a subset of the set 1,...,n; \\spad{vv.1} differs from \\spad{ww.1} by exactly one entry;\\br \\spad{vv.2.1} is the number of the entry of \\spad{vv.1} which will be changed next time;\\br \\spad{vv.2.1} = \\spad{n+1} means that \\spad{vv.1} is the last subset; trying to compute nextSubsetGray(vv) if \\spad{vv.2.1} = \\spad{n+1} will produce an error!\\br \\blankline The other components of \\spad{vv.2} are needed to compute nextSubsetGray efficiently. Note that this is an implementation of [Williamson, Topic II, 3.54, \\spad{p.} 112] for the special case \\spad{r1} = \\spad{r2} = \\spad{...} = \\spad{rn} = 2; Note that nextSubsetGray produces a side-effect, nextSubsetGray(vv) and \\spad{vv} \\spad{:=} nextSubsetGray(vv) will have the same effect."))) │ │ │ NIL │ │ │ -(|CombinatorialFunction| R F) │ │ │ -((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), \\spad{n} = a..b)} returns f(a) * \\spad{...} * f(b) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), \\spad{n)}} returns the formal product P(n) which verifies P(n+1)/P(n) = f(n).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), \\spad{n} = a..b)} returns f(a) + \\spad{...} + f(b) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), \\spad{n)}} returns the formal sum S(n) which verifies S(n+1) - S(n) = f(n).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, \\spad{x)}} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n,} \\spad{n!;}")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, \\spad{r)}} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time, n!/(n-r)!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, \\spad{r)}} returns the number of subsets of \\spad{r} objects \\indented{1}{taken among \\spad{n} objects, n!/(r! * (n-r)!);} \\blankline \\spad{X} [binomial(5,i) for \\spad{i} in 0..5]")) (** ((|#2| |#2| |#2|) "\\spad{a \\spad{**} \\spad{b}} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F;} error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) │ │ │ NIL │ │ │ +(|NormInMonogenicAlgebra| R |PolR| E |PolE|) │ │ │ +((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm \\spad{q}} returns the norm of \\spad{q,} the product of all the conjugates of \\spad{q.}"))) │ │ │ NIL │ │ │ -(|ComplexPattern| R S CS) │ │ │ -((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) │ │ │ NIL │ │ │ +(|FiniteFieldCyclicGroup| |p| |extdeg|) │ │ │ +((|constructor| (NIL "FiniteFieldCyclicGroup(p,n) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element, a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial, which is created by createPrimitivePoly from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size, and use \\spadtype{SingleInteger} for representing field elements, hence, there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|Finite|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| (|PrimeField| |#1|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|PrimeField| |#1|) (QUOTE (|Finite|))))) │ │ │ +(|SupFractionFactorizer| E OV R P) │ │ │ +((|constructor| (NIL "SupFractionFactorize contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R.} Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R.}"))) │ │ │ NIL │ │ │ -(|Complex| R) │ │ │ -((|constructor| (NIL "\\spadtype{Complex(R)} creates the domain of elements of the form \\spad{a + \\spad{b} * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R,} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) │ │ │ -((|noZeroDivisors| OR (|has| |#1| (|IntegralDomain|)) (AND (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|additiveValuation| |has| |#1| (ATTRIBUTE |additiveValuation|)) (|multiplicativeValuation| |has| |#1| (ATTRIBUTE |multiplicativeValuation|)) (|complex| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|))) (AND (|HasCategory| |#1| (QUOTE (|RadicalCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (|HasCategory| |#1| (QUOTE (|RealConstant|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (OR (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (OR (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Eltable|) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OpenMath|))) (|HasCategory| |#1| (QUOTE (|RealNumberSystem|))) (AND (|HasCategory| |#1| (QUOTE (|RealNumberSystem|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Eltable|) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (AND (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|)))) (AND (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|Finite|)))) (AND (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|OpenMath|)))) (AND (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|RealConstant|)))) (AND (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|))))) (AND (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|Field|))) (AND (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))))) (OR (AND (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))))) (OR (AND (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasAttribute| |#1| (QUOTE |additiveValuation|)) (|HasAttribute| |#1| (QUOTE |multiplicativeValuation|)) (AND (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))))) │ │ │ -(|ComplexRootPackage| UP |Par|) │ │ │ -((|constructor| (NIL "This package provides functions complexZeros for finding the complex zeros of univariate polynomials with complex rational number coefficients. The results are to any user specified precision and are returned as either complex rational number or complex floating point numbers depending on the type of the second argument which specifies the precision.")) (|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly, eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps."))) │ │ │ NIL │ │ │ +(|CylindricalAlgebraicDecompositionUtilities| R P) │ │ │ +((|gcdBasisAdd| (((|List| |#2|) |#2| (|List| |#2|)) "\\spad{gcdBasisAdd(p,lp)} adds one polynomial to list of pairwise relatively prime polynomials")) (|gcdBasis| (((|List| |#2|) (|List| |#2|)) "\\spad{gcdBasis(lp)} decomposes a list of polynomials into pairwise relatively prime polynomials")) (|squareFreeBasis| (((|List| |#2|) (|List| |#2|)) "\\blankline"))) │ │ │ NIL │ │ │ -(|ComplexPatternMatch| R S CS) │ │ │ -((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression cexpr. res contains the variables of \\spad{pat} which are already matched and their matches."))) │ │ │ NIL │ │ │ -((|HasCategory| (|Polynomial| |#2|) (LIST (QUOTE |PatternMatchable|) (|devaluate| |#1|)))) │ │ │ -(|ComplexTrigonometricManipulations| R F) │ │ │ -((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real \\spad{f,} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real \\spad{f}.}")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, \\spad{x)}} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, \\spad{x)}} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) │ │ │ +(|VectorFunctions2| A B) │ │ │ +((|constructor| (NIL "This package provides operations which all take as arguments vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B.} The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B.}")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, \\spad{v)}} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, \\spad{v)}} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function func. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function func, increasing initial subsequences of the vector vec, and the element ident."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ComplexRootFindingPackage| R UP) │ │ │ -((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken's idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version, the precision (see digits) is not increased when this is necessary to avoid rounding errors. Hence it is the user's responsibility to increase the precision if necessary. Note also, if this package is called with, for example, Fraction Integer, the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage's variant of Graeffe's method to construct circles which separate roots to get a good start polynomial, one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in factors which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound, by default being 10 \\spad{**} (-3) to eps, if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal globalDigits is set to \\em \\spad{ceiling(1/r)**2*10} being 10**7 by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n,} the center of gravity, which is coeffient of \\spad{x**(n-1)} divided by \\spad{n} times coefficient of \\spad{x**n}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of 1+globalEps, where globalEps is the internal error bound, which can be set by setErrorBound.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of errQuot.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots, and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly, eps)} determines a start polynomial start by using \"startPolynomial then it increases the exponent \\spad{n} of start \\spad{**} \\spad{n} mod \\spad{poly} to get an approximate factor of poly, in general of degree \"degree \\spad{poly} -1\". Then a divisor cascade is calculated and the best splitting is chosen, as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,eps,info)} determines a start polynomial start by using \"startPolynomial then it increases the exponent \\spad{n} of start \\spad{**} \\spad{n} mod \\spad{poly} to get an approximate factor of poly, in general of degree \"degree \\spad{poly} -1\". Then a divisor cascade is calculated and the best splitting is chosen, as soon as the error is small enough. If \\spad{info} is true, then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note that this function depends on abs.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe \\spad{p}} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p.}")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost globalEps, the internal error bound, which can be set by setErrorBound. An overall error bound \\spad{eps0} is determined and iterated tree-like calls to pleskenSplit are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p, eps)} tries to factor \\spad{p} into linear factors with error atmost eps. An overall error bound \\spad{eps0} is determined and iterated tree-like calls to pleskenSplit are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p, eps, info)} tries to factor \\spad{p} into linear factors with error atmost eps. An overall error bound \\spad{eps0} is determined and iterated tree-like calls to pleskenSplit are used to get the factorization. If info is true, then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial \\spad{tp} is smaller than degree of polynomial \\spad{p,} both monic. A sequence of divisions is calculated using the remainder, made monic, as divisor for the the next division. The result contains also the error of the factorizations, the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial \\spad{tp} is smaller than degree of polynomial \\spad{p,} both monic. A sequence of divisions are calculated using the remainder, made monic, as divisor for the the next division. The result contains also the error of the factorizations, the norm of the remainder polynomial. If info is true, then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p, eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by eps.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant globalEps which you may change by setErrorBound."))) │ │ │ +(|GradedAlgebra| R E) │ │ │ +((|constructor| (NIL "GradedAlgebra(R,E) denotes ``E-graded R-algebra''. A graded algebra is a graded module together with a degree preserving R-linear map, called the product. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving R-linear product: \\blankline \\spad{degree product(a,b) = degree a + degree \\spad{b}} \\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)} \\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)} \\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)} \\spad{product(a,product(b,c)) = product(product(a,b),c)}")) ((|One|) (($) "\\spad{1} is the identity for \\spad{product}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|d02AgentsPackage|) │ │ │ -((|constructor| (NIL "\\indented{1}{Author: Brian Dupee} Date Created: May 1994 Date Last Updated: January 1997 Description:")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and, therefore, an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units''. It returns a value in the range [0,1].\\indent{20} 400 ``operation units'' \\spad{->} 0.75 200 ``operation units'' \\spad{->} 0.5 83 ``operation units'' \\spad{->} 0.25 \\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which O(10) equates to mildly stiff wheras stiffness ratios of O(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which O(10) equates to mildly stiff wheras stiffness ratios of O(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,symbols,values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,C2)} is for interacting attributes"))) │ │ │ +(|ConstantLODE| R F L) │ │ │ +((|constructor| (NIL "Solution of linear ordinary differential equations, constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, \\spad{g,} \\spad{x)}} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op \\spad{y} = \\spad{g},} and the \\spad{yi}'s form a basis for the solutions of \\spad{op \\spad{y} = 0}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|d01WeightsPackage|) │ │ │ -((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type, and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x},} returning the value of \\omega (\\notequal 1) and the operator."))) │ │ │ +(|FortranTemplate|) │ │ │ +((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream, followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp,} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp,} writing the result out to \\spad{fn.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|d03eefAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) │ │ │ +(|SequentialDifferentialVariable| S) │ │ │ +((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v,} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v.} This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order}, and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(u), \\spadfun{order}(u))."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|DoubleResultantPackage| F UP UPUP R) │ │ │ -((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, \\spad{')}} returns p(x) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) │ │ │ +(|ModularField| R |Mod| |reduction| |merge| |exactQuo|) │ │ │ +((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing}, \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} is not documented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} is not documented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} is not documented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} is not documented"))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|FactorisationOverPseudoAlgebraicClosureOfRationalNumber| K) │ │ │ +((|constructor| (NIL "Part of the Package for Algebraic Function Fields in one variable PAFF"))) │ │ │ NIL │ │ │ -(|d01AgentsPackage|) │ │ │ -((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,t,r)} changes the name of item \\axiom{s} in \\axiom{r} to \\axiom{t}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{x}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{x}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) │ │ │ NIL │ │ │ +(|FortranCodePackage1|) │ │ │ +((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and, where appropriate, naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1, I2, and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran, \\spad{I1} and \\spad{I2}")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}"))) │ │ │ NIL │ │ │ -(|TopLevelDrawFunctionsForAlgebraicCurves| R |Ex|) │ │ │ -((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) │ │ │ NIL │ │ │ +(|ListMonoidOps| S E |un|) │ │ │ +((|constructor| (NIL "This internal package represents monoid (abelian or not, with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, \\spad{a1\\^e1} \\spad{...} an\\^en)} returns \\spad{f(a1)\\^e1 \\spad{...} f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, \\spad{a1\\^e1} \\spad{...} an\\^en)} returns \\spad{a1\\^f(e1) \\spad{...} an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, \\spad{y)}} returns \\spad{x + \\spad{y}} where \\spad{+} is the monoid operation, which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, \\spad{x)}} returns \\spad{e * \\spad{s} + \\spad{x}} where \\spad{+} is the monoid operation, which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation, which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, \\spad{s)}} returns \\spad{a * \\spad{s}} where \\spad{*} is the monoid operation, which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l.}")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l,} destroying the element \\spad{l.}")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l.} This has some effect if the monoid is non-abelian, \\spad{reverse(a1\\^e1 \\spad{...} an\\^en) = an\\^en \\spad{...} a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, \\spad{n)}} returns the factor of the n^th monomial of \\spad{l.}")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, \\spad{n)}} returns the exponent of the n^th monomial of \\spad{l.}")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l.}")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (for example, s^e or \\spad{e} * \\spad{s).}")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l.}")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (for example. 0 or 1), \\spad{fop(a, \\spad{b)}} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (for example \\spad{a + \\spad{b},} \\spad{a * \\spad{b},} \\spad{ab}), and \\spad{fexp(a, \\spad{n)}} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (for example \\spad{n a}, \\spad{n * a}, \\spad{a \\spad{**} \\spad{n},} \\spad{a\\^n})."))) │ │ │ NIL │ │ │ -(|d01TransformFunctionType|) │ │ │ -((|constructor| (NIL "Since an infinite integral cannot be evaluated numerically it is necessary to transform the integral onto finite ranges. \\axiomType{d01TransformFunctionType} uses the mapping \\spad{x \\spad{->} 1/x} and contains the functions \\axiomFun{measure} and \\axiomFun{numericalIntegration}."))) │ │ │ NIL │ │ │ +(|LinearOrdinaryDifferentialOperator1| A) │ │ │ +((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition:\\br \\spad{(L1 * L2).(f) = \\spad{L1} \\spad{L2} \\spad{f}}"))) │ │ │ +((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ +(|InternalPrintPackage|) │ │ │ +((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(s)} prints \\axiom{s} at the current position of the cursor."))) │ │ │ NIL │ │ │ -(|DesingTreePackage| K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR |InfClsPoint| |DesTree| BLMET) │ │ │ -((|constructor| (NIL "The following is all the categories, domains and package used for the desingularisation be means of monoidal transformation (Blowing-up)")) (|genusTreeNeg| (((|Integer|) (|NonNegativeInteger|) (|List| |#10|)) "\\spad{genusTreeNeg(n,listOfTrees)} computes the \"genus\" of a curve that may be not absolutly irreducible, where \\spad{n} is the degree of a polynomial pol defining the curve and \\spad{listOfTrees} is all the desingularisation trees at all singular points on the curve defined by pol. A \"negative\" genus means that the curve is reducible \\spad{!!.}")) (|genusTree| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|List| |#10|)) "\\spad{genusTree(n,listOfTrees)} computes the genus of a curve, where \\spad{n} is the degree of a polynomial pol defining the curve and \\spad{listOfTrees} is all the desingularisation trees at all singular points on the curve defined by pol.")) (|genusNeg| (((|Integer|) |#3|) "\\spad{genusNeg(pol)} computes the \"genus\" of a curve that may be not absolutly irreducible. A \"negative\" genus means that the curve is reducible \\spad{!!.}")) (|genus| (((|NonNegativeInteger|) |#3|) "\\spad{genus(pol)} computes the genus of the curve defined by pol.")) (|initializeParamOfPlaces| (((|Void|) |#10| (|List| |#3|)) "\\spad{initializeParamOfPlaces(tr,listOfFnc)} initialize the local parametrization at places corresponding to the leaves of \\spad{tr} according to the given list of functions in listOfFnc.") (((|Void|) |#10|) "\\spad{initializeParamOfPlaces(tr)} initialize the local parametrization at places corresponding to the leaves of \\spad{tr.}")) (|initParLocLeaves| (((|Void|) |#10|) "\\spad{initParLocLeaves(tr)} initialize the local parametrization at simple points corresponding to the leaves of \\spad{tr.}")) (|fullParamInit| (((|Void|) |#10|) "\\spad{fullParamInit(tr)} initialize the local parametrization at all places (leaves of tr), computes the local exceptional divisor at each infinytly close points in the tree. This function is equivalent to the following called: initParLocLeaves(tr) initializeParamOfPlaces(tr) blowUpWithExcpDiv(tr)")) (|desingTree| (((|List| |#10|) |#3|) "\\spad{desingTree(pol)} returns all the desingularisation trees of all singular points on the curve defined by pol.")) (|desingTreeAtPoint| ((|#10| |#5| |#3|) "\\spad{desingTreeAtPoint(pt,pol)} computes the desingularisation tree at the point \\spad{pt} on the curve defined by pol. This function recursively compute the tree.")) (|adjunctionDivisor| ((|#8| |#10|) "\\spad{adjunctionDivisor(tr)} compute the local adjunction divisor of a desingularisation tree \\spad{tr} of a singular point.")) (|divisorAtDesingTree| ((|#8| |#3| |#10|) "\\spad{divisorAtDesingTree(f,tr)} computes the local divisor of \\spad{f} at a desingularisation tree \\spad{tr} of a singular point."))) │ │ │ NIL │ │ │ +(|FieldOfPrimeCharacteristic|) │ │ │ +((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic, for example, finite fields, algebraic closures of fields of prime characteristic, transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a**p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|e04nafAnnaType|) │ │ │ -((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF, an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) │ │ │ +(|Asp4| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs, which take an expression in X(1) \\spad{..} X(NDIM) and produce a real function of the form: \\blankline \\tab{5}DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X)\\br \\tab{5}DOUBLE PRECISION X(NDIM)\\br \\tab{5}INTEGER NDIM\\br \\tab{5}FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0*\\br \\tab{4}&X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0)\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|EllipticFunctionsUnivariateTaylorSeries| |Coef| UTS) │ │ │ -((|constructor| (NIL "The elliptic functions \\spad{sn,} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) │ │ │ +(|LinearOrdinaryDifferentialOperatorFactorizer| F UP) │ │ │ +((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a, assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) │ │ │ NIL │ │ │ +((|HasCategory| |#1| (QUOTE (|AlgebraicallyClosedField|)))) │ │ │ +(|Asp12| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs, needed for NAG routine d02kef etc., for example: \\blankline \\tab{5}SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO)\\br \\tab{5}DOUBLE PRECISION ELAM,FINFO(15)\\br \\tab{5}INTEGER MAXIT,IFLAG\\br \\tab{5}IF(MAXIT.EQ.-1)THEN\\br \\tab{7}PRINT*,\"Output from Monit\"\\br \\tab{5}ENDIF\\br \\tab{5}PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4)\\br \\tab{5}RETURN\\br \\tab{5}END\\")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) │ │ │ NIL │ │ │ -(|ElementaryFunction| R F) │ │ │ -((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) │ │ │ NIL │ │ │ +(|FileNameCategory|) │ │ │ +((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory, \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string, a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory, \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string, a default is used.")) (|coerce| (((|String|) $) "\\spad{coerce(fn)} produces a string for a file name according to operating system-dependent conventions.") (($ (|String|)) "\\spad{coerce(s)} converts a string to a file name according to operating system-dependent conventions."))) │ │ │ NIL │ │ │ -(|DoubleFloatSpecialFunctions|) │ │ │ -((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|fresnelC| (((|Float|) (|Float|)) "\\spad{fresnelC(f)} denotes the Fresnel integral \\spad{C} \\blankline \\spad{X} fresnelC(1.5)")) (|fresnelS| (((|Float|) (|Float|)) "\\spad{fresnelS(f)} denotes the Fresnel integral \\spad{S} \\blankline \\spad{X} fresnelS(1.5)")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; \\spad{c;} z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; \\spad{c;} z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - \\spad{x} * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - \\spad{x} * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - \\spad{x} * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - \\spad{x} * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the second kind, \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + \\spad{x} w'(x) - (x^2+v^2)w(x) = 0}.} Note that the default implementation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the second kind, \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + \\spad{x} w'(x) - (x^2+v^2)w(x) = 0}.} Note that the default implementation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v.}")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind, \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + \\spad{x} w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind, \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + \\spad{x} w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind, \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + \\spad{x} w'(x) + (x^2-v^2)w(x) = 0}.} Note that the default implementation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind, \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + \\spad{x} w'(x) + (x^2-v^2)w(x) = 0}.} Note that the default implementation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v.}")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind, \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + \\spad{x} w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind, \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + \\spad{x} w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, \\spad{x)}} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, \\spad{x)}} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function, \\spad{psi(x)}, defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function, \\spad{psi(x)}, defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. \\indented{1}{This can often be computed even if \\spad{Gamma(x)} cannot.} \\blankline \\spad{X} a:Complex(DoubleFloat):=3.5*\\%i \\spad{X} logGamma(a)") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. \\indented{1}{This can often be computed even if \\spad{Gamma(x)} cannot.} \\blankline \\spad{X} \\spad{a:DoubleFloat:=3.5} \\spad{X} logGamma(a)")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, \\spad{y)}} is the Euler beta function, \\spad{B(x,y)}, defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, \\spad{y)}} is the Euler beta function, \\spad{B(x,y)}, defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Ei6| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei6(opr)} is the first approximation of \\spad{Ei} where the result is x*\\%e^-x*Ei(x) from 32 to infinity (preserves digits)")) (|Ei5| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei5(opr)} is the first approximation of \\spad{Ei} where the result is x*\\%e^-x*Ei(x) from 12 to 32 (preserves digits)")) (|Ei4| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei4(opr)} is the first approximation of \\spad{Ei} where the result is x*\\%e^-x*Ei(x) from 4 to 12 (preserves digits)")) (|Ei3| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei3(opr)} is the first approximation of \\spad{Ei} where the result is (Ei(x)-log \\spad{|x|} - gamma)/x from \\spad{-4} to 4 (preserves digits)")) (|Ei2| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei2(opr)} is the first approximation of \\spad{Ei} where the result is x*\\%e^-x*Ei(x) from \\spad{-10} to \\spad{-4} (preserves digits)")) (|Ei1| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei1(opr)} is the first approximation of \\spad{Ei} where the result is x*\\%e^-x*Ei(x) from -infinity to \\spad{-10} (preserves digits)")) (|Ei| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei(opr)} is the Exponential Integral function This is computed using a 6 part piecewise approximation. DoubleFloat can only preserve about 16 digits but the Chebyshev approximation used can give 30 digits.")) (|En| (((|OnePointCompletion| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|)) "\\spad{En(n,x)} is the \\spad{n}th Exponential Integral Function")) (E1 (((|OnePointCompletion| (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{E1(x)} is the Exponential Integral function The current implementation is a piecewise approximation involving one poly from \\spad{-4..4} and a second poly for \\spad{x} > 4")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function, \\spad{Gamma(x)}, defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function, \\spad{Gamma(x)}, defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) │ │ │ NIL │ │ │ +(|PlotTools|) │ │ │ +((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) │ │ │ NIL │ │ │ -(|ExpertSystemToolsPackage|) │ │ │ -((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{p} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions, multiplications, exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) │ │ │ NIL │ │ │ +(|Asp49| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs, needed for NAG routines e04dgf, e04ucf, for example: \\blankline \\tab{5}SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER)\\br \\tab{5}DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*)\\br \\tab{5}INTEGER N,IUSER(*),MODE,NSTATE\\br \\tab{5}OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7)\\br \\tab{4}&+(-1.0D0*X(2)*X(6))\\br \\tab{5}OBJGRD(1)=X(7)\\br \\tab{5}OBJGRD(2)=-1.0D0*X(6)\\br \\tab{5}OBJGRD(3)=X(8)+(-1.0D0*X(7))\\br \\tab{5}OBJGRD(4)=X(9)\\br \\tab{5}OBJGRD(5)=-1.0D0*X(8)\\br \\tab{5}OBJGRD(6)=-1.0D0*X(2)\\br \\tab{5}OBJGRD(7)=(-1.0D0*X(3))+X(1)\\br \\tab{5}OBJGRD(8)=(-1.0D0*X(5))+X(3)\\br \\tab{5}OBJGRD(9)=X(4)\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) │ │ │ NIL │ │ │ -(|ElementaryFunctionStructurePackage| R F) │ │ │ -((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions, using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, \\spad{k)}} returns \\spad{f} rewriting either \\spad{k} which must be an nth-root in terms of radicals already in \\spad{f}, or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn}, and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, \\spad{x)}} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, \\spad{x)}} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, \\spad{x)}} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) │ │ │ NIL │ │ │ +(|SetOfMIntegersInOneToN| |m| |n|) │ │ │ +((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S.}")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, \\spad{s)}} returns \\spad{true} is \\spad{p} is in \\spad{s,} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,...,a_m}. Error if {a_1,...,a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p,} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S,} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) │ │ │ NIL │ │ │ -(|ExpressionSpaceODESolver| R F) │ │ │ -((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, \\spad{y,} \\spad{x} = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, \\spad{y,} \\spad{x} = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, \\spad{y,} \\spad{x} = a, \\spad{y} a = \\spad{b)}} is equivalent to \\spad{seriesSolve(eq=0, \\spad{y,} x=a, \\spad{y} a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, \\spad{y,} \\spad{x} = a, \\spad{b)}} is equivalent to \\spad{seriesSolve(eq = 0, \\spad{y,} \\spad{x} = a, \\spad{y} a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, \\spad{b)}} is equivalent to \\spad{seriesSolve(eq, \\spad{y,} x=a, \\spad{y} a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "seriesSolve([eq1,...,eqn], [y1,...,yn], \\spad{x} = \\spad{a,[y1} a = b1,..., \\spad{yn} a = bn]) is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], \\spad{x} = a, \\spad{[y1} a = b1,..., \\spad{yn} a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], \\spad{x} = a, \\spad{[y1} a = b1,..., \\spad{yn} a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = \\spad{a,[y1} a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note that eqi must be of the form \\spad{fi(x, \\spad{y1} \\spad{x,} \\spad{y2} x,..., \\spad{yn} \\spad{x)} y1'(x) + gi(x, \\spad{y1} \\spad{x,} \\spad{y2} x,..., \\spad{yn} \\spad{x)} = h(x, \\spad{y1} \\spad{x,} \\spad{y2} x,..., \\spad{yn} x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0}, \\spad{y'(a) = b1}, \\spad{y''(a) = b2}, ...,\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, \\spad{y} \\spad{x,} y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y \\spad{x,} y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, \\spad{y} a = \\spad{b)}} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = \\spad{b}.} Note that \\spad{eq} must be of the form \\spad{f(x, \\spad{y} \\spad{x)} y'(x) + g(x, \\spad{y} \\spad{x)} = h(x, \\spad{y} x)}."))) │ │ │ NIL │ │ │ +(|InnerAlgFactor| F UP |AlExt| |AlPol|) │ │ │ +((|constructor| (NIL "Factorisation in a simple algebraic extension Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, \\spad{f)}} returns a prime factorisation of \\spad{p;} \\spad{f} is a factorisation map for elements of UP."))) │ │ │ NIL │ │ │ -(|ExpressionTubePlot|) │ │ │ -((|constructor| (NIL "Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)}, \\spad{y = g(t)}, \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\", the tube is considered to be closed; if \\spad{s} = \"open\", the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)}, \\spad{y = g(t)}, \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)}, \\spad{y = g(t)}, \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\", the tube is considered to be closed; if \\spad{s} = \"open\", the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius r(t) with \\spad{n} points on each circle about the curve \\spad{x = f(t)}, \\spad{y = g(t)}, \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s,} which may be a function of a constant, and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s.}"))) │ │ │ NIL │ │ │ +(|GcdDomain|) │ │ │ +((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However, if such a \\spadfun{factor} operation exist, factorization will be unique up to order and units.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the greatest common divisor (gcd) of univariate polynomials over the domain")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l.}") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y.}")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l.}") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y.}"))) │ │ │ +((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|ExpressionFunctions2| R S) │ │ │ -((|constructor| (NIL "Lifting of maps to Expressions.")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in e."))) │ │ │ +(|NonAssociativeRng&| S) │ │ │ +((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure, not necessarily commutative or associative, and not necessarily with unit.\\br Axioms\\br \\tab{5}x*(y+z) = x*y + x*z\\br \\tab{5}(x+y)*z = \\spad{x*z} + y*z\\br \\blankline Common Additional Axioms\\br \\tab{5}noZeroDivisors\\tab{5} ab = 0 \\spad{=>} \\spad{a=0} or \\spad{b=0}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FiniteDivisorCategory&| S F UP UPUP R) │ │ │ -((|constructor| (NIL "This category describes finite rational divisors on a curve, that is finite formal sums SUM(n * \\spad{P)} where the \\spad{n's} are integers and the \\spad{P's} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = \\spad{d},} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, \\spad{f]}} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, \\spad{d,} \\spad{d',} \\spad{g,} \\spad{r)}} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, \\spad{b,} \\spad{n)}} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, \\spad{y} = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, \\spad{b)}} makes the divisor \\spad{P:} \\spad{(x = a, \\spad{y} = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g.}") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal I.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D.}"))) │ │ │ +(|FunctionSpace&| S R) │ │ │ +((|constructor| (NIL "Category for formal functions A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, \\spad{k)}} returns \\spad{f} viewed as a univariate fraction in \\spad{k.}")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\spad{%.}")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\spad{%.}")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R.}")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 \\spad{...} fm\\^em)} returns \\spad{(f1)\\^e1 \\spad{...} (fm)\\^em} as an element of \\spad{%,} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\spad{%.}")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not, then numer(f) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R.}")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\spad{%.}") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\spad{%.}") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\spad{%.}") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\spad{%.}")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, \\spad{x]}} if \\spad{p = \\spad{n} * \\spad{x}} and \\spad{n \\spad{<>} 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = \\spad{m1} +...+ \\spad{mn}} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, \\spad{n]}} if \\spad{p = x**n} and \\spad{n \\spad{<>} 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * \\spad{...} * \\spad{x} \\spad{(n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, \\spad{s,} \\spad{n,} \\spad{f)}} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, \\spad{s,} \\spad{n,} \\spad{f)}} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,...,am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,...,am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], \\spad{y)}} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, \\spad{s,} \\spad{f,} \\spad{y)}} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f.}") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f.}") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f.}")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, \\spad{x,} \\spad{y,} \\spad{z,} \\spad{t)}} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, \\spad{x,} \\spad{y,} \\spad{z)}} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, \\spad{x,} \\spad{y)}} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, \\spad{x)}} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f.}")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R.} An error occurs if \\spad{f} is not an element of \\spad{R.}")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R.}"))) │ │ │ NIL │ │ │ +((|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|AbelianGroup|))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#2| (QUOTE (|Group|))) (|HasCategory| |#2| (QUOTE (|SemiGroup|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) │ │ │ +(|FortranMatrixFunctionCategory|) │ │ │ +((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP, making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|FiniteDivisorCategory| F UP UPUP R) │ │ │ -((|constructor| (NIL "This category describes finite rational divisors on a curve, that is finite formal sums SUM(n * \\spad{P)} where the \\spad{n's} are integers and the \\spad{P's} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = \\spad{d},} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, \\spad{f]}} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, \\spad{d,} \\spad{d',} \\spad{g,} \\spad{r)}} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, \\spad{b,} \\spad{n)}} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, \\spad{y} = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, \\spad{b)}} makes the divisor \\spad{P:} \\spad{(x = a, \\spad{y} = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g.}") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal I.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D.}"))) │ │ │ +(|DenavitHartenbergMatrix| R) │ │ │ +((|constructor| (NIL "4x4 Matrices for coordinate transformations\\br This package contains functions to create 4x4 matrices useful for rotating and transforming coordinate systems. These matrices are useful for graphics and robotics. (Reference: Robot Manipulators Richard Paul MIT Press 1981) \\blankline A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:\\br \\tab{5}\\spad{nx ox ax px}\\br \\tab{5}\\spad{ny oy ay py}\\br \\tab{5}\\spad{nz oz az pz}\\br \\tab{5}\\spad{0 0 0 1}\\br \\spad{(n,} o, and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(x,y,z)} returns a dhmatrix for translation by \\spad{x,} \\spad{y,} and \\spad{z} \\blankline \\spad{X} translate(1.0,2.0,3.0)")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{x,} \\spad{y} and \\spad{z} \\indented{1}{directions} \\blankline \\spad{X} scale(0.5,0.5,0.5)")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{z} for \\spad{r} degrees \\blankline \\spad{X} rotatez(30)")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{y} for \\spad{r} degrees \\blankline \\spad{X} rotatey(30)")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{x} for \\spad{r} degrees \\blankline \\spad{X} rotatex(30)")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix \\blankline identity()")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p} \\blankline \\spad{X} rotatex(30)*point([1,2,3])"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasAttribute| |#1| (QUOTE (|commutative| "*"))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ +(|PolynomialCategoryLifting| E |Vars| R P S) │ │ │ +((|constructor| (NIL "This package provides a very general map function, which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S,} maps polynomials into \\spad{S.} \\spad{S} is assumed to support \\spad{+}, \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, \\spad{p)}} takes a varmap, a mapping from the variables of polynomial \\spad{p} into \\spad{S,} coefmap, a mapping from coefficients of \\spad{p} into \\spad{S,} and \\spad{p,} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FiniteDivisorFunctions2| R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) │ │ │ -((|constructor| (NIL "Lift a map to finite divisors.")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) │ │ │ +(|GnuDraw|) │ │ │ +((|constructor| (NIL "This package provides support for gnuplot. These routines generate output files contain gnuplot scripts that may be processed directly by gnuplot. This is especially convenient in the axiom-wiki environment where gnuplot is called from LaTeX via gnuplottex.")) (|gnuDraw| (((|Void|) (|Expression| (|Float|)) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|String|)) "\\spad{gnuDraw} provides 3d surface plotting, default options \\blankline \\spad{X} gnuDraw(sin(x)*cos(y),x=-6..4,y=-4..6,\"out3d.dat\") \\spad{X} )sys gnuplot -persist out3d.dat \\spad{X} )sys evince out2d.dat.ps \\spad{--} linux \\spad{X} )sys open out2d.dat.ps \\spad{--} mac \\spad{X} )sys firefox out2d.dat.ps \\spad{--} everywhere") (((|Void|) (|Expression| (|Float|)) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|String|) (|List| (|DrawOption|))) "\\spad{gnuDraw} provides 3d surface plotting with options \\blankline \\spad{X} gnuDraw(sin(x)*cos(y),x=-6..4,y=-4..6,\"out3d.dat\",title==\"out3d\") \\spad{X} )sys gnuplot -persist out3d.dat \\spad{X} )sys evince out2d.dat.ps \\spad{--} linux \\spad{X} )sys open out2d.dat.ps \\spad{--} mac \\spad{X} )sys firefox out2d.dat.ps \\spad{--} everywhere") (((|Void|) (|Expression| (|Float|)) (|SegmentBinding| (|Float|)) (|String|)) "\\spad{gnuDraw} provides 2d plotting, default options \\blankline \\spad{X} gnuDraw(D(cos(exp(z))/exp(z^2),z),z=-5..5,\"out2d.dat\") \\spad{X} )sys gnuplot -persist out2d.dat \\spad{X} )sys evince out2d.dat.ps \\spad{--} linux \\spad{X} )sys open out2d.dat.ps \\spad{--} mac \\spad{X} )sys firefox out2d.dat.ps \\spad{--} everywhere") (((|Void|) (|Expression| (|Float|)) (|SegmentBinding| (|Float|)) (|String|) (|List| (|DrawOption|))) "\\spad{gnuDraw} provides 2d plotting with options \\blankline \\spad{X} gnuDraw(D(cos(exp(z))/exp(z^2),z),z=-5..5,\"out2d.dat\",title==\"out2d\") \\spad{X} )sys gnuplot -persist out2d.dat \\spad{X} )sys evince out2d.dat.ps \\spad{--} linux \\spad{X} )sys open out2d.dat.ps \\spad{--} mac \\spad{X} )sys firefox out2d.dat.ps \\spad{--} everywhere"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FunctionFieldCategoryFunctions2| R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) │ │ │ -((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, \\spad{p)}} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p.}"))) │ │ │ +(|ApplyRules| |Base| R F) │ │ │ +((|constructor| (NIL "This package apply rewrite rules to expressions, calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, \\spad{n)}} applies the rules r1,...,rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules r1,...,rn to \\spad{f} an unlimited number of times, until none of r1,...,rn is applicable to the expression."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FloatingComplexPackage| |Par|) │ │ │ -((|constructor| (NIL "This is a package for the approximation of complex solutions for systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, \\spad{lv,} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv.} Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv.}") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in eq, with precision eps.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p,} with precision eps.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp.}") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp.}"))) │ │ │ +(|SparseUnivariatePuiseuxSeries| |Coef| |var| |cen|) │ │ │ +((|constructor| (NIL "Sparse Puiseux series in one variable \\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring, the power series variable, and the center of the power series expansion. For example, \\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|))))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ +(|ComplexDoubleFloatMatrix|) │ │ │ +((|constructor| (NIL "This is a low-level domain which implements matrices (two dimensional arrays) of complex double precision floating point numbers. Indexing is 0 based, there is no bound checking (unless provided by lower level).")) (|qnew| (($ (|Integer|) (|Integer|)) "\\spad{qnew(n, \\spad{m)}} creates a new uninitialized \\spad{n} by \\spad{m} matrix. \\blankline \\spad{X} t1:CDFMAT:=qnew(3,4)"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Complex| (|DoubleFloat|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Complex|) (QUOTE (|DoubleFloat|))))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|SetCategory|)))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|IntegralDomain|))) (|HasAttribute| (|Complex| (|DoubleFloat|)) (QUOTE (|commutative| "*"))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|CommutativeRing|))) (|HasCategory| (|Complex| (|DoubleFloat|)) (QUOTE (|Field|)))) │ │ │ +(|CharacteristicPolynomialPackage| R) │ │ │ +((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r.} In particular, if \\spad{r} is the polynomial \\spad{'x,} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FindOrderFinite| F UP UPUP R) │ │ │ -((|constructor| (NIL "Finds the order of a divisor over a finite field")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) │ │ │ +(|FiniteDivisor| F UP UPUP R) │ │ │ +((|constructor| (NIL "This domains implements finite rational divisors on a curve, that is finite formal sums SUM(n * \\spad{P)} where the \\spad{n's} are integers and the \\spad{P's} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = \\spad{{f} | \\spad{(f)} \\spad{>=} -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over K[x]."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FortranCode|) │ │ │ -((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}'th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}'th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}'th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}'th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}'th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}'th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF \\spad{(s)} THEN \\spad{e} ELSE \\spad{f.}") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF \\spad{(s)} THEN e.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat \\spad{...} until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n.}") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm."))) │ │ │ +(|Integer|) │ │ │ +((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) │ │ │ +((|infinite| . T) (|noetherian| . T) (|canonicalsClosed| . T) (|canonical| . T) (|canonicalUnitNormal| . T) (|multiplicativeValuation| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|MachineFloat|) │ │ │ +((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} is not documented")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) │ │ │ +((|approximate| . T) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|FramedNonAssociativeAlgebraFunctions2| AR R AS S) │ │ │ -((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) │ │ │ +(|FiniteAggregateAttribute|) │ │ │ +((|constructor| (NIL "The class of all aggregates with a finite number of arguments"))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ +(|FiniteDivisorCategory&| S F UP UPUP R) │ │ │ +((|constructor| (NIL "This category describes finite rational divisors on a curve, that is finite formal sums SUM(n * \\spad{P)} where the \\spad{n's} are integers and the \\spad{P's} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = \\spad{d},} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, \\spad{f]}} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, \\spad{d,} \\spad{d',} \\spad{g,} \\spad{r)}} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, \\spad{b,} \\spad{n)}} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, \\spad{y} = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, \\spad{b)}} makes the divisor \\spad{P:} \\spad{(x = a, \\spad{y} = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g.}") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal I.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D.}"))) │ │ │ NIL │ │ │ -(|FortranProgram| |name| |returnType| |arguments| |symbols|) │ │ │ -((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} is not documented") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} is not documented") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} is not documented") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} is not documented") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} is not documented") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} is not documented") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} is not documented") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} is not documented") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} is not documented") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} is not documented") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} is not documented") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} is not documented") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} is not documented") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} is not documented") (($ (|FortranCode|)) "\\spad{coerce(fc)} is not documented"))) │ │ │ NIL │ │ │ +(|FullyPatternMatchable| R) │ │ │ +((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|FunctionSpacePrimitiveElement| R F) │ │ │ -((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, \\spad{q1,} \\spad{q2,} \\spad{q]}} such that \\spad{k(a1, a2) = k(a)}, \\spad{ai = qi(a)}, and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve a1, but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], \\spad{q]}} such that then \\spad{k(a1,...,an) = k(a)}, \\spad{ai = qi(a)}, and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) │ │ │ +(|IndexedDirectProductAbelianMonoid| A S) │ │ │ +((|constructor| (NIL "Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of generators indexed by the ordered set \\spad{S.} All items have finite support. Only non-zero terms are stored."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|AlgebraicallyClosedField|)))) │ │ │ -(|FunctionSpaceReduce| R F) │ │ │ -((|constructor| (NIL "Reduction from a function space to the rational numbers This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) │ │ │ NIL │ │ │ +(|VectorCategory| R) │ │ │ +((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects, that is, finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(v,v)), that is, the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(v,v)), that is, the magnitude")) (|cross| (($ $ $) "\\spad{cross(u,v)} constructs the cross product of \\spad{u} and \\spad{v.} Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (i,j)'th element is u(i)*v(j).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y.} Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * \\spad{r}} multiplies each component of the vector \\spad{y} by the element \\spad{r.}") (($ |#1| $) "\\spad{r * \\spad{y}} multiplies the element \\spad{r} times each component of the vector \\spad{y.}") (($ (|Integer|) $) "\\spad{n * \\spad{y}} multiplies each component of the vector \\spad{y} by the integer \\spad{n.}")) (- (($ $ $) "\\spad{x - \\spad{y}} returns the component-wise difference of the vectors \\spad{x} and \\spad{y.} Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x.}")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n.}")) (+ (($ $ $) "\\spad{x + \\spad{y}} returns the component-wise sum of the vectors \\spad{x} and \\spad{y.} Error: if \\spad{x} and \\spad{y} are not of the same length."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|FunctionSpaceUnivariatePolynomialFactor| R F UP) │ │ │ -((|constructor| (NIL "This package is used internally by IR2F")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers, returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers, returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) │ │ │ +(|ParametricSpaceCurveFunctions2| CF1 CF2) │ │ │ +((|constructor| (NIL "This package has no description")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|AlgebraicNumber|))))) │ │ │ -(|FunctionSpaceFunctions2| R A S B) │ │ │ -((|constructor| (NIL "Lifting of maps to function spaces This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S;}")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) │ │ │ NIL │ │ │ +(|BasicOperatorFunctions1| A) │ │ │ +((|constructor| (NIL "This package exports functions to set some commonly used properties of operators, including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a}, \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one, and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of op. If \\spad{op} has an \"\\%diff\" property \\spad{f,} then applying a derivation \\spad{D} to op(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [foo1,...,foon] as the \"\\%diff\" property of op. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + \\spad{...} + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one, and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of op. If \\spad{op} has an \"\\%eval\" property \\spad{f,} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of op. If \\spad{op} has an \"\\%eval\" property \\spad{f,} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f.} If it has, then \\spad{f(a1,...,an)} is returned, and \"failed\" otherwise."))) │ │ │ NIL │ │ │ -(|FunctionalSpecialFunction| R F) │ │ │ -((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiAiryBi| ((|#2| |#2|) "\\spad{iiAiryBi(x)} should be local but conditional.")) (|iiAiryAi| ((|#2| |#2|) "\\spad{iiAiryAi(x)} should be local but conditional.")) (|iiBesselK| ((|#2| (|List| |#2|)) "\\spad{iiBesselK(x)} should be local but conditional.")) (|iiBesselI| ((|#2| (|List| |#2|)) "\\spad{iiBesselI(x)} should be local but conditional.")) (|iiBesselY| ((|#2| (|List| |#2|)) "\\spad{iiBesselY(x)} should be local but conditional.")) (|iiBesselJ| ((|#2| (|List| |#2|)) "\\spad{iiBesselJ(x)} should be local but conditional.")) (|iipolygamma| ((|#2| (|List| |#2|)) "\\spad{iipolygamma(x)} should be local but conditional.")) (|iidigamma| ((|#2| |#2|) "\\spad{iidigamma(x)} should be local but conditional.")) (|iiBeta| ((|#2| (|List| |#2|)) "\\spad{iiBeta(x)} should be local but conditional.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F;} error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) │ │ │ +((|HasCategory| |#1| (QUOTE (|OrderedSet|)))) │ │ │ +(|GenerateUnivariatePowerSeries| R FE) │ │ │ +((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = \\spad{r0,r0} + \\spad{r,r0} + 2*r..., \\spad{a(n)} * \\spad{(x} - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = \\spad{r0} + \\spad{k*r} while \\spad{n} \\spad{<=} \\spad{r1,} \\spad{a(n)} * \\spad{(x} - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n \\spad{+->} a(n),x = a,r0..,r)} returns \\spad{sum(n = \\spad{r0,r0} + \\spad{r,r0} + 2*r..., a(n) * \\spad{(x} - a)**n)}; \\spad{series(n \\spad{+->} a(n),x = a,r0..r1,r)} returns \\spad{sum(n = \\spad{r0} + \\spad{k*r} while \\spad{n} \\spad{<=} \\spad{r1,} a(n) * \\spad{(x} - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * \\spad{(x} - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * \\spad{(x} - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n \\spad{+->} a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * \\spad{(x} - a)**n)}; \\spad{series(n \\spad{+->} a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * \\spad{(x} - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n \\spad{+->} a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = \\spad{r0,r0} + \\spad{r,r0} + 2*r..., \\spad{a(n)} * \\spad{(x} - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = \\spad{r0} + \\spad{k*r} while \\spad{n} \\spad{<=} \\spad{r1,} \\spad{a(n)} * \\spad{(x} - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n \\spad{+->} a(n),x = a,r0..,r)} returns \\spad{sum(n = \\spad{r0,r0} + \\spad{r,r0} + 2*r..., a(n) * \\spad{(x} - a)**n)}; \\spad{puiseux(n \\spad{+->} a(n),x = a,r0..r1,r)} returns \\spad{sum(n = \\spad{r0} + \\spad{k*r} while \\spad{n} \\spad{<=} \\spad{r1,} a(n) * \\spad{(x} - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * \\spad{(x} - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * \\spad{(x} - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n \\spad{+->} a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * \\spad{(x} - a)**n)}; \\spad{laurent(n \\spad{+->} a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * \\spad{(x} - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n \\spad{+->} a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n \\spad{+->} a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n \\spad{+->} a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|GaussianFactorizationPackage|) │ │ │ -((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p,} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer zi."))) │ │ │ +(|CyclotomicPolynomialPackage|) │ │ │ +((|constructor| (NIL "This package has no description")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FunctionSpaceToUnivariatePowerSeries| R FE |Expon| UPS TRAN |x|) │ │ │ -((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x.} The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function, but the compiler won't allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is true, log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is false, these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))}, where \\spad{f(x)} has a pole, will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"}, \\spad{\"real: two sides\"}, \\spad{\"real: left side\"}, \\spad{\"real: right side\"}, and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"}, then no series expansion will be computed because, viewed as a function of a complex variable, \\spad{atan(f(x))} has an essential singularity. Otherwise, the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined, a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator), then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"}, no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series, we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a, the user should perform the substitution \\spad{x \\spad{->} \\spad{x} + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is true, log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is false, these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))}, where \\spad{f(x)} has a pole, will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"}, \\spad{\"real: two sides\"}, \\spad{\"real: left side\"}, \\spad{\"real: right side\"}, and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"}, then no series expansion will be computed because, viewed as a function of a complex variable, \\spad{atan(f(x))} has an essential singularity. Otherwise, the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined, a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator), then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"}, no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series, a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a, the user should perform the substitution \\spad{x \\spad{->} \\spad{x} + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) │ │ │ +(|PatternFunctions2| R S) │ │ │ +((|constructor| (NIL "Lifts maps to patterns")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, \\spad{p)}} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|GenericNonAssociativeAlgebra| R |n| |ls| |gamma|) │ │ │ -((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra, the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},...,\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element, if the generic left trace form is associative, an algebra is separable if the generic left discriminant is invertible, if it is non-zero, there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)}, this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element, if the generic left trace form is associative, an algebra is separable if the generic left discriminant is invertible, if it is non-zero, there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)}, this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element, the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error, if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element, the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element, the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element, the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error, if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element, the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element, the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra, or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra, or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra, then a linear combination with the basis element is formed"))) │ │ │ -((|unitsKnown| |has| (|Fraction| (|Polynomial| |#1|)) (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ -((|HasCategory| (|Fraction| (|Polynomial| |#1|)) (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| (|Fraction| (|Polynomial| |#1|)) (QUOTE (|IntegralDomain|)))) │ │ │ -(|GnuDraw|) │ │ │ -((|constructor| (NIL "This package provides support for gnuplot. These routines generate output files contain gnuplot scripts that may be processed directly by gnuplot. This is especially convenient in the axiom-wiki environment where gnuplot is called from LaTeX via gnuplottex.")) (|gnuDraw| (((|Void|) (|Expression| (|Float|)) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|String|)) "\\spad{gnuDraw} provides 3d surface plotting, default options \\blankline \\spad{X} gnuDraw(sin(x)*cos(y),x=-6..4,y=-4..6,\"out3d.dat\") \\spad{X} )sys gnuplot -persist out3d.dat \\spad{X} )sys evince out2d.dat.ps \\spad{--} linux \\spad{X} )sys open out2d.dat.ps \\spad{--} mac \\spad{X} )sys firefox out2d.dat.ps \\spad{--} everywhere") (((|Void|) (|Expression| (|Float|)) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|String|) (|List| (|DrawOption|))) "\\spad{gnuDraw} provides 3d surface plotting with options \\blankline \\spad{X} gnuDraw(sin(x)*cos(y),x=-6..4,y=-4..6,\"out3d.dat\",title==\"out3d\") \\spad{X} )sys gnuplot -persist out3d.dat \\spad{X} )sys evince out2d.dat.ps \\spad{--} linux \\spad{X} )sys open out2d.dat.ps \\spad{--} mac \\spad{X} )sys firefox out2d.dat.ps \\spad{--} everywhere") (((|Void|) (|Expression| (|Float|)) (|SegmentBinding| (|Float|)) (|String|)) "\\spad{gnuDraw} provides 2d plotting, default options \\blankline \\spad{X} gnuDraw(D(cos(exp(z))/exp(z^2),z),z=-5..5,\"out2d.dat\") \\spad{X} )sys gnuplot -persist out2d.dat \\spad{X} )sys evince out2d.dat.ps \\spad{--} linux \\spad{X} )sys open out2d.dat.ps \\spad{--} mac \\spad{X} )sys firefox out2d.dat.ps \\spad{--} everywhere") (((|Void|) (|Expression| (|Float|)) (|SegmentBinding| (|Float|)) (|String|) (|List| (|DrawOption|))) "\\spad{gnuDraw} provides 2d plotting with options \\blankline \\spad{X} gnuDraw(D(cos(exp(z))/exp(z^2),z),z=-5..5,\"out2d.dat\",title==\"out2d\") \\spad{X} )sys gnuplot -persist out2d.dat \\spad{X} )sys evince out2d.dat.ps \\spad{--} linux \\spad{X} )sys open out2d.dat.ps \\spad{--} mac \\spad{X} )sys firefox out2d.dat.ps \\spad{--} everywhere"))) │ │ │ +(|HyperbolicFunctionCategory&| S) │ │ │ +((|constructor| (NIL "\\indented{1}{Date Last Updated: 14 May 1991} Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x.}")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x.}")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x.}")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x.}")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x.}")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|GenUFactorize| R) │ │ │ -((|constructor| (NIL "This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) │ │ │ +(|Plot|) │ │ │ +((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} is not documented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} is not documented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} is not documented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t)*cos(t)}, \\spad{y = f(t)*sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t)*cos(t)}, \\spad{y = f(t)*sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t \\spad{+->} (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; x-range of \\spad{[c,d]} and y-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t \\spad{+->} (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} is not documented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; x-range of \\spad{[c,d]} and y-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},..., \\spad{y = fm(x)} on the interval \\spad{a..b}; y-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},..., \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; y-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} \\indented{1}{on the interval \\spad{[a,b]}.} \\blankline \\spad{X} fp:=(t:DFLOAT):DFLOAT \\spad{+->} sin(t) \\spad{X} plot(fp,-1.0..1.0)$PLOT"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|GeneralTriangularSet| R E V P) │ │ │ -((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists w.r.t. the main variables of their members but they are displayed in reverse order."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#4| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#4| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#3| (QUOTE (|Finite|)))) │ │ │ -(|GenerateUnivariatePowerSeries| R FE) │ │ │ -((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = \\spad{r0,r0} + \\spad{r,r0} + 2*r..., \\spad{a(n)} * \\spad{(x} - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = \\spad{r0} + \\spad{k*r} while \\spad{n} \\spad{<=} \\spad{r1,} \\spad{a(n)} * \\spad{(x} - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n \\spad{+->} a(n),x = a,r0..,r)} returns \\spad{sum(n = \\spad{r0,r0} + \\spad{r,r0} + 2*r..., a(n) * \\spad{(x} - a)**n)}; \\spad{series(n \\spad{+->} a(n),x = a,r0..r1,r)} returns \\spad{sum(n = \\spad{r0} + \\spad{k*r} while \\spad{n} \\spad{<=} \\spad{r1,} a(n) * \\spad{(x} - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * \\spad{(x} - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * \\spad{(x} - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n \\spad{+->} a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * \\spad{(x} - a)**n)}; \\spad{series(n \\spad{+->} a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * \\spad{(x} - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n \\spad{+->} a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = \\spad{r0,r0} + \\spad{r,r0} + 2*r..., \\spad{a(n)} * \\spad{(x} - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = \\spad{r0} + \\spad{k*r} while \\spad{n} \\spad{<=} \\spad{r1,} \\spad{a(n)} * \\spad{(x} - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n \\spad{+->} a(n),x = a,r0..,r)} returns \\spad{sum(n = \\spad{r0,r0} + \\spad{r,r0} + 2*r..., a(n) * \\spad{(x} - a)**n)}; \\spad{puiseux(n \\spad{+->} a(n),x = a,r0..r1,r)} returns \\spad{sum(n = \\spad{r0} + \\spad{k*r} while \\spad{n} \\spad{<=} \\spad{r1,} a(n) * \\spad{(x} - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * \\spad{(x} - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * \\spad{(x} - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n \\spad{+->} a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * \\spad{(x} - a)**n)}; \\spad{laurent(n \\spad{+->} a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * \\spad{(x} - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n \\spad{+->} a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n \\spad{+->} a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n \\spad{+->} a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) │ │ │ +(|ContinuedFraction| R) │ │ │ +((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general continued fractions. This version is not restricted to simple, finite fractions and uses the \\spadtype{Stream} as a representation. The arithmetic functions assume that the approximants alternate below/above the convergence point. This is enforced by ensuring the partial numerators and partial denominators are greater than 0 in the Euclidean domain view of \\spad{R} (\\spad{sizeLess?(0, x)}).")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{x} to be computed. Normally entries are only computed as needed. If \\spadvar{x} is an infinite continued fraction, a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{n} entries in the continued fraction \\spadvar{x} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{x}. If the continued fraction is finite, then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{x}. If the continued fraction is finite, then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{x}. If the continued fraction is finite, then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{x}. If the continued fraction is finite, then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{x} in reduced form, the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{x}. That is, if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])}, then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{x}. That is, if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])}, then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{x}. That is, if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])}, then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{x}. That is, if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])}, then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is, the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + \\spad{a1/(b1} + \\spad{a2/(b2} + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{r} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) │ │ │ +(((|commutative| "*") . T) (|noZeroDivisors| . T) (|canonicalUnitNormal| . T) (|canonicalsClosed| . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|SymmetricPolynomial| R) │ │ │ +((|constructor| (NIL "This domain implements symmetric polynomial"))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (AND (|HasCategory| (|Partition|) (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|))) │ │ │ +(|XPolynomial| R) │ │ │ +((|constructor| (NIL "This type supports multivariate polynomials whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However, coefficients and variables commute."))) │ │ │ +((|noZeroDivisors| |has| |#1| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasAttribute| |#1| (QUOTE |noZeroDivisors|))) │ │ │ +(|EltableAggregate&| S |Dom| |Im|) │ │ │ +((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example, the list [1,7,4] can applied to 0,1, and 2 respectively will return the integers 1, 7, and 4; thus this list may be viewed as mapping 0 to 1, 1 to 7 and 2 to 4. In general, an aggregate can map members of a domain Dom to an image domain Im.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{x} to be \\axiom{y} under \\axiom{u}, without checking that \\axiom{x} is in the domain of \\axiom{u}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under u, assuming \\spad{x} is in the domain of u. Error: if \\spad{x} is not in the domain of u.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, \\spad{x)}} applies \\axiom{u} to \\axiom{x} without checking whether \\axiom{x} is in the domain of \\axiom{u}. If \\axiom{x} is not in the domain of \\axiom{u} a memory-access violation may occur. If a check on whether \\axiom{x} is in the domain of \\axiom{u} is required, use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, \\spad{x,} \\spad{y)}} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of u, and returns \\spad{y} otherwise. For example, if \\spad{u} is a polynomial in \\axiom{x} over the rationals, \\axiom{elt(u,n,0)} may define the coefficient of \\axiom{x} to the power \\spad{n,} returning 0 when \\spad{n} is out of range."))) │ │ │ NIL │ │ │ -(|GeneralPolynomialSet| R E |VarSet| P) │ │ │ -((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#4| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#4| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) │ │ │ -(|InnerAlgebraicNumber|) │ │ │ -((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z.}")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z.}")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| $ (QUOTE (|Ring|))) (|HasCategory| $ (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) │ │ │ -(|InnerNumericEigenPackage| K F |Par|) │ │ │ -((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m.} The parameter \\spad{eps} determines the type of the output, \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned, if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K.} This function returns a polynomial over \\spad{K,} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) │ │ │ +((|HasAttribute| |#1| (QUOTE |shallowlyMutable|))) │ │ │ +(|ModMonic| R |Rep|) │ │ │ +((|constructor| (NIL "This package has not been documented")) (|frobenius| (($ $) "\\spad{frobenius(x)} is not documented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} is not documented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} is not documented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} is not documented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} is not documented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} is not documented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} is not documented")) (|lift| ((|#2| $) "\\spad{lift(x)} is not documented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} is not documented")) (|modulus| ((|#2|) "\\spad{modulus()} is not documented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} is not documented"))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|additiveValuation| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|StepThrough|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (QUOTE (|FiniteFieldCategory|))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|HallBasis|) │ │ │ +((|constructor| (NIL "Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P.} Hall as given in Serre's book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,weight,right] which represents a \\spad{P.} Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P.} Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of rightCandidate, we have left factor leftOfRight, and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free d-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(d,2) if \\spad{n} = 2"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InfiniteProductCharacteristicZero| |Coef| UTS) │ │ │ -((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) │ │ │ +(|LiouvillianFunctionCategory|) │ │ │ +((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|fresnelC| (($ $) "\\spad{fresnelC(x)} is the Fresnel integral \\spad{C,} defined by C(x) = integrate(cos(t^2),t=0..x)")) (|fresnelS| (($ $) "\\spad{fresnelS(x)} is the Fresnel integral \\spad{S,} defined by S(x) = integrate(sin(t^2),t=0..x)")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x,} that is, \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x,} that is, the integral of \\spad{log(x) / \\spad{(1} - \\spad{x)} dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x,} that is, the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x,} that is, the integral of \\spad{cos(x) / \\spad{x} dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x,} that is, the integral of \\spad{sin(x) / \\spad{x} dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x,} that is, the integral of \\spad{exp(x)/x dx}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InnerNumericFloatSolvePackage| K F |Par|) │ │ │ -((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float}, \\spad{Fraction(Integer)}, \\spad{Complex(Float)}, \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and lsol.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials lnum, with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by eps.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision eps.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision eps."))) │ │ │ +(|Boolean|) │ │ │ +((|constructor| (NIL "\\spadtype{Boolean} is the elementary logic with 2 values: \\spad{true} and \\spad{false}")) (|test| (((|Boolean|) $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|implies| (($ $ $) "\\spad{implies(a,b)} returns the logical implication of Boolean \\spad{a} and \\spad{b.}")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b.}")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b.}")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive or of Boolean \\spad{a} and \\spad{b.}")) (|or| (($ $ $) "\\spad{a or \\spad{b}} returns the logical inclusive or of Boolean \\spad{a} and \\spad{b.}")) (|and| (($ $ $) "\\spad{a and \\spad{b}} returns the logical and of Boolean \\spad{a} and \\spad{b.}")) (|not| (($ $) "\\spad{not \\spad{n}} returns the negation of \\spad{n.}")) (^ (($ $) "\\spad{^ \\spad{n}} returns the negation of \\spad{n.}")) (|false| (($) "\\axiom{false} is a logical constant.")) (|true| (($) "\\axiom{true} is a logical constant."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InfiniteProductFiniteField| K UP |Coef| UTS) │ │ │ -((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) │ │ │ +(|FiniteSetAggregate| S) │ │ │ +((|constructor| (NIL "A finite-set aggregate models the notion of a finite set, that is, a collection of elements characterized by membership, but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate u.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate u.")) (|universe| (($) "\\spad{universe()}$D returns the universal set for finite set aggregate \\spad{D.}")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set u, that is, the set of all values not in u.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of u. Note that \\axiom{cardinality(u) = \\#u}."))) │ │ │ +((|finiteAggregate| . T) (|partiallyOrderedSet| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ +(|ParametricSurface| |ComponentFunction|) │ │ │ +((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to i. This indicates what the function for the coordinate component, i, of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1}, \\spad{c2}, and \\spad{c3}."))) │ │ │ NIL │ │ │ -(|InfiniteProductPrimeField| |Coef| UTS) │ │ │ -((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) │ │ │ NIL │ │ │ +(|DistinctDegreeFactorize| F FP) │ │ │ +((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus, modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of u**(2**i) for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v.}")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v.}")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by separateDegrees and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is true, the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p.}")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p.}"))) │ │ │ NIL │ │ │ -(|AlgebraicIntegration| R F) │ │ │ -((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, \\spad{x,} \\spad{y,} \\spad{d)}} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x;} \\spad{d} is the derivation to use on \\spad{k[x]}."))) │ │ │ NIL │ │ │ +(|NagLinearEquationSolvingPackage|) │ │ │ +((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\spad{\\br} \\tab{5}\\axiom{AX=B}, where \\axiom{B}\\br may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real, complex, symmetric, Hermitian positive- definite, or sparse. It may also be rectangular, in which case a least-squares solution is obtained.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl, \\indented{7}{lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations, sparse linear least- squares problems and sparse damped linear least-squares problems, using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides, AX=B, where A is a symmetric positive-definite variable-bandwidth matrix, which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork, \\spad{++} liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep, \\indented{7}{inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations, Ax=b, using a pre-conditioned conjugate gradient method, where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem, Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank, then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side, Ax=b or \\indented{1}{T} A x=b, where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side, using an LU factorization with partial pivoting, and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side, Ax=b, using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side, using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides, using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) │ │ │ NIL │ │ │ -(|ElementaryIntegration| R F) │ │ │ -((|constructor| (NIL "This package provides functions for integration, limited integration, extended integration and the risch differential equation for elementary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, \\spad{c]}} such that \\spad{dh/dx = \\spad{f} - \\spad{c} dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and k1,...,kn (the ki's must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, \\spad{x)}} = \\spad{g} such that \\spad{dg/dx = \\spad{f}.}")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, \\spad{x)}} returns a function \\spad{g} such that \\spad{dg/dx = \\spad{f}} if \\spad{g} exists, \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the gi's are among \\spad{[g1,...,gn]}, and \\spad{d(h+sum(ci log(gi)))/dx = \\spad{f},} if possible, \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, \\spad{x,} \\spad{g)}} returns functions \\spad{[h, \\spad{c]}} such that \\spad{dh/dx = \\spad{f} - cg}, if \\spad{(h,} \\spad{c)} exist, \"failed\" otherwise."))) │ │ │ NIL │ │ │ +(|RectangularMatrixCategory| |m| |n| R |Row| |Col|) │ │ │ +((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be R-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m.}")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m.} This is the dimension of the null space of the matrix \\spad{m.}")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m.}")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m.}")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r.} Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r,} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c,} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i}, \\spad{j.}") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b,} where \\spad{b(i,j) = a(i,j)} for all i, \\spad{j.}")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m.} Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m.} Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m.} Note that there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m,} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column, and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m.} Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m.}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m.}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m.}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m.}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m.}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m.}")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric. That is, \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j} and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (that is, \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j)} and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (that is, all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (that is, if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix, where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) │ │ │ +((|finiteAggregate| . T) (|nil| . T) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ -(|GenusZeroIntegration| R F L) │ │ │ -((|constructor| (NIL "Rationalization of several types of genus 0 integrands; This internal package rationalises integrands on curves of the form:\\br \\tab{5}\\spad{y\\^2 = a \\spad{x\\^2} + \\spad{b} \\spad{x} + c}\\br \\tab{5}\\spad{y\\^2 = (a \\spad{x} + \\spad{b)} / \\spad{(c} \\spad{x} + d)}\\br \\tab{5}\\spad{f(x, \\spad{y)} = 0} where \\spad{f} has degree 1 in x\\br The rationalization is done for integration, limited integration, extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op \\spad{f} = \\spad{g}} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = \\spad{c} f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y.}") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, \\spad{g,} \\spad{x,} \\spad{y,} \\spad{d,} \\spad{p)}} returns the solution of \\spad{op \\spad{f} = \\spad{g}.} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, \\spad{g,} \\spad{x,} \\spad{y,} foo, \\spad{t,} \\spad{c)}} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + \\spad{n} * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists, and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = \\spad{c} f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y.} Argument \\spad{foo}, called by \\spad{foo(a, \\spad{b,} x)}, is a function that solves \\spad{du/dx + \\spad{n} * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y.}") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, \\spad{g,} \\spad{x,} \\spad{y,} foo, \\spad{d,} \\spad{p)}} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + \\spad{n} * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists, and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument foo, called by \\spad{foo(a, \\spad{b,} x)}, is a function that solves \\spad{du/dx + \\spad{n} * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y.}")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, \\spad{x,} \\spad{y,} [u1,...,un], \\spad{z,} \\spad{t,} \\spad{c)}} returns functions \\spad{[h,[[ci, ui]]]} such that the ui's are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist, and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = \\spad{c} f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y.}") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, \\spad{x,} \\spad{y,} [u1,...,un], \\spad{d,} \\spad{p)}} returns functions \\spad{[h,[[ci, ui]]]} such that the ui's are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist, and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, \\spad{x,} \\spad{y,} \\spad{g,} \\spad{z,} \\spad{t,} \\spad{c)}} returns functions \\spad{[h, \\spad{d]}} such that \\spad{dh/dx = f(x,y) - \\spad{d} \\spad{g},} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = \\spad{c} f(t,y) dy}, and \\spad{c} and \\spad{t} are rational functions of \\spad{y.} Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, \\spad{x,} \\spad{y,} \\spad{g,} \\spad{d,} \\spad{p)}} returns functions \\spad{[h, \\spad{c]}} such that \\spad{dh/dx = f(x,y) - \\spad{c} \\spad{g},} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 \\spad{y(x)\\^2} = P(x)}, or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, \\spad{x,} \\spad{y,} \\spad{z,} \\spad{t,} \\spad{c)}} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = \\spad{c} f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y.} Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, \\spad{x,} \\spad{y,} \\spad{d,} \\spad{p)}} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 \\spad{y(x)\\^2} = P(x)}."))) │ │ │ +(|OutputPackage|) │ │ │ +((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream, as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream, as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream, as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream, as defined by \\spadsyscom{set output algebra}."))) │ │ │ NIL │ │ │ -((|HasCategory| |#3| (LIST (QUOTE |LinearOrdinaryDifferentialOperatorCategory|) (|devaluate| |#2|)))) │ │ │ -(|AlgebraicHermiteIntegration| F UP UPUP R) │ │ │ -((|constructor| (NIL "Algebraic Hermite reduction.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, \\spad{')}} returns \\spad{[g,h]} such that \\spad{f = \\spad{g'} + \\spad{h}} and \\spad{h} has a only simple finite normal poles."))) │ │ │ NIL │ │ │ +(|Table| |Key| |Entry|) │ │ │ +((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (OR (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) │ │ │ +(|ElementaryFunctionsUnivariatePuiseuxSeries| |Coef| ULS UPXS EFULS) │ │ │ +((|constructor| (NIL "This package provides elementary functions on any Laurent series domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z.}")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z.}")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z.}")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z.}")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z.}")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z.}")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z.}")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z.}")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z.}")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z.}")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z.}")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z.}")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z.}")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z.}")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z.}")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z.}")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z.}")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z.}")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z.}")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z.}")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z.}")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z.}")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z.}")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z.}")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z.}")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z.}")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z \\spad{**} \\spad{r}} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) │ │ │ NIL │ │ │ -(|AlgebraicIntegrate| R0 F UP UPUP R) │ │ │ -((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, \\spad{d)}} returns an algebraic function \\spad{g} such that \\spad{dg = \\spad{f}} if such a \\spad{g} exists, \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, \\spad{d)}} integrates \\spad{f} with respect to the derivation \\spad{d.} Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, \\spad{d)}} integrates \\spad{f} with respect to the derivation \\spad{d.}"))) │ │ │ +((|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ +(|RegularTriangularSetGcdPackage| R E V P TS) │ │ │ +((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(p,ts)} has the same specifications as squareFreePart from RegularTriangularSetCategory.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(p1,p2,ts)} has the same specifications as invertibleSet from RegularTriangularSetCategory.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(p1,p2,ts)} has the same specifications as invertible? from RegularTriangularSetCategory.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(p1,p2,ts)} has the same specifications as invertible? from RegularTriangularSetCategory.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(p1,p2,ts)} has the same specifications as lastSubResultant from RegularTriangularSetCategory.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(p1,p2,ts)} is an internal subroutine, exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,v,flag)} is an internal subroutine, exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(p1,p2,ts,inv?,break?)} is an internal subroutine, exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(p1,p2,ts)} is an internal subroutine, exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine, exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(s1,s2,s3)} is an internal subroutine, exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine, exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(s1,s2,s3)} is an internal subroutine, exported only for developement."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PatternMatchIntegration| R F) │ │ │ -((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, \\spad{x} = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, \\spad{x)}} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = \\spad{g} + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, \\spad{x)}} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = \\spad{g} + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, \\spad{x)}} returns \\spad{[c, \\spad{g]}} such that \\spad{f = \\spad{c} * \\spad{g}} and \\spad{c} does not involve \\spad{t}."))) │ │ │ +(|AnyFunctions1| S) │ │ │ +((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible, it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can, then such an object is returned. Otherwise, \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) │ │ │ NIL │ │ │ -((AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SpecialFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|LiouvillianFunctionCategory|))))) │ │ │ -(|IntegrationTools| R F) │ │ │ -((|constructor| (NIL "Tools for the integrator")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, \\spad{x,} int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int}, and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, \\spad{x)}} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x.}")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, \\spad{x)}} returns \\spad{f} minus any additive constant with respect to \\spad{x.}")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2.}")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], \\spad{x)}} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x.}")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], \\spad{x)}} returns the \\spad{ki} which involve \\spad{x.}"))) │ │ │ NIL │ │ │ -((AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|ElementaryFunctionCategory|))) (|HasCategory| |#2| (QUOTE (|LiouvillianFunctionCategory|)))) (AND (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|ElementaryFunctionCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) │ │ │ -(|PureAlgebraicIntegration| R F L) │ │ │ -((|constructor| (NIL "Integration of pure algebraic functions; This package provides functions for integration, limited integration, extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, \\spad{g,} \\spad{kx,} \\spad{y,} \\spad{x)}} returns the solution of \\spad{op \\spad{f} = \\spad{g}.} \\spad{y} is an algebraic function of \\spad{x.}")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, \\spad{f,} \\spad{g,} \\spad{x,} \\spad{y,} foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + \\spad{n} * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists, \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x;} \\spad{foo(a, \\spad{b,} \\spad{x)}} is a function that solves \\spad{du/dx + \\spad{n} * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y.} \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, \\spad{x,} \\spad{y,} [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the ui's are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist, \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x.}")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, \\spad{x,} \\spad{y,} \\spad{g)}} returns functions \\spad{[h, \\spad{c]}} such that \\spad{dh/dx = f(x,y) - \\spad{c} \\spad{g},} where \\spad{y} is an algebraic function of \\spad{x;} returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, \\spad{x,} \\spad{y)}} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x.}"))) │ │ │ +(|RealClosure| |TheField|) │ │ │ +((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(n,p)} gives a relative approximation of \\axiom{n} that has precision \\axiom{p}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(x)} is the main algebraic quantity of \\axiom{x} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) │ │ │ +((|noZeroDivisors| . T) (|canonicalUnitNormal| . T) (|canonicalsClosed| . T) (|leftUnitary| . T) (|rightUnitary| . T) ((|commutative| "*") . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|Fraction| (|Integer|)) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|Fraction| (|Integer|)) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (OR (|HasCategory| (|Fraction| (|Integer|)) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))))) │ │ │ +(|Any|) │ │ │ +((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : \\spad{S}} then when converted to \\spadtype{Any}, the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\indented{1}{\\spadtype{Any} are displayed. If \\spad{bool} is true} \\indented{1}{then the type of the original object that was converted} \\indented{1}{to \\spadtype{Any} will be printed. If \\spad{bool} is} \\indented{1}{false, it will not be printed.} \\blankline \\spad{X} u:=[1,7.2,3/2,x**2,\"wally\"] \\spad{X} showTypeInOutput(true) \\spad{X} \\spad{u}")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) │ │ │ NIL │ │ │ -((|HasCategory| |#3| (LIST (QUOTE |LinearOrdinaryDifferentialOperatorCategory|) (|devaluate| |#2|)))) │ │ │ -(|AssociatedJordanAlgebra| R A) │ │ │ -((|constructor| (NIL "AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*$A} to define the new multiplications \\spad{a*b \\spad{:=} (a *$A \\spad{b} + \\spad{b} *$A a)/2} (anticommutator). The usual notation \\spad{{a,b}_+} cannot be used due to restrictions in the current language. This domain only gives a Jordan algebra if the Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},\\spad{b},\\spad{c} in \\spad{A}. This relation can be checked by \\spadfun{jordanAdmissible?()$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (a non associative algebra over \\spad{R} which is a free R-module of finite rank, together with a fixed R-module basis), then the same is \\spad{true} for the associated Jordan algebra. Moreover, if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (a non associative algebra over \\spad{R} which is a free R-module of finite rank), then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(R,A)."))) │ │ │ -((|unitsKnown| OR (|and| (|has| |#2| (|FiniteRankNonAssociativeAlgebra| |#1|)) (|has| |#1| (|IntegralDomain|))) (AND (|has| |#2| (|FramedNonAssociativeAlgebra| |#1|)) (|has| |#1| (|IntegralDomain|)))) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ -((|HasCategory| |#2| (LIST (QUOTE |FramedNonAssociativeAlgebra|) (|devaluate| |#1|))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |FramedNonAssociativeAlgebra|) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE |FiniteRankNonAssociativeAlgebra|) (|devaluate| |#1|))) (OR (|HasCategory| |#2| (LIST (QUOTE |FiniteRankNonAssociativeAlgebra|) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE |FramedNonAssociativeAlgebra|) (|devaluate| |#1|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (LIST (QUOTE |FiniteRankNonAssociativeAlgebra|) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (LIST (QUOTE |FramedNonAssociativeAlgebra|) (|devaluate| |#1|)))))) │ │ │ -(|InnerTrigonometricManipulations| R F FG) │ │ │ -((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms, and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's}, in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) \\spad{b)}} returns \\spad{a + \\spad{i} \\spad{b}.}")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + \\spad{i} \\spad{b)}} returns \\spad{a + sqrt(-1) \\spad{b}.}")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + \\spad{i} \\spad{b)}} returns \\spad{a + \\spad{i} \\spad{b}} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) │ │ │ NIL │ │ │ +(|AffineAlgebraicSetComputeWithResultant| K |symb| |PolyRing| E |ProjPt|) │ │ │ +((|constructor| (NIL "The following is part of the PAFF package"))) │ │ │ NIL │ │ │ -(|Kovacic| F UP) │ │ │ -((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or P(u) such that \\spad{$e^{\\int(-a_1/2a_2)} e^{\\int u}$} is a solution of \\indented{5}{\\spad{$a_2 \\spad{y''} + \\spad{a_1} \\spad{y'} + \\spad{a0} \\spad{y} = 0$}} whenever \\spad{u} is a solution of \\spad{P \\spad{u} = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP}, not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or P(u) such that \\spad{$e^{\\int(-a_1/2a_2)} e^{\\int u}$} is a solution of \\indented{5}{\\spad{a_2 \\spad{y''} + \\spad{a_1} \\spad{y'} + \\spad{a0} \\spad{y} = 0}} whenever \\spad{u} is a solution of \\spad{P \\spad{u} = 0}. The equation must be already irreducible over the rational functions."))) │ │ │ NIL │ │ │ +(|Aggregate&| S) │ │ │ +((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate, designating any collection of objects, with heterogenous or homogeneous members, with a finite or infinite number of members, explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation r(x)\" An attribute \"finiteAggregate\" is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{# u} returns the number of items in u.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}$D creates an aggregate of type \\spad{D} with 0 elements. Note that The \\spad{$D} can be dropped if understood by context, for example \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of u. Note that for collections, \\axiom{copy(u) \\spad{==} \\spad{[x} for \\spad{x} in u]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) │ │ │ NIL │ │ │ -(|AssociatedLieAlgebra| R A) │ │ │ -((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*$A} to define the Lie bracket \\spad{a*b \\spad{:=} (a *$A \\spad{b} - \\spad{b} *$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},\\spad{b},\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank, together with a fixed \\spad{R}-module basis), then the same is \\spad{true} for the associated Lie algebra. Also, if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (a non associative algebra over \\spad{R} which is a free R-module of finite rank), then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(R,A)."))) │ │ │ -((|unitsKnown| OR (|and| (|has| |#2| (|FiniteRankNonAssociativeAlgebra| |#1|)) (|has| |#1| (|IntegralDomain|))) (AND (|has| |#2| (|FramedNonAssociativeAlgebra| |#1|)) (|has| |#1| (|IntegralDomain|)))) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ -((|HasCategory| |#2| (LIST (QUOTE |FramedNonAssociativeAlgebra|) (|devaluate| |#1|))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |FramedNonAssociativeAlgebra|) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE |FiniteRankNonAssociativeAlgebra|) (|devaluate| |#1|))) (OR (|HasCategory| |#2| (LIST (QUOTE |FiniteRankNonAssociativeAlgebra|) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE |FramedNonAssociativeAlgebra|) (|devaluate| |#1|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (LIST (QUOTE |FiniteRankNonAssociativeAlgebra|) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (LIST (QUOTE |FramedNonAssociativeAlgebra|) (|devaluate| |#1|)))))) │ │ │ -(|LinearOrdinaryDifferentialOperatorFactorizer| F UP) │ │ │ -((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a, assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) │ │ │ +((|HasAttribute| |#1| (QUOTE |finiteAggregate|))) │ │ │ +(|CanonicalUnitNormalAttribute|) │ │ │ +((|constructor| (NIL "The class of all integral domains such that we can choose a canonical representative for each class of associate elements. That is, \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a)} = \\spad{unitCanonical(b)}"))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|AlgebraicallyClosedField|)))) │ │ │ -(|LieSquareMatrix| |n| R) │ │ │ -((|constructor| (NIL "LieSquareMatrix(n,R) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R.} The Lie bracket (commutator) of the algebra is given by\\br \\spad{a*b \\spad{:=} (a *$SQMATRIX(n,R) \\spad{b} - \\spad{b} *$SQMATRIX(n,R) a)},\\br where \\spadfun{*$SQMATRIX(n,R)} is the usual matrix multiplication."))) │ │ │ -((|unitsKnown| . T) (|finiteAggregate| . T) (|rightUnitary| . T) (|leftUnitary| . T)) │ │ │ -((|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#2| (QUOTE (|commutative| "*"))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (OR (|HasAttribute| |#2| (QUOTE (|commutative| "*"))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) │ │ │ -(|LiouvillianFunction| R F) │ │ │ -((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b.}") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x.}")) (|fresnelC| ((|#2| |#2|) "\\spad{fresnelC(f)} denotes the Fresnel integral \\spad{C}")) (|fresnelS| ((|#2| |#2|) "\\spad{fresnelS(f)} denotes the Fresnel integral \\spad{S}")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) │ │ │ +(|FloatingComplexPackage| |Par|) │ │ │ +((|constructor| (NIL "This is a package for the approximation of complex solutions for systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, \\spad{lv,} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv.} Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv.}") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in eq, with precision eps.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p,} with precision eps.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp.}") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MultivariateFactorize| OV E R P) │ │ │ -((|constructor| (NIL "This is the top level package for doing multivariate factorization over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) │ │ │ +(|PoincareBirkhoffWittLyndonBasis| |VarSet|) │ │ │ +((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C.} Reutenauer (Oxford science publications).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|listOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{listOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, \\spad{l2,} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln}, where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|MachineComplex|) │ │ │ -((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) │ │ │ -((|noZeroDivisors| . T) (|canonicalUnitNormal| |has| (|MachineFloat|) (|Field|)) (|canonicalsClosed| |has| (|MachineFloat|) (|Field|)) (|complex| . T) (|multiplicativeValuation| |has| (|MachineFloat|) (ATTRIBUTE |multiplicativeValuation|)) (|additiveValuation| |has| (|MachineFloat|) (ATTRIBUTE |additiveValuation|)) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| (|MachineFloat|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|MachineFloat|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|Finite|))) (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|Field|))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|MachineFloat|) (QUOTE (|FiniteFieldCategory|))) (OR (|HasCategory| (|MachineFloat|) (QUOTE (|Field|))) (|HasCategory| (|MachineFloat|) (QUOTE (|FiniteFieldCategory|)))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |Eltable|) (QUOTE (|MachineFloat|)) (QUOTE (|MachineFloat|)))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |Evalable|) (QUOTE (|MachineFloat|)))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (QUOTE (|MachineFloat|)))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (OR (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|Field|))) (|HasCategory| (|MachineFloat|) (QUOTE (|FiniteFieldCategory|)))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|RealConstant|))) (|HasCategory| (|MachineFloat|) (QUOTE (|TranscendentalFunctionCategory|))) (AND (|HasCategory| (|MachineFloat|) (QUOTE (|RadicalCategory|))) (|HasCategory| (|MachineFloat|) (QUOTE (|TranscendentalFunctionCategory|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| (|MachineFloat|) (QUOTE (|RealNumberSystem|))) (AND (|HasCategory| (|MachineFloat|) (QUOTE (|RealNumberSystem|))) (|HasCategory| (|MachineFloat|) (QUOTE (|TranscendentalFunctionCategory|)))) (OR (|HasCategory| (|MachineFloat|) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|MachineFloat|) (QUOTE (|Field|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|))) (AND (|HasCategory| (|MachineFloat|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|MachineFloat|) (QUOTE (|Field|)))) (AND (|HasCategory| (|MachineFloat|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|Field|)))) (|HasCategory| (|MachineFloat|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|OrderedSet|))) (|HasCategory| (|MachineFloat|) (QUOTE (|IntegralDomain|))) (|HasAttribute| (|MachineFloat|) (QUOTE |multiplicativeValuation|)) (|HasAttribute| (|MachineFloat|) (QUOTE |additiveValuation|)) (AND (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|Field|))) (AND (|HasCategory| (|MachineFloat|) (QUOTE (|FiniteFieldCategory|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|))))) (OR (AND (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|MachineFloat|) (QUOTE (|Field|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|MachineFloat|) (QUOTE (|FiniteFieldCategory|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|))))) (OR (AND (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|Field|)))) (OR (AND (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|IntegralDomain|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|CharacteristicNonZero|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|MachineFloat|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|MachineFloat|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|MachineFloat|) (QUOTE (|FiniteFieldCategory|))))) │ │ │ -(|NagMatrixOperationsPackage|) │ │ │ -((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q,} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A, where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q,} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A, where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow, \\indented{7}{eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix, or, optionally, first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) │ │ │ +(|PartialFractionPackage| R) │ │ │ +((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials, and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition \\indented{1}{of the rational function \\spad{rf} with respect to the variable var.} \\blankline \\spad{X} a:=x+1/(y+1) \\spad{X} partialFraction(a,y)$PFRPAC(INT)"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NagEigenPackage|) │ │ │ -((|constructor| (NIL "This package uses the NAG Library to compute\\br \\tab{5}eigenvalues and eigenvectors of a matrix\\br \\tab{5} eigenvalues and eigenvectors of generalized matrix eigenvalue problems\\br \\tab{5}singular values and singular vectors of a matrix.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all, or part, of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all, or part, of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "f02fjf(n,k,tol,novecs,nrx,lwork,lrwork, \\indented{7}{liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "f02fjf(n,k,tol,novecs,nrx,lwork,lrwork, \\indented{7}{liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and, if required, all the eigenvectors of the generalized eigenproblem Ax=(lambda)Bx where A and \\spad{B} are real, square matrices, using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form, bisection and inverse iteration, where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)Bx, where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)Bx, where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) │ │ │ +(|Ring&| S) │ │ │ +((|constructor| (NIL "The category of rings with unity, always associative, but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note that \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring, or zero if no such \\spad{n} exists."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NagLinearEquationSolvingPackage|) │ │ │ -((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\spad{\\br} \\tab{5}\\axiom{AX=B}, where \\axiom{B}\\br may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real, complex, symmetric, Hermitian positive- definite, or sparse. It may also be rectangular, in which case a least-squares solution is obtained.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl, \\indented{7}{lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations, sparse linear least- squares problems and sparse damped linear least-squares problems, using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides, AX=B, where A is a symmetric positive-definite variable-bandwidth matrix, which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork, \\spad{++} liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep, \\indented{7}{inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations, Ax=b, using a pre-conditioned conjugate gradient method, where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem, Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank, then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side, Ax=b or \\indented{1}{T} A x=b, where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side, using an LU factorization with partial pivoting, and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side, Ax=b, using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side, using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides, using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) │ │ │ +(|SubSpace| |n| R) │ │ │ +((|constructor| (NIL "This domain is not documented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s.}")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s.} If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s.}")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s.}")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s.} If the property is closed, \\spad{True} is returned, otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s.}")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s.}")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace, \\spad{s,} along the path dictated by the list of non negative integers, li, which points to the component which has been traversed to. The subspace, \\spad{s,} is returned, where \\spad{s} is now the subspace pointed to by li.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace, \\spad{s,} to be that of \\spad{p,} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers, li, dictates the path to follow, or, to look at it another way, points to the component whose property is being defined. The subspace, \\spad{s,} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace, \\spad{s,} to be closed if \\spad{b} is true, or open if \\spad{b} is false. The list of non negative integers, li, dictates the path to follow, or, to look at it another way, points to the component whose closed property is to be set. The subspace, \\spad{s,} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location, ind, by replacing it with the point, \\spad{p} in the 3 dimensional subspace, \\spad{s.} An error message occurs if \\spad{s} is empty, otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace, \\spad{s,} with the 4 dimensional point indicated by the index location, i. The list of non negative integers, li, dictates the path to follow, or, to look at it another way, points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty, otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace, \\spad{s,} with the 4 dimensional point, \\spad{p.} The list of non negative integers, li, dictates the path to follow, or, to look at it another way, points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty, otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point, \\spad{p,} to the 3 dimensional subspace, \\spad{s.} \\spad{s2} point to the end of the subspace \\spad{s.} \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point, \\spad{p,} to the 3 dimensional subspace, \\spad{s.} The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point, \\spad{p,} to the 3 dimensional subspace, \\spad{s,} and returns the new total number of points in \\spad{s.}") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location, i, to the 3 dimensional subspace, \\spad{s.} The list of non negative integers, li, dictates the path to follow, or, to look at it another way, points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1}, then a specific lowest level component is being referenced. If it is less than \\spad{n - 1}, then some higher level component \\spad{(0} indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point, \\spad{p,} to the 3 dimensional subspace, \\spad{s.} The list of non negative integers, li, dictates the path to follow, or, to look at it another way, points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1}, then a specific lowest level component is being referenced. If it is less than \\spad{n - 1}, then some higher level component \\spad{(0} indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace}, \\spad{s,} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces, \\spad{ls,} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} is not documented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} is not documented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} is not documented")) (|children| (((|List| $) $) "\\spad{children(x)} is not documented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} is not documented")) (|birth| (($ $) "\\spad{birth(x)} is not documented")) (|subspace| (($) "\\spad{subspace()} is not documented")) (|new| (($) "\\spad{new()} is not documented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} is not documented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} is not documented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} is not documented"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NumericComplexEigenPackage| |Par|) │ │ │ -((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue, its algebraic multiplicity, and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision eps. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x.}") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) │ │ │ +(|PackageForAlgebraicFunctionFieldOverFiniteField| K |symb| BLMET) │ │ │ +((|constructor| (NIL "A package that implements the Brill-Noether algorithm. Part of the PAFF package")) (|ZetaFunction| (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|) (|PositiveInteger|)) "\\spad{ZetaFunction(pi)} returns the Zeta function of the curve in \\indented{1}{constant field extension. Calculated by using the L-Polynomial} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{ZetaFunction(2)$P1}") (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|)) "\\spad{ZetaFunction()} returns the Zeta function of the curve. \\indented{1}{Calculated by using the L-Polynomial} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{ZetaFunction()$P1}")) (|numberPlacesDegExtDeg| (((|Integer|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberPlacesDegExtDeg(d, \\spad{n)}} returns the number of \\indented{1}{places of degree \\spad{d} in the constant field extension of} \\indented{1}{degree \\spad{n}} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{numberPlacesDegExtDeg(3,2)$P1}")) (|numberRatPlacesExtDeg| (((|Integer|) (|PositiveInteger|)) "\\spad{numberRatPlacesExtDeg(n)} returns the number of rational \\indented{1}{places in the constant field extenstion of degree \\spad{n}} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{numberRatPlacesExtDeg(3)$P1}")) (|numberOfPlacesOfDegree| (((|Integer|) (|PositiveInteger|)) "\\spad{numberOfPlacesOfDegree(pi)} returns the number of places \\indented{1}{of the given degree} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} plc3:= \\spad{placesOfDegree(3)$P1} \\spad{X} \\spad{numberOfPlacesOfDegree(3)$P1}")) (|placesOfDegree| (((|List| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) (|PositiveInteger|)) "\\spad{placesOfDegree(d)} returns all places of degree \\spad{d} of the \\indented{1}{curve.} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} plc3:= \\spad{placesOfDegree(3)$P1}")) (|classNumber| (((|Integer|)) "\\spad{classNumber()} returns the class number of the curve. \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{classNumber()$P1}")) (|LPolynomial| (((|SparseUnivariatePolynomial| (|Integer|)) (|PositiveInteger|)) "\\spad{LPolynomial(d)} returns the L-Polynomial of the curve in \\indented{1}{constant field extension of degree \\spad{d.}} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{LPolynomial(2)$P1}") (((|SparseUnivariatePolynomial| (|Integer|))) "\\spad{LPolynomial()} returns the L-Polynomial of the curve. \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{LPolynomial()$P1}")) (|adjunctionDivisor| (((|Divisor| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|))) "\\spad{adjunctionDivisor computes} the adjunction divisor of the plane curve given by the polynomial defined by setCurve.")) (|intersectionDivisor| (((|Divisor| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) (|DistributedMultivariatePolynomial| |#2| |#1|)) "\\spad{intersectionDivisor(pol)} compute the intersection divisor of the \\indented{1}{form \\spad{pol} with the curve.} \\indented{1}{(If \\spad{pol} is not homogeneous an error message is issued).} \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} divZ \\spad{:=} intersectionDivisor(z)$P")) (|evalIfCan| (((|Union| |#1| "failed") (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{evalIfCan(u,pl)} evaluate the function \\spad{u} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{evalIfCan(f,g,pl)} evaluate the function \\spad{f/g} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{evalIfCan(f,pl)} evaluate \\spad{f} at the place \\spad{pl} (returns \"failed\" if it is a pole).")) (|eval| ((|#1| (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{eval(u,pl)} evaluate the function \\spad{u} at the place \\spad{pl.}") ((|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{eval(f,g,pl)} evaluate the function \\spad{f/g} at the place \\spad{pl.} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} plc3:= \\spad{placesOfDegree(3)$P1} \\spad{X} a:= elt( first \\spad{plc3} ,{} 1 ) \\spad{X} definingPolynomial(a) \\spad{X} \\spad{a^3} + \\spad{a^2} + 1 \\spad{X} \\spad{D:=} 2 * \\spad{reduce(+,(plc3} \\spad{::} List DIV PLACESPS \\spad{PF} 2)) \\spad{X} lB1:= \\spad{lBasis(D)$P1} \\spad{X} K4:= FFCG(2,4) \\spad{X} R4:= DMP([X,Y,Z],K4) \\spad{X} P4:= PAFFFF(K4,[X,Y,Z],BLQT) \\spad{X} \\spad{C4:R4:=C1} \\spad{X} \\spad{setCurve(C4)$P4} \\spad{X} \\spad{plc1} \\spad{:=} \\spad{placesOfDegree(1)$P4} \\spad{X} \\spad{mG:=matrix[[eval(f,lB1.den,pl)$P4} for \\spad{pl} in \\spad{plc1} ] for \\spad{f} in lB1.num] \\spad{X} \\spad{reduce(min,[33} - count(zero?,l) for \\spad{l} in listOfLists rowEchelon mG])") ((|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{eval(f,pl)} evaluate \\spad{f} at the place \\spad{pl.}")) (|interpolateForms| (((|List| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Divisor| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) (|NonNegativeInteger|)) "\\spad{interpolateForms(d,n)} returns a basis of the interpolate forms of \\indented{1}{degree \\spad{n} of the divisor \\spad{d.}} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} plc3:= \\spad{placesOfDegree(3)$P1} \\spad{X} \\spad{D:=} 2 * \\spad{reduce(+,(plc3} \\spad{::} List DIV PLACESPS \\spad{PF} 2)) \\spad{X} \\spad{interpolateForms(D,3)$P1}")) (|lBasis| (((|Record| (|:| |num| (|List| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|:| |den| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|Divisor| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|))) "\\spad{lBasis computes} a basis associated to the specified divisor \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} plc3:= \\spad{placesOfDegree(3)$P1} \\spad{X} \\spad{D:=} 2 * \\spad{reduce(+,(plc3} \\spad{::} List DIV PLACESPS \\spad{PF} 2)) \\spad{X} lB1:= \\spad{lBasis(D)$P1}")) (|parametrize| (((|NeitherSparseOrDensePowerSeries| (|PseudoAlgebraicClosureOfFiniteField| |#1|)) (|DistributedMultivariatePolynomial| |#2| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{parametrize(f,pl)} returns a local parametrization of \\spad{f} at the place \\spad{pl.}")) (|singularPoints| (((|List| (|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|))) "\\spad{singularPoints()} returns the singular points of the \\indented{1}{curve defined by the polynomial given to the package.} \\indented{1}{If the singular points lie in an extension of the specified} \\indented{1}{ground field an error message is issued specifying the extension} \\indented{1}{degree needed to find all singular points.} \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} singularPoints()$P")) (|rationalPoints| (((|List| (|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|))) "rationalPoints \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{rationalPoints()$P1}")) (|desingTree| (((|List| (|DesingTree| (|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |#1| |#2| |#3|)))) "\\spad{desingTree returns} the desingularisation trees at all singular points \\indented{1}{of the curve defined by the polynomial given to the package.} \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} desingTree()$P")) (|desingTreeWoFullParam| (((|List| (|DesingTree| (|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |#1| |#2| |#3|)))) "\\spad{desingTreeWoFullParam returns} the desingularisation trees at all \\indented{1}{singular points of the curve defined by the polynomial given to} \\indented{1}{the package. The local parametrizations are not computed.} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{desingTreeWoFullParam()$P1}")) (|genusNeg| (((|Integer|)) "genusNeg \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{genusNeg()$P1}")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus returns} the genus of the curve defined by the polynomial \\indented{1}{given to the package.} \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} g:=genus()$P")) (|theCurve| (((|DistributedMultivariatePolynomial| |#2| |#1|)) "\\spad{theCurve returns} the specified polynomial for the package. \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} theCurve()$P")) (|rationalPlaces| (((|List| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|))) "\\spad{rationalPlaces returns} all the rational places of the curve defined by the polynomial given to the package.")) (|projectivePoint| (((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|) (|List| (|PseudoAlgebraicClosureOfFiniteField| |#1|))) "projectivePoint \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} ProjPl \\spad{:=} PROJPLPS PrimeField \\spad{p} \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} g:=genus()$P \\spad{X} divZ \\spad{:=} intersectionDivisor(z)$P \\spad{X} pInf:= first supp divZ \\spad{X} p1:= projectivePoint( [1,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl1:= first placesAbove( \\spad{p1} \\spad{)$P} \\spad{X} p2:= projectivePoint( [2,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl2:= first placesAbove( \\spad{p2} \\spad{)$P} \\spad{X} p3:= projectivePoint( [3,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl3:= first placesAbove( \\spad{p3} \\spad{)$P} \\spad{X} p4:= projectivePoint( [4,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl4:= first placesAbove( \\spad{p4} \\spad{)$P} \\spad{X} p5:= projectivePoint( [5,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl5:= first placesAbove( \\spad{p5} \\spad{)$P}")) (|placesAbove| (((|List| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) (|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "placesAbove \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} ProjPl \\spad{:=} PROJPLPS PrimeField \\spad{p} \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} g:=genus()$P \\spad{X} divZ \\spad{:=} intersectionDivisor(z)$P \\spad{X} pInf:= first supp divZ \\spad{X} p1:= projectivePoint( [1,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl1:= first placesAbove( \\spad{p1} \\spad{)$P} \\spad{X} p2:= projectivePoint( [2,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl2:= first placesAbove( \\spad{p2} \\spad{)$P} \\spad{X} p3:= projectivePoint( [3,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl3:= first placesAbove( \\spad{p3} \\spad{)$P} \\spad{X} p4:= projectivePoint( [4,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl4:= first placesAbove( \\spad{p4} \\spad{)$P} \\spad{X} p5:= projectivePoint( [5,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl5:= first placesAbove( \\spad{p5} \\spad{)$P}")) (|pointDominateBy| (((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{pointDominateBy(pl)} returns the projective point dominated by the place \\spad{pl.}")) (|setCurve| (((|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|)) "\\spad{setCurve sets} the defining curve \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1}")) (|fullInfClsPt| (((|Void|)) "\\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} desingTree()$P \\spad{X} fullDesTree()$P \\spad{X} fullInfClsPt()$P \\spad{X} desingTree()$P")) (|fullDesTree| (((|Void|)) "fullDesTree \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} desingTree()$P \\spad{X} fullDesTree()$P \\spad{X} desingTree()$P")) (|homogenize| (((|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Integer|)) "\\spad{homogenize makes} the exponents of every term sum to a constant \\indented{1}{value shared by every term.} \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P}"))) │ │ │ NIL │ │ │ +((|HasCategory| (|PseudoAlgebraicClosureOfFiniteField| |#1|) (QUOTE (|Finite|)))) │ │ │ +(|InnerNormalBasisFieldFunctions| GF) │ │ │ +((|constructor| (NIL "InnerNormalBasisFieldFunctions(GF) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv \\spad{x}} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{**}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)}, interpreting \\spad{v} as an element of normal basis field, \\spad{q} the size of the ground field. This is done by a cyclic e-shift of the vector \\spad{v.}")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)}, interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note that for a description of the algorithm, see T.Itoh and S.Tsujii, \"A fast algorithm for computing multiplicative inverses in GF(2^m) using normal bases\", Information and Computation 78, pp.171-177, 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring, interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from D.R.Stinson, \"Some observations on parallel Algorithms for fast exponentiation in GF(2^n)\", Siam \\spad{J.} Computation, Vol.19, No.4, pp.711-717, August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ \\spad{...} + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic, where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF.}"))) │ │ │ NIL │ │ │ -(|NonLinearSolvePackage| R) │ │ │ -((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp.}") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv.}")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp.}") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv.}"))) │ │ │ NIL │ │ │ +(|SplittingTree| V C) │ │ │ +((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{true}. Thus, if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{true}, then \\axiom{status(value(d))} is \\axiom{true} for any subtree \\axiom{d} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another, \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(l,a,ls,sub?)} returns \\axiom{a} where the children list of \\axiom{l} has been set to \\axiom{[[s]$% for \\spad{s} in \\spad{ls} | not subNodeOf?(s,a,sub?)]}. Thus, if \\axiom{l} is not a node of \\axiom{a}, this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(l,a,ls)} returns \\axiom{a} where the children list of \\axiom{l} has been set to \\axiom{[[s]$% for \\spad{s} in \\spad{ls} | not nodeOf?(s,a)]}. Thus, if \\axiom{l} is not a node of \\axiom{a}, this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(s,a)} replaces a by remove(s,a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(s,a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{b} such that \\axiom{value(b)} and \\axiom{s} have the same value, condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(s,a,sub?)} returns \\spad{true} iff for some node \\axiom{n} in \\axiom{a} we have \\axiom{s = \\spad{n}} or \\axiom{status(n)} and \\axiom{subNode?(s,n,sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(s,a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{s}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(s),condition(s)]$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(v1,t,v2,lt)} creates a splitting tree with value (root vertex) given by \\axiom{[v,t]$S} and with children list given by \\axiom{[[[v,t]$S]$% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(v,t,ls)} creates a splitting tree with value (root vertex) given by \\axiom{[v,t]$S} and with children list given by \\axiom{[[s]$% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(v,t,la)} creates a splitting tree with value (root vertex) given by \\axiom{[v,t]$S} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(s)} creates a splitting tree with value (root vertex) given by \\axiom{s} and no children. Thus, if the status of \\axiom{s} is false, \\axiom{[s]} represents the starting point of the evaluation \\axiom{value(s)} under the hypothesis \\axiom{condition(s)}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any, else \"failed\" is returned."))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|SplittingNode| |#1| |#2|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|SplittingNode| |#1| |#2|) (LIST (QUOTE |Evalable|) (LIST (QUOTE |SplittingNode|) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (|SplittingNode| |#1| |#2|) (QUOTE (|SetCategory|))))) │ │ │ +(|BlasLevelOne|) │ │ │ +((|constructor| (NIL "This package provides an interface to the Blas library (level 1)")) (|zaxpy| (((|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|) (|Complex| (|DoubleFloat|)) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|)) "\\spad{zaxpy(n,da,x,incx,y,incy)} computes a \\spad{y} = a*x + \\spad{y} \\indented{1}{for each of the chosen elements of the vectors \\spad{x} and \\spad{y}} \\indented{1}{and a constant multiplier a} \\indented{1}{Note that the vector \\spad{y} is modified with the results.} \\blankline \\spad{X} a:PRIMARR(COMPLEX(DFLOAT)) \\spad{X} a:=[[3.+4.*\\%i, -4.+5.*\\%i, 5.+6.*%i, 7.-8.*%i, -9.-2.*\\%i]] \\spad{X} b:PRIMARR(COMPLEX(DFLOAT)) \\spad{X} b:=[[3.+4.*\\%i, -4.+5.*\\%i, 5.+6.*%i, 7.-8.*%i, -9.-2.*\\%i]] \\spad{X} zaxpy(3,2.0,a,1,b,1) \\spad{X} b:=[[3.+4.*\\%i, -4.+5.*\\%i, 5.+6.*%i, 7.-8.*%i, -9.-2.*\\%i]] \\spad{X} zaxpy(5,2.0,a,1,b,1) \\spad{X} b:=[[3.+4.*\\%i, -4.+5.*\\%i, 5.+6.*%i, 7.-8.*%i, -9.-2.*\\%i]] \\spad{X} zaxpy(3,2.0,a,3,b,3) \\spad{X} b:=[[3.+4.*\\%i, -4.+5.*\\%i, 5.+6.*%i, 7.-8.*%i, -9.-2.*\\%i]] \\spad{X} zaxpy(4,2.0,a,2,b,2)")) (|izamax| (((|Integer|) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|)) "\\spad{izamax computes} the largest absolute value of the elements \\indented{1}{of the array and returns the index of the first instance} \\indented{1}{of the maximum.} \\blankline \\spad{X} a:PRIMARR(COMPLEX(DFLOAT)) \\spad{X} a:=[[3.+4.*\\%i,-4.+5.*\\%i,5.+6.*\\%i,7.-8.*\\%i,-9.-2.*\\%i]] \\spad{X} izamax(5,a,1) \\spad{--} should be 3 \\spad{X} izamax(0,a,1) \\spad{--} should be \\spad{-1} \\spad{X} izamax(5,a,-1) \\spad{--} should be \\spad{-1} \\spad{X} izamax(3,a,1) \\spad{--} should be 2 \\spad{X} izamax(3,a,2) \\spad{--} should be 1")) (|isamax| (((|Integer|) (|Integer|) (|PrimitiveArray| (|Float|)) (|Integer|)) "\\spad{isamax computes} the largest absolute value of the elements \\indented{1}{of the array and returns the index of the first instance} \\indented{1}{of the maximum.} \\blankline \\spad{X} a:PRIMARR(FLOAT):=[[3.0, 4.0, -3.0, 5.0, -1.0]] \\spad{X} isamax(5,a,1) \\spad{--} should be 3 \\spad{X} isamax(3,a,1) \\spad{--} should be 1 \\spad{X} isamax(0,a,1) \\spad{--} should be \\spad{-1} \\spad{X} isamax(-5,a,1) \\spad{--} should be \\spad{-1} \\spad{X} isamax(5,a,-1) \\spad{--} should be \\spad{-1} \\spad{X} isamax(5,a,2) \\spad{--} should be 0 \\spad{X} isamax(1,a,0) \\spad{--} should be \\spad{-1} \\spad{X} isamax(1,a,-1) \\spad{--} should be \\spad{-1} \\spad{X} a:PRIMARR(FLOAT):=[[3.0, 4.0, -3.0, -5.0, -1.0]] \\spad{X} isamax(5,a,1) \\spad{--} should be 3")) (|idamax| (((|Integer|) (|Integer|) (|PrimitiveArray| (|DoubleFloat|)) (|Integer|)) "\\spad{idamax computes} the largest absolute value of the elements \\indented{1}{of the array and returns the index of the first instance} \\indented{1}{of the maximum.} \\blankline \\spad{X} a:PRIMARR(DFLOAT):=[[3.0, 4.0, -3.0, 5.0, -1.0]] \\spad{X} idamax(5,a,1) \\spad{--} should be 3 \\spad{X} idamax(3,a,1) \\spad{--} should be 1 \\spad{X} idamax(0,a,1) \\spad{--} should be \\spad{-1} \\spad{X} idamax(-5,a,1) \\spad{--} should be \\spad{-1} \\spad{X} idamax(5,a,-1) \\spad{--} should be \\spad{-1} \\spad{X} idamax(5,a,2) \\spad{--} should be 0 \\spad{X} idamax(1,a,0) \\spad{--} should be \\spad{-1} \\spad{X} idamax(1,a,-1) \\spad{--} should be \\spad{-1} \\spad{X} a:PRIMARR(DFLOAT):=[[3.0, 4.0, -3.0, -5.0, -1.0]] \\spad{X} idamax(5,a,1) \\spad{--} should be 3")) (|icamax| (((|Integer|) (|Integer|) (|PrimitiveArray| (|Complex| (|Float|))) (|Integer|)) "\\spad{icamax computes} the largest absolute value of the elements \\indented{1}{of the array and returns the index of the first instance} \\indented{1}{of the maximum} \\blankline \\spad{X} a:PRIMARR(COMPLEX(FLOAT)) \\spad{X} a:=[[3.+4.*\\%i,-4.+5.*\\%i,5.+6.*\\%i,7.-8.*\\%i,-9.-2.*\\%i]] \\spad{X} icamax(5,a,1) \\spad{--} should be 3 \\spad{X} icamax(0,a,1) \\spad{--} should be \\spad{-1} \\spad{X} icamax(5,a,-1) \\spad{--} should be \\spad{-1} \\spad{X} icamax(3,a,1) \\spad{--} should be 2 \\spad{X} icamax(3,a,2) \\spad{--} should be 1")) (|dznrm2| (((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|)) "\\spad{dznrm2 returns} the norm of a complex vector. It computes \\indented{1}{sqrt(sum(v*conjugate(v)))} \\blankline \\spad{X} a:PRIMARR(COMPLEX(DFLOAT)) \\spad{X} a:=[[3.+4.*\\%i,-4.+5.*\\%i,5.+6.*\\%i,7.-8.*\\%i,-9.-2.*\\%i]] \\spad{X} dznrm2(5,a,1) \\spad{--} should be 18.028 \\spad{X} dznrm2(3,a,2) \\spad{--} should be 13.077 \\spad{X} dznrm2(3,a,1) \\spad{--} should be 11.269 \\spad{X} dznrm2(3,a,-1) \\spad{--} should be 0.0 \\spad{X} dznrm2(-3,a,-1) \\spad{--} should be 0.0 \\spad{X} dznrm2(1,a,1) \\spad{--} should be 5.0 \\spad{X} dznrm2(1,a,2) \\spad{--} should be 5.0")) (|dzasum| (((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|)) "\\spad{dzasum takes} the sum over all of the array where each \\indented{1}{element of the array sum is the sum of the absolute} \\indented{1}{value of the real part and the absolute value of the} \\indented{1}{imaginary part of each array element:} \\indented{3}{for \\spad{i} in array do sum = sum + (real(a(i)) + imag(a(i)))} \\blankline \\spad{X} d:PRIMARR(COMPLEX(DFLOAT)):=[[1.0+2.0*\\%i,-3.0+4.0*\\%i,5.0-6.0*\\%i]] \\spad{X} dzasum(3,d,1) \\spad{--} 21.0 \\spad{X} dzasum(3,d,2) \\spad{--} 14.0 \\spad{X} dzasum(-3,d,1) \\spad{--} 0.0")) (|dswap| (((|List| (|PrimitiveArray| (|DoubleFloat|))) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\spad{dswap swaps} elements from the first vector with the second \\indented{1}{Note that the arrays are modified in place.} \\blankline \\spad{X} dx:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]] \\spad{X} dy:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]] \\spad{X} dswap(5,dx,1,dy,1) \\spad{X} dx:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]] \\spad{X} dy:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]] \\spad{X} dswap(3,dx,2,dy,2) \\spad{X} dx:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]] \\spad{X} dy:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]] \\spad{X} dswap(5,dx,1,dy,-1)")) (|dscal| (((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|DoubleFloat|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\spad{dscal scales} each element of the vector by the scalar so \\indented{1}{dscal(n,da,dx,incx) = da*dx for \\spad{n} elements, incremented by incx} \\indented{1}{Note that the \\spad{dx} array is modified in place.} \\blankline \\spad{X} dx:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]] \\spad{X} dscal(6,2.0,dx,1) \\spad{X} \\spad{dx} \\spad{X} dx:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]] \\spad{X} dscal(3,0.5,dx,1) \\spad{X} \\spad{dx}")) (|drot| (((|List| (|PrimitiveArray| (|DoubleFloat|))) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{drot computes} a 2D plane Givens rotation spanned by two \\indented{1}{coordinate axes. It modifies the arrays in place.} \\indented{1}{The call drot(n,dx,incx,dy,incy,c,s) has the \\spad{dx} array which} \\indented{1}{contains the \\spad{y} axis locations and dy which contains the} \\indented{1}{y axis locations. They are rotated in parallel where} \\indented{1}{c is the cosine of the angle and \\spad{s} is the sine of the angle and} \\indented{1}{\\spad{c^2+s^2 = 1}} \\blankline \\spad{X} dx:PRIMARR(DFLOAT):=[[6,0, 1.0, 4.0, -1.0, -1.0]] \\spad{X} dy:PRIMARR(DFLOAT):=[[5.0, 1.0, -4.0, 4.0, -4.0]] \\spad{X} drot(5,dx,1,dy,1,0.707106781,0.707106781) \\spad{--} rotate by 45 degrees \\spad{X} \\spad{dx} \\spad{--} \\spad{dx} has been modified \\spad{X} dy \\spad{--} dy has been modified \\spad{X} drot(5,dx,1,dy,1,0.707106781,-0.707106781) \\spad{--} rotate by \\spad{-45} degrees \\spad{X} \\spad{dx} \\spad{--} \\spad{dx} has been modified \\spad{X} dy \\spad{--} dy has been modified")) (|drotg| (((|PrimitiveArray| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{drotg computes} a 2D plane Givens rotation spanned by two \\indented{1}{coordinate axes.} \\blankline \\spad{X} a:MATRIX(DFLOAT):=[[6,5,0],[5,1,4],[0,4,3]] \\spad{X} drotg(elt(a,1,1),elt(a,1,2),0.0D0,0.0D0)")) (|dnrm2| (((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\spad{dnrm2 takes} the norm of the vector, ||x|| \\blankline \\spad{X} a:PRIMARR(DFLOAT):=[[3.0, -4.0, 5.0, -7.0, 9.0]] \\spad{X} dnrm2(3,a,1) \\spad{--} 7.0710678118654755 = \\spad{sqrt(3.0^2} + \\spad{-4.0^2} + 5.0^2) \\spad{X} dnrm2(5,a,1) \\spad{--} 13.416407864998739 = sqrt(180.0) \\spad{X} dnrm2(3,a,2) \\spad{--} 10.72380529476361 = sqrt(115.0)")) (|ddot| (((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\spad{ddot(n,x,incx,y,incy)} computes the vector dot product \\indented{1}{of elements from the vector \\spad{x} and the vector \\spad{y}} \\indented{1}{If the indicies are negative the elements are taken} \\indented{1}{relative to the far end of the vector.} \\blankline \\spad{X} x:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0]] \\spad{X} y:PRIMARR(DFLOAT):=[[5.0,6.0,7.0,8.0,9.0]] \\spad{X} ddot(0,a,1,b,1) \\spad{--} handle 0 elements \\spad{==>} 0 \\spad{X} ddot(3,a,1,b,1) \\spad{--} (1,2,3) * (5,6,7) \\spad{==>} 38.0 \\spad{X} ddot(3,a,1,b,2) \\spad{--} increment = 2 in \\spad{b} (1,2,3) * (5,7,9) \\spad{==>} 46.0 \\spad{X} ddot(3,a,2,b,1) \\spad{--} increment = 2 in a (1,3,5) * (5,6,7) \\spad{==>} 58.0 \\spad{X} ddot(3,a,1,b,-2) \\spad{--} increment = \\spad{-2} in \\spad{b} (1,2,3) * (9,7,5) \\spad{==>} 38.0 \\spad{X} ddot(2,a,-2,b,1) \\spad{--} increment = \\spad{-2} in a (5,3,1) * (5,6,7) \\spad{==>} 50.0 \\spad{X} ddot(3,a,-2,b,-2) \\spad{--} (5,3,1) * (9,7,5) \\spad{==>} 71.0")) (|dcopy| (((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\spad{dcopy(n,x,incx,y,incy)} copies \\spad{y} from \\spad{x} \\indented{1}{for each of the chosen elements of the vectors \\spad{x} and \\spad{y}} \\indented{1}{Note that the vector \\spad{y} is modified with the results.} \\blankline \\spad{X} x:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0,6.0]] \\spad{X} y:PRIMARR(DFLOAT):=[[0.0,0.0,0.0,0.0,0.0,0.0]] \\spad{X} dcopy(6,x,1,y,1) \\spad{X} \\spad{y} \\spad{X} m:PRIMARR(DFLOAT):=[[1.0,2.0,3.0]] \\spad{X} n:PRIMARR(DFLOAT):=[[0.0,0.0,0.0,0.0,0.0,0.0]] \\spad{X} dcopy(3,m,1,n,2) \\spad{X} \\spad{n}")) (|daxpy| (((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|DoubleFloat|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\spad{daxpy(n,da,x,incx,y,incy)} computes a \\spad{y} = a*x + \\spad{y} \\indented{1}{for each of the chosen elements of the vectors \\spad{x} and \\spad{y}} \\indented{1}{and a constant multiplier a} \\indented{1}{Note that the vector \\spad{y} is modified with the results.} \\blankline \\spad{X} x:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0,6.0]] \\spad{X} y:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0,6.0]] \\spad{X} daxpy(6,2.0,x,1,y,1) \\spad{X} \\spad{y} \\spad{X} m:PRIMARR(DFLOAT):=[[1.0,2.0,3.0]] \\spad{X} n:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0,6.0]] \\spad{X} daxpy(3,-2.0,m,1,n,2) \\spad{X} \\spad{n}")) (|dasum| (((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\spad{dasum(n,array,incx)} computes the sum of \\spad{n} elements in \\spad{array} \\indented{1}{using a stride of incx} \\blankline \\spad{X} dx:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0,6.0]] \\spad{X} dasum(6,dx,1) \\spad{X} dasum(3,dx,2)")) (|dcabs1| (((|DoubleFloat|) (|Complex| (|DoubleFloat|))) "\\spad{dcabs1(z)} computes \\spad{(+} (abs (realpart \\spad{z))} (abs (imagpart z))) \\blankline \\spad{X} t1:Complex DoubleFloat \\spad{:=} complex(1.0,0) \\spad{X} dcabs1(t1)"))) │ │ │ NIL │ │ │ -(|NewSparseMultivariatePolynomial| R |VarSet|) │ │ │ -((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|))))) (|HasCategory| |#1| (QUOTE (|Field|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|)))) (|not| (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|)))))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|)))) (|not| (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|not| (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|)))) (|not| (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|not| (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|)))) (|not| (|HasCategory| |#1| (LIST (QUOTE |QuotientFieldCategory|) (QUOTE (|Integer|))))))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|Numeric| S) │ │ │ -((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, \\spad{n)}} returns a real approximation of \\spad{x} up to \\spad{n} decimal places, or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places, or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places, or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places, or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places, or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places, or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, \\spad{n)}} returns a complex approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places, or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places, or \"failed\" if \\axiom{x} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x,} or \"failed\" if \\axiom{x} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x.}") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x.}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x.}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, \\spad{n)}} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x.}") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x.}") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x.}") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x.}") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, \\spad{n)}} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x.}")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, \\spad{n)}} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x.}") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x.}") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x.}") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, \\spad{n)}} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x.}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (AND (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (|HasCategory| |#1| (QUOTE (|Ring|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|)))) │ │ │ -(|Octonion| R) │ │ │ -((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring, an eight-dimensional non-associative algebra, doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is octon which takes 8 arguments: the real part, the \\spad{i} imaginary part, the \\spad{j} imaginary part, the \\spad{k} imaginary part, (as with quaternions) and in addition the imaginary parts E, I, \\spad{J,} \\spad{K.}")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation \\spad{O} = \\spad{Q} + QE."))) │ │ │ -((|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#1| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Eltable|) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|RealNumberSystem|))) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| (|Quaternion| |#1|) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|Quaternion| |#1|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (OR (|HasCategory| (|Quaternion| |#1|) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (OR (|HasCategory| (|Quaternion| |#1|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))))) │ │ │ -(|OctonionCategoryFunctions2| OR R OS S) │ │ │ -((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}"))) │ │ │ +(|WeierstrassPreparation| R) │ │ │ +((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(v,p) where \\spad{v} is a variable, and \\spad{p} is a TaylorSeries(R) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,s>0, is a list of TaylorSeries coefficients A[i] of the equivalent polynomial A = A[0] + A[1]*v + \\spad{A[2]*v**2} + \\spad{...} + A[s-1]*v**(s-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries, impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst \\spad{n}} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest \\spad{n}} is used internally."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|PureAlgebraicLODE| F UP UPUP R) │ │ │ -((|constructor| (NIL "In-field solution of an linear ordinary differential equation, pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, \\spad{g)}} returns \\spad{[\"failed\", []]} if the equation \\spad{op \\spad{y} = \\spad{g}} has no solution in \\spad{R}. Otherwise, it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) │ │ │ +(|Interval| R) │ │ │ +((|constructor| (NIL "This domain is an implementation of interval arithmetic and transcendental functions over intervals."))) │ │ │ +((|approximate| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|d01alfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF, a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ NIL │ │ │ -(|PseudoAlgebraicClosureOfAlgExtOfRationalNumberCategory|) │ │ │ -((|constructor| (NIL "This category exports the function for the domain PseudoAlgebraicClosureOfAlgExtOfRationalNumber which implement dynamic extension using the simple notion of tower extensions. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension \\spad{(T} : \\spad{K0,} \\spad{K1,} ..., Ki...,Kn) where \\spad{K0} = \\spad{K} and for \\spad{i} =1,2,...,n, \\spad{Ki} is an extension of K{i-1} of degree > 1 and defined by an irreducible polynomial p(Z) in K{i-1}. Two towers (T1: K01, K11,...,Ki1,...,Kn1) and (T2: K02, K12,...,Ki2,...,Kn2) are said to be related if \\spad{T1} \\spad{<=} \\spad{T2} (or \\spad{T1} \\spad{>=} T2), that is if \\spad{Ki1} = \\spad{Ki2} for \\spad{i=1,2,...,n1} (or i=1,2,...,n2). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|RationalRicDE| F UP) │ │ │ -((|constructor| (NIL "In-field solution of Riccati equations, rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1,L1], [p2,L2], \\spad{...} ,{} [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op \\spad{y} = 0} must be one of the pi's (up to the constant coefficient), in which case the equation for \\spad{z = \\spad{y} e^{-int \\spad{p}}} is \\spad{Li \\spad{z} = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op \\spad{y} = 0} must be one of the fi's (up to the constant coefficient), in which case the equation for \\spad{z = \\spad{y} e^{-int ai}} is \\spad{Li \\spad{z} = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP}, not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op \\spad{y} = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP}, not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op \\spad{y} = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op \\spad{y} = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP}, not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op \\spad{y} = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op \\spad{y} = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP}, not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op \\spad{y} = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op \\spad{y} = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP}, not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op \\spad{y} = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) │ │ │ +(|Switch|) │ │ │ +((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and \\spad{y}.}")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = \\spad{y}.}")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or \\spad{y}.}")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x} a+,f(var))}."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|RealConstant|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|StepThrough|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (LIST (QUOTE |UnivariatePuiseuxSeriesWithExponentialSingularity|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |Evalable|) (LIST (QUOTE |UnivariatePuiseuxSeriesWithExponentialSingularity|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (LIST (QUOTE |Eltable|) (LIST (QUOTE |UnivariatePuiseuxSeriesWithExponentialSingularity|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE |UnivariatePuiseuxSeriesWithExponentialSingularity|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|PolynomialAN2Expression|) │ │ │ -((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf}, a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) │ │ │ NIL │ │ │ +(|NewSparseUnivariatePolynomialFunctions2| R S) │ │ │ +((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S.} Note that the mapping is assumed to send zero to zero, since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func, poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) │ │ │ NIL │ │ │ -(|PiCoercions| R) │ │ │ -((|constructor| (NIL "Provides a coercion from the symbolic fractions in \\%pi with integer coefficients to any Expression type.")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(R)."))) │ │ │ NIL │ │ │ +(|JacobiIdentityAttribute|) │ │ │ +((|constructor| (NIL "JacobiIdentity means that \\spad{[x,[y,z]]+[y,[z,x]]+[z,[x,y]] = 0} holds. See LieAlgebra."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|PointsOfFiniteOrderRational| UP UPUP R) │ │ │ -((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) │ │ │ +(|FiniteAlgebraicExtensionField&| S F) │ │ │ +((|constructor| (NIL "FiniteAlgebraicExtensionField \\spad{F} is the category of fields which are finite algebraic extensions of the field \\spad{F.} If \\spad{F} is finite then any finite algebraic extension of \\spad{F} is finite, too. Let \\spad{K} be a finite algebraic extension of the finite field \\spad{F.} The exponentiation of elements of \\spad{K} defines a Z-module structure on the multiplicative group of \\spad{K.} The additive group of \\spad{K} becomes a module over the ring of polynomials over \\spad{F} via the operation \\spadfun{linearAssociatedExp}(a:K,f:SparseUnivariatePolynomial \\spad{F)} which is linear over \\spad{F,} that is, for elements a from \\spad{K,} \\spad{c,d} from \\spad{F} and \\spad{f,g} univariate polynomials over \\spad{F} we have \\spadfun{linearAssociatedExp}(a,cf+dg) equals \\spad{c} times \\spadfun{linearAssociatedExp}(a,f) plus \\spad{d} times \\spadfun{linearAssociatedExp}(a,g). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from F[X]: \\spadfun{linearAssociatedExp}(a,monomial(1,k)\\$SUP(F)) is defined to be \\spadfun{Frobenius}(a,k) which is a**(q**k) where q=size()\\$F. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog}, respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial \\spad{g,} such that the \\spadfun{linearAssociatedExp}(b,g) equals a. If there is no such polynomial \\spad{g,} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial \\spad{g,} such that \\spadfun{linearAssociatedExp}(normalElement(),g) equals a.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial \\spad{g} of least degree, such that \\spadfun{linearAssociatedExp}(a,g) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over \\spad{F,} that is, for elements a from \\spad{\\$,} \\spad{c,d} form \\spad{F} and \\spad{f,g} univariate polynomials over \\spad{F} we have \\spadfun{linearAssociatedExp}(a,cf+dg) equals \\spad{c} times \\spadfun{linearAssociatedExp}(a,f) plus \\spad{d} times \\spadfun{linearAssociatedExp}(a,g). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from F[X]: \\spadfun{linearAssociatedExp}(a,monomial(1,k)\\$SUP(F)) is defined to be \\spadfun{Frobenius}(a,k) which is a**(q**k), where q=size()\\$F.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F,} that is, \\spad{a**(q**i), 0 \\spad{<=} \\spad{i} \\spad{<=} extensionDegree()-1} is an F-basis, where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element, normal over the ground field \\spad{F,} thus \\spad{a**(q**i), 0 \\spad{<=} \\spad{i} < extensionDegree()} is an F-basis, where \\spad{q = size()\\$F}. At the first call, the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls, the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F,} that is, \\spad{a**(q**i), 0 \\spad{<=} \\spad{i} < extensionDegree()} is an F-basis, where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q.} Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note that \\spad{trace(a,d)=reduce(+,[a**(q**(d*i)) for \\spad{i} in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F.}")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note that norm(a,d) = reduce(*,[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F.}")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F.}")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F.}") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F.}")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where v1,...,vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the vi's with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) │ │ │ NIL │ │ │ +((|HasCategory| |#2| (QUOTE (|Finite|)))) │ │ │ +(|TwoDimensionalPlotClipping|) │ │ │ +((|constructor| (NIL "Automatic clipping for 2-dimensional plots The purpose of this package is to provide reasonable plots of functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points, \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin}, \\spad{xMax} and \\spad{yMin}, \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot, \\spad{p,} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine, which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot, \\spad{p,} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)}, \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine, which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points, \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine, which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l,} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine, which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot, \\spad{p,} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot, \\spad{p,} from the domain \\spadtype{Plot} for the graph of one variable, \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) │ │ │ NIL │ │ │ -(|Places| K) │ │ │ -((|constructor| (NIL "The following is part of the PAFF package"))) │ │ │ NIL │ │ │ +(|DoubleResultantPackage| F UP UPUP R) │ │ │ +((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, \\spad{')}} returns p(x) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) │ │ │ NIL │ │ │ -(|PlacesOverPseudoAlgebraicClosureOfFiniteField| K) │ │ │ -((|constructor| (NIL "The following is part of the PAFF package"))) │ │ │ NIL │ │ │ +(|RationalLODE| F UP) │ │ │ +((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear ordinary differential equations, in the rational case.")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], \\spad{M]}} such that any rational solution of \\spad{op \\spad{y} = \\spad{c1} \\spad{g1} + \\spad{...} + \\spad{cm} \\spad{gm}} is of the form \\spad{d1 \\spad{h1} + \\spad{...} + \\spad{dq} \\spad{hq}} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, \\spad{g)}} returns \\spad{[\"failed\", []]} if the equation \\spad{op \\spad{y} = \\spad{g}} has no rational solution. Otherwise, it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the yi's form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], \\spad{M]}} such that any rational solution of \\spad{op \\spad{y} = \\spad{c1} \\spad{g1} + \\spad{...} + \\spad{cm} \\spad{gm}} is of the form \\spad{d1 \\spad{h1} + \\spad{...} + \\spad{dq} \\spad{hq}} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, \\spad{g)}} returns \\spad{[\"failed\", []]} if the equation \\spad{op \\spad{y} = \\spad{g}} has no rational solution. Otherwise, it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the yi's form a basis for the rational solutions of the homogeneous equation."))) │ │ │ NIL │ │ │ -(|FunctionSpaceAssertions| R F) │ │ │ -((|constructor| (NIL "Attaching assertions to symbols for pattern matching.")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists, multiple(x) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity \\spad{(0} in a sum, 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x, \\spad{s)}} makes the assertion \\spad{s} about \\spad{x.} Error: if \\spad{x} is not a symbol."))) │ │ │ NIL │ │ │ +(|OrderedRing|) │ │ │ +((|constructor| (NIL "Ordered sets which are also rings, that is, domains where the ring operations are compatible with the ordering. \\blankline Axiom\\br \\tab{5}\\spad{0} ab< ac}")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x.}")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive, \\spad{-1} if \\spad{x} is negative, 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|PatternMatchFunctionSpace| S R F) │ │ │ -((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression expr; res contains the variables of \\spad{pat} which are already matched and their matches."))) │ │ │ +(|Group|) │ │ │ +((|constructor| (NIL "The class of multiplicative groups, that is, monoids with multiplicative inverses. \\blankline Axioms\\br \\tab{5}\\spad{leftInverse(\"*\":(\\%,\\%)->\\%,inv)}\\tab{5}\\spad{inv(x)*x = 1}\\br \\tab{5}\\spad{rightInverse(\"*\":(\\%,\\%)->\\%,inv)}\\tab{4}\\spad{x*inv(x) = 1}")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * \\spad{p} * \\spad{q}.}")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * \\spad{p} * \\spad{q};} this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n.}")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n.}")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y.}")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x.}"))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|AlgebraicallyClosedField|) │ │ │ +((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, \\spad{y)}} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{The yi's are expressed in radicals if possible, and otherwise} \\indented{1}{as implicit algebraic quantities} \\indented{1}{which display as \\spad{'yi}.} \\indented{1}{The returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} zerosOf(a,x)") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{The yi's are expressed in radicals if possible, and otherwise} \\indented{1}{as implicit algebraic quantities.} \\indented{1}{The returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} zerosOf(a)") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{The yi's are expressed in radicals if possible.} \\indented{1}{Otherwise they are implicit algebraic quantities.} \\indented{1}{The returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y.}} \\blankline \\spad{X} \\spad{a:Polynomial(Integer):=-3*x^2+2*x-13} \\spad{X} zerosOf(a)")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, \\spad{y)}} returns \\spad{y} such that \\spad{p(y) = 0}; \\indented{1}{if possible, \\spad{y} is expressed in terms of radicals.} \\indented{1}{Otherwise it is an implicit algebraic quantity which} \\indented{1}{displays as \\spad{'y}.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} zeroOf(a,x)") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; \\indented{1}{if possible, \\spad{y} is expressed in terms of radicals.} \\indented{1}{Otherwise it is an implicit algebraic quantity.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} zeroOf(a)") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. \\indented{1}{If possible, \\spad{y} is expressed in terms of radicals.} \\indented{1}{Otherwise it is an implicit algebraic quantity.} \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y.}} \\blankline \\spad{X} \\spad{a:Polynomial(Integer):=-3*x^2+2*x-13} \\spad{X} zeroOf(a)")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, \\spad{y)}} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; \\indented{1}{The returned roots display as \\spad{'y1},...,\\spad{'yn}.} \\indented{1}{Note that the returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootsOf(a,x)") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{Note that the returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootsOf(a)") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{Note that the returned symbols y1,...,yn are bound in the} \\indented{1}{interpreter to respective root values.} \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y.}} \\blankline \\spad{X} \\spad{a:Polynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootsOf(a)")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, \\spad{y)}} returns \\spad{y} such that \\spad{p(y) = 0}. \\indented{1}{The object returned displays as \\spad{'y}.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootOf(a,x)") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootOf(a)") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y.}} \\blankline \\spad{X} \\spad{a:Polynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootOf(a)"))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| K) │ │ │ -((|constructor| (NIL "This is part of the PAFF package, related to projective space."))) │ │ │ +(|PolynomialToUnivariatePolynomial| |x| R) │ │ │ +((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, \\spad{x)}} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))}, ie. as a member of \\spad{R[...][x]}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FunctionSpaceAttachPredicates| R F D) │ │ │ -((|constructor| (NIL "Attaching predicates to symbols for pattern matching.")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, \\spad{f2,} ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and \\spad{...} and \\spad{fn} to \\spad{x.} Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x;} error if \\spad{x} is not a symbol."))) │ │ │ +(|TubePlotTools|) │ │ │ +((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r,} around the center point indicated by the point \\spad{p,} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n,} and the binormal vector given by the point(vector) \\spad{b,} and a list of lists, lls, which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n,} in the form \\spad{[[cos(n-1) a,sin(n-1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note that \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note that \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates, and keeping the color of the first point \\spad{p.} The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates, and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - \\spad{q}} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q}, using the color, or fourth coordinate, of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + \\spad{q}} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q}, using the color, or fourth coordinate, of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * \\spad{p}} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s,} preserving the color, or fourth coordinate, of \\spad{p.}")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1}, \\spad{x2}, \\spad{x3}, and also a fourth coordinate, \\spad{c,} which is generally used to specify the color of the point."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|QuaternionCategoryFunctions2| QR R QS S) │ │ │ -((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion u. \\indented{1}{to convert an expression in Quaterion(R) to Quaternion(S)} \\blankline \\spad{X} f(a:FRAC(INT)):COMPLEX(FRAC(INT)) \\spad{==} a::COMPLEX(FRAC(INT)) \\spad{X} q:=quatern(2/11,-8,3/4,1) \\spad{X} map(f,q)"))) │ │ │ +(|FreeGroup| S) │ │ │ +((|constructor| (NIL "Free group on any set of generators The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si \\spad{**} ni])} where the si's are in \\spad{S,} and the ni's are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, \\spad{a1\\^e1} \\spad{...} an\\^en)} returns \\spad{f(a1)\\^e1 \\spad{...} f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, \\spad{a1\\^e1} \\spad{...} an\\^en)} returns \\spad{a1\\^f(e1) \\spad{...} an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, \\spad{n)}} returns the factor of the n^th monomial of \\spad{x.}")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, \\spad{n)}} returns the exponent of the n^th monomial of \\spad{x.}")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x.}")) (** (($ |#1| (|Integer|)) "\\spad{s \\spad{**} \\spad{n}} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * \\spad{s}} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * \\spad{x}} returns the product of \\spad{x} by \\spad{s} on the left."))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|OpenMathDevice|) │ │ │ +((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files, strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{dev}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{dev}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{dev}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{dev}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{dev}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{dev}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{dev}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{dev}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{dev}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{dev}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{dev}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{dev}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{dev}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{dev}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{dev}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{dev}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{dev}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{dev}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{dev}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{dev}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{s} from \\spad{CD} \\axiom{cd} to \\axiom{dev}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{i} to \\axiom{dev}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{i} to \\axiom{dev}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{i} to \\axiom{dev}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{i} to \\axiom{dev}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{dev}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{dev}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{dev}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{dev}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{dev}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{dev}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{dev}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{dev}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{dev}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{dev}")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{dev}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{dev}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{dev}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{dev}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{dev} to \\axiom{enc}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{dev}, flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{s} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{f} for reading or writing OpenMath objects (depending on \\axiom{mode} which can be \"r\", \\spad{\"w\"} or \"a\" for read, write and append respectively), in the encoding \\axiom{enc}."))) │ │ │ NIL │ │ │ -(|Quaternion| R) │ │ │ -((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a commutative ring. The main constructor function is \\spadfun{quatern} which takes 4 arguments: the real part, the \\spad{i} imaginary part, the \\spad{j} imaginary part and the \\spad{k} imaginary part."))) │ │ │ -((|noZeroDivisors| |has| |#1| (|EntireRing|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|EntireRing|))) (OR (|HasCategory| |#1| (QUOTE (|EntireRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE |Eltable|) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|RealNumberSystem|))) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|))))) │ │ │ -(|PolynomialSetUtilitiesPackage| R E V P) │ │ │ -((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [p1,...,pn]} and \\axiom{lf = [f1,...,fm]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0}, and the \\axiom{fi} are irreducible over \\axiom{R} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{R}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [p1,...,pn]} and \\axiom{lf = [f1,...,fm]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0}, and the \\axiom{fi} are irreducible over \\axiom{R} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{p} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{f} in \\axiom{lf}. Moreover, squares over \\axiom{R} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{f} in \\axiom{lf}. Moreover, squares over \\axiom{R} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{f} in \\axiom{lf}. Moreover, squares over \\axiom{R} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{false} and if the previous operation does not return any non null and constant polynomial, else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(p)} returns the square-free factors of \\axiom{p} over \\axiom{R}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,redOp?,redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(-1) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover, \\axiom{lq} is computed by reducing \\axiom{lp} w.r.t. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,pred?,redOp?,redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set w.r.t. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?}, if it is empty then leave, else reduce the other polynomials by this basic set w.r.t. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(p,lf)} returns the same as removeRoughlyRedundantFactorsInPols([p],lf,true)")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,lf,opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,lf)} if \\axiom{opt} is \\axiom{false} and if the previous operation does not return any non null and constant polynomial, else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{p} of \\axiom{lp} any occurence of a polynomial \\axiom{f} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,nbps} where \\axiom{bps} is a list of the bivariate polynomials, and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(p)} returns \\spad{true} iff \\axiom{p} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,nlps} where \\axiom{lps} is a list of the linear polynomials in \\spad{lp,} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(p)} returns \\spad{true} iff \\axiom{p} does not lie in the base ring \\axiom{R} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,nups} where \\axiom{ups} is a list of the univariate polynomials, and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(p)} returns \\spad{true} iff \\axiom{p} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,ps)} returns \\axiom{gps,bps} where \\axiom{gps} is a list of the polynomial \\axiom{p} in \\axiom{ps} such that \\axiom{pred?(p)} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,ps)} returns \\axiom{gps,bps} where \\axiom{gps} is a list of the polynomial \\axiom{p} in \\axiom{ps} such that \\axiom{pred?(p)} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,ps)} returns \\axiom{gps,bps} where \\axiom{gps} is a list of the polynomial \\axiom{p} in \\axiom{ps} such that \\axiom{pred?(p)} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,lp)} returns \\spad{true} iff for every \\axiom{p} in \\axiom{lp} the remainder of \\axiom{p} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(p,q)} returns the same as \\axiom{removeRedundantFactors(p,q)} but does assume that neither \\axiom{p} nor \\axiom{q} lie in the base ring \\axiom{R} and assumes that \\axiom{infRittWu?(p,q)} holds. Moreover, if \\axiom{R} is gcd-domain, then \\axiom{p} and \\axiom{q} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(p)$P for \\spad{p} in lp]} if \\axiom{R} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,lq,remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,lq)),lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,q)} returns the same as \\axiom{removeRedundantFactors(cons(q,lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(p,q)} returns the same as \\axiom{removeRedundantFactors([p,q])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [p1,...,pn]} and \\axiom{lq = [q1,...,qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes, and the product of degrees of the \\axiom{qi} is not greater than the one of the \\axiom{pj}, and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular, polynomials lying in the base ring \\axiom{R} are removed. Moreover, \\axiom{lq} is sorted w.r.t \\axiom{infRittWu?}. Furthermore, if \\spad{R} is gcd-domain, the polynomials in \\axiom{lq} are pairwise without common non trivial factor."))) │ │ │ NIL │ │ │ -((AND (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|)))) │ │ │ (|PointsOfFiniteOrder| R0 F UP UPUP R) │ │ │ ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ElementaryRischDESystem| R F) │ │ │ -((|constructor| (NIL "Risch differential equation, elementary case.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, \\spad{f,} g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - \\spad{n} df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist, \"failed\" otherwise. \\spad{lim} is a limited integration function, \\spad{ext} is an extended integration function."))) │ │ │ +(|TwoDimensionalArrayCategory&| S R |Row| |Col|) │ │ │ +((|constructor| (NIL "Two dimensional array categories and domains")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} \\indented{1}{for all \\spad{i, \\spad{j}}} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} map!(-,arr)")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $ |#2|) "\\spad{map(f,a,b,r)} returns \\spad{c}, where \\spad{c(i,j) = f(a(i,j),b(i,j))} \\indented{1}{when both \\spad{a(i,j)} and \\spad{b(i,j)} exist;} \\indented{1}{else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist;} \\indented{1}{else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist;} \\indented{1}{otherwise \\spad{c(i,j) = f(r,r)}.} \\blankline \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} \\spad{arr1} : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} \\spad{arr2} : \\spad{ARRAY2} INT \\spad{:=} new(3,3,10) \\spad{X} map(adder,arr1,arr2,17)") (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,a,b)} returns \\spad{c}, where \\spad{c(i,j) = f(a(i,j),b(i,j))} \\indented{1}{for all \\spad{i, \\spad{j}}} \\blankline \\spad{X} adder(a:Integer,b:Integer):Integer \\spad{==} a+b \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} map(adder,arr,arr)") (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,a)} returns \\spad{b}, where \\spad{b(i,j) = f(a(i,j))} \\indented{1}{for all \\spad{i, \\spad{j}}} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} map(-,arr) \\spad{X} map((x \\spad{+->} \\spad{x} + x),arr)")) (|setColumn!| (($ $ (|Integer|) |#4|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v} \\blankline \\spad{X} T1:=TwoDimensionalArray Integer \\spad{X} arr:T1:= new(5,4,0) \\spad{X} T2:=OneDimensionalArray Integer \\spad{X} \\spad{acol:=construct([1,2,3,4,5]::List(INT))$T2} \\spad{X} \\spad{setColumn!(arr,1,acol)$T1}")) (|setRow!| (($ $ (|Integer|) |#3|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v} \\blankline \\spad{X} T1:=TwoDimensionalArray Integer \\spad{X} arr:T1:= new(5,4,0) \\spad{X} T2:=OneDimensionalArray Integer \\spad{X} \\spad{arow:=construct([1,2,3,4]::List(INT))$T2} \\spad{X} \\spad{setRow!(arr,1,arow)$T1}")) (|qsetelt!| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of \\spad{m} to \\spad{r}} \\indented{1}{NO error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,0) \\spad{X} qsetelt!(arr,1,1,17)")) (|setelt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of \\spad{m} to \\spad{r}} \\indented{1}{error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,0) \\spad{X} setelt(arr,1,1,17)")) (|parts| (((|List| |#2|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} parts(arr)")) (|column| ((|#4| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} \\indented{1}{error check to determine if index is in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} column(arr,1)")) (|row| ((|#3| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} \\indented{1}{error check to determine if index is in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} row(arr,1)")) (|qelt| ((|#2| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of the array \\spad{m}} \\indented{1}{NO error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} qelt(arr,1,1)")) (|elt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of the array \\spad{m,} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,} \\indented{1}{and returns \\spad{r} otherwise} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} elt(arr,1,1,6) \\spad{X} elt(arr,1,10,6)") ((|#2| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th \\indented{1}{column of the array \\spad{m}} \\indented{1}{error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} elt(arr,1,1)")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} ncols(arr)")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} nrows(arr)")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} maxColIndex(arr)")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} minColIndex(arr)")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} maxRowIndex(arr)")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,10) \\spad{X} minRowIndex(arr)")) (|fill!| (($ $ |#2|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r's} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,0) \\spad{X} fill!(arr,10)")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{new(m,n,r)} is an m-by-n array all of whose entries are \\spad{r} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,4,0)")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ReducedDivisor| F1 UP UPUP R F2) │ │ │ -((|constructor| (NIL "Finds the order of a divisor over a finite field")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) │ │ │ +(|OrdinaryDifferentialEquationsSolverCategory|) │ │ │ +((|constructor| (NIL "\\axiomType{OrdinaryDifferentialEquationsSolverCategory} is the \\axiom{category} for describing the set of ODE solver \\axiom{domains} with \\axiomFun{measure} and \\axiomFun{ODEsolve}.")) (|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RegularTriangularSetCategory&| S R E V P) │ │ │ -((|constructor| (NIL "The category of regular triangular sets, introduced under the name regular chains in \\spad{[1]} (and other papers). In \\spad{[3]} it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions, all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (w.r.t. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is false. This category provides operations related to both kinds of splits, the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the RegularTriangularSet constructor for more explanations about decompositions by means of regular triangular sets.")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is false, it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or, in other words, a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for \\spad{ts} in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? \\spad{lp}} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first \\spad{lp,} extend(rest \\spad{lp,} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for \\spad{ts} in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself, if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest \\spad{lp,} internalAugment(first \\spad{lp,} ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for \\spad{ts} in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp}, \\spad{augment(p,ts)} if \\spad{lp = [p]}, otherwise \\spad{augment(first \\spad{lp,} augment(rest \\spad{lp,} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for \\spad{ts} in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set, say \\spad{ts+p}, is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself, if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for \\spad{ts} in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial w.r.t. \\spad{lpwt.i.tower}, this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower}, for every \\spad{i}. Moreover, the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts}, then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} w.r.t. \\spad{lpwt.i.tower}, for every \\spad{i}, and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover, if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} w.r.t. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials w.r.t. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same main variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} w.r.t. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{I} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic w.r.t. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic w.r.t. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic w.r.t. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is select from TriangularSetCategory(ts,v) and \\spad{ts_v_-} is collectUnder from TriangularSetCategory(ts,v).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic w.r.t. \\spad{ts}."))) │ │ │ +(|MatrixCategory| R |Row| |Col|) │ │ │ +((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m.} \\indented{1}{If the matrix is not invertible, \"failed\" is returned.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} inverse matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|pfaffian| ((|#1| $) "\\spad{pfaffian(m)} returns the Pfaffian of the matrix \\spad{m.} \\indented{1}{Error if the matrix is not antisymmetric} \\blankline \\spad{X} pfaffian [[0,1,0,0],[-1,0,0,0],[0,0,0,1],[0,0,-1,0]]")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using \\indented{1}{minors. Error: if the matrix is not square.} \\blankline \\spad{X} minordet matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} determinant matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of \\indented{1}{the matrix \\spad{m.}} \\blankline \\spad{X} nullSpace matrix [[1,2,3],[4,5,6],[7,8,9]]")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m.} This is \\indented{1}{the dimension of the null space of the matrix \\spad{m.}} \\blankline \\spad{X} nullity matrix [[1,2,3],[4,5,6],[7,8,9]]")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m.} \\blankline \\spad{X} rank matrix [[1,2,3],[4,5,6],[7,8,9]]")) (|columnSpace| (((|List| |#3|) $) "\\spad{columnSpace(m)} returns a sublist of columns of the matrix \\spad{m} \\indented{1}{forming a basis of its column space} \\blankline \\spad{X} columnSpace matrix [[1,2,3],[4,5,6],[7,8,9],[1,1,1]]")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m.} \\blankline \\spad{X} rowEchelon matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r.} Error: if \\spad{r = 0}. \\blankline \\spad{X} m:=matrix [[2**i for \\spad{i} in 2..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m/4}")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements \\indented{1}{of \\spad{m} by \\spad{r,} returning \\axiom{\"failed\"} if this is not possible.} \\blankline \\spad{X} m:=matrix [[2**i for \\spad{i} in 2..4] for \\spad{j} in 1..5] \\spad{X} exquo(m,2)")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m.} \\indented{1}{Error: if matrix is not square or if the matrix} \\indented{1}{is square but not invertible.} \\blankline \\spad{X} (matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]) \\spad{**} 2") (($ $ (|NonNegativeInteger|)) "\\spad{x \\spad{**} \\spad{n}} computes a non-negative integral power of the matrix \\spad{x.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m**3}")) (* ((|#2| |#2| $) "\\spad{r * \\spad{x}} is the product of the row vector \\spad{r} and the matrix \\spad{x.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} r:=transpose([1,2,3,4,5])@Matrix(INT) \\spad{X} \\spad{r*m}") ((|#3| $ |#3|) "\\spad{x * \\spad{c}} is the product of the matrix \\spad{x} and the column vector \\spad{c.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} c:=coerce([1,2,3,4,5])@Matrix(INT) \\spad{X} \\spad{m*c}") (($ (|Integer|) $) "\\spad{n * \\spad{x}} is an integer multiple. \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} 3*m") (($ $ |#1|) "\\spad{x * \\spad{r}} is the right scalar multiple of the scalar \\spad{r} and the \\indented{1}{matrix \\spad{x.}} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m*1/3}") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the \\indented{1}{matrix \\spad{x.}} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} 1/3*m") (($ $ $) "\\spad{x * \\spad{y}} is the product of the matrices \\spad{x} and \\spad{y.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m*m}")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{-m}") (($ $ $) "\\spad{x - \\spad{y}} is the difference of the matrices \\spad{x} and \\spad{y.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m-m}")) (+ (($ $ $) "\\spad{x + \\spad{y}} is the sum of the matrices \\spad{x} and \\spad{y.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m+m}")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix!(x,i1,j1,y)} destructively alters the \\indented{1}{matrix \\spad{x.} Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for} \\indented{1}{\\spad{i = i1,...,i1-1+nrows \\spad{y}} and \\spad{j = j1,...,j1-1+ncols y}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} setsubMatrix!(m,2,2,matrix [[3,3],[3,3]])")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\indented{1}{\\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2}} \\indented{1}{and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} subMatrix(m,1,3,2,4)")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th \\indented{1}{columns of \\spad{m.} This destructively alters the matrix.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} swapColumns!(m,2,4)")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th \\indented{1}{rows of \\spad{m.} This destructively alters the matrix.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} swapRows!(m,2,4)")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x.} \\indented{1}{If \\spad{y} is \\spad{m}-by-\\spad{n}, \\spad{rowList = [i<1>,i<2>,...,i]}} \\indented{1}{and \\spad{colList = [j<1>,j<2>,...,j]}, then \\spad{x(i,j)}} \\indented{1}{is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} setelt(m,3,3,10)")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an m-by-n matrix consisting \\indented{1}{of elements of \\spad{x,} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}} \\indented{1}{If \\spad{rowList = [i<1>,i<2>,...,i]} and \\spad{colList \\spad{=}} \\indented{1}{[j<1>,j<2>,...,j]}, then the \\spad{(k,l)}th entry of} \\indented{1}{\\spad{elt(x,rowList,colList)} is \\spad{x(i,j)}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} elt(m,3,3)")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list \\indented{1}{of lists.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} listOfLists \\spad{m}")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an \\indented{1}{equal number of columns. The entries of \\spad{y} appear below} \\indented{1}{of the entries of x.\\space{2}Error: if the matrices} \\indented{1}{do not have the same number of columns.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} vertConcat(m,m)")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with \\indented{1}{an equal number of rows. The entries of \\spad{y} appear to the right} \\indented{1}{of the entries of x.\\space{2}Error: if the matrices} \\indented{1}{do not have the same number of rows.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} horizConcat(m,m)")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an n-by-n matrix consisting of the first \\indented{1}{n rows of the m-by-n matrix \\spad{m.} Error: if} \\indented{1}{\\spad{m < n}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..2] for \\spad{j} in 1..5] \\spad{X} squareTop \\spad{m}")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} transpose \\spad{m}") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix. \\blankline \\spad{X} transpose([1,2,3])@Matrix(INT)")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix. \\blankline \\spad{X} coerce([1,2,3])@Matrix(INT)")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\indented{1}{M with block matrices m1,...,mk down the diagonal,} \\indented{1}{with 0 block matrices elsewhere.} \\indented{1}{More precisly: if \\spad{ri \\spad{:=} nrows mi}, \\spad{ci \\spad{:=} ncols mi},} \\indented{1}{then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix\\space{2}with entries} \\indented{1}{\\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))}, if} \\indented{1}{\\spad{(r1+..+r(l-1)) < \\spad{i} \\spad{<=} r1+..+rl} and} \\indented{1}{\\spad{(c1+..+c(l-1)) < \\spad{i} \\spad{<=} c1+..+cl},} \\indented{1}{\\spad{m.i.j} = 0\\space{2}otherwise.} \\blankline \\spad{X} diagonalMatrix [matrix [[1,2],[3,4]], matrix [[4,5],[6,7]]]") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements \\indented{1}{of \\spad{l} on the diagonal.} \\blankline \\spad{X} diagonalMatrix [1,2,3]")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an n-by-n matrix with \\spad{r's} on the \\indented{1}{diagonal and zeroes elsewhere.} \\blankline \\spad{X} z:Matrix(INT):=scalarMatrix(3,5)")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} constructs an \\spad{n * \\spad{m}} matrix with \\indented{1}{the \\spad{(i,j)} entry equal to \\spad{f(i,j)}} \\blankline \\spad{X} f(i:INT,j:INT):INT \\spad{==} i+j \\spad{X} matrix(3,4,f)") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix, where the \\indented{1}{list of lists is viewed as a list of the rows of the matrix.} \\blankline \\spad{X} matrix [[1,2,3],[4,5,6],[7,8,9],[1,1,1]]")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an m-by-n zero matrix. \\blankline \\spad{X} z:Matrix(INT):=zero(3,3)")) (|zero?| (((|Boolean|) $) "\\spad{zero?(m)} returns \\spad{true} if \\spad{m} is a zero matrix \\blankline zero? matrix \\spad{[[0} for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and \\indented{1}{antisymmetric (that is, \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j)}} \\indented{1}{and \\spad{false} otherwise.} \\blankline \\spad{X} antisymmetric? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and \\indented{1}{symmetric (that is, \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j)} and false} \\indented{1}{otherwise.} \\blankline \\spad{X} symmetric? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and \\indented{1}{diagonal (that is, all entries of \\spad{m} not on the diagonal are zero) and} \\indented{1}{false otherwise.} \\blankline \\spad{X} diagonal? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix \\indented{1}{(if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.} \\blankline \\spad{X} square? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ +(|NumericContinuedFraction| F) │ │ │ +((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions for converting floating point numbers to continued fractions.")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) │ │ │ NIL │ │ │ -(|ElementaryRischDE| R F) │ │ │ -((|constructor| (NIL "Risch differential equation, elementary case.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, \\spad{f,} \\spad{g,} \\spad{x,} lim, ext)} returns \\spad{[y, \\spad{h,} \\spad{b]}} such that \\spad{dy/dx + \\spad{n} df/dx \\spad{y} = \\spad{h}} and \\spad{b \\spad{:=} \\spad{h} = \\spad{g}.} The equation \\spad{dy/dx + \\spad{n} df/dx \\spad{y} = \\spad{g}} has no solution if \\spad{h \\~~= \\spad{g}} (y is a partial solution in that case). Notes: \\spad{lim} is a limited integration function, and ext is an extended integration function."))) │ │ │ NIL │ │ │ +(|PrimitiveArray| S) │ │ │ +((|constructor| (NIL "This provides a fast array type with no bound checking on elt's. Minimum index is 0 in this type, cannot be changed"))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ +(|MonogenicAlgebra| R UP) │ │ │ +((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, \\spad{')}} returns \\spad{M} such that \\spad{b' = \\spad{M} \\spad{b}.}")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element, reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element, reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) │ │ │ +((|noZeroDivisors| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|RegularTriangularSetCategory| R E V P) │ │ │ -((|constructor| (NIL "The category of regular triangular sets, introduced under the name regular chains in \\spad{[1]} (and other papers). In \\spad{[3]} it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions, all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (w.r.t. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is false. This category provides operations related to both kinds of splits, the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the RegularTriangularSet constructor for more explanations about decompositions by means of regular triangular sets.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is false, it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or, in other words, a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for \\spad{ts} in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? \\spad{lp}} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first \\spad{lp,} extend(rest \\spad{lp,} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for \\spad{ts} in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself, if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest \\spad{lp,} internalAugment(first \\spad{lp,} ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for \\spad{ts} in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp}, \\spad{augment(p,ts)} if \\spad{lp = [p]}, otherwise \\spad{augment(first \\spad{lp,} augment(rest \\spad{lp,} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for \\spad{ts} in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set, say \\spad{ts+p}, is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself, if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for \\spad{ts} in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial w.r.t. \\spad{lpwt.i.tower}, this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower}, for every \\spad{i}. Moreover, the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts}, then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} w.r.t. \\spad{lpwt.i.tower}, for every \\spad{i}, and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover, if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} w.r.t. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials w.r.t. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same main variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} w.r.t. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{I} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic w.r.t. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic w.r.t. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic w.r.t. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is select from TriangularSetCategory(ts,v) and \\spad{ts_v_-} is collectUnder from TriangularSetCategory(ts,v).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic w.r.t. \\spad{ts}."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ +(|NagLapack|) │ │ │ +((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations, and to solve systems of linear equations following the matrix factorizations.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides, AX=B, where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{T} multiple right-hand sides, AX=B or A X=B, where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) │ │ │ NIL │ │ │ -(|RadicalFunctionField| F UP UPUP |radicnd| |n|) │ │ │ -((|constructor| (NIL "Function field defined by y**n = f(x)."))) │ │ │ -((|noZeroDivisors| |has| (|Fraction| |#2|) (|Field|)) (|canonicalUnitNormal| |has| (|Fraction| |#2|) (|Field|)) (|canonicalsClosed| |has| (|Fraction| |#2|) (|Field|)) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| (|Fraction| |#2|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|FiniteFieldCategory|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|))) (OR (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|FiniteFieldCategory|)))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Finite|))) (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|Finite|))) (OR (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|)))) (AND (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|)))) (OR (AND (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|)))) (AND (|HasCategory| (|Fraction| |#2|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|FiniteFieldCategory|))))) (AND (|HasCategory| (|Fraction| |#2|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|)))) (OR (AND (|HasCategory| (|Fraction| |#2|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|Field|)))) (|HasCategory| (|Fraction| |#2|) (QUOTE (|FiniteFieldCategory|))))) │ │ │ -(|RewriteRule| |Base| R F) │ │ │ -((|constructor| (NIL "Rules for the pattern matcher")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted, that is they are not evaluated during any rewrite, but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or r(f, \\spad{n)} applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r.}")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r.}")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r.}")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], \\spad{f)}} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, \\spad{g,} [f1,...,fn])} creates the rewrite rule \\spad{f \\spad{==} eval(eval(g, \\spad{g} is \\spad{f),} [f1,...,fn])}, that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g;} The symbols f1,...,fn are the operators that are considered quoted, that is they are not evaluated during any rewrite, but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, \\spad{g)}} creates the rewrite rule: \\spad{f \\spad{==} eval(g, \\spad{g} is f)}, \\indented{1}{with left-hand side \\spad{f} and right-hand side \\spad{g.}} \\blankline \\spad{X} logrule \\spad{:=} rule log(x) + log(y) \\spad{==} log(x*y) \\spad{X} \\spad{f} \\spad{:=} log(sin(x)) + log(x) \\spad{X} logrule \\spad{f}"))) │ │ │ NIL │ │ │ +(|ThreeDimensionalViewport|) │ │ │ +((|constructor| (NIL "ThreeDimensionalViewport creates viewports to display graphs")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, and creates a directory indicated by \\spad{s,} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf.}") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, and creates a directory indicated by \\spad{s,} which contains the graph data file for \\spad{v} and an optional file type \\spad{f.}") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, and creates a directory indicated by \\spad{s,} which contains the graph data file for \\spad{v.}")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2}, for the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to i, for the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x,} \\spad{y,} and \\spad{z} and displays the graph for the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\", or displays the graph without clipping implemented if \\spad{s} is \"off\", for the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, if \\spad{s} is \"on\", or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, if \\spad{s} is \"on\", or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h,} for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d,} for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\", or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy}, for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the x-coordinate axis to \\spad{sx}, the y-coordinate axis to \\spad{sy} and the z-coordinate axis to \\spad{sz} for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s,} for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v.}") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s.} If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"}, \\spad{\"solid\"} or \\spad{\"opaque\"}, \\spad{\"smooth\"}, and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set, for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport}, if \\spad{s} is \"on\", or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline, for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport}, if \\spad{s} is \"on\", or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, if \\spad{s} is \"on\", or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, if \\spad{s} is \"on\", or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the x-axis to be \\spad{rotx} radians, sets the rotation about the y-axis to be \\spad{roty} radians, and sets the rotation about the z-axis to be \\spad{rotz} radians, for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v.}") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees, the latitudinal view angle to \\spad{phi} degrees, the scale factor to \\spad{s}, the horizontal viewport offset to \\spad{dx}, and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v.}") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles, the zoom factor, the x,y and \\spad{z} scales, and the \\spad{x} and \\spad{y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport, \\spad{v.} This function is useful in the situation where the user has created a viewport, proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians, the latitudinal view angle to \\spad{phi} radians, the scale factor to \\spad{s}, the horizontal viewport offset to \\spad{dx}, and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v.}")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, to the window coordinate \\spad{x,} \\spad{y,} and sets the dimensions of the window to that of \\spad{width}, \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v.}")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window, \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, with a width of \\spad{w} and a height of \\spad{h,} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport, \\spad{v,} which is of domain \\spadtype{ThreeDimensionalViewport}, with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x,} \\spad{y.}")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport, \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list, \\spad{lopt}, which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport, \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v.}")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport, \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}, and places the data point, \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}, in the subspace \\spad{sp}, which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v,} which is of the domain \\spadtype{ThreeDimensionalViewport}, as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space, \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp}, and whose draw options are indicated by the list \\spad{lopt}, which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space, \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp}, and whose title is given by \\spad{s.}") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport, \\spad{v,} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v.}")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s.}") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p.}") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t.}") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) │ │ │ NIL │ │ │ -(|Ruleset| |Base| R F) │ │ │ -((|constructor| (NIL "Sets of rules for the pattern matcher. A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or r(f, \\spad{n)} applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r.}")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) │ │ │ NIL │ │ │ +(|XFreeAlgebra| |vl| R) │ │ │ +((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y}, the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * \\spad{r}} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * \\spad{x}} returns the product of a variable \\spad{x} by \\spad{x}."))) │ │ │ +((|noZeroDivisors| |has| |#2| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|StochasticDifferential| R) │ │ │ -((|constructor| (NIL "A basic implementation of StochasticDifferential(R) using the associated domain BasicStochasticDifferential in the underlying representation as sparse multivariate polynomials. The domain is a module over Expression(R), and is a ring without identity (AXIOM term is \"Rng\"). Note that separate instances, for example using R=Integer and R=Float, have different hidden structure (multiplication and drift tables).")) (|uncorrelated?| (((|Boolean|) (|List| (|List| $))) "\\spad{uncorrelated?(ll)} checks whether its argument is a list of lists of stochastic differentials of zero inter-list quadratic co-variation.") (((|Boolean|) (|List| $) (|List| $)) "\\spad{uncorrelated?(l1,l2)} checks whether its two arguments are lists of stochastic differentials of zero inter-list quadratic co-variation.") (((|Boolean|) $ $) "\\spad{uncorrelated?(dx,dy)} checks whether its two arguments have zero quadratic co-variation.")) (|statusIto| (((|OutputForm|)) "\\spad{statusIto()} displays the current state of \\axiom{setBSD}, \\indented{1}{\\axiom{tableDrift}, and \\axiom{tableQuadVar}. Question} \\indented{1}{marks are printed instead of undefined entries} \\blankline \\spad{X} dt:=introduce!(t,dt) \\spad{X} dX:=introduce!(X,dX) \\spad{X} dY:=introduce!(Y,dY) \\spad{X} copyBSD() \\spad{X} copyIto() \\spad{X} copyhQuadVar() \\spad{X} statusIto()")) (^ (($ $ (|PositiveInteger|)) "\\spad{dx^n} is \\spad{dx} multiplied by itself \\spad{n} times.")) (** (($ $ (|PositiveInteger|)) "\\spad{dx**n} is \\spad{dx} multiplied by itself \\spad{n} times.")) (/ (($ $ (|Expression| |#1|)) "\\spad{dx/y} divides the stochastic differential \\spad{dx} by the previsible function \\spad{y.}")) (|copyQuadVar| (((|Table| $ $)) "\\spad{copyQuadVar returns} private multiplication table of basic stochastic differentials for inspection")) (|copyDrift| (((|Table| $ $)) "\\spad{copyDrift returns} private table of drifts of basic stochastic differentials for inspection")) (|equation| (((|Union| (|Equation| $) "failed") |#1| $) "\\spad{equation(0,dx)} allows \\spad{LHS} of Equation \\% to be zero") (((|Union| (|Equation| $) "failed") $ |#1|) "\\spad{equation(dx,0)} allows \\spad{RHS} of Equation \\% to be zero")) (|listSD| (((|List| (|BasicStochasticDifferential|)) $) "\\spad{listSD(dx)} returns a list of all \\axiom{BSD} involved in the generation of \\axiom{dx} as a module element")) (|coefficient| (((|Expression| |#1|) $ (|BasicStochasticDifferential|)) "\\spad{coefficient(sd,dX)} returns the coefficient of \\axiom{dX} in the stochastic differential \\axiom{sd}")) (|freeOf?| (((|Boolean|) $ (|BasicStochasticDifferential|)) "\\spad{freeOf?(sd,dX)} checks whether \\axiom{dX} occurs in \\axiom{sd} as a module element")) (|drift| (($ $) "\\spad{drift(dx)} returns the drift of \\axiom{dx}")) (|alterDrift!| (((|Union| $ "failed") (|BasicStochasticDifferential|) $) "\\spad{alterDrift! adds} drift formula for a stochastic differential to a private table. Failure occurs if \\indented{1}{(a) first arguments is not basic} \\indented{1}{(b) second argument is not exactly of first degree}")) (|alterQuadVar!| (((|Union| $ "failed") (|BasicStochasticDifferential|) (|BasicStochasticDifferential|) $) "\\spad{alterQuadVar! adds} multiplication formula for a pair of stochastic differentials to a private table. Failure occurs if \\indented{1}{(a) either of first or second arguments is not basic} \\indented{1}{(b) third argument is not exactly of first degree}"))) │ │ │ -((|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +(|RecursiveAggregate| S) │ │ │ +((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S.} Recursively, a recursive aggregate is a node consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x.}")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x})} is equivalent to \\axiom{setvalue!(a,x)}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child, a child of a child, etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v.}")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v.}")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{t} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node u.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate u.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate u."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|ElementaryFunctionSign| R F) │ │ │ -((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, \\spad{x,} a, \\spad{s)}} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\", or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, \\spad{x,} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a}, from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) │ │ │ +(|MonoidRing| R M) │ │ │ +((|constructor| (NIL "\\spadtype{MonoidRing}(R,M), implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over f(a)g(b) such that ab = \\spad{c.} Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M.} Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol}, one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G,} where modules over \\spadtype{MonoidRing}(R,G) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f,} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f.}")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of u.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M.}")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m.}"))) │ │ │ +((|leftUnitary| |has| |#1| (|CommutativeRing|)) (|rightUnitary| |has| |#1| (|CommutativeRing|)) (|unitsKnown| . T)) │ │ │ +((AND (|HasCategory| |#1| (QUOTE (|Finite|))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|)))) │ │ │ +(|NormalizationPackage| R E V P TS) │ │ │ +((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(p,ts)} is an internal subroutine, exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(s1,s2,p,ts)} is an internal subroutine, exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(p,ts)} normalizes \\axiom{p} w.r.t \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(p,ts)} returns a normalized polynomial \\axiom{n} w.r.t. \\spad{ts} such that \\axiom{n} and \\axiom{p} are associates w.r.t \\spad{ts} and assuming that \\axiom{p} is invertible w.r.t \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(p,ts)} returns the inverse of \\axiom{p} w.r.t \\spad{ts} assuming that \\axiom{p} is invertible w.r.t \\spad{ts}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|SimplifyAlgebraicNumberConvertPackage|) │ │ │ -((|constructor| (NIL "Package to allow simplify to be called on AlgebraicNumbers by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) │ │ │ +(|FactoredFunctionUtilities| R) │ │ │ +((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{u} and \\spadvar{v} are known to be disjoint, for example, resulting from a content/primitive part split. Essentially, it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{fn} to each factor of \\spadvar{u} and then build a new factored object from the results. For example, if \\spadvar{u} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|SimpleFortranProgram| R FS) │ │ │ -((|constructor| (NIL "\\axiomType{SimpleFortranProgram(f,type)} provides a simple model of some FORTRAN subprograms, making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{f}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name, the type and the \\spad{body} of the program."))) │ │ │ +(|d02ejfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF, a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FunctionSpaceSum| R F) │ │ │ -((|constructor| (NIL "Computes sums of top-level expressions")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), \\spad{n} = a..b)} returns f(a) + f(a+1) + \\spad{...} + f(b).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), \\spad{n)}} returns A(n) such that A(n+1) - A(n) = a(n)."))) │ │ │ +(|RepresentationPackage1| R) │ │ │ +((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note that instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: for example \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices [(deltai,pi1(i)),...,(deltai,pik(i))] if the permutations pi1,...,pik are in list notation and are permuting {1,2,...,n}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices [(deltai,pi1(i)),...,(deltai,pik(i))] (Kronecker delta) for the permutations pi1,...,pik of {1,2,...,n}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix (deltai,pi(i)) (Kronecker delta) if the permutation \\spad{pi} is in list notation and permutes {1,2,...,n}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix (deltai,pi(i)) (Kronecker delta) for a permutation \\spad{pi} of {1,2,...,n}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix \\spad{ai} with itself for \\spad{{1} \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}.} Note that if the list of matrices corresponds to a group representation (repr. of generators) of one group, then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix a with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices \\spad{ai} and \\spad{bi} for \\spad{{1} \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}.} Note that if each list of matrices corresponds to a group representation (repr. of generators) of one group, then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices a and \\spad{b.} Note that if each matrix corresponds to a group representation (repr. of generators) of one group, then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each m-by-m square matrix in the list \\spad{la} the irreducible, polynomial representation of the general linear group \\spad{GLm} which corresponds to the partition (n,0,...,0) of \\spad{n.} Error: if the matrices in \\spad{la} are not square matrices. Note that this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group \\spad{Sn.} The carrier spaces of the representation are the symmetric tensors of the n-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the m-by-m square matrix a the irreducible, polynomial representation of the general linear group \\spad{GLm} which corresponds to the partition (n,0,...,0) of \\spad{n.} Error: if a is not a square matrix. Note that this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group \\spad{Sn.} The carrier spaces of the representation are the symmetric tensors of the n-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate x[i,j] (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each m-by-m square matrix in the list \\spad{la} the irreducible, polynomial representation of the general linear group \\spad{GLm} which corresponds to the partition (1,1,...,1,0,0,...,0) of \\spad{n.} Error: if \\spad{n} is greater than \\spad{m.} Note that this corresponds to the symmetrization of the representation with the sign representation of the symmetric group \\spad{Sn.} The carrier spaces of the representation are the antisymmetric tensors of the n-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix \\indented{1}{a the irreducible, polynomial representation of the} \\indented{1}{general linear group GLm, where \\spad{m} is the number of} \\indented{1}{rows of a, which corresponds to the partition} \\indented{1}{(1,1,...,1,0,0,...,0) of \\spad{n.}} \\indented{1}{Error: if \\spad{n} is greater than \\spad{m.}} \\indented{1}{Note that this corresponds to the symmetrization of the} \\indented{1}{representation with the sign representation of the symmetric group} \\indented{1}{Sn. The carrier spaces of the representation are the antisymmetric} \\indented{1}{tensors of the n-fold tensor product.} \\blankline \\spad{X} t1:=matrix [[a,b,c],[d,e,f]] \\spad{X} antisymmetricTensors(t1,2)"))) │ │ │ NIL │ │ │ +((|HasAttribute| |#1| (QUOTE (|commutative| "*")))) │ │ │ +(|Asp19| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs, evaluating a set of functions and their jacobian at a given point, for example: \\blankline \\tab{5}SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC)\\br \\tab{5}DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N)\\br \\tab{5}INTEGER M,N,LJC\\br \\tab{5}INTEGER I,J\\br \\tab{5}DO 25003 I=1,LJC\\br \\tab{7}DO 25004 J=1,N\\br \\tab{9}FJACC(I,J)=0.0D0\\br 25004 CONTINUE\\br 25003 CONTINUE\\br \\tab{5}FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/(\\br \\tab{4}&XC(3)+15.0D0*XC(2))\\br \\tab{5}FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/(\\br \\tab{4}&XC(3)+7.0D0*XC(2))\\br \\tab{5}FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333\\br \\tab{4}&3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2))\\br \\tab{5}FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/(\\br \\tab{4}&XC(3)+3.0D0*XC(2))\\br \\tab{5}FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)*\\br \\tab{4}&XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2))\\br \\tab{5}FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333\\br \\tab{4}&3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2))\\br \\tab{5}FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)*\\br \\tab{4}&XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2))\\br \\tab{5}FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+\\br \\tab{4}&XC(2))\\br \\tab{5}FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714\\br \\tab{4}&286D0)/(XC(3)+XC(2))\\br \\tab{5}FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666\\br \\tab{4}&6667D0)/(XC(3)+XC(2))\\br \\tab{5}FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3)\\br \\tab{4}&+XC(2))\\br \\tab{5}FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3)\\br \\tab{4}&+XC(2))\\br \\tab{5}FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333\\br \\tab{4}&3333D0)/(XC(3)+XC(2))\\br \\tab{5}FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X\\br \\tab{4}&C(2))\\br \\tab{5}FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3\\br \\tab{4}&)+XC(2))\\br \\tab{5}FJACC(1,1)=1.0D0\\br \\tab{5}FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2)\\br \\tab{5}FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2)\\br \\tab{5}FJACC(2,1)=1.0D0\\br \\tab{5}FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2)\\br \\tab{5}FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2)\\br \\tab{5}FJACC(3,1)=1.0D0\\br \\tab{5}FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/(\\br \\tab{4}&XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)\\br \\tab{4}&**2)\\br \\tab{5}FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666\\br \\tab{4}&666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2)\\br \\tab{5}FJACC(4,1)=1.0D0\\br \\tab{5}FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2)\\br \\tab{5}FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2)\\br \\tab{5}FJACC(5,1)=1.0D0\\br \\tab{5}FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399\\br \\tab{4}&999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2)\\br \\tab{5}FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999\\br \\tab{4}&999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2)\\br \\tab{5}FJACC(6,1)=1.0D0\\br \\tab{5}FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/(\\br \\tab{4}&XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)\\br \\tab{4}&**2)\\br \\tab{5}FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333\\br \\tab{4}&333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2)\\br \\tab{5}FJACC(7,1)=1.0D0\\br \\tab{5}FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/(\\br \\tab{4}&XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)\\br \\tab{4}&**2)\\br \\tab{5}FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428\\br \\tab{4}&571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2)\\br \\tab{5}FJACC(8,1)=1.0D0\\br \\tab{5}FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\\br \\tab{5}FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\\br \\tab{5}FJACC(9,1)=1.0D0\\br \\tab{5}FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)*\\br \\tab{4}&*2)\\br \\tab{5}FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)*\\br \\tab{4}&*2)\\br \\tab{5}FJACC(10,1)=1.0D0\\br \\tab{5}FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)\\br \\tab{4}&**2)\\br \\tab{5}FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)\\br \\tab{4}&**2)\\br \\tab{5}FJACC(11,1)=1.0D0\\br \\tab{5}FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\\br \\tab{5}FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\\br \\tab{5}FJACC(12,1)=1.0D0\\br \\tab{5}FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\\br \\tab{5}FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\\br \\tab{5}FJACC(13,1)=1.0D0\\br \\tab{5}FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)\\br \\tab{4}&**2)\\br \\tab{5}FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)\\br \\tab{4}&**2)\\br \\tab{5}FJACC(14,1)=1.0D0\\br \\tab{5}FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\\br \\tab{5}FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\\br \\tab{5}FJACC(15,1)=1.0D0\\br \\tab{5}FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\\br \\tab{5}FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ -(|TransSolvePackageService| R) │ │ │ -((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} are given and \\spad{func1} = func3(func2) . If there is no solution then function \\spad{func1} will be returned. An example would be \\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and \\spad{func2:=2*X ::EXPR INT} convert them via univariate to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X} of type FRAC SUP EXPR INT")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, \\spad{n)}} returns \\spad{vect(1) + vect(2)*var + \\spad{...} + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = func3(func2) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) │ │ │ NIL │ │ │ +(|AlgebraicFunction| R F) │ │ │ +((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, \\spad{n)}} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x \\spad{**} \\spad{q}} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, \\spad{x)}} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator, that is, an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator, that is, an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, \\spad{y)}} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) │ │ │ NIL │ │ │ -(|ToolsForSign| R) │ │ │ -((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) │ │ │ +(|CombinatorialOpsCategory|) │ │ │ +((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n), \\spad{n} = a..b)} returns f(a) * \\spad{...} * f(b) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n), \\spad{n)}} returns the formal product P(n) which verifies P(n+1)/P(n) = f(n).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n), \\spad{n} = a..b)} returns f(a) + \\spad{...} + f(b) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n), \\spad{n)}} returns the formal sum S(n) which verifies S(n+1) - S(n) = f(n).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f, \\spad{x)}} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|SparseUnivariateTaylorSeries| |Coef| |var| |cen|) │ │ │ -((|constructor| (NIL "Sparse Taylor series in one variable \\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring, the power series variable, and the center of the power series expansion. For example, \\spadtype{SparseUnivariateTaylorSeries}(Integer,x,3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|)) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|)) (|devaluate| |#1|))))) (|HasCategory| (|NonNegativeInteger|) (QUOTE (|SemiGroup|))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ -(|TrigonometricManipulations| R F) │ │ │ -((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms, and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real \\spad{f,} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real \\spad{f}.}")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, \\spad{x)}} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, \\spad{x)}} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) │ │ │ +(|FiniteFieldCategory|) │ │ │ +((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation, one of: \\spad{prime}, \\spad{polynomial}, \\spad{normal}, or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field, is a primitive element. Implementation Note that see ch.IX.1.3, \\spad{th.2} in \\spad{D.} Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call, the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which, called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of \\spad{size()-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)}, given a matrix representing a homogeneous system of equations, returns a vector whose characteristic'th powers is a non-trivial solution, or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of a. Note that such a root is alway defined in finite fields."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|NumericalOrdinaryDifferentialEquations|) │ │ │ +((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables:\\br \\tab{5}dy/dx = f(y,x)\\tab{5}y is an n-vector\\br All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments:\\br \\spad{n,} the number of dependent variables;\\br \\spad{x1,} the initial point;\\br \\spad{h,} the step size;\\br \\spad{y,} a vector of initial conditions of length n\\br which upon exit contains the solution at \\spad{x1 + h};\\br \\blankline \\spad{derivs}, a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx}, a vector which contains the derivative information. \\blankline In order of increasing complexity:\\br \\tab{5}\\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to\\br \\tab{5}\\spad{x1 + \\spad{h}} and return the values in y.\\br \\blankline \\tab{5}\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as\\br \\tab{5}\\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch\\br \\tab{5}arrays \\spad{t1-t4} of size n.\\br \\blankline \\tab{5}Starting with \\spad{y} at \\spad{x1,} \\spad{rk4f(y,n,x1,x2,ns,derivs)}\\br \\tab{5}uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta\\br \\tab{5}integrator to advance the solution vector to \\spad{x2} and return\\br \\tab{5}the values in \\spad{y.} Argument \\spad{x2,} is the final point, and\\br \\tab{5}\\spad{ns}, the number of steps to take. \\blankline \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps}, the step is taken and the result is returned. If the error is not within \\spad{eps}, the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input, an trial step size must be given and upon return, an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as\\br \\tab{5}\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}\\br and this is compared against \\spad{eps}. If this is greater than \\spad{eps}, the step size is reduced accordingly to\\br \\tab{5}\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}\\br If the error criterion is satisfied, then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be\\br \\tab{5}\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(-1/5)}\\br Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by W.Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling published by Cambridge University Press. \\blankline Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)}, \\spad{eps} is the required accuracy, \\spad{yscal} is the scaling vector for the difference in solutions. On input, \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output, \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n.} \\blankline \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2,} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as\\br \\tab{5}\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}\\br where \\spad{y(i)} is the solution at location \\spad{x,} \\spad{dydx} is the ordinary differential equation's right hand side, \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. \\blankline The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point, \\spad{eps} is local truncation, \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use.")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation dy/dx = f(y,x) of \\spad{n} variables, where \\spad{y} is an n-vector. Starting with \\spad{y} at \\spad{x1,} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y.} For details, see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation dy/dx = f(y,x) of \\spad{n} variables, where \\spad{y} is an n-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details, see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation dy/dx = f(y,x) of \\spad{n} variables, where \\spad{y} is an n-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details, see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation dy/dx = f(y,x) of \\spad{n} variables, where \\spad{y} is an n-vector using a 4-th order Runge-Kutta method. For details, see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1-t4} of size \\spad{n.} For details, see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation dy/dx = f(y,x) of \\spad{n} variables, where \\spad{y} is an n-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + \\spad{h},} \\spad{n} is the number of dependent variables, \\spad{x1} is the initial point, \\spad{h} is the step size, and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details, see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) │ │ │ NIL │ │ │ -(|UnivariateFormalPowerSeries| |Coef|) │ │ │ -((|constructor| (NIL "This domain has no description"))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|)) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|)) (|devaluate| |#1|))))) (|HasCategory| (|NonNegativeInteger|) (QUOTE (|SemiGroup|))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ -(|UnivariateLaurentSeriesConstructorCategory&| S |Coef| UTS) │ │ │ -((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]}, where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series, if possible. If this is not possible, \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series, if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by \\spad{(1)} an exponent and \\spad{(2)} a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient, the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by \\spad{(1)} an exponent and \\spad{(2)} a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient, the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note that \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)}, where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)}, which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ -(|UnivariateLaurentSeriesConstructorCategory| |Coef| UTS) │ │ │ -((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]}, where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series, if possible. If this is not possible, \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series, if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by \\spad{(1)} an exponent and \\spad{(2)} a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient, the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by \\spad{(1)} an exponent and \\spad{(2)} a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient, the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note that \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)}, where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)}, which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|nil| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|FortranPackage|) │ │ │ +((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) │ │ │ NIL │ │ │ -(|UnivariateTaylorSeriesODESolver| |Coef| UTS) │ │ │ -((|constructor| (NIL "Taylor series solutions of explicit ODE's. This package provides Taylor series solutions to regular linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]}, \\spad{y[i](a) = r[i]} for \\spad{i} in 1..n.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y=f(y,y',..,y)} such that \\spad{y(a) = cl.i} for \\spad{i} in 1..n.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = \\spad{c0}} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = \\spad{c}.}")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) │ │ │ NIL │ │ │ +(|LinearAggregate| S) │ │ │ +((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings, lists, and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example, \\spadfun{concat} of two lists needs only to copy its first argument, whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (for example, streams) as well to finite ones. For finite linear aggregates, see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{u(i..j) \\spad{:=} \\spad{x})} destructively replaces each element in the segment \\axiom{u(i..j)} by \\spad{x.} The value \\spad{x} is returned. Note that \\spad{u} is destructively change so that \\axiom{u.k \\spad{:=} \\spad{x} for \\spad{k} in i..j}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{i}th element. Note that \\axiom{insert(v,u,k) = concat( u(0..k-1), \\spad{v,} u(k..) \\spad{)}.}") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{i}th element. Note that \\axiom{insert(x,a,k) = concat(concat(a(0..k-1),x),a(k..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{i}th through \\axiom{j}th element deleted. Note that \\axiom{delete(a,i..j) = concat(a(0..i-1),a(j+1..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{i}th element deleted. Note that for lists, \\axiom{delete(a,i) \\spad{==} concat(a(0..i - 1),a(i + 1,..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(i..j)}) returns the aggregate of elements \\axiom{u} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note that in general, \\axiom{a.s = [a.k for \\spad{i} in s]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{z = f(x,y)} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v.} Note that for linear aggregates, \\axiom{w.i = f(u.i,v.i)}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)}, where \\spad{u} is a lists of aggregates \\axiom{[a,b,...,c]}, returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed \\spad{...} by the elements of \\spad{c.} Note that \\axiom{concat(a,b,...,c) = concat(a,concat(b,...,c))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v.} Note that if \\axiom{w = concat(u,v)} then \\axiom{w.i = u.i for \\spad{i} in indices u} and \\axiom{w.(j + maxIndex u) = \\spad{v.j} for \\spad{j} in indices \\spad{v}.}") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note that for lists: \\axiom{concat(x,u) \\spad{==} concat([x],u)}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note that for lists, \\axiom{concat(u,x) \\spad{==} concat(u,[x])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new n,x)}."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|UTSodetools| F UP L UTS) │ │ │ -((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series ODE solver when presented with linear ODEs.")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op \\spad{y} = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, \\spad{n)}} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) │ │ │ +(|OrderedFreeMonoid| S) │ │ │ +((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si \\spad{**} ni])} where the si's are in \\spad{S,} and the ni's are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < \\spad{y}} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} w.r.t. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}. \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} varList \\spad{m1}")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}. \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} length \\spad{m1}")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\indented{1}{\\spad{[[a1, e1],...,[an, en]]}.} \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} factors \\spad{m1}")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, \\spad{n)}} returns the factor of the \\spad{n-th} \\indented{1}{monomial of \\spad{x}.} \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} nthFactor(m1,2)")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, \\spad{n)}} returns the exponent of the \\indented{1}{\\spad{n-th} monomial of \\spad{x}.} \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} nthExpon(m1,2)")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}. \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} size(m1,2)")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, \\spad{y)}} returns \\spad{[l, \\spad{m,} \\spad{r]}} such that \\indented{1}{\\spad{x = \\spad{l} * \\spad{m}} and \\spad{y = \\spad{m} * \\spad{r}} hold and such that} \\indented{1}{\\spad{l} and \\spad{r} have no overlap,} \\indented{1}{that is \\spad{overlap(l, \\spad{r)} = \\spad{[l,} 1, r]}.} \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} m2:=(x*y)$OFMONOID(Symbol) \\spad{X} overlap(m1,m2)")) (|divide| (((|Union| (|Record| (|:| |lm| (|Union| $ "failed")) (|:| |rm| (|Union| $ "failed"))) "failed") $ $) "\\spad{divide(x,y)} returns the left and right exact quotients of \\indented{1}{\\spad{x} by \\spad{y}, that is \\spad{[l,r]} such that \\spad{x = l*y*r}.} \\indented{1}{\"failed\" is returned iff \\spad{x} is not of the form \\spad{l * \\spad{y} * r}.} \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} m2:=(x*y)$OFMONOID(Symbol) \\spad{X} divide(m1,m2)")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, \\spad{s)}} returns the exact right quotient \\indented{1}{of \\spad{x} by \\spad{s}.} \\blankline \\spad{X} m1:=(x*y)$OFMONOID(Symbol) \\spad{X} div(m1,y)") (((|Union| $ "failed") $ $) "\\spad{rquo(x, \\spad{y)}} returns the exact right quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = \\spad{q} * y},} \\indented{1}{\"failed\" if \\spad{x} is not of the form \\spad{q * y}.} \\blankline \\spad{X} m1:=(q*y^3)$OFMONOID(Symbol) \\spad{X} m2:=(y^2)$OFMONOID(Symbol) \\spad{X} lquo(m1,m2)")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, \\spad{s)}} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{s}.} \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} lquo(m1,x)") (((|Union| $ "failed") $ $) "\\spad{lquo(x, \\spad{y)}} returns the exact left quotient of \\spad{x} \\indented{2}{by \\spad{y} that is \\spad{q} such that \\spad{x = \\spad{y} * q},} \\indented{1}{\"failed\" if \\spad{x} is not of the form \\spad{y * q}.} \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} m2:=(x*y)$OFMONOID(Symbol) \\spad{X} lquo(m1,m2)")) (|hcrf| (($ $ $) "\\spad{hcrf(x, \\spad{y)}} returns the highest common right \\indented{1}{factor of \\spad{x} and \\spad{y},} \\indented{1}{that is the largest \\spad{d} such that \\spad{x = a \\spad{d}}} \\indented{1}{and \\spad{y = \\spad{b} d}.} \\blankline \\spad{X} m1:=(x*y*z)$OFMONOID(Symbol) \\spad{X} m2:=(y*z)$OFMONOID(Symbol) \\spad{X} hcrf(m1,m2)")) (|hclf| (($ $ $) "\\spad{hclf(x, \\spad{y)}} returns the highest common left factor \\indented{1}{of \\spad{x} and \\spad{y},} \\indented{1}{that is the largest \\spad{d} such that \\spad{x = \\spad{d} a}} \\indented{1}{and \\spad{y = \\spad{d} b}.} \\blankline \\spad{X} m1:=(x*y*z)$OFMONOID(Symbol) \\spad{X} m2:=(x*y)$OFMONOID(Symbol) \\spad{X} hclf(m1,m2)")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} \\indented{1}{iff \\spad{x} is smaller than \\spad{y}} \\indented{1}{w.r.t. the pure lexicographical ordering induced by \\spad{S}.} \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} m2:=(x*y)$OFMONOID(Symbol) \\spad{X} lexico(m1,m2) \\spad{X} lexico(m2,m1)")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}. \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} mirror \\spad{m1}")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter. \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} rest \\spad{m1}")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}. \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} first \\spad{m1}")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s**n} returns the product of \\spad{s} by itself \\spad{n} times. \\blankline \\spad{X} m1:=(y**3)$OFMONOID(Symbol)")) (* (($ $ |#1|) "\\spad{x*s} returns the product of \\spad{x} by \\spad{s} on the right. \\blankline \\spad{X} m1:=(y**3)$OFMONOID(Symbol) \\spad{X} m1*x") (($ |#1| $) "\\spad{s*x} returns the product of \\spad{x} by \\spad{s} on the left. \\blankline \\spad{X} m1:=(x*y*y*z)$OFMONOID(Symbol) \\spad{X} \\spad{x*m1}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) │ │ │ -(|UnivariatePuiseuxSeriesWithExponentialSingularity| R FE |var| |cen|) │ │ │ -((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums, where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus, the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))}, where g(x) is a univariate Puiseux series and f(x) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var \\spad{->} cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var \\spad{->} cen+,f(var))}."))) │ │ │ -(((|commutative| "*") |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|CommutativeRing|)) (|noZeroDivisors| |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (QUOTE (|CommutativeRing|))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (QUOTE (|Field|))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (QUOTE (|GcdDomain|))) (OR (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasCategory| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (QUOTE (|IntegralDomain|)))) │ │ │ -(|TaylorSolve| F UTSF UTSSUPF) │ │ │ -((|constructor| (NIL "This package has no description"))) │ │ │ NIL │ │ │ +(|NonAssociativeRing|) │ │ │ +((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit, the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) │ │ │ NIL │ │ │ -(|UnivariateTaylorSeriesFunctions2| |Coef1| |Coef2| UTS1 UTS2) │ │ │ -((|constructor| (NIL "Mapping package for univariate Taylor series. This package allows one to apply a function to the coefficients of a univariate Taylor series.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) │ │ │ NIL │ │ │ +(|SExpression|) │ │ │ +((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) │ │ │ NIL │ │ │ -(|TranscendentalManipulations| R F) │ │ │ -((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(x)*sin(y)} by \\spad{(cos(x-y)-cos(x+y))/2}, \\axiom{cos(x)*cos(y)} by \\spad{(cos(x-y)+cos(x+y))/2}, and \\axiom{sin(x)*cos(y)} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2}, and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2}, and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2}, and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2}, and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)}, and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)}, every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,\\spad{cos}, \\spad{sinh}, \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh}, \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs, \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) │ │ │ NIL │ │ │ -((AND (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (|devaluate| |#1|))))) │ │ │ -(|WuWenTsunTriangularSet| R E V P) │ │ │ -((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The construct operation does not check the previous requirement. Triangular sets are stored as sorted lists w.r.t. the main variables of their members. Furthermore, this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,initiallyReduced?,initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,redOp?,redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,redOp?,redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,initiallyReduced?,initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,redOp?,redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense w.r.t the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials w.r.t a \\axiom{redOp?} basic set), if no non-zero constant polynomial appear during those reductions, else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(p,q),q)} holds for every polynomials \\axiom{p,q} and there exists an integer \\axiom{e} and a polynomial \\axiom{f} such that we have \\axiom{init(q)^e*p = \\spad{f*q} + redOp(p,q)}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,initiallyReduced?,initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,redOp?,redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense w.r.t the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}), if no non-zero constant polynomials appear during the computatioms, else \\axiom{\"failed\"} is returned. In the former case, \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm, \\axiom{bs} is simply a basic set of \\axiom{ps}."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#4| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#4| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#3| (QUOTE (|Finite|)))) │ │ │ -(|MyUnivariatePolynomial| |x| R) │ │ │ -((|constructor| (NIL "This domain has no description")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{x} : \\spad{p1} - \\spad{r} * x**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) │ │ │ -(((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|)) (|additiveValuation| |has| |#2| (|Field|)) (|canonicalUnitNormal| |has| |#2| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|StepThrough|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|MyExpression| |q| R) │ │ │ -((|constructor| (NIL "This domain has no description"))) │ │ │ -((|canonicalUnitNormal| |has| |#2| (|IntegralDomain|)) (|canonicalsClosed| |has| |#2| (|IntegralDomain|)) (|unitsKnown| OR (|has| |#2| (|Group|)) (|has| |#2| (|Ring|))) (|leftUnitary| |has| |#2| (|CommutativeRing|)) (|rightUnitary| |has| |#2| (|CommutativeRing|)) ((|commutative| "*") |has| |#2| (|IntegralDomain|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|))) │ │ │ -((|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Group|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (OR (|HasCategory| |#2| (QUOTE (|Group|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (|HasCategory| |#2| (QUOTE (|Group|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| |#2| (QUOTE (|AbelianGroup|))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#2| (QUOTE (|SemiGroup|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (OR (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))))) (|HasCategory| $ (QUOTE (|Ring|))) (|HasCategory| $ (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) │ │ │ -(|CylindricalAlgebraicDecompositionPackage| |TheField|) │ │ │ +(|SquareMatrixCategory| |ndim| R |Row| |Col|) │ │ │ +((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m.} Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m,} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m.}")) (* ((|#3| |#3| $) "\\spad{r * \\spad{x}} is the product of the row vector \\spad{r} and the matrix \\spad{x.} Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * \\spad{c}} is the product of the matrix \\spad{x} and the column vector \\spad{c.} Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m.}")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m.} this is the sum of the elements on the diagonal of the matrix \\spad{m.}")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m.}")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an n-by-n matrix with \\spad{r's} on the diagonal and zeroes elsewhere."))) │ │ │ +((|nil| . T) (|finiteAggregate| . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|InnerTable| |Key| |Entry| |addDom|) │ │ │ +((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (OR (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) │ │ │ +(|FiniteAbelianMonoidRing| R E) │ │ │ +((|constructor| (NIL "This category is similar to AbelianMonoidRing, except that the sum is assumed to be finite. It is a useful model for polynomials, but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p.}")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p.}")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r,} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * \\spad{p2}} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial u.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p.} Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p.}")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p.}")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|DifferentialExtension| R) │ │ │ +((|constructor| (NIL "Differential extensions of a ring \\spad{R.} Given a differentiation on \\spad{R,} extend it to a differentiation on \\spad{%.}")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, \\spad{n)}} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R.}") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R.}")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, \\spad{n)}} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R.}") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R.}"))) │ │ │ +((|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|RationalFunctionDefiniteIntegration| R) │ │ │ -((|constructor| (NIL "Definite integration of rational functions. \\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, \\spad{x} = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b.} If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters), then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, \\spad{x} = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b.} Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b.}") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, \\spad{x} = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b.} If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters), then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, \\spad{x} = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b.} Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b.}"))) │ │ │ +(|FunctionFieldCategoryFunctions2| R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) │ │ │ +((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, \\spad{p)}} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ElementaryFunctionDefiniteIntegration| R F) │ │ │ -((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, \\spad{x,} a, \\spad{b,} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, \\spad{x} = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b.} If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters), then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, \\spad{x} = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b.} Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b.}"))) │ │ │ +(|NonAssociativeRing&| S) │ │ │ +((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit, the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|DefiniteIntegrationTools| R F) │ │ │ -((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, \\spad{b,} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b,} \\spad{false} otherwise, \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is true, exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, \\spad{x,} a, \\spad{b,} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b,} \\spad{false} otherwise, \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is true, exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, \\spad{g,} a, \\spad{b,} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b,} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b.} If \\spad{eval?} is true, then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b}, provided that they are finite values. Otherwise, limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) │ │ │ +(|BinaryRecursiveAggregate&| A S) │ │ │ +((|constructor| (NIL "A binary-recursive aggregate has 0, 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x.}")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b.}")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{b . right \\spad{:=} \\spad{b})} is equivalent to \\axiom{setright!(a,b)}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b})} is equivalent to \\axiom{setleft!(a,b)}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) │ │ │ NIL │ │ │ +((|HasAttribute| |#1| (QUOTE |shallowlyMutable|))) │ │ │ +(|OpenMathError|) │ │ │ +((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error u.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) │ │ │ NIL │ │ │ -(|ElementaryFunctionsUnivariateLaurentSeries| |Coef| UTS ULS) │ │ │ -((|constructor| (NIL "This domain provides elementary functions on any Laurent series domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z.}")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z.}")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z.}")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z.}")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z.}")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z.}")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z.}")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z.}")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z.}")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z.}")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z.}")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z.}")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z.}")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z.}")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z.}")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z.}")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z.}")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z.}")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z.}")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z.}")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z.}")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z.}")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z.}")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z.}")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z.}")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z.}")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s \\spad{**} \\spad{r}} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ -(|ExpertSystemContinuityPackage|) │ │ │ -((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{u}"))) │ │ │ +(|QuasiComponentPackage| R E V P TS) │ │ │ +((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets.")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,ts,lineq,b1,b2,b3,b4,b5)} is an internal subroutine, exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,lts,b1,b2)} is an internal subroutine, exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine, exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,lpwt2)} is an internal subroutine, exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,us)} returns \\spad{true} iff internalSubQuasiComponent? returs true.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{b} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(lp1,lp2)} is an internal subroutine, exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(lp1,lp2)} is an internal subroutine, exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(lp1,lp2)} returns \\spad{true} iff \\axiom{lp1} is a sub-set of \\axiom{lp2} assuming that these lists are sorted increasingly w.r.t. infRittWu? from RecursivePolynomialCategory.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(lp1,lp2)} returns \\spad{true} iff \\axiom{lp1} is a sub-set of \\axiom{lp2}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty, or \\axiom{ts} has less elements than \\axiom{us}, or some variable is algebraic w.r.t. \\axiom{us} and is not w.r.t. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} w.r.t supDimElseRittWu?")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} w.r.t. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine, exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(s1,s2,s3)} is an internal subroutine, exported only for developement."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|DeRhamComplex| |CoefRing| |listIndVar|) │ │ │ -((|constructor| (NIL "The deRham complex of Euclidean space, that is, the class of differential forms of arbitary degree over a coefficient ring. See Flanders, Harley, Differential Forms, With Applications to the Physical Sciences, New York, Academic Press, 1963.")) (|lieDerivative| (($ (|Vector| (|Expression| |#1|)) $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|))) "\\spad{lieDerivative(vr,a,s)} calculates the Lie derivative L_X(a) \\indented{1}{of the differential form a with respect to the vector} \\indented{1}{field \\spad{X} (w.r.t. metric \\spad{g)}} \\blankline \\spad{X} coefRing \\spad{:=} Integer \\spad{X} \\spad{R3} : List Symbol \\spad{:=} [x,y,z] \\spad{X} \\spad{D} \\spad{:=} DERHAM(coefRing,R3) \\spad{X} [dx,dy,dz] \\spad{:=} [generator(i)$D for \\spad{i} in 1..3] \\spad{X} a : BOP \\spad{:=} operator('a) \\spad{X} \\spad{b} : BOP \\spad{:=} operator('b) \\spad{X} \\spad{c} : BOP \\spad{:=} operator('c) \\spad{X} \\spad{U} : BOP \\spad{:=} operator('U) \\spad{X} \\spad{V} : BOP \\spad{:=} operator('V) \\spad{X} \\spad{W} : BOP \\spad{:=} operator('W) \\spad{X} \\spad{v} \\spad{:=} vector[U(x,y,z),V(x,y,z),W(x,y,z)] \\spad{X} theta \\spad{:=} a(x,y,z)*dx*dy + b(x,y,z)*dx*dz + c(x,y,z)*dy*dz \\spad{X} \\spad{G} \\spad{:=} diagonalMatrix([1,1,1]) \\spad{X} eta \\spad{:=} lieDerivative(v,theta,G)")) (|interiorProduct| (($ (|Vector| (|Expression| |#1|)) $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|))) "\\spad{interiorProduct(vr,a,s)} calculates the interior product \\indented{1}{i_X(a) of the vector field \\spad{X}} \\indented{1}{with the differential form a (w.r.t. metric \\spad{g)}} \\blankline \\spad{X} coefRing \\spad{:=} Integer \\spad{X} \\spad{R3} : List Symbol \\spad{:=} [x,y,z] \\spad{X} \\spad{D} \\spad{:=} DERHAM(coefRing,R3) \\spad{X} [dx,dy,dz] \\spad{:=} [generator(i)$D for \\spad{i} in 1..3] \\spad{X} \\spad{f} : BOP \\spad{:=} operator('f) \\spad{X} \\spad{g} : BOP \\spad{:=} operator('g) \\spad{X} \\spad{h} : BOP \\spad{:=} operator('h) \\spad{X} a : BOP \\spad{:=} operator('a) \\spad{X} \\spad{b} : BOP \\spad{:=} operator('b) \\spad{X} \\spad{c} : BOP \\spad{:=} operator('c) \\spad{X} \\spad{U} : BOP \\spad{:=} operator('U) \\spad{X} \\spad{V} : BOP \\spad{:=} operator('V) \\spad{X} \\spad{W} : BOP \\spad{:=} operator('W) \\spad{X} \\spad{v} \\spad{:=} vector[U(x,y,z),V(x,y,z),W(x,y,z)] \\spad{X} sigma \\spad{:=} f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} theta \\spad{:=} a(x,y,z)*dx*dy + b(x,y,z)*dx*dz + c(x,y,z)*dy*dz \\spad{X} \\spad{G} \\spad{:=} diagonalMatrix([1,1,1]) \\spad{X} interiorProduct(v,sigma,G) \\spad{X} interiorProduct(v,theta,G)")) (|proj| (($ $ (|NonNegativeInteger|)) "\\spad{proj(a,n)} projection to homogeneous terms of degree \\spad{p} \\blankline \\spad{X} coefRing \\spad{:=} Integer \\spad{X} \\spad{R3} : List Symbol \\spad{:=} [x,y,z] \\spad{X} \\spad{D} \\spad{:=} DERHAM(coefRing,R3) \\spad{X} [dx,dy,dz] \\spad{:=} [generator(i)$D for \\spad{i} in 1..3] \\spad{X} proj(dx+dy*dz+dx*dy*dz,2)")) (|dot| (((|Expression| |#1|) $ $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|))) "\\spad{dot(a,b,s)} compute the inner product of two differential \\indented{1}{forms w.r.t. \\spad{g}} \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} G:SquareMatrix(3,Integer):=diagonalMatrix([1,1,1]) \\spad{X} dot(sigma,sigma,G)")) (|hodgeStar| (($ $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|))) "\\spad{hodgeStar(a,s)} computes the Hodge dual of the differential \\indented{1}{form with respect to the metric \\spad{g.}} \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} G:SquareMatrix(3,Integer):=diagonalMatrix([1,1,1]) \\spad{X} hodgeStar(sigma,G)")) (|dim| (((|NonNegativeInteger|) $) "\\spad{dim(s)} returns the dimension of the underlying space \\indented{1}{that is, dim ExtAlg = 2^dim} \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} dim sigma")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior \\indented{1}{derivative (gradient, curl, divergence, ...) of} \\indented{1}{the differential form df.} \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} \\spad{R} \\spad{:=} Expression(Integer) \\spad{X} [dx,dy,dz] \\spad{:=} [generator(i)$der for \\spad{i} in 1..3] \\spad{X} \\spad{f} : \\spad{R} \\spad{:=} \\spad{x**2*y*z-5*x**3*y**2*z**5} \\spad{X} \\spad{g} : \\spad{R} \\spad{:=} \\spad{z**2*y*cos(z)-7*sin(x**3*y**2)*z**2} \\spad{X} \\spad{h} : \\spad{R} \\spad{:=x*y*z-2*x**3*y*z**2} \\spad{X} alpha : der \\spad{:=} f*dx + g*dy + h*dz \\spad{X} exteriorDifferential alpha")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential \\indented{1}{(gradient) form for element \\spad{x.}} \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} a : BOP \\spad{:=} operator('a) \\spad{X} totalDifferential(a(x,y,z))$der \\spad{X} totalDifferential(x^2+y^2+sin(x)*z^2)$der")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential \\indented{1}{form \\spad{df} by \\spad{f(x)}.} \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} \\spad{R} \\spad{:=} Expression(Integer) \\spad{X} T(x:R):R \\spad{==} \\spad{x^2} \\spad{X} map(T,sigma)")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df.} \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} \\spad{t1} \\spad{:=} generator(1)$der \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} a:BOP:=operator('a) \\spad{X} b:BOP:=operator('b) \\spad{X} c:BOP:=operator('c) \\spad{X} theta:der:=a(x,y,z)*dx*dy + b(x,y,z)*dx*dz + c(x,y,z)*dy*dz \\spad{X} [degree \\spad{x} for \\spad{x} in [sigma,theta,t1]]")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form, \\indented{1}{if degree(df) = 0.} \\blankline \\spad{X} der:=DERHAM(Integer,[x,y,z]) \\spad{X} [dx,dy,dz]:=[generator(i)$der for \\spad{i} in 1..3] \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} retractable? sigma")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of \\indented{1}{differential form \\spad{df} have the same degree.} \\blankline \\spad{X} der:=DERHAM(Integer,[x,y,z]) \\spad{X} [dx,dy,dz]:=[generator(i)$der for \\spad{i} in 1..3] \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} homogeneous? sigma \\spad{X} a:BOP:=operator('a) \\spad{X} b:BOP:=operator('b) \\spad{X} c:BOP:=operator('c) \\spad{X} theta:=a(x,y,z)*dx*dy + b(x,y,z)*dx*dz + c(x,y,z)*dy*dz \\spad{X} homogeneous? (sigma+theta)")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form. \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} [dx,dy,dz] \\spad{:=} [generator(i)$der for \\spad{i} in 1..3]")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)}, where \\spad{df} is a differential form, \\indented{1}{returns the coefficient of \\spad{df} containing the basis term u} \\indented{1}{if such a term exists, and 0 otherwise.} \\blankline \\spad{X} der \\spad{:=} DeRhamComplex(Integer,[x,y,z]) \\spad{X} \\spad{R} \\spad{:=} Expression(Integer) \\spad{X} [dx,dy,dz] \\spad{:=} [generator(i)$der for \\spad{i} in 1..3] \\spad{X} \\spad{f} : \\spad{R} \\spad{:=} \\spad{x**2*y*z-5*x**3*y**2*z**5} \\spad{X} \\spad{g} : \\spad{R} \\spad{:=} \\spad{z**2*y*cos(z)-7*sin(x**3*y**2)*z**2} \\spad{X} \\spad{h} : \\spad{R} \\spad{:=x*y*z-2*x**3*y*z**2} \\spad{X} alpha : der \\spad{:=} f*dx + g*dy + h*dz \\spad{X} beta : der \\spad{:=} cos(tan(x*y*z)+x*y*z)*dx + x*dy \\spad{X} gamma \\spad{:=} alpha * beta \\spad{X} coefficient(gamma, dx*dy)")) (|reductum| (($ $) "\\spad{reductum(df)}, where \\spad{df} is a differential form, returns \\spad{df} minus \\indented{1}{the leading term of \\spad{df} if \\spad{df} has two or more terms, and} \\indented{1}{0 otherwise.} \\blankline \\spad{X} der:=DERHAM(Integer,[x,y,z]) \\spad{X} [dx,dy,dz]:=[generator(i)$der for \\spad{i} in 1..3] \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} reductum sigma")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading \\indented{1}{basis term of differential form df.} \\blankline \\spad{X} der:=DERHAM(Integer,[x,y,z]) \\spad{X} [dx,dy,dz]:=[generator(i)$der for \\spad{i} in 1..3] \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} leadingBasisTerm sigma")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading \\indented{1}{coefficient of differential form df.} \\blankline \\spad{X} der:=DERHAM(Integer,[x,y,z]) \\spad{X} [dx,dy,dz]:=[generator(i)$der for \\spad{i} in 1..3] \\spad{X} f:BOP:=operator('f) \\spad{X} g:BOP:=operator('g) \\spad{X} h:BOP:=operator('h) \\spad{X} sigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz \\spad{X} leadingCoefficient sigma"))) │ │ │ -((|unitsKnown| . T)) │ │ │ +(|FortranScalarType|) │ │ │ +((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL, INTEGER, COMPLEX, LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the s-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real, complex,double precision, logical, integer, character, REAL, COMPLEX, LOGICAL, INTEGER, CHARACTER, DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\", \"double precision\", \"complex\", \"logical\", \"integer\", \"character\", \"REAL\", \"COMPLEX\", \"LOGICAL\", \"INTEGER\", \"CHARACTER\", \"DOUBLE PRECISION\""))) │ │ │ NIL │ │ │ -(|ExpressionSolve| R F UTSF UTSSUPF) │ │ │ -((|constructor| (NIL "This package has no description"))) │ │ │ NIL │ │ │ +(|Result|) │ │ │ +((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types, though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (QUOTE (|Symbol|))) (LIST (QUOTE |:|) (QUOTE |entry|) (QUOTE (|Any|)))))) (|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|)))) (|HasCategory| (|Symbol|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Any|) (QUOTE (|SetCategory|))) (OR (|HasCategory| (|Any|) (QUOTE (|SetCategory|))) (|HasCategory| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (QUOTE (|SetCategory|)))) (AND (|HasCategory| (|Any|) (LIST (QUOTE |Evalable|) (QUOTE (|Any|)))) (|HasCategory| (|Any|) (QUOTE (|SetCategory|))))) │ │ │ +(|SymmetricFunctions| R) │ │ │ +((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, \\spad{n)}} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + \\spad{...} + \\spad{rn,} \\spad{r1} \\spad{r2} + \\spad{...} + r(n-1) \\spad{rn,} ..., \\spad{r1} \\spad{r2} \\spad{...} rn]}."))) │ │ │ NIL │ │ │ -(|Expression| R) │ │ │ -((|constructor| (NIL "Top-level mathematical expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} is not documented")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} is not documented")) (|simplifyPower| (($ $ (|Integer|)) "\\spad{simplifyPower(f,n)} is not documented")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) │ │ │ -((|unitsKnown| OR (|and| (|has| |#1| (|Ring|)) (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (AND (|has| |#1| (|IntegralDomain|)) (OR (|and| (|has| |#1| (|Ring|)) (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (|has| |#1| (|Ring|)) (|has| |#1| (|Group|)))) (|has| |#1| (|Ring|)) (|has| |#1| (|Group|))) (|leftUnitary| |has| |#1| (|CommutativeRing|)) (|rightUnitary| |has| |#1| (|CommutativeRing|)) ((|commutative| "*") |has| |#1| (|IntegralDomain|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|IntegralDomain|)) (|canonicalsClosed| |has| |#1| (|IntegralDomain|))) │ │ │ -((|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|Ring|))) (OR (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (AND (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (OR (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (OR (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|)))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (OR (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|)))) (|HasCategory| |#1| (QUOTE (|SemiGroup|))) (OR (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (QUOTE (|SemiGroup|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (|HasCategory| |#1| (QUOTE (|SemiGroup|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#1| (QUOTE (|SemiGroup|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))))) (|HasCategory| $ (QUOTE (|Ring|))) (|HasCategory| $ (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) │ │ │ -(|ExpressionToUnivariatePowerSeries| R FE) │ │ │ -((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of \\spad{(x} - a); terms will be computed up to order at least \\spad{n.}") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of \\spad{(x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f.} Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n.}") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f.} Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n.}") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f.} Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n.}") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f.} Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n.}") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f.} Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n.}") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f.} Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n.}") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f.} Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n.}") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f.} Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) │ │ │ NIL │ │ │ +(|IndexedExponents| |Varset|) │ │ │ +((|constructor| (NIL "converts entire exponents to OutputForm"))) │ │ │ NIL │ │ │ -(|FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber| K) │ │ │ -((|constructor| (NIL "Part of the Package for Algebraic Function Fields in one variable PAFF"))) │ │ │ NIL │ │ │ +(|FileCategory| |Name| S) │ │ │ +((|constructor| (NIL "This category provides an interface to operate on files in the computer's file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S.}")) (|flush| (((|Void|) $) "\\spad{flush(f)} makes sure that buffered data is written out")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f.} The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f.} The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f.} The input/output status of \\spad{f} may be \"input\", \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f.}")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) │ │ │ NIL │ │ │ -(|FunctionSpaceComplexIntegration| R F) │ │ │ -((|constructor| (NIL "Top-level complex function integration \\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, \\spad{x)}} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function, but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, \\spad{x)}} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) │ │ │ NIL │ │ │ +(|VectorSpace&| A S) │ │ │ +((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y.}"))) │ │ │ NIL │ │ │ -(|FunctionSpaceIntegration| R F) │ │ │ -((|constructor| (NIL "Top-level real function integration \\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, \\spad{x)}} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) │ │ │ NIL │ │ │ +(|InfiniteTupleFunctions2| A B) │ │ │ +((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) │ │ │ NIL │ │ │ -(|FiniteDivisor| F UP UPUP R) │ │ │ -((|constructor| (NIL "This domains implements finite rational divisors on a curve, that is finite formal sums SUM(n * \\spad{P)} where the \\spad{n's} are integers and the \\spad{P's} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = \\spad{{f} | \\spad{(f)} \\spad{>=} -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over K[x]."))) │ │ │ NIL │ │ │ +(|FractionFreeFastGaussian| D V) │ │ │ +((|constructor| (NIL "This package implements the interpolation algorithm proposed in Beckermann, Bernhard and Labahn, George, Fraction-free computation of matrix rational interpolants and matrix GCDs, SIAM Journal on Matrix Analysis and Applications 22. The packages defined in this file provide fast fraction free rational interpolation algorithms. (see FAMR2, FFFG, FFFGF, NEWTON)")) (|qShiftC| (((|List| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{qShiftC} gives the coefficients c_{k,k} in the expansion \\spad{z} g(x) = sum_{i=0}^k c_{k,i} g(x), where \\spad{z} acts on g(x) by shifting. In fact, the result is [1,q,q^2,...]")) (|qShiftAction| ((|#1| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{qShiftAction(q, \\spad{k,} \\spad{l,} \\spad{g)}} gives the coefficient of \\spad{x^k} in \\spad{z^l} g(x), where z*(a+b*x+c*x^2+d*x^3+...) = (a+q*b*x+q^2*c*x^2+q^3*d*x^3+...). In terms of sequences, z*u(n)=q^n*u(n).")) (|DiffC| (((|List| |#1|) (|NonNegativeInteger|)) "\\spad{DiffC} gives the coefficients c_{k,k} in the expansion \\spad{z} g(x) = sum_{i=0}^k c_{k,i} g(x), where \\spad{z} acts on g(x) by shifting. In fact, the result is [0,0,0,...]")) (|DiffAction| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{DiffAction(k, \\spad{l,} \\spad{g)}} gives the coefficient of \\spad{x^k} in \\spad{z^l} g(x), where z*(a+b*x+c*x^2+d*x^3+...) = (a*x+b*x^2+c*x^3+...), multiplication with \\spad{x.}")) (|ShiftC| (((|List| |#1|) (|NonNegativeInteger|)) "\\spad{ShiftC} gives the coefficients c_{k,k} in the expansion \\spad{z} g(x) = sum_{i=0}^k c_{k,i} g(x), where \\spad{z} acts on g(x) by shifting. In fact, the result is [0,1,2,...]")) (|ShiftAction| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{ShiftAction(k, \\spad{l,} \\spad{g)}} gives the coefficient of \\spad{x^k} in \\spad{z^l} g(x), where \\spad{z*(a+b*x+c*x^2+d*x^3+...) = (b*x+2*c*x^2+3*d*x^3+...)}. In terms of sequences, z*u(n)=n*u(n).")) (|generalCoefficient| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#2|) (|NonNegativeInteger|) (|Vector| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalCoefficient(action, \\spad{f,} \\spad{k,} \\spad{p)}} gives the coefficient of \\spad{x^k} in p(z)\\dot f(x), where the \\spad{action} of \\spad{z^l} on a polynomial in \\spad{x} is given by action, action(k, \\spad{l,} \\spad{f)} should return the coefficient of \\spad{x^k} in \\spad{z^l} f(x).")) (|generalInterpolation| (((|Stream| (|Matrix| (|SparseUnivariatePolynomial| |#1|))) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#2|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalInterpolation(C, CA, \\spad{f,} sumEta, maxEta)} applies \\spad{generalInterpolation(C, CA, \\spad{f,} eta)} for all possible \\spad{eta} with maximal entry \\spad{maxEta} and sum of entries at most \\spad{sumEta}. \\blankline The first argument \\spad{C} is the list of coefficients c_{k,k} in the expansion \\spad{z} g(x) = sum_{i=0}^k c_{k,i} g(x). \\blankline The second argument, CA(k, \\spad{l,} \\spad{f),} should return the coefficient of \\spad{x^k} in \\spad{z^l} f(x).") (((|Matrix| (|SparseUnivariatePolynomial| |#1|)) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{generalInterpolation(C, CA, \\spad{f,} eta)} performs Hermite-Pade approximation using the given action \\spad{CA} of polynomials on the elements of \\spad{f.} The result is guaranteed to be correct up to order |eta|-1. Given that eta is a \"normal\" point, the degrees on the diagonal are given by eta. The degrees of column \\spad{i} are in this case eta + e.i - [1,1,...,1], where the degree of zero is \\spad{-1.} \\blankline The first argument \\spad{C} is the list of coefficients c_{k,k} in the expansion \\spad{z} g(x) = sum_{i=0}^k c_{k,i} g(x). \\blankline The second argument, CA(k, \\spad{l,} \\spad{f),} should return the coefficient of \\spad{x^k} in \\spad{z^l} f(x).")) (|interpolate| (((|Fraction| (|SparseUnivariatePolynomial| |#1|)) (|List| (|Fraction| |#1|)) (|List| (|Fraction| |#1|)) (|NonNegativeInteger|)) "\\spad{interpolate(xlist, ylist, deg} returns the rational function with numerator degree \\spad{deg} that interpolates the given points using fraction free arithmetic.") (((|Fraction| (|SparseUnivariatePolynomial| |#1|)) (|List| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{interpolate(xlist, ylist, deg} returns the rational function with numerator degree at most \\spad{deg} and denominator degree at most \\spad{\\#xlist-deg-1} that interpolates the given points using fraction free arithmetic. Note that rational interpolation does not guarantee that all given points are interpolated correctly: unattainable points may make this impossible.")) (|fffg| (((|Matrix| (|SparseUnivariatePolynomial| |#1|)) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|Vector| (|SparseUnivariatePolynomial| |#1|))) (|List| (|NonNegativeInteger|))) "\\spad{fffg} is the general algorithm as proposed by Beckermann and Labahn. \\blankline The first argument is the list of c_{i,i}. These are the only values of \\spad{C} explicitely needed in \\spad{fffg}. \\blankline The second argument \\spad{c,} computes c_k(M), c_k(.) is the dual basis of the vector space \\spad{V,} but also knows about the special multiplication rule as descibed in Equation (2). Note that the information about \\spad{f} is therefore encoded in \\spad{c.} \\blankline The third argument is the vector of degree bounds \\spad{n,} as introduced in Definition 2.1. In particular, the sum of the entries is the order of the Mahler system computed."))) │ │ │ NIL │ │ │ -(|GeneralUnivariatePowerSeries| |Coef| |var| |cen|) │ │ │ -((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]}, where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|))))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ -(|HyperellipticFiniteDivisor| F UP UPUP R) │ │ │ -((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve, that is finite formal sums SUM(n * \\spad{P)} where the \\spad{n's} are integers and the \\spad{P's} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = f(x) and \\spad{f} must have odd degree."))) │ │ │ NIL │ │ │ +(|NumberTheoreticPolynomialFunctions| R) │ │ │ +((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) │ │ │ NIL │ │ │ -(|IntersectionDivisorPackage| K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR |InfClsPoint| |DesTree| BLMET) │ │ │ -((|constructor| (NIL "The following is part of the PAFF package")) (|placesOfDegree| (((|Void|) (|PositiveInteger|) |#3| (|List| |#5|)) "\\spad{placesOfDegree(d, \\spad{f,} pts)} compute the places of degree dividing \\spad{d} of the curve \\spad{f.} \\spad{pts} should be the singular points of the curve \\spad{f.} For \\spad{d} > 1 this only works if \\spad{K} has \\axiomType{PseudoAlgebraicClosureOfFiniteFieldCategory}.")) (|intersectionDivisor| ((|#8| |#3| |#3| (|List| |#10|) (|List| |#5|)) "\\spad{intersectionDivisor(f,pol,listOfTree)} returns the intersection divisor of \\spad{f} with a curve defined by pol. \\spad{listOfTree} must contain all the desingularisation trees of all singular points on the curve \\indented{1}{defined by pol.}"))) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) │ │ │ +(|AlgebraicallyClosedField&| S) │ │ │ +((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, \\spad{y)}} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{The yi's are expressed in radicals if possible, and otherwise} \\indented{1}{as implicit algebraic quantities} \\indented{1}{which display as \\spad{'yi}.} \\indented{1}{The returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} zerosOf(a,x)") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{The yi's are expressed in radicals if possible, and otherwise} \\indented{1}{as implicit algebraic quantities.} \\indented{1}{The returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} zerosOf(a)") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{The yi's are expressed in radicals if possible.} \\indented{1}{Otherwise they are implicit algebraic quantities.} \\indented{1}{The returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y.}} \\blankline \\spad{X} \\spad{a:Polynomial(Integer):=-3*x^2+2*x-13} \\spad{X} zerosOf(a)")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, \\spad{y)}} returns \\spad{y} such that \\spad{p(y) = 0}; \\indented{1}{if possible, \\spad{y} is expressed in terms of radicals.} \\indented{1}{Otherwise it is an implicit algebraic quantity which} \\indented{1}{displays as \\spad{'y}.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} zeroOf(a,x)") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; \\indented{1}{if possible, \\spad{y} is expressed in terms of radicals.} \\indented{1}{Otherwise it is an implicit algebraic quantity.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} zeroOf(a)") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. \\indented{1}{If possible, \\spad{y} is expressed in terms of radicals.} \\indented{1}{Otherwise it is an implicit algebraic quantity.} \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y.}} \\blankline \\spad{X} \\spad{a:Polynomial(Integer):=-3*x^2+2*x-13} \\spad{X} zeroOf(a)")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, \\spad{y)}} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; \\indented{1}{The returned roots display as \\spad{'y1},...,\\spad{'yn}.} \\indented{1}{Note that the returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootsOf(a,x)") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{Note that the returned symbols y1,...,yn are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootsOf(a)") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. \\indented{1}{Note that the returned symbols y1,...,yn are bound in the} \\indented{1}{interpreter to respective root values.} \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y.}} \\blankline \\spad{X} \\spad{a:Polynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootsOf(a)")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, \\spad{y)}} returns \\spad{y} such that \\spad{p(y) = 0}. \\indented{1}{The object returned displays as \\spad{'y}.} \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootOf(a,x)") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. \\blankline \\spad{X} \\spad{a:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootOf(a)") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y.}} \\blankline \\spad{X} \\spad{a:Polynomial(Integer):=-3*x^3+2*x+13} \\spad{X} rootOf(a)"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InverseLaplaceTransform| R F) │ │ │ -((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, \\spad{s,} \\spad{t)}} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form. Handles only rational \\spad{f(s)}."))) │ │ │ +(|UnivariateLaurentSeriesConstructorCategory| |Coef| UTS) │ │ │ +((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]}, where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series, if possible. If this is not possible, \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series, if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by \\spad{(1)} an exponent and \\spad{(2)} a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient, the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by \\spad{(1)} an exponent and \\spad{(2)} a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient, the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note that \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)}, where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)}, which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|nil| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|ComplexFunctions2| R S) │ │ │ +((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of u."))) │ │ │ NIL │ │ │ -(|FunctionSpaceToExponentialExpansion| R FE |x| |cen|) │ │ │ -((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function, but the compiler won't allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is true, log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is false, these are allowed."))) │ │ │ NIL │ │ │ +(|PolynomialIdeals| F |Expon| |VarSet| |DPoly|) │ │ │ +((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations, including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in polyList.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f.}")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal I.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials polyList.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal I.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal I. in the ring \\spad{F[lvar]}, where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal I, in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by generalPosition from PolynomialIdeals and performs the inverse transformation, returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = I.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for I.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f,} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J,} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals LI.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J.}")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional, all its associated primes are maximal, in the ring \\spad{F[lvar]}, where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional, all its associated primes are maximal, in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal I.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J.}")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal I.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal, contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J.}")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal I.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J.}"))) │ │ │ NIL │ │ │ -(|IntegrationResultRFToFunction| R) │ │ │ -((|constructor| (NIL "Conversion of integration results to top-level expressions. This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents, provided that the indexing polynomial can be factored into quadratics.")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, \\spad{x)}} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, \\spad{x)}} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to i.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to i.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + \\spad{...} + sum_{Pn(a)=0} Q(a,x)} where P1,...,Pn are the factors of \\spad{P.}"))) │ │ │ +((|HasCategory| |#3| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|Symbol|))))) │ │ │ +(|LinearDependence| S R) │ │ │ +((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + \\spad{...} + cn*vn = u}, \"failed\" if no such ci's exist in the quotient field of \\spad{S.}") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + \\spad{...} + cn*vn = u}, \"failed\" if no such ci's exist in \\spad{S.}")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + \\spad{...} + cn*vn = 0} and not all the ci's are 0, \"failed\" if the vi's are linearly independent over \\spad{S.}")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the vi's are linearly dependent over \\spad{S,} \\spad{false} otherwise."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|CharacteristicZero|)))) │ │ │ -(|IntegrationResultToFunction| R F) │ │ │ -((|constructor| (NIL "Conversion of integration results to top-level expressions This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents, provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to i.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to i.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + \\spad{...} + sum_{Pn(a)=0} Q(a,x)} where P1,...,Pn are the factors of \\spad{P.}"))) │ │ │ +((|HasCategory| |#1| (QUOTE (|Field|))) (|not| (|HasCategory| |#1| (QUOTE (|Field|))))) │ │ │ +(|MultisetAggregate| S) │ │ │ +((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) │ │ │ +((|partiallyOrderedSet| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ +(|SystemODESolver| F LO) │ │ │ +((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, \\spad{v,} solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m \\spad{x} = \\spad{v}} are \\spad{v_p + \\spad{c_1} \\spad{v_1} + \\spad{...} + \\spad{c_m} v_m} where the \\spad{c_i's} are constants, and the \\spad{v_i's} form a basis for the solutions of \\spad{m \\spad{x} = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, \\spad{v,} solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D \\spad{x} = \\spad{m} \\spad{x} + \\spad{v}} are \\spad{v_p + \\spad{c_1} \\spad{v_1} + \\spad{...} + \\spad{c_m} v_m} where the \\spad{c_i's} are constants, and the \\spad{v_i's} form a basis for the solutions of \\spad{D \\spad{x} = \\spad{m} \\spad{x}.} Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, \\spad{v)}} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 \\spad{x} = v_0} is equivalent to \\spad{m \\spad{x} = \\spad{v}.}") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A \\spad{z},} the first order linear system \\spad{D \\spad{y} = \\spad{M} \\spad{y} + \\spad{v}} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i \\spad{z_j} = h_i}."))) │ │ │ NIL │ │ │ -(|LaplaceTransform| R F) │ │ │ -((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, \\spad{t,} \\spad{s)}} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), \\spad{t} = 0..%plusInfinity)}. Returns the formal object \\spad{laplace(f, \\spad{t,} \\spad{s)}} if it cannot compute the transform."))) │ │ │ NIL │ │ │ +(|CanonicalClosedAttribute|) │ │ │ +((|constructor| (NIL "The class of all integral domains such that \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}"))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|PowerSeriesLimitPackage| R FE) │ │ │ -((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits, left- and right- hand limits, and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x \\spad{->} a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x \\spad{->} a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x \\spad{->} a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x \\spad{->} a,f(x))}."))) │ │ │ +(|IndexedString| |mn|) │ │ │ +((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| (|Character|) (QUOTE (|SetCategory|))) (|HasCategory| (|Character|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Character|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Character|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|)))))) │ │ │ +(|Polynomial| R) │ │ │ +((|constructor| (NIL "This type is the basic representation of sparse recursive multivariate polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative, but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx}, integrates the polynomial \\spad{p} with respect to the variable \\spad{x.}"))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|Symbol|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|Symbol|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|Symbol|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|Symbol|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|Symbol|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|GcdDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|NonAssociativeAlgebra&| S R) │ │ │ +((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs).\\br \\blankline Axioms\\br \\tab{5}r*(a*b) = (r*a)*b = a*(r*b)")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ElementaryFunctionLODESolver| R F L) │ │ │ -((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, \\spad{g,} \\spad{x,} a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op \\spad{y} = \\spad{g,} y(a) = \\spad{y0,} y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, \\spad{g,} \\spad{x)}} returns either a solution of the ordinary differential equation \\spad{op \\spad{y} = \\spad{g}} or \"failed\" if no non-trivial solution can be found; When found, the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op \\spad{y} = 0}. A full basis for the solutions of the homogenuous equation is not always returned, only the solutions which were found; \\spad{x} is the dependent variable."))) │ │ │ +(|ExponentialOfUnivariatePuiseuxSeries| FE |var| |cen|) │ │ │ +((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))}, where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity, with functions which tend more rapidly to zero or infinity considered to be larger. Thus, if \\spad{order(f(x)) < order(g(x))}, the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)}, then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))}, then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * \\spad{x} **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|))))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ +(|TubePlot| |Curve|) │ │ │ +((|constructor| (NIL "Package for constructing tubes around 3-dimensional parametric curves. Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory}, a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube, or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is true, or if \\spad{b} is false, \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points, or the 'loops', of the given tube plot \\spad{t.}")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NottinghamGroup| F) │ │ │ -((|constructor| (NIL "This is an implmenentation of the Nottingham Group"))) │ │ │ -((|unitsKnown| . T)) │ │ │ +(|Finite|) │ │ │ +((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|enumerate| (((|List| $)) "\\spad{enumerate()} returns a list of elements of the set \\blankline \\spad{X} enumerate()$OrderedVariableList([p,q])")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup \\spad{x}.}")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}-th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) │ │ │ NIL │ │ │ -(|NormalizedTriangularSetCategory| R E V P) │ │ │ -((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial select(ts,v) is normalized w.r.t. every polynomial in collectUnder(ts,v). A polynomial \\spad{p} is said normalized w.r.t. a non-constant polynomial \\spad{q} if \\spad{p} is constant or degree(p,mdeg(q)) = 0 and init(p) is normalized w.r.t. \\spad{q.} One of the important features of normalized triangular sets is that they are regular sets."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|ConstantLODE| R F L) │ │ │ -((|constructor| (NIL "Solution of linear ordinary differential equations, constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, \\spad{g,} \\spad{x)}} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op \\spad{y} = \\spad{g},} and the \\spad{yi}'s form a basis for the solutions of \\spad{op \\spad{y} = 0}."))) │ │ │ +(|EltableAggregate| |Dom| |Im|) │ │ │ +((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example, the list [1,7,4] can applied to 0,1, and 2 respectively will return the integers 1, 7, and 4; thus this list may be viewed as mapping 0 to 1, 1 to 7 and 2 to 4. In general, an aggregate can map members of a domain Dom to an image domain Im.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{x} to be \\axiom{y} under \\axiom{u}, without checking that \\axiom{x} is in the domain of \\axiom{u}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under u, assuming \\spad{x} is in the domain of u. Error: if \\spad{x} is not in the domain of u.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, \\spad{x)}} applies \\axiom{u} to \\axiom{x} without checking whether \\axiom{x} is in the domain of \\axiom{u}. If \\axiom{x} is not in the domain of \\axiom{u} a memory-access violation may occur. If a check on whether \\axiom{x} is in the domain of \\axiom{u} is required, use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, \\spad{x,} \\spad{y)}} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of u, and returns \\spad{y} otherwise. For example, if \\spad{u} is a polynomial in \\axiom{x} over the rationals, \\axiom{elt(u,n,0)} may define the coefficient of \\axiom{x} to the power \\spad{n,} returning 0 when \\spad{n} is out of range."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NonLinearFirstOrderODESolver| R F) │ │ │ -((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), \\spad{y,} \\spad{x)}} returns \\spad{F(x,y)} such that \\spad{F(x,y) = \\spad{c}} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) \\spad{dx} + N(x,y) dy = 0}, or \"failed\" if no first-integral can be found."))) │ │ │ +(|CharacteristicZero|) │ │ │ +((|constructor| (NIL "Rings of Characteristic Zero."))) │ │ │ +((|unitsKnown| . T)) │ │ │ +NIL │ │ │ +(|AssociatedJordanAlgebra| R A) │ │ │ +((|constructor| (NIL "AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*$A} to define the new multiplications \\spad{a*b \\spad{:=} (a *$A \\spad{b} + \\spad{b} *$A a)/2} (anticommutator). The usual notation \\spad{{a,b}_+} cannot be used due to restrictions in the current language. This domain only gives a Jordan algebra if the Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},\\spad{b},\\spad{c} in \\spad{A}. This relation can be checked by \\spadfun{jordanAdmissible?()$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (a non associative algebra over \\spad{R} which is a free R-module of finite rank, together with a fixed R-module basis), then the same is \\spad{true} for the associated Jordan algebra. Moreover, if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (a non associative algebra over \\spad{R} which is a free R-module of finite rank), then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(R,A)."))) │ │ │ +((|unitsKnown| OR (|and| (|has| |#2| (|FiniteRankNonAssociativeAlgebra| |#1|)) (|has| |#1| (|IntegralDomain|))) (AND (|has| |#2| (|FramedNonAssociativeAlgebra| |#1|)) (|has| |#1| (|IntegralDomain|)))) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +((|HasCategory| |#2| (LIST (QUOTE |FramedNonAssociativeAlgebra|) (|devaluate| |#1|))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |FramedNonAssociativeAlgebra|) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE |FiniteRankNonAssociativeAlgebra|) (|devaluate| |#1|))) (OR (|HasCategory| |#2| (LIST (QUOTE |FiniteRankNonAssociativeAlgebra|) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE |FramedNonAssociativeAlgebra|) (|devaluate| |#1|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (LIST (QUOTE |FiniteRankNonAssociativeAlgebra|) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (LIST (QUOTE |FramedNonAssociativeAlgebra|) (|devaluate| |#1|)))))) │ │ │ +(|OrderedAbelianMonoid|) │ │ │ +((|constructor| (NIL "Ordered sets which are also abelian monoids, such that the addition preserves the ordering."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ODEIntegration| R F) │ │ │ -((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x.}")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, \\spad{x)}} returns e^{the integral of \\spad{f} with respect to \\spad{x}.}")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, \\spad{x)}} returns the integral of \\spad{f} with respect to \\spad{x.}"))) │ │ │ +(|PolynomialNumberTheoryFunctions|) │ │ │ +((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note that Legendre polynomials, denoted \\spad{P[n](x)}, are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note that Laguerre polynomials, denoted \\spad{L[n](x)}, are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note that Hermite polynomials, denoted \\spad{H[n](x)}, are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k.} Note that fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for \\spad{k} in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note that Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = \\spad{n} E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note that \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note that Chebyshev polynomials of the second kind, denoted \\spad{U[n](x)}, computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note that Chebyshev polynomials of the first kind, denoted \\spad{T[n](x)}, computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = \\spad{n} B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ElementaryFunctionODESolver| R F) │ │ │ -((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, \\spad{y,} \\spad{x} = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = \\spad{y0,} y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, \\spad{y,} \\spad{x} = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = \\spad{y0,} y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, \\spad{y,} \\spad{x)}} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary, a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned, only the solutions which were found; If the equation is of the form {dy/dx = f(x,y)}, a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = \\spad{c}} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, \\spad{y,} \\spad{x)}} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary, a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned, only the solutions which were found; If the equation is of the form {dy/dx = f(x,y)}, a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = \\spad{c}} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], \\spad{x)}} returns either \"failed\" or, if the equations form a fist order linear system, a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], \\spad{x)}} returns either \"failed\" or, if the equations form a fist order linear system, a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, \\spad{x)}} returns a basis for the solutions of \\spad{D \\spad{y} = \\spad{m} \\spad{y}.} \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, \\spad{v,} \\spad{x)}} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D \\spad{y} = \\spad{m} \\spad{y} + \\spad{v}} are \\spad{v_p + \\spad{c_1} \\spad{v_1} + \\spad{...} + \\spad{c_m} v_m} where the \\spad{c_i's} are constants, and the \\spad{v_i's} form a basis for the solutions of \\spad{D \\spad{y} = \\spad{m} \\spad{y}.} \\spad{x} is the dependent variable."))) │ │ │ +(|IndexedDirectProductObject| A S) │ │ │ +((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S.} All items have finite support."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|QuasiComponentPackage| R E V P TS) │ │ │ -((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets.")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,ts,lineq,b1,b2,b3,b4,b5)} is an internal subroutine, exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,lts,b1,b2)} is an internal subroutine, exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine, exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,lpwt2)} is an internal subroutine, exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,us)} returns \\spad{true} iff internalSubQuasiComponent? returs true.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{b} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(lp1,lp2)} is an internal subroutine, exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(lp1,lp2)} is an internal subroutine, exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(lp1,lp2)} returns \\spad{true} iff \\axiom{lp1} is a sub-set of \\axiom{lp2} assuming that these lists are sorted increasingly w.r.t. infRittWu? from RecursivePolynomialCategory.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(lp1,lp2)} returns \\spad{true} iff \\axiom{lp1} is a sub-set of \\axiom{lp2}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty, or \\axiom{ts} has less elements than \\axiom{us}, or some variable is algebraic w.r.t. \\axiom{us} and is not w.r.t. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} w.r.t supDimElseRittWu?")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} w.r.t. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine, exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(s1,s2,s3)} is an internal subroutine, exported only for developement."))) │ │ │ +(|IndexedOneDimensionalArray| S |mn|) │ │ │ +((|constructor| (NIL "This is the basic one dimensional array data type."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ +(|ParametricSurfaceFunctions2| CF1 CF2) │ │ │ +((|constructor| (NIL "This package has no description")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) │ │ │ NIL │ │ │ NIL │ │ │ (|RegularTriangularSet| R E V P) │ │ │ ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover, the operation zeroSetSplit is an implementation of a new algorithm for solving polynomial systems by means of regular chains.")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,b1,b2)} is an internal subroutine, exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,b1,b2,b3)} is an internal subroutine, exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,b1,b2.b3,b4)} is an internal subroutine, exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,clos?,info?)} has the same specifications as zeroSetSplit from RegularTriangularSetCategory. Moreover, if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(p,ts,b1,b2,b3,b4,b5)} is an internal subroutine, exported only for developement."))) │ │ │ ((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ ((|HasCategory| |#4| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#4| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#3| (QUOTE (|Finite|)))) │ │ │ -(|RegularChain| R |ls|) │ │ │ -((|constructor| (NIL "A domain for regular chains (regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover, if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See zeroSetSplit from RegularTriangularSet."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |NewSparseMultivariatePolynomial|) (|devaluate| |#1|) (LIST (QUOTE |OrderedVariableList|) (|devaluate| |#2|))))) (|HasCategory| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| (|OrderedVariableList| |#2|) (QUOTE (|Finite|)))) │ │ │ -(|RadicalEigenPackage|) │ │ │ -((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse \\spad{b)}} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible, the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse \\spad{b)}} is diagonal, or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m;} when possible, the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(s) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c;} when possible, values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m;} when possible, values are expressed in terms of radicals."))) │ │ │ +(|DirectProductMatrixModule| |n| R M S) │ │ │ +((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) │ │ │ +((|unitsKnown| OR (|and| (|has| |#4| (|Ring|)) (|has| |#4| (|DifferentialRing|))) (|and| (|has| |#4| (|Ring|)) (|has| |#4| (|PartialDifferentialRing| (|Symbol|)))) (|has| |#4| (ATTRIBUTE |unitsKnown|)) (|and| (|has| |#4| (|Ring|)) (|has| |#4| (|LinearlyExplicitRingOver| (|Integer|))))) (|rightUnitary| |has| |#4| (|Ring|)) (|leftUnitary| |has| |#4| (|Ring|)) ((|commutative| "*") |has| |#4| (|CommutativeRing|)) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#4| (QUOTE (|Field|))) (|HasCategory| |#4| (QUOTE (|Ring|))) (|HasCategory| |#4| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#4| (QUOTE (|OrderedRing|))) (OR (|HasCategory| |#4| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#4| (QUOTE (|OrderedRing|)))) (|HasCategory| |#4| (QUOTE (|Monoid|))) (|HasCategory| |#4| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#4| (QUOTE (|CommutativeRing|))) (|HasCategory| |#4| (QUOTE (|Field|))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (OR (|HasCategory| |#4| (QUOTE (|CommutativeRing|))) (|HasCategory| |#4| (QUOTE (|Field|)))) (OR (|HasCategory| |#4| (QUOTE (|CommutativeRing|))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (|HasCategory| |#4| (QUOTE (|Finite|))) (|HasCategory| |#4| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#4| (QUOTE (|DifferentialRing|))) (OR (|HasCategory| |#4| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#4| (QUOTE (|CommutativeRing|))) (|HasCategory| |#4| (QUOTE (|DifferentialRing|))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (|HasCategory| |#4| (QUOTE (|SetCategory|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#4| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (QUOTE (|DifferentialRing|))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (OR (AND (|HasCategory| |#4| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (QUOTE (|DifferentialRing|))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (|HasCategory| |#4| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#4| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#4| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|Field|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|Finite|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|SetCategory|))))) (OR (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#4| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#4| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|Field|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|Finite|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (QUOTE (|SetCategory|))))) (OR (|HasAttribute| |#4| (QUOTE |unitsKnown|)) (AND (|HasCategory| |#4| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (QUOTE (|DifferentialRing|))) (|HasCategory| |#4| (QUOTE (|Ring|))))) (|HasCategory| |#4| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#4| (QUOTE (|AbelianSemiGroup|))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|Field|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|Finite|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|Ring|)))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))))) │ │ │ +(|ExtAlgBasis|) │ │ │ +((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R.} This domain represents the set of all ordered subsets of the set \\spad{X,} assumed to be in correspondance with {1,2,3, ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X.} A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x,} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element, where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively, is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|RegularSetDecompositionPackage| R E V P TS) │ │ │ -((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu, Wang or Lazard methods). This algorithm is valid for any type of regular set. It does not care about the way a polynomial is added in an regular set, or how two quasi-components are compared (by an inclusion-test), or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(R,E,V,P,TS) and \\axiomType{RSETGCD}(R,E,V,P,TS). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call directly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus, the operations of this package are not documented."))) │ │ │ +(|AnonymousFunction|) │ │ │ +((|constructor| (NIL "This domain implements anonymous functions"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|SquareFreeRegularTriangularSetCategory| R E V P) │ │ │ -((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and differentiate(p,mvar(p)) w.r.t. collectUnder(ts,mvar(p)) has degree zero w.r.t. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ +(|NagPolynomialRootsPackage|) │ │ │ +((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation, using a variant of Laguerre's Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation, using a variant of Laguerre's Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) │ │ │ NIL │ │ │ -(|RegularTriangularSetGcdPackage| R E V P TS) │ │ │ -((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(p,ts)} has the same specifications as squareFreePart from RegularTriangularSetCategory.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(p1,p2,ts)} has the same specifications as invertibleSet from RegularTriangularSetCategory.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(p1,p2,ts)} has the same specifications as invertible? from RegularTriangularSetCategory.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(p1,p2,ts)} has the same specifications as invertible? from RegularTriangularSetCategory.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(p1,p2,ts)} has the same specifications as lastSubResultant from RegularTriangularSetCategory.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(p1,p2,ts)} is an internal subroutine, exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,v,flag)} is an internal subroutine, exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(p1,p2,ts,inv?,break?)} is an internal subroutine, exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(p1,p2,ts)} is an internal subroutine, exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine, exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(s1,s2,s3)} is an internal subroutine, exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine, exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(s1,s2,s3)} is an internal subroutine, exported only for developement."))) │ │ │ NIL │ │ │ +(|d03AgentsPackage|) │ │ │ +((|constructor| (NIL "\\axiom{d03AgentsPackage} contains a set of computational agents for use with Partial Differential Equation solvers.")) (|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,g,l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,n)} \\undocumented{}"))) │ │ │ NIL │ │ │ -(|SparseUnivariatePuiseuxSeries| |Coef| |var| |cen|) │ │ │ -((|constructor| (NIL "Sparse Puiseux series in one variable \\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring, the power series variable, and the center of the power series expansion. For example, \\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|))))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ -(|RadicalSolvePackage| R) │ │ │ -((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R.}")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of \\indented{1}{radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x,}} \\indented{1}{where \\spad{rf} is a rational function. The result contains\\space{2}new} \\indented{1}{symbols for common subexpressions in order to reduce the} \\indented{1}{size of the output.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} contractSolve(b,x)") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of \\indented{1}{radicals of the equation of rational functions eq} \\indented{1}{with respect to the symbol x.\\space{2}The result contains new} \\indented{1}{symbols for common subexpressions in order to reduce the} \\indented{1}{size of the output.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} contractSolve(b=0,x)")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of \\indented{1}{radicals of the list of rational functions lrf} \\indented{1}{with respect to the list of symbols lvar.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} c:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1) \\spad{X} radicalRoots([b,c],[x,y])") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals \\indented{1}{of the rational function \\spad{rf} with respect to the symbol \\spad{x.}} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} radicalRoots(b,x)")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of \\indented{1}{radicals of the system of equations of rational functions leq} \\indented{1}{with respect to the unique symbol \\spad{x} appearing in leq.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} c:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1) \\spad{X} radicalSolve([b=0,c=0])") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of \\indented{1}{radicals of the system of equations of rational functions leq} \\indented{1}{with respect to the list of symbols lvar.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} c:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1) \\spad{X} radicalSolve([b=0,c=0],[x,y])") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of \\indented{1}{radicals of the system of equations \\spad{lrf} = 0, where \\spad{lrf} is a} \\indented{1}{system of univariate rational functions.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} c:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1) \\spad{X} radicalSolve([b,c])") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of \\indented{1}{radicals of the system of equations \\spad{lrf} = 0 with} \\indented{1}{respect to the list of symbols lvar,} \\indented{1}{where \\spad{lrf} is a list of rational functions.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} c:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1) \\spad{X} radicalSolve([b,c],[x,y])") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of \\indented{1}{radicals of the equation of rational functions eq} \\indented{1}{with respect to the unique symbol \\spad{x} appearing in eq.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} radicalSolve(b=0)") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of \\indented{1}{radicals of the equation of rational functions eq} \\indented{1}{with respect to the symbol \\spad{x.}} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} radicalSolve(b=0,x)") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of \\indented{1}{radicals of the equation \\spad{rf} = 0, where \\spad{rf} is a} \\indented{1}{univariate rational function.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} radicalSolve(b)") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of \\indented{1}{radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x,}} \\indented{1}{where \\spad{rf} is a rational function.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) \\spad{X} radicalSolve(b,x)"))) │ │ │ NIL │ │ │ +(|DecimalExpansion|) │ │ │ +((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Integer|) (QUOTE (|RealConstant|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|StepThrough|))) (|HasCategory| (|Integer|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| (|Integer|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| (|Integer|) (QUOTE (|DifferentialRing|))) (|HasCategory| (|Integer|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |Evalable|) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |Eltable|) (QUOTE (|Integer|)) (QUOTE (|Integer|)))) (|HasCategory| (|Integer|) (QUOTE (|EuclideanDomain|))) (|HasCategory| (|Integer|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Integer|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Integer|) (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| (|Integer|) (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|ElementaryFunctionCategory|) │ │ │ +((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y.}")) (|exp| (($ $) "\\spad{exp(x)} returns \\%e to the power \\spad{x.}")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x.} When evaluated into some subset of the complex numbers, the branch cut lies along the negative real axis, continuous with quadrant II. The domain does not contain the origin."))) │ │ │ NIL │ │ │ -(|UnivariateFormalPowerSeriesFunctions| |Coef|) │ │ │ -((|constructor| (NIL "This package has no description"))) │ │ │ NIL │ │ │ +(|ParametricSpaceCurve| |ComponentFunction|) │ │ │ +((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to i. This indicates what the function for the coordinate component, i, of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1}, \\spad{c2}, and \\spad{c3}."))) │ │ │ NIL │ │ │ -(|TransSolvePackage| R) │ │ │ -((|constructor| (NIL "This package tries to find solutions of equations of type Expression(R). This means expressions involving transcendental, exponential, logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules, it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\spad{-2 \\spad{tan(x/2)**4} \\spad{-2} \\spad{tan(x/2)**3} \\spad{-4} \\spad{tan(x/2)**2} \\spad{+2} tan(x/2) \\spad{-2}} by using the function normalize and then to \\spad{-2 \\spad{tan(x)**2} + tan(x) \\spad{-2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\spad{sqrt(sin(x))+1} .")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 \\indented{1}{with respect to the symbol \\spad{x} where \\spad{expr} is a function} \\indented{1}{of type Expression(R).} \\blankline \\spad{X} solve(1/2*v*v*cos(theta+phi)*cos(theta+phi)+g*l*cos(phi)=g*l,phi) \\spad{X} definingPolynomial \\spad{%phi0} \\spad{X} definingPolynomial \\spad{%phi1}") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(R) with respect to the symbol \\spad{x.}") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(R) with respect to the unique symbol \\spad{x} appearing in eq.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(R) with respect to the unique symbol \\spad{x} appearing in eq."))) │ │ │ NIL │ │ │ +(|LieSquareMatrix| |n| R) │ │ │ +((|constructor| (NIL "LieSquareMatrix(n,R) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R.} The Lie bracket (commutator) of the algebra is given by\\br \\spad{a*b \\spad{:=} (a *$SQMATRIX(n,R) \\spad{b} - \\spad{b} *$SQMATRIX(n,R) a)},\\br where \\spadfun{*$SQMATRIX(n,R)} is the usual matrix multiplication."))) │ │ │ +((|unitsKnown| . T) (|finiteAggregate| . T) (|rightUnitary| . T) (|leftUnitary| . T)) │ │ │ +((|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#2| (QUOTE (|commutative| "*"))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (OR (|HasAttribute| |#2| (QUOTE (|commutative| "*"))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) │ │ │ +(|Guess| F S EXPRR R |retract| |coerce|) │ │ │ +((|constructor| (NIL "This package implements guessing of sequences. Packages for the most common cases are provided as \\spadtype{GuessInteger}, \\spadtype{GuessPolynomial}, etc.")) (|shiftHP| (((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| |#1|)) (|UnivariateFormalPowerSeries| |#1|))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| |exprStream| (|Mapping| (|Stream| |#3|) |#3| (|Symbol|))) (|:| A (|Mapping| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| |#2|))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| AX (|Mapping| |#3| (|NonNegativeInteger|) (|Symbol|) |#3|)) (|:| C (|Mapping| (|List| |#2|) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{shiftHP options} returns a specification for Hermite-Pade approximation with the $q$-shift operator") (((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| |#1|)) (|UnivariateFormalPowerSeries| |#1|))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| |exprStream| (|Mapping| (|Stream| |#3|) |#3| (|Symbol|))) (|:| A (|Mapping| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| |#2|))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| AX (|Mapping| |#3| (|NonNegativeInteger|) (|Symbol|) |#3|)) (|:| C (|Mapping| (|List| |#2|) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) "\\spad{shiftHP options} returns a specification for Hermite-Pade approximation with the shift operator")) (|diffHP| (((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| |#1|)) (|UnivariateFormalPowerSeries| |#1|))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| |exprStream| (|Mapping| (|Stream| |#3|) |#3| (|Symbol|))) (|:| A (|Mapping| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| |#2|))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| AX (|Mapping| |#3| (|NonNegativeInteger|) (|Symbol|) |#3|)) (|:| C (|Mapping| (|List| |#2|) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{diffHP options} returns a specification for Hermite-Pade approximation with the $q$-dilation operator") (((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| |#1|)) (|UnivariateFormalPowerSeries| |#1|))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| |exprStream| (|Mapping| (|Stream| |#3|) |#3| (|Symbol|))) (|:| A (|Mapping| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| |#2|))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| AX (|Mapping| |#3| (|NonNegativeInteger|) (|Symbol|) |#3|)) (|:| C (|Mapping| (|List| |#2|) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) "\\spad{diffHP options} returns a specification for Hermite-Pade approximation with the differential operator")) (|guessRat| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessRat \\spad{q}} returns a guesser that tries to find a q-rational function whose first values are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessRec} with \\spad{(l, maxShift \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true)}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessRat \\spad{l}} tries to find a rational function whose first values are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessRec}\\spad{(l, maxShift \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true)}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessRat(l, options)} tries to find a rational function whose first values are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(l, maxShift \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true)}.")) (|guessPRec| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessPRec \\spad{q}} returns a guesser that tries to find a linear q-recurrence with polynomial coefficients whose first values are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(q)} with \\spad{maxPower \\spad{==} 1}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessPRec \\spad{l}} tries to find a linear recurrence with polynomial coefficients whose first values are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessRec}\\spad{(l, maxPower \\spad{==} 1)}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessPRec(l, options)} tries to find a linear recurrence with polynomial coefficients whose first values are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(l, options)} with \\spad{maxPower \\spad{==} 1}.")) (|guessRec| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessRec \\spad{q}} returns a guesser that finds an ordinary q-difference equation whose first values are given by \\spad{l,} using the given options.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessRec(l, options)} tries to find an ordinary difference equation whose first values are given by \\spad{l,} using the given options.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessRec \\spad{l}} tries to find an ordinary difference equation whose first values are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}.")) (|guessPade| (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessPade(l, options)} tries to find a rational function whose first Taylor coefficients are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}\\spad{(l, options)} with \\spad{maxDerivative \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessPade(l, options)} tries to find a rational function whose first Taylor coefficients are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessADE}\\spad{(l, maxDerivative \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true)}.")) (|guessHolo| (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessHolo(l, options)} tries to find an ordinary linear differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessADE}\\spad{(l, options)} with \\spad{maxPower \\spad{==} 1}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessHolo \\spad{l}} tries to find an ordinary linear differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}\\spad{(l, maxPower \\spad{==} 1)}.")) (|guessAlg| (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessAlg(l, options)} tries to find an algebraic equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessADE}(l, options) with \\spad{maxDerivative \\spad{==} 0}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessAlg \\spad{l}} tries to find an algebraic equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}(l, maxDerivative \\spad{==} 0).")) (|guessADE| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessADE \\spad{q}} returns a guesser that tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the given options.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessADE(l, options)} tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the given options.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessADE \\spad{l}} tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}.")) (|guessHP| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| |#1|)) (|UnivariateFormalPowerSeries| |#1|))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| |exprStream| (|Mapping| (|Stream| |#3|) |#3| (|Symbol|))) (|:| A (|Mapping| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| |#2|))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| AX (|Mapping| |#3| (|NonNegativeInteger|) (|Symbol|) |#3|)) (|:| C (|Mapping| (|List| |#2|) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) "\\spad{guessHP \\spad{f}} constructs an operation that applies Hermite-Pade approximation to the series generated by the given function \\spad{f.}")) (|guessBinRat| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessBinRat \\spad{q}} returns a guesser that tries to find a function of the form n+->qbinomial(a+b \\spad{n,} \\spad{n)} r(n), where r(q^n) is a q-rational function, that fits \\spad{l.}") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessBinRat(l, options)} tries to find a function of the form n+->binomial(a+b \\spad{n,} \\spad{n)} r(n), where r(n) is a rational function, that fits \\spad{l.}") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessBinRat(l, options)} tries to find a function of the form n+->binomial(a+b \\spad{n,} \\spad{n)} r(n), where r(n) is a rational function, that fits \\spad{l.}")) (|guessExpRat| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessExpRat \\spad{q}} returns a guesser that tries to find a function of the form n+->(a+b q^n)^n r(q^n), where r(q^n) is a q-rational function, that fits \\spad{l.}") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessExpRat(l, options)} tries to find a function of the form n+->(a+b n)^n r(n), where r(n) is a rational function, that fits \\spad{l.}") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessExpRat \\spad{l}} tries to find a function of the form n+->(a+b n)^n r(n), where r(n) is a rational function, that fits \\spad{l.}")) (|guess| (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|)))) (|List| (|Symbol|)) (|List| (|GuessOption|))) "\\spad{guess(l, guessers, ops)} applies recursively the given \\spad{guessers} to the successive differences if ops contains the symbol \\spad{guessSum} and quotients if ops contains the symbol \\spad{guessProduct} to the list. The given options are used.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|)))) (|List| (|Symbol|))) "\\spad{guess(l, guessers, ops)} applies recursively the given \\spad{guessers} to the successive differences if ops contains the symbol guessSum and quotients if ops contains the symbol guessProduct to the list. Default options as described in \\spadtype{GuessOptionFunctions0} are used.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guess(l, options)} applies recursively \\spadfun{guessRec} and \\spadfun{guessADE} to the successive differences and quotients of the list. The given options are used.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guess \\spad{l}} applies recursively \\spadfun{guessRec} and \\spadfun{guessADE} to the successive differences and quotients of the list. Default options as described in \\spadtype{GuessOptionFunctions0} are used."))) │ │ │ NIL │ │ │ -(|UnivariatePuiseuxSeriesConstructor| |Coef| ULS) │ │ │ -((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]}, where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|))))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ -(|UnivariatePuiseuxSeries| |Coef| |var| |cen|) │ │ │ -((|constructor| (NIL "Dense Puiseux series in one variable")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))) (|devaluate| |#1|))))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ -(|UnivariateLaurentSeriesConstructor| |Coef| UTS) │ │ │ -((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]}, where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| (|Integer|) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))))) (OR (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|))))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|RealConstant|)))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|OrderedIntegralDomain|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|StepThrough|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |Eltable|) (|devaluate| |#2|) (|devaluate| |#2|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#2|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|OrderedIntegralDomain|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (OR (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |Eltable|) (|devaluate| |#2|) (|devaluate| |#2|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#2|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|OrderedIntegralDomain|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|RealConstant|)))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|StepThrough|))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|)))))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|)))))) │ │ │ -(|UnivariateTaylorSeries| |Coef| |var| |cen|) │ │ │ -((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring, the power series variable, and the center of the power series expansion. For example, \\spadtype{UnivariateTaylorSeries}(Integer,x,3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)}, and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = \\spad{x}.} Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + \\spad{d))} + \\indented{1}{f(x^(a + 2 \\spad{d))} + \\spad{...} \\spad{}.} \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1, then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1, then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1, then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|)) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|)) (|devaluate| |#1|))))) (|HasCategory| (|NonNegativeInteger|) (QUOTE (|SemiGroup|))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ -(|UnivariateTaylorSeriesCZero| |Coef| |var|) │ │ │ -((|constructor| (NIL "Part of the Package for Algebraic Function Fields in one variable PAFF")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)}, and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = \\spad{x}.} Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + \\spad{d))} + \\indented{1}{f(x^(a + 2 \\spad{d))} + \\spad{...} \\spad{}.} \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1, then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n)))=exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1, then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1, then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|)) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|)) (|devaluate| |#1|))))) (|HasCategory| (|NonNegativeInteger|) (QUOTE (|SemiGroup|))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|NonNegativeInteger|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|))))))) │ │ │ -(|UnivariateLaurentSeries| |Coef| |var| |cen|) │ │ │ -((|constructor| (NIL "Dense Laurent series in one variable \\spadtype{UnivariateLaurentSeries} is a domain representing Laurent series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring, the power series variable, and the center of the power series expansion. For example, \\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in \\spad{(x - 3)} with integer coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) │ │ │ -(((|commutative| "*") OR (|and| (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|OrderedIntegralDomain|))) (|has| |#1| (|CommutativeRing|)) (|and| (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|PolynomialFactorizationExplicit|)))) (|noZeroDivisors| OR (|and| (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|OrderedIntegralDomain|))) (|has| |#1| (|IntegralDomain|)) (|and| (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|PolynomialFactorizationExplicit|)))) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| (|Integer|) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|)))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|)))))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|))))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|RealConstant|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|StepThrough|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |Eltable|) (LIST (QUOTE |UnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE |UnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |Evalable|) (LIST (QUOTE |UnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (LIST (QUOTE |UnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|)))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|Field|))))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |Eltable|) (LIST (QUOTE |UnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE |UnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |Evalable|) (LIST (QUOTE |UnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (LIST (QUOTE |UnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|RealConstant|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|StepThrough|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|)))))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|SparseUnivariateLaurentSeries| |Coef| |var| |cen|) │ │ │ -((|constructor| (NIL "Sparse Laurent series in one variable \\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring, the power series variable, and the center of the power series expansion. For example, \\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent series in \\spad{(x - 3)} with integer coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) │ │ │ -(((|commutative| "*") OR (|and| (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|OrderedIntegralDomain|))) (|has| |#1| (|CommutativeRing|)) (|and| (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|PolynomialFactorizationExplicit|)))) (|noZeroDivisors| OR (|and| (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|OrderedIntegralDomain|))) (|has| |#1| (|IntegralDomain|)) (|and| (|has| |#1| (|Field|)) (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|PolynomialFactorizationExplicit|)))) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| (|Integer|) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|)))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|)))))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|))))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|RealConstant|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|StepThrough|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |Eltable|) (LIST (QUOTE |SparseUnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE |SparseUnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |Evalable|) (LIST (QUOTE |SparseUnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (LIST (QUOTE |SparseUnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|)))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|Field|))))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |Eltable|) (LIST (QUOTE |SparseUnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE |SparseUnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |Evalable|) (LIST (QUOTE |SparseUnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (LIST (QUOTE |SparseUnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|RealConstant|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|StepThrough|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|)))))) (OR (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ -(|LazardSetSolvingPackage| R E V P TS ST) │ │ │ -((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets. This package provides two operations. One for solving in the sense of the regular zeros, and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover, the decompositions do not contain any redundant component. However, only zero-dimensional regular sets are normalized, since normalization may be time consumming in positive dimension. The decomposition process is that of [2].")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,clos?)} has the same specifications as zeroSetSplit(lp,clos?) from RegularTriangularSetCategory.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional."))) │ │ │ +((AND (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))))) │ │ │ +(|InterpolateFormsPackage| K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR) │ │ │ +((|constructor| (NIL "The following is part of the PAFF package")) (|interpolateForms| (((|List| |#3|) |#8| (|NonNegativeInteger|) |#3| (|List| |#3|)) "\\spad{interpolateForms(D,n,pol,base)} compute the basis of the sub-vector space \\spad{W} of \\spad{V} = , such that for all \\spad{G} in \\spad{W,} the divisor \\spad{(G)} \\spad{>=} \\spad{D.} All the elements in \\spad{base} must be homogeneous polynomial of degree \\spad{n.} Typicaly, \\spad{base} is the set of all monomial of degree \\spad{n:} in that case, interpolateForms(D,n,pol,base) returns the basis of the vector space of all forms of degree \\spad{d} that interpolated \\spad{D.} The argument \\spad{pol} must be the same polynomial that defined the curve form which the divisor \\spad{D} is defined."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NormalizationPackage| R E V P TS) │ │ │ -((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(p,ts)} is an internal subroutine, exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(s1,s2,p,ts)} is an internal subroutine, exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(p,ts)} normalizes \\axiom{p} w.r.t \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(p,ts)} returns a normalized polynomial \\axiom{n} w.r.t. \\spad{ts} such that \\axiom{n} and \\axiom{p} are associates w.r.t \\spad{ts} and assuming that \\axiom{p} is invertible w.r.t \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(p,ts)} returns the inverse of \\axiom{p} w.r.t \\spad{ts} assuming that \\axiom{p} is invertible w.r.t \\spad{ts}."))) │ │ │ +(|OperationsQuery|) │ │ │ +((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations), \\spad{\"k\"} (constructors), \\spad{\"d\"} (domains), \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InternalRationalUnivariateRepresentationPackage| R E V P TS) │ │ │ -((|constructor| (NIL "\\indented{1}{Author: Marc Moreno Maza} Date Created: 01/1999 Date Last Updated: 23/01/1999 References: \\indented{1}{[1] \\spad{D.} LAZARD \"Solving Zero-dimensional Algebraic Systems\"} \\indented{5}{Journal of Symbolic Computation, 1992, 13, 117-131} Description:")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) │ │ │ +(|Commutator|) │ │ │ +((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,j)} is not documented") (($ (|Integer|)) "\\spad{mkcomm(i)} is not documented"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|LexTriangularPackage| R |ls|) │ │ │ -((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are lexTriangular and squareFreeLexTriangular. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the lexTriangular method described in [1]. They differ from the algorithm described in \\spad{[2]} by the fact that multiplicities of the roots are not kept. With the squareFreeLexTriangular operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets.")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp, norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{true} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp, norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{true} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base, norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{true} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base, norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{true} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the FGLM strategy is used, otherwise the Sugar strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the FGLM strategy, if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal w.r.t. the variables involved in \\axiom{lp}."))) │ │ │ +(|OnePointCompletion| R) │ │ │ +((|constructor| (NIL "Completion with infinity. Adjunction of a complex infinity to a set.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one, \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) │ │ │ +((|unitsKnown| |has| |#1| (|OrderedRing|))) │ │ │ +((|HasCategory| |#1| (QUOTE (|OrderedRing|))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|IntegerNumberSystem|))) (OR (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|OrderedRing|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (OR (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|OrderedRing|))))) │ │ │ +(|InnerFreeAbelianMonoid| S E |un|) │ │ │ +((|constructor| (NIL "Internal implementation of a free abelian monoid on any set of generators"))) │ │ │ NIL │ │ │ +((|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoid|)))) │ │ │ +(|FunctionFieldIntegralBasis| R UP F) │ │ │ +((|constructor| (NIL "Integral bases for function fields of dimension one In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R.} The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F.} It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R.} A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R.}")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F,} where \\spad{F} is a framed algebra with R-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F,} where \\spad{F} is a framed algebra with R-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * \\spad{wj,} \\spad{j} = 1..n)}, the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly, the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, \\spad{i} = 1..n, \\spad{j} = 1..n)}, then \\spad{wi = sum(bij * \\spad{vj,} \\spad{j} = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) │ │ │ NIL │ │ │ -(|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |downLevel|) │ │ │ -((|constructor| (NIL "This domain implement dynamic extension over the PseudoAlgebraicClosureOfRationalNumber. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension \\spad{(T} : K_0, K_1, ..., K_i...,K_n) where \\spad{K_0} = \\spad{K} and for \\spad{i} =1,2,...,n, K_i is an extension of K_{i-1} of degree > 1 and defined by an irreducible polynomial p(Z) in K_{i-1}. Two towers (T_1: K_01, K_11,...,K_i1,...,K_n1) and (T_2: K_02, K_12,...,K_i2,...,K_n2) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} T_2), that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1,2,...,n1} (or i=1,2,...,n2). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ -((|HasCategory| (|PseudoAlgebraicClosureOfRationalNumber|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|PseudoAlgebraicClosureOfRationalNumber|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|PseudoAlgebraicClosureOfRationalNumber|) (QUOTE (|Finite|))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|Finite|))) (OR (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|Finite|))) (|HasCategory| (|PseudoAlgebraicClosureOfRationalNumber|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|PseudoAlgebraicClosureOfRationalNumber|) (QUOTE (|Finite|)))) (OR (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|Finite|))) (|HasCategory| (|PseudoAlgebraicClosureOfRationalNumber|) (QUOTE (|Finite|))))) │ │ │ -(|RationalUnivariateRepresentationPackage| R |ls|) │ │ │ -((|constructor| (NIL "A package for computing the rational univariate representation of a zero-dimensional algebraic variety given by a regular triangular set. This package is essentially an interface for the \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover, if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls}, called the coordinate of \\spad{c}, and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover, a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient w.r.t. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) │ │ │ NIL │ │ │ +(|Comparable|) │ │ │ +((|constructor| (NIL "The class of set equipped with possibly unnatural linear order (needed for technical reasons).")) (|smaller?| (((|Boolean|) $ $) "\\spad{smaller?(x, \\spad{y)}} is a strict total ordering on the elements of the set."))) │ │ │ NIL │ │ │ -(|SquareFreeRegularTriangularSetGcdPackage| R E V P TS) │ │ │ -((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}."))) │ │ │ NIL │ │ │ +(|PadeApproximantPackage| R |x| |pt|) │ │ │ +((|constructor| (NIL "This package computes reliable Pad&ea. approximants using a generalized Viskovatov continued fraction algorithm.")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant), \\spad{dd} (denominator degree of approximant), \\spad{ns} (numerator series of function), and \\spad{ds} (denominator series of function)."))) │ │ │ NIL │ │ │ -(|SquareFreeQuasiComponentPackage| R E V P TS) │ │ │ -((|constructor| (NIL "A internal package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets.")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,ts,lineq,b1,b2,b3,b4,b5)} is an internal subroutine, exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,lts,b1,b2)} is an internal subroutine, exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine, exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,lpwt2)} is an internal subroutine, exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,us)} returns \\spad{true} iff internalSubQuasiComponent?(ts,us) from QuasiComponentPackage returns true.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{b} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(lp1,lp2)} is an internal subroutine, exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(lp1,lp2)} is an internal subroutine, exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(lp1,lp2)} returns \\spad{true} iff \\axiom{lp1} is a sub-set of \\axiom{lp2} assuming that these lists are sorted increasingly w.r.t. infRittWu? from RecursivePolynomialCategory.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(lp1,lp2)} returns \\spad{true} iff \\axiom{lp1} is a sub-set of \\axiom{lp2}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty, or \\axiom{ts} has less elements than \\axiom{us}, or some variable is algebraic w.r.t. \\axiom{us} and is not w.r.t. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} w.r.t supDimElseRittWu from QuasiComponentPackage.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} w.r.t. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine, exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(s1,s2,s3)} is an internal subroutine, exported only for developement."))) │ │ │ NIL │ │ │ +(|GenericNonAssociativeAlgebra| R |n| |ls| |gamma|) │ │ │ +((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra, the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},...,\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element, if the generic left trace form is associative, an algebra is separable if the generic left discriminant is invertible, if it is non-zero, there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)}, this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element, if the generic left trace form is associative, an algebra is separable if the generic left discriminant is invertible, if it is non-zero, there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)}, this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element, the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error, if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element, the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element, the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element, the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error, if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element, the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element, the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra, or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra, or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra, then a linear combination with the basis element is formed"))) │ │ │ +((|unitsKnown| |has| (|Fraction| (|Polynomial| |#1|)) (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +((|HasCategory| (|Fraction| (|Polynomial| |#1|)) (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| (|Fraction| (|Polynomial| |#1|)) (QUOTE (|IntegralDomain|)))) │ │ │ +(|NumericalOptimizationProblem|) │ │ │ +((|constructor| (NIL "\\axiomType{NumericalOptimizationProblem} is a \\axiom{domain} for the representation of Numerical Optimization problems for use by ANNA. \\blankline The representation is a Union of two record types - one for optimization of a single function of one or more variables: \\blankline \\axiomType{Record}(\\br fn:\\axiomType{Expression DoubleFloat},\\br init:\\axiomType{List DoubleFloat},\\br lb:\\axiomType{List OrderedCompletion DoubleFloat},\\br cf:\\axiomType{List Expression DoubleFloat},\\br ub:\\axiomType{List OrderedCompletion DoubleFloat}) \\blankline and one for least-squares problems that is, optimization of a set of observations of a data set: \\blankline \\axiomType{Record}\\spad{(}lfn:\\axiomType{List Expression DoubleFloat},\\br init:\\axiomType{List DoubleFloat}\\spad{)}.")) (|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} is not documented")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} is not documented") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} is not documented"))) │ │ │ NIL │ │ │ -(|RecurrenceOperator| R F) │ │ │ -((|constructor| (NIL "This package provides an operator for the \\spad{n}-th term of a recurrence and an operator for the coefficient of \\spad{x^n} in a function specified by a functional equation.")) (|getOp| (((|BasicOperator|) |#2|) "\\spad{getOp \\spad{f},} if \\spad{f} represents the coefficient of a recurrence or ADE, returns the operator representing the solution")) (|getEq| ((|#2| |#2|) "\\spad{getEq \\spad{f}} returns the defining equation, if \\spad{f} represents the coefficient of an ADE or a recurrence.")) (|evalADE| ((|#2| (|BasicOperator|) (|Symbol|) |#2| |#2| |#2| (|List| |#2|)) "\\spad{evalADE(f, dummy, \\spad{x,} \\spad{n,} eq, values)} creates an expression that stands for the coefficient of \\spad{x^n} in the Taylor expansion of f(x), where f(x) is given by the functional equation eq. However, for technical reasons the variable \\spad{x} has to be replaced by a \\spad{dummy} variable \\spad{dummy} in eq. The argument values specifies the first few Taylor coefficients.")) (|evalRec| ((|#2| (|BasicOperator|) (|Symbol|) |#2| |#2| |#2| (|List| |#2|)) "\\spad{evalRec(u, dummy, \\spad{n,} \\spad{n0,} eq, values)} creates an expression that stands for u(n0), where u(n) is given by the equation eq. However, for technical reasons the variable \\spad{n} has to be replaced by a \\spad{dummy} variable \\spad{dummy} in eq. The argument values specifies the initial values of the recurrence u(0), u(1),... For the moment we don't allow recursions that contain \\spad{u} inside of another operator."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|Ring|)))) │ │ │ -(|SquareFreeNormalizedTriangularSetCategory| R E V P) │ │ │ -((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus, up to the primitivity axiom of [1], these sets are Lazard triangular sets."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ +(|LocalPowerSeriesCategory| K) │ │ │ +((|printInfo| (((|Boolean|)) "\\spad{printInfo()} returns the value of the \\spad{printInfo} flag.") (((|Boolean|) (|Boolean|)) "\\spad{printInfo(b)} set a flag such that when \\spad{true} \\spad{(b} \\spad{<-} true) prints some information during some critical computation.")) (|coefOfFirstNonZeroTerm| ((|#1| $) "\\spad{coefOfFirstNonZeroTerm(s)} returns the first non zero coefficient of the series.")) (|filterUpTo| (($ $ (|Integer|)) "\\spad{filterUpTo(s,n)} returns the series consisting of the terms of \\spad{s} having degree strictly less than \\spad{n.}")) (|shift| (($ $ (|Integer|)) "\\spad{shift(s,n)} returns t**n * \\spad{s}")) (|series| (($ (|Integer|) |#1| $) "\\spad{series(e,c,s)} create the series c*t**e + \\spad{s.}")) (|removeZeroes| (($ $) "\\spad{removeZeroes(s)} removes the zero terms in \\spad{s.}") (($ (|Integer|) $) "\\spad{removeZeroes(n,s)} removes the zero terms in the first \\spad{n} terms of \\spad{s.}")) (|monomial2series| (($ (|List| $) (|List| (|NonNegativeInteger|)) (|Integer|)) "\\spad{monomial2series(ls,le,n)} returns t**n * reduce(\"*\",[s \\spad{**} \\spad{e} for \\spad{s} in \\spad{ls} for \\spad{e} in le])")) (|delay| (($ (|Mapping| $)) "\\spad{delay delayed} the computation of the next term of the series given by the input function.")) (|posExpnPart| (($ $) "\\spad{posExpnPart(s)} returns the series \\spad{s} less the terms with negative exponant.")) (|order| (((|Integer|) $) "\\spad{order(s)} returns the order of \\spad{s.}"))) │ │ │ +(((|commutative| "*") . T) (|noZeroDivisors| . T) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|GeneralPackageForAlgebraicFunctionField| K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR |InfClsPoint| |DesTree| BLMET) │ │ │ -((|constructor| (NIL "A package that implements the Brill-Noether algorithm. Part of the PAFF package.")) (|ZetaFunction| (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|) (|PositiveInteger|)) "\\spad{ZetaFunction(pi)} returns the Zeta function of the curve in constant field extension. Calculated by using the L-Polynomial") (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|)) "\\spad{ZetaFunction()} returns the Zeta function of the curve. Calculated by using the L-Polynomial")) (|numberPlacesDegExtDeg| (((|Integer|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberPlacesDegExtDeg(d, \\spad{n)}} returns the number of places of degree \\spad{d} in the constant field extension of degree \\spad{n}")) (|numberRatPlacesExtDeg| (((|Integer|) (|PositiveInteger|)) "\\spad{numberRatPlacesExtDeg(n)} returns the number of rational places in the constant field extenstion of degree \\spad{n}")) (|numberOfPlacesOfDegree| (((|Integer|) (|PositiveInteger|)) "\\spad{numberOfPlacesOfDegree(pi)} returns the number of places of the given degree")) (|placesOfDegree| (((|List| |#7|) (|PositiveInteger|)) "\\spad{placesOfDegree(d)} returns all places of degree \\spad{d} of the curve.")) (|classNumber| (((|Integer|)) "\\spad{classNumber()} returns the class number of the curve.")) (|LPolynomial| (((|SparseUnivariatePolynomial| (|Integer|)) (|PositiveInteger|)) "\\spad{LPolynomial(d)} returns the L-Polynomial of the curve in constant field extension of degree \\spad{d.}") (((|SparseUnivariatePolynomial| (|Integer|))) "\\spad{LPolynomial()} returns the L-Polynomial of the curve.")) (|rationalPlaces| (((|List| |#7|)) "\\spad{rationalPlaces returns} all the rational places of the curve defined by the polynomial given to the package.")) (|pointDominateBy| ((|#5| |#7|) "\\spad{pointDominateBy(pl)} returns the projective point dominated by the place \\spad{pl.}")) (|adjunctionDivisor| ((|#8|) "\\spad{adjunctionDivisor computes} the adjunction divisor of the plane curve given by the polynomial crv.")) (|intersectionDivisor| ((|#8| |#3|) "\\spad{intersectionDivisor(pol)} compute the intersection divisor (the Cartier divisor) of the form \\spad{pol} with the curve. If some intersection points lie in an extension of the ground field, an error message is issued specifying the extension degree needed to find all the intersection points. (If \\spad{pol} is not homogeneous an error message is issued).")) (|evalIfCan| (((|Union| |#1| "failed") (|Fraction| |#3|) |#7|) "\\spad{evalIfCan(u,pl)} evaluate the function \\spad{u} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") |#3| |#3| |#7|) "\\spad{evalIfCan(f,g,pl)} evaluate the function \\spad{f/g} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") |#3| |#7|) "\\spad{evalIfCan(f,pl)} evaluate \\spad{f} at the place \\spad{pl} (returns \"failed\" if it is a pole).")) (|eval| ((|#1| (|Fraction| |#3|) |#7|) "\\spad{eval(u,pl)} evaluate the function \\spad{u} at the place \\spad{pl.}") ((|#1| |#3| |#3| |#7|) "\\spad{eval(f,g,pl)} evaluate the function \\spad{f/g} at the place \\spad{pl.}") ((|#1| |#3| |#7|) "\\spad{eval(f,pl)} evaluate \\spad{f} at the place \\spad{pl.}")) (|interpolateForms| (((|List| |#3|) |#8| (|NonNegativeInteger|)) "\\spad{interpolateForms(d,n)} returns a basis of the interpolate forms of degree \\spad{n} of the divisor \\spad{d.}")) (|lBasis| (((|Record| (|:| |num| (|List| |#3|)) (|:| |den| |#3|)) |#8|) "\\spad{lBasis computes} a basis associated to the specified divisor")) (|parametrize| ((|#6| |#3| |#7|) "\\spad{parametrize(f,pl)} returns a local parametrization of \\spad{f} at the place \\spad{pl.}")) (|singularPoints| (((|List| |#5|)) "\\spad{singularPoints()} returns the singular points of the curve defined by the polynomial given to the package. If the singular points lie in an extension of the specified ground field an error message is issued specifying the extension degree needed to find all singular points.")) (|setSingularPoints| (((|List| |#5|) (|List| |#5|)) "\\spad{setSingularPoints(lpt)} sets the singular points to be used. Beware: no attempt is made to check if the points are singular or not, nor if all of the singular points are presents. Hence, results of some computation maybe false. It is intend to be use when one want to compute the singular points are computed by other means than to use the function singularPoints.")) (|desingTreeWoFullParam| (((|List| |#10|)) "\\spad{desingTreeWoFullParam returns} the desingularisation trees at all singular points of the curve defined by the polynomial given to the package. The local parametrizations are not computed.")) (|desingTree| (((|List| |#10|)) "\\spad{desingTree returns} the desingularisation trees at all singular points of the curve defined by the polynomial given to the package.")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus returns} the genus of the curve defined by the polynomial given to the package.")) (|theCurve| ((|#3|) "\\spad{theCurve returns} the specified polynomial for the package.")) (|printInfo| (((|Void|) (|List| (|Boolean|))) "\\spad{printInfo(lbool)} prints some information comming from various package and domain used by this package.")) (|setCurve| ((|#3| |#3|) "\\spad{setCurve sets} the defining polynomial"))) │ │ │ +(|Dequeue| S) │ │ │ +((|constructor| (NIL "Linked list implementation of a Dequeue")) (|member?| (((|Boolean|) |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} member?(3,a)")) (|members| (((|List| |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} members a")) (|parts| (((|List| |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} parts a")) (|#| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} \\#a")) (|count| (((|NonNegativeInteger|) |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} count(4,a)") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} count(x+->(x>2),a)")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} any?(x+->(x=4),a)")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} every?(x+->(x=4),a)")) (~= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} (a~=b)")) (= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} b:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} (a=b)@Boolean")) (|coerce| (((|OutputForm|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} coerce a")) (|hash| (((|SingleInteger|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} hash a")) (|latex| (((|String|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} latex a")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} map!(x+->x+10,a) \\spad{X} a")) (|top!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} top! a \\spad{X} a")) (|reverse!| (($ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} reverse! a \\spad{X} a")) (|push!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} push! a \\spad{X} a")) (|pop!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} pop! a \\spad{X} a")) (|insertTop!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} insertTop! a \\spad{X} a")) (|insertBottom!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} insertBottom! a \\spad{X} a")) (|extractTop!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} extractTop! a \\spad{X} a")) (|extractBottom!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} extractBottom! a \\spad{X} a")) (|bottom!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} bottom! a \\spad{X} a")) (|top| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} top a")) (|height| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} height a")) (|depth| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} depth a")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} map(x+->x+10,a) \\spad{X} a")) (|eq?| (((|Boolean|) $ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} b:=copy a \\spad{X} eq?(a,b)")) (|copy| (($ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} copy a")) (|sample| (($) "\\blankline \\spad{X} sample()$Dequeue(INT)")) (|empty| (($) "\\blankline \\spad{X} b:=empty()$(Dequeue INT)")) (|empty?| (((|Boolean|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} empty? a")) (|bag| (($ (|List| |#1|)) "\\blankline \\spad{X} bag([1,2,3,4,5])$Dequeue(INT)")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} size?(a,5)")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} more?(a,9)")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} less?(a,9)")) (|length| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} length a")) (|rotate!| (($ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} rotate! a")) (|back| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} back a")) (|front| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} front a")) (|inspect| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} inspect a")) (|insert!| (($ |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} insert! (8,a) \\spad{X} a")) (|enqueue!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} enqueue! (9,a) \\spad{X} a")) (|extract!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} extract! a \\spad{X} a")) (|dequeue!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,2,3,4,5] \\spad{X} dequeue! a \\spad{X} a")) (|dequeue| (($) "\\blankline \\spad{X} a:Dequeue INT:= dequeue \\spad{()}") (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) \\indented{1}{element \\spad{x,} second element y,...,and last (bottom or back) element \\spad{z.}} \\blankline \\spad{X} g:Dequeue INT:= dequeue [1,2,3,4,5]"))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ +(|LeftAlgebra&| S R) │ │ │ +((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|Finite|)))) │ │ │ -(|SquareFreeRegularSetDecompositionPackage| R E V P TS) │ │ │ -((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu, Wang or Lazard- Moreno methods). This algorithm is valid for any type of regular set. It does not care about the way a polynomial is added in an regular set, or how two quasi-components are compared (by an inclusion-test), or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call directly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus, the operations of this package are not documented."))) │ │ │ NIL │ │ │ +(|FramedNonAssociativeAlgebra| R) │ │ │ +((|constructor| (NIL "FramedNonAssociativeAlgebra(R) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication, this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra, defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra, defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the right trace of the product \\spad{vi*vj}, where \\spad{v1},...,\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by left trace of the product \\spad{vi*vj}, where \\spad{v1},...,\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the right trace of the product \\spad{vi*vj}, where \\spad{v1},...,\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note that the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}-th row and \\spad{j}-th column is given by the left trace of the product \\spad{vi*vj}, where \\spad{v1},...,\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note that the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where \\spad{v1}, ..., \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + \\spad{...} + an*vn}, where \\spad{v1}, ..., \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for \\spad{k} in 1..rank()]} defined by \\spad{vi * \\spad{vj} = \\spad{gammaij1} * \\spad{v1} + \\spad{...} + gammaijn * vn}, where \\spad{v1},...,\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) │ │ │ +((|unitsKnown| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ NIL │ │ │ -(|SquareFreeRegularTriangularSet| R E V P) │ │ │ -((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover, the operation zeroSetSplit is an implementation of a new algorithm for solving polynomial systems by means of regular chains.")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,b1,b2)} is an internal subroutine, exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,b1,b2,b3)} is an internal subroutine, exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,b1,b2.b3,b4)} is an internal subroutine, exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,clos?,info?)} has the same specifications as zeroSetSplit from RegularTriangularSetCategory from \\spadtype{RegularTriangularSetCategory} Moreover, if clos? then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(p,ts,b1,b2,b3,b4,b5)} is an internal subroutine, exported only for developement."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#4| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#4| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#3| (QUOTE (|Finite|)))) │ │ │ -(|ZeroDimensionalSolvePackage| R |ls| |ls2|) │ │ │ -((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING. The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see \\spadtype{LexTriangularPackage} package constructor). For that purpose, the operations univariateSolve, realSolve and positiveSolve admit an optional argument.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover, each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts}, which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING. \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover, if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see zeroSetSplit from LexTriangularPackage(lp,false)). Otherwise, the triangular decomposition is computed directly from the input system by using the zeroSetSplit from \\spadtype{RegularChain}. WARNING. For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed w.r.t. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover, if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see zeroSetSplit from LexTriangularPackage(lp,false)). Otherwise, the triangular decomposition is computed directly from the input system by using the zeroSetSplit from \\spadtype{RegularChain}. WARNING. For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed w.r.t. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING. For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed w.r.t. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover, if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See rur from RationalUnivariateRepresentationPackage(lp,true). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see zeroSetSplit from LexTriangularPackage(lp,false)). Otherwise, the triangular decomposition is computed directly from the input system by using the zeroSetSplit from RegularChain") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See rur from RationalUnivariateRepresentationPackage(lp,true).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{lp} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (w.r.t. Zarisky topology). Moreover, if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See zeroSetSplit from RegularTriangularSetCategory(lp,true,info?). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see zeroSetSplit from LexTriangularPackage(lp,false)). Otherwise, the triangular decomposition is computed directly from the input system by using the zeroSetSplit from RegularChain"))) │ │ │ +(|IndexedDirectProductOrderedAbelianMonoidSup| A S) │ │ │ +((|constructor| (NIL "Indexed direct products of ordered abelian monoid sups \\spad{A}, generators indexed by the ordered set \\spad{S.} All items have finite support: only non-zero terms are stored."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InfinitlyClosePoint| K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR BLMET) │ │ │ -((|constructor| (NIL "This domain is part of the PAFF package")) (|fullOutput| (((|Boolean|)) "\\spad{fullOutput returns} the value of the flag set by fullOutput(b).") (((|Boolean|) (|Boolean|)) "\\spad{fullOutput(b)} sets a flag such that when true, a coerce to OutputForm yields the full output of \\spad{tr,} otherwise encode(tr) is output (see encode function). The default is false.")) (|fullOut| (((|OutputForm|) $) "\\spad{fullOut(tr)} yields a full output of \\spad{tr} (see function fullOutput)."))) │ │ │ +(|UnivariateLaurentSeriesCategory| |Coef|) │ │ │ +((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 \\spad{<=} \\spad{d} \\spad{<=} k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k.}} \\blankline \\spad{X} \\spad{w:SparseUnivariateLaurentSeries(Fraction(Integer),'z,0):=0} \\spad{X} rationalFunction(w,0)")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms, where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ +(|Collection| S) │ │ │ +((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named construct. However, each collection provides its own special function with the same name as the data type, except with an initial lower case letter, For example, list for List, flexibleArray for FlexibleArray, and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates \\indented{1}{removed.} \\blankline \\spad{X} removeDuplicates [1,4,2,-6,0,3,5,4,2,3]")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{p(x)} is true. Note that \\axiom{select(p,u) \\spad{==} \\spad{[x} for \\spad{x} in \\spad{u} | p(x)]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{y = \\spad{x}} removed. Note that \\axiom{remove(y,c) \\spad{==} \\spad{[x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} y]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{p(x)} is true. Note that \\axiom{remove(p,u) \\spad{==} \\spad{[x} for \\spad{x} in \\spad{u} | not p(x)]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across u, stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(f,u,x)}, \\spad{x} is the identity operation of \\spad{f.} Same as \\axiom{reduce(f,u,x)} when \\spad{u} contains no element \\spad{z.} Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across u, where \\spad{x} is the identity operation of \\spad{f.} Same as \\axiom{reduce(f,u)} if \\spad{u} has 2 or more elements. Returns \\axiom{f(x,y)} if \\spad{u} has one element \\spad{y,} \\spad{x} if \\spad{u} is empty. For example, \\axiom{reduce(+,u,0)} returns the sum of the elements of u.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across u. For example, if \\spad{u} is \\axiom{[x,y,...,z]} then \\axiom{reduce(f,u)} returns \\axiom{f(..f(f(x,y),...),z)}. Note that if \\spad{u} has one element \\spad{x,} \\axiom{reduce(f,u)} returns \\spad{x.} Error: if \\spad{u} is empty. \\blankline \\spad{X} )clear all \\spad{X} reduce(+,[C[i]*x**i for \\spad{i} in 1..5])")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\axiom{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{p(x)} is true, and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(x,y,...,z)} returns the collection of elements \\axiom{x,y,...,z} ordered as given. Equivalently written as \\axiom{[x,y,...,z]$D}, where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|Guess| F S EXPRR R |retract| |coerce|) │ │ │ -((|constructor| (NIL "This package implements guessing of sequences. Packages for the most common cases are provided as \\spadtype{GuessInteger}, \\spadtype{GuessPolynomial}, etc.")) (|shiftHP| (((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| |#1|)) (|UnivariateFormalPowerSeries| |#1|))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| |exprStream| (|Mapping| (|Stream| |#3|) |#3| (|Symbol|))) (|:| A (|Mapping| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| |#2|))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| AX (|Mapping| |#3| (|NonNegativeInteger|) (|Symbol|) |#3|)) (|:| C (|Mapping| (|List| |#2|) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{shiftHP options} returns a specification for Hermite-Pade approximation with the $q$-shift operator") (((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| |#1|)) (|UnivariateFormalPowerSeries| |#1|))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| |exprStream| (|Mapping| (|Stream| |#3|) |#3| (|Symbol|))) (|:| A (|Mapping| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| |#2|))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| AX (|Mapping| |#3| (|NonNegativeInteger|) (|Symbol|) |#3|)) (|:| C (|Mapping| (|List| |#2|) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) "\\spad{shiftHP options} returns a specification for Hermite-Pade approximation with the shift operator")) (|diffHP| (((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| |#1|)) (|UnivariateFormalPowerSeries| |#1|))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| |exprStream| (|Mapping| (|Stream| |#3|) |#3| (|Symbol|))) (|:| A (|Mapping| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| |#2|))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| AX (|Mapping| |#3| (|NonNegativeInteger|) (|Symbol|) |#3|)) (|:| C (|Mapping| (|List| |#2|) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{diffHP options} returns a specification for Hermite-Pade approximation with the $q$-dilation operator") (((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| |#1|)) (|UnivariateFormalPowerSeries| |#1|))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| |exprStream| (|Mapping| (|Stream| |#3|) |#3| (|Symbol|))) (|:| A (|Mapping| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| |#2|))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| AX (|Mapping| |#3| (|NonNegativeInteger|) (|Symbol|) |#3|)) (|:| C (|Mapping| (|List| |#2|) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) "\\spad{diffHP options} returns a specification for Hermite-Pade approximation with the differential operator")) (|guessRat| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessRat \\spad{q}} returns a guesser that tries to find a q-rational function whose first values are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessRec} with \\spad{(l, maxShift \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true)}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessRat \\spad{l}} tries to find a rational function whose first values are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessRec}\\spad{(l, maxShift \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true)}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessRat(l, options)} tries to find a rational function whose first values are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(l, maxShift \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true)}.")) (|guessPRec| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessPRec \\spad{q}} returns a guesser that tries to find a linear q-recurrence with polynomial coefficients whose first values are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(q)} with \\spad{maxPower \\spad{==} 1}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessPRec \\spad{l}} tries to find a linear recurrence with polynomial coefficients whose first values are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessRec}\\spad{(l, maxPower \\spad{==} 1)}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessPRec(l, options)} tries to find a linear recurrence with polynomial coefficients whose first values are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(l, options)} with \\spad{maxPower \\spad{==} 1}.")) (|guessRec| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessRec \\spad{q}} returns a guesser that finds an ordinary q-difference equation whose first values are given by \\spad{l,} using the given options.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessRec(l, options)} tries to find an ordinary difference equation whose first values are given by \\spad{l,} using the given options.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessRec \\spad{l}} tries to find an ordinary difference equation whose first values are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}.")) (|guessPade| (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessPade(l, options)} tries to find a rational function whose first Taylor coefficients are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}\\spad{(l, options)} with \\spad{maxDerivative \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessPade(l, options)} tries to find a rational function whose first Taylor coefficients are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessADE}\\spad{(l, maxDerivative \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true)}.")) (|guessHolo| (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessHolo(l, options)} tries to find an ordinary linear differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessADE}\\spad{(l, options)} with \\spad{maxPower \\spad{==} 1}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessHolo \\spad{l}} tries to find an ordinary linear differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}\\spad{(l, maxPower \\spad{==} 1)}.")) (|guessAlg| (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessAlg(l, options)} tries to find an algebraic equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessADE}(l, options) with \\spad{maxDerivative \\spad{==} 0}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessAlg \\spad{l}} tries to find an algebraic equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}(l, maxDerivative \\spad{==} 0).")) (|guessADE| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessADE \\spad{q}} returns a guesser that tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the given options.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessADE(l, options)} tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the given options.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessADE \\spad{l}} tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}.")) (|guessHP| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| |#1|)) (|UnivariateFormalPowerSeries| |#1|))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| |exprStream| (|Mapping| (|Stream| |#3|) |#3| (|Symbol|))) (|:| A (|Mapping| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| |#2|))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| AX (|Mapping| |#3| (|NonNegativeInteger|) (|Symbol|) |#3|)) (|:| C (|Mapping| (|List| |#2|) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) "\\spad{guessHP \\spad{f}} constructs an operation that applies Hermite-Pade approximation to the series generated by the given function \\spad{f.}")) (|guessBinRat| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessBinRat \\spad{q}} returns a guesser that tries to find a function of the form n+->qbinomial(a+b \\spad{n,} \\spad{n)} r(n), where r(q^n) is a q-rational function, that fits \\spad{l.}") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessBinRat(l, options)} tries to find a function of the form n+->binomial(a+b \\spad{n,} \\spad{n)} r(n), where r(n) is a rational function, that fits \\spad{l.}") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessBinRat(l, options)} tries to find a function of the form n+->binomial(a+b \\spad{n,} \\spad{n)} r(n), where r(n) is a rational function, that fits \\spad{l.}")) (|guessExpRat| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessExpRat \\spad{q}} returns a guesser that tries to find a function of the form n+->(a+b q^n)^n r(q^n), where r(q^n) is a q-rational function, that fits \\spad{l.}") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessExpRat(l, options)} tries to find a function of the form n+->(a+b n)^n r(n), where r(n) is a rational function, that fits \\spad{l.}") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessExpRat \\spad{l}} tries to find a function of the form n+->(a+b n)^n r(n), where r(n) is a rational function, that fits \\spad{l.}")) (|guess| (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|)))) (|List| (|Symbol|)) (|List| (|GuessOption|))) "\\spad{guess(l, guessers, ops)} applies recursively the given \\spad{guessers} to the successive differences if ops contains the symbol \\spad{guessSum} and quotients if ops contains the symbol \\spad{guessProduct} to the list. The given options are used.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|)))) (|List| (|Symbol|))) "\\spad{guess(l, guessers, ops)} applies recursively the given \\spad{guessers} to the successive differences if ops contains the symbol guessSum and quotients if ops contains the symbol guessProduct to the list. Default options as described in \\spadtype{GuessOptionFunctions0} are used.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guess(l, options)} applies recursively \\spadfun{guessRec} and \\spadfun{guessADE} to the successive differences and quotients of the list. The given options are used.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guess \\spad{l}} applies recursively \\spadfun{guessRec} and \\spadfun{guessADE} to the successive differences and quotients of the list. Default options as described in \\spadtype{GuessOptionFunctions0} are used."))) │ │ │ +(|ExtensibleLinearAggregate| S) │ │ │ +((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion, deletion, and concatenation efficient. However, access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from u.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{p(x)}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p.}")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position i.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position i.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from u.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{p(x)} is true.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements u.i through u.j.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{i}th element of u. \\blankline \\spad{X} Data:=Record(age:Integer,gender:String) \\spad{X} a1:AssociationList(String,Data):=table() \\spad{X} a1.\"tim\":=[55,\"male\"]$Data \\spad{X} delete!(a1,1)")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of u. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of u."))) │ │ │ +((|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ -((AND (|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))))) │ │ │ -(|GuessFiniteFunctions| F) │ │ │ -((|constructor| (NIL "This package exports guessing of sequences of numbers in a finite field"))) │ │ │ +(|Asp73| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs, needed for NAG routine d03eef, for example: \\blankline \\tab{5}SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI)\\br \\tab{5}DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI\\br \\tab{5}ALPHA=DSIN(X)\\br \\tab{5}BETA=Y\\br \\tab{5}GAMMA=X*Y\\br \\tab{5}DELTA=DCOS(X)*DSIN(Y)\\br \\tab{5}EPSOLN=Y+X\\br \\tab{5}PHI=X\\br \\tab{5}PSI=Y\\br \\tab{5}RETURN\\br \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|InfClsPt| K |symb| BLMET) │ │ │ -((|constructor| (NIL "This domain is part of the PAFF package")) (|fullOutput| (((|Boolean|)) "\\spad{fullOutput returns} the value of the flag set by fullOutput(b).") (((|Boolean|) (|Boolean|)) "\\spad{fullOutput(b)} sets a flag such that when true, a coerce to OutputForm yields the full output of \\spad{tr,} otherwise encode(tr) is output (see encode function). The default is false.")) (|fullOut| (((|OutputForm|) $) "\\spad{fullOut(tr)} yields a full output of \\spad{tr} (see function fullOutput)."))) │ │ │ +(|ReduceLODE| F L UP A LO) │ │ │ +((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, \\spad{g)}} returns \\spad{[m, \\spad{v]}} such that any solution in \\spad{A} of \\spad{op \\spad{z} = \\spad{g}} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A}, and the \\spad{z_i's} satisfy the differential system \\spad{M.z = \\spad{v}.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|GuessAlgebraicNumber|) │ │ │ -((|constructor| (NIL "This package exports guessing of sequences of rational functions"))) │ │ │ +(|TopLevelDrawFunctionsForCompiledFunctions|) │ │ │ +((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()}, uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)}, \\spad{y = g(u,v)}, \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)}, \\spad{y = g(u,v)}, \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}, and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t), \\spad{z} = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t), \\spad{z} = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t), \\spad{z} = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t), \\spad{z} = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)}, \\spad{y = g(u,v)}, \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)}, \\spad{y = g(u,v)}, \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t), \\spad{z} = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t), \\spad{z} = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), \\spad{y} = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) │ │ │ NIL │ │ │ -((|HasCategory| (|AlgebraicNumber|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|))))) │ │ │ -(|GuessInteger|) │ │ │ -((|constructor| (NIL "This package exports guessing of sequences of rational numbers"))) │ │ │ NIL │ │ │ -((AND (|HasCategory| (|Fraction| (|Integer|)) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|Integer|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))))) │ │ │ -(|GuessPolynomial|) │ │ │ -((|constructor| (NIL "This package exports guessing of sequences of rational functions"))) │ │ │ +(|GeneralPolynomialSet| R E |VarSet| P) │ │ │ +((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#4| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#4| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#4| (LIST (QUOTE |Evalable|) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) │ │ │ +(|SegmentBindingFunctions2| R S) │ │ │ +((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}s.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) │ │ │ NIL │ │ │ -((AND (|HasCategory| (|Fraction| (|Polynomial| (|Integer|))) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| (|Polynomial| (|Integer|)) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))))) │ │ │ -(|GuessUnivariatePolynomial| |q|) │ │ │ -((|constructor| (NIL "This package exports guessing of sequences of univariate rational functions")) (|shiftHP| (((|Mapping| HPSPEC (|List| (|GuessOption|))) (|Symbol|)) "\\spad{shiftHP options} returns a specification for Hermite-Pade approximation with the $q$-shift operator") ((HPSPEC (|List| (|GuessOption|))) "\\spad{shiftHP options} returns a specification for Hermite-Pade approximation with the shift operator")) (|diffHP| (((|Mapping| HPSPEC (|List| (|GuessOption|))) (|Symbol|)) "\\spad{diffHP options} returns a specification for Hermite-Pade approximation with the $q$-dilation operator") ((HPSPEC (|List| (|GuessOption|))) "\\spad{diffHP options} returns a specification for Hermite-Pade approximation with the differential operator")) (|guessRat| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessRat \\spad{q}} returns a guesser that tries to find a q-rational function whose first values are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessRec} with \\spad{(l, maxShift \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true)}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessRat \\spad{l}} tries to find a rational function whose first values are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessRec}\\spad{(l, maxShift \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true)}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessRat(l, options)} tries to find a rational function whose first values are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(l, maxShift \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true)}.")) (|guessPRec| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessPRec \\spad{q}} returns a guesser that tries to find a linear q-recurrence with polynomial coefficients whose first values are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(q)} with \\spad{maxPower \\spad{==} 1}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessPRec \\spad{l}} tries to find a linear recurrence with polynomial coefficients whose first values are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessRec}\\spad{(l, maxPower \\spad{==} 1)}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessPRec(l, options)} tries to find a linear recurrence with polynomial coefficients whose first values are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(l, options)} with \\spad{maxPower \\spad{==} 1}.")) (|guessRec| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessRec \\spad{q}} returns a guesser that finds an ordinary q-difference equation whose first values are given by \\spad{l,} using the given options.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessRec(l, options)} tries to find an ordinary difference equation whose first values are given by \\spad{l,} using the given options.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessRec \\spad{l}} tries to find an ordinary difference equation whose first values are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}.")) (|guessPade| (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessPade(l, options)} tries to find a rational function whose first Taylor coefficients are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}\\spad{(l, options)} with \\spad{maxDerivative \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessPade(l, options)} tries to find a rational function whose first Taylor coefficients are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessADE}\\spad{(l, maxDerivative \\spad{==} 0, maxPower \\spad{==} 1, allDegrees \\spad{==} true)}.")) (|guessHolo| (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessHolo(l, options)} tries to find an ordinary linear differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessADE}\\spad{(l, options)} with \\spad{maxPower \\spad{==} 1}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessHolo \\spad{l}} tries to find an ordinary linear differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}\\spad{(l, maxPower \\spad{==} 1)}.")) (|guessAlg| (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessAlg(l, options)} tries to find an algebraic equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the given options. It is equivalent to \\spadfun{guessADE}(l, options) with \\spad{maxDerivative \\spad{==} 0}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessAlg \\spad{l}} tries to find an algebraic equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}(l, maxDerivative \\spad{==} 0).")) (|guessADE| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessADE \\spad{q}} returns a guesser that tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the given options.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessADE(l, options)} tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the given options.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessADE \\spad{l}} tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l,} using the default options described in \\spadtype{GuessOptionFunctions0}.")) (|guessHP| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Mapping| HPSPEC (|List| (|GuessOption|)))) "\\spad{guessHP \\spad{f}} constructs an operation that applies Hermite-Pade approximation to the series generated by the given function \\spad{f.}")) (|guessBinRat| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessBinRat \\spad{q}} returns a guesser that tries to find a function of the form n+->qbinomial(a+b \\spad{n,} \\spad{n)} r(n), where r(q^n) is a q-rational function, that fits \\spad{l.}") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessBinRat(l, options)} tries to find a function of the form n+->binomial(a+b \\spad{n,} \\spad{n)} r(n), where r(n) is a rational function, that fits \\spad{l.}") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessBinRat(l, options)} tries to find a function of the form n+->binomial(a+b \\spad{n,} \\spad{n)} r(n), where r(n) is a rational function, that fits \\spad{l.}")) (|guessExpRat| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessExpRat \\spad{q}} returns a guesser that tries to find a function of the form n+->(a+b q^n)^n r(q^n), where r(q^n) is a q-rational function, that fits \\spad{l.}") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessExpRat(l, options)} tries to find a function of the form n+->(a+b n)^n r(n), where r(n) is a rational function, that fits \\spad{l.}") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessExpRat \\spad{l}} tries to find a function of the form n+->(a+b n)^n r(n), where r(n) is a rational function, that fits \\spad{l.}")) (|guess| (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|)))) (|List| (|Symbol|)) (|List| (|GuessOption|))) "\\spad{guess(l, guessers, ops)} applies recursively the given \\spad{guessers} to the successive differences if ops contains the symbol \\spad{guessSum} and quotients if ops contains the symbol \\spad{guessProduct} to the list. The given options are used.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|)))) (|List| (|Symbol|))) "\\spad{guess(l, guessers, ops)} applies recursively the given \\spad{guessers} to the successive differences if ops contains the symbol guessSum and quotients if ops contains the symbol guessProduct to the list. Default options as described in \\spadtype{GuessOptionFunctions0} are used.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guess(l, options)} applies recursively \\spadfun{guessRec} and \\spadfun{guessADE} to the successive differences and quotients of the list. The given options are used.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guess \\spad{l}} applies recursively \\spadfun{guessRec} and \\spadfun{guessADE} to the successive differences and quotients of the list. Default options as described in \\spadtype{GuessOptionFunctions0} are used."))) │ │ │ NIL │ │ │ +(|GroebnerPackage| |Dom| |Expon| |VarSet| |Dpol|) │ │ │ +((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain, Dom, is not a field, the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients, but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each s-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial}, \\spadtype{HomogeneousDistributedMultivariatePolynomial}, \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the \\indented{1}{precomputed groebner basis \\spad{gb} giving a canonical representative} \\indented{1}{of the residue class.} \\blankline \\spad{X} f:HDMP([x,y],FRAC INT) \\spad{:=} \\spad{x^3} + 3*y^2 \\spad{X} g:HDMP([x,y],FRAC INT) \\spad{:=} \\spad{x^2} + \\spad{y} \\spad{X} h:HDMP([x,y],FRAC INT) \\spad{:=} \\spad{x} + 2*x*j \\spad{X} normalForm(f,[g,h]) \\spad{X} Lex \\spad{:=} DMP([x,y],FRAC INT) \\spad{X} normalForm(f::Lex,[g::Lex,h::Lex])")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis \\indented{1}{for a polynomial ideal generated by the list of polynomials lp,} \\indented{1}{displaying both a summary of the critical pairs considered (\"info\")} \\indented{1}{and the result of reducing each critical pair (\"redcrit\").} \\indented{1}{If the second or third arguments have any other string value,} \\indented{1}{the indicated information is suppressed.} \\blankline \\spad{X} s1:DMP([w,p,z,t,s,b],FRAC(INT)):= 45*p + 35*s - 165*b - 36 \\spad{X} s2:DMP([w,p,z,t,s,b],FRAC(INT)):= 35*p + 40*z + 25*t - 27*s \\spad{X} s3:DMP([w,p,z,t,s,b],FRAC(INT)):= 15*w + 25*p*s + 30*z - 18*t - 165*b**2 \\spad{X} s4:DMP([w,p,z,t,s,b],FRAC(INT)):= -9*w + 15*p*t + 20*z*s \\spad{X} s5:DMP([w,p,z,t,s,b],FRAC(INT)):= \\spad{w*p} + 2*z*t - 11*b**3 \\spad{X} s6:DMP([w,p,z,t,s,b],FRAC(INT)):= 99*w - 11*b*s + 3*b**2 \\spad{X} s7:DMP([w,p,z,t,s,b],FRAC(INT)):= \\spad{b**2} + 33/50*b + 2673/10000 \\spad{X} sn7:=[s1,s2,s3,s4,s5,s6,s7] \\spad{X} groebner(sn7,\"info\",\"redcrit\")") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis \\indented{1}{for a polynomial ideal} \\indented{1}{generated by the list of polynomials lp.} \\indented{1}{Argument infoflag is used to get information on the computation.} \\indented{1}{If infoflag is \"info\", then summary information} \\indented{1}{is displayed for each s-polynomial generated.} \\indented{1}{If infoflag is \"redcrit\", the reduced critical pairs are displayed.} \\indented{1}{If infoflag is any other string,} \\indented{1}{no information is printed during computation.} \\blankline \\spad{X} s1:DMP([w,p,z,t,s,b],FRAC(INT)):= 45*p + 35*s - 165*b - 36 \\spad{X} s2:DMP([w,p,z,t,s,b],FRAC(INT)):= 35*p + 40*z + 25*t - 27*s \\spad{X} s3:DMP([w,p,z,t,s,b],FRAC(INT)):= 15*w+25*p*s+30*z - 18*t - 165*b**2 \\spad{X} s4:DMP([w,p,z,t,s,b],FRAC(INT)):= -9*w + 15*p*t + 20*z*s \\spad{X} s5:DMP([w,p,z,t,s,b],FRAC(INT)):= \\spad{w*p} + 2*z*t - 11*b**3 \\spad{X} s6:DMP([w,p,z,t,s,b],FRAC(INT)):= 99*w - 11*b*s + 3*b**2 \\spad{X} s7:DMP([w,p,z,t,s,b],FRAC(INT)):= \\spad{b**2} + 33/50*b + 2673/10000 \\spad{X} sn7:=[s1,s2,s3,s4,s5,s6,s7] \\spad{X} groebner(sn7,\"info\") \\spad{X} groebner(sn7,\"redcrit\")") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal \\indented{1}{generated by the list of polynomials lp.} \\blankline \\spad{X} s1:DMP([w,p,z,t,s,b],FRAC(INT)):= 45*p + 35*s - 165*b - 36 \\spad{X} s2:DMP([w,p,z,t,s,b],FRAC(INT)):= 35*p + 40*z + 25*t - 27*s \\spad{X} s3:DMP([w,p,z,t,s,b],FRAC(INT)):= 15*w+25*p*s+30*z - 18*t - 165*b**2 \\spad{X} s4:DMP([w,p,z,t,s,b],FRAC(INT)):= -9*w + 15*p*t + 20*z*s \\spad{X} s5:DMP([w,p,z,t,s,b],FRAC(INT)):= \\spad{w*p} + 2*z*t - 11*b**3 \\spad{X} s6:DMP([w,p,z,t,s,b],FRAC(INT)):= 99*w - 11*b*s + 3*b**2 \\spad{X} s7:DMP([w,p,z,t,s,b],FRAC(INT)):= \\spad{b**2} + 33/50*b + 2673/10000 \\spad{X} sn7:=[s1,s2,s3,s4,s5,s6,s7] \\spad{X} groebner(sn7)"))) │ │ │ NIL │ │ │ -(|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| K |symb| BLMET) │ │ │ -((|constructor| (NIL "This domain is part of the PAFF package")) (|fullOutput| (((|Boolean|)) "\\spad{fullOutput returns} the value of the flag set by fullOutput(b).") (((|Boolean|) (|Boolean|)) "\\spad{fullOutput(b)} sets a flag such that when true, a coerce to OutputForm \\indented{1}{yields the full output of \\spad{tr,} otherwise encode(tr) is output} (see encode function). The default is false.")) (|fullOut| (((|OutputForm|) $) "\\spad{fullOut(tr)} yields a full output of \\spad{tr} (see function fullOutput)."))) │ │ │ +((|HasCategory| |#1| (QUOTE (|Field|)))) │ │ │ +(|FiniteFieldHomomorphisms| F1 GF F2) │ │ │ +((|constructor| (NIL "FiniteFieldHomomorphisms(F1,GF,F2) exports coercion functions of elements between the fields \\spad{F1} and \\spad{F2,} which both must be finite simple algebraic extensions of the finite ground field \\spad{GF.}")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from \\spad{F2} in \\spad{F1,} where coerce is a field homomorphism between the fields extensions \\spad{F2} and \\spad{F1} both over ground field \\spad{GF} (the second argument to the package). Error: if the extension degree of \\spad{F2} doesn't divide the extension degree of \\spad{F1.} Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from \\spad{F1} in \\spad{F2.} Thus coerce is a field homomorphism between the fields extensions \\spad{F1} and \\spad{F2} both over ground field \\spad{GF} (the second argument to the package). Error: if the extension degree of \\spad{F1} doesn't divide the extension degree of \\spad{F2.} Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|GuessFinite| F) │ │ │ -((|constructor| (NIL "This package exports guessing of sequences of numbers in a finite field"))) │ │ │ +(|ListMultiDictionary| S) │ │ │ +((|constructor| (NIL "The \\spadtype{ListMultiDictionary} domain implements a dictionary with duplicates allowed. The representation is a list with duplicates represented explicitly. Hence most operations will be relatively inefficient when the number of entries in the dictionary becomes large. If the objects in the dictionary belong to an ordered set, the entries are maintained in ascending order.")) (|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x's} with \\spad{y's} in dictionary \\spad{d.}")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) │ │ │ +(|FortranVectorFunctionCategory|) │ │ │ +((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP, checking that \\indented{1}{legal \\spad{Fortran-77} is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP, making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|))))) │ │ │ -(|PackageForAlgebraicFunctionField| K |symb| BLMET) │ │ │ -((|constructor| (NIL "\\indented{1}{Author: Gaetan Hache} Date created: June 1995 Date Last Updated: May 2010 by Tim Daly Description: References: \\spad{Hach95} Effective construction of algebraic geometry codes \\spad{Walk78} Algebraic Curves \\spad{Vogl07} Genus of a Plane Curve \\spad{Fult08} Algebraic Curves: An Introduction to Algebraic Geometry A package that implements the Brill-Noether algorithm. Part of the PAFF package")) (|ZetaFunction| (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|) (|PositiveInteger|)) "\\spad{ZetaFunction(pi)} eturns the Zeta function of the curve in constant field extension. Calculated by using the L-Polynomial") (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|)) "\\spad{ZetaFunction ()}eturns the Zeta function of the curve. Calculated by using the L-Polynomial")) (|numberPlacesDegExtDeg| (((|Integer|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberPlacesDegExtDeg(d, \\spad{n)}} returns the number of places of degree \\spad{d} in the constant field extension of degree \\spad{n}")) (|numberRatPlacesExtDeg| (((|Integer|) (|PositiveInteger|)) "\\spad{numberRatPlacesExtDeg(n)} returns the number of rational places in the constant field extenstion of degree \\spad{n}")) (|numberOfPlacesOfDegree| (((|Integer|) (|PositiveInteger|)) "\\spad{numberOfPlacesOfDegree(pi)} returns the number of places of the given degree")) (|placesOfDegree| (((|List| (|Places| |#1|)) (|PositiveInteger|)) "\\spad{placesOfDegree(d)} returns all places of degree \\spad{d} of the curve.")) (|classNumber| (((|Integer|)) "\\spad{classNumber()} returns the class number of the curve.")) (|LPolynomial| (((|SparseUnivariatePolynomial| (|Integer|)) (|PositiveInteger|)) "\\spad{LPolynomial(d)} returns the L-Polynomial of the curve in constant field extension of degree \\spad{d.}") (((|SparseUnivariatePolynomial| (|Integer|))) "\\spad{LPolynomial()} returns the L-Polynomial of the curve.")) (|adjunctionDivisor| (((|Divisor| (|Places| |#1|))) "\\spad{adjunctionDivisor computes} the adjunction divisor of the plane curve given by the polynomial set with the function setCurve.")) (|intersectionDivisor| (((|Divisor| (|Places| |#1|)) (|DistributedMultivariatePolynomial| |#2| |#1|)) "\\spad{intersectionDivisor(pol)} compute the intersection divisor (the Cartier divisor) of the form \\spad{pol} with the curve. If some intersection points lie in an extension of the ground field, an error message is issued specifying the extension degree needed to find all the intersection points. (If \\spad{pol} is not homogeneous an error message is issued).")) (|evalIfCan| (((|Union| |#1| "failed") (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Places| |#1|)) "\\spad{evalIfCan(u,pl)} evaluate the function \\spad{u} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) "\\spad{evalIfCan(f,g,pl)} evaluate the function \\spad{f/g} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) "\\spad{evalIfCan(f,pl)} evaluate \\spad{f} at the place \\spad{pl} (returns \"failed\" if it is a pole).")) (|eval| ((|#1| (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Places| |#1|)) "\\spad{eval(u,pl)} evaluate the function \\spad{u} at the place \\spad{pl.}") ((|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) "\\spad{eval(f,g,pl)} evaluate the function \\spad{f/g} at the place \\spad{pl.}") ((|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) "\\spad{eval(f,pl)} evaluate \\spad{f} at the place \\spad{pl.}")) (|interpolateForms| (((|List| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Divisor| (|Places| |#1|)) (|NonNegativeInteger|)) "\\spad{interpolateForms(d,n)} returns a basis of the interpolate forms of degree \\spad{n} of the divisor \\spad{d.}")) (|lBasis| (((|Record| (|:| |num| (|List| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|:| |den| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|Divisor| (|Places| |#1|))) "\\spad{lBasis computes} a basis associated to the specified divisor")) (|parametrize| (((|NeitherSparseOrDensePowerSeries| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) "\\spad{parametrize(f,pl)} returns a local parametrization of \\spad{f} at the place \\spad{pl}")) (|singularPoints| (((|List| (|ProjectivePlane| |#1|))) "\\spad{singularPoints()} returns the singular points of the \\indented{1}{curve defined by the polynomial given to the package.} \\indented{1}{If the singular points lie in an extension of the specified} \\indented{1}{ground field an error message is issued specifying the extension} \\indented{1}{degree needed to find all singular points.} \\blankline \\spad{X} K:=PF 101 \\spad{X} R:=DMP([X,Y,Z],K) \\spad{X} P:=PAFF(K,[X,Y,Z],BLQT) \\spad{X} C:R:= \\spad{(X^2} + \\spad{Y^2)^3} - 4 * \\spad{X^2} * \\spad{Y^2} * \\spad{Z^2} \\spad{X} singularPoints()$P")) (|desingTree| (((|List| (|DesingTree| (|InfClsPt| |#1| |#2| |#3|)))) "\\spad{desingTree()} returns the desingularisation trees at all singular points of the curve defined by the polynomial given to the package.")) (|desingTreeWoFullParam| (((|List| (|DesingTree| (|InfClsPt| |#1| |#2| |#3|)))) "\\spad{desingTreeWoFullParam()} returns the desingularisation trees at all singular points of the curve defined by the polynomial given to the package. The local parametrizations are not computed.")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of the curve defined by the polynomial \\indented{1}{given to the package.} \\blankline \\spad{X} K:=PF 101 \\spad{X} R:=DMP([X,Y,Z],K) \\spad{X} P:=PAFF(K,[X,Y,Z],BLQT) \\spad{X} C:R:= \\spad{(X^2} + \\spad{Y^2)^3} - 4 * \\spad{X^2} * \\spad{Y^2} * \\spad{Z^2} \\spad{X} genus()$P")) (|theCurve| (((|DistributedMultivariatePolynomial| |#2| |#1|)) "\\spad{theCurve()} returns the specified polynomial for the package. \\blankline \\spad{X} K:=PF 101 \\spad{X} R:=DMP([X,Y,Z],K) \\spad{X} P:=PAFF(K,[X,Y,Z],BLQT) \\spad{X} C:R:= \\spad{(X^2} + \\spad{Y^2)^3} - 4 * \\spad{X^2} * \\spad{Y^2} * \\spad{Z^2} \\spad{X} theCurve(C)$P")) (|rationalPlaces| (((|List| (|Places| |#1|))) "\\spad{rationalPlaces()} returns all the rational places of the curve defined by the polynomial given to the package.")) (|pointDominateBy| (((|ProjectivePlane| |#1|) (|Places| |#1|)) "\\spad{pointDominateBy(pl)} returns the projective point dominated by the place \\spad{pl.}")) (|setCurve| (((|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|)) "\\spad{setCurve sets} the defining polynomial for the curve \\blankline \\spad{X} K:=PF 101 \\spad{X} R:=DMP([X,Y,Z],K) \\spad{X} P:=PAFF(K,[X,Y,Z],BLQT) \\spad{X} C:R:= \\spad{(X^2} + \\spad{Y^2)^3} - 4 * \\spad{X^2} * \\spad{Y^2} * \\spad{Z^2} \\spad{X} setCurve(C)$P"))) │ │ │ +(|PolynomialSetCategory&| S R E |VarSet| P) │ │ │ +((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore, for \\spad{R} being an integral domain, a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) \\spad{P},} or the set of its zeros (described for instance by the radical of the previous ideal, or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set, that is, two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases w.r.t. \\axiom{cs} and \\axiom{(lp,cs)} and \\axiom{(lr,cs)} generate the same ideal in \\axiom{(R)^(-1) \\spad{P}.}")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases w.r.t. \\axiom{cs} and \\axiom{(lp,cs)} and \\axiom{(lr,cs)} generate the same ideal in \\axiom{(R)^(-1) \\spad{P}.}")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,ps)} returns \\axiom{[c,b,r]} such that \\axiom{b} is fully reduced in the sense of Groebner bases w.r.t. \\axiom{ps}, \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore, if \\axiom{R} is a gcd-domain, \\axiom{b} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,ps)} returns \\axiom{[b,r]} such that the leading monomial of \\axiom{b} is reduced in the sense of Groebner bases w.r.t. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains \\indented{1}{some non null element lying in the base ring \\axiom{R}.}")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(ps1,ps2)} returns \\spad{true} iff it can proved that \\axiom{ps1} and \\axiom{ps2} generate the same ideal in \\axiom{(R)^(-1) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(ps1,ps2)} returns \\spad{true} iff it can proved that all polynomials in \\axiom{ps1} lie in the ideal generated by \\axiom{ps2} in \\axiom{\\axiom{(R)^(-1) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{p,q}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(v,ps)} returns \\axiom{us,vs,ws} such that \\axiom{us} is \\axiom{collectUnder(ps,v)}, \\axiom{vs} is \\axiom{collect(ps,v)} and \\axiom{ws} is \\axiom{collectUpper(ps,v)}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,v)} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{v}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,v)} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{v} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,v)} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{v}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(v,ps)} returns \\spad{true} iff \\axiom{v} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable, if any, else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists, otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists, otherwise \\axiom{\"failed\"} is returned."))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|Finite|)))) │ │ │ -(|PackageForAlgebraicFunctionFieldOverFiniteField| K |symb| BLMET) │ │ │ -((|constructor| (NIL "A package that implements the Brill-Noether algorithm. Part of the PAFF package")) (|ZetaFunction| (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|) (|PositiveInteger|)) "\\spad{ZetaFunction(pi)} returns the Zeta function of the curve in \\indented{1}{constant field extension. Calculated by using the L-Polynomial} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{ZetaFunction(2)$P1}") (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|)) "\\spad{ZetaFunction()} returns the Zeta function of the curve. \\indented{1}{Calculated by using the L-Polynomial} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{ZetaFunction()$P1}")) (|numberPlacesDegExtDeg| (((|Integer|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberPlacesDegExtDeg(d, \\spad{n)}} returns the number of \\indented{1}{places of degree \\spad{d} in the constant field extension of} \\indented{1}{degree \\spad{n}} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{numberPlacesDegExtDeg(3,2)$P1}")) (|numberRatPlacesExtDeg| (((|Integer|) (|PositiveInteger|)) "\\spad{numberRatPlacesExtDeg(n)} returns the number of rational \\indented{1}{places in the constant field extenstion of degree \\spad{n}} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{numberRatPlacesExtDeg(3)$P1}")) (|numberOfPlacesOfDegree| (((|Integer|) (|PositiveInteger|)) "\\spad{numberOfPlacesOfDegree(pi)} returns the number of places \\indented{1}{of the given degree} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} plc3:= \\spad{placesOfDegree(3)$P1} \\spad{X} \\spad{numberOfPlacesOfDegree(3)$P1}")) (|placesOfDegree| (((|List| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) (|PositiveInteger|)) "\\spad{placesOfDegree(d)} returns all places of degree \\spad{d} of the \\indented{1}{curve.} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} plc3:= \\spad{placesOfDegree(3)$P1}")) (|classNumber| (((|Integer|)) "\\spad{classNumber()} returns the class number of the curve. \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{classNumber()$P1}")) (|LPolynomial| (((|SparseUnivariatePolynomial| (|Integer|)) (|PositiveInteger|)) "\\spad{LPolynomial(d)} returns the L-Polynomial of the curve in \\indented{1}{constant field extension of degree \\spad{d.}} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{LPolynomial(2)$P1}") (((|SparseUnivariatePolynomial| (|Integer|))) "\\spad{LPolynomial()} returns the L-Polynomial of the curve. \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{LPolynomial()$P1}")) (|adjunctionDivisor| (((|Divisor| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|))) "\\spad{adjunctionDivisor computes} the adjunction divisor of the plane curve given by the polynomial defined by setCurve.")) (|intersectionDivisor| (((|Divisor| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) (|DistributedMultivariatePolynomial| |#2| |#1|)) "\\spad{intersectionDivisor(pol)} compute the intersection divisor of the \\indented{1}{form \\spad{pol} with the curve.} \\indented{1}{(If \\spad{pol} is not homogeneous an error message is issued).} \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} divZ \\spad{:=} intersectionDivisor(z)$P")) (|evalIfCan| (((|Union| |#1| "failed") (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{evalIfCan(u,pl)} evaluate the function \\spad{u} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{evalIfCan(f,g,pl)} evaluate the function \\spad{f/g} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{evalIfCan(f,pl)} evaluate \\spad{f} at the place \\spad{pl} (returns \"failed\" if it is a pole).")) (|eval| ((|#1| (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{eval(u,pl)} evaluate the function \\spad{u} at the place \\spad{pl.}") ((|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{eval(f,g,pl)} evaluate the function \\spad{f/g} at the place \\spad{pl.} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} plc3:= \\spad{placesOfDegree(3)$P1} \\spad{X} a:= elt( first \\spad{plc3} ,{} 1 ) \\spad{X} definingPolynomial(a) \\spad{X} \\spad{a^3} + \\spad{a^2} + 1 \\spad{X} \\spad{D:=} 2 * \\spad{reduce(+,(plc3} \\spad{::} List DIV PLACESPS \\spad{PF} 2)) \\spad{X} lB1:= \\spad{lBasis(D)$P1} \\spad{X} K4:= FFCG(2,4) \\spad{X} R4:= DMP([X,Y,Z],K4) \\spad{X} P4:= PAFFFF(K4,[X,Y,Z],BLQT) \\spad{X} \\spad{C4:R4:=C1} \\spad{X} \\spad{setCurve(C4)$P4} \\spad{X} \\spad{plc1} \\spad{:=} \\spad{placesOfDegree(1)$P4} \\spad{X} \\spad{mG:=matrix[[eval(f,lB1.den,pl)$P4} for \\spad{pl} in \\spad{plc1} ] for \\spad{f} in lB1.num] \\spad{X} \\spad{reduce(min,[33} - count(zero?,l) for \\spad{l} in listOfLists rowEchelon mG])") ((|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{eval(f,pl)} evaluate \\spad{f} at the place \\spad{pl.}")) (|interpolateForms| (((|List| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Divisor| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) (|NonNegativeInteger|)) "\\spad{interpolateForms(d,n)} returns a basis of the interpolate forms of \\indented{1}{degree \\spad{n} of the divisor \\spad{d.}} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} plc3:= \\spad{placesOfDegree(3)$P1} \\spad{X} \\spad{D:=} 2 * \\spad{reduce(+,(plc3} \\spad{::} List DIV PLACESPS \\spad{PF} 2)) \\spad{X} \\spad{interpolateForms(D,3)$P1}")) (|lBasis| (((|Record| (|:| |num| (|List| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|:| |den| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|Divisor| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|))) "\\spad{lBasis computes} a basis associated to the specified divisor \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} plc3:= \\spad{placesOfDegree(3)$P1} \\spad{X} \\spad{D:=} 2 * \\spad{reduce(+,(plc3} \\spad{::} List DIV PLACESPS \\spad{PF} 2)) \\spad{X} lB1:= \\spad{lBasis(D)$P1}")) (|parametrize| (((|NeitherSparseOrDensePowerSeries| (|PseudoAlgebraicClosureOfFiniteField| |#1|)) (|DistributedMultivariatePolynomial| |#2| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{parametrize(f,pl)} returns a local parametrization of \\spad{f} at the place \\spad{pl.}")) (|singularPoints| (((|List| (|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|))) "\\spad{singularPoints()} returns the singular points of the \\indented{1}{curve defined by the polynomial given to the package.} \\indented{1}{If the singular points lie in an extension of the specified} \\indented{1}{ground field an error message is issued specifying the extension} \\indented{1}{degree needed to find all singular points.} \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} singularPoints()$P")) (|rationalPoints| (((|List| (|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|))) "rationalPoints \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{rationalPoints()$P1}")) (|desingTree| (((|List| (|DesingTree| (|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |#1| |#2| |#3|)))) "\\spad{desingTree returns} the desingularisation trees at all singular points \\indented{1}{of the curve defined by the polynomial given to the package.} \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} desingTree()$P")) (|desingTreeWoFullParam| (((|List| (|DesingTree| (|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |#1| |#2| |#3|)))) "\\spad{desingTreeWoFullParam returns} the desingularisation trees at all \\indented{1}{singular points of the curve defined by the polynomial given to} \\indented{1}{the package. The local parametrizations are not computed.} \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{desingTreeWoFullParam()$P1}")) (|genusNeg| (((|Integer|)) "genusNeg \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1} \\spad{X} \\spad{genusNeg()$P1}")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus returns} the genus of the curve defined by the polynomial \\indented{1}{given to the package.} \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} g:=genus()$P")) (|theCurve| (((|DistributedMultivariatePolynomial| |#2| |#1|)) "\\spad{theCurve returns} the specified polynomial for the package. \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} theCurve()$P")) (|rationalPlaces| (((|List| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|))) "\\spad{rationalPlaces returns} all the rational places of the curve defined by the polynomial given to the package.")) (|projectivePoint| (((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|) (|List| (|PseudoAlgebraicClosureOfFiniteField| |#1|))) "projectivePoint \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} ProjPl \\spad{:=} PROJPLPS PrimeField \\spad{p} \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} g:=genus()$P \\spad{X} divZ \\spad{:=} intersectionDivisor(z)$P \\spad{X} pInf:= first supp divZ \\spad{X} p1:= projectivePoint( [1,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl1:= first placesAbove( \\spad{p1} \\spad{)$P} \\spad{X} p2:= projectivePoint( [2,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl2:= first placesAbove( \\spad{p2} \\spad{)$P} \\spad{X} p3:= projectivePoint( [3,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl3:= first placesAbove( \\spad{p3} \\spad{)$P} \\spad{X} p4:= projectivePoint( [4,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl4:= first placesAbove( \\spad{p4} \\spad{)$P} \\spad{X} p5:= projectivePoint( [5,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl5:= first placesAbove( \\spad{p5} \\spad{)$P}")) (|placesAbove| (((|List| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) (|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "placesAbove \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} ProjPl \\spad{:=} PROJPLPS PrimeField \\spad{p} \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} g:=genus()$P \\spad{X} divZ \\spad{:=} intersectionDivisor(z)$P \\spad{X} pInf:= first supp divZ \\spad{X} p1:= projectivePoint( [1,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl1:= first placesAbove( \\spad{p1} \\spad{)$P} \\spad{X} p2:= projectivePoint( [2,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl2:= first placesAbove( \\spad{p2} \\spad{)$P} \\spad{X} p3:= projectivePoint( [3,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl3:= first placesAbove( \\spad{p3} \\spad{)$P} \\spad{X} p4:= projectivePoint( [4,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl4:= first placesAbove( \\spad{p4} \\spad{)$P} \\spad{X} p5:= projectivePoint( [5,0,1] \\spad{::} List \\spad{K} )$ProjPl \\spad{X} pl5:= first placesAbove( \\spad{p5} \\spad{)$P}")) (|pointDominateBy| (((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{pointDominateBy(pl)} returns the projective point dominated by the place \\spad{pl.}")) (|setCurve| (((|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|)) "\\spad{setCurve sets} the defining curve \\blankline \\spad{X} K1:= PF(2) \\spad{X} R1:= DMP([X,Y,Z],K1) \\spad{X} P1:= PAFFFF(K1,[X,Y,Z],BLQT) \\spad{X} \\spad{C1:R1:=X^5} + \\spad{Y^2*Z^3+Y*Z^4} \\spad{X} \\spad{setCurve(C1)$P1}")) (|fullInfClsPt| (((|Void|)) "\\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} desingTree()$P \\spad{X} fullDesTree()$P \\spad{X} fullInfClsPt()$P \\spad{X} desingTree()$P")) (|fullDesTree| (((|Void|)) "fullDesTree \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P} \\spad{X} setCurve(fh)$P \\spad{X} desingTree()$P \\spad{X} fullDesTree()$P \\spad{X} desingTree()$P")) (|homogenize| (((|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Integer|)) "\\spad{homogenize makes} the exponents of every term sum to a constant \\indented{1}{value shared by every term.} \\blankline \\spad{X} \\spad{p:=} nextPrime(2^20) \\spad{X} K:=PF \\spad{p} \\spad{X} R:=DMP([x,y,z],K) \\spad{X} P:=PAFFFF( \\spad{K,} [x,y,z], BLQT) \\spad{X} f:R:= \\spad{y^2} - (x-1)*(x-2)*(x-3)*(x-4)*(x-5) \\spad{X} fh:R:= homogenize( \\spad{f} ,{} 3 \\spad{)$P}"))) │ │ │ +((|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) │ │ │ +(|e04AgentsPackage|) │ │ │ +((|constructor| (NIL "\\axiomType{e04AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical optimization routine.")) (|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units''. It returns a value in the range [0,1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,r)} changes the name of item \\axiom{s} in \\axiom{r} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,n)} returns a list of \\axiom{n} indexed variables with name as in \\axiom{e}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{args.lfn}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{e} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\spad{l.}")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{l}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,n)} returns a matrix of coefficients of the linear functions in \\axiom{l}. If \\spad{l} is empty, the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{e} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course, it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,b)} repaces all instances of an infinite entry in \\axiom{l} by a finite entry \\axiom{b} or \\axiom{-b}."))) │ │ │ NIL │ │ │ -((|HasCategory| (|PseudoAlgebraicClosureOfFiniteField| |#1|) (QUOTE (|Finite|)))) │ │ │ -(|AbelianGroup&| S) │ │ │ -((|constructor| (NIL "The class of abelian groups, additive monoids where each element has an additive inverse. \\blankline Axioms\\br \\tab{5}\\spad{-(-x) = x}\\br \\tab{5}\\spad{x+(-x) = 0}")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n.}")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x.}"))) │ │ │ NIL │ │ │ +(|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |downLevel|) │ │ │ +((|constructor| (NIL "This domain implement dynamic extension over the PseudoAlgebraicClosureOfRationalNumber. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension \\spad{(T} : K_0, K_1, ..., K_i...,K_n) where \\spad{K_0} = \\spad{K} and for \\spad{i} =1,2,...,n, K_i is an extension of K_{i-1} of degree > 1 and defined by an irreducible polynomial p(Z) in K_{i-1}. Two towers (T_1: K_01, K_11,...,K_i1,...,K_n1) and (T_2: K_02, K_12,...,K_i2,...,K_n2) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} T_2), that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1,2,...,n1} (or i=1,2,...,n2). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) │ │ │ +((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| (|PseudoAlgebraicClosureOfRationalNumber|) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|PseudoAlgebraicClosureOfRationalNumber|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|PseudoAlgebraicClosureOfRationalNumber|) (QUOTE (|Finite|))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|CharacteristicZero|))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|Finite|))) (OR (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|Finite|))) (|HasCategory| (|PseudoAlgebraicClosureOfRationalNumber|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|PseudoAlgebraicClosureOfRationalNumber|) (QUOTE (|Finite|)))) (OR (|HasCategory| (|Fraction| (|Integer|)) (QUOTE (|Finite|))) (|HasCategory| (|PseudoAlgebraicClosureOfRationalNumber|) (QUOTE (|Finite|))))) │ │ │ +(|DiophantineSolutionPackage|) │ │ │ +((|constructor| (NIL "Any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions, which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation, each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore, it suffices to compute two sets:\\br \\tab{5}1. all minimal inhomogeneous solutions\\br \\tab{5}2. all minimal homogeneous solutions\\br the algorithm implemented is a completion procedure, which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation u, then all minimal solutions of inhomogeneous equation"))) │ │ │ NIL │ │ │ -(|AbelianMonoid&| S) │ │ │ -((|constructor| (NIL "The class of multiplicative monoids, that is, semigroups with an additive identity element. \\blankline Axioms\\br \\tab{5}\\spad{leftIdentity(\"+\":(\\%,\\%)->\\%,0)}\\tab{5}\\spad{0+x=x}\\br \\tab{5}\\spad{rightIdentity(\"+\":(\\%,\\%)->\\%,0)}\\tab{4}\\spad{x+0=x}")) (* (($ (|NonNegativeInteger|) $) "\\spad{n * \\spad{x}} is left-multiplication by a non negative integer")) (|zero?| (((|Boolean|) $) "\\spad{zero?(x)} tests if \\spad{x} is equal to 0.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|Zero|) (($) "\\spad{0} is the additive identity element."))) │ │ │ NIL │ │ │ +(|Equation| S) │ │ │ +((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain, for example being an abelian group are carried over the equation domain, by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x.}")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side, if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side, if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x.}") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x.}")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of the equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x.}")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, \\spad{...} xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation eqn.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation eqn.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of eqn.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation eqn.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation eqn.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation eq.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) │ │ │ +((|unitsKnown| OR (|has| |#1| (|Ring|)) (|has| |#1| (|Group|))) (|rightUnitary| |has| |#1| (|Ring|)) (|leftUnitary| |has| |#1| (|Ring|))) │ │ │ +((|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (QUOTE (|Ring|))) (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (|devaluate| |#1|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|ExpressionSpace|))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|Group|)))) (OR (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|Monoid|))) (OR (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (QUOTE (|Monoid|)))) (|HasCategory| |#1| (QUOTE (|SemiGroup|))) (OR (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (QUOTE (|Monoid|))) (|HasCategory| |#1| (QUOTE (|SemiGroup|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (OR (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (OR (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|Monoid|)))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (OR (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (OR (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|Group|))) (|HasCategory| |#1| (QUOTE (|Monoid|))) (|HasCategory| |#1| (QUOTE (|Ring|))) (|HasCategory| |#1| (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))) │ │ │ +(|Pattern| R) │ │ │ +((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, \\spad{b]}} and a is optional, and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p.}")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p.} Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, \\spad{v)}} adds \\spad{v} to the list of \"bad values\" for \\spad{p.} Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], \\spad{f]}} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], \\spad{f)}} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, \\spad{c?,} o?, m?)} creates a pattern variable \\spad{x,} which is constant if \\spad{c? = true}, optional if \\spad{o? = true}, and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and \\spad{...} and \\spad{pn} to the copy, which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and \\spad{...} and \\spad{pn} to \\spad{p.}")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and \\spad{...} and \\spad{pn.}")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s.}")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (an element of \\spad{R).}")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p.}")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p.}")) (/ (($ $ $) "\\spad{a / \\spad{b}} returns the pattern \\spad{a / \\spad{b}.}")) (** (($ $ $) "\\spad{a \\spad{**} \\spad{b}} returns the pattern \\spad{a \\spad{**} \\spad{b}.}") (($ $ (|NonNegativeInteger|)) "\\spad{a \\spad{**} \\spad{n}} returns the pattern \\spad{a \\spad{**} \\spad{n}.}")) (* (($ $ $) "\\spad{a * \\spad{b}} returns the pattern \\spad{a * \\spad{b}.}")) (+ (($ $ $) "\\spad{a + \\spad{b}} returns the pattern \\spad{a + \\spad{b}.}")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, \\spad{b]}} if \\spad{p = a \\spad{**} \\spad{b},} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]}, \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, \\spad{b]}} if \\spad{p = a / \\spad{b},} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, \\spad{n]}} if \\spad{n > 0} and \\spad{p = \\spad{q} \\spad{**} \\spad{n},} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)}, and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)}, and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = \\spad{a1} * \\spad{...} * an}, and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = \\spad{a1} + \\spad{...} + an},} and \"failed\" otherwise.")) ((|One|) (($) "\\spad{1} is constant")) ((|Zero|) (($) "\\spad{0} is constant"))) │ │ │ NIL │ │ │ -(|AbelianSemiGroup&| S) │ │ │ -((|constructor| (NIL "The class of all additive (commutative) semigroups, that is, a set with a commutative and associative operation \\spadop{+}. \\blankline Axioms\\br \\tab{5}\\spad{associative(\"+\":(\\%,\\%)->\\%)}\\tab{5}\\spad{(x+y)+z = x+(y+z)}\\br \\tab{6}\\spad{commutative(\"+\":(\\%,\\%)->\\%)}\\tab{5}\\spad{x+y = y+x}")) (* (($ (|PositiveInteger|) $) "\\spad{n*x} computes the left-multiplication of \\spad{x} by the positive integer \\spad{n.} This is equivalent to adding \\spad{x} to itself \\spad{n} times.")) (+ (($ $ $) "\\spad{x+y} computes the sum of \\spad{x} and \\spad{y.}"))) │ │ │ NIL │ │ │ +(|FullyEvalableOver| R) │ │ │ +((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex, applying \\spad{f} to values of type \\spad{R} in ex."))) │ │ │ NIL │ │ │ -(|AssociationListAggregate| |Key| |Entry|) │ │ │ -((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k,} or \"failed\" if \\spad{u} has no key \\spad{k.}"))) │ │ │ -((|finiteAggregate| . T) (|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ -(|AbelianGroup|) │ │ │ -((|constructor| (NIL "The class of abelian groups, additive monoids where each element has an additive inverse. \\blankline Axioms\\br \\tab{5}\\spad{-(-x) = x}\\br \\tab{5}\\spad{x+(-x) = 0}")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n.}")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x.}"))) │ │ │ +(|RealPolynomialUtilitiesPackage| |TheField| |ThePols|) │ │ │ +((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(l,s1,sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn.")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(l)} is the number of sign variations in the list of numbers \\spad{l,} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(p)} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(p) = sylvesterSequence(p,p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(p,q)} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) │ │ │ NIL │ │ │ +((|HasCategory| |#1| (QUOTE (|OrderedRing|)))) │ │ │ +(|RationalRicDE| F UP) │ │ │ +((|constructor| (NIL "In-field solution of Riccati equations, rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1,L1], [p2,L2], \\spad{...} ,{} [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op \\spad{y} = 0} must be one of the pi's (up to the constant coefficient), in which case the equation for \\spad{z = \\spad{y} e^{-int \\spad{p}}} is \\spad{Li \\spad{z} = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op \\spad{y} = 0} must be one of the fi's (up to the constant coefficient), in which case the equation for \\spad{z = \\spad{y} e^{-int ai}} is \\spad{Li \\spad{z} = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP}, not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op \\spad{y} = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP}, not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op \\spad{y} = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op \\spad{y} = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP}, not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op \\spad{y} = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op \\spad{y} = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP}, not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op \\spad{y} = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op \\spad{y} = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP}, not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op \\spad{y} = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) │ │ │ NIL │ │ │ -(|AbelianMonoid|) │ │ │ -((|constructor| (NIL "The class of multiplicative monoids, that is, semigroups with an additive identity element. \\blankline Axioms\\br \\tab{5}\\spad{leftIdentity(\"+\":(\\%,\\%)->\\%,0)}\\tab{5}\\spad{0+x=x}\\br \\tab{5}\\spad{rightIdentity(\"+\":(\\%,\\%)->\\%,0)}\\tab{4}\\spad{x+0=x}")) (* (($ (|NonNegativeInteger|) $) "\\spad{n * \\spad{x}} is left-multiplication by a non negative integer")) (|zero?| (((|Boolean|) $) "\\spad{zero?(x)} tests if \\spad{x} is equal to 0.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|Zero|) (($) "\\spad{0} is the additive identity element."))) │ │ │ +((|HasCategory| |#1| (QUOTE (|AlgebraicallyClosedField|)))) │ │ │ +(|HomogeneousDistributedMultivariatePolynomial| |vl| R) │ │ │ +((|constructor| (NIL "This type supports distributed multivariate polynomials whose variables are from a user specified list of symbols. The coefficient ring may be non commutative, but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) │ │ │ +(((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#2| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|OrderedVariableList| |#1|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|))) (OR (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|CommonOperators|) │ │ │ +((|constructor| (NIL "This package exports the elementary operators, with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s,} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known, the result has no semantics."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|AbelianSemiGroup|) │ │ │ -((|constructor| (NIL "The class of all additive (commutative) semigroups, that is, a set with a commutative and associative operation \\spadop{+}. \\blankline Axioms\\br \\tab{5}\\spad{associative(\"+\":(\\%,\\%)->\\%)}\\tab{5}\\spad{(x+y)+z = x+(y+z)}\\br \\tab{6}\\spad{commutative(\"+\":(\\%,\\%)->\\%)}\\tab{5}\\spad{x+y = y+x}")) (* (($ (|PositiveInteger|) $) "\\spad{n*x} computes the left-multiplication of \\spad{x} by the positive integer \\spad{n.} This is equivalent to adding \\spad{x} to itself \\spad{n} times.")) (+ (($ $ $) "\\spad{x+y} computes the sum of \\spad{x} and \\spad{y.}"))) │ │ │ +(|FiniteAbelianMonoidRingFunctions2| E R1 A1 R2 A2) │ │ │ +((|constructor| (NIL "This package provides a mapping function for \\spadtype{FiniteAbelianMonoidRing} The packages defined in this file provide fast fraction free rational interpolation algorithms. (see FAMR2, FFFG, FFFGF, NEWTON)")) (|map| ((|#5| (|Mapping| |#4| |#2|) |#3|) "\\spad{map}(f, a) applies the map \\spad{f} to each coefficient in a. It is assumed that \\spad{f} maps 0 to 0"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Boolean|) │ │ │ -((|constructor| (NIL "\\spadtype{Boolean} is the elementary logic with 2 values: \\spad{true} and \\spad{false}")) (|test| (((|Boolean|) $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|implies| (($ $ $) "\\spad{implies(a,b)} returns the logical implication of Boolean \\spad{a} and \\spad{b.}")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b.}")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b.}")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive or of Boolean \\spad{a} and \\spad{b.}")) (|or| (($ $ $) "\\spad{a or \\spad{b}} returns the logical inclusive or of Boolean \\spad{a} and \\spad{b.}")) (|and| (($ $ $) "\\spad{a and \\spad{b}} returns the logical and of Boolean \\spad{a} and \\spad{b.}")) (|not| (($ $) "\\spad{not \\spad{n}} returns the negation of \\spad{n.}")) (^ (($ $) "\\spad{^ \\spad{n}} returns the negation of \\spad{n.}")) (|false| (($) "\\axiom{false} is a logical constant.")) (|true| (($) "\\axiom{true} is a logical constant."))) │ │ │ +(|MappingPackage2| A C) │ │ │ +((|constructor| (NIL "Various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= \\spad{f} ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g \\spad{()=} \\spad{f} a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const \\spad{c}} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|CancellationAbelianMonoid|) │ │ │ -((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property, \\spad{\\br} \\tab{5}\\spad{ a+b = a+c \\spad{=>} \\spad{b=c} }.\\br This is formalised by the partial subtraction operator, which satisfies the Axioms\\br \\tab{5}\\spad{c = a+b \\spad{<=>} \\spad{c-b} = a}")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x, \\spad{y)}} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) │ │ │ +(|IndexedDirectProductAbelianGroup| A S) │ │ │ +((|constructor| (NIL "Indexed direct products of abelian groups over an abelian group \\spad{A} of generators indexed by the ordered set \\spad{S.} All items have finite support: only non-zero terms are stored."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|CommutativeRing|) │ │ │ -((|constructor| (NIL "The category of commutative rings with unity, rings where \\spadop{*} is commutative, and which have a multiplicative identity element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) │ │ │ -(((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|FortranOutputStackPackage|) │ │ │ +((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) │ │ │ NIL │ │ │ -(|Collection&| A S) │ │ │ -((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named construct. However, each collection provides its own special function with the same name as the data type, except with an initial lower case letter, For example, list for List, flexibleArray for FlexibleArray, and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates \\indented{1}{removed.} \\blankline \\spad{X} removeDuplicates [1,4,2,-6,0,3,5,4,2,3]")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{p(x)} is true. Note that \\axiom{select(p,u) \\spad{==} \\spad{[x} for \\spad{x} in \\spad{u} | p(x)]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{y = \\spad{x}} removed. Note that \\axiom{remove(y,c) \\spad{==} \\spad{[x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} y]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{p(x)} is true. Note that \\axiom{remove(p,u) \\spad{==} \\spad{[x} for \\spad{x} in \\spad{u} | not p(x)]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across u, stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(f,u,x)}, \\spad{x} is the identity operation of \\spad{f.} Same as \\axiom{reduce(f,u,x)} when \\spad{u} contains no element \\spad{z.} Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across u, where \\spad{x} is the identity operation of \\spad{f.} Same as \\axiom{reduce(f,u)} if \\spad{u} has 2 or more elements. Returns \\axiom{f(x,y)} if \\spad{u} has one element \\spad{y,} \\spad{x} if \\spad{u} is empty. For example, \\axiom{reduce(+,u,0)} returns the sum of the elements of u.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across u. For example, if \\spad{u} is \\axiom{[x,y,...,z]} then \\axiom{reduce(f,u)} returns \\axiom{f(..f(f(x,y),...),z)}. Note that if \\spad{u} has one element \\spad{x,} \\axiom{reduce(f,u)} returns \\spad{x.} Error: if \\spad{u} is empty. \\blankline \\spad{X} )clear all \\spad{X} reduce(+,[C[i]*x**i for \\spad{i} in 1..5])")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\axiom{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{p(x)} is true, and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(x,y,...,z)} returns the collection of elements \\axiom{x,y,...,z} ordered as given. Equivalently written as \\axiom{[x,y,...,z]$D}, where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (|HasAttribute| |#1| (QUOTE |finiteAggregate|))) │ │ │ -(|Character|) │ │ │ -((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number, for example, one of 0..9, a..z or A..Z. \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [alphanumeric? \\spad{c} for \\spad{c} in chars]")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter, for example, one of a..z. \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [lowerCase? \\spad{c} for \\spad{c} in chars]")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter, for example, one of A..Z. \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [upperCase? \\spad{c} for \\spad{c} in chars]")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter, for example, one of a..z or A..Z. \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [alphabetic? \\spad{c} for \\spad{c} in chars]")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral, for example, one of 0..9, a..f or A..F. \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [hexDigit? \\spad{c} for \\spad{c} in chars]")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character, for example, one of 0..9. \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [digit? \\spad{c} for \\spad{c} in chars]")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter, then it is returned unchanged. \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [lowerCase \\spad{c} for \\spad{c} in chars]")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter, then it is returned unchanged. \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [upperCase \\spad{c} for \\spad{c} in chars]")) (|escape| (($) "\\spad{escape()} provides the escape character, \\spad{_}, which is used to allow quotes and other characters within strings. \\blankline \\spad{X} escape()")) (|quote| (($) "\\spad{quote()} provides the string quote character, \\spad{\"}. \\blankline \\spad{X} quote()")) (|space| (($) "\\spad{space()} provides the blank character. \\blankline \\spad{X} space()")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one. \\blankline \\spad{X} [char \\spad{c} for \\spad{c} in [\"a\",\"A\",\"X\",\"8\",\"+\"]]") (($ (|Integer|)) "\\spad{char(i)} provides a character corresponding to the integer code i. It is always \\spad{true} that \\spad{ord char \\spad{i} = i}. \\blankline \\spad{X} [char \\spad{c} for \\spad{c} in [97,65,88,56,43]]")) (|ord| (((|Integer|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c.} It is always \\spad{true} that \\spad{char ord \\spad{c} = \\spad{c}.} \\blankline \\spad{X} chars \\spad{:=} [char \"a\", char \"A\", char \"X\", char \"8\", char \"+\"] \\spad{X} [ord \\spad{c} for \\spad{c} in chars]"))) │ │ │ +(|AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| K) │ │ │ +((|constructor| (NIL "The following is all the categories and domains related to projective space and part of the PAFF package"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|DifferentialRing&| S) │ │ │ -((|constructor| (NIL "An ordinary differential ring, that is, a ring with an operation \\spadfun{differentiate}. \\blankline Axioms\\br \\tab{5}\\spad{differentiate(x+y) = differentiate(x)+differentiate(y)}\\br \\tab{5}\\spad{differentiate(x*y) = x*differentiate(y) + differentiate(x)*y}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, \\spad{n)}} returns the \\spad{n}-th derivative of \\spad{x.}") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x.} This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, \\spad{n)}} returns the \\spad{n}-th derivative of \\spad{x.}") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x.} This function is a simple differential operator where no variable needs to be specified."))) │ │ │ +(|MPolyCatFunctions3| |Vars1| |Vars2| E1 E2 R PR1 PR2) │ │ │ +((|constructor| (NIL "This package has no description")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|EntireRing|) │ │ │ -((|constructor| (NIL "Entire Rings (non-commutative Integral Domains), a ring not necessarily commutative which has no zero divisors. \\blankline Axioms\\br \\tab{5}\\spad{ab=0 \\spad{=>} \\spad{a=0} or b=0} \\spad{--} known as noZeroDivisors\\br \\tab{5}\\spad{not(1=0)}")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) │ │ │ -((|noZeroDivisors| . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|MakeUnaryCompiledFunction| S D I) │ │ │ +((|constructor| (NIL "Tools for making compiled functions from top-level expressions Transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, \\spad{x)}} returns a function \\spad{f: \\spad{D} \\spad{->} I} \\indented{1}{defined by \\spad{f(x) \\spad{==} expr}.} \\indented{1}{Function \\spad{f} is compiled and directly} \\indented{1}{applicable to objects of type \\spad{D.}} \\blankline \\spad{X} MUCF:=MakeUnaryCompiledFunction(POLY(FRAC(INT)),FLOAT,FLOAT) \\spad{X} \\spad{f:=(x+3)^2} \\spad{X} g:=compiledFunction(f,x)$MUCF \\spad{X} g(2.0)")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) │ │ │ NIL │ │ │ -(|DivisionRing&| S) │ │ │ -((|constructor| (NIL "A division ring (sometimes called a skew field), a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv \\spad{x}} returns the multiplicative inverse of \\spad{x.} Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n.}")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n.}"))) │ │ │ NIL │ │ │ +(|SimpleFortranProgram| R FS) │ │ │ +((|constructor| (NIL "\\axiomType{SimpleFortranProgram(f,type)} provides a simple model of some FORTRAN subprograms, making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{f}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name, the type and the \\spad{body} of the program."))) │ │ │ NIL │ │ │ -(|DifferentialRing|) │ │ │ -((|constructor| (NIL "An ordinary differential ring, that is, a ring with an operation \\spadfun{differentiate}. \\blankline Axioms\\br \\tab{5}\\spad{differentiate(x+y) = differentiate(x)+differentiate(y)}\\br \\tab{5}\\spad{differentiate(x*y) = x*differentiate(y) + differentiate(x)*y}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, \\spad{n)}} returns the \\spad{n}-th derivative of \\spad{x.}") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x.} This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, \\spad{n)}} returns the \\spad{n}-th derivative of \\spad{x.}") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x.} This function is a simple differential operator where no variable needs to be specified."))) │ │ │ -((|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|DivisionRing|) │ │ │ -((|constructor| (NIL "A division ring (sometimes called a skew field), a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv \\spad{x}} returns the multiplicative inverse of \\spad{x.} Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n.}")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n.}"))) │ │ │ -((|noZeroDivisors| . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|RationalInterpolation| |xx| F) │ │ │ +((|constructor| (NIL "This package exports rational interpolation algorithms"))) │ │ │ NIL │ │ │ -(|Collection| S) │ │ │ -((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named construct. However, each collection provides its own special function with the same name as the data type, except with an initial lower case letter, For example, list for List, flexibleArray for FlexibleArray, and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates \\indented{1}{removed.} \\blankline \\spad{X} removeDuplicates [1,4,2,-6,0,3,5,4,2,3]")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{p(x)} is true. Note that \\axiom{select(p,u) \\spad{==} \\spad{[x} for \\spad{x} in \\spad{u} | p(x)]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{y = \\spad{x}} removed. Note that \\axiom{remove(y,c) \\spad{==} \\spad{[x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} y]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{p(x)} is true. Note that \\axiom{remove(p,u) \\spad{==} \\spad{[x} for \\spad{x} in \\spad{u} | not p(x)]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across u, stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(f,u,x)}, \\spad{x} is the identity operation of \\spad{f.} Same as \\axiom{reduce(f,u,x)} when \\spad{u} contains no element \\spad{z.} Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across u, where \\spad{x} is the identity operation of \\spad{f.} Same as \\axiom{reduce(f,u)} if \\spad{u} has 2 or more elements. Returns \\axiom{f(x,y)} if \\spad{u} has one element \\spad{y,} \\spad{x} if \\spad{u} is empty. For example, \\axiom{reduce(+,u,0)} returns the sum of the elements of u.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across u. For example, if \\spad{u} is \\axiom{[x,y,...,z]} then \\axiom{reduce(f,u)} returns \\axiom{f(..f(f(x,y),...),z)}. Note that if \\spad{u} has one element \\spad{x,} \\axiom{reduce(f,u)} returns \\spad{x.} Error: if \\spad{u} is empty. \\blankline \\spad{X} )clear all \\spad{X} reduce(+,[C[i]*x**i for \\spad{i} in 1..5])")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\axiom{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{p(x)} is true, and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(x,y,...,z)} returns the collection of elements \\axiom{x,y,...,z} ordered as given. Equivalently written as \\axiom{[x,y,...,z]$D}, where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) │ │ │ -((|nil| . T)) │ │ │ NIL │ │ │ -(|DoubleFloat|) │ │ │ -((|constructor| (NIL "\\spadtype{DoubleFloat} is intended to make accessible hardware floating point arithmetic in Axiom, either native double precision, or IEEE. On most machines, there will be hardware support for the arithmetic operations: \\spad{++} \\spad{+,} \\spad{*,} / and possibly also the sqrt operation. The operations exp, log, sin, cos, atan are normally coded in software based on minimax polynomial/rational approximations. \\blankline Some general comments about the accuracy of the operations: the operations \\spad{+,} \\spad{*,} / and sqrt are expected to be fully accurate. The operations exp, log, sin, cos and atan are not expected to be fully accurate. In particular, sin and cos will lose all precision for large arguments. \\blankline The Float domain provides an alternative to the DoubleFloat domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as erf, the error function in addition to the elementary functions. The disadvantage of Float is that it is much more expensive than small floats when the latter can be used.")) (|integerDecode| (((|List| (|Integer|)) $) "\\spad{integerDecode(x)} returns the multiple values of the common lisp integer-decode-float function. See Steele, ISBN 0-13-152414-3 p354. This function can be used to ensure that the results are bit-exact and do not depend on the binary-to-decimal conversions. \\blankline \\spad{X} \\spad{a:DFLOAT:=-1.0/3.0} \\spad{X} integerDecode a")) (|machineFraction| (((|Fraction| (|Integer|)) $) "\\spad{machineFraction(x)} returns a bit-exact fraction of the machine floating point number using the common lisp integer-decode-float function. See Steele, ISBN 0-13-152414-3 \\spad{p354} This function can be used to print results which do not depend on binary-to-decimal conversions \\blankline \\spad{X} \\spad{a:DFLOAT:=-1.0/3.0} \\spad{X} machineFraction a")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, \\spad{n,} \\spad{b)}} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is, \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, \\spad{n)}} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "\\spad{doubleFloatFormat changes} the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y.}")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x.}")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x.}")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x \\spad{**} \\spad{y}} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer i."))) │ │ │ -((|approximate| . T) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|ExpressionSpaceFunctions1| F S) │ │ │ +((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set, using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, \\spad{p,} \\spad{k)}} uses the property \\spad{p} of the operator of \\spad{k,} in order to lift \\spad{f} and apply it to \\spad{k.}"))) │ │ │ NIL │ │ │ -(|EuclideanDomain&| S) │ │ │ -((|constructor| (NIL "A constructive euclidean domain, one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes\\br \\tab{5}multiplicativeValuation\\tab{5}Size(a*b)=Size(a)*Size(b)\\br \\tab{5}additiveValuation\\tab{11}Size(a*b)=Size(a)+Size(b)")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ \\spad{z} / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists, \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y.}") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y.} The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem \\spad{y}} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo \\spad{y}} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder}, where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y.}")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x.} Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) │ │ │ NIL │ │ │ +(|Kernel| S) │ │ │ +((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S.}")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), \\spad{s)}} tests if the name of op is \\spad{s.}") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), \\spad{f)}} tests if op = \\spad{f.}")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol, and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], \\spad{m)}} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m.} Error: if \\spad{op} is k-ary for some \\spad{k} not equal to \\spad{m.}")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k.}")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,...,an))} returns the name of op."))) │ │ │ NIL │ │ │ -(|GcdDomain&| S) │ │ │ -((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However, if such a \\spadfun{factor} operation exist, factorization will be unique up to order and units.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the greatest common divisor (gcd) of univariate polynomials over the domain")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l.}") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y.}")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l.}") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y.}"))) │ │ │ +((|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) │ │ │ +(|Bits|) │ │ │ +((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| (|Boolean|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Boolean|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Boolean|) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Boolean|) (LIST (QUOTE |Evalable|) (QUOTE (|Boolean|)))) (|HasCategory| (|Boolean|) (QUOTE (|SetCategory|))))) │ │ │ +(|LinearPolynomialEquationByFractions| R) │ │ │ +((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring, this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation, by moving into the field of fractions, and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], \\spad{g)}} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|ExpressionSpace&| S) │ │ │ -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? \\spad{x}} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? \\spad{x}} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, \\spad{s,} \\spad{f)}} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, \\spad{s,} \\spad{f)}} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},...,\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},...,\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, \\spad{s,} \\spad{f)}} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, \\spad{s,} \\spad{f)}} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},...,\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},...,\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, \\spad{s)}} tests if \\spad{x} does not contain any operator whose name is \\spad{s.}") (((|Boolean|) $ $) "\\spad{freeOf?(x, \\spad{y)}} tests if \\spad{x} does not contain any occurrence of \\spad{y,} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, \\spad{k)}} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, \\spad{x)}} constructs op(x) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, \\spad{s)}} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s.}") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{%.}")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f,} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f,} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f,} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level, or if \\spad{f} has no kernels (that is, \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f.} Constants have height 0. Symbols have height 1. For any operator op and expressions f1,...,fn, \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, \\spad{g)}} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them, and makes them applicable to a unary operator. For example, \\spad{atan(paren \\spad{[x,} 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (f). This prevents \\spad{f} from being evaluated when operators are applied to it. For example, \\spad{log(1)} returns 0, but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them, and makes them applicable to a unary operator. For example, \\spad{atan(box \\spad{[x,} 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example, \\spad{log(1)} returns 0, but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels k1,...,kn by g1,...,gn formally in \\spad{f.}") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, \\spad{[k1} = g1,...,kn = gn])} replaces the kernels k1,...,kn by g1,...,gn formally in \\spad{f.}") (($ $ (|Equation| $)) "\\spad{subst(f, \\spad{k} = \\spad{g)}} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f.}")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or op([x1,...,xn]) applies the n-ary operator \\spad{op} to x1,...,xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or op(x, \\spad{y,} \\spad{z,} \\spad{t)} applies the 4-ary operator \\spad{op} to \\spad{x,} \\spad{y,} \\spad{z} and \\spad{t.}") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or op(x, \\spad{y,} \\spad{z)} applies the ternary operator \\spad{op} to \\spad{x,} \\spad{y} and \\spad{z.}") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or op(x, \\spad{y)} applies the binary operator \\spad{op} to \\spad{x} and \\spad{y.}") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or op(x) applies the unary operator \\spad{op} to \\spad{x.}"))) │ │ │ +(|StructuralConstantsPackage| R) │ │ │ +((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},...,\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra, for example the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note, that the it is not checked, whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt,} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls.} The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt,} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls.} The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Ring|)))) │ │ │ -(|FiniteFieldCategory&| S) │ │ │ -((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation, one of: \\spad{prime}, \\spad{polynomial}, \\spad{normal}, or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field, is a primitive element. Implementation Note that see ch.IX.1.3, \\spad{th.2} in \\spad{D.} Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call, the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which, called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of \\spad{size()-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)}, given a matrix representing a homogeneous system of equations, returns a vector whose characteristic'th powers is a non-trivial solution, or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of a. Note that such a root is alway defined in finite fields."))) │ │ │ NIL │ │ │ +(|XPolynomialsCat| |vl| R) │ │ │ +((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with variables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) │ │ │ +((|noZeroDivisors| |has| |#2| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|FloatingPointSystem&| S) │ │ │ -((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact, it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline 1: base of the exponent where the actual implemenations are usually binary or decimal)\\br 2: precision of the mantissa (arbitrary or fixed)\\br 3: rounding error for operations \\blankline Because a Float is an approximation to the real numbers, even though it is defined to be a join of a Field and OrderedRing, some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x.}")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x.}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order \\spad{x}} is the order of magnitude of \\spad{x.} Note that \\spad{base \\spad{**} order \\spad{x} \\spad{<=} \\spad{|x|} < base \\spad{**} \\spad{(1} + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * \\spad{b} \\spad{**} e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() \\spad{**} e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) │ │ │ +(|PolynomialCategory| R E |VarSet|) │ │ │ +((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R,} in variables from VarSet, with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p.}")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v.} Thus, for polynomial 7*x**2*y + 14*x*y**2, the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v.}")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v.}")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note that \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p.}")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p)} of the variables in the list \\spad{lv.}") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, \\spad{n]}} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = \\spad{a1} \\spad{...} an} and \\spad{n \\spad{>=} 2}, and, for each i, \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e}, where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = \\spad{m1} + \\spad{...} + \\spad{mn}} and \\spad{n \\spad{>=} 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v.}") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v.}")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial, \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b,} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v.}")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v,} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p,} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p,} which should actually involve only one variable, into a univariate polynomial in that variable, whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v,} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p,} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, \\spad{lv,} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln}, \\spad{prod(lv_i \\spad{**} ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv.}") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v.}"))) │ │ │ +(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -((|HasAttribute| |#1| (QUOTE |arbitraryExponent|)) (|HasAttribute| |#1| (QUOTE |arbitraryPrecision|))) │ │ │ -(|FloatingPointSystem|) │ │ │ -((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact, it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline 1: base of the exponent where the actual implemenations are usually binary or decimal)\\br 2: precision of the mantissa (arbitrary or fixed)\\br 3: rounding error for operations \\blankline Because a Float is an approximation to the real numbers, even though it is defined to be a join of a Field and OrderedRing, some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x.}")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x.}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order \\spad{x}} is the order of magnitude of \\spad{x.} Note that \\spad{base \\spad{**} order \\spad{x} \\spad{<=} \\spad{|x|} < base \\spad{**} \\spad{(1} + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * \\spad{b} \\spad{**} e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() \\spad{**} e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) │ │ │ -((|approximate| . T) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|FreeMonoid| S) │ │ │ +((|constructor| (NIL "Free monoid on any set of generators The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si \\spad{**} ni])} where the si's are in \\spad{S,} and the ni's are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, \\spad{a1\\^e1} \\spad{...} an\\^en)} returns \\spad{f(a1)\\^e1 \\spad{...} f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, \\spad{a1\\^e1} \\spad{...} an\\^en)} returns \\spad{a1\\^f(e1) \\spad{...} an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, \\spad{n)}} returns the factor of the n^th monomial of \\spad{x.}")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, \\spad{n)}} returns the exponent of the n^th monomial of \\spad{x.}")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x.}")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, \\spad{y)}} returns \\spad{[l, \\spad{m,} \\spad{r]}} such that \\spad{x = \\spad{l} * \\spad{m},} \\spad{y = \\spad{m} * \\spad{r}} and \\spad{l} and \\spad{r} have no overlap, \\spad{overlap(l, \\spad{r)} = \\spad{[l,} 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, \\spad{y)}} returns the left and right exact quotients of \\spad{x} by \\spad{y,} \\spad{[l, \\spad{r]}} such that \\spad{x = \\spad{l} * \\spad{y} * \\spad{r},} \"failed\" if \\spad{x} is not of the form \\spad{l * \\spad{y} * \\spad{r}.}")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, \\spad{y)}} returns the exact right quotient of \\spad{x} by \\spad{y} \\spad{q} such that \\spad{x = \\spad{q} * \\spad{y},} \"failed\" if \\spad{x} is not of the form \\spad{q * \\spad{y}.}")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, \\spad{y)}} returns the exact left quotient of \\spad{x} by \\spad{y} \\spad{q} such that \\spad{x = \\spad{y} * \\spad{q},} \"failed\" if \\spad{x} is not of the form \\spad{y * \\spad{q}.}")) (|hcrf| (($ $ $) "\\spad{hcrf(x, \\spad{y)}} returns the highest common right factor of \\spad{x} and \\spad{y,} the largest \\spad{d} such that \\spad{x = a \\spad{d}} and \\spad{y = \\spad{b} \\spad{d}.}")) (|hclf| (($ $ $) "\\spad{hclf(x, \\spad{y)}} returns the highest common left factor of \\spad{x} and \\spad{y,} the largest \\spad{d} such that \\spad{x = \\spad{d} a} and \\spad{y = \\spad{d} \\spad{b}.}")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s \\spad{**} \\spad{n}} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * \\spad{s}} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * \\spad{x}} returns the product of \\spad{x} by \\spad{s} on the left."))) │ │ │ NIL │ │ │ -(|HomogeneousAggregate&| A S) │ │ │ -((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system, all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of u. For collections, \\axiom{member?(x,u) = reduce(or,[x=y for \\spad{y} in u],false)}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of u. For collections, \\axiom{parts([x,y,...,z]) = (x,y,...,z)}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of u. For collections, \\axiom{parts([x,y,...,z]) = (x,y,...,z)}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in u. For collections, \\axiom{count(x,u) = reduce(+,[x=y for \\spad{y} in u],0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{p(x)} is true. For collections, \\axiom{count(p,u) = \\spad{reduce(+,[1} for \\spad{x} in \\spad{u} | p(x)],0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if p(x) is \\spad{true} for all elements \\spad{x} of u. Note that for collections, \\axiom{every?(p,u) = reduce(and,map(f,u),true,false)}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{p(x)} is \\spad{true} for any element \\spad{x} of u. Note that for collections, \\axiom{any?(p,u) = reduce(or,map(f,u),false,true)}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{f(x)}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by f(x). For collections, \\axiom{map(f,u) = [f(x) for \\spad{x} in u]}."))) │ │ │ +((|HasCategory| |#1| (QUOTE (|OrderedSet|)))) │ │ │ +(|SmithNormalForm| R |Row| |Col| M) │ │ │ +((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = \\spad{B}.}")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m.}")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m.}"))) │ │ │ NIL │ │ │ -((|HasAttribute| |#1| (QUOTE |finiteAggregate|)) (|HasAttribute| |#1| (QUOTE |shallowlyMutable|)) (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) │ │ │ -(|GcdDomain|) │ │ │ -((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However, if such a \\spadfun{factor} operation exist, factorization will be unique up to order and units.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the greatest common divisor (gcd) of univariate polynomials over the domain")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l.}") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y.}")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l.}") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y.}"))) │ │ │ -((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|EuclideanDomain|) │ │ │ -((|constructor| (NIL "A constructive euclidean domain, one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes\\br \\tab{5}multiplicativeValuation\\tab{5}Size(a*b)=Size(a)*Size(b)\\br \\tab{5}additiveValuation\\tab{11}Size(a*b)=Size(a)+Size(b)")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ \\spad{z} / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists, \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y.}") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y.} The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem \\spad{y}} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo \\spad{y}} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder}, where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y.}")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x.} Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) │ │ │ -((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|RepresentationPackage2| R) │ │ │ +((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created, using ideas of \\spad{R.} Parker, (the meat-Axe) to get smaller representations from bigger ones, finding sub- and factormodules, or to show, that such the representations are irreducible. Note that most functions are randomized functions of Las Vegas type every answer is correct, but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the \\spad{n}-th one-dimensional subspace of the vector space generated by the elements of basis, all from R**n. The coefficients of the representative are of shape (0,...,0,1,*,...,*), * in \\spad{R.} If the size of \\spad{R} is \\spad{q,} then there are (q**n-1)/(q-1) of them. We first reduce \\spad{n} modulo this number, then find the largest \\spad{i} such that +/[q**i for \\spad{i} in 0..i-1] \\spad{<=} \\spad{n.} Subtracting this sum of powers from \\spad{n} results in an i-digit number to \\spad{basis} \\spad{q.} This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls meatAxe(aG,true,numberOfTries,7). Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls meatAxe(aG,false,6,7), only using Parker's fingerprints, if randomElemnts is false. If it is true, it calls meatAxe(aG,true,25,7), only using random elements. Note that the choice of 25 was rather arbitrary. Also, 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls meatAxe(aG,false,25,7) returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra, say \\spad{A}, of the algebra of all square matrices of dimension \\spad{n.} \\spad{V} \\spad{R} is an A-module in the usual way. meatAxe(aG) creates at most 25 random elements of the algebra, tests them for singularity. If singular, it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule, then a list of the representations of the factor module is returned. Otherwise, if we know that all the kernel is already scanned, Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also, 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra, say \\spad{A}, of the algebra of all square matrices of dimension \\spad{n.} \\spad{V} \\spad{R} is an A-module in the usual way. meatAxe(aG,numberOfTries, maxTests) creates at most \\spad{numberOfTries} random elements of the algebra, tests them for singularity. If singular, it tries at most maxTests elements of its kernel to generate a proper submodule. If successful, a 2-list is returned: first, a list containing first the list of the representations of the submodule, then a list of the representations of the factor module. Otherwise, if we know that all the kernel is already scanned, Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If \\spad{randomElements} is false, the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of R**n to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices, generated by the list of matrices aG, where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. \\spad{V} \\spad{R} is an A-module in the natural way. split(aG, vector) then checks whether the cyclic submodule generated by vector is a proper submodule of \\spad{V} \\spad{R.} If successful, it returns a two-element list, which contains first the list of the representations of the submodule, then the list of the representations of the factor module. If the vector generates the whole module, a one-element list of the old representation is given. Note that a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls isAbsolutelyIrreducible?(aG,25). Note that the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity, assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space, the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of meatAxe would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls areEquivalent?(aG0,aG1,true,25). Note that the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls areEquivalent?(aG0,aG1,true,25). Note that the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices, all assumed of same square shape, can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators, the representations are equivalent. The algorithm tries \\spad{numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ, they are not equivalent. If an isomorphism is assumed, then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (for example, irreducibility \\spad{!)} we use standardBasisOfCyclicSubmodule to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from aGi. The way to choose the singular matrices is as in meatAxe. If the two representations are equivalent, this routine returns the transformation matrix \\spad{TM} with aG0.i * \\spad{TM} = \\spad{TM} * aG1.i for all i. If the representations are not equivalent, a small 0-matrix is returned. Note that the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra, say \\spad{A}, of the algebra of all square matrices of dimension \\spad{n.} \\spad{V} \\spad{R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(lm,v) calculates a matrix whose non-zero column vectors are the R-Basis of Av achieved in the way as described in section 6 of \\spad{R.} A. Parker's \"The Meat-Axe\". Note that in contrast to cyclicSubmodule, the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra, say \\spad{A}, of the algebra of all square matrices of dimension \\spad{n.} \\spad{V} \\spad{R} is an \\spad{A}-module in the natural way. cyclicSubmodule(lm,v) generates the R-Basis of Av as described in section 6 of \\spad{R.} A. Parker's \"The Meat-Axe\". Note that in contrast to the description in \"The Meat-Axe\" and to standardBasisOfCyclicSubmodule the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by aG.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis \\spad{lv} assumed to be in echelon form of a subspace of R**n \\spad{(n} the length of all the vectors in \\spad{lv} with unit vectors to a basis of R**n. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note that the rows of the result correspond to the vectors of the basis."))) │ │ │ NIL │ │ │ -(|HomogeneousAggregate| S) │ │ │ -((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system, all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of u. For collections, \\axiom{member?(x,u) = reduce(or,[x=y for \\spad{y} in u],false)}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of u. For collections, \\axiom{parts([x,y,...,z]) = (x,y,...,z)}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of u. For collections, \\axiom{parts([x,y,...,z]) = (x,y,...,z)}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in u. For collections, \\axiom{count(x,u) = reduce(+,[x=y for \\spad{y} in u],0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{p(x)} is true. For collections, \\axiom{count(p,u) = \\spad{reduce(+,[1} for \\spad{x} in \\spad{u} | p(x)],0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if p(x) is \\spad{true} for all elements \\spad{x} of u. Note that for collections, \\axiom{every?(p,u) = reduce(and,map(f,u),true,false)}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{p(x)} is \\spad{true} for any element \\spad{x} of u. Note that for collections, \\axiom{any?(p,u) = reduce(or,map(f,u),false,true)}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{f(x)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by f(x). For collections, \\axiom{map(f,u) = [f(x) for \\spad{x} in u]}."))) │ │ │ -((|nil| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|Field|))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|Finite|)))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|)))) │ │ │ +(|UnivariateLaurentSeries| |Coef| |var| |cen|) │ │ │ +((|constructor| (NIL "Dense Laurent series in one variable \\spadtype{UnivariateLaurentSeries} is a domain representing Laurent series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring, the power series variable, and the center of the power series expansion. For example, \\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in \\spad{(x - 3)} with integer coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) │ │ │ +(((|commutative| "*") OR (|and| (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|OrderedIntegralDomain|))) (|has| |#1| (|CommutativeRing|)) (|and| (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|PolynomialFactorizationExplicit|)))) (|noZeroDivisors| OR (|and| (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|OrderedIntegralDomain|))) (|has| |#1| (|IntegralDomain|)) (|and| (|has| |#1| (|Field|)) (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|PolynomialFactorizationExplicit|)))) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (|HasCategory| (|Integer|) (QUOTE (|SemiGroup|))) (|HasCategory| |#1| (QUOTE (|Field|))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|CharacteristicZero|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicZero|)))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|)))))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|DifferentialRing|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (|Integer|)) (|devaluate| |#1|))))) (OR (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|RealConstant|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|StepThrough|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |Eltable|) (LIST (QUOTE |UnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE |UnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |Evalable|) (LIST (QUOTE |UnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (LIST (QUOTE |UnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (AND (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |coerce|) (LIST (|devaluate| |#1|) (QUOTE (|Symbol|)))))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|)))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|)))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|Field|))))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |Eltable|) (LIST (QUOTE |UnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE |UnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |Evalable|) (LIST (QUOTE |UnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |InnerEvalable|) (QUOTE (|Symbol|)) (LIST (QUOTE |UnivariateTaylorSeries|) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|RealConstant|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|StepThrough|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |AlgebraicallyClosedFunctionSpace|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#1| (QUOTE (|PrimitiveFunctionCategory|))) (|HasCategory| |#1| (QUOTE (|TranscendentalFunctionCategory|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasSignature| |#1| (LIST (QUOTE |integrate|) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (|Symbol|))))) (|HasSignature| |#1| (LIST (QUOTE |variables|) (LIST (LIST (QUOTE |List|) (QUOTE (|Symbol|))) (|devaluate| |#1|)))))) (OR (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (|HasCategory| |#1| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|Tuple| S) │ │ │ +((|constructor| (NIL "This domain is used to interface with the interpreter's notion of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x} \\blankline \\spad{X} t1:PrimitiveArray(Integer):= \\spad{[i} for \\spad{i} in 1..10] \\spad{X} t2:=coerce(t1)$Tuple(Integer) \\spad{X} length(t2)")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x.} \\indented{1}{tuples are 0-based} \\blankline \\spad{X} t1:PrimitiveArray(Integer):= \\spad{[i} for \\spad{i} in 1..10] \\spad{X} t2:=coerce(t1)$Tuple(Integer) \\spad{X} select(t2,3)")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a \\blankline \\spad{X} t1:PrimitiveArray(Integer):= \\spad{[i} for \\spad{i} in 1..10] \\spad{X} t2:=coerce(t1)$Tuple(Integer)"))) │ │ │ NIL │ │ │ -(|IndexedList| S |mn|) │ │ │ -((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate}, often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is, if \\spad{l} is a list, then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ -(|IntegerNumberSystem&| S) │ │ │ -((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)}, \\spad{0<=a1}, \\spad{(a,b)=1} means \\spad{1/a mod \\spad{b}.}")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)}, \\spad{0<=a,b

1}, means \\spad{a**b mod \\spad{p}.}")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)}, \\spad{0<=a,b

1}, means \\spad{a*b mod \\spad{p}.}")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)}, \\spad{0<=a,b

1}, means \\spad{a-b mod \\spad{p}.}")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)}, \\spad{0<=a,b

1}, means \\spad{a+b mod \\spad{p}.}")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n.}")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n.}")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number, or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ \\spad{-b/2} \\spad{<=} \\spad{r} < \\spad{b/2} \\spad{}.}")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 \\spad{<=} \\spad{r} < \\spad{b}} and \\spad{r \\spad{==} a rem \\spad{b}.}")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|)))) │ │ │ +(|DirectProductModule| |n| R S) │ │ │ +((|constructor| (NIL "This constructor provides a direct product of R-modules with an R-module view."))) │ │ │ +((|unitsKnown| OR (|and| (|has| |#3| (|Ring|)) (|has| |#3| (|DifferentialRing|))) (|and| (|has| |#3| (|Ring|)) (|has| |#3| (|PartialDifferentialRing| (|Symbol|)))) (|has| |#3| (ATTRIBUTE |unitsKnown|)) (|and| (|has| |#3| (|Ring|)) (|has| |#3| (|LinearlyExplicitRingOver| (|Integer|))))) (|rightUnitary| |has| |#3| (|Ring|)) (|leftUnitary| |has| |#3| (|Ring|)) ((|commutative| "*") |has| |#3| (|CommutativeRing|)) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#3| (QUOTE (|Field|))) (|HasCategory| |#3| (QUOTE (|Ring|))) (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#3| (QUOTE (|OrderedRing|))) (OR (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#3| (QUOTE (|OrderedRing|)))) (|HasCategory| |#3| (QUOTE (|Monoid|))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|Field|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (OR (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|Field|)))) (OR (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (|HasCategory| |#3| (QUOTE (|Finite|))) (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|))) (OR (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (|HasCategory| |#3| (QUOTE (|SetCategory|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (QUOTE (|DifferentialRing|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (OR (AND (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (QUOTE (|DifferentialRing|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (|HasCategory| |#3| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Field|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Finite|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|SetCategory|))))) (OR (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|Field|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|Finite|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#3| (QUOTE (|SetCategory|))))) (OR (|HasAttribute| |#3| (QUOTE |unitsKnown|)) (AND (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (QUOTE (|DifferentialRing|))) (|HasCategory| |#3| (QUOTE (|Ring|))))) (|HasCategory| |#3| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#3| (QUOTE (|AbelianSemiGroup|))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|Field|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|Finite|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|Ring|)))) (AND (|HasCategory| |#3| (LIST (QUOTE |Evalable|) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (|SetCategory|)))))) │ │ │ +(|MultiDictionary| S) │ │ │ +((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary, its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d.}")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d.}"))) │ │ │ +((|shallowlyMutable| . T) (|nil| . T)) │ │ │ NIL │ │ │ +(|InnerPAdicInteger| |p| |unBalanced?|) │ │ │ +((|constructor| (NIL "This domain implements \\spad{Zp,} the p-adic completion of the integers. This is an internal domain."))) │ │ │ +((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|IntegralDomain&| S) │ │ │ -((|constructor| (NIL "The category of commutative integral domains, commutative rings with no zero divisors. \\blankline Conditional attributes\\br canonicalUnitNormal\\tab{5}the canonical field is the same for all associates\\br canonicalsClosed\\tab{5}the product of two canonicals is itself canonical")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit, is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates, differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x.} The attribute canonicalUnitNormal, if asserted, means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = \\spad{x},} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) │ │ │ +(|FreeAbelianMonoidCategory| S E) │ │ │ +((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the si's are in \\spad{S,} and the ni's are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 \\spad{a1} + \\spad{...} + en an, \\spad{f1} \\spad{b1} + \\spad{...} + \\spad{fm} bm)} returns \\spad{reduce(+,[max(ei, fi) ci])} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, \\spad{e1} \\spad{a1} +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, \\spad{e1} \\spad{a1} +...+ en an)} returns \\spad{f(e1) \\spad{a1} +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, \\spad{e1} \\spad{a1} + \\spad{...} + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s,} or 0 if \\spad{s} is not one of the ai's.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, \\spad{n)}} returns the factor of the n^th term of \\spad{x.}")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, \\spad{n)}} returns the coefficient of the n^th term of \\spad{x.}")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 \\spad{a1} + \\spad{...} + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x.} \\indented{1}{mapGen(f, \\spad{a1\\^e1} \\spad{...} an\\^en) returns} \\spad{f(a1)\\^e1 \\spad{...} f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * \\spad{s}} returns \\spad{e} times \\spad{s.}")) (+ (($ |#1| $) "\\spad{s + \\spad{x}} returns the sum of \\spad{s} and \\spad{x.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|FiniteFieldCategory|) │ │ │ -((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation, one of: \\spad{prime}, \\spad{polynomial}, \\spad{normal}, or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field, is a primitive element. Implementation Note that see ch.IX.1.3, \\spad{th.2} in \\spad{D.} Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call, the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which, called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of \\spad{size()-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)}, given a matrix representing a homogeneous system of equations, returns a vector whose characteristic'th powers is a non-trivial solution, or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of a. Note that such a root is alway defined in finite fields."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|Asp24| |name|) │ │ │ +((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine e04jaf), for example: \\blankline \\tab{5}SUBROUTINE FUNCT1(N,XC,FC)\\br \\tab{5}DOUBLE PRECISION FC,XC(N)\\br \\tab{5}INTEGER N\\br \\tab{5}FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5\\br \\tab{4}&.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X\\br \\tab{4}&C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+\\br \\tab{4}&(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC(\\br \\tab{4}&2)+10.0D0*XC(1)**4+XC(1)**2\\br \\tab{5}RETURN\\br \\tab{5}END\\br")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) │ │ │ NIL │ │ │ -(|ExpressionSpace|) │ │ │ -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? \\spad{x}} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? \\spad{x}} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, \\spad{s,} \\spad{f)}} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, \\spad{s,} \\spad{f)}} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},...,\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},...,\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, \\spad{s,} \\spad{f)}} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, \\spad{s,} \\spad{f)}} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},...,\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},...,\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, \\spad{s)}} tests if \\spad{x} does not contain any operator whose name is \\spad{s.}") (((|Boolean|) $ $) "\\spad{freeOf?(x, \\spad{y)}} tests if \\spad{x} does not contain any occurrence of \\spad{y,} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, \\spad{k)}} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, \\spad{x)}} constructs op(x) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, \\spad{s)}} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s.}") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{%.}")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f,} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f,} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f,} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level, or if \\spad{f} has no kernels (that is, \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f.} Constants have height 0. Symbols have height 1. For any operator op and expressions f1,...,fn, \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, \\spad{g)}} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them, and makes them applicable to a unary operator. For example, \\spad{atan(paren \\spad{[x,} 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (f). This prevents \\spad{f} from being evaluated when operators are applied to it. For example, \\spad{log(1)} returns 0, but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them, and makes them applicable to a unary operator. For example, \\spad{atan(box \\spad{[x,} 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example, \\spad{log(1)} returns 0, but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels k1,...,kn by g1,...,gn formally in \\spad{f.}") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, \\spad{[k1} = g1,...,kn = gn])} replaces the kernels k1,...,kn by g1,...,gn formally in \\spad{f.}") (($ $ (|Equation| $)) "\\spad{subst(f, \\spad{k} = \\spad{g)}} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f.}")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or op([x1,...,xn]) applies the n-ary operator \\spad{op} to x1,...,xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or op(x, \\spad{y,} \\spad{z,} \\spad{t)} applies the 4-ary operator \\spad{op} to \\spad{x,} \\spad{y,} \\spad{z} and \\spad{t.}") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or op(x, \\spad{y,} \\spad{z)} applies the ternary operator \\spad{op} to \\spad{x,} \\spad{y} and \\spad{z.}") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or op(x, \\spad{y)} applies the binary operator \\spad{op} to \\spad{x} and \\spad{y.}") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or op(x) applies the unary operator \\spad{op} to \\spad{x.}"))) │ │ │ NIL │ │ │ +(|PrintPackage|) │ │ │ +((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) │ │ │ NIL │ │ │ -(|Integer|) │ │ │ -((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) │ │ │ -((|infinite| . T) (|noetherian| . T) (|canonicalsClosed| . T) (|canonical| . T) (|canonicalUnitNormal| . T) (|multiplicativeValuation| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|IntegralDomain|) │ │ │ -((|constructor| (NIL "The category of commutative integral domains, commutative rings with no zero divisors. \\blankline Conditional attributes\\br canonicalUnitNormal\\tab{5}the canonical field is the same for all associates\\br canonicalsClosed\\tab{5}the product of two canonicals is itself canonical")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit, is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates, differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x.} The attribute canonicalUnitNormal, if asserted, means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = \\spad{x},} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) │ │ │ -((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|DirectProduct| |dim| R) │ │ │ +((|constructor| (NIL "This type represents the finite direct or cartesian product of an underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) │ │ │ +((|rightUnitary| |has| |#2| (|Ring|)) (|leftUnitary| |has| |#2| (|Ring|)) (|unitsKnown| |has| |#2| (ATTRIBUTE |unitsKnown|)) ((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|finiteAggregate| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|))) (OR (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (|HasCategory| |#2| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|)))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasAttribute| |#2| (QUOTE |unitsKnown|)) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Finite|))) (|HasCategory| |#2| (QUOTE (|Monoid|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|))) (|HasCategory| |#2| (QUOTE (|Ring|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|))))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|AbelianSemiGroup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|CancellationAbelianMonoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Field|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Finite|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Monoid|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|OrderedAbelianMonoidSup|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|OrderedRing|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|Ring|)))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))))) │ │ │ +(|SpecialFunctionCategory|) │ │ │ +((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)}, (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x.}"))) │ │ │ NIL │ │ │ -(|LinearAggregate&| A S) │ │ │ -((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings, lists, and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example, \\spadfun{concat} of two lists needs only to copy its first argument, whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (for example, streams) as well to finite ones. For finite linear aggregates, see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{u(i..j) \\spad{:=} \\spad{x})} destructively replaces each element in the segment \\axiom{u(i..j)} by \\spad{x.} The value \\spad{x} is returned. Note that \\spad{u} is destructively change so that \\axiom{u.k \\spad{:=} \\spad{x} for \\spad{k} in i..j}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{i}th element. Note that \\axiom{insert(v,u,k) = concat( u(0..k-1), \\spad{v,} u(k..) \\spad{)}.}") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{i}th element. Note that \\axiom{insert(x,a,k) = concat(concat(a(0..k-1),x),a(k..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{i}th through \\axiom{j}th element deleted. Note that \\axiom{delete(a,i..j) = concat(a(0..i-1),a(j+1..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{i}th element deleted. Note that for lists, \\axiom{delete(a,i) \\spad{==} concat(a(0..i - 1),a(i + 1,..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(i..j)}) returns the aggregate of elements \\axiom{u} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note that in general, \\axiom{a.s = [a.k for \\spad{i} in s]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{z = f(x,y)} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v.} Note that for linear aggregates, \\axiom{w.i = f(u.i,v.i)}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)}, where \\spad{u} is a lists of aggregates \\axiom{[a,b,...,c]}, returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed \\spad{...} by the elements of \\spad{c.} Note that \\axiom{concat(a,b,...,c) = concat(a,concat(b,...,c))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v.} Note that if \\axiom{w = concat(u,v)} then \\axiom{w.i = u.i for \\spad{i} in indices u} and \\axiom{w.(j + maxIndex u) = \\spad{v.j} for \\spad{j} in indices \\spad{v}.}") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note that for lists: \\axiom{concat(x,u) \\spad{==} concat([x],u)}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note that for lists, \\axiom{concat(u,x) \\spad{==} concat(u,[x])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new n,x)}."))) │ │ │ NIL │ │ │ -((|HasAttribute| |#1| (QUOTE |shallowlyMutable|))) │ │ │ -(|IndexedString| |mn|) │ │ │ -((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| (|Character|) (QUOTE (|SetCategory|))) (|HasCategory| (|Character|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| (|Character|) (QUOTE (|OrderedSet|))) (OR (|HasCategory| (|Character|) (QUOTE (|OrderedSet|))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|OrderedSet|)))) (AND (|HasCategory| (|Character|) (LIST (QUOTE |Evalable|) (QUOTE (|Character|)))) (|HasCategory| (|Character|) (QUOTE (|SetCategory|)))))) │ │ │ -(|List| S) │ │ │ -((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList}, this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and u2, then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|OpenMath|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ -(|ListAggregate&| A S) │ │ │ -((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x.}"))) │ │ │ +(|RegularTriangularSetCategory| R E V P) │ │ │ +((|constructor| (NIL "The category of regular triangular sets, introduced under the name regular chains in \\spad{[1]} (and other papers). In \\spad{[3]} it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions, all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (w.r.t. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is false. This category provides operations related to both kinds of splits, the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the RegularTriangularSet constructor for more explanations about decompositions by means of regular triangular sets.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is false, it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or, in other words, a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for \\spad{ts} in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? \\spad{lp}} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first \\spad{lp,} extend(rest \\spad{lp,} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for \\spad{ts} in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself, if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest \\spad{lp,} internalAugment(first \\spad{lp,} ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for \\spad{ts} in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp}, \\spad{augment(p,ts)} if \\spad{lp = [p]}, otherwise \\spad{augment(first \\spad{lp,} augment(rest \\spad{lp,} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for \\spad{ts} in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set, say \\spad{ts+p}, is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself, if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for \\spad{ts} in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial w.r.t. \\spad{lpwt.i.tower}, this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower}, for every \\spad{i}. Moreover, the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts}, then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} w.r.t. \\spad{lpwt.i.tower}, for every \\spad{i}, and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover, if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} w.r.t. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials w.r.t. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same main variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} w.r.t. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{I} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic w.r.t. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic w.r.t. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic w.r.t. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is select from TriangularSetCategory(ts,v) and \\spad{ts_v_-} is collectUnder from TriangularSetCategory(ts,v).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic w.r.t. \\spad{ts}."))) │ │ │ +((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ NIL │ │ │ +(|GaussianFactorizationPackage|) │ │ │ +((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p,} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer zi."))) │ │ │ NIL │ │ │ -(|LinearAggregate| S) │ │ │ -((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings, lists, and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example, \\spadfun{concat} of two lists needs only to copy its first argument, whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (for example, streams) as well to finite ones. For finite linear aggregates, see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{u(i..j) \\spad{:=} \\spad{x})} destructively replaces each element in the segment \\axiom{u(i..j)} by \\spad{x.} The value \\spad{x} is returned. Note that \\spad{u} is destructively change so that \\axiom{u.k \\spad{:=} \\spad{x} for \\spad{k} in i..j}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{i}th element. Note that \\axiom{insert(v,u,k) = concat( u(0..k-1), \\spad{v,} u(k..) \\spad{)}.}") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{i}th element. Note that \\axiom{insert(x,a,k) = concat(concat(a(0..k-1),x),a(k..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{i}th through \\axiom{j}th element deleted. Note that \\axiom{delete(a,i..j) = concat(a(0..i-1),a(j+1..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{i}th element deleted. Note that for lists, \\axiom{delete(a,i) \\spad{==} concat(a(0..i - 1),a(i + 1,..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(i..j)}) returns the aggregate of elements \\axiom{u} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note that in general, \\axiom{a.s = [a.k for \\spad{i} in s]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{z = f(x,y)} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v.} Note that for linear aggregates, \\axiom{w.i = f(u.i,v.i)}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)}, where \\spad{u} is a lists of aggregates \\axiom{[a,b,...,c]}, returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed \\spad{...} by the elements of \\spad{c.} Note that \\axiom{concat(a,b,...,c) = concat(a,concat(b,...,c))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v.} Note that if \\axiom{w = concat(u,v)} then \\axiom{w.i = u.i for \\spad{i} in indices u} and \\axiom{w.(j + maxIndex u) = \\spad{v.j} for \\spad{j} in indices \\spad{v}.}") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note that for lists: \\axiom{concat(x,u) \\spad{==} concat([x],u)}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note that for lists, \\axiom{concat(u,x) \\spad{==} concat(u,[x])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new n,x)}."))) │ │ │ -((|nil| . T)) │ │ │ NIL │ │ │ -(|IntegerNumberSystem|) │ │ │ -((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)}, \\spad{0<=a1}, \\spad{(a,b)=1} means \\spad{1/a mod \\spad{b}.}")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)}, \\spad{0<=a,b

1}, means \\spad{a**b mod \\spad{p}.}")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)}, \\spad{0<=a,b

1}, means \\spad{a*b mod \\spad{p}.}")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)}, \\spad{0<=a,b

1}, means \\spad{a-b mod \\spad{p}.}")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)}, \\spad{0<=a,b

1}, means \\spad{a+b mod \\spad{p}.}")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n.}")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n.}")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number, or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ \\spad{-b/2} \\spad{<=} \\spad{r} < \\spad{b/2} \\spad{}.}")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 \\spad{<=} \\spad{r} < \\spad{b}} and \\spad{r \\spad{==} a rem \\spad{b}.}")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) │ │ │ -((|canonicalUnitNormal| . T) (|multiplicativeValuation| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|AnnaNumericalIntegrationPackage|) │ │ │ +((|constructor| (NIL "\\axiomType{AnnaNumericalIntegrationPackage} is a \\axiom{package} of functions for the \\axiom{category} \\axiomType{NumericalIntegrationCategory} with \\axiom{measure}, and \\axiom{integrate}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{prob}. \\blankline It calls each \\axiom{domain} listed in \\axiom{R} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{prob}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, \\spad{x} = a..b, numerical)} is a top level ANNA function to integrate an expression, {\\tt exp}, over a given range, {\\tt a} to {\\tt \\spad{b}.} \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\tt numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, \\spad{x} = a..b, \"numerical\")} is a top level ANNA function to integrate an expression, {\\tt exp}, over a given range, {\\tt a} to {\\tt \\spad{b}.} \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\tt \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression, {\\tt exp}, over a given set of ranges to the required absolute and relative accuracy, using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression, {\\tt exp}, over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression, {\\tt exp}, over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0, a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression, {\\tt exp}, over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression, {\\tt exp}, over a given range {\\tt a} to {\\tt \\spad{b}.} \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression, {\\tt exp}, over a given range {\\tt a} to {\\tt \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0, a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression, {\\tt exp}, over a given range {\\tt a} to {\\tt \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression, {\\tt exp}, over a given range {\\tt a} to {\\tt \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate, have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) │ │ │ NIL │ │ │ -(|Monoid&| S) │ │ │ -((|constructor| (NIL "The class of multiplicative monoids, that is, semigroups with a multiplicative identity element. \\blankline Axioms\\br \\tab{5}\\spad{leftIdentity(\"*\":(\\%,\\%)->\\%,1)}\\tab{5}\\spad{1*x=x}\\br \\tab{5}\\spad{rightIdentity(\"*\":(\\%,\\%)->\\%,1)}\\tab{4}\\spad{x*1=x} \\blankline Conditional attributes\\br \\tab{5}unitsKnown - \\spadfun{recip} only returns \"failed\" on non-units")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times, that is, exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times, that is, exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "\\axiom{1} is the multiplicative identity."))) │ │ │ NIL │ │ │ +(|d01gbfAnnaType|) │ │ │ +((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF, a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) │ │ │ NIL │ │ │ -(|MultivariateTaylorSeriesCategory| |Coef| |Var|) │ │ │ -((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 \\spad{<=} \\spad{d} \\spad{<=} k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= \\spad{k}.}")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * \\spad{x1^n1} * \\spad{...} * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= \\spad{n}} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * \\spad{...} * xk^nk} in \\spad{f.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f.}"))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|Monoid|) │ │ │ -((|constructor| (NIL "The class of multiplicative monoids, that is, semigroups with a multiplicative identity element. \\blankline Axioms\\br \\tab{5}\\spad{leftIdentity(\"*\":(\\%,\\%)->\\%,1)}\\tab{5}\\spad{1*x=x}\\br \\tab{5}\\spad{rightIdentity(\"*\":(\\%,\\%)->\\%,1)}\\tab{4}\\spad{x*1=x} \\blankline Conditional attributes\\br \\tab{5}unitsKnown - \\spadfun{recip} only returns \"failed\" on non-units")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times, that is, exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times, that is, exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "\\axiom{1} is the multiplicative identity."))) │ │ │ +(|TranscendentalFunctionCategory|) │ │ │ +((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant pi."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|NonNegativeInteger|) │ │ │ -((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non negative integers.")) (|qcoerce| (($ (|Integer|)) "\\spad{qcoerce(n)} coerces \\spad{n} to \\spad{\\%} trusting that \\spad{n} is nonnegative")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a, i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b,} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a, \\spad{b)}} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a, \\spad{b)}} computes the greatest common divisor of two \\indented{1}{non negative integers \\spad{a} and \\spad{b.}} \\blankline \\spad{X} gcd(2415,945) \\spad{X} gcd(945,2415) \\spad{X} gcd(2415,0) \\spad{X} gcd(0,945) \\spad{X} gcd(15,15) \\spad{X} gcd(0,0)")) (|rem| (($ $ $) "\\spad{a rem \\spad{b}} returns the remainder of \\spad{a} and \\spad{b.}")) (|quo| (($ $ $) "\\spad{a quo \\spad{b}} returns the quotient of \\spad{a} and \\spad{b,} forgetting the remainder."))) │ │ │ +(|FiniteRankAlgebra&| S R UP) │ │ │ +((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free R-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the n-by-n matrix ( Tr(vi * \\spad{vj)} )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1+...+an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the vi's with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) │ │ │ NIL │ │ │ +((|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|Field|)))) │ │ │ +(|Collection&| A S) │ │ │ +((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named construct. However, each collection provides its own special function with the same name as the data type, except with an initial lower case letter, For example, list for List, flexibleArray for FlexibleArray, and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates \\indented{1}{removed.} \\blankline \\spad{X} removeDuplicates [1,4,2,-6,0,3,5,4,2,3]")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{p(x)} is true. Note that \\axiom{select(p,u) \\spad{==} \\spad{[x} for \\spad{x} in \\spad{u} | p(x)]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{y = \\spad{x}} removed. Note that \\axiom{remove(y,c) \\spad{==} \\spad{[x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} y]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{p(x)} is true. Note that \\axiom{remove(p,u) \\spad{==} \\spad{[x} for \\spad{x} in \\spad{u} | not p(x)]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across u, stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(f,u,x)}, \\spad{x} is the identity operation of \\spad{f.} Same as \\axiom{reduce(f,u,x)} when \\spad{u} contains no element \\spad{z.} Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across u, where \\spad{x} is the identity operation of \\spad{f.} Same as \\axiom{reduce(f,u)} if \\spad{u} has 2 or more elements. Returns \\axiom{f(x,y)} if \\spad{u} has one element \\spad{y,} \\spad{x} if \\spad{u} is empty. For example, \\axiom{reduce(+,u,0)} returns the sum of the elements of u.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across u. For example, if \\spad{u} is \\axiom{[x,y,...,z]} then \\axiom{reduce(f,u)} returns \\axiom{f(..f(f(x,y),...),z)}. Note that if \\spad{u} has one element \\spad{x,} \\axiom{reduce(f,u)} returns \\spad{x.} Error: if \\spad{u} is empty. \\blankline \\spad{X} )clear all \\spad{X} reduce(+,[C[i]*x**i for \\spad{i} in 1..5])")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\axiom{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{p(x)} is true, and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(x,y,...,z)} returns the collection of elements \\axiom{x,y,...,z} ordered as given. Equivalently written as \\axiom{[x,y,...,z]$D}, where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) │ │ │ NIL │ │ │ -(|OrderedIntegralDomain|) │ │ │ -((|constructor| (NIL "The category of ordered commutative integral domains, where ordering and the arithmetic operations are compatible"))) │ │ │ -((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (|HasAttribute| |#1| (QUOTE |finiteAggregate|))) │ │ │ +(|AlgebraicMultFact| OV E P) │ │ │ +((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list lan. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list lan."))) │ │ │ NIL │ │ │ -(|OrderedRing&| S) │ │ │ -((|constructor| (NIL "Ordered sets which are also rings, that is, domains where the ring operations are compatible with the ordering. \\blankline Axiom\\br \\tab{5}\\spad{0} ab< ac}")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x.}")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive, \\spad{-1} if \\spad{x} is negative, 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) │ │ │ NIL │ │ │ +(|ParadoxicalCombinatorsForStreams| A) │ │ │ +((|constructor| (NIL "Computation of fixed points of mappings on streams")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g,} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f.}"))) │ │ │ NIL │ │ │ -(|PositiveInteger|) │ │ │ -((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for positive integers.")) (|qcoerce| (($ (|Integer|)) "\\spad{qcoerce(n)} coerces \\spad{n} to \\spad{\\%} trusting that \\spad{n} is positive")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = yu*x")) (|gcd| (($ $ $) "\\spad{gcd(a, \\spad{b)}} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b.}"))) │ │ │ -(((|commutative| "*") . T)) │ │ │ NIL │ │ │ -(|OrderedRing|) │ │ │ -((|constructor| (NIL "Ordered sets which are also rings, that is, domains where the ring operations are compatible with the ordering. \\blankline Axiom\\br \\tab{5}\\spad{0} ab< ac}")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x.}")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive, \\spad{-1} if \\spad{x} is negative, 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) │ │ │ -((|unitsKnown| . T)) │ │ │ +(|IntegerPrimesPackage| I) │ │ │ +((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime}, \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a \\spad{<=} \\spad{p} \\spad{<=} \\spad{b}}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? \\spad{n}} returns false, \\spad{n} is proven composite. If \\spad{prime? \\spad{n}} returns true, prime? may be in error however, the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al), below 10**12 and 10**13 due to results of Pinch, and below 341550071728321 due to a result of Jaeschke. Specifically, this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n,} that is \\spad{O( (log \\spad{n)**3} \\spad{)},} for n<10**20. beyond that, the algorithm is quartic, \\spad{O( (log \\spad{n)**4} \\spad{)}.} Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes, such as [Jaeschke, 1991] 1377161253229053 * 413148375987157, which the original algorithm regards as prime"))) │ │ │ NIL │ │ │ -(|PrimitiveArray| S) │ │ │ -((|constructor| (NIL "This provides a fast array type with no bound checking on elt's. Minimum index is 0 in this type, cannot be changed"))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ -(|OutputForm|) │ │ │ -((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (for example, FORTRAN or TeX) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not \\spad{f}} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or \\spad{g}} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and \\spad{g}} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo \\spad{g}} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem \\spad{g}} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div \\spad{g}} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f \\spad{**} \\spad{g}} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / \\spad{g}} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * \\spad{g}} creates the equivalent infix form.")) (- (($ $) "\\spad{- \\spad{f}} creates the equivalent prefix form.") (($ $ $) "\\spad{f - \\spad{g}} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + \\spad{g}} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f \\spad{>=} \\spad{g}} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f \\spad{<=} \\spad{g}} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > \\spad{g}} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < \\spad{g}} creates the equivalent infix form.")) (^= (($ $ $) "\\spad{f \\spad{^=} \\spad{g}} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = \\spad{g}} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile, the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and upperlimit.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a lowerlimit.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and upperlimit.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a lowerlimit.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital pi.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and upperlimit.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a lowerlimit.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n.}")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n.}")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n.}")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n.}")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m.}")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f,} for example, \\spad{f'}, \\spad{f''}, \\spad{f'''}, \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f \\spad{->} \\spad{g}.}")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f \\spad{:=} \\spad{g}.}")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g.}")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g.}")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f.}") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f.}")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g.}")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n.}")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l.}")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator, and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a op.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, \\spad{b)}} creates a form which prints as: a \\spad{op} \\spad{b.}") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the n-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l.}")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the n-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l.}")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list u.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g.}")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list u.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g.}")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n.}")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n.}")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n.}")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space, \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n.}")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n.}")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf.}") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s.}") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s.}") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n.}")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s.}")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form u."))) │ │ │ NIL │ │ │ +(|FiniteFieldFactorization| K |PolK|) │ │ │ +((|constructor| (NIL "Part of the PAFF package"))) │ │ │ NIL │ │ │ -(|PolynomialSetCategory&| S R E |VarSet| P) │ │ │ -((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore, for \\spad{R} being an integral domain, a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) \\spad{P},} or the set of its zeros (described for instance by the radical of the previous ideal, or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set, that is, two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases w.r.t. \\axiom{cs} and \\axiom{(lp,cs)} and \\axiom{(lr,cs)} generate the same ideal in \\axiom{(R)^(-1) \\spad{P}.}")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases w.r.t. \\axiom{cs} and \\axiom{(lp,cs)} and \\axiom{(lr,cs)} generate the same ideal in \\axiom{(R)^(-1) \\spad{P}.}")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,ps)} returns \\axiom{[c,b,r]} such that \\axiom{b} is fully reduced in the sense of Groebner bases w.r.t. \\axiom{ps}, \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore, if \\axiom{R} is a gcd-domain, \\axiom{b} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,ps)} returns \\axiom{[b,r]} such that the leading monomial of \\axiom{b} is reduced in the sense of Groebner bases w.r.t. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains \\indented{1}{some non null element lying in the base ring \\axiom{R}.}")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(ps1,ps2)} returns \\spad{true} iff it can proved that \\axiom{ps1} and \\axiom{ps2} generate the same ideal in \\axiom{(R)^(-1) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(ps1,ps2)} returns \\spad{true} iff it can proved that all polynomials in \\axiom{ps1} lie in the ideal generated by \\axiom{ps2} in \\axiom{\\axiom{(R)^(-1) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{p,q}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(v,ps)} returns \\axiom{us,vs,ws} such that \\axiom{us} is \\axiom{collectUnder(ps,v)}, \\axiom{vs} is \\axiom{collect(ps,v)} and \\axiom{ws} is \\axiom{collectUpper(ps,v)}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,v)} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{v}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,v)} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{v} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,v)} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{v}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(v,ps)} returns \\spad{true} iff \\axiom{v} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable, if any, else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists, otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists, otherwise \\axiom{\"failed\"} is returned."))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) │ │ │ -(|QuotientFieldCategory&| A S) │ │ │ -((|constructor| (NIL "QuotientField(S) is the category of fractions of an Integral Domain \\spad{S.}")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x.}")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x.}")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x.} \\spad{x} = wholePart(x) + fractionPart(x)")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\spad{%.}")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\spad{%.}")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x.}")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x.}")) (/ (($ |#2| |#2|) "\\spad{d1 / \\spad{d2}} returns the fraction \\spad{d1} divided by \\spad{d2.}"))) │ │ │ +(|RandomDistributions| S) │ │ │ +((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegerNumberSystem|))) (|HasCategory| |#2| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Symbol|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|RealConstant|))) (|HasCategory| |#2| (QUOTE (|OrderedIntegralDomain|))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|StepThrough|)))) │ │ │ -(|PolynomialCategory&| S R E |VarSet|) │ │ │ -((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R,} in variables from VarSet, with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p.}")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v.} Thus, for polynomial 7*x**2*y + 14*x*y**2, the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v.}")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v.}")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note that \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p.}")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p)} of the variables in the list \\spad{lv.}") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, \\spad{n]}} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = \\spad{a1} \\spad{...} an} and \\spad{n \\spad{>=} 2}, and, for each i, \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e}, where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = \\spad{m1} + \\spad{...} + \\spad{mn}} and \\spad{n \\spad{>=} 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v.}") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v.}")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial, \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b,} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v.}")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v,} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p,} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p,} which should actually involve only one variable, into a univariate polynomial in that variable, whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v,} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p,} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, \\spad{lv,} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln}, \\spad{prod(lv_i \\spad{**} ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv.}") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v.}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#4| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#4| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#4| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#4| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#4| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (QUOTE (|OrderedSet|)))) │ │ │ -(|ListAggregate| S) │ │ │ -((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x.}"))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ +(|NumericalODEProblem|) │ │ │ +((|constructor| (NIL "\\axiomType{NumericalODEProblem} is a \\axiom{domain} for the representation of Numerical ODE problems for use by ANNA. \\blankline The representation is of type: \\blankline \\axiomType{Record}(xinit:\\axiomType{DoubleFloat},\\br xend:\\axiomType{DoubleFloat},\\br fn:\\axiomType{Vector Expression DoubleFloat},\\br yinit:\\axiomType{List DoubleFloat},intvals:\\axiomType{List DoubleFloat},\\br g:\\axiomType{Expression DoubleFloat},abserr:\\axiomType{DoubleFloat},\\br relerr:\\axiomType{DoubleFloat}) \\blankline")) (|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} is not documented")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} is not documented"))) │ │ │ NIL │ │ │ -(|RecursiveAggregate&| A S) │ │ │ -((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S.} Recursively, a recursive aggregate is a node consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x.}")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x})} is equivalent to \\axiom{setvalue!(a,x)}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child, a child of a child, etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v.}")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v.}")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{t} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node u.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate u.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate u."))) │ │ │ NIL │ │ │ -((|HasAttribute| |#1| (QUOTE |shallowlyMutable|)) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) │ │ │ -(|RecursiveAggregate| S) │ │ │ -((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S.} Recursively, a recursive aggregate is a node consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x.}")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x})} is equivalent to \\axiom{setvalue!(a,x)}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child, a child of a child, etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v.}")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v.}")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{t} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node u.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate u.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate u."))) │ │ │ -((|nil| . T)) │ │ │ +(|StepThrough|) │ │ │ +((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains, repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes\\br \\tab{5}infinite\\tab{5}repeated nextItem's are never \"failed\".")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item, or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) │ │ │ NIL │ │ │ -(|Reference| S) │ │ │ -((|constructor| (NIL "\\spadtype{Reference} is for making a changeable instance of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m.}")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n.}")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n.}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|)))) │ │ │ -(|Rng|) │ │ │ -((|constructor| (NIL "The category of associative rings, not necessarily commutative, and not necessarily with a 1. This is a combination of an abelian group and a semigroup, with multiplication distributing over addition. \\blankline Axioms\\br \\tab{5}\\spad{x*(y+z) = x*y + x*z}\\br \\tab{5}\\spad{(x+y)*z = \\spad{x*z} + y*z} \\blankline Conditional attributes\\br \\tab{5}noZeroDivisors\\tab{5}\\spad{ab = 0 \\spad{=>} \\spad{a=0} or b=0}"))) │ │ │ +(|PartialTranscendentalFunctions| K) │ │ │ +((|constructor| (NIL "A package which provides partial transcendental functions, for example, functions which return an answer or \"failed\" This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(z) if possible, and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(z) if possible, and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(z) if possible, and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(z) if possible, and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(z) if possible, and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(z) if possible, and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(z) if possible, and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(z) if possible, and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(z) if possible, and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(z) if possible, and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(z) if possible, and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(z) if possible, and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(z) if possible, and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(z) if possible, and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(z) if possible, and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(z) if possible, and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(z) if possible, and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(z) if possible, and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(z) if possible, and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(z) if possible, and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(z) if possible, and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(z) if possible, and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(z) if possible, and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(z) if possible, and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(z) if possible, and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(z) if possible, and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible, and \"failed\" otherwise."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Ring&| S) │ │ │ -((|constructor| (NIL "The category of rings with unity, always associative, but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note that \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring, or zero if no such \\spad{n} exists."))) │ │ │ +(|OrderedSet&| S) │ │ │ +((|constructor| (NIL "The class of totally ordered sets, that is, sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a} a= (((|Boolean|) $ $) "\\spad{x \\spad{>=} \\spad{y}} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > \\spad{y}} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < \\spad{y}} is a strict total ordering on the elements of the set."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|Ring|) │ │ │ -((|constructor| (NIL "The category of rings with unity, always associative, but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note that \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring, or zero if no such \\spad{n} exists."))) │ │ │ -((|unitsKnown| . T)) │ │ │ +(|MyUnivariatePolynomial| |x| R) │ │ │ +((|constructor| (NIL "This domain has no description")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{x} : \\spad{p1} - \\spad{r} * x**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) │ │ │ +(((|commutative| "*") |has| |#2| (|CommutativeRing|)) (|noZeroDivisors| |has| |#2| (|IntegralDomain|)) (|additiveValuation| |has| |#2| (|Field|)) (|canonicalUnitNormal| |has| |#2| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +((|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Float|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |PatternMatchable|) (QUOTE (|Integer|))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Float|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (LIST (QUOTE |Pattern|) (QUOTE (|Integer|)))))) (AND (|HasCategory| (|SingletonAsOrderedSet|) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#2| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|))))) (|HasCategory| |#2| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (LIST (QUOTE |LinearlyExplicitRingOver|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicZero|))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))) (OR (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|)))) (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (QUOTE (|Integer|)))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|))) (OR (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|StepThrough|))) (|HasCategory| |#2| (LIST (QUOTE |PartialDifferentialRing|) (QUOTE (|Symbol|)))) (OR (|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (LIST (QUOTE |RetractableTo|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|)))))) (|HasCategory| |#2| (QUOTE (|DifferentialRing|))) (|HasAttribute| |#2| (QUOTE |canonicalUnitNormal|)) (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (OR (AND (|HasCategory| $ (QUOTE (|CharacteristicNonZero|))) (|HasCategory| |#2| (QUOTE (|PolynomialFactorizationExplicit|)))) (|HasCategory| |#2| (QUOTE (|CharacteristicNonZero|))))) │ │ │ +(|ComplexCategory| R) │ │ │ +((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1.}")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number, or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns \\spad{(r,} phi) such that \\spad{x} = \\spad{r} * exp(\\%i * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,1) and (0,x).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(x)).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, \\spad{r)}} returns the exact quotient of \\spad{x} by \\spad{r,} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(x)")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x.}")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x.}")) (|conjugate| (($ $) "\\spad{conjugate(x + \\spad{%i} \\spad{y)}} returns \\spad{x} - \\spad{%i} \\spad{y.}")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(-1) = \\%i.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(-1)"))) │ │ │ +((|noZeroDivisors| OR (|has| |#1| (|IntegralDomain|)) (AND (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|additiveValuation| |has| |#1| (ATTRIBUTE |additiveValuation|)) (|multiplicativeValuation| |has| |#1| (ATTRIBUTE |multiplicativeValuation|)) (|complex| . T) (|nil| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|QuotientFieldCategory| S) │ │ │ -((|constructor| (NIL "QuotientField(S) is the category of fractions of an Integral Domain \\spad{S.}")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x.}")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x.}")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x.} \\spad{x} = wholePart(x) + fractionPart(x)")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\spad{%.}")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\spad{%.}")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x.}")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x.}")) (/ (($ |#1| |#1|) "\\spad{d1 / \\spad{d2}} returns the fraction \\spad{d1} divided by \\spad{d2.}"))) │ │ │ -((|nil| . T) (|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|PolynomialFunctions2| R S) │ │ │ +((|constructor| (NIL "This package takes a mapping between coefficient rings, and lifts it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, \\spad{p)}} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p.}"))) │ │ │ NIL │ │ │ -(|RealNumberSystem&| S) │ │ │ -((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs \\spad{x}} returns the absolute value of \\spad{x.}")) (|round| (($ $) "\\spad{round \\spad{x}} computes the integer closest to \\spad{x.}")) (|truncate| (($ $) "\\spad{truncate \\spad{x}} returns the integer between \\spad{x} and 0 closest to \\spad{x.}")) (|fractionPart| (($ $) "\\spad{fractionPart \\spad{x}} returns the fractional part of \\spad{x.}")) (|wholePart| (((|Integer|) $) "\\spad{wholePart \\spad{x}} returns the integer part of \\spad{x.}")) (|floor| (($ $) "\\spad{floor \\spad{x}} returns the largest integer \\spad{<= \\spad{x}.}")) (|ceiling| (($ $) "\\spad{ceiling \\spad{x}} returns the small integer \\spad{>= \\spad{x}.}")) (|norm| (($ $) "\\spad{norm \\spad{x}} returns the same as absolute value."))) │ │ │ NIL │ │ │ +(|XPolynomialRing| R E) │ │ │ +((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring), and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used, for instance, by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\indented{1}{\\spad{Sum(r_i w_i)}.}")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{# \\spad{p}} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) │ │ │ +((|unitsKnown| . T) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|noZeroDivisors| |has| |#1| (ATTRIBUTE |noZeroDivisors|)) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (|HasAttribute| |#1| (QUOTE |unitsKnown|)) (|HasAttribute| |#1| (QUOTE |canonicalUnitNormal|)) (|HasAttribute| |#1| (QUOTE |noZeroDivisors|))) │ │ │ +(|Matrix| R) │ │ │ +((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m.} If the matrix is not invertible, \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) │ │ │ +((|finiteAggregate| . T) (|shallowlyMutable| . T)) │ │ │ +((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|EuclideanDomain|))) (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasAttribute| |#1| (QUOTE (|commutative| "*"))) (|HasCategory| |#1| (QUOTE (|CommutativeRing|))) (|HasCategory| |#1| (QUOTE (|Field|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|Field|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ +(|UnivariateTaylorSeriesFunctions2| |Coef1| |Coef2| UTS1 UTS2) │ │ │ +((|constructor| (NIL "Mapping package for univariate Taylor series. This package allows one to apply a function to the coefficients of a univariate Taylor series.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) │ │ │ NIL │ │ │ -(|SetAggregate&| A S) │ │ │ -((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both, the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x,} \\axiom{union(x,u)} returns a copy of u.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x,} \\axiom{union(u,x)} returns a copy of u.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v.}")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v.} Note that equivalent to \\axiom{reduce(and,{member?(x,v) for \\spad{x} in u},true,false)}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common, \\axiom{symmetricDifference(u,v)} returns a copy of u. Note that \\axiom{symmetricDifference(u,v) = \\indented{1}{union(difference(u,v),difference(v,u))}}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x,} a copy of \\spad{u} is returned. Note that \\axiom{difference(s, \\spad{x)} = difference(s, {x})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v.} If \\spad{u} and \\spad{v} have no elements in common, \\axiom{difference(u,v)} returns a copy of u. Note that equivalent to the notation (not currently supported) \\axiom{{x for \\spad{x} in \\spad{u} | not member?(x,v)}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v.} Note that equivalent to the notation (not currently supported) \\spad{{x} for \\spad{x} in \\spad{u} | member?(x,v)}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items x,y,...,z.") (($) "\\spad{set()}$D creates an empty set aggregate of type \\spad{D.}")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items x,y,...,z. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}$D (otherwise written {}$D) creates an empty set aggregate of type \\spad{D.} This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < \\spad{t}} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t.}"))) │ │ │ NIL │ │ │ +(|PlotFunctions1| S) │ │ │ +((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)}, \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) │ │ │ NIL │ │ │ -(|SetCategory&| S) │ │ │ -((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes\\br \\tab{5}canonical\\tab{5}data structure equality is the same as \\spadop{=}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s.}")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s.}"))) │ │ │ NIL │ │ │ +(|AlgebraicIntegration| R F) │ │ │ +((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, \\spad{x,} \\spad{y,} \\spad{d)}} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x;} \\spad{d} is the derivation to use on \\spad{k[x]}."))) │ │ │ NIL │ │ │ -(|SetCategory|) │ │ │ -((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes\\br \\tab{5}canonical\\tab{5}data structure equality is the same as \\spadop{=}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s.}")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s.}"))) │ │ │ NIL │ │ │ +(|RecursiveAggregate&| A S) │ │ │ +((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S.} Recursively, a recursive aggregate is a node consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x.}")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x})} is equivalent to \\axiom{setvalue!(a,x)}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child, a child of a child, etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v.}")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v.}")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{t} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node u.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate u.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate u."))) │ │ │ NIL │ │ │ -(|SetAggregate| S) │ │ │ -((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both, the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x,} \\axiom{union(x,u)} returns a copy of u.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x,} \\axiom{union(u,x)} returns a copy of u.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v.}")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v.} Note that equivalent to \\axiom{reduce(and,{member?(x,v) for \\spad{x} in u},true,false)}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common, \\axiom{symmetricDifference(u,v)} returns a copy of u. Note that \\axiom{symmetricDifference(u,v) = \\indented{1}{union(difference(u,v),difference(v,u))}}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x,} a copy of \\spad{u} is returned. Note that \\axiom{difference(s, \\spad{x)} = difference(s, {x})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v.} If \\spad{u} and \\spad{v} have no elements in common, \\axiom{difference(u,v)} returns a copy of u. Note that equivalent to the notation (not currently supported) \\axiom{{x for \\spad{x} in \\spad{u} | not member?(x,v)}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v.} Note that equivalent to the notation (not currently supported) \\spad{{x} for \\spad{x} in \\spad{u} | member?(x,v)}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items x,y,...,z.") (($) "\\spad{set()}$D creates an empty set aggregate of type \\spad{D.}")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items x,y,...,z. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}$D (otherwise written {}$D) creates an empty set aggregate of type \\spad{D.} This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < \\spad{t}} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t.}"))) │ │ │ -((|partiallyOrderedSet| . T) (|nil| . T)) │ │ │ +((|HasAttribute| |#1| (QUOTE |shallowlyMutable|)) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) │ │ │ +(|ErrorFunctions|) │ │ │ +((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically, these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings, as above. When you use the one argument version in an interpreter function, the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function\\br \\tab{5}\\spad{f \\spad{x} \\spad{==} if \\spad{x} < 0 then error \"negative argument\" else x}\\br the call to error will actually be of the form\\br \\tab{5}\\spad{error(\"f\",\"negative argument\")}\\br because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them):\\br \\spad{\\%l}\\tab{6}start a new line\\br \\spad{\\%ceon}\\tab{3}start centering message lines\\br \\spad{\\%ceoff}\\tab{2}stop centering message lines\\br \\spad{\\%rjon}\\tab{3}start displaying lines \"ragged left\"\\br \\spad{\\%rjoff}\\tab{2}stop displaying lines \"ragged left\"\\br \\spad{\\%i}\\tab{6}indent following lines 3 additional spaces\\br \\spad{\\%u}\\tab{6}unindent following lines 3 additional spaces\\br \\spad{\\%xN}\\tab{5}insert \\spad{N} blanks (eg, \\spad{\\%x10} inserts 10 blanks) \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) │ │ │ NIL │ │ │ -(|SingleInteger|) │ │ │ -((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical or of the single integers \\spad{n} and \\spad{m.}")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical and of the single integers \\spad{n} and \\spad{m.}")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical not of the single integer \\spad{n.}")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical xor of the single integers \\spad{n} and \\spad{m.}")) (|\\/| (($ $ $) "\\axiom{n \\spad{\\/} \\spad{m}} returns the bit-by-bit logical or of the single integers \\spad{n} and \\spad{m.}")) (|/\\| (($ $ $) "\\axiom{n \\spad{/\\} \\spad{m}} returns the bit-by-bit logical and of the single integers \\spad{n} and \\spad{m.}")) (~ (($ $) "\\spad{~ \\spad{n}} returns the bit-by-bit logical not of the single integer \\spad{n.}")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical not of the single integer \\spad{n.}")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) │ │ │ -((|noetherian| . T) (|canonicalsClosed| . T) (|canonical| . T) (|canonicalUnitNormal| . T) (|multiplicativeValuation| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|PolynomialSetCategory| R E |VarSet| P) │ │ │ -((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore, for \\spad{R} being an integral domain, a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) \\spad{P},} or the set of its zeros (described for instance by the radical of the previous ideal, or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set, that is, two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases w.r.t. \\axiom{cs} and \\axiom{(lp,cs)} and \\axiom{(lr,cs)} generate the same ideal in \\axiom{(R)^(-1) \\spad{P}.}")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases w.r.t. \\axiom{cs} and \\axiom{(lp,cs)} and \\axiom{(lr,cs)} generate the same ideal in \\axiom{(R)^(-1) \\spad{P}.}")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,ps)} returns \\axiom{[c,b,r]} such that \\axiom{b} is fully reduced in the sense of Groebner bases w.r.t. \\axiom{ps}, \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore, if \\axiom{R} is a gcd-domain, \\axiom{b} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,ps)} returns \\axiom{[b,r]} such that the leading monomial of \\axiom{b} is reduced in the sense of Groebner bases w.r.t. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains \\indented{1}{some non null element lying in the base ring \\axiom{R}.}")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(ps1,ps2)} returns \\spad{true} iff it can proved that \\axiom{ps1} and \\axiom{ps2} generate the same ideal in \\axiom{(R)^(-1) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(ps1,ps2)} returns \\spad{true} iff it can proved that all polynomials in \\axiom{ps1} lie in the ideal generated by \\axiom{ps2} in \\axiom{\\axiom{(R)^(-1) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{p,q}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(v,ps)} returns \\axiom{us,vs,ws} such that \\axiom{us} is \\axiom{collectUnder(ps,v)}, \\axiom{vs} is \\axiom{collect(ps,v)} and \\axiom{ws} is \\axiom{collectUpper(ps,v)}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,v)} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{v}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,v)} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{v} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,v)} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{v}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(v,ps)} returns \\spad{true} iff \\axiom{v} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable, if any, else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists, otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists, otherwise \\axiom{\"failed\"} is returned."))) │ │ │ -((|finiteAggregate| . T) (|nil| . T)) │ │ │ +(|UnivariatePolynomialSquareFree| RC P) │ │ │ +((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings, a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero, the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic, then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case, the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function, exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p,} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p.} Each factor has no repeated roots, and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q.}"))) │ │ │ NIL │ │ │ -(|RealNumberSystem|) │ │ │ -((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs \\spad{x}} returns the absolute value of \\spad{x.}")) (|round| (($ $) "\\spad{round \\spad{x}} computes the integer closest to \\spad{x.}")) (|truncate| (($ $) "\\spad{truncate \\spad{x}} returns the integer between \\spad{x} and 0 closest to \\spad{x.}")) (|fractionPart| (($ $) "\\spad{fractionPart \\spad{x}} returns the fractional part of \\spad{x.}")) (|wholePart| (((|Integer|) $) "\\spad{wholePart \\spad{x}} returns the integer part of \\spad{x.}")) (|floor| (($ $) "\\spad{floor \\spad{x}} returns the largest integer \\spad{<= \\spad{x}.}")) (|ceiling| (($ $) "\\spad{ceiling \\spad{x}} returns the small integer \\spad{>= \\spad{x}.}")) (|norm| (($ $) "\\spad{norm \\spad{x}} returns the same as absolute value."))) │ │ │ -((|canonicalsClosed| . T) (|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|StreamAggregate&| A S) │ │ │ -((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams, a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example, see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note that for many datatypes, \\axiom{possiblyInfinite?(s) = not explictlyFinite?(s)}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements, and \\spad{false} otherwise. Note that for many datatypes, \\axiom{explicitlyFinite?(s) = not possiblyInfinite?(s)}."))) │ │ │ +(|SparseTable| |Key| |Ent| |dent|) │ │ │ +((|constructor| (NIL "A sparse table has a default entry, which is returned if no other value has been explicitly stored for a key."))) │ │ │ +((|shallowlyMutable| . T)) │ │ │ +((|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))) (AND (|HasCategory| |#2| (LIST (QUOTE |Evalable|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (|SetCategory|)))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (AND (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (LIST (QUOTE |Evalable|) (LIST (QUOTE |Record|) (LIST (QUOTE |:|) (QUOTE |key|) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|)))) (OR (|HasCategory| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (QUOTE (|SetCategory|))) (|HasCategory| |#2| (QUOTE (|SetCategory|))))) │ │ │ +(|AttachPredicates| D) │ │ │ +((|constructor| (NIL "Attaching predicates to symbols for pattern matching.")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, \\spad{f2,} ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and \\spad{...} and \\spad{fn} to \\spad{x.}") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x.}"))) │ │ │ NIL │ │ │ NIL │ │ │ -(|UniqueFactorizationDomain&| S) │ │ │ -((|constructor| (NIL "A constructive unique factorization domain, where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring, \\spad{x} is an irreducible element."))) │ │ │ +(|FactoredFunctions2| R S) │ │ │ +((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example, \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{fn} to every factor of \\spadvar{u}. The new factored object will have all its information flags set to \"nil\". This function is used, for example, to coerce every factor base to another type."))) │ │ │ NIL │ │ │ NIL │ │ │ -(|UniqueFactorizationDomain|) │ │ │ -((|constructor| (NIL "A constructive unique factorization domain, where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring, \\spad{x} is an irreducible element."))) │ │ │ -((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|CachableSet|) │ │ │ +((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x, \\spad{n)}} associates the integer \\spad{n} to \\spad{x.}")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x.}"))) │ │ │ NIL │ │ │ -(|Symbol|) │ │ │ -((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\% \\blankline \\spad{X} sample()$Symbol")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list \\indented{1}{of the name followed by the scripts.} \\blankline \\spad{X} m:=script(Big,[[i,j],[k,1],[0,1],[2],[u,v,w]]) \\spad{X} (list m)$Symbol")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. \\indented{1}{Error: if the symbol is subscripted.} \\blankline \\spad{X} S:=\"Hello\"::Symbol \\spad{X} string \\spad{S}")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or s([a1,...,an]) \\indented{1}{returns \\spad{s} subscripted by \\spad{[a1,...,an]}.} \\blankline \\spad{X} elt(S,[a1,a2]) \\spad{X} s([a1,a2])")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} \\indented{1}{arg-scripted by \\spad{[a1,...,an]}.} \\blankline \\spad{X} argscript(Big,[a,1])")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} \\indented{1}{superscripted by \\spad{[a1,...,an]}.} \\blankline \\spad{X} superscript(Big,[a,1])")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} \\indented{1}{subscripted by \\spad{[a1,...,an]}.} \\blankline \\spad{X} subscript(Big,[a,1])")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a, \\indented{1}{superscripts \\spad{b,} pre-superscripts \\spad{c,} pre-subscripts \\spad{d,}} \\indented{1}{and argument-scripts e.} \\blankline \\spad{X} m:=script(Big,[[i,j],[k,1],[0,1],[2],[u,v,w]]) \\spad{X} n:=scripts \\spad{m} \\spad{X} script(Little,n)") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a, \\indented{1}{superscripts \\spad{b,} pre-superscripts \\spad{c,} pre-subscripts \\spad{d,}} \\indented{1}{and argument-scripts e.\\space{2}Omitted components are taken to be empty.} \\indented{1}{For example, \\spad{script(s, [a,b,c])} is equivalent to} \\indented{1}{\\spad{script(s,[a,b,c,[],[]])}.} \\blankline \\spad{X} m:=script(Big,[[i,j],[k,1],[0,1],[2],[u,v,w]]) \\spad{X} scripts \\spad{m}")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s.} \\blankline \\spad{X} m:=script(Big,[[i,j],[k,1],[0,1],[2],[u,v,w]]) \\spad{X} scripts \\spad{m}")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts. \\blankline \\spad{X} U:=subscript(u,[1,2]) \\spad{X} scripted? \\spad{U} \\spad{X} scripted? \\spad{W}")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts. \\blankline \\spad{X} U:=subscript(u,[1,2]) \\spad{X} name(U)")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol. \\blankline \\spad{X} coerce(\"Hello\")$Symbol \\spad{X} \"Hello\"::Symbol")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and \\indented{1}{new(s) use to return distinct symbols every time.} \\blankline \\spad{X} new()$Symbol \\spad{X} new()$Symbol \\spad{X} resetNew() \\spad{X} new()$Symbol")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\spad{%s.} \\blankline \\spad{X} new(\"xyz\")$Symbol") (($) "\\spad{new()} returns a new symbol whose name starts with \\spad{%.} \\blankline \\spad{X} new()$Symbol"))) │ │ │ NIL │ │ │ +(|PrecomputedAssociatedEquations| R L) │ │ │ +((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, \\spad{m)}} returns the matrix A such that \\spad{A \\spad{w} = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of op. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), \\spad{m}.}"))) │ │ │ NIL │ │ │ -(|TriangularSetCategory&| S R E V P) │ │ │ -((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{R} be an integral domain and \\axiom{V} a finite ordered set of variables, say \\axiom{X1 < \\spad{X2} < \\spad{...} < Xn}. A set \\axiom{S} of polynomials in \\axiom{R[X1,X2,...,Xn]} is triangular if no elements of \\axiom{S} lies in \\axiom{R}, and if two distinct elements of \\axiom{S} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to \\spad{[1]} for more details. A polynomial \\axiom{P} is reduced w.r.t a non-constant polynomial \\axiom{Q} if the degree of \\axiom{P} in the main variable of \\axiom{Q} is less than the main degree of \\axiom{Q}. A polynomial \\axiom{P} is reduced w.r.t a triangular set \\axiom{T} if it is reduced w.r.t. every polynomial of \\axiom{T}.")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$V} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,p)} returns a triangular set which encodes the simple extension by \\axiom{p} of the extension of the base field defined by \\axiom{ts}, according to the properties of triangular sets of the current category. If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,p)} returns a triangular set which encodes the simple extension by \\axiom{p} of the extension of the base field defined by \\axiom{ts}, according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,v)} returns the polynomial of \\axiom{ts} with \\axiom{v} as main variable, if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(v,ts)} returns \\spad{true} iff \\axiom{v} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty, otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty, otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty, otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[ts1,qs1],...,[tsn,qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(p,ts)} returns the same as \\axiom{remainder(p,collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{R}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(p,ts)} returns \\axiom{0} if \\axiom{p} reduces to \\axiom{0} by pseudo-division w.r.t \\axiom{ts} otherwise returns a polynomial \\axiom{q} computed from \\axiom{p} by removing any coefficient in \\axiom{p} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(p,ts)} returns a polynomial \\axiom{r} such that \\axiom{initiallyReduced?(r,ts)} holds and there exists some product \\axiom{h} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(p,ts)} returns a polynomial \\axiom{r} such that \\axiom{headReduce?(r,ts)} holds and there exists some product \\axiom{h} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(p,ts)} returns a polynomial \\axiom{r} such that \\axiom{stronglyReduced?(r,ts)} holds and there exists some product \\axiom{h} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(p,ts,redOp,redOp?)} returns a polynomial \\axiom{r} such that \\axiom{redOp?(r,p)} holds for every \\axiom{p} of \\axiom{ts} and there exists some product \\axiom{h} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{p} and \\axiom{q} we have \\axiom{redOp?(redOp(p,q),q)} and there exists an integer \\axiom{e} and a polynomial \\axiom{f} such that \\axiom{init(q)^e*p = \\spad{f*q} + redOp(p,q)}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced w.r.t to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{p} of \\axiom{ts}. \\axiom{p} and all its iterated initials are reduced w.r.t. to the other elements of \\axiom{ts} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(p,ts)} returns \\spad{true} iff \\axiom{p} and all its iterated initials are reduced w.r.t. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{ts} is reduced w.r.t to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(p,ts)} returns \\spad{true} iff the head of \\axiom{p} is reduced w.r.t. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced w.r.t to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(p,ts)} returns \\spad{true} iff \\axiom{p} is reduced w.r.t. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(p,ts,redOp?)} returns \\spad{true} iff \\axiom{p} is reduced w.r.t.in the sense of the operation \\axiom{redOp?}, that is if for every \\axiom{t} in \\axiom{ts} \\axiom{redOp?(p,t)} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{p} in \\axiom{ts} we have \\axiom{normalized?(p,us)} where \\axiom{us} is \\axiom{collectUnder(ts,mvar(p))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(p,ts)} returns \\spad{true} iff \\axiom{p} and all its iterated initials have degree zero w.r.t. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,pred?,redOp?)} returns the same as \\axiom{basicSet(qs,redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,redOp?)} returns \\axiom{[bs,ts]} where \\axiom{concat(bs,ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} w.r.t the reduction-test \\axiom{redOp?}, if no non-zero constant polynomial lie in \\axiom{ps}, otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(ts1,ts2)} returns \\spad{true} iff \\axiom{ts2} has higher rank than \\axiom{ts1} in Wu Wen Tsun sense."))) │ │ │ NIL │ │ │ -((|HasCategory| |#4| (QUOTE (|Finite|)))) │ │ │ -(|StreamAggregate| S) │ │ │ -((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams, a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example, see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note that for many datatypes, \\axiom{possiblyInfinite?(s) = not explictlyFinite?(s)}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements, and \\spad{false} otherwise. Note that for many datatypes, \\axiom{explicitlyFinite?(s) = not possiblyInfinite?(s)}."))) │ │ │ -((|nil| . T)) │ │ │ +(|RootsFindingPackage| K) │ │ │ +((|constructor| (NIL "This pacackage finds all the roots of a polynomial. If the constant field is not large enough then it returns the list of found zeros and the degree of the extension need to find the other roots missing. If the return degree is 1 then all the roots have been found. If 0 is return for the extension degree then there are an infinite number of zeros, that is you ask for the zeroes of 0. In the case of infinite field a list of all found zeros is kept and for each other call of a function that finds zeroes, a check is made on that list; this is to keep a kind of \"canonical\" representation of the elements.")) (|setFoundZeroes| (((|List| |#1|) (|List| |#1|)) "\\spad{setFoundZeroes sets} the list of foundZeroes to the given one.")) (|foundZeroes| (((|List| |#1|)) "\\spad{foundZeroes returns} the list of already found zeros by the functions distinguishedRootsOf and distinguishedCommonRootsOf.")) (|distinguishedCommonRootsOf| (((|Record| (|:| |zeros| (|List| |#1|)) (|:| |extDegree| (|Integer|))) (|List| (|SparseUnivariatePolynomial| |#1|)) |#1|) "\\spad{distinguishedCommonRootsOf returns} the common zeros of a list of polynomial. It returns a record as in distinguishedRootsOf. If 0 is returned as extension degree then there are an infinite number of common zeros (in this case, the polynomial 0 was given in the list of input polynomials).")) (|distinguishedRootsOf| (((|Record| (|:| |zeros| (|List| |#1|)) (|:| |extDegree| (|Integer|))) (|SparseUnivariatePolynomial| |#1|) |#1|) "\\spad{distinguishedRootsOf returns} a record consisting of a list of zeros of the input polynomial followed by the smallest extension degree needed to find all the zeros. If \\spad{K} has \\spad{PseudoAlgebraicClosureOfFiniteFieldCategory} or \\spad{PseudoAlgebraicClosureOfRationalNumberCategory} then a root is created for each irreducible factor, and only these roots are returns and not their conjugate."))) │ │ │ NIL │ │ │ -(|UnivariateLaurentSeriesCategory| |Coef|) │ │ │ -((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 \\spad{<=} \\spad{d} \\spad{<=} k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k.}} \\blankline \\spad{X} \\spad{w:SparseUnivariateLaurentSeries(Fraction(Integer),'z,0):=0} \\spad{X} rationalFunction(w,0)")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms, where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (|Field|)) (|canonicalsClosed| |has| |#1| (|Field|)) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -(|PolynomialCategory| R E |VarSet|) │ │ │ -((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R,} in variables from VarSet, with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p.}")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v.} Thus, for polynomial 7*x**2*y + 14*x*y**2, the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v.}")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v.}")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note that \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p.}")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p)} of the variables in the list \\spad{lv.}") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, \\spad{n]}} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = \\spad{a1} \\spad{...} an} and \\spad{n \\spad{>=} 2}, and, for each i, \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e}, where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = \\spad{m1} + \\spad{...} + \\spad{mn}} and \\spad{n \\spad{>=} 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v.}") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v.}")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial, \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b,} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v.}")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v,} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p,} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p,} which should actually involve only one variable, into a univariate polynomial in that variable, whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v,} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p,} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, \\spad{lv,} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln}, \\spad{prod(lv_i \\spad{**} ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv.}") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v.}"))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ +(|AdditiveValuationAttribute|) │ │ │ +((|constructor| (NIL "The class of all euclidean domains such that \\spad{euclideanSize(a*b) = euclideanSize(a)+euclideanSize(b)}"))) │ │ │ +((|nil| . T)) │ │ │ NIL │ │ │ -(|UnaryRecursiveAggregate&| A S) │ │ │ -((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models, though not precisely, a linked list possibly with a single cycle. A node with one children models a non-empty list, with the \\spadfun{value} of the list designating the head, or \\spadfun{first}, of the list, and the child designating the tail, or \\spadfun{rest}, of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates, they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{v = rest(u,n)} \\indented{1}{and \\axiom{w = first(u,n)}, returning \\axiom{v}.} \\indented{1}{Note that afterwards \\axiom{rest(u,n)} returns \\axiom{empty()}.} \\blankline \\spad{X} t1:=[1,4,2,-6,0,3,5,4,2,3] \\spad{X} t2:=split!(t1,4) \\spad{X} \\spad{t1} \\spad{X} \\spad{t2}")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x.} \\blankline \\spad{X} t1:=[1,4,2,-6,0,3,5,4,2,3] \\spad{X} setlast!(t1,7) \\spad{X} \\spad{t1}")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} setrest!(t1,[4,5,6]) \\spad{X} \\spad{t1}")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{u.last \\spad{:=} \\spad{b})} \\indented{1}{is equivalent to \\axiom{setlast!(u,v)}.} \\blankline \\spad{X} t1:=[1,4,2,-6,0,3,5,4,2,3] \\spad{X} t1.last \\spad{:=} 7 \\spad{X} \\spad{t1}") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{u.rest \\spad{:=} \\spad{v})} is \\indented{1}{equivalent to \\axiom{setrest!(u,v)}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t1.rest:=[4,5,6] \\spad{X} \\spad{t1}") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{u.first \\spad{:=} \\spad{x})} is \\indented{1}{equivalent to \\axiom{setfirst!(u,x)}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} \\spad{t1.first:=7} \\spad{X} \\spad{t1}")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} setfirst!(t1,7) \\spad{X} \\spad{t1}")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. \\indented{1}{The value returned is the cycle entry, or nil if none exists.} \\indented{1}{For example, if \\axiom{w = concat(u,v)} is the cyclic list where} \\indented{1}{v is the head of the cycle, \\axiom{cycleSplit!(w)} will drop \\spad{v}} \\indented{1}{off \\spad{w} thus destructively changing \\spad{w} to u, and returning \\spad{v.}} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat!(t1,t1) \\spad{X} t3:=[1,2,3] \\spad{X} t4:=concat!(t3,t2) \\spad{X} t5:=cycleSplit!(t4) \\spad{X} \\spad{t4} \\spad{X} \\spad{t5}")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of u. \\indented{1}{Note that \\axiom{concat!(a,x) = setlast!(a,[x])}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} concat!(t1,7) \\spad{X} \\spad{t1}") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of u. \\indented{1}{Note that \\axiom{concat!(u,v) = setlast_!(u,v)}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=[4,5,6] \\spad{X} concat!(t1,t2) \\spad{X} \\spad{t1} \\spad{X} \\spad{t2}")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle, or \\indented{1}{empty if none exists.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat!(t1,t1) \\spad{X} cycleTail \\spad{t2}")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle \\indented{1}{contained\\space{2}in aggregate u, or 0 is \\spad{u} has no such cycle.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat!(t1,t1) \\spad{X} cycleLength \\spad{t2}")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in \\indented{1}{aggregate u, or \\axiom{empty()} if none exists.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat!(t1,t1) \\spad{X} cycleEntry \\spad{t2}")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of u. \\indented{1}{Note that \\axiom{third(u) = first(rest(rest(u)))}.} \\blankline \\spad{X} third [1,4,2,-6,0,3,5,4,2,3]")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of u. \\indented{1}{Note that \\axiom{second(u) = first(rest(u))}.} \\blankline \\spad{X} second [1,4,2,-6,0,3,5,4,2,3]")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of u. \\indented{1}{Note that if \\spad{u} is \\axiom{shallowlyMutable},} \\indented{1}{\\axiom{setrest(tail(u),v) = concat(u,v)}.} \\blankline \\spad{X} tail [1,4,2,-6,0,3,5,4,2,3]")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{n \\spad{>=} 0}) nodes of u. \\indented{1}{Note that \\axiom{last(u,n)} is a list of \\spad{n} elements.} \\blankline \\spad{X} last([1,4,2,-6,0,3,5,4,2,3],3)") ((|#2| $) "\\spad{last(u)} resturn the last element of u. \\indented{1}{Note that for lists, \\axiom{last(u)=u . (maxIndex u)=u . \\spad{(#} \\spad{u} - 1)}.} \\blankline \\spad{X} last [1,4,2,-6,0,3,5,4,2,3]")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{n}th \\spad{(n} \\spad{>=} 0) node of u. \\indented{1}{Note that \\axiom{rest(u,0) = u}.} \\blankline \\spad{X} rest([1,4,2,-6,0,3,5,4,2,3],3)") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first \\indented{1}{element of u} \\indented{1}{(equivalently, the next node of u).} \\blankline \\spad{X} rest [1,4,2,-6,0,3,5,4,2,3]")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{u . last}) is equivalent \\indented{1}{to last u.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t1.last") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{u.rest}) is \\indented{1}{equivalent to \\axiom{rest u}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t1.rest") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{u . first}) \\indented{1}{is equivalent to first u.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t1.first")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{n \\spad{>=} 0}) elements of u. \\blankline first([1,4,2,-6,0,3,5,4,2,3],3)") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} \\indented{1}{(equivalently, the value at the current node).} \\blankline \\spad{X} first [1,4,2,-6,0,3,5,4,2,3]")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by \\indented{1}{the elements of u.} \\indented{1}{Note that if \\axiom{v = concat(x,u)} then \\axiom{x = first \\spad{v}}} \\indented{1}{and \\axiom{u = rest v}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat(4,t1) \\spad{X} \\spad{t1} \\spad{X} \\spad{t2}") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} \\indented{1}{followed by the elements of \\spad{v.}} \\indented{1}{Note that \\axiom{v = rest(w,\\#a)}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat(t1,t1) \\spad{X} \\spad{t1} \\spad{X} \\spad{t2}"))) │ │ │ +(|UniqueFactorizationDomain|) │ │ │ +((|constructor| (NIL "A constructive unique factorization domain, where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring, \\spad{x} is an irreducible element."))) │ │ │ +((|noZeroDivisors| . T) ((|commutative| "*") . T) (|rightUnitary| . T) (|leftUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ -((|HasAttribute| |#1| (QUOTE |shallowlyMutable|))) │ │ │ -(|Vector| R) │ │ │ -((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T)) │ │ │ -((|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (LIST (QUOTE |ConvertibleTo|) (QUOTE (|InputForm|)))) (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (OR (|HasCategory| |#1| (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (|HasCategory| |#1| (QUOTE (|AbelianSemiGroup|))) (|HasCategory| |#1| (QUOTE (|AbelianMonoid|))) (|HasCategory| |#1| (QUOTE (|AbelianGroup|))) (|HasCategory| |#1| (QUOTE (|Monoid|))) (|HasCategory| |#1| (QUOTE (|Ring|))) (AND (|HasCategory| |#1| (QUOTE (|RadicalCategory|))) (|HasCategory| |#1| (QUOTE (|Ring|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|OrderedSet|)))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))))) │ │ │ -(|UnivariatePolynomialCategory&| S R) │ │ │ -((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R.} No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(b)")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, \\spad{q)}} returns \\spad{[a, \\spad{b]}} such that polynomial \\spad{p = a \\spad{b}} and \\spad{a} is relatively prime to \\spad{q.}")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, \\spad{q,} r]}, when \\spad{p' \\spad{:=} p*lc(q)**(deg \\spad{p} - deg \\spad{q} + 1) = \\spad{c} * \\spad{p}} is pseudo right-divided by \\spad{q,} \\spad{p' = \\spad{s} \\spad{q} + \\spad{r}.}")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r,} the quotient when \\spad{p' \\spad{:=} p*lc(q)**(deg \\spad{p} - deg \\spad{q} + 1)} is pseudo right-divided by \\spad{q,} \\spad{p' = \\spad{s} \\spad{q} + \\spad{r}.}")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, \\spad{q)}} returns \\spad{h} if \\spad{f} = h(q), and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, \\spad{q)}} returns \\spad{h} if \\spad{p = h(q)}, and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, \\spad{q)}} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r.}") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b.}")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q.}")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p.}")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, \\spad{d,} x')} extends the R-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x',} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r,} for polynomials \\spad{p} and \\spad{q,} returns the remainder when \\spad{p' \\spad{:=} p*lc(q)**(deg \\spad{p} - deg \\spad{q} + 1)} is pseudo right-divided by \\spad{q,} \\spad{p' = \\spad{s} \\spad{q} + \\spad{r}.}")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q,} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n,} or \"failed\" if some exponent is not exactly divisible by \\spad{n.}")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n.}")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note that converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|unvectorise| (($ (|Vector| |#2|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the \\indented{1}{entries of \\spad{v} in the increasing order.} \\blankline \\spad{X} \\spad{t1:UP(x,FRAC(INT)):=3*x^3+4*x^2+5*x+6} \\spad{X} t2:=vectorise(t1,4) \\spad{X} t3:UP(x,FRAC(INT)):=unvectorise(t2)")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, \\spad{n)}} returns \\spad{[a0,...,a(n-1)]} where \\indented{1}{\\spad{p = \\spad{a0} + a1*x + \\spad{...} + a(n-1)*x**(n-1)} + higher order terms.} \\indented{1}{The degree of polynomial \\spad{p} can be different from \\spad{n-1}.} \\blankline \\spad{X} \\spad{t1:UP(x,FRAC(INT)):=3*x^3+4*x^2+5*x+6} \\spad{X} t2:=vectorise(t1,4)"))) │ │ │ +(|AssociatedLieAlgebra| R A) │ │ │ +((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*$A} to define the Lie bracket \\spad{a*b \\spad{:=} (a *$A \\spad{b} - \\spad{b} *$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},\\spad{b},\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank, together with a fixed \\spad{R}-module basis), then the same is \\spad{true} for the associated Lie algebra. Also, if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (a non associative algebra over \\spad{R} which is a free R-module of finite rank), then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(R,A)."))) │ │ │ +((|unitsKnown| OR (|and| (|has| |#2| (|FiniteRankNonAssociativeAlgebra| |#1|)) (|has| |#1| (|IntegralDomain|))) (AND (|has| |#2| (|FramedNonAssociativeAlgebra| |#1|)) (|has| |#1| (|IntegralDomain|)))) (|leftUnitary| . T) (|rightUnitary| . T)) │ │ │ +((|HasCategory| |#2| (LIST (QUOTE |FramedNonAssociativeAlgebra|) (|devaluate| |#1|))) (AND (|HasCategory| |#1| (QUOTE (|Field|))) (|HasCategory| |#2| (LIST (QUOTE |FramedNonAssociativeAlgebra|) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE |FiniteRankNonAssociativeAlgebra|) (|devaluate| |#1|))) (OR (|HasCategory| |#2| (LIST (QUOTE |FiniteRankNonAssociativeAlgebra|) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE |FramedNonAssociativeAlgebra|) (|devaluate| |#1|)))) (OR (AND (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (LIST (QUOTE |FiniteRankNonAssociativeAlgebra|) (|devaluate| |#1|)))) (AND (|HasCategory| |#1| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (LIST (QUOTE |FramedNonAssociativeAlgebra|) (|devaluate| |#1|)))))) │ │ │ +(|SuchThat| S1 S2) │ │ │ +((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}"))) │ │ │ NIL │ │ │ -((|HasCategory| |#2| (LIST (QUOTE |Algebra|) (LIST (QUOTE |Fraction|) (QUOTE (|Integer|))))) (|HasCategory| |#2| (QUOTE (|Field|))) (|HasCategory| |#2| (QUOTE (|GcdDomain|))) (|HasCategory| |#2| (QUOTE (|IntegralDomain|))) (|HasCategory| |#2| (QUOTE (|CommutativeRing|))) (|HasCategory| |#2| (QUOTE (|StepThrough|)))) │ │ │ -(|UnaryRecursiveAggregate| S) │ │ │ -((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models, though not precisely, a linked list possibly with a single cycle. A node with one children models a non-empty list, with the \\spadfun{value} of the list designating the head, or \\spadfun{first}, of the list, and the child designating the tail, or \\spadfun{rest}, of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates, they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{v = rest(u,n)} \\indented{1}{and \\axiom{w = first(u,n)}, returning \\axiom{v}.} \\indented{1}{Note that afterwards \\axiom{rest(u,n)} returns \\axiom{empty()}.} \\blankline \\spad{X} t1:=[1,4,2,-6,0,3,5,4,2,3] \\spad{X} t2:=split!(t1,4) \\spad{X} \\spad{t1} \\spad{X} \\spad{t2}")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x.} \\blankline \\spad{X} t1:=[1,4,2,-6,0,3,5,4,2,3] \\spad{X} setlast!(t1,7) \\spad{X} \\spad{t1}")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} setrest!(t1,[4,5,6]) \\spad{X} \\spad{t1}")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{u.last \\spad{:=} \\spad{b})} \\indented{1}{is equivalent to \\axiom{setlast!(u,v)}.} \\blankline \\spad{X} t1:=[1,4,2,-6,0,3,5,4,2,3] \\spad{X} t1.last \\spad{:=} 7 \\spad{X} \\spad{t1}") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{u.rest \\spad{:=} \\spad{v})} is \\indented{1}{equivalent to \\axiom{setrest!(u,v)}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t1.rest:=[4,5,6] \\spad{X} \\spad{t1}") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{u.first \\spad{:=} \\spad{x})} is \\indented{1}{equivalent to \\axiom{setfirst!(u,x)}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} \\spad{t1.first:=7} \\spad{X} \\spad{t1}")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} setfirst!(t1,7) \\spad{X} \\spad{t1}")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. \\indented{1}{The value returned is the cycle entry, or nil if none exists.} \\indented{1}{For example, if \\axiom{w = concat(u,v)} is the cyclic list where} \\indented{1}{v is the head of the cycle, \\axiom{cycleSplit!(w)} will drop \\spad{v}} \\indented{1}{off \\spad{w} thus destructively changing \\spad{w} to u, and returning \\spad{v.}} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat!(t1,t1) \\spad{X} t3:=[1,2,3] \\spad{X} t4:=concat!(t3,t2) \\spad{X} t5:=cycleSplit!(t4) \\spad{X} \\spad{t4} \\spad{X} \\spad{t5}")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of u. \\indented{1}{Note that \\axiom{concat!(a,x) = setlast!(a,[x])}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} concat!(t1,7) \\spad{X} \\spad{t1}") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of u. \\indented{1}{Note that \\axiom{concat!(u,v) = setlast_!(u,v)}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=[4,5,6] \\spad{X} concat!(t1,t2) \\spad{X} \\spad{t1} \\spad{X} \\spad{t2}")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle, or \\indented{1}{empty if none exists.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat!(t1,t1) \\spad{X} cycleTail \\spad{t2}")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle \\indented{1}{contained\\space{2}in aggregate u, or 0 is \\spad{u} has no such cycle.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat!(t1,t1) \\spad{X} cycleLength \\spad{t2}")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in \\indented{1}{aggregate u, or \\axiom{empty()} if none exists.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat!(t1,t1) \\spad{X} cycleEntry \\spad{t2}")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of u. \\indented{1}{Note that \\axiom{third(u) = first(rest(rest(u)))}.} \\blankline \\spad{X} third [1,4,2,-6,0,3,5,4,2,3]")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of u. \\indented{1}{Note that \\axiom{second(u) = first(rest(u))}.} \\blankline \\spad{X} second [1,4,2,-6,0,3,5,4,2,3]")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of u. \\indented{1}{Note that if \\spad{u} is \\axiom{shallowlyMutable},} \\indented{1}{\\axiom{setrest(tail(u),v) = concat(u,v)}.} \\blankline \\spad{X} tail [1,4,2,-6,0,3,5,4,2,3]")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{n \\spad{>=} 0}) nodes of u. \\indented{1}{Note that \\axiom{last(u,n)} is a list of \\spad{n} elements.} \\blankline \\spad{X} last([1,4,2,-6,0,3,5,4,2,3],3)") ((|#1| $) "\\spad{last(u)} resturn the last element of u. \\indented{1}{Note that for lists, \\axiom{last(u)=u . (maxIndex u)=u . \\spad{(#} \\spad{u} - 1)}.} \\blankline \\spad{X} last [1,4,2,-6,0,3,5,4,2,3]")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{n}th \\spad{(n} \\spad{>=} 0) node of u. \\indented{1}{Note that \\axiom{rest(u,0) = u}.} \\blankline \\spad{X} rest([1,4,2,-6,0,3,5,4,2,3],3)") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first \\indented{1}{element of u} \\indented{1}{(equivalently, the next node of u).} \\blankline \\spad{X} rest [1,4,2,-6,0,3,5,4,2,3]")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{u . last}) is equivalent \\indented{1}{to last u.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t1.last") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{u.rest}) is \\indented{1}{equivalent to \\axiom{rest u}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t1.rest") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{u . first}) \\indented{1}{is equivalent to first u.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t1.first")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{n \\spad{>=} 0}) elements of u. \\blankline first([1,4,2,-6,0,3,5,4,2,3],3)") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} \\indented{1}{(equivalently, the value at the current node).} \\blankline \\spad{X} first [1,4,2,-6,0,3,5,4,2,3]")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by \\indented{1}{the elements of u.} \\indented{1}{Note that if \\axiom{v = concat(x,u)} then \\axiom{x = first \\spad{v}}} \\indented{1}{and \\axiom{u = rest v}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat(4,t1) \\spad{X} \\spad{t1} \\spad{X} \\spad{t2}") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} \\indented{1}{followed by the elements of \\spad{v.}} \\indented{1}{Note that \\axiom{v = rest(w,\\#a)}.} \\blankline \\spad{X} t1:=[1,2,3] \\spad{X} t2:=concat(t1,t1) \\spad{X} \\spad{t1} \\spad{X} \\spad{t2}"))) │ │ │ -((|nil| . T)) │ │ │ NIL │ │ │ -(|TriangularSetCategory| R E V P) │ │ │ -((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{R} be an integral domain and \\axiom{V} a finite ordered set of variables, say \\axiom{X1 < \\spad{X2} < \\spad{...} < Xn}. A set \\axiom{S} of polynomials in \\axiom{R[X1,X2,...,Xn]} is triangular if no elements of \\axiom{S} lies in \\axiom{R}, and if two distinct elements of \\axiom{S} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to \\spad{[1]} for more details. A polynomial \\axiom{P} is reduced w.r.t a non-constant polynomial \\axiom{Q} if the degree of \\axiom{P} in the main variable of \\axiom{Q} is less than the main degree of \\axiom{Q}. A polynomial \\axiom{P} is reduced w.r.t a triangular set \\axiom{T} if it is reduced w.r.t. every polynomial of \\axiom{T}.")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$V} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,p)} returns a triangular set which encodes the simple extension by \\axiom{p} of the extension of the base field defined by \\axiom{ts}, according to the properties of triangular sets of the current category. If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,p)} returns a triangular set which encodes the simple extension by \\axiom{p} of the extension of the base field defined by \\axiom{ts}, according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,v)} returns the polynomial of \\axiom{ts} with \\axiom{v} as main variable, if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(v,ts)} returns \\spad{true} iff \\axiom{v} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty, otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty, otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty, otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[ts1,qs1],...,[tsn,qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(p,ts)} returns the same as \\axiom{remainder(p,collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{R}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(p,ts)} returns \\axiom{0} if \\axiom{p} reduces to \\axiom{0} by pseudo-division w.r.t \\axiom{ts} otherwise returns a polynomial \\axiom{q} computed from \\axiom{p} by removing any coefficient in \\axiom{p} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(p,ts)} returns a polynomial \\axiom{r} such that \\axiom{initiallyReduced?(r,ts)} holds and there exists some product \\axiom{h} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(p,ts)} returns a polynomial \\axiom{r} such that \\axiom{headReduce?(r,ts)} holds and there exists some product \\axiom{h} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(p,ts)} returns a polynomial \\axiom{r} such that \\axiom{stronglyReduced?(r,ts)} holds and there exists some product \\axiom{h} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(p,ts,redOp,redOp?)} returns a polynomial \\axiom{r} such that \\axiom{redOp?(r,p)} holds for every \\axiom{p} of \\axiom{ts} and there exists some product \\axiom{h} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{p} and \\axiom{q} we have \\axiom{redOp?(redOp(p,q),q)} and there exists an integer \\axiom{e} and a polynomial \\axiom{f} such that \\axiom{init(q)^e*p = \\spad{f*q} + redOp(p,q)}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced w.r.t to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{p} of \\axiom{ts}. \\axiom{p} and all its iterated initials are reduced w.r.t. to the other elements of \\axiom{ts} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(p,ts)} returns \\spad{true} iff \\axiom{p} and all its iterated initials are reduced w.r.t. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{ts} is reduced w.r.t to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(p,ts)} returns \\spad{true} iff the head of \\axiom{p} is reduced w.r.t. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced w.r.t to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(p,ts)} returns \\spad{true} iff \\axiom{p} is reduced w.r.t. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(p,ts,redOp?)} returns \\spad{true} iff \\axiom{p} is reduced w.r.t.in the sense of the operation \\axiom{redOp?}, that is if for every \\axiom{t} in \\axiom{ts} \\axiom{redOp?(p,t)} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{p} in \\axiom{ts} we have \\axiom{normalized?(p,us)} where \\axiom{us} is \\axiom{collectUnder(ts,mvar(p))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(p,ts)} returns \\spad{true} iff \\axiom{p} and all its iterated initials have degree zero w.r.t. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,pred?,redOp?)} returns the same as \\axiom{basicSet(qs,redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,redOp?)} returns \\axiom{[bs,ts]} where \\axiom{concat(bs,ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} w.r.t the reduction-test \\axiom{redOp?}, if no non-zero constant polynomial lie in \\axiom{ps}, otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(ts1,ts2)} returns \\spad{true} iff \\axiom{ts2} has higher rank than \\axiom{ts1} in Wu Wen Tsun sense."))) │ │ │ -((|shallowlyMutable| . T) (|finiteAggregate| . T) (|nil| . T)) │ │ │ +(|RationalIntegration| F UP) │ │ │ +((|constructor| (NIL "Rational function integration This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the gi's are among \\spad{[g1,...,gn]}, \\spad{ci' = 0}, and \\spad{(h+sum(ci log(gi)))' = \\spad{f},} if possible, \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, \\spad{g)}} returns fractions \\spad{[h, \\spad{c]}} such that \\spad{c' = 0} and \\spad{h' = \\spad{f} - cg}, if \\spad{(h, \\spad{c)}} exist, \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = \\spad{f}} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = \\spad{f}.}"))) │ │ │ NIL │ │ │ -(|UnivariatePolynomialCategory| R) │ │ │ -((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R.} No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(b)")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, \\spad{q)}} returns \\spad{[a, \\spad{b]}} such that polynomial \\spad{p = a \\spad{b}} and \\spad{a} is relatively prime to \\spad{q.}")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, \\spad{q,} r]}, when \\spad{p' \\spad{:=} p*lc(q)**(deg \\spad{p} - deg \\spad{q} + 1) = \\spad{c} * \\spad{p}} is pseudo right-divided by \\spad{q,} \\spad{p' = \\spad{s} \\spad{q} + \\spad{r}.}")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r,} the quotient when \\spad{p' \\spad{:=} p*lc(q)**(deg \\spad{p} - deg \\spad{q} + 1)} is pseudo right-divided by \\spad{q,} \\spad{p' = \\spad{s} \\spad{q} + \\spad{r}.}")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, \\spad{q)}} returns \\spad{h} if \\spad{f} = h(q), and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, \\spad{q)}} returns \\spad{h} if \\spad{p = h(q)}, and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, \\spad{q)}} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r.}") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b.}")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q.}")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p.}")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, \\spad{d,} x')} extends the R-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x',} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r,} for polynomials \\spad{p} and \\spad{q,} returns the remainder when \\spad{p' \\spad{:=} p*lc(q)**(deg \\spad{p} - deg \\spad{q} + 1)} is pseudo right-divided by \\spad{q,} \\spad{p' = \\spad{s} \\spad{q} + \\spad{r}.}")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q,} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n,} or \"failed\" if some exponent is not exactly divisible by \\spad{n.}")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n.}")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note that converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|unvectorise| (($ (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the \\indented{1}{entries of \\spad{v} in the increasing order.} \\blankline \\spad{X} \\spad{t1:UP(x,FRAC(INT)):=3*x^3+4*x^2+5*x+6} \\spad{X} t2:=vectorise(t1,4) \\spad{X} t3:UP(x,FRAC(INT)):=unvectorise(t2)")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, \\spad{n)}} returns \\spad{[a0,...,a(n-1)]} where \\indented{1}{\\spad{p = \\spad{a0} + a1*x + \\spad{...} + a(n-1)*x**(n-1)} + higher order terms.} \\indented{1}{The degree of polynomial \\spad{p} can be different from \\spad{n-1}.} \\blankline \\spad{X} \\spad{t1:UP(x,FRAC(INT)):=3*x^3+4*x^2+5*x+6} \\spad{X} t2:=vectorise(t1,4)"))) │ │ │ -(((|commutative| "*") |has| |#1| (|CommutativeRing|)) (|noZeroDivisors| |has| |#1| (|IntegralDomain|)) (|additiveValuation| |has| |#1| (|Field|)) (|canonicalUnitNormal| |has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (|leftUnitary| . T) (|rightUnitary| . T) (|unitsKnown| . T)) │ │ │ NIL │ │ │ NIL │ │ │ NIL │ │ │ NIL │ │ │ NIL │ │ │ NIL │ │ │ NIL │ │ │ @@ -5204,8 +5204,8 @@ │ │ │ NIL │ │ │ NIL │ │ │ NIL │ │ │ NIL │ │ │ NIL │ │ │ NIL │ │ │ NIL │ │ │ -((|Category| NIL 2550745 2550750 2550755 2550760) (|Union| NIL 2550725 2550730 2550735 2550740) (|Record| NIL 2550705 2550710 2550715 2550720) (|Mapping| NIL 2550685 2550690 2550695 2550700) (|Enumeration| NIL 2550665 2550670 2550675 2550680) (|UnivariatePolynomialCategory| NIL 2544994 2545030 2550383 2550660) (|TriangularSetCategory| NIL 2535481 2535516 2544925 2544989) (|UnaryRecursiveAggregate| NIL 2528141 2528172 2535461 2535476) (|UnivariatePolynomialCategory&| NIL 2522425 2522464 2527817 2527822) (|Vector| NIL 2521139 2521153 2521393 2521445) (|UnaryRecursiveAggregate&| NIL 2513759 2513793 2521082 2521087) (|PolynomialCategory| NIL 2507123 2507160 2513520 2513754) (|UnivariateLaurentSeriesCategory| NIL 2505066 2505110 2506866 2507118) (|StreamAggregate| NIL 2504153 2504176 2505046 2505061) (|TriangularSetCategory&| NIL 2494658 2494696 2504105 2504110) (|Symbol| NIL 2490780 2490792 2494648 2494653) (|UniqueFactorizationDomain| NIL 2489841 2489872 2490663 2490775) (|UniqueFactorizationDomain&| NIL 2489006 2489040 2489831 2489836) (|StreamAggregate&| NIL 2488100 2488126 2488996 2489001) (|RealNumberSystem| NIL 2486838 2486860 2487930 2488095) (|PolynomialSetCategory| NIL 2481672 2481714 2486794 2486833) (|SingleInteger| NIL 2479918 2479937 2481433 2481667) (|SetAggregate| NIL 2476783 2476803 2479870 2479913) (|SetCategory| NIL 2476265 2476282 2476773 2476778) (|SetCategory&| NIL 2475744 2475764 2476255 2476260) (|SetAggregate&| NIL 2472644 2472667 2475734 2475739) (|RealNumberSystem&| NIL 2471539 2471564 2472634 2472639) (|QuotientFieldCategory| NIL 2470162 2470191 2471357 2471534) (|Ring| NIL 2469513 2469523 2470135 2470157) (|Ring&| NIL 2468878 2468891 2469503 2469508) (|Rng| NIL 2468410 2468419 2468868 2468873) (|Reference| NIL 2467746 2467763 2468357 2468362) (|RecursiveAggregate| NIL 2465704 2465730 2467726 2467741) (|RecursiveAggregate&| NIL 2463577 2463606 2465602 2465607) (|ListAggregate| NIL 2463198 2463219 2463508 2463572) (|PolynomialCategory&| NIL 2455709 2455749 2462109 2462114) (|QuotientFieldCategory&| NIL 2453822 2453854 2455020 2455025) (|PolynomialSetCategory&| NIL 2448641 2448686 2453766 2453771) (|OutputForm| NIL 2438078 2438094 2448631 2448636) (|PrimitiveArray| NIL 2437195 2437217 2437360 2437412) (|OrderedRing| NIL 2436513 2436530 2437168 2437190) (|PositiveInteger| NIL 2435994 2436015 2436479 2436508) (|OrderedRing&| NIL 2435326 2435346 2435984 2435989) (|OrderedIntegralDomain| NIL 2435041 2435068 2435209 2435321) (|NonNegativeInteger| NIL 2433761 2433785 2435031 2435036) (|Monoid| NIL 2432680 2432692 2433751 2433756) (|MultivariateTaylorSeriesCategory| NIL 2430612 2430663 2432510 2432675) (|Monoid&| NIL 2429528 2429543 2430602 2430607) (|IntegerNumberSystem| NIL 2426766 2426791 2429351 2429523) (|LinearAggregate| NIL 2423235 2423258 2426746 2426761) (|ListAggregate&| NIL 2422912 2422936 2423225 2423230) (|List| NIL 2420743 2420755 2422152 2422204) (|IndexedString| NIL 2419740 2419764 2419917 2419969) (|LinearAggregate&| NIL 2416169 2416195 2419683 2419688) (|IntegralDomain| NIL 2414823 2414843 2416052 2416164) (|Integer| NIL 2414069 2414082 2414567 2414818) (|ExpressionSpace| NIL 2407013 2407034 2414059 2414064) (|FiniteFieldCategory| NIL 2404541 2404566 2406843 2407008) (|IntegralDomain&| NIL 2403299 2403322 2404531 2404536) (|IntegerNumberSystem&| NIL 2400701 2400729 2403289 2403294) (|IndexedList| NIL 2399455 2399479 2399983 2400035) (|HomogeneousAggregate| NIL 2397231 2397259 2399435 2399450) (|EuclideanDomain| NIL 2394766 2394787 2397114 2397226) (|GcdDomain| NIL 2393670 2393685 2394649 2394761) (|HomogeneousAggregate&| NIL 2391247 2391278 2393454 2393459) (|FloatingPointSystem| NIL 2388099 2388124 2391057 2391242) (|FloatingPointSystem&| NIL 2385029 2385057 2387990 2387995) (|FiniteFieldCategory&| NIL 2382714 2382742 2385019 2385024) (|ExpressionSpace&| NIL 2375547 2375571 2382596 2382601) (|GcdDomain&| NIL 2374555 2374573 2375537 2375542) (|EuclideanDomain&| NIL 2372194 2372218 2374545 2374550) (|DoubleFloat| NIL 2368490 2368507 2372004 2372189) (|Collection| NIL 2365425 2365443 2368470 2368485) (|DivisionRing| NIL 2364840 2364858 2365334 2365420) (|DifferentialRing| NIL 2363940 2363962 2364813 2364835) (|DivisionRing&| NIL 2363433 2363454 2363930 2363935) (|EntireRing| NIL 2362953 2362969 2363342 2363428) (|DifferentialRing&| NIL 2362067 2362092 2362943 2362948) (|Character| NIL 2358421 2358436 2362057 2362062) (|Collection&| NIL 2355198 2355219 2358246 2358251) (|CommutativeRing| NIL 2354851 2354872 2355104 2355193) (|CancellationAbelianMonoid| NIL 2354327 2354358 2354841 2354846) (|Boolean| NIL 2353190 2353203 2354317 2354322) (|AbelianSemiGroup| NIL 2352555 2352577 2353180 2353185) (|AbelianMonoid| NIL 2351918 2351937 2352545 2352550) (|AbelianGroup| NIL 2351451 2351469 2351908 2351913) (|AssociationListAggregate| NIL 2350905 2350949 2351382 2351446) (|AbelianSemiGroup&| NIL 2350267 2350292 2350895 2350900) (|AbelianMonoid&| NIL 2349627 2349649 2350257 2350262) (|AbelianGroup&| NIL 2349157 2349178 2349617 2349622) (|PackageForAlgebraicFunctionFieldOverFiniteField| NIL 2332045 2332113 2349069 2349074) (|PackageForAlgebraicFunctionField| NIL 2324891 2324944 2331997 2332002) (|GuessFinite| NIL 2324694 2324713 2324812 2324817) (|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| NIL 2324080 2324159 2324684 2324689) (|GuessUnivariatePolynomial| NIL 2310154 2310189 2324070 2324075) (|GuessPolynomial| NIL 2309828 2309849 2309941 2309946) (|GuessInteger| NIL 2309537 2309555 2309645 2309650) (|GuessAlgebraicNumber| NIL 2309325 2309351 2309443 2309448) (|InfClsPt| NIL 2308776 2308805 2309315 2309320) (|GuessFiniteFunctions| NIL 2308639 2308667 2308766 2308771) (|Guess| NIL 2292904 2292946 2308483 2308488) (|InfinitlyClosePoint| NIL 2292304 2292384 2292894 2292899) (|ZeroDimensionalSolvePackage| NIL 2282896 2282942 2292294 2292299) (|SquareFreeRegularTriangularSet| NIL 2281035 2281079 2282517 2282569) (|SquareFreeRegularSetDecompositionPackage| NIL 2279764 2279821 2281025 2281030) (|GeneralPackageForAlgebraicFunctionField| NIL 2274285 2274409 2279716 2279721) (|SquareFreeNormalizedTriangularSetCategory| NIL 2273993 2274048 2274216 2274280) (|RecurrenceOperator| NIL 2272388 2272416 2273947 2273952) (|SquareFreeQuasiComponentPackage| NIL 2268277 2268325 2272378 2272383) (|SquareFreeRegularTriangularSetGcdPackage| NIL 2267939 2267996 2268267 2268272) (|RationalUnivariateRepresentationPackage| NIL 2265639 2265691 2267929 2267934) (|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| NIL 2263654 2263718 2264549 2264714) (|LexTriangularPackage| NIL 2259468 2259501 2263644 2263649) (|InternalRationalUnivariateRepresentationPackage| NIL 2258418 2258482 2259458 2259463) (|NormalizationPackage| NIL 2257248 2257285 2258408 2258413) (|LazardSetSolvingPackage| NIL 2256337 2256380 2257238 2257243) (|SparseUnivariateLaurentSeries| NIL 2243769 2243823 2244781 2245515) (|UnivariateLaurentSeries| NIL 2231592 2231640 2232585 2233295) (|UnivariateTaylorSeriesCZero| NIL 2226321 2226367 2229636 2229801) (|UnivariateTaylorSeries| NIL 2220679 2220726 2224365 2224530) (|UnivariateLaurentSeriesConstructor| NIL 2213417 2213468 2213816 2214068) (|UnivariatePuiseuxSeries| NIL 2210478 2210526 2211079 2211331) (|UnivariatePuiseuxSeriesConstructor| NIL 2207738 2207789 2208140 2208392) (|TransSolvePackage| NIL 2205310 2205335 2207728 2207733) (|UnivariateFormalPowerSeriesFunctions| NIL 2205192 2205241 2205300 2205305) (|RadicalSolvePackage| NIL 2199297 2199324 2205182 2205187) (|SparseUnivariatePuiseuxSeries| NIL 2195935 2195989 2196959 2197211) (|RegularTriangularSetGcdPackage| NIL 2193278 2193325 2195925 2195930) (|SquareFreeRegularTriangularSetCategory| NIL 2192781 2192833 2193209 2193273) (|RegularSetDecompositionPackage| NIL 2191507 2191554 2192771 2192776) (|RadicalEigenPackage| NIL 2189047 2189072 2191497 2191502) (|RegularChain| NIL 2187408 2187433 2188279 2188331) (|RegularTriangularSet| NIL 2185605 2185639 2187029 2187081) (|QuasiComponentPackage| NIL 2181570 2181608 2185595 2185600) (|ElementaryFunctionODESolver| NIL 2176866 2176903 2181560 2181565) (|ODEIntegration| NIL 2176277 2176301 2176856 2176861) (|NonLinearFirstOrderODESolver| NIL 2175712 2175750 2176267 2176272) (|ConstantLODE| NIL 2175215 2175239 2175702 2175707) (|NormalizedTriangularSetCategory| NIL 2174568 2174613 2175146 2175210) (|NottinghamGroup| NIL 2174440 2174463 2174541 2174563) (|ElementaryFunctionLODESolver| NIL 2173144 2173184 2174430 2174435) (|PowerSeriesLimitPackage| NIL 2171998 2172032 2173134 2173139) (|LaplaceTransform| NIL 2171533 2171559 2171988 2171993) (|IntegrationResultToFunction| NIL 2170689 2170726 2171523 2171528) (|IntegrationResultRFToFunction| NIL 2169193 2169230 2170629 2170634) (|FunctionSpaceToExponentialExpansion| NIL 2168323 2168379 2169183 2169188) (|InverseLaplaceTransform| NIL 2167903 2167936 2168313 2168318) (|IntersectionDivisorPackage| NIL 2167025 2167136 2167893 2167898) (|HyperellipticFiniteDivisor| NIL 2166637 2166681 2167015 2167020) (|GeneralUnivariatePowerSeries| NIL 2163314 2163367 2164299 2164551) (|FiniteDivisor| NIL 2162758 2162789 2163304 2163309) (|FunctionSpaceIntegration| NIL 2162356 2162390 2162748 2162753) (|FunctionSpaceComplexIntegration| NIL 2161595 2161636 2162346 2162351) (|FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber| NIL 2161416 2161487 2161585 2161590) (|ExpressionToUnivariatePowerSeries| NIL 2157475 2157519 2161406 2161411) (|Expression| NIL 2151549 2151567 2152286 2152909) (|ExpressionSolve| NIL 2151442 2151480 2151539 2151544) (|DeRhamComplex| NIL 2141179 2141222 2151415 2151437) (|ExpertSystemContinuityPackage| NIL 2137961 2137996 2141169 2141174) (|ElementaryFunctionsUnivariateLaurentSeries| NIL 2134754 2134817 2137914 2137919) (|DefiniteIntegrationTools| NIL 2132971 2133005 2134744 2134749) (|ElementaryFunctionDefiniteIntegration| NIL 2131420 2131467 2132961 2132966) (|RationalFunctionDefiniteIntegration| NIL 2128852 2128895 2131410 2131415) (|CylindricalAlgebraicDecompositionPackage| NIL 2128780 2128837 2128842 2128847) (|MyExpression| NIL 2126330 2126354 2126412 2126779) (|MyUnivariatePolynomial| NIL 2122476 2122510 2122819 2123096) (|WuWenTsunTriangularSet| NIL 2119044 2119080 2122097 2122149) (|TranscendentalManipulations| NIL 2113420 2113457 2118690 2118695) (|UnivariateTaylorSeriesFunctions2| NIL 2113016 2113080 2113410 2113415) (|TaylorSolve| NIL 2112915 2112947 2113006 2113011) (|UnivariatePuiseuxSeriesWithExponentialSingularity| NIL 2110050 2110122 2111510 2111751) (|UTSodetools| NIL 2109328 2109356 2109994 2109999) (|UnivariateTaylorSeriesODESolver| NIL 2107490 2107538 2109318 2109323) (|UnivariateLaurentSeriesConstructorCategory| NIL 2104938 2104997 2107204 2107485) (|UnivariateLaurentSeriesConstructorCategory&| NIL 2102622 2102684 2104891 2104896) (|UnivariateFormalPowerSeries| NIL 2100568 2100608 2100666 2100831) (|TrigonometricManipulations| NIL 2099046 2099082 2100558 2100563) (|SparseUnivariateTaylorSeries| NIL 2095629 2095682 2097090 2097255) (|ToolsForSign| NIL 2095283 2095303 2095619 2095624) (|TransSolvePackageService| NIL 2093851 2093883 2095273 2095278) (|FunctionSpaceSum| NIL 2093520 2093546 2093841 2093846) (|SimpleFortranProgram| NIL 2092964 2092995 2093510 2093515) (|SimplifyAlgebraicNumberConvertPackage| NIL 2092673 2092716 2092954 2092959) (|ElementaryFunctionSign| NIL 2091917 2091949 2092663 2092668) (|StochasticDifferential| NIL 2088359 2088389 2091868 2091912) (|Ruleset| NIL 2087791 2087815 2088349 2088354) (|RewriteRule| NIL 2085976 2086004 2087781 2087786) (|RadicalFunctionField| NIL 2083848 2083898 2083964 2084219) (|RegularTriangularSetCategory| NIL 2074636 2074678 2083779 2083843) (|ElementaryRischDE| NIL 2073682 2073709 2074626 2074631) (|RegularTriangularSetCategory&| NIL 2064526 2064571 2073672 2073677) (|ReducedDivisor| NIL 2064264 2064300 2064516 2064521) (|ElementaryRischDESystem| NIL 2063489 2063522 2064254 2064259) (|PointsOfFiniteOrder| NIL 2062897 2062937 2063479 2063484) (|PolynomialSetUtilitiesPackage| NIL 2050343 2050386 2062739 2062744) (|Quaternion| NIL 2048666 2048684 2048967 2049075) (|QuaternionCategoryFunctions2| NIL 2048052 2048096 2048656 2048661) (|FunctionSpaceAttachPredicates| NIL 2047528 2047569 2048042 2048047) (|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| NIL 2047366 2047428 2047518 2047523) (|PatternMatchFunctionSpace| NIL 2046932 2046969 2047356 2047361) (|FunctionSpaceAssertions| NIL 2045939 2045972 2046922 2046927) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| NIL 2045807 2045860 2045929 2045934) (|Places| NIL 2045714 2045728 2045797 2045802) (|PointsOfFiniteOrderRational| NIL 2045059 2045102 2045704 2045709) (|PiCoercions| NIL 2044795 2044814 2045049 2045054) (|PolynomialAN2Expression| NIL 2044188 2044217 2044785 2044790) (|ExponentialExpansion| NIL 2039120 2039163 2039776 2039941) (|PadeApproximants| NIL 2038111 2038141 2039110 2039115) (|ExpressionToOpenMath| NIL 2037927 2037955 2038101 2038106) (|RationalRicDE| NIL 2033826 2033850 2037861 2037866) (|PseudoAlgebraicClosureOfAlgExtOfRationalNumberCategory| NIL 2032678 2032738 2033656 2033821) (|PureAlgebraicLODE| NIL 2032033 2032068 2032668 2032673) (|OctonionCategoryFunctions2| NIL 2031651 2031693 2032023 2032028) (|Octonion| NIL 2029500 2029516 2030188 2030251) (|Numeric| NIL 2021607 2021622 2029259 2029264) (|NewSparseMultivariatePolynomial| NIL 2016593 2016641 2016914 2017148) (|NonLinearSolvePackage| NIL 2015200 2015229 2016583 2016588) (|NumericComplexEigenPackage| NIL 2013354 2013392 2015190 2015195) (|NagLinearEquationSolvingPackage| NIL 2007789 2007826 2013344 2013349) (|NagEigenPackage| NIL 2001932 2001953 2007779 2007784) (|NagMatrixOperationsPackage| NIL 1997718 1997750 2001922 2001927) (|MachineComplex| NIL 1991631 1991651 1992257 1992662) (|MultivariateFactorize| NIL 1991010 1991046 1991621 1991626) (|LiouvillianFunction| NIL 1989776 1989805 1991000 1991005) (|LieSquareMatrix| NIL 1987689 1987716 1988084 1988171) (|LinearOrdinaryDifferentialOperatorFactorizer| NIL 1986676 1986731 1987623 1987628) (|AssociatedLieAlgebra| NIL 1984419 1984449 1985659 1985903) (|Kovacic| NIL 1983099 1983117 1984409 1984414) (|InnerTrigonometricManipulations| NIL 1981837 1981881 1983089 1983094) (|AssociatedJordanAlgebra| NIL 1979556 1979589 1980820 1981064) (|PureAlgebraicIntegration| NIL 1977155 1977191 1979448 1979453) (|IntegrationTools| NIL 1974858 1974884 1976577 1976582) (|PatternMatchIntegration| NIL 1973029 1973062 1974376 1974381) (|AlgebraicIntegrate| NIL 1972175 1972214 1973019 1973024) (|AlgebraicHermiteIntegration| NIL 1971799 1971844 1972165 1972170) (|GenusZeroIntegration| NIL 1964903 1964935 1971691 1971696) (|ElementaryIntegration| NIL 1963246 1963277 1964893 1964898) (|AlgebraicIntegration| NIL 1962708 1962738 1963236 1963241) (|InfiniteProductPrimeField| NIL 1961781 1961823 1962698 1962703) (|InfiniteProductFiniteField| NIL 1960845 1960893 1961771 1961776) (|InnerNumericFloatSolvePackage| NIL 1959167 1959212 1960835 1960840) (|InfiniteProductCharacteristicZero| NIL 1958216 1958266 1959157 1959162) (|InnerNumericEigenPackage| NIL 1956742 1956782 1958206 1958211) (|InnerAlgebraicNumber| NIL 1954859 1954885 1956470 1956635) (|GeneralPolynomialSet| NIL 1954290 1954331 1954520 1954572) (|GenerateUnivariatePowerSeries| NIL 1950076 1950116 1954280 1954285) (|GeneralTriangularSet| NIL 1949193 1949227 1949697 1949749) (|GenUFactorize| NIL 1948786 1948807 1949183 1949188) (|GnuDraw| NIL 1946674 1946687 1948776 1948781) (|GenericNonAssociativeAlgebra| NIL 1940647 1940700 1946363 1946480) (|FunctionSpaceToUnivariatePowerSeries| NIL 1935104 1935172 1940637 1940642) (|GaussianFactorizationPackage| NIL 1934401 1934435 1935094 1935099) (|FunctionalSpecialFunction| NIL 1931669 1931704 1934391 1934396) (|FunctionSpaceFunctions2| NIL 1931260 1931297 1931659 1931664) (|FunctionSpaceUnivariatePolynomialFactor| NIL 1930249 1930301 1931172 1931177) (|FunctionSpaceReduce| NIL 1929660 1929689 1930239 1930244) (|FunctionSpacePrimitiveElement| NIL 1928474 1928513 1929594 1929599) (|FortranProgram| NIL 1926946 1927008 1928464 1928469) (|FramedNonAssociativeAlgebraFunctions2| NIL 1926359 1926412 1926936 1926941) (|FortranCode| NIL 1916315 1916332 1926349 1926354) (|FindOrderFinite| NIL 1916087 1916120 1916305 1916310) (|FloatingComplexPackage| NIL 1913533 1913567 1916077 1916082) (|FunctionFieldCategoryFunctions2| NIL 1913243 1913312 1913523 1913528) (|FiniteDivisorFunctions2| NIL 1912968 1913029 1913233 1913238) (|FiniteDivisorCategory| NIL 1910965 1911004 1912958 1912963) (|FiniteDivisorCategory&| NIL 1908959 1909001 1910955 1910960) (|ExpressionFunctions2| NIL 1908711 1908741 1908949 1908954) (|ExpressionTubePlot| NIL 1906163 1906187 1908701 1908706) (|ExpressionSpaceODESolver| NIL 1902889 1902923 1906153 1906158) (|ElementaryFunctionStructurePackage| NIL 1900858 1900902 1902879 1902884) (|ExpertSystemToolsPackage| NIL 1892696 1892726 1900848 1900853) (|DoubleFloatSpecialFunctions| NIL 1883666 1883699 1892686 1892691) (|ElementaryFunction| NIL 1878430 1878458 1883656 1883661) (|EllipticFunctionsUnivariateTaylorSeries| NIL 1877782 1877838 1878420 1878425) (|e04nafAnnaType| NIL 1877349 1877369 1877772 1877777) (|DesingTreePackage| NIL 1874389 1874491 1877339 1877344) (|d01TransformFunctionType| NIL 1874036 1874066 1874379 1874384) (|TopLevelDrawFunctionsForAlgebraicCurves| NIL 1873546 1873598 1874026 1874031) (|d01AgentsPackage| NIL 1869639 1869661 1873536 1873541) (|DoubleResultantPackage| NIL 1869231 1869271 1869629 1869634) (|d03eefAnnaType| NIL 1869039 1869059 1869221 1869226) (|d01WeightsPackage| NIL 1867347 1867370 1869029 1869034) (|d02AgentsPackage| NIL 1862278 1862300 1867337 1867342) (|ComplexRootFindingPackage| NIL 1856363 1856399 1862268 1862273) (|ComplexTrigonometricManipulations| NIL 1854804 1854847 1856353 1856358) (|ComplexPatternMatch| NIL 1854277 1854309 1854707 1854712) (|ComplexRootPackage| NIL 1853595 1853628 1854267 1854272) (|Complex| NIL 1845452 1845467 1845706 1846182) (|ComplexPattern| NIL 1845207 1845234 1845442 1845447) (|CombinatorialFunction| NIL 1842706 1842737 1845197 1845202) (|ComplexFactorization| NIL 1842484 1842516 1842696 1842701) (|ComplexIntegerSolveLinearPolynomialEquation| NIL 1841782 1841836 1842474 1842479) (|Cell| NIL 1841746 1841767 1841772 1841777) (|ComplexDoubleFloatVector| NIL 1839571 1839601 1840210 1840262) (|ComplexDoubleFloatMatrix| NIL 1838466 1838496 1838905 1838957) (|Asp80| NIL 1837793 1837811 1838456 1838461) (|AlgebraGivenByStructuralConstants| NIL 1836817 1836875 1837614 1837703) (|Asp77| NIL 1836185 1836203 1836807 1836812) (|Asp41| NIL 1834683 1834726 1836175 1836180) (|Asp42| NIL 1832955 1832998 1834673 1834678) (|Asp74| NIL 1831977 1831995 1832945 1832950) (|Asp35| NIL 1830957 1830975 1831967 1831972) (|Asp31| NIL 1830066 1830084 1830947 1830952) (|Asp20| NIL 1829234 1829252 1830056 1830061) (|Asp19| NIL 1823308 1823326 1829224 1829229) (|ApplyRules| NIL 1822638 1822665 1823298 1823303) (|AlgebraicNumber| NIL 1820679 1820700 1822366 1822531) (|AlgebraicFunctionField| NIL 1818446 1818494 1818667 1818922) (|AlgebraPackage| NIL 1814404 1814428 1818389 1818394) (|AlgebraicFunction| NIL 1812776 1812803 1814324 1814329) (|AlgebraicManipulations| NIL 1810192 1810224 1812532 1812537) (|AlgebraicallyClosedFunctionSpace| NIL 1807968 1808008 1810010 1810187) (|AlgebraicMultFact| NIL 1807161 1807191 1807958 1807963) (|AlgFactor| NIL 1806278 1806296 1807151 1807156) (|AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| NIL 1806078 1806136 1806268 1806273) (|AlgebraicallyClosedFunctionSpace&| NIL 1804023 1804066 1806068 1806073) (|RecursivePolynomialCategory| NIL 1787134 1787173 1803784 1804018) (|UnivariateTaylorSeriesCategory| NIL 1784356 1784399 1786964 1787129) (|UnivariateTaylorSeriesCategory&| NIL 1781163 1781209 1783774 1783779) (|SystemSolvePackage| NIL 1777779 1777805 1781153 1781158) (|Variable| NIL 1777554 1777574 1777769 1777774) (|SymbolTable| NIL 1775643 1775660 1777544 1777549) (|TheSymbolTable| NIL 1771697 1771717 1775633 1775638) (|Switch| NIL 1768440 1768452 1771687 1771692) (|SquareMatrix| NIL 1765704 1765731 1766619 1766761) (|SparseEchelonMatrix| NIL 1759644 1759673 1765558 1765610) (|Set| NIL 1757894 1757905 1759007 1759087) (|SpecialOutputPackage| NIL 1756446 1756472 1757884 1757889) (|SegmentBinding| NIL 1755513 1755535 1756393 1756398) (|SimpleCell| NIL 1755461 1755498 1755503 1755508) (|QuaternionCategory| NIL 1753609 1753635 1755348 1755456) (|RecursivePolynomialCategory&| NIL 1736423 1736465 1753076 1753081) (|SingletonAsOrderedSet| NIL 1736277 1736304 1736413 1736418) (|RuleCalled| NIL 1736122 1736142 1736267 1736272) (|RoutinesTable| NIL 1732402 1732421 1735152 1735204) (|RomanNumeral| NIL 1731535 1731553 1732163 1732397) (|RectangularMatrix| NIL 1730094 1730127 1730596 1730664) (|RationalFunctionFactor| NIL 1729810 1729841 1730084 1730089) (|RealClosure| NIL 1728431 1728459 1729093 1729258) (|RepresentationPackage1| NIL 1722584 1722614 1728373 1728378) (|Result| NIL 1721026 1721038 1721614 1721666) (|QuaternionCategory&| NIL 1718865 1718894 1720607 1720612) (|QueryEquation| NIL 1718467 1718486 1718855 1718860) (|QuasiAlgebraicSet2| NIL 1716463 1716497 1718457 1718462) (|PrimitiveElement| NIL 1714540 1714564 1716453 1716458) (|Polynomial| NIL 1710955 1710973 1711440 1711674) (|PatternMatchKernel| NIL 1710518 1710546 1710945 1710950) (|PatternMatchSymbol| NIL 1710059 1710085 1710508 1710513) (|Plcs| NIL 1709964 1709980 1710049 1710054) (|OctonionCategory| NIL 1707893 1707917 1709896 1709959) (|AnnaPartialDifferentialEquationPackage| NIL 1701971 1702015 1707883 1707888) (|Pattern| NIL 1696230 1696245 1701961 1701966) (|PseudoAlgebraicClosureOfRationalNumber| NIL 1694843 1694887 1695715 1695880) (|PseudoAlgebraicClosureOfFiniteField| NIL 1693658 1693701 1694528 1694693) (|AnnaNumericalOptimizationPackage| NIL 1686144 1686182 1693648 1693653) (|OrderedVariableList| NIL 1685908 1685948 1686134 1686139) (|OrdSetInts| NIL 1685505 1685521 1685898 1685903) (|OpenMathErrorKind| NIL 1684542 1684565 1685495 1685500) (|OpenMathError| NIL 1684084 1684103 1684532 1684537) (|RationalLODE| NIL 1681522 1681545 1684074 1684079) (|AnnaOrdinaryDifferentialEquationPackage| NIL 1669571 1669616 1681512 1681517) (|OctonionCategory&| NIL 1667150 1667177 1669156 1669161) (|NumberFormats| NIL 1665981 1666000 1667140 1667145) (|NeitherSparseOrDensePowerSeries| NIL 1664155 1664194 1664261 1664426) (|NumericRealEigenPackage| NIL 1662524 1662559 1664145 1664150) (|NagSpecialFunctionsPackage| NIL 1652942 1652974 1662514 1662519) (|NAGLinkSupportPackage| NIL 1652000 1652027 1652932 1652937) (|NagLapack| NIL 1650493 1650508 1651990 1651995) (|NagOptimisationPackage| NIL 1644267 1644295 1650483 1650488) (|NagFittingPackage| NIL 1635028 1635051 1644257 1644262) (|NagInterpolationPackage| NIL 1631098 1631127 1635018 1635023) (|NagPartialDifferentialEquationsPackage| NIL 1629101 1629145 1631088 1631093) (|NagOrdinaryDifferentialEquationsPackage| NIL 1621870 1621915 1629091 1629096) (|NagIntegrationPackage| NIL 1616395 1616422 1621860 1621865) (|InnerSparseUnivariatePowerSeries| NIL 1608522 1608567 1615138 1615303) (|NagSeriesSummationPackage| NIL 1604431 1604462 1608512 1608517) (|ThreeDimensionalMatrix| NIL 1602355 1602385 1603991 1603996) (|NagRootFindingPackage| NIL 1600882 1600909 1602345 1602350) (|NagPolynomialRootsPackage| NIL 1600189 1600220 1600872 1600877) (|Multiset| NIL 1596651 1596667 1599870 1599950) (|MakeFloatCompiledFunction| NIL 1595478 1595511 1596641 1596646) (|Matrix| NIL 1594233 1594247 1594719 1594771) (|LinearOrdinaryDifferentialOperatorsOps| NIL 1593127 1593175 1594223 1594228) (|LinearOrdinaryDifferentialOperator| NIL 1592370 1592419 1592712 1592775) (|ListMultiDictionary| NIL 1591410 1591437 1592079 1592131) (|Library| NIL 1589753 1589766 1590464 1590492) (|Kernel| NIL 1588252 1588266 1589479 1589484) (|IntegrationResult| NIL 1585911 1585936 1588053 1588097) (|FunctionSpace| NIL 1579663 1579684 1585527 1585906) (|InternalPrintPackage| NIL 1579421 1579447 1579653 1579658) (|AnnaNumericalIntegrationPackage| NIL 1570164 1570201 1579411 1579416) (|InputForm| NIL 1567069 1567084 1570154 1570159) (|InputFormFunctions1| NIL 1566697 1566724 1567059 1567064) (|PolynomialIdeals| NIL 1561810 1561859 1566618 1566623) (|FunctionFieldCategory| NIL 1550501 1550538 1561550 1561805) (|InfinitlyClosePointCategory| NIL 1549080 1549170 1550491 1550496) (|GeneralDistributedMultivariatePolynomial| NIL 1545099 1545154 1545890 1546124) (|Pi| NIL 1544638 1544646 1544929 1545094) (|GuessOptionFunctions0| NIL 1541034 1541061 1544628 1544633) (|GuessOption| NIL 1535318 1535335 1541024 1541029) (|FunctionCalled| NIL 1535155 1535179 1535308 1535313) (|FortranScalarType| NIL 1533284 1533307 1535145 1535150) (|FramedNonAssociativeAlgebra| NIL 1528425 1528460 1533190 1533279) (|FunctionFieldCategory&| NIL 1517286 1517326 1528338 1528343) (|FunctionSpace&| NIL 1510845 1510869 1516712 1516717) (|FullPartialFractionExpansion| NIL 1509573 1509612 1510835 1510840) (|FramedNonAssociativeAlgebra&| NIL 1504758 1504796 1509526 1509531) (|Factored| NIL 1496543 1496559 1503516 1503628) (|Float| NIL 1489774 1489785 1496300 1496538) (|ComplexCategory| NIL 1487652 1487675 1489281 1489769) (|FiniteFieldNormalBasisExtensionByPolynomial| NIL 1486028 1486086 1487237 1487402) (|FiniteFieldExtensionByPolynomial| NIL 1485363 1485413 1485613 1485778) (|FiniteFieldCyclicGroupExtensionByPolynomial| NIL 1484125 1484186 1484948 1485113) (|FortranExpression| NIL 1476718 1476779 1483813 1483876) (|e04AgentsPackage| NIL 1472446 1472468 1476708 1476713) (|EigenPackage| NIL 1468790 1468810 1472436 1472441) (|FortranCodePackage1| NIL 1467334 1467359 1468780 1468785) (|d03AgentsPackage| NIL 1466265 1466287 1467324 1467329) (|d01asfAnnaType| NIL 1465723 1465743 1466255 1466260) (|d01anfAnnaType| NIL 1465207 1465227 1465713 1465718) (|DrawOptionFunctions0| NIL 1460148 1460174 1465197 1465202) (|DrawOption| NIL 1453905 1453921 1460138 1460143) (|ComplexCategory&| NIL 1451471 1451497 1453103 1453108) (|TopLevelDrawFunctionsForCompiledFunctions| NIL 1440872 1440919 1451461 1451466) (|TopLevelDrawFunctions| NIL 1433761 1433793 1440862 1440867) (|CommonOperators| NIL 1433287 1433308 1433751 1433756) (|BlowUpPackage| NIL 1431529 1431576 1433277 1433282) (|BasicOperator| NIL 1427126 1427145 1431519 1431524) (|BasicOperatorFunctions1| NIL 1424583 1424614 1427074 1427079) (|Asp9| NIL 1423736 1423753 1424573 1424578) (|AttributeButtons| NIL 1419872 1419894 1423704 1423731) (|Asp8| NIL 1418811 1418828 1419862 1419867) (|Asp78| NIL 1418285 1418303 1418801 1418806) (|Asp55| NIL 1416717 1416735 1418275 1418280) (|Asp49| NIL 1415701 1415719 1416707 1416712) (|Asp7| NIL 1414895 1414912 1415691 1415696) (|PlaneAlgebraicCurvePlot| NIL 1413175 1413204 1414885 1414890) (|Asp33| NIL 1412756 1412774 1413165 1413170) (|Asp30| NIL 1411483 1411501 1412746 1412751) (|AlgebraicallyClosedField| NIL 1406542 1406572 1411313 1411478) (|Asp28| NIL 1396968 1396986 1406532 1406537) (|Asp27| NIL 1395819 1395837 1396958 1396963) (|Asp12| NIL 1395232 1395250 1395809 1395814) (|AntiSymm| NIL 1393565 1393588 1395205 1395227) (|AlgebraicallyClosedField&| NIL 1388781 1388814 1393555 1393560) (|Any| NIL 1386970 1386979 1388771 1388776) (|TabulatedComputationPackage| NIL 1385137 1385184 1386960 1386965) (|Table| NIL 1383952 1383977 1384224 1384276) (|StringTable| NIL 1382846 1382871 1383003 1383055) (|SparseTable| NIL 1381784 1381820 1381957 1381985) (|GaloisGroupFactorizer| NIL 1372309 1372339 1381774 1381779) (|InnerPrimeField| NIL 1371886 1371911 1372003 1372168) (|PatternMatchResult| NIL 1369531 1369559 1371876 1371881) (|KeyedAccessFile| NIL 1368003 1368032 1368725 1368777) (|IntegrationFunctionsTable| NIL 1361978 1362009 1367993 1367998) (|InnerTable| NIL 1360894 1360933 1361065 1361117) (|AssociationList| NIL 1358631 1358666 1358993 1359045) (|HashTable| NIL 1357502 1357540 1357718 1357770) (|GeneralSparseTable| NIL 1356425 1356476 1356613 1356641) (|EqTable| NIL 1355298 1355325 1355512 1355564) (|WildFunctionFieldIntegralBasis| NIL 1352888 1352933 1355288 1355293) (|ThreeDimensionalViewport| NIL 1337083 1337113 1352878 1352883) (|TableAggregate| NIL 1336081 1336115 1337038 1337078) (|PermutationGroup| NIL 1328036 1328060 1336071 1336076) (|TableAggregate&| NIL 1327066 1327103 1328026 1328031) (|ThreeSpace| NIL 1326841 1326859 1327056 1327061) (|SymmetricGroupCombinatoricFunctions| NIL 1320340 1320381 1326831 1326836) (|SAERationalFunctionAlgFactor| NIL 1320028 1320073 1320330 1320335) (|SimpleAlgebraicExtension| NIL 1317755 1317792 1318433 1318649) (|PAdicWildFunctionFieldIntegralBasis| NIL 1315108 1315158 1317745 1317750) (|SimpleAlgebraicExtensionAlgFactor| NIL 1314779 1314829 1315098 1315103) (|RandomDistributions| NIL 1314330 1314357 1314769 1314774) (|Permutation| NIL 1309791 1309810 1314132 1314154) (|IntegerPrimesPackage| NIL 1308006 1308034 1309781 1309786) (|ProjectiveAlgebraicSetPackage| NIL 1307182 1307248 1307996 1308001) (|OrderedMultisetAggregate| NIL 1306741 1306773 1307085 1307177) (|MathMLFormat| NIL 1305484 1305502 1306731 1306736) (|ChineseRemainderToolsForIntegralBases| NIL 1304359 1304409 1305474 1305479) (|ReduceLODE| NIL 1303716 1303744 1304349 1304354) (|NormInMonogenicAlgebra| NIL 1303397 1303443 1303706 1303711) (|InnerAlgFactor| NIL 1302946 1302987 1303387 1303392) (|FiniteSetAggregateFunctions2| NIL 1301664 1301706 1302936 1302941) (|CharacteristicPolynomialInMonogenicalAlgebra| NIL 1301327 1301388 1301654 1301659) (|CharacterClass| NIL 1299521 1299541 1300591 1300671) (|BasicStochasticDifferential| NIL 1297414 1297447 1299511 1299516) (|ElementaryFunctionsUnivariatePuiseuxSeries| NIL 1294146 1294216 1297367 1297372) (|MonogenicAlgebra| NIL 1292779 1292806 1293925 1294141) (|NumberFieldIntegralBasis| NIL 1290267 1290302 1292769 1292774) (|MonogenicAlgebra&| NIL 1288978 1289008 1290127 1290132) (|MultisetAggregate| NIL 1288767 1288792 1288905 1288973) (|KeyedDictionary| NIL 1287880 1287915 1288722 1288762) (|KeyedDictionary&| NIL 1287025 1287063 1287870 1287875) (|FiniteSetAggregate| NIL 1286145 1286171 1286928 1287020) (|IntegralBasisTools| NIL 1283079 1283110 1286135 1286140) (|IntegerFactorizationPackage| NIL 1282140 1282175 1283069 1283074) (|FiniteSetAggregate&| NIL 1281262 1281291 1282048 1282053) (|FramedModule| NIL 1280656 1280692 1281183 1281188) (|FractionalIdealFunctions2| NIL 1280371 1280426 1280646 1280651) (|FractionalIdeal| NIL 1279588 1279618 1280344 1280366) (|FunctionFieldIntegralBasis| NIL 1276976 1277015 1279578 1279583) (|DirectProductMatrixModule| NIL 1268734 1268775 1268882 1269321) (|AffineAlgebraicSetComputeWithResultant| NIL 1268580 1268655 1268724 1268729) (|AffineAlgebraicSetComputeWithGroebnerBasis| NIL 1268122 1268201 1268570 1268575) (|SquareMatrixCategory| NIL 1266177 1266224 1268018 1268117) (|UnivariatePuiseuxSeriesConstructorCategory| NIL 1264505 1264564 1265920 1266172) (|RightOpenIntervalRootCharacterization| NIL 1263578 1263644 1264495 1264500) (|UnivariatePuiseuxSeriesConstructorCategory&| NIL 1262150 1262212 1263568 1263573) (|SquareMatrixCategory&| NIL 1260160 1260210 1262004 1262009) (|TubePlotTools| NIL 1257044 1257063 1260150 1260155) (|SequentialDifferentialPolynomial| NIL 1253332 1253372 1253638 1253872) (|Plot| NIL 1248189 1248199 1253322 1253327) (|RootsFindingPackage| NIL 1246223 1246250 1248179 1248184) (|RectangularMatrixCategoryFunctions2| NIL 1245619 1245708 1246213 1246218) (|OrderlyDifferentialPolynomial| NIL 1241875 1241912 1242228 1242462) (|LocalParametrizationOfSimplePointPackage| NIL 1240293 1240380 1241865 1241870) (|NewtonPolygon| NIL 1240174 1240214 1240283 1240288) (|FramedAlgebra| NIL 1238555 1238579 1240106 1240169) (|MultiDictionary| NIL 1237810 1237833 1238510 1238550) (|InterpolateFormsPackage| NIL 1236941 1237019 1237800 1237805) (|FiniteFieldFactorizationWithSizeParseBySideEffect| NIL 1236313 1236377 1236931 1236936) (|FramedAlgebra&| NIL 1234749 1234776 1236303 1236308) (|FactorisationOverPseudoAlgebraicClosureOfRationalNumber| NIL 1234578 1234641 1234739 1234744) (|DifferentialSparseMultivariatePolynomial| NIL 1231046 1231098 1231377 1231611) (|Dictionary| NIL 1230645 1230663 1231001 1231041) (|ExponentialOfUnivariatePuiseuxSeries| NIL 1226997 1227054 1228307 1228559) (|Dictionary&| NIL 1226628 1226649 1226987 1226992) (|TwoDimensionalViewport| NIL 1214806 1214834 1226618 1226623) (|WeightedPolynomials| NIL 1213735 1213795 1214598 1214715) (|WeierstrassPreparation| NIL 1211980 1212010 1213725 1213730) (|Void| NIL 1211579 1211589 1211970 1211975) (|ViewDefaultsPackage| NIL 1206847 1206872 1211569 1211574) (|UnivariatePolynomialSquareFree| NIL 1205267 1205308 1206837 1206842) (|UnivariatePuiseuxSeriesCategory| NIL 1203727 1203771 1205010 1205262) (|UnivariatePolynomialMultiplicationPackage| NIL 1202623 1202674 1203717 1203722) (|UnivariatePolynomialCategoryFunctions2| NIL 1202053 1202107 1202613 1202618) (|UnivariatePolynomialDivisionPackage| NIL 1201586 1201632 1202043 1202048) (|UnivariatePolynomialDecompositionPackage| NIL 1199782 1199833 1201576 1201581) (|UnivariatePolynomialCommonDenominator| NIL 1198949 1198999 1199772 1199777) (|UnivariatePolynomial| NIL 1194830 1194862 1195438 1195715) (|UnivariateFactorize| NIL 1193937 1193965 1194820 1194825) (|TwoFactorize| NIL 1192592 1192612 1193927 1193932) (|TexFormat| NIL 1189723 1189738 1192582 1192587) (|Tree| NIL 1187944 1187956 1189506 1189558) (|TextFile| NIL 1186518 1186532 1187934 1187939) (|TangentExpansions| NIL 1185880 1185905 1186508 1186513) (|TemplateUtilities| NIL 1185427 1185450 1185870 1185875) (|SparseUnivariatePolynomial| NIL 1181038 1181072 1181916 1182193) (|SupFractionFactorizer| NIL 1180140 1180176 1181028 1181033) (|SparseUnivariatePolynomialExpressions| NIL 1176462 1176507 1176565 1176842) (|SubSpace| NIL 1168812 1168832 1176452 1176457) (|RationalFunctionSum| NIL 1167464 1167491 1168802 1168807) (|StreamTranscendentalFunctions| NIL 1163539 1163581 1167454 1167459) (|SubResultantPackage| NIL 1162682 1162712 1163482 1163487) (|StreamTranscendentalFunctionsNonCommutative| NIL 1159112 1159168 1162672 1162677) (|StreamInfiniteProduct| NIL 1158030 1158064 1159102 1159107) (|SplittingTree| NIL 1153516 1153539 1157694 1157746) (|PolynomialSolveByFormulas| NIL 1151962 1151998 1153506 1153511) (|SparseMultivariatePolynomial| NIL 1148494 1148539 1148892 1149126) (|SparseMultivariateTaylorSeries| NIL 1146200 1146253 1147889 1148054) (|SturmHabichtPackage| NIL 1144141 1144172 1146149 1146154) (|SmithNormalForm| NIL 1142966 1143003 1144131 1144136) (|RationalFunctionSign| NIL 1142039 1142067 1142956 1142961) (|StructuralConstantsPackage| NIL 1140126 1140160 1142029 1142034) (|SplitHomogeneousDirectProduct| NIL 1129762 1129815 1130290 1130494) (|RectangularMatrixCategory| NIL 1125347 1125400 1129677 1129757) (|RealRootCharacterizationCategory| NIL 1123724 1123783 1125337 1125342) (|RationalInterpolation| NIL 1123598 1123632 1123714 1123719) (|RealRootCharacterizationCategory&| NIL 1121972 1122034 1123588 1123593) (|RectangularMatrixCategory&| NIL 1117446 1117502 1121779 1121784) (|RationalFunction| NIL 1115127 1115151 1117436 1117441) (|RationalFunctionFactorizer| NIL 1114566 1114600 1115117 1115122) (|RetractSolvePackage| NIL 1113969 1113998 1114556 1114561) (|ResidueRing| NIL 1113280 1113331 1113875 1113964) (|RealSolvePackage| NIL 1111861 1111883 1113270 1113275) (|RealZeroPackageQ| NIL 1109199 1109227 1111851 1111856) (|RealZeroPackage| NIL 1106096 1106123 1109189 1109194) (|RealClosedField| NIL 1103341 1103362 1105926 1106091) (|TranscendentalRischDESystem| NIL 1102175 1102213 1103331 1103336) (|TranscendentalRischDE| NIL 1100126 1100158 1102165 1102170) (|RealClosedField&| NIL 1097528 1097552 1100116 1100121) (|RationalFactorize| NIL 1096698 1096724 1097518 1097523) (|RadixExpansion| NIL 1092795 1092820 1094452 1094617) (|PseudoRemainderSequence| NIL 1084436 1084474 1092744 1092749) (|QuotientFieldCategoryFunctions2| NIL 1084108 1084153 1084426 1084431) (|QuasiAlgebraicSet| NIL 1080237 1080284 1083993 1083998) (|PolynomialSquareFree| NIL 1079530 1079572 1080227 1080232) (|PushVariables| NIL 1078856 1078886 1079520 1079525) (|PolynomialToUnivariatePolynomial| NIL 1078272 1078316 1078846 1078851) (|PolynomialFunctions2| NIL 1077860 1077890 1078262 1078267) (|PolynomialRoots| NIL 1076588 1076619 1077809 1077814) (|PolynomialCategoryLifting| NIL 1075854 1075900 1076578 1076583) (|PolynomialCategoryQuotientFunctions| NIL 1073835 1073886 1075844 1075849) (|PolToPol| NIL 1072577 1072598 1073825 1073830) (|PolynomialNumberTheoryFunctions| NIL 1069220 1069257 1072567 1072572) (|RealPolynomialUtilitiesPackage| NIL 1068224 1068281 1069167 1069172) (|PatternMatchPolynomialCategory| NIL 1067262 1067308 1068142 1068147) (|PatternMatchQuotientFieldCategory| NIL 1066830 1066875 1067252 1067257) (|ParametricLinearEquations| NIL 1052904 1052954 1066820 1066825) (|PolynomialPackageForCurve| NIL 1051779 1051840 1052894 1052899) (|PolynomialGcdPackage| NIL 1050249 1050284 1051769 1051774) (|PolynomialInterpolationAlgorithms| NIL 1050006 1050049 1050239 1050244) (|PartialFractionPackage| NIL 1049044 1049074 1049996 1050001) (|PolynomialFactorizationByRecursion| NIL 1046671 1046726 1049034 1049039) (|PackageForPoly| NIL 1044800 1044841 1046661 1046666) (|PointsOfFiniteOrderTools| NIL 1044125 1044163 1044790 1044795) (|PolynomialFactorizationByRecursionUnivariate| NIL 1041990 1042044 1044115 1044120) (|PAdicRationalConstructor| NIL 1038786 1038826 1039937 1040102) (|PrimeField| NIL 1038342 1038362 1038480 1038645) (|PolynomialDecomposition| NIL 1037677 1037711 1038332 1038337) (|ParametrizationPackage| NIL 1036480 1036549 1037667 1037672) (|PolynomialComposition| NIL 1036196 1036228 1036470 1036475) (|PAdicRational| NIL 1033380 1033403 1033564 1033729) (|PadeApproximantPackage| NIL 1032305 1032344 1033370 1033375) (|PseudoAlgebraicClosureOfRationalNumberCategory| NIL 1031173 1031225 1032135 1032300) (|PrimitiveRatRicDE| NIL 1028177 1028210 1031163 1031168) (|OpenMathServerPackage| NIL 1027213 1027240 1028167 1028172) (|OpenMathPackage| NIL 1025876 1025897 1027203 1027208) (|PrimitiveRatDE| NIL 1023126 1023156 1025866 1025871) (|OrderedDirectProduct| NIL 1012914 1012952 1013290 1013494) (|MultivariateLifting| NIL 1011532 1011566 1012904 1012909) (|NewSparseUnivariatePolynomial| NIL 1004345 1004382 1008021 1008298) (|NPCoef| NIL 1003608 1003632 1004335 1004340) (|NumberTheoreticPolynomialFunctions| NIL 1003110 1003152 1003508 1003513) (|MultivariateSquareFree| NIL 1000058 1000095 1003100 1003105) (|NormRetractPackage| NIL 999640 999691 1000048 1000053) (|MRationalFactorize| NIL 999185 999218 999630 999635) (|MPolyCatRationalFunctionFactorizer| NIL 997245 997296 999175 999180) (|MultivariatePolynomial| NIL 993693 993728 994055 994289) (|MPolyCatFunctions3| NIL 993490 993546 993683 993688) (|MPolyCatFunctions2| NIL 993225 993274 993480 993485) (|MPolyCatPolyFactorizer| NIL 992484 992523 993215 993220) (|ModMonic| NIL 988056 988078 988880 989157) (|MultFiniteFactorize| NIL 987443 987478 988046 988051) (|MonomialExtensionTools| NIL 985798 985831 987433 987438) (|MultipleMap| NIL 985523 985566 985788 985793) (|MachineInteger| NIL 984871 984891 985346 985518) (|MachineFloat| NIL 983229 983247 984681 984866) (|ModularDistinctDegreeFactorizer| NIL 981472 981511 983219 983224) (|MatrixLinearAlgebraFunctions| NIL 978851 978901 981328 981333) (|MatrixCommonDenominator| NIL 978032 978065 978841 978846) (|LinearSystemPolynomialPackage| NIL 977548 977592 978022 978027) (|LinearPolynomialEquationByFractions| NIL 976776 976819 977538 977543) (|Localize| NIL 976133 976153 976676 976720) (|LinearDependence| NIL 974986 975012 976039 976044) (|LinearSystemFromPowerSeriesPackage| NIL 974405 974451 974976 974981) (|LinGroebnerPackage| NIL 971771 971802 974395 974400) (|RationalFunctionLimitPackage| NIL 969703 969739 971761 971766) (|TranscendentalIntegration| NIL 962706 962742 969693 969698) (|LeadingCoefDetermination| NIL 961114 961153 962696 962701) (|LaurentPolynomial| NIL 959588 959616 960552 960664) (|InnerPolySum| NIL 959064 959090 959578 959583) (|IntegerSolveLinearPolynomialEquation| NIL 958350 958392 959054 959059) (|RationalFunctionIntegration| NIL 956693 956728 958340 958345) (|RationalIntegration| NIL 955349 955379 956683 956688) (|TranscendentalHermiteIntegration| NIL 954589 954632 955339 955344) (|InnerMultFact| NIL 953584 953612 954579 954584) (|InterfaceGroebnerPackage| NIL 953430 953476 953574 953579) (|InnerPolySign| NIL 952867 952891 953420 953425) (|IdealDecompositionPackage| NIL 950116 950157 952857 952862) (|InnerModularGcd| NIL 949279 949322 950106 950111) (|InnerMatrixLinearAlgebraFunctions| NIL 947867 947922 949222 949227) (|InnerMatrixQuotientFieldFunctions| NIL 946915 946990 947810 947815) (|InnerIndexedTwoDimensionalArray| NIL 946564 946631 946698 946750) (|InnerCommonDenominator| NIL 945777 945813 946554 946559) (|IndexCard| NIL 945053 945068 945767 945772) (|IndexedBits| NIL 944210 944232 944631 944683) (|HTMLFormat| NIL 943089 943105 944200 944205) (|InnerFiniteField| NIL 942309 942339 942574 942739) (|IntegralBasisPolynomialTools| NIL 940926 940969 942299 942304) (|HeuGcd| NIL 939881 939896 940916 940921) (|HexadecimalExpansion| NIL 936865 936891 937635 937800) (|HomogeneousDirectProduct| NIL 926647 926685 927029 927233) (|HomogeneousDistributedMultivariatePolynomial| NIL 922816 922873 923457 923691) (|GraphImage| NIL 915847 915863 922806 922811) (|GroebnerSolve| NIL 914431 914459 915837 915842) (|GosperSummationMethod| NIL 913700 913737 914421 914426) (|FiniteRankNonAssociativeAlgebra| NIL 902984 903023 913606 913695) (|Graphviz| NIL 901744 901758 902974 902979) (|GeneralHenselPackage| NIL 900898 900930 901734 901739) (|GeneralModulePolynomial| NIL 899977 900025 900849 900893) (|GroebnerInternalPackage| NIL 896054 896113 899967 899972) (|GroebnerFactorizationPackage| NIL 891506 891570 896044 896049) (|EuclideanGroebnerBasisPackage| NIL 888153 888218 891496 891501) (|GroebnerPackage| NIL 883357 883408 888106 888111) (|GaloisGroupPolynomialUtilities| NIL 881834 881875 883347 883352) (|GaloisGroupFactorizationUtilities| NIL 880012 880058 881824 881829) (|GeneralPolynomialGcdPackage| NIL 879637 879679 880002 880007) (|GenExEuclid| NIL 878129 878151 879627 879632) (|GeneralizedMultivariateFactorize| NIL 877566 877615 878119 878124) (|FortranTemplate| NIL 876724 876745 877556 877561) (|Fraction| NIL 872976 872992 873367 873661) (|FortranPackage| NIL 871913 871933 872966 872971) (|ScriptFormulaFormat| NIL 869290 869315 871903 871908) (|FiniteFieldFunctions| NIL 866772 866801 869280 869285) (|FortranOutputStackPackage| NIL 865950 865981 866762 866767) (|FiniteRankAlgebra| NIL 864032 864060 865882 865945) (|FiniteRankNonAssociativeAlgebra&| NIL 853351 853393 863976 863981) (|FloatingRealPackage| NIL 851142 851173 853341 853346) (|FileName| NIL 851028 851042 851132 851137) (|FiniteRankAlgebra&| NIL 849021 849052 850874 850879) (|FiniteFieldPolynomialPackage| NIL 840451 840488 849011 849016) (|FGLMIfCanPackage| NIL 839363 839392 840441 840446) (|File| NIL 838948 838960 839353 839358) (|FiniteFieldSolveLinearPolynomialEquation| NIL 838417 838472 838938 838943) (|FiniteFieldExtension| NIL 837697 837730 838002 838167) (|FiniteFieldSquareFreeDecomposition| NIL 837538 837587 837687 837692) (|FiniteFieldNormalBasisExtension| NIL 835939 835988 837123 837288) (|FractionFreeFastGaussian| NIL 830100 830134 835929 835934) (|FiniteFieldNormalBasis| NIL 828469 828510 829610 829775) (|FractionFreeFastGaussianFractions| NIL 827117 827163 828459 828464) (|FiniteFieldHomomorphisms| NIL 825888 825927 827107 827112) (|FiniteFieldFactorization| NIL 825787 825826 825878 825883) (|FiniteFieldCyclicGroupExtension| NIL 824527 824576 825372 825537) (|FiniteFieldCyclicGroup| NIL 823182 823223 824037 824202) (|e04ucfAnnaType| NIL 822708 822728 823172 823177) (|FactoringUtilities| NIL 820906 820939 822698 822703) (|FiniteField| NIL 820194 820219 820416 820581) (|e04jafAnnaType| NIL 819720 819740 820184 820189) (|e04gcfAnnaType| NIL 819246 819266 819710 819715) (|e04fdfAnnaType| NIL 818772 818792 819236 819241) (|d01apfAnnaType| NIL 818242 818262 818762 818767) (|e04dgfAnnaType| NIL 817768 817788 818232 818237) (|Export3D| NIL 817476 817490 817758 817763) (|EvaluateCycleIndicators| NIL 816953 816984 817466 817471) (|Equation| NIL 811431 811447 814181 814320) (|ErrorFunctions| NIL 809038 809058 811421 811426) (|EuclideanModularRing| NIL 808165 808232 808921 809033) (|DifferentialPolynomialCategory| NIL 803427 803471 807926 808160) (|d01aqfAnnaType| NIL 802910 802930 803417 803422) (|d01amfAnnaType| NIL 802410 802430 802900 802905) (|d01alfAnnaType| NIL 801940 801960 802400 802405) (|d01akfAnnaType| NIL 801458 801478 801930 801935) (|d01ajfAnnaType| NIL 800971 800991 801448 801453) (|DifferentialPolynomialCategory&| NIL 796411 796458 800913 800918) (|DesingTree| NIL 795562 795580 796194 796246) (|DirectProductModule| NIL 787329 787362 787468 787907) (|DistributedMultivariatePolynomial| NIL 783446 783492 784139 784373) (|DirectProduct| NIL 772974 773001 773610 773814) (|DisplayPackage| NIL 771176 771196 772964 772969) (|DictionaryOperations| NIL 770225 770253 771131 771171) (|DictionaryOperations&| NIL 769260 769291 770169 770174) (|DecimalExpansion| NIL 766414 766436 767014 767179) (|DistinctDegreeFactorize| NIL 764274 764308 766404 766409) (|CycleIndicators| NIL 761072 761093 764264 764269) (|CyclotomicPolynomialPackage| NIL 760551 760584 761062 761067) (|ContinuedFraction| NIL 756503 756528 760381 760546) (|CoerceVectorMatrixPackage| NIL 755865 755898 756493 756498) (|ChangeOfVariable| NIL 753825 753857 755855 755860) (|CommuteUnivariatePolynomialCategory| NIL 753566 753617 753815 753820) (|CommonDenominator| NIL 752791 752820 753556 753561) (|BalancedPAdicRational| NIL 749701 749732 749911 750076) (|CylindricalAlgebraicDecompositionUtilities| NIL 749276 749328 749691 749696) (|BrillhartTests| NIL 748037 748060 749266 749271) (|BoundIntegerRoots| NIL 747684 747712 748027 748032) (|BinaryExpansion| NIL 744814 744835 745438 745603) (|BinaryFile| NIL 744163 744179 744804 744809) (|BezoutMatrix| NIL 743285 743322 744105 744110) (|AxiomServer| NIL 743136 743153 743275 743280) (|BalancedFactorisation| NIL 742536 742568 743126 743131) (|Asp73| NIL 741794 741812 742526 742531) (|Asp6| NIL 740470 740487 741784 741789) (|Asp50| NIL 738121 738139 740460 740465) (|Asp24| NIL 737191 737209 738111 738116) (|Asp10| NIL 736467 736485 737181 737186) (|Asp4| NIL 735752 735769 736457 736462) (|Asp1| NIL 735128 735145 735742 735747) (|VectorFunctions2| NIL 733789 733815 735118 735123) (|RepresentationPackage2| NIL 723811 723841 733608 733613) (|SymmetricFunctions| NIL 723217 723243 723801 723806) (|String| NIL 722402 722414 722503 722555) (|SetOfMIntegersInOneToN| NIL 720863 720899 722392 722397) (|SExpression| NIL 720747 720764 720853 720858) (|PointPackage| NIL 717863 717883 720737 720742) (|PseudoLinearNormalForm| NIL 716350 716380 717853 717858) (|Point| NIL 715228 715241 715318 715370) (|PolynomialFactorizationExplicit| NIL 712864 712901 715111 715223) (|PolynomialFactorizationExplicit&| NIL 710551 710591 712801 712806) (|Permanent| NIL 709303 709324 710541 710546) (|OrderingFunctions| NIL 708435 708466 709293 709298) (|ODETools| NIL 706958 706979 708425 708430) (|SystemODESolver| NIL 704409 704435 706948 706953) (|NumericalQuadrature| NIL 693121 693146 704399 704404) (|NumericalOrdinaryDifferentialEquations| NIL 684652 684696 693111 693116) (|ModularHermitianRowReduction| NIL 683271 683307 684642 684647) (|MultiVariableCalculusFunctions| NIL 680507 680557 683261 683266) (|FiniteAlgebraicExtensionField| NIL 673689 673726 680337 680502) (|InnerNormalBasisFieldFunctions| NIL 669555 669594 673679 673684) (|LinesOpPack| NIL 668207 668226 669545 669550) (|IrrRepSymNatPackage| NIL 666283 666308 668197 668202) (|HallBasis| NIL 664872 664887 666273 666278) (|GrayCode| NIL 663426 663440 664862 664867) (|FiniteAlgebraicExtensionField&| NIL 656727 656767 663378 663383) (|FreeNilpotentLie| NIL 656118 656154 656678 656722) (|FiniteFieldPolynomialPackage2| NIL 655202 655242 656108 656113) (|d02cjfAnnaType| NIL 654670 654690 655192 655197) (|d02bhfAnnaType| NIL 654150 654170 654660 654665) (|DirectProductCategory| NIL 652989 653024 653929 654145) (|d02bbfAnnaType| NIL 652469 652489 652979 652984) (|DirectProductCategory&| NIL 651013 651051 651956 651961) (|DiophantineSolutionPackage| NIL 649834 649866 651003 651008) (|DenavitHartenbergMatrix| NIL 647724 647755 649382 649434) (|TwoDimensionalPlotClipping| NIL 643820 643852 647714 647719) (|CartesianTensor| NIL 635149 635186 643810 643815) (|Database| NIL 633815 633831 635139 635144) (|CoordinateSystems| NIL 628755 628780 633805 633810) (|CliffordAlgebra| NIL 627433 627462 628687 628750) (|AssociatedEquations| NIL 626202 626231 627386 627391) (|PrecomputedAssociatedEquations| NIL 625540 625580 626192 626197) (|U32Matrix| NIL 624643 624658 625031 625083) (|U16Matrix| NIL 623746 623761 624134 624186) (|U8Matrix| NIL 622852 622866 623237 623289) (|TriangularMatrixOperations| NIL 621800 621848 622842 622847) (|StringCategory| NIL 621540 621560 621731 621795) (|ReductionOfOrder| NIL 620661 620687 621530 621535) (|PointCategory| NIL 619717 619738 620592 620656) (|ProjectivePlane| NIL 619594 619617 619707 619712) (|MatrixManipulation| NIL 611001 611041 619584 619589) (|MatrixCategoryFunctions2| NIL 610261 610331 610991 610996) (|LiePolynomial| NIL 609365 609395 610084 610170) (|LinearSystemMatrixPackage| NIL 608148 608195 609355 609360) (|LinearSystemMatrixPackage1| NIL 605890 605924 608138 608143) (|Interval| NIL 605609 605625 605753 605885) (|LinearOrdinaryDifferentialOperator2| NIL 604741 604786 605194 605257) (|LinearOrdinaryDifferentialOperator1| NIL 604000 604043 604326 604389) (|LocalPowerSeriesCategory| NIL 602309 602341 603830 603995) (|IndexedVector| NIL 601126 601152 601277 601329) (|IndexedMatrix| NIL 600151 600188 600674 600726) (|DoubleFloatVector| NIL 598512 598535 598906 598958) (|DirectProductFunctions2| NIL 597352 597391 598502 598507) (|DoubleFloatMatrix| NIL 596384 596407 596807 596859) (|Bits| NIL 595745 595755 595962 596014) (|AffinePlane| NIL 595584 595603 595735 595740) (|XRecursivePolynomial| NIL 594725 594762 595363 595485) (|XPBWPolynomial| NIL 593287 593318 594413 594535) (|XPolynomial| NIL 592774 592793 593066 593188) (|VectorCategory| NIL 590738 590760 592705 592769) (|ExtensionField| NIL 589123 589145 590568 590733) (|ExtensionField&| NIL 587520 587545 588968 588973) (|XDistributedPolynomial| NIL 587055 587090 587299 587421) (|XExponentialPackage| NIL 586438 586480 587045 587050) (|VectorCategory&| NIL 584190 584215 586160 586165) (|U32Vector| NIL 583233 583248 583443 583495) (|U16Vector| NIL 582276 582291 582486 582538) (|U8Vector| NIL 581321 581335 581529 581581) (|UnivariatePowerSeriesCategory| NIL 578797 578847 581151 581316) (|UnivariatePowerSeriesCategory&| NIL 576010 576063 578367 578372) (|Tuple| NIL 575030 575043 575957 575962) (|MatrixCategory| NIL 560939 560973 574961 575025) (|TaylorSeries| NIL 559351 559376 560334 560499) (|Stream| NIL 554946 554960 559033 559061) (|SymmetricPolynomial| NIL 553592 553619 553690 553924) (|StringAggregate| NIL 548892 548913 553523 553587) (|StringAggregate&| NIL 544248 544272 548882 548887) (|Plot3D| NIL 540858 540870 544238 544243) (|ProjectiveSpace| NIL 540729 540758 540848 540853) (|PolynomialRing| NIL 538777 538801 539482 539716) (|U32VectorPolynomialOperations| NIL 533416 533451 538767 538772) (|PrimitiveArrayFunctions2| NIL 531521 531555 533406 533411) (|PseudoAlgebraicClosureOfFiniteFieldCategory| NIL 530395 530444 531351 531516) (|UnivariateSkewPolynomial| NIL 529626 529678 529980 530043) (|UnivariateSkewPolynomialCategoryOps| NIL 527338 527383 529531 529536) (|SparseUnivariateSkewPolynomial| NIL 526498 526552 526923 526986) (|StorageEfficientMatrixOperations| NIL 523748 523788 526488 526493) (|MatrixCategory&| NIL 509480 509517 523505 523510) (|LyndonWord| NIL 506711 506736 509470 509475) (|LinearOrdinaryDifferentialOperatorCategory| NIL 505296 505346 506643 506706) (|LinearOrdinaryDifferentialOperatorCategory&| NIL 503899 503952 505249 505254) (|IntegerNumberTheoryFunctions| NIL 500252 500286 503889 503894) (|LiouvillianFunctionCategory| NIL 499080 499113 500242 500247) (|IndexedFlexibleArray| NIL 496199 496232 498362 498414) (|IrredPolyOverFiniteField| NIL 495778 495811 496189 496194) (|IntervalCategory| NIL 494334 494358 495641 495773) (|IndexedTwoDimensionalArray| NIL 493994 494044 494117 494169) (|IndexedOneDimensionalArray| NIL 493159 493198 493276 493328) (|FloatSpecialFunctions| NIL 492526 492553 493149 493154) (|Heap| NIL 488621 488633 492309 492361) (|GaloisGroupUtilities| NIL 486912 486940 488560 488565) (|FreeLieAlgebra| NIL 484950 484981 486821 486907) (|e04mbfAnnaType| NIL 484520 484540 484940 484945) (|FlexibleArray| NIL 482813 482834 483802 483854) (|FiniteAbelianMonoidRingFunctions2| NIL 482356 482409 482803 482808) (|d01fcfAnnaType| NIL 481868 481888 482346 482351) (|IntegerCombinatoricFunctions| NIL 480349 480385 481858 481863) (|BitAggregate| NIL 479417 479435 480280 480344) (|CyclicStreamTools| NIL 478204 478232 479407 479412) (|BitAggregate&| NIL 477328 477349 478194 478199) (|ArrayStack| NIL 472300 472318 477111 477163) (|TwoDimensionalArray| NIL 471841 471868 472083 472135) (|OneDimensionalArray| NIL 470629 470656 471123 471175) (|OneDimensionalArrayFunctions2| NIL 468659 468698 470619 470624) (|ApplyUnivariateSkewPolynomial| NIL 468234 468275 468649 468654) (|AffineSpace| NIL 468067 468092 468224 468229) (|XPolynomialRing| NIL 465631 465656 467643 467834) (|XPolynomialsCat| NIL 464884 464912 465504 465626) (|ViewportPackage| NIL 462590 462611 464874 464879) (|VectorSpace| NIL 462238 462257 462541 462585) (|VectorSpace&| NIL 461922 461944 462228 462233) (|TranscendentalFunctionCategory| NIL 461742 461778 461912 461917) (|UniversalSegment| NIL 461065 461089 461644 461649) (|UserDefinedPartialOrdering| NIL 458560 458594 461013 461018) (|TranscendentalFunctionCategory&| NIL 458377 458416 458550 458555) (|TubePlot| NIL 457062 457084 458367 458372) (|TopLevelThreeSpace| NIL 456725 456749 457052 457057) (|Tableau| NIL 456211 456226 456715 456720) (|StreamTaylorSeriesOperations| NIL 448738 448774 456072 456077) (|TableauxBumpers| NIL 445644 445667 448728 448733) (|Stack| NIL 441515 441528 445427 445479) (|SExpressionOf| NIL 441348 441398 441505 441510) (|SegmentFunctions2| NIL 440744 440771 441295 441300) (|Segment| NIL 440536 440551 440646 440651) (|SortedCache| NIL 439377 439396 440526 440531) (|Queue| NIL 435152 435165 439160 439212) (|PowerSeriesCategory| NIL 433830 433876 434982 435147) (|QuadraticForm| NIL 433288 433313 433820 433825) (|PowerSeriesCategory&| NIL 432123 432172 433278 433283) (|Partition| NIL 430919 430934 432113 432118) (|PatternMatchTools| NIL 429725 429754 430909 430914) (|PatternMatchIntegerNumberSystem| NIL 429276 429315 429715 429720) (|PatternMatchListAggregate| NIL 428838 428875 429266 429271) (|PartialFraction| NIL 424393 424416 428668 428833) (|PatternMatchPushDown| NIL 423685 423717 424383 424388) (|PlotTools| NIL 423458 423473 423675 423680) (|PolynomialInterpolation| NIL 423063 423099 423448 423453) (|PolyGroebner| NIL 421479 421499 423053 423058) (|PermutationGroupExamples| NIL 413415 413445 421469 421474) (|PendantTree| NIL 412677 412696 413245 413250) (|UnivariateSkewPolynomialCategory| NIL 406635 406675 412609 412672) (|PoincareBirkhoffWittLyndonBasis| NIL 405248 405294 406625 406630) (|PartitionsAndPermutations| NIL 402762 402793 405238 405243) (|PatternMatchListResult| NIL 401852 401886 402752 402757) (|PatternFunctions2| NIL 401568 401595 401842 401847) (|PAdicInteger| NIL 401260 401282 401451 401563) (|PseudoAlgebraicClosureOfPerfectFieldCategory| NIL 399449 399499 401090 401255) (|OrdinaryWeightedPolynomials| NIL 398366 398421 399241 399358) (|UnivariateSkewPolynomialCategory&| NIL 392202 392245 398179 398184) (|OrderedCompletion| NIL 390552 390577 391622 391667) (|OnePointCompletion| NIL 389185 389211 389972 390017) (|OrderedFreeMonoid| NIL 383112 383137 389175 389180) (|OrdinaryDifferentialRing| NIL 382451 382499 382837 383070) (|LazyStreamAggregate| NIL 378182 378209 382431 382446) (|NumericTubePlot| NIL 377896 377925 378172 378177) (|NonCommutativeOperatorDivision| NIL 376012 376052 377886 377891) (|NumericContinuedFraction| NIL 375651 375683 376002 376007) (|MonoidRing| NIL 372564 372584 375245 375362) (|ModuleOperator| NIL 371093 371117 372288 372405) (|MergeThing| NIL 370744 370762 371083 371088) (|ModularField| NIL 370021 370078 370574 370739) (|MoebiusTransform| NIL 368661 368685 369994 370016) (|MeshCreationRoutinesForThreeDimensions| NIL 366537 366581 368651 368656) (|LazyStreamAggregate&| NIL 362275 362305 366527 366532) (|Magma| NIL 360572 360592 362265 362270) (|ListMonoidOps| NIL 357218 357246 360562 360567) (|ListToMap| NIL 354074 354093 357208 357213) (|ListFunctions2| NIL 352742 352766 354064 354069) (|LieAlgebra| NIL 352302 352320 352651 352737) (|LieAlgebra&| NIL 351903 351924 352255 352260) (|LieExponentials| NIL 350118 350158 351876 351898) (|IntegrationResultFunctions2| NIL 349241 349278 350108 350113) (|InnerPAdicInteger| NIL 348954 348995 349124 349236) (|IntegerRoots| NIL 347260 347280 348944 348949) (|FreeMonoid| NIL 344128 344146 347208 347213) (|IndexedExponents| NIL 344020 344051 344118 344123) (|FieldOfPrimeCharacteristic| NIL 342984 343016 343850 344015) (|FreeModule1| NIL 342407 342428 342888 342932) (|FieldOfPrimeCharacteristic&| NIL 341528 341563 342397 342402) (|FreeModule| NIL 341193 341213 341432 341476) (|FreeGroup| NIL 339720 339737 341166 341188) (|FiniteAbelianMonoidRing| NIL 337773 337806 339550 339715) (|FiniteLinearAggregateFunctions2| NIL 336465 336510 337763 337768) (|FiniteLinearAggregateSort| NIL 335698 335733 336455 336460) (|FiniteAbelianMonoidRing&| NIL 333770 333806 335550 335555) (|d02ejfAnnaType| NIL 333222 333242 333760 333765) (|d03fafAnnaType| NIL 333038 333058 333212 333217) (|d01gbfAnnaType| NIL 332550 332570 333028 333033) (|TopLevelDrawFunctionsForPoints| NIL 330763 330799 332540 332545) (|DrawComplex| NIL 328179 328196 330753 330758) (|OneDimensionalArrayAggregate| NIL 327275 327311 328110 328174) (|DataList| NIL 325860 325876 326557 326609) (|Divisor| NIL 325668 325683 325752 325796) (|TwoDimensionalArrayCategory| NIL 318996 319043 325599 325663) (|DirichletRing| NIL 318157 318183 318724 318944) (|Dequeue| NIL 312302 312317 317940 317992) (|CRApackage| NIL 311451 311469 312292 312297) (|BinaryTree| NIL 310502 310520 311234 311286) (|BalancedPAdicInteger| NIL 310169 310199 310385 310497) (|BlasLevelOne| NIL 297945 297963 310159 310164) (|BasicFunctions| NIL 297342 297362 297913 297940) (|Asp34| NIL 296588 296606 297332 297337) (|BalancedBinaryTree| NIL 292207 292233 296371 296423) (|OneDimensionalArrayAggregate&| NIL 291359 291398 292197 292202) (|TwoDimensionalArrayCategory&| NIL 284743 284793 291349 291354) (|IntegerLinearDependence| NIL 283843 283874 284733 284738) (|UnivariatePuiseuxSeriesFunctions2| NIL 283356 283439 283833 283838) (|XFreeAlgebra| NIL 280329 280354 283229 283351) (|UniversalSegmentFunctions2| NIL 279804 279840 280276 280281) (|RadixUtilities| NIL 279549 279569 279794 279799) (|RadicalCategory| NIL 279045 279066 279539 279544) (|RationalRetractions| NIL 278450 278477 279035 279040) (|RadicalCategory&| NIL 277943 277967 278440 278445) (|PointFunctions2| NIL 277749 277776 277933 277938) (|PatternMatchAssertions| NIL 276796 276824 277739 277744) (|AttachPredicates| NIL 276306 276330 276786 276791) (|OrthogonalPolynomialFunctions| NIL 274719 274756 276206 276211) (|Product| NIL 271526 271543 272051 272119) (|PAdicIntegerCategory| NIL 270011 270041 271409 271521) (|OppositeMonogenicLinearOperator| NIL 269348 269389 269846 269909) (|MappingPackage4| NIL 268189 268214 269338 269343) (|LocalAlgebra| NIL 267575 267599 268078 268141) (|Infinity| NIL 267157 267171 267565 267570) (|IndexedDirectProductOrderedAbelianMonoidSup| NIL 266889 266942 267147 267152) (|FortranType| NIL 265112 265129 266879 266884) (|FullyRetractableTo| NIL 264770 264796 265102 265107) (|Field| NIL 264052 264063 264600 264765) (|FiniteLinearAggregate| NIL 261227 261256 264008 264047) (|FourierSeries| NIL 260483 260506 260979 261134) (|FullyRetractableTo&| NIL 259970 259999 260305 260310) (|FullyLinearlyExplicitRingOver| NIL 259638 259675 259943 259965) (|FiniteLinearAggregate&| NIL 256708 256740 259492 259497) (|FullyLinearlyExplicitRingOver&| NIL 256309 256349 256617 256622) (|Field&| NIL 255748 255762 256299 256304) (|FreeAbelianMonoid| NIL 255356 255381 255668 255673) (|FreeAbelianGroup| NIL 254908 254932 255204 255248) (|ExtAlgBasis| NIL 253232 253249 254898 254903) (|ExpertSystemToolsPackage1| NIL 252894 252928 253222 253227) (|AbelianMonoidRing| NIL 251021 251048 252724 252889) (|DiscreteLogarithmPackage| NIL 250339 250371 251011 251016) (|DegreeReductionPackage| NIL 249934 249968 250329 250334) (|DivisorCategory| NIL 248637 248660 249885 249929) (|AbelianMonoidRing&| NIL 246588 246618 248294 248299) (|XAlgebra| NIL 246258 246274 246520 246583) (|PrincipalIdealDomain| NIL 245187 245213 246141 246253) (|RandomNumberSource| NIL 244342 244366 245177 245182) (|Operator| NIL 243980 243996 244066 244183) (|OrderedAbelianMonoidSup| NIL 243313 243342 243970 243975) (|OrderedAbelianGroup| NIL 243160 243185 243303 243308) (|InnerTaylorSeries| NIL 240860 240890 242893 243109) (|NewtonInterpolation| NIL 240171 240198 240850 240855) (|MonogenicLinearOperator| NIL 238544 238575 240103 240166) (|FactoredFunctionUtilities| NIL 237527 237560 238534 238539) (|FractionFunctions2| NIL 237124 237152 237517 237522) (|FactoredFunctions2| NIL 236466 236494 237114 237119) (|FactoredFunctions| NIL 235645 235670 236456 236461) (|FortranMachineTypeCategory| NIL 235376 235408 235528 235640) (|DequeueAggregate| NIL 233557 233581 235307 235371) (|CardinalNumber| NIL 229969 229989 233523 233552) (|DrawNumericHack| NIL 229219 229242 229959 229964) (|BinaryTournament| NIL 228414 228438 229002 229054) (|BinarySearchTree| NIL 227023 227047 228197 228249) (|SortPackage| NIL 226556 226577 226971 226976) (|StackAggregate| NIL 225122 225144 226487 226551) (|QueueAggregate| NIL 223899 223921 225053 225117) (|PriorityQueueAggregate| NIL 223277 223307 223830 223894) (|NonAssociativeAlgebra| NIL 222793 222822 223228 223272) (|OrderedCancellationAbelianMonoid| NIL 222613 222651 222783 222788) (|ExtensibleLinearAggregate| NIL 220500 220533 222568 222608) (|GradedAlgebra| NIL 219692 219715 220490 220495) (|NonAssociativeAlgebra&| NIL 219244 219276 219682 219687) (|GradedAlgebra&| NIL 218433 218459 219234 219239) (|InnerFreeAbelianMonoid| NIL 218233 218270 218371 218376) (|IndexedDirectProductOrderedAbelianMonoid| NIL 217930 217980 218223 218228) (|FreeModuleCat| NIL 215596 215625 217881 217925) (|ExtensibleLinearAggregate&| NIL 213428 213464 215499 215504) (|BinaryTreeCategory| NIL 212773 212799 213359 213423) (|BinaryTreeCategory&| NIL 212174 212203 212763 212768) (|Algebra| NIL 211644 211659 212106 212169) (|Algebra&| NIL 211169 211187 211634 211639) (|IntegerMod| NIL 210947 210967 211075 211164) (|SequentialDifferentialVariable| NIL 210218 210256 210937 210942) (|PermutationCategory| NIL 208857 208884 210191 210213) (|OrderlyDifferentialVariable| NIL 208115 208150 208847 208852) (|OrderedAbelianMonoid| NIL 207960 207986 208105 208110) (|NonAssociativeRing| NIL 207542 207566 207950 207955) (|Module| NIL 207234 207248 207493 207537) (|NonAssociativeRing&| NIL 206813 206840 207224 207229) (|IndexedAggregate| NIL 205043 205081 206793 206808) (|Module&| NIL 204771 204788 205033 205038) (|ModularRing| NIL 204066 204122 204744 204766) (|MakeCachableSet| NIL 203831 203854 204056 204061) (|HyperbolicFunctionCategory| NIL 203185 203217 203821 203826) (|LeftOreRing| NIL 202630 202647 203094 203180) (|IndexedAggregate&| NIL 200683 200724 202436 202441) (|FullyEvalableOver| NIL 200378 200403 200673 200678) (|GradedModule| NIL 199008 199030 200368 200373) (|HyperbolicFunctionCategory&| NIL 198359 198394 198998 199003) (|BinaryRecursiveAggregate| NIL 197297 197329 198339 198354) (|GradedModule&| NIL 195924 195949 197287 197292) (|FullyEvalableOver&| NIL 195378 195406 195676 195681) (|ExpressionSpaceFunctions2| NIL 194866 194901 195368 195373) (|DifferentialExtension| NIL 193991 194020 194839 194861) (|ExpressionSpaceFunctions1| NIL 193530 193565 193981 193986) (|DesingTreeCategory| NIL 193083 193109 193461 193525) (|DoublyLinkedAggregate| NIL 191511 191540 193063 193078) (|DifferentialExtension&| NIL 190521 190553 191372 191377) (|ComplexFunctions2| NIL 190229 190256 190511 190516) (|CharacteristicPolynomialPackage| NIL 189714 189753 190219 190224) (|CartesianTensorFunctions2| NIL 189081 189131 189704 189709) (|BinaryRecursiveAggregate&| NIL 187979 188014 189024 189029) (|BagAggregate| NIL 187201 187221 187934 187974) (|BagAggregate&| NIL 186455 186478 187191 187196) (|Automorphism| NIL 185882 185902 186428 186450) (|UnivariatePolynomialFunctions2| NIL 185257 185305 185872 185877) (|TrigonometricFunctionCategory| NIL 184743 184778 185247 185252) (|UnivariateLaurentSeriesFunctions2| NIL 184257 184340 184733 184738) (|UserDefinedVariableOrdering| NIL 183044 183077 184247 184252) (|SparseUnivariatePolynomialFunctions2| NIL 182405 182451 183034 183039) (|TrigonometricFunctionCategory&| NIL 181888 181926 182395 182400) (|SplittingNode| NIL 178926 178949 181878 181883) (|PartialDifferentialRing| NIL 177273 177304 178899 178921) (|SegmentExpansionCategory| NIL 176314 176348 177253 177268) (|ProjectiveSpaceCategory| NIL 173788 173819 176304 176309) (|PlacesCategory| NIL 172818 172844 173778 173783) (|PartialDifferentialRing&| NIL 171179 171213 172808 172813) (|PatternMatch| NIL 169349 169390 170846 170851) (|OrderedMonoid| NIL 169062 169081 169339 169344) (|OrderedFinite| NIL 168985 169004 169052 169057) (|OperationsQuery| NIL 168527 168548 168975 168980) (|MonadWithUnit| NIL 166669 166688 168517 168522) (|NonAssociativeRng| NIL 166032 166055 166659 166664) (|OrderedAbelianSemiGroup| NIL 165777 165806 166022 166027) (|NewSparseUnivariatePolynomialFunctions2| NIL 165136 165185 165767 165772) (|NonAssociativeRng&| NIL 164496 164522 165126 165131) (|MonadWithUnit&| NIL 162635 162657 164486 164491) (|MonoidRingFunctions2| NIL 162179 162211 162625 162630) (|ModuleMonomial| NIL 161680 161710 162169 162174) (|LeftAlgebra| NIL 161440 161459 161653 161675) (|LeftAlgebra&| NIL 161214 161236 161430 161435) (|LinearlyExplicitRingOver| NIL 160563 160595 161187 161209) (|KernelFunctions2| NIL 160252 160278 160553 160558) (|IntegerRetractions| NIL 159729 159755 160242 160247) (|Group| NIL 158697 158708 159702 159724) (|IncrementingMaps| NIL 158100 158124 158687 158692) (|IndexedDirectProductObject| NIL 157889 157925 158090 158095) (|IndexedDirectProductAbelianMonoid| NIL 157618 157661 157879 157884) (|IndexedDirectProductAbelianGroup| NIL 157350 157392 157608 157613) (|Group&| NIL 156332 156346 157340 157345) (|FortranVectorFunctionCategory| NIL 153248 153283 156312 156327) (|FortranVectorCategory| NIL 152273 152300 153228 153243) (|FullyPatternMatchable| NIL 152006 152035 152253 152268) (|FortranFunctionCategory| NIL 149075 149104 151986 152001) (|FortranMatrixFunctionCategory| NIL 145998 146033 149055 149070) (|FortranMatrixCategory| NIL 145023 145050 145978 145993) (|FourierComponent| NIL 144540 144564 145013 145018) (|DifferentialVariableCategory| NIL 141263 141299 144530 144535) (|FreeAbelianMonoidCategory| NIL 139430 139465 141253 141258) (|Evalable| NIL 138988 139004 139420 139425) (|ElementaryFunctionCategory| NIL 138486 138518 138978 138983) (|Evalable&| NIL 138041 138060 138476 138481) (|ExpertSystemToolsPackage2| NIL 137613 137650 138031 138036) (|ElementaryFunctionCategory&| NIL 137108 137143 137603 137608) (|DifferentialVariableCategory&| NIL 133828 133867 137098 137103) (|CharacteristicZero| NIL 133720 133744 133801 133823) (|CharacteristicNonZero| NIL 133447 133474 133693 133715) (|CachableSet| NIL 133054 133071 133437 133442) (|BlowUpWithQuadTrans| NIL 132927 132952 133019 133049) (|BiModule| NIL 132548 132566 132878 132922) (|Bezier| NIL 130417 130431 132538 132543) (|BlowUpWithHamburgerNoether| NIL 130285 130317 130384 130412) (|ArcTrigonometricFunctionCategory| NIL 128785 128823 130275 130280) (|Asp29| NIL 128264 128282 128775 128780) (|ArcTrigonometricFunctionCategory&| NIL 126761 126802 128254 128259) (|ApplicationProgramInterface| NIL 125669 125702 126751 126756) (|AffineSpaceCategory| NIL 123539 123566 125659 125664) (|ParadoxicalCombinatorsForStreams| NIL 123017 123057 123529 123534) (|TexFormat1| NIL 122566 122584 123007 123012) (|SuchThat| NIL 122243 122263 122556 122561) (|StreamFunctions3| NIL 121578 121606 122233 122238) (|StreamFunctions1| NIL 121080 121104 121568 121573) (|StreamFunctions2| NIL 119661 119687 121070 121075) (|StreamTensor| NIL 119337 119357 119651 119656) (|ThreeSpaceCategory| NIL 103712 103738 119327 119332) (|StepThrough| NIL 102930 102947 103702 103707) (|SemiGroup| NIL 102236 102251 102920 102925) (|SemiGroup&| NIL 101539 101557 102226 102231) (|SExpressionCategory| NIL 98774 98830 101529 101534) (|SetCategoryWithDegree| NIL 98647 98674 98764 98769) (|SegmentCategory| NIL 97423 97446 98627 98642) (|SegmentBindingFunctions2| NIL 97108 97142 97413 97418) (|RightModule| NIL 96615 96634 97098 97103) (|RetractableTo| NIL 95947 95968 96605 96610) (|RetractableTo&| NIL 95276 95300 95937 95942) (|ResolveLatticeCompletion| NIL 94581 94613 95266 95271) (|RepeatedDoubling| NIL 94267 94291 94571 94576) (|RepeatedSquaring| NIL 93985 94009 94257 94262) (|RealConstant| NIL 93860 93878 93975 93980) (|PlottableSpaceCurveCategory| NIL 92860 92893 93850 93855) (|PlottablePlaneCurveCategory| NIL 92011 92044 92850 92855) (|PlotFunctions1| NIL 91150 91172 92001 92006) (|NumericalPDEProblem| NIL 89312 89337 91140 91145) (|PartialDifferentialEquationsSolverCategory| NIL 88458 88506 89302 89307) (|PatternFunctions1| NIL 86745 86772 88448 88453) (|PatternMatchResultFunctions2| NIL 86431 86471 86735 86740) (|PatternMatchable| NIL 85856 85880 86421 86426) (|Patternable| NIL 85553 85572 85846 85851) (|ParametricSurfaceFunctions2| NIL 85321 85362 85543 85548) (|ParametricSurface| NIL 84764 84807 85311 85316) (|ParametricSpaceCurveFunctions2| NIL 84523 84567 84754 84759) (|ParametricSpaceCurve| NIL 83963 84009 84513 84518) (|ParametricPlaneCurveFunctions2| NIL 83722 83766 83953 83958) (|OrderedSet| NIL 82854 82870 83712 83717) (|ParametricPlaneCurve| NIL 82306 82352 82844 82849) (|Palette| NIL 81309 81322 82296 82301) (|OrderedSet&| NIL 80438 80457 81299 81304) (|OrderedCompletionFunctions2| NIL 79765 79802 80428 80433) (|NumericalOptimizationProblem| NIL 77498 77532 79755 79760) (|NumericalOptimizationCategory| NIL 74949 74984 77488 77493) (|OnePointCompletionFunctions2| NIL 74414 74452 74939 74944) (|OpenMathEncoding| NIL 73746 73768 74404 74409) (|NumericalODEProblem| NIL 72385 72410 73736 73741) (|OrdinaryDifferentialEquationsSolverCategory| NIL 71650 71699 72375 72380) (|NumericalIntegrationCategory| NIL 68979 69013 71640 71645) (|NoneFunctions1| NIL 68643 68665 68969 68974) (|Monad| NIL 67831 67842 68633 68638) (|NumericalIntegrationProblem| NIL 65506 65539 67821 67826) (|None| NIL 65251 65261 65496 65501) (|Monad&| NIL 64436 64450 65241 65246) (|MakeUnaryCompiledFunction| NIL 63643 63680 64426 64431) (|MakeRecord| NIL 63227 63248 63633 63638) (|MakeFunction| NIL 62502 62522 63217 63222) (|MakeBinaryCompiledFunction| NIL 61694 61736 62492 62497) (|MappingPackage3| NIL 60556 60583 61684 61689) (|MappingPackage2| NIL 59849 59874 60546 60551) (|MappingPackage1| NIL 58658 58681 59839 59844) (|MappingPackageInternalHacks3| NIL 58444 58484 58648 58653) (|Logic| NIL 58073 58084 58434 58439) (|MappingPackageInternalHacks2| NIL 57816 57854 58063 58068) (|MappingPackageInternalHacks1| NIL 57426 57462 57806 57811) (|Logic&| NIL 57052 57066 57416 57421) (|LeftModule| NIL 56555 56573 57042 57047) (|ListFunctions3| NIL 55858 55884 56545 56550) (|InfiniteTuple| NIL 54967 54988 55848 55853) (|InnerEvalable| NIL 54353 54376 54957 54962) (|InfiniteTupleFunctions3| NIL 53838 53873 54343 54348) (|InfiniteTupleFunctions2| NIL 53561 53594 53828 53833) (|InnerEvalable&| NIL 52944 52970 53551 53556) (|FortranProgramCategory| NIL 52627 52655 52924 52939) (|IndexedDirectProductCategory| NIL 51539 51577 52617 52622) (|Finite| NIL 50537 50549 51529 51534) (|FileNameCategory| NIL 48867 48889 50527 50532) (|ScriptFormulaFormat1| NIL 48328 48356 48857 48862) (|Finite&| NIL 47323 47338 48318 48323) (|FileCategory| NIL 45760 45787 47313 47318) (|Exit| NIL 45429 45439 45750 45755) (|EltableAggregate| NIL 43871 43904 45419 45424) (|EquationFunctions2| NIL 43573 43601 43861 43866) (|EltableAggregate&| NIL 41965 42001 43516 43521) (|DrawOptionFunctions1| NIL 41618 41646 41955 41960) (|SubSpaceComponentProperty| NIL 41095 41126 41608 41613) (|Color| NIL 39930 39941 41085 41090) (|Comparable| NIL 39661 39677 39920 39925) (|Commutator| NIL 39462 39478 39651 39656) (|CombinatorialOpsCategory| NIL 38475 38505 39452 39457) (|BlowUpMethodCategory| NIL 38434 38460 38465 38470) (|Aggregate| NIL 36803 36818 38414 38429) (|AnyFunctions1| NIL 35868 35889 36793 36798) (|Aggregate&| NIL 34198 34216 35812 35817) (|AnonymousFunction| NIL 34095 34118 34188 34193) (|Type| NIL 34016 34026 34075 34090) (|SpecialFunctionCategory| NIL 32807 32836 34006 34011) (|RandomIntegerDistributions| NIL 31812 31844 32797 32802) (|RandomFloatDistributions| NIL 30706 30736 31802 31807) (|PrintPackage| NIL 30448 30466 30696 30701) (|PartialTranscendentalFunctions| NIL 26699 26737 30438 30443) (|PrimitiveFunctionCategory| NIL 26287 26318 26689 26694) (|OutputPackage| NIL 25402 25421 26277 26282) (|OpenMathDevice| NIL 20134 20154 25392 25397) (|OpenMathConnection| NIL 19535 19559 20124 20129) (|OpenMath| NIL 18604 18618 19525 19530) (|ODEIntensityFunctionsTable| NIL 15983 16015 18594 18599) (|MoreSystemCommands| NIL 15425 15449 15973 15978) (|ModularAlgebraicGcdOperations| NIL 13254 13296 15415 15420) (|CoercibleTo| NIL 12982 13001 13244 13249) (|ConvertibleTo| NIL 12695 12716 12972 12977) (|IntegerBits| NIL 12217 12234 12685 12690) (|GraphicsDefaults| NIL 10598 10620 12207 12212) (|ExpertSystemContinuityPackage1| NIL 10311 10351 10588 10593) (|BasicType| NIL 9998 10013 10301 10306) (|Eltable| NIL 9525 9548 9988 9993) (|CombinatorialFunctionCategory| NIL 8678 8713 9515 9520) (|BasicType&| NIL 8362 8380 8668 8673) (|AttributeRegistry| NIL 4715 4738 7915 8357) (|UnitsKnownAttribute| NIL 4493 4518 4695 4710) (|ShallowlyMutableAttribute| NIL 4230 4261 4473 4488) (|RightUnitaryAttribute| NIL 4079 4106 4210 4225) (|PartiallyOrderedSetAttribute| NIL 3851 3885 4059 4074) (|NoZeroDivisorsAttribute| NIL 3652 3681 3831 3846) (|NullSquareAttribute| NIL 3517 3542 3632 3647) (|NotherianAttribute| NIL 3375 3399 3497 3512) (|MultiplicativeValuationAttribute| NIL 3184 3222 3355 3370) (|LeftUnitaryAttribute| NIL 3027 3053 3164 3179) (|LazyRepresentationAttribute| NIL 2889 2922 3007 3022) (|JacobiIdentityAttribute| NIL 2722 2751 2869 2884) (|CanonicalUnitNormalAttribute| NIL 2396 2430 2702 2717) (|FiniteAggregateAttribute| NIL 2257 2287 2376 2391) (|CanonicalAttribute| NIL 2054 2078 2237 2252) (|CanonicalClosedAttribute| NIL 1870 1900 2034 2049) (|ArbitraryPrecisionAttribute| NIL 1700 1733 1850 1865) (|ApproximateAttribute| NIL 1589 1615 1680 1695) (|ArbitraryExponentAttribute| NIL 1457 1489 1569 1584) (|CommutativeStarAttribute| NIL 1183 1213 1437 1452) (|CentralAttribute| NIL 864 886 1163 1178) (|AdditiveValuationAttribute| NIL 677 709 844 859) (|ArcHyperbolicFunctionCategory| NIL 30 65 667 672)) │ │ │ +((|Category| NIL 2550745 2550750 2550755 2550760) (|Union| NIL 2550725 2550730 2550735 2550740) (|Record| NIL 2550705 2550710 2550715 2550720) (|Mapping| NIL 2550685 2550690 2550695 2550700) (|Enumeration| NIL 2550665 2550670 2550675 2550680) (|RationalIntegration| NIL 2549321 2549351 2550655 2550660) (|SuchThat| NIL 2548998 2549018 2549311 2549316) (|AssociatedLieAlgebra| NIL 2546741 2546771 2547981 2548225) (|UniqueFactorizationDomain| NIL 2545802 2545833 2546624 2546736) (|AdditiveValuationAttribute| NIL 2545615 2545647 2545782 2545797) (|RootsFindingPackage| NIL 2543649 2543676 2545605 2545610) (|PrecomputedAssociatedEquations| NIL 2542987 2543027 2543639 2543644) (|CachableSet| NIL 2542594 2542611 2542977 2542982) (|FactoredFunctions2| NIL 2541936 2541964 2542584 2542589) (|AttachPredicates| NIL 2541446 2541470 2541926 2541931) (|SparseTable| NIL 2540384 2540420 2540557 2540585) (|UnivariatePolynomialSquareFree| NIL 2538804 2538845 2540374 2540379) (|ErrorFunctions| NIL 2536411 2536431 2538794 2538799) (|RecursiveAggregate&| NIL 2534284 2534313 2536309 2536314) (|AlgebraicIntegration| NIL 2533746 2533776 2534274 2534279) (|PlotFunctions1| NIL 2532885 2532907 2533736 2533741) (|UnivariateTaylorSeriesFunctions2| NIL 2532481 2532545 2532875 2532880) (|Matrix| NIL 2531236 2531250 2531722 2531774) (|XPolynomialRing| NIL 2528800 2528825 2530812 2531003) (|PolynomialFunctions2| NIL 2528388 2528418 2528790 2528795) (|ComplexCategory| NIL 2526266 2526289 2527895 2528383) (|MyUnivariatePolynomial| NIL 2522412 2522446 2522755 2523032) (|OrderedSet&| NIL 2521541 2521560 2522402 2522407) (|PartialTranscendentalFunctions| NIL 2517792 2517830 2521531 2521536) (|StepThrough| NIL 2517010 2517027 2517782 2517787) (|NumericalODEProblem| NIL 2515649 2515674 2517000 2517005) (|RandomDistributions| NIL 2515200 2515227 2515639 2515644) (|FiniteFieldFactorization| NIL 2515099 2515138 2515190 2515195) (|IntegerPrimesPackage| NIL 2513314 2513342 2515089 2515094) (|ParadoxicalCombinatorsForStreams| NIL 2512792 2512832 2513304 2513309) (|AlgebraicMultFact| NIL 2511985 2512015 2512782 2512787) (|Collection&| NIL 2508762 2508783 2511810 2511815) (|FiniteRankAlgebra&| NIL 2506755 2506786 2508608 2508613) (|TranscendentalFunctionCategory| NIL 2506575 2506611 2506745 2506750) (|d01gbfAnnaType| NIL 2506087 2506107 2506565 2506570) (|AnnaNumericalIntegrationPackage| NIL 2496830 2496867 2506077 2506082) (|GaussianFactorizationPackage| NIL 2496127 2496161 2496820 2496825) (|RegularTriangularSetCategory| NIL 2486915 2486957 2496058 2496122) (|SpecialFunctionCategory| NIL 2485706 2485735 2486905 2486910) (|DirectProduct| NIL 2475234 2475261 2475870 2476074) (|PrintPackage| NIL 2474976 2474994 2475224 2475229) (|Asp24| NIL 2474046 2474064 2474966 2474971) (|FreeAbelianMonoidCategory| NIL 2472213 2472248 2474036 2474041) (|InnerPAdicInteger| NIL 2471926 2471967 2472096 2472208) (|MultiDictionary| NIL 2471181 2471204 2471881 2471921) (|DirectProductModule| NIL 2462948 2462981 2463087 2463526) (|Tuple| NIL 2461968 2461981 2462895 2462900) (|UnivariateLaurentSeries| NIL 2449791 2449839 2450784 2451494) (|RepresentationPackage2| NIL 2439813 2439843 2449610 2449615) (|SmithNormalForm| NIL 2438638 2438675 2439803 2439808) (|FreeMonoid| NIL 2435506 2435524 2438586 2438591) (|PolynomialCategory| NIL 2428870 2428907 2435267 2435501) (|XPolynomialsCat| NIL 2428123 2428151 2428743 2428865) (|StructuralConstantsPackage| NIL 2426210 2426244 2428113 2428118) (|LinearPolynomialEquationByFractions| NIL 2425438 2425481 2426200 2426205) (|Bits| NIL 2424799 2424809 2425016 2425068) (|Kernel| NIL 2423298 2423312 2424525 2424530) (|ExpressionSpaceFunctions1| NIL 2422837 2422872 2423288 2423293) (|RationalInterpolation| NIL 2422711 2422745 2422827 2422832) (|SimpleFortranProgram| NIL 2422155 2422186 2422701 2422706) (|MakeUnaryCompiledFunction| NIL 2421362 2421399 2422145 2422150) (|MPolyCatFunctions3| NIL 2421159 2421215 2421352 2421357) (|AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| NIL 2420959 2421017 2421149 2421154) (|FortranOutputStackPackage| NIL 2420137 2420168 2420949 2420954) (|IndexedDirectProductAbelianGroup| NIL 2419869 2419911 2420127 2420132) (|MappingPackage2| NIL 2419162 2419187 2419859 2419864) (|FiniteAbelianMonoidRingFunctions2| NIL 2418705 2418758 2419152 2419157) (|CommonOperators| NIL 2418231 2418252 2418695 2418700) (|HomogeneousDistributedMultivariatePolynomial| NIL 2414400 2414457 2415041 2415275) (|RationalRicDE| NIL 2410299 2410323 2414334 2414339) (|RealPolynomialUtilitiesPackage| NIL 2409303 2409360 2410246 2410251) (|FullyEvalableOver| NIL 2408998 2409023 2409293 2409298) (|Pattern| NIL 2403257 2403272 2408988 2408993) (|Equation| NIL 2397735 2397751 2400485 2400624) (|DiophantineSolutionPackage| NIL 2396556 2396588 2397725 2397730) (|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| NIL 2394571 2394635 2395466 2395631) (|e04AgentsPackage| NIL 2390299 2390321 2394561 2394566) (|PolynomialSetCategory&| NIL 2385118 2385163 2390243 2390248) (|FortranVectorFunctionCategory| NIL 2382034 2382069 2385098 2385113) (|ListMultiDictionary| NIL 2381074 2381101 2381743 2381795) (|FiniteFieldHomomorphisms| NIL 2379845 2379884 2381064 2381069) (|GroebnerPackage| NIL 2375049 2375100 2379798 2379803) (|SegmentBindingFunctions2| NIL 2374734 2374768 2375039 2375044) (|GeneralPolynomialSet| NIL 2374165 2374206 2374395 2374447) (|TopLevelDrawFunctionsForCompiledFunctions| NIL 2363566 2363613 2374155 2374160) (|ReduceLODE| NIL 2362923 2362951 2363556 2363561) (|Asp73| NIL 2362181 2362199 2362913 2362918) (|ExtensibleLinearAggregate| NIL 2360068 2360101 2362136 2362176) (|Collection| NIL 2357003 2357021 2360048 2360063) (|UnivariateLaurentSeriesCategory| NIL 2354946 2354990 2356746 2356998) (|IndexedDirectProductOrderedAbelianMonoidSup| NIL 2354678 2354731 2354936 2354941) (|FramedNonAssociativeAlgebra| NIL 2349819 2349854 2354584 2354673) (|LeftAlgebra&| NIL 2349593 2349615 2349809 2349814) (|Dequeue| NIL 2343738 2343753 2349376 2349428) (|LocalPowerSeriesCategory| NIL 2342047 2342079 2343568 2343733) (|NumericalOptimizationProblem| NIL 2339780 2339814 2342037 2342042) (|GenericNonAssociativeAlgebra| NIL 2333753 2333806 2339469 2339586) (|PadeApproximantPackage| NIL 2332678 2332717 2333743 2333748) (|Comparable| NIL 2332409 2332425 2332668 2332673) (|FunctionFieldIntegralBasis| NIL 2329797 2329836 2332399 2332404) (|InnerFreeAbelianMonoid| NIL 2329597 2329634 2329735 2329740) (|OnePointCompletion| NIL 2328230 2328256 2329017 2329062) (|Commutator| NIL 2328031 2328047 2328220 2328225) (|OperationsQuery| NIL 2327573 2327594 2328021 2328026) (|InterpolateFormsPackage| NIL 2326704 2326782 2327563 2327568) (|Guess| NIL 2310969 2311011 2326548 2326553) (|LieSquareMatrix| NIL 2308882 2308909 2309277 2309364) (|ParametricSpaceCurve| NIL 2308322 2308368 2308872 2308877) (|ElementaryFunctionCategory| NIL 2307820 2307852 2308312 2308317) (|DecimalExpansion| NIL 2304974 2304996 2305574 2305739) (|d03AgentsPackage| NIL 2303905 2303927 2304964 2304969) (|NagPolynomialRootsPackage| NIL 2303212 2303243 2303895 2303900) (|AnonymousFunction| NIL 2303109 2303132 2303202 2303207) (|ExtAlgBasis| NIL 2301433 2301450 2303099 2303104) (|DirectProductMatrixModule| NIL 2293191 2293232 2293339 2293778) (|RegularTriangularSet| NIL 2291388 2291422 2292812 2292864) (|ParametricSurfaceFunctions2| NIL 2291156 2291197 2291378 2291383) (|IndexedOneDimensionalArray| NIL 2290321 2290360 2290438 2290490) (|IndexedDirectProductObject| NIL 2290110 2290146 2290311 2290316) (|PolynomialNumberTheoryFunctions| NIL 2286753 2286790 2290100 2290105) (|OrderedAbelianMonoid| NIL 2286598 2286624 2286743 2286748) (|AssociatedJordanAlgebra| NIL 2284317 2284350 2285581 2285825) (|CharacteristicZero| NIL 2284209 2284233 2284290 2284312) (|EltableAggregate| NIL 2282651 2282684 2284199 2284204) (|Finite| NIL 2281649 2281661 2282641 2282646) (|TubePlot| NIL 2280334 2280356 2281639 2281644) (|ExponentialOfUnivariatePuiseuxSeries| NIL 2276686 2276743 2277996 2278248) (|NonAssociativeAlgebra&| NIL 2276238 2276270 2276676 2276681) (|Polynomial| NIL 2272653 2272671 2273138 2273372) (|IndexedString| NIL 2271650 2271674 2271827 2271879) (|CanonicalClosedAttribute| NIL 2271466 2271496 2271630 2271645) (|SystemODESolver| NIL 2268917 2268943 2271456 2271461) (|MultisetAggregate| NIL 2268706 2268731 2268844 2268912) (|LinearDependence| NIL 2267559 2267585 2268612 2268617) (|PolynomialIdeals| NIL 2262672 2262721 2267480 2267485) (|ComplexFunctions2| NIL 2262380 2262407 2262662 2262667) (|UnivariateLaurentSeriesConstructorCategory| NIL 2259828 2259887 2262094 2262375) (|AlgebraicallyClosedField&| NIL 2255044 2255077 2259818 2259823) (|NumberTheoreticPolynomialFunctions| NIL 2254546 2254588 2254944 2254949) (|FractionFreeFastGaussian| NIL 2248707 2248741 2254536 2254541) (|InfiniteTupleFunctions2| NIL 2248430 2248463 2248697 2248702) (|VectorSpace&| NIL 2248114 2248136 2248420 2248425) (|FileCategory| NIL 2246551 2246578 2248104 2248109) (|IndexedExponents| NIL 2246443 2246474 2246541 2246546) (|SymmetricFunctions| NIL 2245849 2245875 2246433 2246438) (|Result| NIL 2244291 2244303 2244879 2244931) (|FortranScalarType| NIL 2242420 2242443 2244281 2244286) (|QuasiComponentPackage| NIL 2238385 2238423 2242410 2242415) (|OpenMathError| NIL 2237927 2237946 2238375 2238380) (|BinaryRecursiveAggregate&| NIL 2236825 2236860 2237870 2237875) (|NonAssociativeRing&| NIL 2236404 2236431 2236815 2236820) (|FunctionFieldCategoryFunctions2| NIL 2236114 2236183 2236394 2236399) (|DifferentialExtension| NIL 2235239 2235268 2236087 2236109) (|FiniteAbelianMonoidRing| NIL 2233292 2233325 2235069 2235234) (|InnerTable| NIL 2232208 2232247 2232379 2232431) (|SquareMatrixCategory| NIL 2230263 2230310 2232104 2232203) (|SExpression| NIL 2230147 2230164 2230253 2230258) (|NonAssociativeRing| NIL 2229729 2229753 2230137 2230142) (|OrderedFreeMonoid| NIL 2223656 2223681 2229719 2229724) (|LinearAggregate| NIL 2220125 2220148 2223636 2223651) (|FortranPackage| NIL 2219062 2219082 2220115 2220120) (|NumericalOrdinaryDifferentialEquations| NIL 2210593 2210637 2219052 2219057) (|FiniteFieldCategory| NIL 2208121 2208146 2210423 2210588) (|CombinatorialOpsCategory| NIL 2207134 2207164 2208111 2208116) (|AlgebraicFunction| NIL 2205506 2205533 2207054 2207059) (|Asp19| NIL 2199580 2199598 2205496 2205501) (|RepresentationPackage1| NIL 2193733 2193763 2199522 2199527) (|d02ejfAnnaType| NIL 2193185 2193205 2193723 2193728) (|FactoredFunctionUtilities| NIL 2192168 2192201 2193175 2193180) (|NormalizationPackage| NIL 2190998 2191035 2192158 2192163) (|MonoidRing| NIL 2187911 2187931 2190592 2190709) (|RecursiveAggregate| NIL 2185869 2185895 2187891 2187906) (|XFreeAlgebra| NIL 2182842 2182867 2185742 2185864) (|ThreeDimensionalViewport| NIL 2167037 2167067 2182832 2182837) (|NagLapack| NIL 2165530 2165545 2167027 2167032) (|MonogenicAlgebra| NIL 2164163 2164190 2165309 2165525) (|PrimitiveArray| NIL 2163280 2163302 2163445 2163497) (|NumericContinuedFraction| NIL 2162919 2162951 2163270 2163275) (|MatrixCategory| NIL 2148828 2148862 2162850 2162914) (|OrdinaryDifferentialEquationsSolverCategory| NIL 2148093 2148142 2148818 2148823) (|TwoDimensionalArrayCategory&| NIL 2141477 2141527 2148083 2148088) (|PointsOfFiniteOrder| NIL 2140885 2140925 2141467 2141472) (|OpenMathDevice| NIL 2135617 2135637 2140875 2140880) (|FreeGroup| NIL 2134144 2134161 2135590 2135612) (|TubePlotTools| NIL 2131028 2131047 2134134 2134139) (|PolynomialToUnivariatePolynomial| NIL 2130444 2130488 2131018 2131023) (|AlgebraicallyClosedField| NIL 2125503 2125533 2130274 2130439) (|Group| NIL 2124471 2124482 2125476 2125498) (|OrderedRing| NIL 2123789 2123806 2124444 2124466) (|RationalLODE| NIL 2121227 2121250 2123779 2123784) (|DoubleResultantPackage| NIL 2120819 2120859 2121217 2121222) (|TwoDimensionalPlotClipping| NIL 2116915 2116947 2120809 2120814) (|FiniteAlgebraicExtensionField&| NIL 2110216 2110256 2116867 2116872) (|JacobiIdentityAttribute| NIL 2110049 2110078 2110196 2110211) (|NewSparseUnivariatePolynomialFunctions2| NIL 2109408 2109457 2110039 2110044) (|ReducedDivisor| NIL 2109146 2109182 2109398 2109403) (|Octonion| NIL 2106995 2107011 2107683 2107746) (|FiniteFieldFactorizationWithSizeParseBySideEffect| NIL 2106367 2106431 2106985 2106990) (|Switch| NIL 2103110 2103122 2106357 2106362) (|d01alfAnnaType| NIL 2102640 2102660 2103100 2103105) (|Interval| NIL 2102359 2102375 2102503 2102635) (|WeierstrassPreparation| NIL 2100604 2100634 2102349 2102354) (|BlasLevelOne| NIL 2088380 2088398 2100594 2100599) (|SplittingTree| NIL 2083866 2083889 2088044 2088096) (|InnerNormalBasisFieldFunctions| NIL 2079732 2079771 2083856 2083861) (|PackageForAlgebraicFunctionFieldOverFiniteField| NIL 2062620 2062688 2079644 2079649) (|SubSpace| NIL 2054970 2054990 2062610 2062615) (|Ring&| NIL 2054335 2054348 2054960 2054965) (|PartialFractionPackage| NIL 2053373 2053403 2054325 2054330) (|PoincareBirkhoffWittLyndonBasis| NIL 2051986 2052032 2053363 2053368) (|FloatingComplexPackage| NIL 2049432 2049466 2051976 2051981) (|CanonicalUnitNormalAttribute| NIL 2049106 2049140 2049412 2049427) (|Aggregate&| NIL 2047436 2047454 2049050 2049055) (|AffineAlgebraicSetComputeWithResultant| NIL 2047282 2047357 2047426 2047431) (|Any| NIL 2045471 2045480 2047272 2047277) (|RealClosure| NIL 2044092 2044120 2044754 2044919) (|AnyFunctions1| NIL 2043157 2043178 2044082 2044087) (|RegularTriangularSetGcdPackage| NIL 2040500 2040547 2043147 2043152) (|ElementaryFunctionsUnivariatePuiseuxSeries| NIL 2037232 2037302 2040453 2040458) (|Table| NIL 2036047 2036072 2036319 2036371) (|OutputPackage| NIL 2035162 2035181 2036037 2036042) (|RectangularMatrixCategory| NIL 2030747 2030800 2035077 2035157) (|NagLinearEquationSolvingPackage| NIL 2025182 2025219 2030737 2030742) (|DistinctDegreeFactorize| NIL 2023042 2023076 2025172 2025177) (|ParametricSurface| NIL 2022485 2022528 2023032 2023037) (|FiniteSetAggregate| NIL 2021605 2021631 2022388 2022480) (|Boolean| NIL 2020468 2020481 2021595 2021600) (|LiouvillianFunctionCategory| NIL 2019296 2019329 2020458 2020463) (|HallBasis| NIL 2017885 2017900 2019286 2019291) (|ModMonic| NIL 2013457 2013479 2014281 2014558) (|EltableAggregate&| NIL 2011849 2011885 2013400 2013405) (|XPolynomial| NIL 2011336 2011355 2011628 2011750) (|SymmetricPolynomial| NIL 2009982 2010009 2010080 2010314) (|ContinuedFraction| NIL 2005934 2005959 2009812 2009977) (|Plot| NIL 2000791 2000801 2005924 2005929) (|HyperbolicFunctionCategory&| NIL 2000142 2000177 2000781 2000786) (|PatternFunctions2| NIL 1999858 1999885 2000132 2000137) (|CyclotomicPolynomialPackage| NIL 1999337 1999370 1999848 1999853) (|GenerateUnivariatePowerSeries| NIL 1995123 1995163 1999327 1999332) (|BasicOperatorFunctions1| NIL 1992580 1992611 1995071 1995076) (|ParametricSpaceCurveFunctions2| NIL 1992339 1992383 1992570 1992575) (|VectorCategory| NIL 1990303 1990325 1992270 1992334) (|IndexedDirectProductAbelianMonoid| NIL 1990032 1990075 1990293 1990298) (|FullyPatternMatchable| NIL 1989765 1989794 1990012 1990027) (|FiniteDivisorCategory&| NIL 1987759 1987801 1989755 1989760) (|FiniteAggregateAttribute| NIL 1987620 1987650 1987739 1987754) (|MachineFloat| NIL 1985978 1985996 1987430 1987615) (|Integer| NIL 1985224 1985237 1985722 1985973) (|FiniteDivisor| NIL 1984668 1984699 1985214 1985219) (|CharacteristicPolynomialPackage| NIL 1984153 1984192 1984658 1984663) (|ComplexDoubleFloatMatrix| NIL 1983048 1983078 1983487 1983539) (|SparseUnivariatePuiseuxSeries| NIL 1979686 1979740 1980710 1980962) (|ApplyRules| NIL 1979016 1979043 1979676 1979681) (|GnuDraw| NIL 1976904 1976917 1979006 1979011) (|PolynomialCategoryLifting| NIL 1976170 1976216 1976894 1976899) (|DenavitHartenbergMatrix| NIL 1974060 1974091 1975718 1975770) (|FortranMatrixFunctionCategory| NIL 1970983 1971018 1974040 1974055) (|FunctionSpace&| NIL 1964542 1964566 1970409 1970414) (|NonAssociativeRng&| NIL 1963902 1963928 1964532 1964537) (|GcdDomain| NIL 1962806 1962821 1963785 1963897) (|InnerAlgFactor| NIL 1962355 1962396 1962796 1962801) (|SetOfMIntegersInOneToN| NIL 1960816 1960852 1962345 1962350) (|Asp49| NIL 1959800 1959818 1960806 1960811) (|PlotTools| NIL 1959573 1959588 1959790 1959795) (|FileNameCategory| NIL 1957903 1957925 1959563 1959568) (|Asp12| NIL 1957316 1957334 1957893 1957898) (|LinearOrdinaryDifferentialOperatorFactorizer| NIL 1956303 1956358 1957250 1957255) (|Asp4| NIL 1955588 1955605 1956293 1956298) (|FieldOfPrimeCharacteristic| NIL 1954552 1954584 1955418 1955583) (|InternalPrintPackage| NIL 1954310 1954336 1954542 1954547) (|LinearOrdinaryDifferentialOperator1| NIL 1953569 1953612 1953895 1953958) (|ListMonoidOps| NIL 1950215 1950243 1953559 1953564) (|FortranCodePackage1| NIL 1948759 1948784 1950205 1950210) (|FactorisationOverPseudoAlgebraicClosureOfRationalNumber| NIL 1948588 1948651 1948749 1948754) (|ModularField| NIL 1947865 1947922 1948418 1948583) (|SequentialDifferentialVariable| NIL 1947136 1947174 1947855 1947860) (|FortranTemplate| NIL 1946294 1946315 1947126 1947131) (|ConstantLODE| NIL 1945797 1945821 1946284 1946289) (|GradedAlgebra| NIL 1944989 1945012 1945787 1945792) (|VectorFunctions2| NIL 1943650 1943676 1944979 1944984) (|CylindricalAlgebraicDecompositionUtilities| NIL 1943225 1943277 1943640 1943645) (|SupFractionFactorizer| NIL 1942327 1942363 1943215 1943220) (|FiniteFieldCyclicGroup| NIL 1940982 1941023 1941837 1942002) (|NormInMonogenicAlgebra| NIL 1940663 1940709 1940972 1940977) (|GrayCode| NIL 1939217 1939231 1940653 1940658) (|SubSpaceComponentProperty| NIL 1938694 1938725 1939207 1939212) (|TableauxBumpers| NIL 1935600 1935623 1938684 1938689) (|Asp9| NIL 1934753 1934770 1935590 1935595) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| NIL 1934621 1934674 1934743 1934748) (|HTMLFormat| NIL 1933500 1933516 1934611 1934616) (|GeneralHenselPackage| NIL 1932654 1932686 1933490 1933495) (|MultivariateFactorize| NIL 1932033 1932069 1932644 1932649) (|FloatingPointSystem&| NIL 1928963 1928991 1931924 1931929) (|PAdicRational| NIL 1926147 1926170 1926331 1926496) (|FiniteRankNonAssociativeAlgebra&| NIL 1915466 1915508 1926091 1926096) (|RationalFunctionFactor| NIL 1915182 1915213 1915456 1915461) (|DisplayPackage| NIL 1913384 1913404 1915172 1915177) (|CharacterClass| NIL 1911578 1911598 1912648 1912728) (|NagOptimisationPackage| NIL 1905352 1905380 1911568 1911573) (|RealRootCharacterizationCategory| NIL 1903729 1903788 1905342 1905347) (|DequeueAggregate| NIL 1901910 1901934 1903660 1903724) (|UnivariateSkewPolynomialCategory| NIL 1895868 1895908 1901842 1901905) (|Logic| NIL 1895497 1895508 1895858 1895863) (|RandomNumberSource| NIL 1894652 1894676 1895487 1895492) (|ScriptFormulaFormat1| NIL 1894113 1894141 1894642 1894647) (|Magma| NIL 1892410 1892430 1894103 1894108) (|ModularHermitianRowReduction| NIL 1891029 1891065 1892400 1892405) (|DifferentialVariableCategory&| NIL 1887749 1887788 1891019 1891024) (|IntegrationFunctionsTable| NIL 1881724 1881755 1887739 1887744) (|MergeThing| NIL 1881375 1881393 1881714 1881719) (|AlgebraicManipulations| NIL 1878791 1878823 1881131 1881136) (|ComplexFactorization| NIL 1878569 1878601 1878781 1878786) (|CycleIndicators| NIL 1875367 1875388 1878559 1878564) (|SplitHomogeneousDirectProduct| NIL 1865003 1865056 1865531 1865735) (|RectangularMatrix| NIL 1863562 1863595 1864064 1864132) (|NumberFormats| NIL 1862393 1862412 1863552 1863557) (|UnivariatePolynomialFunctions2| NIL 1861768 1861816 1862383 1862388) (|Set| NIL 1860018 1860029 1861131 1861211) (|DrawOptionFunctions1| NIL 1859671 1859699 1860008 1860013) (|RationalFunctionSign| NIL 1858744 1858772 1859661 1859666) (|ExpertSystemToolsPackage| NIL 1850582 1850612 1858734 1858739) (|AbelianGroup&| NIL 1850112 1850133 1850572 1850577) (|TwoDimensionalArray| NIL 1849653 1849680 1849895 1849947) (|NagMatrixOperationsPackage| NIL 1845439 1845471 1849643 1849648) (|Asp34| NIL 1844685 1844703 1845429 1845434) (|BasicFunctions| NIL 1844082 1844102 1844653 1844680) (|TexFormat1| NIL 1843631 1843649 1844072 1844077) (|Algebra| NIL 1843101 1843116 1843563 1843626) (|PureAlgebraicLODE| NIL 1842456 1842491 1843091 1843096) (|StringCategory| NIL 1842196 1842216 1842387 1842451) (|OrdSetInts| NIL 1841793 1841809 1842186 1842191) (|ZeroDimensionalSolvePackage| NIL 1832385 1832431 1841783 1841788) (|DesingTreePackage| NIL 1829425 1829527 1832375 1832380) (|LinearAggregate&| NIL 1825854 1825880 1829368 1829373) (|GeneralTriangularSet| NIL 1824971 1825005 1825475 1825527) (|TranscendentalHermiteIntegration| NIL 1824211 1824254 1824961 1824966) (|d01aqfAnnaType| NIL 1823694 1823714 1824201 1824206) (|SegmentExpansionCategory| NIL 1822735 1822769 1823674 1823689) (|FiniteLinearAggregate| NIL 1819910 1819939 1822691 1822730) (|NumberFieldIntegralBasis| NIL 1817398 1817433 1819900 1819905) (|Logic&| NIL 1817024 1817038 1817388 1817393) (|RightModule| NIL 1816531 1816550 1817014 1817019) (|InfiniteProductCharacteristicZero| NIL 1815580 1815630 1816521 1816526) (|Database| NIL 1814246 1814262 1815570 1815575) (|Aggregate| NIL 1812615 1812630 1814226 1814241) (|SetAggregate| NIL 1809480 1809500 1812567 1812610) (|BiModule| NIL 1809101 1809119 1809431 1809475) (|MappingPackageInternalHacks2| NIL 1808844 1808882 1809091 1809096) (|MultivariatePolynomial| NIL 1805292 1805327 1805654 1805888) (|FramedAlgebra| NIL 1803673 1803697 1805224 1805287) (|d01ajfAnnaType| NIL 1803186 1803206 1803663 1803668) (|ListAggregate| NIL 1802807 1802828 1803117 1803181) (|HeuGcd| NIL 1801762 1801777 1802797 1802802) (|ModuleOperator| NIL 1800291 1800315 1801486 1801603) (|NewtonInterpolation| NIL 1799602 1799629 1800281 1800286) (|GraphImage| NIL 1792633 1792649 1799592 1799597) (|SquareMatrixCategory&| NIL 1790643 1790693 1792487 1792492) (|FramedAlgebra&| NIL 1789079 1789106 1790633 1790638) (|UnivariateTaylorSeriesODESolver| NIL 1787241 1787289 1789069 1789074) (|SymbolTable| NIL 1785330 1785347 1787231 1787236) (|KeyedAccessFile| NIL 1783802 1783831 1784524 1784576) (|SparseUnivariateLaurentSeries| NIL 1771234 1771288 1772246 1772980) (|LinearOrdinaryDifferentialOperator| NIL 1770477 1770526 1770819 1770882) (|PermutationCategory| NIL 1769116 1769143 1770450 1770472) (|Ruleset| NIL 1768548 1768572 1769106 1769111) (|OrderedAbelianSemiGroup| NIL 1768293 1768322 1768538 1768543) (|BinaryFile| NIL 1767642 1767658 1768283 1768288) (|OrderlyDifferentialVariable| NIL 1766900 1766935 1767632 1767637) (|Permanent| NIL 1765652 1765673 1766890 1766895) (|ExpertSystemToolsPackage1| NIL 1765314 1765348 1765642 1765647) (|PolynomialSolveByFormulas| NIL 1763760 1763796 1765304 1765309) (|None| NIL 1763505 1763515 1763750 1763755) (|FunctionSpaceAttachPredicates| NIL 1762981 1763022 1763495 1763500) (|SimpleAlgebraicExtension| NIL 1760708 1760745 1761386 1761602) (|RealZeroPackage| NIL 1757605 1757632 1760698 1760703) (|NonNegativeInteger| NIL 1756325 1756349 1757595 1757600) (|InnerMultFact| NIL 1755320 1755348 1756315 1756320) (|RationalFunctionSum| NIL 1753972 1753999 1755310 1755315) (|ThreeDimensionalMatrix| NIL 1751896 1751926 1753532 1753537) (|U16Matrix| NIL 1750999 1751014 1751387 1751439) (|GradedModule| NIL 1749629 1749651 1750989 1750994) (|EuclideanModularRing| NIL 1748756 1748823 1749512 1749624) (|RealClosedField&| NIL 1746158 1746182 1748746 1748751) (|UnivariatePolynomialDivisionPackage| NIL 1745691 1745737 1746148 1746153) (|FloatingRealPackage| NIL 1743482 1743513 1745681 1745686) (|FramedNonAssociativeAlgebra&| NIL 1738667 1738705 1743435 1743440) (|TriangularMatrixOperations| NIL 1737615 1737663 1738657 1738662) (|RegularSetDecompositionPackage| NIL 1736341 1736388 1737605 1737610) (|BoundIntegerRoots| NIL 1735988 1736016 1736331 1736336) (|Field&| NIL 1735427 1735441 1735978 1735983) (|KeyedDictionary| NIL 1734540 1734575 1735382 1735422) (|BinaryExpansion| NIL 1731670 1731691 1732294 1732459) (|FiniteFieldExtensionByPolynomial| NIL 1731005 1731055 1731255 1731420) (|QuaternionCategory&| NIL 1728844 1728873 1730586 1730591) (|InnerNumericFloatSolvePackage| NIL 1727166 1727211 1728834 1728839) (|U8Vector| NIL 1726211 1726225 1726419 1726471) (|ApproximateAttribute| NIL 1726100 1726126 1726191 1726206) (|EntireRing| NIL 1725620 1725636 1726009 1726095) (|MatrixLinearAlgebraFunctions| NIL 1722999 1723049 1725476 1725481) (|Monad&| NIL 1722184 1722198 1722989 1722994) (|AlgebraicallyClosedFunctionSpace&| NIL 1720129 1720172 1722174 1722179) (|Library| NIL 1718472 1718485 1719183 1719211) (|InnerModularGcd| NIL 1717635 1717678 1718462 1718467) (|SpecialOutputPackage| NIL 1716187 1716213 1717625 1717630) (|ElementaryRischDE| NIL 1715233 1715260 1716177 1716182) (|Queue| NIL 1711008 1711021 1715016 1715068) (|ModularAlgebraicGcdOperations| NIL 1708837 1708879 1710998 1711003) (|CombinatorialFunctionCategory| NIL 1707990 1708025 1708827 1708832) (|SquareFreeNormalizedTriangularSetCategory| NIL 1707698 1707753 1707921 1707985) (|PolynomialComposition| NIL 1707414 1707446 1707688 1707693) (|IndexedDirectProductCategory| NIL 1706326 1706364 1707404 1707409) (|IntegerRoots| NIL 1704632 1704652 1706316 1706321) (|BasicType| NIL 1704319 1704334 1704622 1704627) (|IntegerFactorizationPackage| NIL 1703380 1703415 1704309 1704314) (|IntegralBasisPolynomialTools| NIL 1701997 1702040 1703370 1703375) (|StackAggregate| NIL 1700563 1700585 1701928 1701992) (|PseudoAlgebraicClosureOfRationalNumber| NIL 1699176 1699220 1700048 1700213) (|GradedAlgebra&| NIL 1698365 1698391 1699166 1699171) (|DegreeReductionPackage| NIL 1697960 1697994 1698355 1698360) (|FourierComponent| NIL 1697477 1697501 1697950 1697955) (|ExpressionToUnivariatePowerSeries| NIL 1693536 1693580 1697467 1697472) (|IndexCard| NIL 1692812 1692827 1693526 1693531) (|OrderedCompletionFunctions2| NIL 1692139 1692176 1692802 1692807) (|HyperellipticFiniteDivisor| NIL 1691751 1691795 1692129 1692134) (|MeshCreationRoutinesForThreeDimensions| NIL 1689627 1689671 1691741 1691746) (|SingleInteger| NIL 1687873 1687892 1689388 1689622) (|XDistributedPolynomial| NIL 1687408 1687443 1687652 1687774) (|LiouvillianFunction| NIL 1686174 1686203 1687398 1687403) (|CombinatorialFunction| NIL 1683673 1683704 1686164 1686169) (|SquareFreeQuasiComponentPackage| NIL 1679562 1679610 1683663 1683668) (|SimpleAlgebraicExtensionAlgFactor| NIL 1679233 1679283 1679552 1679557) (|LaurentPolynomial| NIL 1677707 1677735 1678671 1678783) (|OneDimensionalArrayFunctions2| NIL 1675737 1675776 1677697 1677702) (|IntegralDomain&| NIL 1674495 1674518 1675727 1675732) (|FiniteFieldNormalBasisExtension| NIL 1672896 1672945 1674080 1674245) (|String| NIL 1672081 1672093 1672182 1672234) (|PadeApproximants| NIL 1671072 1671102 1672071 1672076) (|Asp29| NIL 1670551 1670569 1671062 1671067) (|PackageForPoly| NIL 1668680 1668721 1670541 1670546) (|ParametricPlaneCurve| NIL 1668132 1668178 1668670 1668675) (|FiniteRankAlgebra| NIL 1666214 1666242 1668064 1668127) (|UnivariatePolynomialDecompositionPackage| NIL 1664410 1664461 1666204 1666209) (|SExpressionCategory| NIL 1661645 1661701 1664400 1664405) (|DifferentialSparseMultivariatePolynomial| NIL 1658113 1658165 1658444 1658678) (|PAdicWildFunctionFieldIntegralBasis| NIL 1655466 1655516 1658103 1658108) (|SingletonAsOrderedSet| NIL 1655320 1655347 1655456 1655461) (|RadixExpansion| NIL 1651417 1651442 1653074 1653239) (|Product| NIL 1648224 1648241 1648749 1648817) (|TextFile| NIL 1646798 1646812 1648214 1648219) (|WildFunctionFieldIntegralBasis| NIL 1644388 1644433 1646788 1646793) (|OrderedMonoid| NIL 1644101 1644120 1644378 1644383) (|MyExpression| NIL 1641651 1641675 1641733 1642100) (|MappingPackageInternalHacks1| NIL 1641261 1641297 1641641 1641646) (|OrderedRing&| NIL 1640593 1640613 1641251 1641256) (|MappingPackageInternalHacks3| NIL 1640379 1640419 1640583 1640588) (|VectorSpace| NIL 1640027 1640046 1640330 1640374) (|FullyLinearlyExplicitRingOver&| NIL 1639628 1639668 1639936 1639941) (|PatternMatchPushDown| NIL 1638920 1638952 1639618 1639623) (|UnivariateLaurentSeriesConstructor| NIL 1631658 1631709 1632057 1632309) (|DoubleFloatMatrix| NIL 1630690 1630713 1631113 1631165) (|RuleCalled| NIL 1630535 1630555 1630680 1630685) (|ExpertSystemContinuityPackage1| NIL 1630248 1630288 1630525 1630530) (|UnivariateLaurentSeriesConstructorCategory&| NIL 1627932 1627994 1630201 1630206) (|SquareFreeRegularTriangularSet| NIL 1626071 1626115 1627553 1627605) (|BalancedPAdicInteger| NIL 1625738 1625768 1625954 1626066) (|SimpleCell| NIL 1625686 1625723 1625728 1625733) (|IrredPolyOverFiniteField| NIL 1625265 1625298 1625676 1625681) (|DataList| NIL 1623850 1623866 1624547 1624599) (|InfiniteProductFiniteField| NIL 1622914 1622962 1623840 1623845) (|TopLevelDrawFunctionsForPoints| NIL 1621127 1621163 1622904 1622909) (|DivisorCategory| NIL 1619830 1619853 1621078 1621122) (|LaplaceTransform| NIL 1619365 1619391 1619820 1619825) (|AnnaOrdinaryDifferentialEquationPackage| NIL 1607414 1607459 1619355 1619360) (|UnivariatePolynomialMultiplicationPackage| NIL 1606310 1606361 1607404 1607409) (|GuessUnivariatePolynomial| NIL 1592384 1592419 1606300 1606305) (|Asp77| NIL 1591752 1591770 1592374 1592379) (|ExpressionSolve| NIL 1591645 1591683 1591742 1591747) (|GaloisGroupUtilities| NIL 1589936 1589964 1591584 1591589) (|Expression| NIL 1584010 1584028 1584747 1585370) (|PolynomialCategoryQuotientFunctions| NIL 1581991 1582042 1584000 1584005) (|RecursivePolynomialCategory&| NIL 1564805 1564847 1581458 1581463) (|FunctionFieldCategory&| NIL 1553666 1553706 1564718 1564723) (|FortranType| NIL 1551889 1551906 1553656 1553661) (|ArbitraryPrecisionAttribute| NIL 1551719 1551752 1551869 1551884) (|d01amfAnnaType| NIL 1551219 1551239 1551709 1551714) (|MPolyCatFunctions2| NIL 1550954 1551003 1551209 1551214) (|FiniteFieldCyclicGroupExtension| NIL 1549694 1549743 1550539 1550704) (|d01apfAnnaType| NIL 1549164 1549184 1549684 1549689) (|TwoFactorize| NIL 1547819 1547839 1549154 1549159) (|IntegerMod| NIL 1547597 1547617 1547725 1547814) (|CancellationAbelianMonoid| NIL 1547073 1547104 1547587 1547592) (|UnitsKnownAttribute| NIL 1546851 1546876 1547053 1547068) (|FourierSeries| NIL 1546107 1546130 1546603 1546758) (|DoubleFloatVector| NIL 1544468 1544491 1544862 1544914) (|NumericRealEigenPackage| NIL 1542837 1542872 1544458 1544463) (|ProjectiveAlgebraicSetPackage| NIL 1542013 1542079 1542827 1542832) (|QuasiAlgebraicSet2| NIL 1540009 1540043 1542003 1542008) (|SquareFreeRegularTriangularSetGcdPackage| NIL 1539671 1539728 1539999 1540004) (|PolynomialFactorizationExplicit| NIL 1537307 1537344 1539554 1539666) (|WeightedPolynomials| NIL 1536236 1536296 1537099 1537216) (|OpenMathErrorKind| NIL 1535273 1535296 1536226 1536231) (|SortedCache| NIL 1534114 1534133 1535263 1535268) (|NagInterpolationPackage| NIL 1530184 1530213 1534104 1534109) (|AlgebraGivenByStructuralConstants| NIL 1529208 1529266 1530005 1530094) (|ChangeOfVariable| NIL 1527168 1527200 1529198 1529203) (|GuessAlgebraicNumber| NIL 1526956 1526982 1527074 1527079) (|OrderingFunctions| NIL 1526088 1526119 1526946 1526951) (|MultipleMap| NIL 1525813 1525856 1526078 1526083) (|UnivariatePuiseuxSeriesCategory| NIL 1524273 1524317 1525556 1525808) (|IndexedTwoDimensionalArray| NIL 1523933 1523983 1524056 1524108) (|PlaneAlgebraicCurvePlot| NIL 1522213 1522242 1523923 1523928) (|d02AgentsPackage| NIL 1517144 1517166 1522203 1522208) (|d03fafAnnaType| NIL 1516960 1516980 1517134 1517139) (|SAERationalFunctionAlgFactor| NIL 1516648 1516693 1516950 1516955) (|PrimitiveRatDE| NIL 1513898 1513928 1516638 1516643) (|IntegrationTools| NIL 1511601 1511627 1513320 1513325) (|GeneralModulePolynomial| NIL 1510680 1510728 1511552 1511596) (|MachineInteger| NIL 1510028 1510048 1510503 1510675) (|DivisionRing&| NIL 1509521 1509542 1510018 1510023) (|GroebnerFactorizationPackage| NIL 1504973 1505037 1509511 1509516) (|d01asfAnnaType| NIL 1504431 1504451 1504963 1504968) (|InnerEvalable&| NIL 1503814 1503840 1504421 1504426) (|InternalRationalUnivariateRepresentationPackage| NIL 1502764 1502828 1503804 1503809) (|Stack| NIL 1498635 1498648 1502547 1502599) (|Dictionary| NIL 1498234 1498252 1498590 1498630) (|Heap| NIL 1494329 1494341 1498017 1498069) (|RectangularMatrixCategory&| NIL 1489803 1489859 1494136 1494141) (|ReductionOfOrder| NIL 1488924 1488950 1489793 1489798) (|DictionaryOperations| NIL 1487973 1488001 1488879 1488919) (|MPolyCatPolyFactorizer| NIL 1487232 1487271 1487963 1487968) (|Tree| NIL 1485453 1485465 1487015 1487067) (|AbelianMonoidRing| NIL 1483580 1483607 1485283 1485448) (|Point| NIL 1482458 1482471 1482548 1482600) (|ModuleMonomial| NIL 1481959 1481989 1482448 1482453) (|KernelFunctions2| NIL 1481648 1481674 1481949 1481954) (|AffineAlgebraicSetComputeWithGroebnerBasis| NIL 1481190 1481269 1481638 1481643) (|FunctionSpaceFunctions2| NIL 1480781 1480818 1481180 1481185) (|OrdinaryWeightedPolynomials| NIL 1479698 1479753 1480573 1480690) (|Asp27| NIL 1478549 1478567 1479688 1479693) (|PatternMatchResultFunctions2| NIL 1478235 1478275 1478539 1478544) (|TrigonometricManipulations| NIL 1476713 1476749 1478225 1478230) (|TangentExpansions| NIL 1476075 1476100 1476703 1476708) (|ArcTrigonometricFunctionCategory&| NIL 1474572 1474613 1476065 1476070) (|ElementaryFunctionsUnivariateLaurentSeries| NIL 1471365 1471428 1474525 1474530) (|AlgebraicNumber| NIL 1469406 1469427 1471093 1471258) (|Operator| NIL 1469044 1469060 1469130 1469247) (|NagSeriesSummationPackage| NIL 1464953 1464984 1469034 1469039) (|Void| NIL 1464552 1464562 1464943 1464948) (|OrthogonalPolynomialFunctions| NIL 1462965 1463002 1464452 1464457) (|OppositeMonogenicLinearOperator| NIL 1462302 1462343 1462800 1462863) (|Plcs| NIL 1462207 1462223 1462292 1462297) (|UnivariateSkewPolynomial| NIL 1461438 1461490 1461792 1461855) (|FunctionSpaceSum| NIL 1461107 1461133 1461428 1461433) (|TranscendentalRischDESystem| NIL 1459941 1459979 1461097 1461102) (|GaloisGroupFactorizationUtilities| NIL 1458119 1458165 1459931 1459936) (|FGLMIfCanPackage| NIL 1457031 1457060 1458109 1458114) (|RetractableTo| NIL 1456363 1456384 1457021 1457026) (|Complex| NIL 1448220 1448235 1448474 1448950) (|Asp41| NIL 1446718 1446761 1448210 1448215) (|PointsOfFiniteOrderRational| NIL 1446063 1446106 1446708 1446713) (|BalancedBinaryTree| NIL 1441682 1441708 1445846 1445898) (|HashTable| NIL 1440553 1440591 1440769 1440821) (|UnivariatePuiseuxSeriesConstructor| NIL 1437813 1437864 1438215 1438467) (|PseudoLinearNormalForm| NIL 1436300 1436330 1437803 1437808) (|PartialDifferentialRing&| NIL 1434661 1434695 1436290 1436295) (|FunctionCalled| NIL 1434498 1434522 1434651 1434656) (|IntegrationResultToFunction| NIL 1433654 1433691 1434488 1434493) (|AntiSymm| NIL 1431987 1432010 1433627 1433649) (|ViewDefaultsPackage| NIL 1427255 1427280 1431977 1431982) (|RightUnitaryAttribute| NIL 1427104 1427131 1427235 1427250) (|FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber| NIL 1426925 1426996 1427094 1427099) (|StreamInfiniteProduct| NIL 1425843 1425877 1426915 1426920) (|OrdinaryDifferentialRing| NIL 1425182 1425230 1425568 1425801) (|FramedNonAssociativeAlgebraFunctions2| NIL 1424595 1424648 1425172 1425177) (|GuessFinite| NIL 1424398 1424417 1424516 1424521) (|BalancedFactorisation| NIL 1423798 1423830 1424388 1424393) (|PrimeField| NIL 1423354 1423374 1423492 1423657) (|PiCoercions| NIL 1423090 1423109 1423344 1423349) (|FractionalIdealFunctions2| NIL 1422805 1422860 1423080 1423085) (|DifferentialPolynomialCategory&| NIL 1418245 1418292 1422747 1422752) (|DoubleFloat| NIL 1414541 1414558 1418055 1418240) (|UnivariatePolynomialCategory| NIL 1408870 1408906 1414259 1414536) (|UnivariatePolynomial| NIL 1404751 1404783 1405359 1405636) (|BlowUpWithQuadTrans| NIL 1404624 1404649 1404716 1404746) (|Asp28| NIL 1395050 1395068 1404614 1404619) (|OrderlyDifferentialPolynomial| NIL 1391306 1391343 1391659 1391893) (|LieAlgebra&| NIL 1390907 1390928 1391259 1391264) (|ArcTrigonometricFunctionCategory| NIL 1389407 1389445 1390897 1390902) (|LexTriangularPackage| NIL 1385221 1385254 1389397 1389402) (|ElementaryFunctionStructurePackage| NIL 1383190 1383234 1385211 1385216) (|FreeNilpotentLie| NIL 1382581 1382617 1383141 1383185) (|StreamFunctions3| NIL 1381916 1381944 1382571 1382576) (|FiniteFieldNormalBasisExtensionByPolynomial| NIL 1380292 1380350 1381501 1381666) (|FunctionSpaceUnivariatePolynomialFactor| NIL 1379281 1379333 1380204 1380209) (|NoneFunctions1| NIL 1378945 1378967 1379271 1379276) (|ComplexTrigonometricManipulations| NIL 1377386 1377429 1378935 1378940) (|PolyGroebner| NIL 1375802 1375822 1377376 1377381) (|PAdicRationalConstructor| NIL 1372598 1372638 1373749 1373914) (|DirectProductCategory&| NIL 1371142 1371180 1372085 1372090) (|KeyedDictionary&| NIL 1370287 1370325 1371132 1371137) (|IndexedList| NIL 1369041 1369065 1369569 1369621) (|NeitherSparseOrDensePowerSeries| NIL 1367215 1367254 1367321 1367486) (|PolynomialFactorizationExplicit&| NIL 1364902 1364942 1367152 1367157) (|ElementaryFunctionCategory&| NIL 1364397 1364432 1364892 1364897) (|StreamFunctions2| NIL 1362978 1363004 1364387 1364392) (|InterfaceGroebnerPackage| NIL 1362824 1362870 1362968 1362973) (|PatternMatchSymbol| NIL 1362365 1362391 1362814 1362819) (|FullyLinearlyExplicitRingOver| NIL 1362033 1362070 1362338 1362360) (|MonoidRingFunctions2| NIL 1361577 1361609 1362023 1362028) (|IntegerNumberSystem&| NIL 1358979 1359007 1361567 1361572) (|ElementaryFunctionODESolver| NIL 1354275 1354312 1358969 1358974) (|HomogeneousAggregate| NIL 1352051 1352079 1354255 1354270) (|IntegralDomain| NIL 1350705 1350725 1351934 1352046) (|ArbitraryExponentAttribute| NIL 1350573 1350605 1350685 1350700) (|FiniteSetAggregateFunctions2| NIL 1349291 1349333 1350563 1350568) (|TranscendentalIntegration| NIL 1342294 1342330 1349281 1349286) (|InputFormFunctions1| NIL 1341922 1341949 1342284 1342289) (|FiniteAbelianMonoidRing&| NIL 1339994 1340030 1341774 1341779) (|DifferentialRing&| NIL 1339108 1339133 1339984 1339989) (|FactoringUtilities| NIL 1337306 1337339 1339098 1339103) (|PolynomialSquareFree| NIL 1336599 1336641 1337296 1337301) (|RadicalCategory| NIL 1336095 1336116 1336589 1336594) (|TriangularSetCategory&| NIL 1326600 1326638 1336047 1336052) (|GuessOptionFunctions0| NIL 1322996 1323023 1326590 1326595) (|RetractableTo&| NIL 1322325 1322349 1322986 1322991) (|FunctionalSpecialFunction| NIL 1319593 1319628 1322315 1322320) (|Kovacic| NIL 1318273 1318291 1319583 1319588) (|DoublyLinkedAggregate| NIL 1316701 1316730 1318253 1318268) (|FullyEvalableOver&| NIL 1316155 1316183 1316453 1316458) (|GuessPolynomial| NIL 1315829 1315850 1315942 1315947) (|ProjectiveSpaceCategory| NIL 1313303 1313334 1315819 1315824) (|MappingPackage4| NIL 1312144 1312169 1313293 1313298) (|AlgebraicHermiteIntegration| NIL 1311768 1311813 1312134 1312139) (|RealRootCharacterizationCategory&| NIL 1310142 1310204 1311758 1311763) (|InnerNumericEigenPackage| NIL 1308668 1308708 1310132 1310137) (|RadicalSolvePackage| NIL 1302773 1302800 1308658 1308663) (|UnivariateSkewPolynomialCategoryOps| NIL 1300485 1300530 1302678 1302683) (|ModularRing| NIL 1299780 1299836 1300458 1300480) (|FreeModule1| NIL 1299203 1299224 1299684 1299728) (|ApplyUnivariateSkewPolynomial| NIL 1298778 1298819 1299193 1299198) (|PointFunctions2| NIL 1298584 1298611 1298768 1298773) (|ProjectivePlane| NIL 1298461 1298484 1298574 1298579) (|ODETools| NIL 1296984 1297005 1298451 1298456) (|Asp42| NIL 1295256 1295299 1296974 1296979) (|TaylorSolve| NIL 1295155 1295187 1295246 1295251) (|PolynomialGcdPackage| NIL 1293625 1293660 1295145 1295150) (|d01akfAnnaType| NIL 1293143 1293163 1293615 1293620) (|LocalAlgebra| NIL 1292529 1292553 1293032 1293095) (|RationalFunctionIntegration| NIL 1290872 1290907 1292519 1292524) (|RationalFunctionDefiniteIntegration| NIL 1288304 1288347 1290862 1290867) (|StreamAggregate&| NIL 1287398 1287424 1288294 1288299) (|RandomFloatDistributions| NIL 1286292 1286322 1287388 1287393) (|Asp30| NIL 1285019 1285037 1286282 1286287) (|GenExEuclid| NIL 1283511 1283533 1285009 1285014) (|FiniteLinearAggregateFunctions2| NIL 1282203 1282248 1283501 1283506) (|UserDefinedVariableOrdering| NIL 1280990 1281023 1282193 1282198) (|NumericTubePlot| NIL 1280704 1280733 1280980 1280985) (|IntersectionDivisorPackage| NIL 1279826 1279937 1280694 1280699) (|AssociatedEquations| NIL 1278595 1278624 1279779 1279784) (|AnnaNumericalOptimizationPackage| NIL 1271081 1271119 1278585 1278590) (|CharacteristicNonZero| NIL 1270808 1270835 1271054 1271076) (|SemiGroup&| NIL 1270111 1270129 1270798 1270803) (|Fraction| NIL 1266363 1266379 1266754 1267048) (|DirectProductCategory| NIL 1265202 1265237 1266142 1266358) (|StreamTaylorSeriesOperations| NIL 1257729 1257765 1265063 1265068) (|PolynomialSetCategory| NIL 1252563 1252605 1257685 1257724) (|Tableau| NIL 1252049 1252064 1252553 1252558) (|PartialDifferentialRing| NIL 1250396 1250427 1252022 1252044) (|SquareFreeRegularTriangularSetCategory| NIL 1249899 1249951 1250327 1250391) (|LieExponentials| NIL 1248114 1248154 1249872 1249894) (|EuclideanDomain&| NIL 1245753 1245777 1248104 1248109) (|StringAggregate| NIL 1241053 1241074 1245684 1245748) (|Asp8| NIL 1239992 1240009 1241043 1241048) (|BagAggregate&| NIL 1239246 1239269 1239982 1239987) (|BalancedPAdicRational| NIL 1236156 1236187 1236366 1236531) (|OrderedIntegralDomain| NIL 1235871 1235898 1236039 1236151) (|U32Vector| NIL 1234914 1234929 1235124 1235176) (|IntervalCategory| NIL 1233470 1233494 1234777 1234909) (|IntegralBasisTools| NIL 1230404 1230435 1233460 1233465) (|ListAggregate&| NIL 1230081 1230105 1230394 1230399) (|LinearSystemFromPowerSeriesPackage| NIL 1229500 1229546 1230071 1230076) (|UnivariateTaylorSeries| NIL 1223858 1223905 1227544 1227709) (|IntegerBits| NIL 1223380 1223397 1223848 1223853) (|SegmentFunctions2| NIL 1222776 1222803 1223327 1223332) (|IntegerSolveLinearPolynomialEquation| NIL 1222062 1222104 1222766 1222771) (|AbelianGroup| NIL 1221595 1221613 1222052 1222057) (|MultivariateSquareFree| NIL 1218543 1218580 1221585 1221590) (|NormalizedTriangularSetCategory| NIL 1217896 1217941 1218474 1218538) (|e04jafAnnaType| NIL 1217422 1217442 1217886 1217891) (|U32VectorPolynomialOperations| NIL 1212061 1212096 1217412 1217417) (|NewSparseUnivariatePolynomial| NIL 1204874 1204911 1208550 1208827) (|RadicalEigenPackage| NIL 1202414 1202439 1204864 1204869) (|NumericalQuadrature| NIL 1191126 1191151 1202404 1202409) (|SimplifyAlgebraicNumberConvertPackage| NIL 1190835 1190878 1191116 1191121) (|SparseEchelonMatrix| NIL 1184775 1184804 1190689 1190741) (|OpenMathConnection| NIL 1184176 1184200 1184765 1184770) (|NonCommutativeOperatorDivision| NIL 1182292 1182332 1184166 1184171) (|FiniteFieldPolynomialPackage| NIL 1173722 1173759 1182282 1182287) (|OrderedCancellationAbelianMonoid| NIL 1173542 1173580 1173712 1173717) (|SegmentCategory| NIL 1172318 1172341 1173522 1173537) (|ProjectiveSpace| NIL 1172189 1172218 1172308 1172313) (|OrderedCompletion| NIL 1170539 1170564 1171609 1171654) (|LazyStreamAggregate| NIL 1166270 1166297 1170519 1170534) (|LazyRepresentationAttribute| NIL 1166132 1166165 1166250 1166265) (|CylindricalAlgebraicDecompositionPackage| NIL 1166060 1166117 1166122 1166127) (|UTSodetools| NIL 1165338 1165366 1166004 1166009) (|NonLinearSolvePackage| NIL 1163945 1163974 1165328 1165333) (|SturmHabichtPackage| NIL 1161886 1161917 1163894 1163899) (|UnivariatePuiseuxSeries| NIL 1158947 1158995 1159548 1159800) (|PatternMatchListResult| NIL 1158037 1158071 1158937 1158942) (|InnerPolySum| NIL 1157513 1157539 1158027 1158032) (|TopLevelThreeSpace| NIL 1157176 1157200 1157503 1157508) (|NonAssociativeRng| NIL 1156539 1156562 1157166 1157171) (|SetCategory| NIL 1156021 1156038 1156529 1156534) (|LinearOrdinaryDifferentialOperatorCategory| NIL 1154606 1154656 1155953 1156016) (|AssociationListAggregate| NIL 1154060 1154104 1154537 1154601) (|BasicType&| NIL 1153744 1153762 1154050 1154055) (|PolynomialRoots| NIL 1152472 1152503 1153693 1153698) (|PowerSeriesCategory&| NIL 1151307 1151356 1152462 1152467) (|SymmetricGroupCombinatoricFunctions| NIL 1144806 1144847 1151297 1151302) (|ListToMap| NIL 1141662 1141681 1144796 1144801) (|UnaryRecursiveAggregate| NIL 1134322 1134353 1141642 1141657) (|WuWenTsunTriangularSet| NIL 1130890 1130926 1133943 1133995) (|BlowUpWithHamburgerNoether| NIL 1130758 1130790 1130857 1130885) (|FractionalIdeal| NIL 1129975 1130005 1130731 1130753) (|ExpressionSpaceODESolver| NIL 1126701 1126735 1129965 1129970) (|AlgFactor| NIL 1125818 1125836 1126691 1126696) (|PatternMatchResult| NIL 1123463 1123491 1125808 1125813) (|InputForm| NIL 1120368 1120383 1123453 1123458) (|DefiniteIntegrationTools| NIL 1118585 1118619 1120358 1120363) (|FortranProgram| NIL 1117057 1117119 1118575 1118580) (|Permutation| NIL 1112518 1112537 1116859 1116881) (|QuaternionCategoryFunctions2| NIL 1111904 1111948 1112508 1112513) (|MatrixCategoryFunctions2| NIL 1111164 1111234 1111894 1111899) (|FiniteSetAggregate&| NIL 1110286 1110315 1111072 1111077) (|ListFunctions2| NIL 1108954 1108978 1110276 1110281) (|UnivariatePuiseuxSeriesConstructorCategory| NIL 1107282 1107341 1108697 1108949) (|InverseLaplaceTransform| NIL 1106862 1106895 1107272 1107277) (|FunctionSpaceToExponentialExpansion| NIL 1105992 1106048 1106852 1106857) (|GroebnerSolve| NIL 1104576 1104604 1105982 1105987) (|QueryEquation| NIL 1104178 1104197 1104566 1104571) (|QueueAggregate| NIL 1102955 1102977 1104109 1104173) (|PendantTree| NIL 1102217 1102236 1102785 1102790) (|ArrayStack| NIL 1097189 1097207 1102000 1102052) (|FreeModule| NIL 1096854 1096874 1097093 1097137) (|ResolveLatticeCompletion| NIL 1096159 1096191 1096844 1096849) (|UnivariatePolynomialCategoryFunctions2| NIL 1095589 1095643 1096149 1096154) (|Asp6| NIL 1094265 1094282 1095579 1095584) (|FindOrderFinite| NIL 1094037 1094070 1094255 1094260) (|NullSquareAttribute| NIL 1093902 1093927 1094017 1094032) (|IndexedVector| NIL 1092719 1092745 1092870 1092922) (|SparseMultivariatePolynomial| NIL 1089251 1089296 1089649 1089883) (|UnivariatePuiseuxSeriesFunctions2| NIL 1088764 1088847 1089241 1089246) (|ExtensionField&| NIL 1087161 1087186 1088609 1088614) (|FractionFunctions2| NIL 1086758 1086786 1087151 1087156) (|Evalable| NIL 1086316 1086332 1086748 1086753) (|AssociationList| NIL 1084053 1084088 1084415 1084467) (|FunctionSpaceReduce| NIL 1083464 1083493 1084043 1084048) (|TaylorSeries| NIL 1081876 1081901 1082859 1083024) (|PrimitiveFunctionCategory| NIL 1081464 1081495 1081866 1081871) (|MatrixCommonDenominator| NIL 1080645 1080678 1081454 1081459) (|TopLevelDrawFunctions| NIL 1073534 1073566 1080635 1080640) (|GeneralPolynomialGcdPackage| NIL 1073159 1073201 1073524 1073529) (|ComplexRootFindingPackage| NIL 1067244 1067280 1073149 1073154) (|FortranFunctionCategory| NIL 1064313 1064342 1067224 1067239) (|UnivariatePolynomialCommonDenominator| NIL 1063480 1063530 1064303 1064308) (|DivisionRing| NIL 1062895 1062913 1063389 1063475) (|OctonionCategory&| NIL 1060474 1060501 1062480 1062485) (|EuclideanGroebnerBasisPackage| NIL 1057121 1057186 1060464 1060469) (|TransSolvePackageService| NIL 1055689 1055721 1057111 1057116) (|Module&| NIL 1055417 1055434 1055679 1055684) (|AbelianMonoid&| NIL 1054777 1054799 1055407 1055412) (|ArcHyperbolicFunctionCategory| NIL 1054130 1054165 1054767 1054772) (|SemiGroup| NIL 1053436 1053451 1054120 1054125) (|Automorphism| NIL 1052863 1052883 1053409 1053431) (|UnivariateFormalPowerSeriesFunctions| NIL 1052745 1052794 1052853 1052858) (|BinaryTree| NIL 1051796 1051814 1052528 1052580) (|BezoutMatrix| NIL 1050918 1050955 1051738 1051743) (|ExpertSystemToolsPackage2| NIL 1050490 1050527 1050908 1050913) (|MathMLFormat| NIL 1049233 1049251 1050480 1050485) (|NumericalIntegrationCategory| NIL 1046562 1046596 1049223 1049228) (|Stream| NIL 1042157 1042171 1046244 1046272) (|OrderedAbelianMonoidSup| NIL 1041490 1041519 1042147 1042152) (|AttributeButtons| NIL 1037626 1037648 1041458 1041485) (|QuotientFieldCategoryFunctions2| NIL 1037298 1037343 1037616 1037621) (|CardinalNumber| NIL 1033710 1033730 1037264 1037293) (|DifferentialPolynomialCategory| NIL 1028972 1029016 1033471 1033705) (|PlottablePlaneCurveCategory| NIL 1028123 1028156 1028962 1028967) (|BitAggregate&| NIL 1027247 1027268 1028113 1028118) (|UnivariateTaylorSeriesCategory&| NIL 1024054 1024100 1026665 1026670) (|U32Matrix| NIL 1023157 1023172 1023545 1023597) (|FortranCode| NIL 1013113 1013130 1023147 1023152) (|HexadecimalExpansion| NIL 1010097 1010123 1010867 1011032) (|RationalRetractions| NIL 1009502 1009529 1010087 1010092) (|NottinghamGroup| NIL 1009374 1009397 1009475 1009497) (|NumericalPDEProblem| NIL 1007536 1007561 1009364 1009369) (|InnerPolySign| NIL 1006973 1006997 1007526 1007531) (|CoordinateSystems| NIL 1001913 1001938 1006963 1006968) (|GeneralDistributedMultivariatePolynomial| NIL 997932 997987 998723 998957) (|UnaryRecursiveAggregate&| NIL 990552 990586 997875 997880) (|StreamAggregate| NIL 989639 989662 990532 990547) (|FramedModule| NIL 989033 989069 989560 989565) (|FortranVectorCategory| NIL 988058 988085 989013 989028) (|NagRootFindingPackage| NIL 986585 986612 988048 988053) (|UnivariatePuiseuxSeriesWithExponentialSingularity| NIL 983720 983792 985180 985421) (|FiniteFieldPolynomialPackage2| NIL 982804 982844 983710 983715) (|NagFittingPackage| NIL 973565 973588 982794 982799) (|IndexedDirectProductOrderedAbelianMonoid| NIL 973262 973312 973555 973560) (|OrderedSet| NIL 972394 972410 973252 973257) (|DesingTree| NIL 971545 971563 972177 972229) (|PseudoAlgebraicClosureOfPerfectFieldCategory| NIL 969734 969784 971375 971540) (|MakeFloatCompiledFunction| NIL 968561 968594 969724 969729) (|SortPackage| NIL 968094 968115 968509 968514) (|XAlgebra| NIL 967764 967780 968026 968089) (|EllipticFunctionsUnivariateTaylorSeries| NIL 967116 967172 967754 967759) (|StochasticDifferential| NIL 963558 963588 967067 967111) (|DrawNumericHack| NIL 962808 962831 963548 963553) (|OrderedDirectProduct| NIL 952596 952634 952972 953176) (|Float| NIL 945827 945838 952353 952591) (|CommonDenominator| NIL 945052 945081 945817 945822) (|RealClosedField| NIL 942297 942318 944882 945047) (|Monoid| NIL 941216 941228 942287 942292) (|RadicalCategory&| NIL 940709 940733 941206 941211) (|TransSolvePackage| NIL 938281 938306 940699 940704) (|LeadingCoefDetermination| NIL 936689 936728 938271 938276) (|EquationFunctions2| NIL 936391 936419 936679 936684) (|PointCategory| NIL 935447 935468 936322 936386) (|RetractSolvePackage| NIL 934850 934879 935437 935442) (|BasicStochasticDifferential| NIL 932743 932776 934840 934845) (|LeftModule| NIL 932246 932264 932733 932738) (|PackageForAlgebraicFunctionField| NIL 925092 925145 932198 932203) (|RightOpenIntervalRootCharacterization| NIL 924165 924231 925082 925087) (|FiniteDivisorCategory| NIL 922162 922201 924155 924160) (|Cell| NIL 922126 922147 922152 922157) (|PointPackage| NIL 919242 919262 922116 922121) (|OctonionCategory| NIL 917171 917195 919174 919237) (|BasicOperator| NIL 912768 912787 917161 917166) (|CanonicalAttribute| NIL 912565 912589 912748 912763) (|RationalUnivariateRepresentationPackage| NIL 910265 910317 912555 912560) (|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| NIL 910103 910165 910255 910260) (|PAdicIntegerCategory| NIL 908588 908618 909986 910098) (|ExpertSystemContinuityPackage| NIL 905370 905405 908578 908583) (|EigenPackage| NIL 901714 901734 905360 905365) (|PatternMatchListAggregate| NIL 901276 901313 901704 901709) (|Segment| NIL 901068 901083 901178 901183) (|NonAssociativeAlgebra| NIL 900584 900613 901019 901063) (|Group&| NIL 899566 899580 900574 900579) (|TranscendentalManipulations| NIL 893942 893979 899212 899217) (|NumericalIntegrationProblem| NIL 891617 891650 893932 893937) (|PrimitiveRatRicDE| NIL 888621 888654 891607 891612) (|Exit| NIL 888290 888300 888611 888616) (|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| NIL 887676 887755 888280 888285) (|FunctionSpaceAssertions| NIL 886683 886716 887666 887671) (|MonogenicLinearOperator| NIL 885056 885087 886615 886678) (|FreeLieAlgebra| NIL 883094 883125 884965 885051) (|QuasiAlgebraicSet| NIL 879223 879270 882979 882984) (|GaloisGroupPolynomialUtilities| NIL 877700 877741 879213 879218) (|d01TransformFunctionType| NIL 877347 877377 877690 877695) (|CartesianTensorFunctions2| NIL 876714 876764 877337 877342) (|e04gcfAnnaType| NIL 876240 876260 876704 876709) (|AlgebraicFunctionField| NIL 874007 874055 874228 874483) (|List| NIL 871838 871850 873247 873299) (|Module| NIL 871530 871544 871789 871833) (|DirectProductFunctions2| NIL 870370 870409 871520 871525) (|RepeatedSquaring| NIL 870088 870112 870360 870365) (|e04fdfAnnaType| NIL 869614 869634 870078 870083) (|VectorCategory&| NIL 867366 867391 869336 869341) (|UnivariatePolynomialCategory&| NIL 861650 861689 867042 867047) (|StreamTranscendentalFunctionsNonCommutative| NIL 858080 858136 861640 861645) (|RadixUtilities| NIL 857825 857845 858070 858075) (|ElementaryFunction| NIL 852589 852617 857815 857820) (|CharacteristicPolynomialInMonogenicalAlgebra| NIL 852252 852313 852579 852584) (|PrincipalIdealDomain| NIL 851181 851207 852135 852247) (|ExtensibleLinearAggregate&| NIL 849013 849049 851084 851089) (|FortranProgramCategory| NIL 848696 848724 848993 849008) (|PolynomialRing| NIL 846744 846768 847449 847683) (|LinearOrdinaryDifferentialOperatorCategory&| NIL 845347 845400 846697 846702) (|Partition| NIL 844143 844158 845337 845342) (|FunctionSpaceToUnivariatePowerSeries| NIL 838600 838668 844133 844138) (|AlgebraicallyClosedFunctionSpace| NIL 836376 836416 838418 838595) (|Reference| NIL 835712 835729 836323 836328) (|FunctionSpace| NIL 829464 829485 835328 835707) (|d01WeightsPackage| NIL 827772 827795 829454 829459) (|PushVariables| NIL 827098 827128 827762 827767) (|CoerceVectorMatrixPackage| NIL 826460 826493 827088 827093) (|Localize| NIL 825817 825837 826360 826404) (|CommutativeStarAttribute| NIL 825543 825573 825797 825812) (|LeftOreRing| NIL 824988 825005 825452 825538) (|SystemSolvePackage| NIL 821604 821630 824978 824983) (|LinearSystemPolynomialPackage| NIL 821120 821164 821594 821599) (|PseudoAlgebraicClosureOfRationalNumberCategory| NIL 819988 820040 820950 821115) (|OneDimensionalArrayAggregate&| NIL 819140 819179 819978 819983) (|DistributedMultivariatePolynomial| NIL 815257 815303 815950 816184) (|IndexedMatrix| NIL 814282 814319 814805 814857) (|PositiveInteger| NIL 813763 813784 814248 814277) (|BinarySearchTree| NIL 812372 812396 813546 813598) (|MultiplicativeValuationAttribute| NIL 812181 812219 812352 812367) (|QuotientFieldCategory| NIL 810804 810833 811999 812176) (|UnivariateTaylorSeriesCategory| NIL 808026 808069 810634 810799) (|GeneralSparseTable| NIL 806949 807000 807137 807165) (|PolToPol| NIL 805691 805712 806939 806944) (|Plot3D| NIL 802301 802313 805681 805686) (|BlowUpPackage| NIL 800543 800590 802291 802296) (|LieAlgebra| NIL 800103 800121 800452 800538) (|FiniteLinearAggregateSort| NIL 799336 799371 800093 800098) (|IndexedBits| NIL 798493 798515 798914 798966) (|CoercibleTo| NIL 798221 798240 798483 798488) (|CommutativeRing| NIL 797874 797895 798127 798216) (|Quaternion| NIL 796197 796215 796498 796606) (|LocalParametrizationOfSimplePointPackage| NIL 794615 794702 796187 796192) (|NormRetractPackage| NIL 794197 794248 794605 794610) (|InnerPrimeField| NIL 793774 793799 793891 794056) (|AlgebraicIntegrate| NIL 792920 792959 793764 793769) (|Numeric| NIL 785027 785042 792679 792684) (|InnerCommonDenominator| NIL 784240 784276 785017 785022) (|ComplexDoubleFloatVector| NIL 782065 782095 782704 782756) (|TemplateUtilities| NIL 781612 781635 782055 782060) (|UnivariateFactorize| NIL 780719 780747 781602 781607) (|NAGLinkSupportPackage| NIL 779777 779804 780709 780714) (|MoebiusTransform| NIL 778417 778441 779750 779772) (|MultivariateLifting| NIL 777035 777069 778407 778412) (|UnivariateTaylorSeriesCZero| NIL 771764 771810 775079 775244) (|SparseMultivariateTaylorSeries| NIL 769470 769523 771159 771324) (|ParametrizationPackage| NIL 768273 768342 769460 769465) (|IntegerLinearDependence| NIL 767373 767404 768263 768268) (|Asp55| NIL 765805 765823 767363 767368) (|BitAggregate| NIL 764873 764891 765736 765800) (|PatternMatch| NIL 763043 763084 764540 764545) (|MultFiniteFactorize| NIL 762430 762465 763033 763038) (|d02bhfAnnaType| NIL 761910 761930 762420 762425) (|LinearSystemMatrixPackage1| NIL 759652 759686 761900 761905) (|NumericComplexEigenPackage| NIL 757806 757844 759642 759647) (|FullyRetractableTo| NIL 757464 757490 757796 757801) (|PrimitiveArrayFunctions2| NIL 755569 755603 757454 757459) (|ViewportPackage| NIL 753275 753296 755559 755564) (|GenUFactorize| NIL 752868 752889 753265 753270) (|CentralAttribute| NIL 752549 752571 752848 752863) (|HyperbolicFunctionCategory| NIL 751903 751935 752539 752544) (|ODEIntegration| NIL 751314 751338 751893 751898) (|NewtonPolygon| NIL 751195 751235 751304 751309) (|LinearlyExplicitRingOver| NIL 750544 750576 751168 751190) (|NPCoef| NIL 749807 749831 750534 750539) (|Eltable| NIL 749334 749357 749797 749802) (|PseudoAlgebraicClosureOfAlgExtOfRationalNumberCategory| NIL 748186 748246 749164 749329) (|HomogeneousAggregate&| NIL 745763 745794 747970 747975) (|OrderedAbelianGroup| NIL 745610 745635 745753 745758) (|MonadWithUnit&| NIL 743749 743771 745600 745605) (|Asp80| NIL 743076 743094 743739 743744) (|HomogeneousDirectProduct| NIL 732858 732896 733240 733444) (|ExtensionField| NIL 731243 731265 732688 732853) (|FiniteFieldExtension| NIL 730523 730556 730828 730993) (|MappingPackage3| NIL 729385 729412 730513 730518) (|RandomIntegerDistributions| NIL 728390 728422 729375 729380) (|RecurrenceOperator| NIL 726785 726813 728344 728349) (|BlowUpMethodCategory| NIL 726744 726770 726775 726780) (|FlexibleArray| NIL 725037 725058 726026 726078) (|XRecursivePolynomial| NIL 724178 724215 724816 724938) (|MakeBinaryCompiledFunction| NIL 723370 723412 724168 724173) (|ExpressionToOpenMath| NIL 723186 723214 723360 723365) (|RealZeroPackageQ| NIL 720524 720552 723176 723181) (|Asp7| NIL 719718 719735 720514 720519) (|ResidueRing| NIL 719029 719080 719624 719713) (|InnerEvalable| NIL 718415 718438 719019 719024) (|NagEigenPackage| NIL 712558 712579 718405 718410) (|IntegerNumberSystem| NIL 709796 709821 712381 712553) (|SparseUnivariatePolynomialExpressions| NIL 706118 706163 706221 706498) (|LeftAlgebra| NIL 705878 705897 706091 706113) (|FortranMachineTypeCategory| NIL 705609 705641 705761 705873) (|d01anfAnnaType| NIL 705093 705113 705599 705604) (|FullyRetractableTo&| NIL 704580 704609 704915 704920) (|IntegerNumberTheoryFunctions| NIL 700933 700967 704570 704575) (|SplittingNode| NIL 697971 697994 700923 700928) (|ComplexRootPackage| NIL 697289 697322 697961 697966) (|OutputForm| NIL 686726 686742 697279 697284) (|DrawOption| NIL 680483 680499 686716 686721) (|GosperSummationMethod| NIL 679752 679789 680473 680478) (|LazardSetSolvingPackage| NIL 678841 678884 679742 679747) (|EuclideanDomain| NIL 676376 676397 678724 678836) (|RomanNumeral| NIL 675509 675527 676137 676371) (|Asp10| NIL 674785 674803 675499 675504) (|MakeCachableSet| NIL 674550 674573 674775 674780) (|FiniteField| NIL 673838 673863 674060 674225) (|FiniteFieldFunctions| NIL 671320 671349 673828 673833) (|IrrRepSymNatPackage| NIL 669396 669421 671310 671315) (|e04dgfAnnaType| NIL 668922 668942 669386 669391) (|OpenMathPackage| NIL 667585 667606 668912 668917) (|SparseUnivariatePolynomial| NIL 663196 663230 664074 664351) (|NotherianAttribute| NIL 663054 663078 663176 663191) (|OnePointCompletionFunctions2| NIL 662519 662557 663044 663049) (|FiniteFieldSolveLinearPolynomialEquation| NIL 661988 662043 662509 662514) (|Export3D| NIL 661696 661710 661978 661983) (|AbelianSemiGroup&| NIL 661058 661083 661686 661691) (|PatternMatchTools| NIL 659864 659893 661048 661053) (|PartialDifferentialEquationsSolverCategory| NIL 659010 659058 659854 659859) (|FiniteFieldCategory&| NIL 656695 656723 659000 659005) (|d01AgentsPackage| NIL 652788 652810 656685 656690) (|UnivariateLaurentSeriesFunctions2| NIL 652302 652385 652778 652783) (|InfClsPt| NIL 651753 651782 652292 652297) (|GraphicsDefaults| NIL 650134 650156 651743 651748) (|MachineComplex| NIL 644047 644067 644673 645078) (|Palette| NIL 643050 643063 644037 644042) (|StreamFunctions1| NIL 642552 642576 643040 643045) (|DifferentialExtension&| NIL 641562 641594 642413 642418) (|SetCategory&| NIL 641041 641061 641552 641557) (|ExpressionSpaceFunctions2| NIL 640529 640564 641031 641036) (|RoutinesTable| NIL 636809 636828 639559 639611) (|FiniteDivisorFunctions2| NIL 636534 636595 636799 636804) (|FunctionSpacePrimitiveElement| NIL 635348 635387 636468 636473) (|FiniteFieldCyclicGroupExtensionByPolynomial| NIL 634110 634171 634933 635098) (|ApplicationProgramInterface| NIL 633018 633051 634100 634105) (|PolynomialDecomposition| NIL 632353 632387 633008 633013) (|PlacesCategory| NIL 631383 631409 632343 632348) (|FactoredFunctions| NIL 630562 630587 631373 631378) (|UniversalSegment| NIL 629885 629909 630464 630469) (|BagAggregate| NIL 629107 629127 629840 629880) (|GenusZeroIntegration| NIL 622211 622243 628999 629004) (|MappingPackage1| NIL 621020 621043 622201 622206) (|FreeAbelianMonoid| NIL 620628 620653 620940 620945) (|CliffordAlgebra| NIL 619306 619335 620560 620623) (|FractionFreeFastGaussianFractions| NIL 617954 618000 619296 619301) (|RealConstant| NIL 617829 617847 617944 617949) (|LinearOrdinaryDifferentialOperatorsOps| NIL 616723 616771 617819 617824) (|BinaryTreeCategory&| NIL 616124 616153 616713 616718) (|PolynomialPackageForCurve| NIL 614999 615060 616114 616119) (|LazyStreamAggregate&| NIL 610737 610767 614989 614994) (|RepeatedDoubling| NIL 610423 610447 610727 610732) (|PAdicInteger| NIL 610115 610137 610306 610418) (|NagIntegrationPackage| NIL 604640 604667 610105 610110) (|TopLevelDrawFunctionsForAlgebraicCurves| NIL 604150 604202 604630 604635) (|FiniteLinearAggregate&| NIL 601220 601252 604004 604009) (|PatternFunctions1| NIL 599507 599534 601210 601215) (|RectangularMatrixCategoryFunctions2| NIL 598903 598992 599497 599502) (|GradedModule&| NIL 597530 597555 598893 598898) (|ScriptFormulaFormat| NIL 594907 594932 597520 597525) (|MPolyCatRationalFunctionFactorizer| NIL 592967 593018 594897 594902) (|ExpressionTubePlot| NIL 590419 590443 592957 592962) (|PrimitiveElement| NIL 588496 588520 590409 590414) (|PatternMatchAssertions| NIL 587543 587571 588486 588491) (|d02cjfAnnaType| NIL 587011 587031 587533 587538) (|RealSolvePackage| NIL 585592 585614 587001 587006) (|Pi| NIL 585131 585139 585422 585587) (|RationalFunction| NIL 582812 582836 585121 585126) (|InfinitlyClosePointCategory| NIL 581391 581481 582802 582807) (|GuessInteger| NIL 581100 581118 581208 581213) (|IntegerCombinatoricFunctions| NIL 579581 579617 581090 581095) (|GcdDomain&| NIL 578589 578607 579571 579576) (|MultiVariableCalculusFunctions| NIL 575825 575875 578579 578584) (|RationalFactorize| NIL 574995 575021 575815 575820) (|InnerFiniteField| NIL 574215 574245 574480 574645) (|Vector| NIL 572929 572943 573183 573235) (|ExpressionFunctions2| NIL 572681 572711 572919 572924) (|NagSpecialFunctionsPackage| NIL 563099 563131 572671 572676) (|FunctionFieldCategory| NIL 551790 551827 562839 563094) (|UniqueFactorizationDomain&| NIL 550955 550989 551780 551785) (|IncrementingMaps| NIL 550358 550382 550945 550950) (|Factored| NIL 542143 542159 549116 549228) (|PolynomialCategory&| NIL 534654 534694 541054 541059) (|EvaluateCycleIndicators| NIL 534131 534162 534644 534649) (|PartitionsAndPermutations| NIL 531645 531676 534121 534126) (|e04mbfAnnaType| NIL 531215 531235 531635 531640) (|AbelianMonoidRing&| NIL 529166 529196 530872 530877) (|Field| NIL 528448 528459 528996 529161) (|UniversalSegmentFunctions2| NIL 527923 527959 528395 528400) (|AffinePlane| NIL 527762 527781 527913 527918) (|PatternMatchIntegerNumberSystem| NIL 527313 527352 527752 527757) (|GeneralUnivariatePowerSeries| NIL 523990 524043 524975 525227) (|ElementaryFunctionSign| NIL 523234 523266 523980 523985) (|AxiomServer| NIL 523085 523102 523224 523229) (|LinearOrdinaryDifferentialOperator2| NIL 522217 522262 522670 522733) (|d03eefAnnaType| NIL 522025 522045 522207 522212) (|TranscendentalRischDE| NIL 519976 520008 522015 522020) (|DifferentialRing| NIL 519076 519098 519949 519971) (|SetCategoryWithDegree| NIL 518949 518976 519066 519071) (|FileName| NIL 518835 518849 518939 518944) (|OneDimensionalArrayAggregate| NIL 517931 517967 518766 518830) (|CartesianTensor| NIL 509260 509297 517921 517926) (|ExpressionSpace| NIL 502204 502225 509250 509255) (|InnerMatrixLinearAlgebraFunctions| NIL 500792 500847 502147 502152) (|CRApackage| NIL 499941 499959 500782 500787) (|Asp74| NIL 498963 498981 499931 499936) (|SequentialDifferentialPolynomial| NIL 495251 495291 495557 495791) (|PolynomialSetUtilitiesPackage| NIL 482697 482740 495093 495098) (|RealNumberSystem&| NIL 481592 481617 482687 482692) (|PureAlgebraicIntegration| NIL 479191 479227 481484 481489) (|MakeRecord| NIL 478775 478796 479181 479186) (|SparseUnivariatePolynomialFunctions2| NIL 478136 478182 478765 478770) (|BrillhartTests| NIL 476897 476920 478126 478131) (|IndexedAggregate| NIL 475127 475165 476877 476892) (|ElementaryFunctionDefiniteIntegration| NIL 473576 473623 475117 475122) (|FiniteRankNonAssociativeAlgebra| NIL 462860 462899 473482 473571) (|TriangularSetCategory| NIL 453347 453382 462791 462855) (|PolynomialFactorizationByRecursion| NIL 450974 451029 453337 453342) (|FloatSpecialFunctions| NIL 450341 450368 450964 450969) (|e04nafAnnaType| NIL 449908 449928 450331 450336) (|ShallowlyMutableAttribute| NIL 449645 449676 449888 449903) (|IndexedFlexibleArray| NIL 446764 446797 448927 448979) (|ODEIntensityFunctionsTable| NIL 444143 444175 446754 446759) (|OpenMathServerPackage| NIL 443179 443206 444133 444138) (|QuaternionCategory| NIL 441327 441353 443066 443174) (|NagOrdinaryDifferentialEquationsPackage| NIL 434096 434141 441317 441322) (|TabulatedComputationPackage| NIL 432263 432310 434086 434091) (|InfiniteTuple| NIL 431372 431393 432253 432258) (|MatrixCategory&| NIL 417104 417141 431129 431134) (|FiniteAlgebraicExtensionField| NIL 410286 410323 416934 417099) (|Asp1| NIL 409662 409679 410276 410281) (|InnerSparseUnivariatePowerSeries| NIL 401789 401834 408405 408570) (|ToolsForSign| NIL 401443 401463 401779 401784) (|NewSparseMultivariatePolynomial| NIL 396429 396477 396750 396984) (|FreeAbelianGroup| NIL 395981 396005 396277 396321) (|ComplexIntegerSolveLinearPolynomialEquation| NIL 395279 395333 395971 395976) (|SExpressionOf| NIL 395112 395162 395269 395274) (|TwoDimensionalArrayCategory| NIL 388440 388487 395043 395107) (|DrawOptionFunctions0| NIL 383381 383407 388430 388435) (|Bezier| NIL 381250 381264 383371 383376) (|IndexedAggregate&| NIL 379303 379344 381056 381061) (|RationalFunctionFactorizer| NIL 378742 378776 379293 379298) (|SetAggregate&| NIL 375642 375665 378732 378737) (|InfiniteProductPrimeField| NIL 374715 374757 375632 375637) (|IntegrationResult| NIL 372374 372399 374516 374560) (|AnnaPartialDifferentialEquationPackage| NIL 366452 366496 372364 372369) (|Multiset| NIL 362914 362930 366133 366213) (|PowerSeriesCategory| NIL 361592 361638 362744 362909) (|MonomialExtensionTools| NIL 359947 359980 361582 361587) (|InnerMatrixQuotientFieldFunctions| NIL 358995 359070 359890 359895) (|TwoDimensionalViewport| NIL 347173 347201 358985 358990) (|ElementaryRischDESystem| NIL 346398 346431 347163 347168) (|ExponentialExpansion| NIL 341330 341373 341986 342151) (|IdealDecompositionPackage| NIL 338579 338620 341320 341325) (|Finite&| NIL 337574 337589 338569 338574) (|SparseUnivariateTaylorSeries| NIL 334157 334210 335618 335783) (|FiniteFieldSquareFreeDecomposition| NIL 333998 334047 334147 334152) (|Divisor| NIL 333806 333821 333890 333934) (|PriorityQueueAggregate| NIL 333184 333214 333737 333801) (|PolynomialInterpolation| NIL 332789 332825 333174 333179) (|DoubleFloatSpecialFunctions| NIL 323759 323792 332779 332784) (|PointsOfFiniteOrderTools| NIL 323084 323122 323749 323754) (|Asp20| NIL 322252 322270 323074 323079) (|TrigonometricFunctionCategory| NIL 321738 321773 322242 322247) (|FullPartialFractionExpansion| NIL 320466 320505 321728 321733) (|EqTable| NIL 319339 319366 319553 319605) (|DrawComplex| NIL 316755 316772 319329 319334) (|RadicalFunctionField| NIL 314627 314677 314743 314998) (|Patternable| NIL 314324 314343 314617 314622) (|Asp33| NIL 313905 313923 314314 314319) (|Asp78| NIL 313379 313397 313895 313900) (|Variable| NIL 313154 313174 313369 313374) (|AlgebraPackage| NIL 309112 309136 313097 313102) (|Monad| NIL 308300 308311 309102 309107) (|ComplexCategory&| NIL 305866 305892 307498 307503) (|AffineSpaceCategory| NIL 303736 303763 305856 305861) (|FreeModuleCat| NIL 301402 301431 303687 303731) (|Evalable&| NIL 300957 300976 301392 301397) (|GuessOption| NIL 295241 295258 300947 300952) (|AbelianMonoid| NIL 294604 294623 295231 295236) (|FortranExpression| NIL 287197 287258 294292 294355) (|IntegerRetractions| NIL 286674 286700 287187 287192) (|Rng| NIL 286206 286215 286664 286669) (|OrderedVariableList| NIL 285970 286010 286196 286201) (|PlottableSpaceCurveCategory| NIL 284970 285003 285960 285965) (|Monoid&| NIL 283886 283901 284960 284965) (|MatrixManipulation| NIL 275293 275333 283876 283881) (|RegularTriangularSetCategory&| NIL 266137 266182 275283 275288) (|StreamTranscendentalFunctions| NIL 262212 262254 266127 266132) (|BinaryTreeCategory| NIL 261557 261583 262143 262207) (|RationalFunctionLimitPackage| NIL 259489 259525 261547 261552) (|ExpressionSpace&| NIL 252322 252346 259371 259376) (|GuessFiniteFunctions| NIL 252185 252213 252312 252317) (|DirichletRing| NIL 251346 251372 251913 252133) (|Graphviz| NIL 250106 250120 251336 251341) (|Character| NIL 246460 246475 250096 250101) (|MonogenicAlgebra&| NIL 245171 245201 246320 246325) (|DifferentialVariableCategory| NIL 241894 241930 245161 245166) (|SubResultantPackage| NIL 241037 241067 241837 241842) (|e04ucfAnnaType| NIL 240563 240583 241027 241032) (|Dictionary&| NIL 240194 240215 240553 240558) (|ListFunctions3| NIL 239497 239523 240184 240189) (|ThreeSpace| NIL 239272 239290 239487 239492) (|BinaryRecursiveAggregate| NIL 238210 238242 239252 239267) (|StorageEfficientMatrixOperations| NIL 235460 235500 238200 238205) (|BinaryTournament| NIL 234655 234679 235243 235295) (|InnerAlgebraicNumber| NIL 232772 232798 234383 234548) (|PolynomialFactorizationByRecursionUnivariate| NIL 230637 230691 232762 232767) (|LeftUnitaryAttribute| NIL 230480 230506 230617 230632) (|LinesOpPack| NIL 229132 229151 230470 230475) (|PatternMatchable| NIL 228557 228581 229122 229127) (|NumericalOptimizationCategory| NIL 226008 226043 228547 228552) (|FortranMatrixCategory| NIL 225033 225060 225988 226003) (|PartialFraction| NIL 220588 220611 224863 225028) (|InnerIndexedTwoDimensionalArray| NIL 220237 220304 220371 220423) (|RewriteRule| NIL 218422 218450 220227 220232) (|Asp50| NIL 216073 216091 218412 218417) (|CommuteUnivariatePolynomialCategory| NIL 215814 215865 216063 216068) (|FunctionSpaceIntegration| NIL 215412 215446 215804 215809) (|InfinitlyClosePoint| NIL 214812 214892 215402 215407) (|DeRhamComplex| NIL 204549 204592 214785 214807) (|PolynomialInterpolationAlgorithms| NIL 204306 204349 204539 204544) (|OrderedFinite| NIL 204229 204248 204296 204301) (|ComplexPatternMatch| NIL 203702 203734 204132 204137) (|ChineseRemainderToolsForIntegralBases| NIL 202577 202627 203692 203697) (|UnivariateFormalPowerSeries| NIL 200523 200563 200621 200786) (|Asp31| NIL 199632 199650 200513 200518) (|CyclicStreamTools| NIL 198419 198447 199622 199627) (|SegmentBinding| NIL 197486 197508 198366 198371) (|MultivariateTaylorSeriesCategory| NIL 195418 195469 197316 197481) (|NonLinearFirstOrderODESolver| NIL 194853 194891 195408 195413) (|UnivariateSkewPolynomialCategory&| NIL 188689 188732 194666 194671) (|UnivariatePowerSeriesCategory&| NIL 185902 185955 188259 188264) (|MRationalFactorize| NIL 185447 185480 185892 185897) (|MoreSystemCommands| NIL 184889 184913 185437 185442) (|Infinity| NIL 184471 184485 184879 184884) (|InnerTrigonometricManipulations| NIL 183209 183253 184461 184466) (|AttributeRegistry| NIL 179562 179585 182762 183204) (|TranscendentalFunctionCategory&| NIL 179379 179418 179552 179557) (|ModularDistinctDegreeFactorizer| NIL 177622 177661 179369 179374) (|OctonionCategoryFunctions2| NIL 177240 177282 177612 177617) (|RealNumberSystem| NIL 175978 176000 177070 177235) (|FieldOfPrimeCharacteristic&| NIL 175099 175134 175968 175973) (|MonadWithUnit| NIL 173241 173260 175089 175094) (|UnivariatePuiseuxSeriesConstructorCategory&| NIL 171813 171875 173231 173236) (|OpenMathEncoding| NIL 171145 171167 171803 171808) (|Symbol| NIL 167267 167279 171135 171140) (|QuadraticForm| NIL 166725 166750 167257 167262) (|NoZeroDivisorsAttribute| NIL 166526 166555 166705 166720) (|Asp35| NIL 165506 165524 166516 166521) (|d01fcfAnnaType| NIL 165018 165038 165496 165501) (|LyndonWord| NIL 162249 162274 165008 165013) (|NagPartialDifferentialEquationsPackage| NIL 160252 160296 162239 162244) (|ElementaryIntegration| NIL 158595 158626 160242 160247) (|U8Matrix| NIL 157701 157715 158086 158138) (|U16Vector| NIL 156744 156759 156954 157006) (|TableAggregate&| NIL 155774 155811 156734 156739) (|GeneralPackageForAlgebraicFunctionField| NIL 150295 150419 155726 155731) (|PatternMatchPolynomialCategory| NIL 149333 149379 150213 150218) (|FunctionSpaceComplexIntegration| NIL 148572 148613 149323 149328) (|IntegrationResultFunctions2| NIL 147695 147732 148562 148567) (|DiscreteLogarithmPackage| NIL 147013 147045 147685 147690) (|LinearSystemMatrixPackage| NIL 145796 145843 147003 147008) (|SquareFreeRegularSetDecompositionPackage| NIL 144525 144582 145786 145791) (|LiePolynomial| NIL 143629 143659 144348 144434) (|PatternMatchQuotientFieldCategory| NIL 143197 143242 143619 143624) (|GeneralizedMultivariateFactorize| NIL 142634 142683 143187 143192) (|ElementaryFunctionLODESolver| NIL 141338 141378 142624 142629) (|UserDefinedPartialOrdering| NIL 138833 138867 141286 141291) (|IntegrationResultRFToFunction| NIL 137337 137374 138773 138778) (|SquareMatrix| NIL 134601 134628 135516 135658) (|TheSymbolTable| NIL 130655 130675 134591 134596) (|DictionaryOperations&| NIL 129690 129721 130599 130604) (|RegularChain| NIL 128051 128076 128922 128974) (|OpenMath| NIL 127120 127134 128041 128046) (|Color| NIL 125955 125966 127110 127115) (|PatternMatchIntegration| NIL 124126 124159 125473 125478) (|FloatingPointSystem| NIL 120978 121003 123936 124121) (|XExponentialPackage| NIL 120361 120403 120968 120973) (|Places| NIL 120268 120282 120351 120356) (|OneDimensionalArray| NIL 119056 119083 119550 119602) (|AbelianSemiGroup| NIL 118421 118443 119046 119051) (|StringTable| NIL 117315 117340 117472 117524) (|LinGroebnerPackage| NIL 114681 114712 117305 117310) (|StreamTensor| NIL 114357 114377 114671 114676) (|PartiallyOrderedSetAttribute| NIL 114129 114163 114337 114352) (|TableAggregate| NIL 113127 113161 114084 114124) (|PatternMatchKernel| NIL 112690 112718 113117 113122) (|TrigonometricFunctionCategory&| NIL 112173 112211 112680 112685) (|MakeFunction| NIL 111448 111468 112163 112168) (|PseudoAlgebraicClosureOfFiniteFieldCategory| NIL 110322 110371 111278 111443) (|DesingTreeCategory| NIL 109875 109901 110253 110317) (|ParametricLinearEquations| NIL 95949 95999 109865 109870) (|d02bbfAnnaType| NIL 95429 95449 95939 95944) (|PolynomialAN2Expression| NIL 94822 94851 95419 95424) (|Ring| NIL 94173 94183 94795 94817) (|StringAggregate&| NIL 89529 89553 94163 94168) (|ConvertibleTo| NIL 89242 89263 89519 89524) (|PermutationGroupExamples| NIL 81178 81208 89232 89237) (|ComplexPattern| NIL 80933 80960 81168 81173) (|Type| NIL 80854 80864 80913 80928) (|PowerSeriesLimitPackage| NIL 79708 79742 80844 80849) (|GaloisGroupFactorizer| NIL 70233 70263 79698 79703) (|InnerTaylorSeries| NIL 67933 67963 69966 70182) (|Algebra&| NIL 67458 67476 67923 67928) (|InfiniteTupleFunctions3| NIL 66943 66978 67448 67453) (|TexFormat| NIL 64074 64089 66933 66938) (|GroebnerInternalPackage| NIL 60151 60210 64064 64069) (|File| NIL 59736 59748 60141 60146) (|ThreeSpaceCategory| NIL 44111 44137 59726 59731) (|UnivariatePowerSeriesCategory| NIL 41587 41637 43941 44106) (|PseudoAlgebraicClosureOfFiniteField| NIL 40402 40445 41272 41437) (|SparseUnivariateSkewPolynomial| NIL 39562 39616 39987 40050) (|PermutationGroup| NIL 31517 31541 39552 39557) (|XPBWPolynomial| NIL 30079 30110 31205 31327) (|ParametricPlaneCurveFunctions2| NIL 29838 29882 30069 30074) (|FiniteFieldNormalBasis| NIL 28207 28248 29348 29513) (|PseudoRemainderSequence| NIL 19848 19886 28156 28161) (|AffineSpace| NIL 19681 19706 19838 19843) (|QuotientFieldCategory&| NIL 17794 17826 18992 18997) (|OrderedMultisetAggregate| NIL 17353 17385 17697 17789) (|RecursivePolynomialCategory| NIL 464 503 17114 17348) (|PatternMatchFunctionSpace| NIL 30 67 454 459)) │ │ ├── ./usr/share/axiom-20210105dp1/algebra/category.daase │ │ │ @@ -1,9 +1,9 @@ │ │ │ │ │ │ -(224437 . 3955370495) │ │ │ +(224437 . 3962170406) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((($) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|InputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T) (($) . T)) │ │ │ (((|#1| (|NonNegativeInteger|)) . T)) │ │ │ @@ -13,81 +13,81 @@ │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (((|#1|) . T)) │ │ │ ((((|Integer|) (|U8Vector|) (|U8Vector|)) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#1|) . T) (($) . T)) │ │ │ -(|has| |#2| (|PolynomialFactorizationExplicit|)) │ │ │ -((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ -(|has| |#1| (|IntegralDomain|)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ +((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ +(|has| |#2| (|PolynomialFactorizationExplicit|)) │ │ │ +(|has| |#1| (|IntegralDomain|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((($ $) . T) (((|OrderedVariableList| |#1|) $) . T) (((|OrderedVariableList| |#1|) |#2|) . T)) │ │ │ (OR (|has| |#4| (|CommutativeRing|)) (|has| |#4| (|OrderedRing|)) (|has| |#4| (|Ring|))) │ │ │ ((((|Symbol|)) |has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|)))) │ │ │ ((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#2| (|PolynomialFactorizationExplicit|)) │ │ │ (((|#1|) . T)) │ │ │ ((($) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1| |#2| |#3| |#4|) . T)) │ │ │ (((|#1|) . T)) │ │ │ -(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ +(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#1| (|NonNegativeInteger|)) . T)) │ │ │ (|has| |#2| (|PolynomialFactorizationExplicit|)) │ │ │ ((((|Symbol|)) . T) (((|OutputForm|)) . T)) │ │ │ ((((|InputForm|)) |has| (|Complex| (|DoubleFloat|)) (|ConvertibleTo| (|InputForm|)))) │ │ │ (((|#3|) |has| |#3| (|SetCategory|)) (((|Integer|)) AND (|has| |#3| (|RetractableTo| (|Integer|))) (|has| |#3| (|SetCategory|))) (((|Fraction| (|Integer|))) AND (|has| |#3| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#3| (|SetCategory|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ -((((|Integer|)) . T)) │ │ │ +(((|#1| (|NonNegativeInteger|)) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ +((((|Integer|)) . T)) │ │ │ (((|#2|) |has| |#2| (|SetCategory|)) (((|Integer|)) AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|))) (((|Fraction| (|Integer|))) AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((($) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ -(((|#1| (|NonNegativeInteger|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|OrderedSet|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1| |#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ (((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|)))) │ │ │ (((|#1| |#2|) . T)) │ │ │ (|has| |#2| (|OrderedSet|)) │ │ │ (OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) │ │ │ (((|#1| |#2|) . T)) │ │ │ -((((|Fraction| (|Integer|))) . T)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (($) . T)) │ │ │ +((((|Fraction| (|Integer|))) . T)) │ │ │ (((|#1| |#2| |#3| |#4|) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))) │ │ │ (((|#1| (|Integer|)) . T)) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T)) │ │ │ (((|#1| |#1|) . T)) │ │ │ (((|#2|) . T) ((|#6|) . T)) │ │ │ -((((|Integer|) |#3|) . T)) │ │ │ -((((|Integer|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +((((|Integer|)) . T)) │ │ │ +((((|Integer|) |#3|) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ -(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) │ │ │ +((($) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ ((((|PAdicInteger| |#1|)) . T)) │ │ │ -((($) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T)) │ │ │ +(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (((|#1|) . T)) │ │ │ ((($) . T) (((|PAdicInteger| |#1|)) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (((|#1| |#1|) . T) (($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T)) │ │ │ ((($) . T) ((|#2|) . T)) │ │ │ ((($) . T)) │ │ │ (((|#1| $) |has| |#1| (|Eltable| |#1| |#1|))) │ │ │ (OR (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|IntegralDomain|))) │ │ │ @@ -100,17 +100,17 @@ │ │ │ (((|#2|) . T)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (((|#2|) |has| |#2| (|Ring|)) (((|Integer|)) AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|)))) │ │ │ ((((|Fraction| (|Polynomial| |#1|))) . T)) │ │ │ (|has| (|Fraction| |#2|) (|CharacteristicNonZero|)) │ │ │ (((|#1|) . T) (($) OR (|has| |#1| (|EntireRing|)) (|has| |#1| (|Field|))) (((|Fraction| (|Integer|))) |has| |#1| (|Field|))) │ │ │ -(OR (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedRing|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ +(OR (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedRing|))) │ │ │ ((($ $) . T)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) │ │ │ ((((|Symbol|) |#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) . T) ((|#1|) . T)) │ │ │ @@ -128,68 +128,68 @@ │ │ │ (((|#1|) . T)) │ │ │ ((($ $) . T) (((|Kernel| $) $) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1| (|Fraction| (|Integer|)) (|SingletonAsOrderedSet|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(((|#4|) |has| |#4| (|Field|))) │ │ │ -((($) . T)) │ │ │ ((((|Kernel| $) $) . T) (($ $) . T)) │ │ │ -(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) . T)) │ │ │ (((|#1|) . T)) │ │ │ +(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ +((($) . T)) │ │ │ (((|#1|) . T)) │ │ │ +(((|#4|) |has| |#4| (|Field|))) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#2|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((($) . T)) │ │ │ +(((|#4|) . T)) │ │ │ (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))) │ │ │ +(|has| |#1| (|SetCategory|)) │ │ │ ((((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) . T)) │ │ │ ((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T)) │ │ │ -(|has| |#1| (|SetCategory|)) │ │ │ (((|#2|) . T)) │ │ │ -(((|#4|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) │ │ │ ((((|InputForm|)) . T) (((|Fraction| (|SparseUnivariatePolynomial| (|Integer|)))) . T) (((|DoubleFloat|)) . T) (((|Float|)) . T)) │ │ │ (((|#3|) |has| |#3| (|Ring|))) │ │ │ -(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ +(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ +(((|#1|) |has| |#1| (|IntegralDomain|))) │ │ │ ((((|OutputForm|)) OR (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|)) (|has| |#2| (|SetCategory|))) (((|Vector| |#2|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(((|#1|) |has| |#1| (|IntegralDomain|))) │ │ │ (OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ (((|#1|) . T)) │ │ │ +((((|Symbol|)) . T)) │ │ │ ((($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) (((|Fraction| |#1|) (|Fraction| |#1|)) . T) ((|#1| |#1|) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (((|Integer|)) . T)) │ │ │ -((((|Symbol|)) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ (((|#2|) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) │ │ │ +((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#2| |#3|) . T)) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ -(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|FiniteFieldCategory|))) │ │ │ (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ +(OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|FiniteFieldCategory|))) │ │ │ ((($) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|AbelianSemiGroup|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|Group|)) (|has| |#1| (|Monoid|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|)) (|has| |#1| (|SemiGroup|)) (|has| |#1| (|SetCategory|))) │ │ │ ((((|Integer|)) . T)) │ │ │ ((((|PAdicInteger| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ +(((|#2|) |has| |#2| (|Ring|))) │ │ │ ((((|Integer|)) . T)) │ │ │ -(|has| |#1| (|CharacteristicNonZero|)) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ -(((|#2|) |has| |#2| (|Ring|))) │ │ │ +(|has| |#1| (|CharacteristicNonZero|)) │ │ │ ((((|Boolean|)) . T)) │ │ │ (((|#2|) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (((|#2| |#2|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) (($ $) . T)) │ │ │ (((|#1| $) |has| |#1| (|Eltable| |#1| |#1|))) │ │ │ ((($) . T)) │ │ │ (((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)))) │ │ │ @@ -197,19 +197,19 @@ │ │ │ (((|#2| (|HomogeneousDirectProduct| (|#| |#1|) (|NonNegativeInteger|))) . T)) │ │ │ ((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|))) │ │ │ (((|#1| |#2|) . T)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) . T)) │ │ │ (((|#2|) |has| |#2| (|Ring|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ -((((|Integer|)) . T)) │ │ │ -((((|Float|)) . T)) │ │ │ -((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (|has| |#1| (|Field|)) │ │ │ +((((|Float|)) . T)) │ │ │ +((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ +((((|Integer|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ ((($) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (|has| |#3| (|OrderedRing|)) │ │ │ ((($) . T)) │ │ │ (|has| |#1| (|OrderedSet|)) │ │ │ ((((|InputForm|)) |has| |#2| (|ConvertibleTo| (|InputForm|)))) │ │ │ @@ -223,16 +223,16 @@ │ │ │ ((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ (|has| |#1| (|RealConstant|)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ -(((|#1| (|IndexedExponents| (|OrderlyDifferentialVariable| (|Symbol|)))) . T)) │ │ │ (((|#1|) . T)) │ │ │ +(((|#1| (|IndexedExponents| (|OrderlyDifferentialVariable| (|Symbol|)))) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|SingletonAsOrderedSet|)) . T) ((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|FileName|) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (|has| |#1| (|Finite|)) │ │ │ @@ -250,25 +250,25 @@ │ │ │ (|has| |#2| (|CharacteristicNonZero|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|)) (|has| |#2| (|SetCategory|))) │ │ │ (|has| |#1| (|OrderedSet|)) │ │ │ (((|#3|) |has| |#3| (|SetCategory|))) │ │ │ (|has| |#1| (|Finite|)) │ │ │ (((|#2|) . T) (((|OutputForm|)) . T)) │ │ │ -((((|Boolean|)) . T)) │ │ │ -((((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#2| (|Field|)) (($ $) . T)) │ │ │ (((|#1| (|Fraction| (|Integer|)) (|SingletonAsOrderedSet|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ +((((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#2| (|Field|)) (($ $) . T)) │ │ │ +((((|Boolean|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|SingletonAsOrderedSet|) |#1|) . T) (((|SingletonAsOrderedSet|) $) . T) (($ $) . T)) │ │ │ (|has| |#2| (|StepThrough|)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (|has| |#1| (|Field|)) │ │ │ -(|has| |#1| (|OrderedSet|)) │ │ │ ((($) . T)) │ │ │ +(|has| |#1| (|OrderedSet|)) │ │ │ (((|#2|) |has| |#2| (ATTRIBUTE (|commutative| "*")))) │ │ │ (|has| |#1| (|OrderedSet|)) │ │ │ ((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (((|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|))))) │ │ │ (((|#3|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ @@ -282,18 +282,18 @@ │ │ │ (OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ (((|#4|) |has| |#4| (|CommutativeRing|))) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (((|#3|) |has| |#3| (|CommutativeRing|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ -((((|OutputForm|)) . T)) │ │ │ -(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (((|#2|) . T)) │ │ │ +(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ +((((|OutputForm|)) . T)) │ │ │ (((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|Integer|) |#2|) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ ((((|OrderedVariableList| |#1|)) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ (((|#2| (|PoincareBirkhoffWittLyndonBasis| |#1|)) . T)) │ │ │ @@ -307,222 +307,222 @@ │ │ │ (((|#2| |#2|) AND (|has| |#1| (|Field|)) (|has| |#2| (|Evalable| |#2|))) (((|Symbol|) |#2|) AND (|has| |#1| (|Field|)) (|has| |#2| (|InnerEvalable| (|Symbol|) |#2|)))) │ │ │ ((((|BalancedPAdicInteger| |#1|) $) |has| (|BalancedPAdicInteger| |#1|) (|Eltable| (|BalancedPAdicInteger| |#1|) (|BalancedPAdicInteger| |#1|)))) │ │ │ ((($ $) . T)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Field|))) │ │ │ (|has| |#1| (|DifferentialRing|)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ (OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ -((((|Integer|) (|Complex| (|DoubleFloat|))) . T)) │ │ │ (AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))) │ │ │ +((((|Integer|) (|Complex| (|DoubleFloat|))) . T)) │ │ │ ((((|PseudoAlgebraicClosureOfRationalNumber|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (((|#1| |#2| |#3| |#4|) . T)) │ │ │ (|has| |#1| (|OrderedIntegralDomain|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ (((|#1|) . T) (($) . T)) │ │ │ -(((|#2|) . T) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ +(((|#2|) . T) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ ((((|Boolean|)) . T)) │ │ │ (OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) |has| |#2| (|CommutativeRing|)) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))) │ │ │ (((|#1| (|IndexedExponents| |#2|)) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|))) │ │ │ ((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) |has| |#2| (|CommutativeRing|)) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))) │ │ │ (((|#1|) . T)) │ │ │ -((((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))) │ │ │ +((((|Integer|) |#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ -(((|#1| |#3|) . T)) │ │ │ +((((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))) │ │ │ (((|#2| |#2|) . T)) │ │ │ -((((|Integer|) |#1|) . T)) │ │ │ +(((|#1| |#2| |#3| |#4|) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ -(((|#1| |#2| |#3| |#4|) . T)) │ │ │ +(((|#1| |#3|) . T)) │ │ │ (OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|OrderedRing|)) (|has| |#3| (|Ring|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(((|#1| |#2|) . T)) │ │ │ (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))) │ │ │ (((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) │ │ │ +(((|#1| |#2|) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (($) . T)) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#2| (|PolynomialFactorizationExplicit|)) │ │ │ ((((|Fraction| (|Integer|))) . T) (((|Integer|)) . T)) │ │ │ -(OR (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))) (AND (|has| |#1| (|Monoid|)) (|has| |#2| (|Monoid|)))) │ │ │ ((((|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|)))) │ │ │ +(OR (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))) (AND (|has| |#1| (|Monoid|)) (|has| |#2| (|Monoid|)))) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)))) │ │ │ ((($ $) . T) (((|OrderedVariableList| |#1|) $) . T) (((|OrderedVariableList| |#1|) |#2|) . T)) │ │ │ -(((|#1|) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ +(((|#1|) . T)) │ │ │ (((|#1| |#1|) . T) (($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T)) │ │ │ ((((|Symbol|)) . T) ((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#1| (|OrderedSet|)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|#1|) . T)) │ │ │ -(|has| |#2| (|Field|)) │ │ │ ((((|OutputForm|)) . T) (((|List| |#4|)) . T)) │ │ │ -(((|#1|) . T)) │ │ │ -((($) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T)) │ │ │ +(|has| |#2| (|Field|)) │ │ │ ((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ +((($) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T)) │ │ │ +(((|#1|) . T)) │ │ │ ((((|BalancedPAdicInteger| |#1|)) |has| (|BalancedPAdicInteger| |#1|) (|Evalable| (|BalancedPAdicInteger| |#1|)))) │ │ │ ((((|Symbol|) (|Any|)) . T)) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#2| (|OrderedRing|)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ ((((|Symbol|)) . T)) │ │ │ -(((|#2|) . T)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ +(((|#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ ((((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)))) │ │ │ (((|#2| (|NonNegativeInteger|)) . T)) │ │ │ (((|#2|) . T)) │ │ │ (((|#2|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ ((((|MachineFloat|)) . T)) │ │ │ (((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) │ │ │ ((((|Fraction| (|Integer|))) . T) (((|Integer|)) . T)) │ │ │ -(((|#1|) . T) (($) . T)) │ │ │ -((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ +((((|OutputForm|)) . T)) │ │ │ +(((|#1|) . T) (($) . T)) │ │ │ (((|#2|) . T)) │ │ │ ((((|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) . T)) │ │ │ -(|has| |#1| (|OrderedRing|)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +(|has| |#1| (|OrderedRing|)) │ │ │ (OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ ((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ ((($) . T)) │ │ │ -((($ $) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ -(((|#1| |#2|) . T)) │ │ │ +((($ $) . T)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ +(((|#1| |#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T)) │ │ │ ((((|InputForm|)) |has| |#3| (|ConvertibleTo| (|InputForm|)))) │ │ │ ((((|Fraction| |#2|) (|Fraction| |#2|)) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) (($ $) . T)) │ │ │ (((|#1| (|Integer|)) . T)) │ │ │ (|has| |#1| (|TranscendentalFunctionCategory|)) │ │ │ ((((|Integer|) (|Integer|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ -(((|#1|) . T)) │ │ │ (((|#2|) |has| |#2| (|CommutativeRing|))) │ │ │ ((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ -(((|#1|) . T)) │ │ │ ((((|PrimeField| |#1|)) . T)) │ │ │ -(|has| |#2| (|PolynomialFactorizationExplicit|)) │ │ │ +(((|#1|) . T)) │ │ │ +(((|#1|) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ +(|has| |#2| (|PolynomialFactorizationExplicit|)) │ │ │ (|has| |#1| (|OrderedSet|)) │ │ │ (((|#1|) . T)) │ │ │ ((((|Fraction| |#2|) |#3|) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ (|has| |#1| (|OrderedSet|)) │ │ │ -(((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) │ │ │ ((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ -(OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ +(((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (|has| |#2| (|OrderedIntegralDomain|)) │ │ │ (((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) │ │ │ ((((|PAdicInteger| |#1|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ -(((|#1|) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ -((($) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) . T)) │ │ │ +(((|#1|) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ +((($) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) . T)) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|Fraction| |#2|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ -(((|#2|) . T)) │ │ │ (((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) │ │ │ +(((|#2|) . T)) │ │ │ (|has| |#1| (|DifferentialRing|)) │ │ │ (|has| |#2| (|Field|)) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ (((|#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) │ │ │ ((((|PrimeField| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (((|#1| (|Fraction| (|Integer|))) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((($ $) . T) (((|Symbol|) $) . T)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ -((($) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +((($) . T)) │ │ │ (|has| |#2| (|IntegralDomain|)) │ │ │ ((((|Float|)) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ ((((|BalancedPAdicInteger| |#1|)) . T)) │ │ │ -((((|Integer|)) . T)) │ │ │ -((((|Symbol|)) AND (|has| |#4| (|PartialDifferentialRing| (|Symbol|))) (|has| |#4| (|Ring|)))) │ │ │ -((((|Symbol|) (|Any|)) . T)) │ │ │ -((((|SplittingNode| |#1| |#2|)) . T)) │ │ │ ((((|Any|)) . T) (((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) . T)) │ │ │ (((|#2|) |has| |#2| (|SetCategory|)) (((|Integer|)) AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|))) (((|Fraction| (|Integer|))) AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|)))) │ │ │ +((((|SplittingNode| |#1| |#2|)) . T)) │ │ │ +((((|Symbol|) (|Any|)) . T)) │ │ │ +((((|Symbol|)) AND (|has| |#4| (|PartialDifferentialRing| (|Symbol|))) (|has| |#4| (|Ring|)))) │ │ │ +((((|Integer|)) . T)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ (|has| |#2| (|RealConstant|)) │ │ │ (((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|))) (($) |has| |#2| (|CommutativeRing|))) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#2|) . T)) │ │ │ (|has| |#1| (|Finite|)) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) (((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) |has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Evalable| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))))) │ │ │ -(((|#1|) . T)) │ │ │ (((|#2|) . T)) │ │ │ +(((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ (((|#1|) . T) (($) . T)) │ │ │ ((((|BasicOperator|)) . T) ((|#1|) . T)) │ │ │ (((|#1| |#2| (|DirectProduct| |#1| |#2|) (|DirectProduct| |#1| |#2|)) . T)) │ │ │ ((((|Integer|)) |has| (|Fraction| |#2|) (|LinearlyExplicitRingOver| (|Integer|))) (((|Fraction| |#2|)) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ ((((|BalancedPAdicInteger| |#1|)) . T)) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (((|#2|) . T) (($) . T)) │ │ │ -(((|#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) │ │ │ -(((|#1| (|Fraction| (|Integer|))) . T)) │ │ │ -(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|UniqueFactorizationDomain|))) │ │ │ (|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ +(OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|UniqueFactorizationDomain|))) │ │ │ +(((|#1| (|Fraction| (|Integer|))) . T)) │ │ │ +((((|OutputForm|)) . T)) │ │ │ ((($) . T)) │ │ │ ((((|InputForm|)) . T) (((|Integer|)) . T) (((|Pattern| (|Integer|))) . T) (((|Float|)) . T) (((|DoubleFloat|)) . T)) │ │ │ (((|#2|) . T) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ +(((|#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ +((($) . T) (((|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -((($) . T) (((|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|Algebra| (|Fraction| (|Integer|))))) │ │ │ -(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ -(((|#2|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Character|)) . T)) │ │ │ -((((|OutputForm|)) . T)) │ │ │ +(((|#2|) . T)) │ │ │ ((((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T)) │ │ │ (((|#2|) . T)) │ │ │ ((((|Equation| |#3|)) . T)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))) │ │ │ (|has| |#1| (|UniqueFactorizationDomain|)) │ │ │ (|has| |#1| (|Field|)) │ │ │ @@ -546,264 +546,264 @@ │ │ │ ((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((($) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ (((|#3|) |has| |#3| (|Ring|)) (((|Integer|)) AND (|has| |#3| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#3| (|Ring|)))) │ │ │ (((|#2| |#2|) . T) ((|#1| |#1|) . T)) │ │ │ (OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ -((((|OutputForm|)) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ ((((|Expression| |#1|)) . T)) │ │ │ +((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ ((((|Integer|) (|Character|)) . T)) │ │ │ (((|#4|) OR (|has| |#4| (|CommutativeRing|)) (|has| |#4| (|Field|)))) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|Complex| (|DoubleFloat|))) |has| |#1| (|RealConstant|)) (((|Complex| (|Float|))) |has| |#1| (|RealConstant|)) (((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) (((|SparseUnivariatePolynomial| |#1|)) . T) (((|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (((|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|))))) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ ((($) . T)) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ -(((|#1|) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +(((|#1|) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T) (($) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))) │ │ │ ((((|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|)))) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) |has| |#2| (|CommutativeRing|)) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|Complex| (|Float|))) . T) (((|DoubleFloat|)) . T) (((|Float|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (|has| |#1| (|TranscendentalFunctionCategory|)) │ │ │ +((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#2| |#2|) |has| |#1| (|Field|)) ((|#1| |#1|) . T)) │ │ │ ((((|Character|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#2| |#2|) |has| |#1| (|Field|)) ((|#1| |#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (|has| (|Fraction| |#2|) (|CharacteristicNonZero|)) │ │ │ (|has| |#2| (|CharacteristicZero|)) │ │ │ (((|#1|) . T)) │ │ │ ((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) (($) . T) ((|#1|) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ +((((|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T) (((|Fraction| (|Integer|))) |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|Algebra| (|Fraction| (|Integer|)))) (($) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ -((((|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T) (((|Fraction| (|Integer|))) |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|Algebra| (|Fraction| (|Integer|)))) (($) . T)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ ((($) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Field|))) │ │ │ (((|#2| |#2|) . T)) │ │ │ (|has| |#1| (|StepThrough|)) │ │ │ ((((|SparseMultivariatePolynomial| |#1| (|Symbol|))) . T) (((|OrderlyDifferentialVariable| (|Symbol|))) . T) ((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Symbol|)) . T)) │ │ │ ((((|InputForm|)) . T) (((|Pattern| (|Integer|))) . T) (((|Float|)) . T) (((|DoubleFloat|)) . T)) │ │ │ ((((|Integer|) (|Integer|)) . T)) │ │ │ -(|has| |#1| (|OrderedSet|)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ +(|has| |#1| (|OrderedSet|)) │ │ │ ((((|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T) (((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((((|SplittingNode| |#1| |#2|)) |has| (|SplittingNode| |#1| |#2|) (|Evalable| (|SplittingNode| |#1| |#2|)))) │ │ │ (((|#3|) |has| |#3| (|Ring|))) │ │ │ ((((|Symbol|)) |has| |#2| (|PartialDifferentialRing| (|Symbol|))) (((|SingletonAsOrderedSet|)) . T)) │ │ │ ((((|FileName|) (|String|)) . T)) │ │ │ ((((|Any|)) . T) (((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) . T)) │ │ │ (((|#2|) . T)) │ │ │ ((((|Fraction| (|Polynomial| |#1|))) . T)) │ │ │ (|has| |#2| (|CharacteristicNonZero|)) │ │ │ ((((|List| (|Character|))) . T) (((|String|)) . T)) │ │ │ (OR (|has| |#3| (|AbelianSemiGroup|)) (|has| |#3| (|CancellationAbelianMonoid|)) (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Finite|)) (|has| |#3| (|Monoid|)) (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedRing|)) (|has| |#3| (|Ring|)) (|has| |#3| (|SetCategory|))) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ -(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ +((((|OutputForm|)) . T)) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|DoubleFloat|)) . T)) │ │ │ -(((|#3|) . T)) │ │ │ (((|#2|) . T)) │ │ │ +(((|#3|) . T)) │ │ │ (((|#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ -((((|OutputForm|)) . T)) │ │ │ +(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|Expression| |#1|) (|Expression| |#1|)) . T)) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) │ │ │ ((($) . T)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|Fraction| $) (|Fraction| $)) |has| |#2| (|IntegralDomain|)) (($ $) . T) ((|#2| |#2|) . T)) │ │ │ (((|#4|) |has| |#4| (|Ring|))) │ │ │ (((|#2| |#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|))) (($ $) |has| |#2| (|CommutativeRing|))) │ │ │ ((((|String|) |#1|) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ (((|#2| |#3| (|OrderedVariableList| |#1|)) . T)) │ │ │ ((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T)) │ │ │ +(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) . T) ((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ -(OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ -((((|OutputForm|)) . T)) │ │ │ ((($ $) . T)) │ │ │ +((((|OutputForm|)) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (((|MachineFloat|)) . T) (($) . T)) │ │ │ ((((|Quaternion| |#1|)) . T) ((|#1|) . T) (((|Integer|)) OR (|has| (|Quaternion| |#1|) (|RetractableTo| (|Integer|))) (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|))) OR (|has| (|Quaternion| |#1|) (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|))) │ │ │ (OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|OrderedRing|)) (|has| |#3| (|Ring|))) │ │ │ -(|has| |#1| (|OrderedAbelianGroup|)) │ │ │ +((($ $) . T)) │ │ │ ((((|BasicOperator|)) . T) ((|#1|) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|CommutativeRing|))) │ │ │ -((($ $) . T)) │ │ │ -(OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))) │ │ │ +(|has| |#1| (|OrderedAbelianGroup|)) │ │ │ (OR (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ ((((|Character|)) . T)) │ │ │ +(OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ (|has| |#2| (|Group|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T) (($) . T)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (($) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|SingletonAsOrderedSet|) |#1|) . T) (((|SingletonAsOrderedSet|) $) . T) (($ $) . T)) │ │ │ -(((|#1| (|IndexedOneDimensionalArray| |#1| |#3|) (|IndexedOneDimensionalArray| |#1| |#2|)) . T)) │ │ │ (((|#1| (|IndexedVector| |#1| |#3|) (|IndexedVector| |#1| |#2|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ +(((|#1| (|IndexedOneDimensionalArray| |#1| |#3|) (|IndexedOneDimensionalArray| |#1| |#2|)) . T)) │ │ │ ((((|Character|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|PrimeField| |#1|)) . T)) │ │ │ ((((|Integer|) (|Integer|)) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ (OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1| (|IndexedExponents| |#2|)) . T)) │ │ │ (|has| |#2| (|Field|)) │ │ │ ((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (|has| (|Fraction| |#2|) (|CharacteristicZero|)) │ │ │ -(((|#1| |#2|) . T)) │ │ │ ((((|String|) |#1|) . T)) │ │ │ +(((|#1| |#2|) . T)) │ │ │ ((((|Integer|) (|Character|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(((|#1| (|NonNegativeInteger|)) . T)) │ │ │ +(((|#2|) . T)) │ │ │ +((((|FileName|) |#1|) . T)) │ │ │ +(((|#1| (|NeitherSparseOrDensePowerSeries| |#1|)) . T)) │ │ │ +(((|#1| |#2| (|DirectProduct| |#1| |#2|) (|DirectProduct| |#1| |#2|)) . T)) │ │ │ +(((|#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ -(((|#2|) . T)) │ │ │ -(((|#1| (|OneDimensionalArray| |#1|) (|OneDimensionalArray| |#1|)) . T)) │ │ │ -(((|#2|) . T)) │ │ │ -(((|#2|) . T)) │ │ │ +(((|#1| (|NonNegativeInteger|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ -((((|String|) (|Symbol|) (|Integer|) (|DoubleFloat|) (|OutputForm|)) . T)) │ │ │ -(((|#1| |#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ -((((|FileName|) |#1|) . T)) │ │ │ -(((|#2|) . T)) │ │ │ -(((|#2|) |has| |#2| (|CommutativeRing|))) │ │ │ (((|#1|) . T)) │ │ │ +(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +(((|#1|) . T)) │ │ │ +(((|#2|) |has| |#2| (|CommutativeRing|))) │ │ │ ((((|SquareMatrix| |#2| |#1|)) . T) ((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ +(((|#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ -(((|#1| (|Vector| |#1|) (|Vector| |#1|)) . T)) │ │ │ -(((|#1| (|IndexedExponents| (|Symbol|)) (|Symbol|)) . T)) │ │ │ -(((|#1| |#2| |#3| (|DirectProduct| |#2| |#3|) (|DirectProduct| |#1| |#3|)) . T)) │ │ │ -(((|#1| |#2| (|DirectProduct| |#1| |#2|) (|DirectProduct| |#1| |#2|)) . T)) │ │ │ +(((|#2|) . T)) │ │ │ +(|has| |#1| (|Field|)) │ │ │ +(((|#1| |#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ +(((|#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ +(((|#1| |#2| |#3| |#4|) . T)) │ │ │ +(((|#1| |#2|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(((|#1| (|NeitherSparseOrDensePowerSeries| |#1|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ +(((|#1| (|OneDimensionalArray| |#1|) (|OneDimensionalArray| |#1|)) . T)) │ │ │ +(((|#1| |#2| |#3| (|DirectProduct| |#2| |#3|) (|DirectProduct| |#1| |#3|)) . T)) │ │ │ +(((|#1| |#2| |#3| |#4|) . T)) │ │ │ ((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ -(|has| |#1| (|OrderedRing|)) │ │ │ -((((|Integer|)) . T)) │ │ │ ((($) . T)) │ │ │ (((|#2|) . T) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ -((($) . T) (((|BalancedPAdicInteger| |#1|)) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ -(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ +(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|AbelianSemiGroup|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|))) │ │ │ ((((|Integer|)) . T)) │ │ │ +(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ +(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|Complex| (|Float|))) . T) (((|DoubleFloat|)) . T) (((|Float|)) . T)) │ │ │ -(((|#1|) |has| |#1| (|Evalable| |#1|))) │ │ │ -((((|Boolean|)) . T)) │ │ │ -(((|#4|) . T)) │ │ │ -(((|#3|) |has| |#3| (|Ring|))) │ │ │ +((((|Integer|)) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ +((($) . T) (((|BalancedPAdicInteger| |#1|)) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ -(|has| |#1| (|CharacteristicZero|)) │ │ │ -((((|SplittingNode| |#1| |#2|)) . T)) │ │ │ +((((|Boolean|)) . T)) │ │ │ +(|has| |#1| (|CharacteristicNonZero|)) │ │ │ +(((|#1|) |has| |#1| (|Evalable| |#1|))) │ │ │ +((((|Integer|)) . T)) │ │ │ ((((|OutputForm|)) OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))) │ │ │ +(((|#2|) . T)) │ │ │ +(|has| |#1| (|Field|)) │ │ │ +(|has| |#1| (|IntegralDomain|)) │ │ │ +(|has| |#1| (|CharacteristicZero|)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ ((($ $) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) ((|#2| |#2|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) |has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|Evalable| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)))) │ │ │ (((|#2| |#2|) . T)) │ │ │ -(|has| |#1| (|CharacteristicNonZero|)) │ │ │ (((|#2| (|DirectProduct| (|#| |#1|) (|NonNegativeInteger|))) . T)) │ │ │ -((($) OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) ((|#2|) |has| |#2| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ -(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|AbelianSemiGroup|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|))) │ │ │ -(((|#1| |#2| |#3| |#4|) . T)) │ │ │ -(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ -(((|#1| |#2| |#3| |#4|) . T)) │ │ │ -(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +((((|SplittingNode| |#1| |#2|)) . T)) │ │ │ +(((|#1|) . T)) │ │ │ +(((|#1|) . T)) │ │ │ ((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) (((|OrderlyDifferentialVariable| (|Symbol|))) . T)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (((|#3| |#3|) . T)) │ │ │ -((($) . T)) │ │ │ ((($ $) . T) (((|Kernel| $) $) . T)) │ │ │ +((($) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ (|has| |#1| (|Finite|)) │ │ │ -(|has| |#1| (|Field|)) │ │ │ -(((|#2|) . T)) │ │ │ -(((|#1| |#2|) . T)) │ │ │ -(((|#2|) . T)) │ │ │ -(((|#1|) . T)) │ │ │ +((((|Integer|) |#1|) . T)) │ │ │ +((((|String|) (|Symbol|) (|Integer|) (|DoubleFloat|) (|OutputForm|)) . T)) │ │ │ +(((|#1| (|IndexedExponents| (|Symbol|)) (|Symbol|)) . T)) │ │ │ (|has| |#1| (|OrderedSet|)) │ │ │ -(|has| |#1| (|Field|)) │ │ │ +(((|#1| |#2| |#3| |#4|) . T)) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ -(((|#1| |#2|) . T)) │ │ │ -(|has| |#1| (|IntegralDomain|)) │ │ │ -(((|#1|) . T)) │ │ │ -(((|#1|) . T)) │ │ │ +(((|#4|) . T)) │ │ │ +(((|#2|) . T)) │ │ │ ((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T)) │ │ │ -(((|#1| |#2| |#3| |#4|) . T)) │ │ │ -(((|#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9|) . T)) │ │ │ +(|has| |#1| (|OrderedRing|)) │ │ │ (|has| |#1| (|TranscendentalFunctionCategory|)) │ │ │ -((((|Integer|)) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((((|Symbol|) $) |has| |#1| (|InnerEvalable| (|Symbol|) $)) (($ $) |has| |#1| (|Evalable| $)) ((|#1| |#1|) |has| |#1| (|Evalable| |#1|)) (((|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|))) │ │ │ (((|#1|) . T)) │ │ │ (((|#1| (|Integer|) (|SingletonAsOrderedSet|)) . T)) │ │ │ -((((|Integer|) |#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ -((($ $) . T)) │ │ │ +(((|#3|) |has| |#3| (|Ring|))) │ │ │ +(((|#1| |#2|) . T)) │ │ │ +((($) OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) ((|#2|) |has| |#2| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ +(((|#1| (|Vector| |#1|) (|Vector| |#1|)) . T)) │ │ │ ((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|))) │ │ │ +((($ $) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ ((((|Fraction| (|Integer|))) |has| |#2| (|Field|)) (($) . T)) │ │ │ ((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|InputForm|)) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#1|) . T)) │ │ │ (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ ((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ -(((|#2|) . T)) │ │ │ -(((|#2|) |has| |#2| (|Ring|))) │ │ │ (((|#2|) |has| |#1| (|Field|))) │ │ │ +(((|#2|) |has| |#2| (|Ring|))) │ │ │ +(((|#2|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ -(OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))) │ │ │ (OR (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ (((|#1|) . T) (((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T)) │ │ │ ((((|Integer|) (|DoubleFloat|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +(|has| |#1| (|IntegralDomain|)) │ │ │ ((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ -(((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) │ │ │ ((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|)))) │ │ │ ((((|Integer|)) . T)) │ │ │ (|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|CharacteristicNonZero|)) │ │ │ -(|has| |#1| (|IntegralDomain|)) │ │ │ +(((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) │ │ │ +(OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|PrimeField| |#1|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|DoubleFloat|) (|DoubleFloatVector|) (|DoubleFloatVector|)) . T)) │ │ │ ((($) . T)) │ │ │ (|has| |#2| (|CharacteristicZero|)) │ │ │ @@ -835,85 +835,85 @@ │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((((|Integer|) (|Integer|)) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) (($ $) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#2| (|DifferentialRing|)) │ │ │ ((((|Fraction| |#2|) (|Fraction| |#2|)) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) (($ $) . T)) │ │ │ (((|#2|) |has| |#2| (|SetCategory|))) │ │ │ -((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ +((((|OutputForm|)) . T)) │ │ │ ((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|)))) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ ((((|Character|)) . T)) │ │ │ (((|#1| |#2| |#3| |#4|) . T)) │ │ │ -(((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Ring|))) (($) |has| |#3| (|CommutativeRing|))) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|)) (($) . T)) │ │ │ +(((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Ring|))) (($) |has| |#3| (|CommutativeRing|))) │ │ │ (((|#1| (|NonNegativeInteger|)) . T)) │ │ │ ((($ $) . T) (((|OrderedVariableList| |#1|) $) . T) (((|OrderedVariableList| |#1|) |#2|) . T)) │ │ │ ((((|OutputForm|)) OR (|has| |#3| (|AbelianSemiGroup|)) (|has| |#3| (|CancellationAbelianMonoid|)) (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Finite|)) (|has| |#3| (|Monoid|)) (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedRing|)) (|has| |#3| (|Ring|)) (|has| |#3| (|SetCategory|))) (((|Vector| |#3|)) . T)) │ │ │ ((((|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -((((|Integer|)) . T)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ +((((|Integer|)) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|))) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1| |#1|) . T)) │ │ │ (((|#2|) . T) (($) . T)) │ │ │ (((|#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) │ │ │ ((((|Symbol|) (|Any|)) . T)) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(((|#2|) . T)) │ │ │ +((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (((|#1| (|Partition|)) . T)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ -(((|#3|) |has| |#3| (|SetCategory|)) (((|Integer|)) AND (|has| |#3| (|RetractableTo| (|Integer|))) (|has| |#3| (|SetCategory|))) (((|Fraction| (|Integer|))) AND (|has| |#3| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#3| (|SetCategory|)))) │ │ │ +(((|#2|) . T)) │ │ │ +((($) . T) (((|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) (($ $) . T)) │ │ │ (((|#1|) . T) (($) . T)) │ │ │ +(AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))) │ │ │ ((((|Integer|) (|Integer|)) . T)) │ │ │ +(((|#1|) . T)) │ │ │ ((((|Fraction| $) (|Fraction| $)) |has| |#2| (|IntegralDomain|)) (($ $) . T) ((|#2| |#2|) . T)) │ │ │ ((((|OutputForm|)) . T) (((|List| |#4|)) . T)) │ │ │ -(((|#1|) . T)) │ │ │ ((($) . T)) │ │ │ -(|has| |#2| (|CharacteristicZero|)) │ │ │ -((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ -((($) . T) (((|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|Algebra| (|Fraction| (|Integer|))))) │ │ │ -(AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))) │ │ │ -(|has| |#2| (|CharacteristicZero|)) │ │ │ (((|#1| (|Integer|)) . T)) │ │ │ +(|has| |#2| (|CharacteristicZero|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +(((|#3|) |has| |#3| (|SetCategory|)) (((|Integer|)) AND (|has| |#3| (|RetractableTo| (|Integer|))) (|has| |#3| (|SetCategory|))) (((|Fraction| (|Integer|))) AND (|has| |#3| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#3| (|SetCategory|)))) │ │ │ +(|has| |#2| (|CharacteristicZero|)) │ │ │ (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|)) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ ((((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#2| (|RetractableTo| (|Integer|))) ((|#2|) . T) (((|OrderedVariableList| |#1|)) . T)) │ │ │ -(((|#1|) . T)) │ │ │ ((($) . T)) │ │ │ +(((|#1|) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (|has| |#1| (|OrderedAbelianGroup|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Finite|)) │ │ │ (((|#3| |#3|) AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| (|SetCategory|)))) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ ((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((((|PrimeField| |#1|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ -(((|#4|) OR (|has| |#4| (|CommutativeRing|)) (|has| |#4| (|Field|)) (|has| |#4| (|Ring|))) (($) |has| |#4| (|CommutativeRing|))) │ │ │ (((|#4|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#2| (|PolynomialFactorizationExplicit|)) │ │ │ -(|has| |#1| (|CharacteristicZero|)) │ │ │ (|has| |#1| (|TranscendentalFunctionCategory|)) │ │ │ ((((|Integer|)) AND (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#2| (|PatternMatchable| (|Integer|)))) (((|Float|)) AND (|has| |#1| (|PatternMatchable| (|Float|))) (|has| |#2| (|PatternMatchable| (|Float|))))) │ │ │ +(|has| |#1| (|CharacteristicZero|)) │ │ │ +(((|#4|) OR (|has| |#4| (|CommutativeRing|)) (|has| |#4| (|Field|)) (|has| |#4| (|Ring|))) (($) |has| |#4| (|CommutativeRing|))) │ │ │ (((|#1|) . T)) │ │ │ (((|#2|) |has| |#2| (|Ring|))) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) (((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) |has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Evalable| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))))) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ ((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#2|) |has| |#1| (|Field|)) ((|#1|) . T)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ (((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) │ │ │ @@ -921,21 +921,21 @@ │ │ │ ((((|InnerPrimeField| |#1|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1| (|Integer|) (|SingletonAsOrderedSet|)) . T)) │ │ │ ((((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T)) │ │ │ ((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ -(|has| |#1| (|Finite|)) │ │ │ ((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ +(|has| |#1| (|Finite|)) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T) (((|Integer|)) OR (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Integer|))) (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|))) . T)) │ │ │ -(((|#1|) . T)) │ │ │ ((($) OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) ((|#2|) |has| |#2| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ +(((|#1|) . T)) │ │ │ (((|#1| (|NonNegativeInteger|) (|SingletonAsOrderedSet|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ (((|#2|) . T)) │ │ │ ((((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) . T) (((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ @@ -948,49 +948,49 @@ │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((((|String|) |#1|) . T)) │ │ │ (((|#2|) . T) (($) . T)) │ │ │ (|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#2| |#2|) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ -(((|#3|) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ +(((|#3|) . T)) │ │ │ ((((|PseudoAlgebraicClosureOfRationalNumber|)) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(((|#1| |#1|) . T)) │ │ │ +(((|#1|) . T)) │ │ │ (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) │ │ │ ((((|OutputForm|)) OR (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|)) (|has| |#2| (|SetCategory|))) (((|Vector| |#2|)) . T)) │ │ │ -(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ -(((|#1|) . T)) │ │ │ -((($) . T)) │ │ │ +(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|Integer|) |#2|) . T)) │ │ │ +((($) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#2| (|RetractableTo| (|Integer|))) ((|#2|) . T) (((|OrderedVariableList| |#1|)) . T)) │ │ │ +(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#3|) . T)) │ │ │ -(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +(((|#1| |#1|) . T)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ ((($ $) . T) (((|Symbol|) $) |has| |#1| (|DifferentialRing|)) (((|Symbol|) |#1|) |has| |#1| (|DifferentialRing|)) (((|OrderlyDifferentialVariable| (|Symbol|)) |#1|) . T) (((|OrderlyDifferentialVariable| (|Symbol|)) $) . T)) │ │ │ (|has| |#1| (|FiniteFieldCategory|)) │ │ │ ((($) . T)) │ │ │ ((($) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) ((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|)))) │ │ │ (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#2| |#2|) . T)) │ │ │ ((((|Integer|) (|Integer|)) . T)) │ │ │ -(((|#1|) . T)) │ │ │ ((((|Complex| (|DoubleFloat|))) . T)) │ │ │ +(((|#1|) . T)) │ │ │ ((($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ ((((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|))) . T)) │ │ │ ((((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) ((|#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ -(|has| |#1| (|OrderedSet|)) │ │ │ ((((|MachineFloat|)) . T)) │ │ │ +(|has| |#1| (|OrderedSet|)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) (((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) |has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Evalable| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))))) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ @@ -1000,32 +1000,32 @@ │ │ │ ((((|InputForm|)) . T)) │ │ │ (|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ ((((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))) │ │ │ ((($) . T)) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|UniqueFactorizationDomain|))) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ ((((|Integer|)) . T)) │ │ │ -(((|#1| (|NonNegativeInteger|) (|SingletonAsOrderedSet|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (((|#1|) . T)) │ │ │ +(((|#1| (|NonNegativeInteger|) (|SingletonAsOrderedSet|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (|has| |#1| (|Finite|)) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1| (|Stream| |#1|)) |has| |#1| (|OrderedRing|))) │ │ │ ((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) $) |has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|Eltable| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)))) │ │ │ (|has| |#1| (|Finite|)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((($) . T)) │ │ │ ((($ $) . T)) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ +(OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ ((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))) │ │ │ (|has| |#2| (|OrderedRing|)) │ │ │ -(OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (((|#1| (|Vector| |#1|) (|Vector| |#1|)) . T)) │ │ │ ((((|DoubleFloat|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|RealConstant|))) (((|Float|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|RealConstant|))) (((|Pattern| (|Float|))) AND (|has| |#1| (|Field|)) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Float|))))) (((|Pattern| (|Integer|))) AND (|has| |#1| (|Field|)) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|))))) (((|InputForm|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|ConvertibleTo| (|InputForm|))))) │ │ │ (((|#1| |#1|) . T)) │ │ │ (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|FiniteFieldCategory|))) │ │ │ (((|#1|) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) │ │ │ @@ -1034,38 +1034,38 @@ │ │ │ ((((|PrimeField| |#1|)) . T)) │ │ │ ((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T)) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (((|#2|) . T)) │ │ │ ((($) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ -((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) │ │ │ (((|#1|) . T)) │ │ │ -(((|#2|) |has| |#1| (|Field|))) │ │ │ (OR (AND (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|CharacteristicZero|)) (|has| |#1| (|Field|))) (|has| |#1| (|CharacteristicZero|))) │ │ │ +(((|#2|) |has| |#1| (|Field|))) │ │ │ ((((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T)) │ │ │ (OR (|has| |#1| (|DifferentialRing|)) (|has| |#1| (|FiniteFieldCategory|))) │ │ │ (((|#2|) . T)) │ │ │ ((($) . T)) │ │ │ ((((|SingletonAsOrderedSet|)) . T) ((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) │ │ │ (|has| |#1| (|StepThrough|)) │ │ │ (((|#1| (|Integer|)) . T)) │ │ │ ((((|OrderedVariableList| |#1|)) . T)) │ │ │ ((($) . T)) │ │ │ ((($) |has| |#1| (|IntegralDomain|))) │ │ │ ((((|Fraction| |#2|) |#3|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ (((|#1|) . T)) │ │ │ -((((|Integer|) |#2|) . T)) │ │ │ (((|#2|) . T)) │ │ │ ((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) (($ $) . T)) │ │ │ (((|#2|) . T) (((|Symbol|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|RetractableTo| (|Symbol|)))) (((|Integer|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|))) AND (|has| |#1| (|Field|)) (|has| |#2| (|RetractableTo| (|Integer|))))) │ │ │ +((((|Integer|) |#2|) . T)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ ((((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) (($ $) . T)) │ │ │ (((|#2|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((($) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ @@ -1096,73 +1096,73 @@ │ │ │ (OR (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|)) (|has| |#2| (|SetCategory|))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (AND (|has| |#1| (|Field|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ ((((|Symbol|) |#2|) |has| |#2| (|InnerEvalable| (|Symbol|) |#2|)) ((|#2| |#2|) |has| |#2| (|Evalable| |#2|))) │ │ │ (((|#1|) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) │ │ │ -((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ -((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ +((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#2|) . T)) │ │ │ ((((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) |has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|Evalable| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))))) │ │ │ -((((|OutputForm|)) . T)) │ │ │ ((((|PrimeField| |#1|)) . T)) │ │ │ (|has| |#1| (|Finite|)) │ │ │ +((((|OutputForm|)) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ (((|#1| (|Integer|)) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ (|has| |#2| (|CharacteristicNonZero|)) │ │ │ ((((|Integer|)) . T)) │ │ │ -(|has| |#2| (|PolynomialFactorizationExplicit|)) │ │ │ (((|#2|) |has| |#2| (|Ring|)) (((|Integer|)) AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|)))) │ │ │ +(|has| |#2| (|PolynomialFactorizationExplicit|)) │ │ │ (|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) . T)) │ │ │ (((|#2|) . T)) │ │ │ ((((|InputForm|)) |has| |#2| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Float|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Float|)))) (((|Pattern| (|Integer|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|))))) │ │ │ (((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ (|has| |#2| (|OrderedIntegralDomain|)) │ │ │ (((|#2|) . T)) │ │ │ -(|has| |#1| (|OrderedSet|)) │ │ │ ((($) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ -(((|#4|) . T)) │ │ │ +(|has| |#1| (|OrderedSet|)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) (((|SingletonAsOrderedSet|)) . T)) │ │ │ +(((|#4|) . T)) │ │ │ ((((|OutputForm|)) OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#1|) . T)) │ │ │ +((((|Integer|) |#1|) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ -(((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -((((|Integer|) |#1|) . T)) │ │ │ +(((|#1|) . T)) │ │ │ (((|#1| (|Fraction| (|Integer|))) . T)) │ │ │ ((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|)))) │ │ │ (((|#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ -((((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((|#1| |#1|) . T)) │ │ │ +(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (((|#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) . T)) │ │ │ +((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) │ │ │ (|has| |#1| (|Finite|)) │ │ │ (((|#1| (|NonNegativeInteger|)) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ -(OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (((|#1| (|IndexedExponents| (|SequentialDifferentialVariable| (|Symbol|)))) . T)) │ │ │ -(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +((((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((|#1| |#1|) . T)) │ │ │ ((($) . T)) │ │ │ -((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ +(OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ ((((|Complex| (|DoubleFloat|)) (|ComplexDoubleFloatVector|) (|ComplexDoubleFloatVector|)) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ ((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|)))) │ │ │ (OR (AND (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|CharacteristicZero|)) (|has| |#1| (|Field|))) (|has| |#1| (|CharacteristicZero|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#2| (|PolynomialFactorizationExplicit|)) │ │ │ ((((|OrderedFreeMonoid| |#1|)) . T)) │ │ │ @@ -1191,50 +1191,50 @@ │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#1|) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) │ │ │ ((((|Fraction| (|Integer|))) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ ((((|SExpression|)) . T)) │ │ │ (OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|))) │ │ │ (((|#2|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|#1|) . T)) │ │ │ -(AND (|has| |#4| (|DifferentialRing|)) (|has| |#4| (|Ring|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +(AND (|has| |#4| (|DifferentialRing|)) (|has| |#4| (|Ring|))) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((($) . T)) │ │ │ ((($) . T)) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|))) │ │ │ -((((|Integer|)) . T)) │ │ │ -(OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (((|#4|) . T)) │ │ │ +(OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ +((((|Integer|)) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ (((|#3|) . T)) │ │ │ ((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (((|#2| (|IndexedExponents| (|OrderedVariableList| |#1|))) . T)) │ │ │ ((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ -((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|)))) │ │ │ ((($) . T)) │ │ │ +((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|)))) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ ((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ +((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ -(|has| |#1| (|CharacteristicNonZero|)) │ │ │ ((((|SingletonAsOrderedSet|)) . T) ((|#2|) . T) (((|Integer|)) |has| |#2| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) │ │ │ -((((|OutputForm|)) . T)) │ │ │ +(|has| |#1| (|CharacteristicNonZero|)) │ │ │ ((($) . T)) │ │ │ (OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ (|has| |#1| (|DifferentialRing|)) │ │ │ +(((|#1| (|Integer|) (|SingletonAsOrderedSet|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Boolean|)) . T)) │ │ │ -(((|#1| (|Integer|) (|SingletonAsOrderedSet|)) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ ((($) . T)) │ │ │ ((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (OR (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedRing|))) │ │ │ ((((|Integer|) (|Boolean|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ @@ -1254,16 +1254,16 @@ │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|BalancedPAdicInteger| |#1|)) . T)) │ │ │ (((|#2|) . T)) │ │ │ (|has| |#1| (|CommutativeRing|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ -(((|#1| |#2|) . T)) │ │ │ (((|#1| (|NonNegativeInteger|) (|SingletonAsOrderedSet|)) . T)) │ │ │ +(((|#1| |#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1| (|NonNegativeInteger|)) . T)) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ (OR (AND (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) │ │ │ ((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ @@ -1273,57 +1273,57 @@ │ │ │ (((|#1| (|Fraction| (|Integer|))) . T)) │ │ │ (((|#3|) |has| |#3| (|Field|))) │ │ │ (((|#1| |#2|) . T)) │ │ │ (((|#2| |#2|) . T)) │ │ │ (((|#2| |#2|) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ ((((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T)) │ │ │ -(((|#2|) . T) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|))) │ │ │ +(((|#2|) . T) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ (((|#4| |#4|) OR (|has| |#4| (|CommutativeRing|)) (|has| |#4| (|Field|)) (|has| |#4| (|Ring|))) (($ $) |has| |#4| (|CommutativeRing|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ -(((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) │ │ │ (|has| |#2| (|CharacteristicNonZero|)) │ │ │ ((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T)) │ │ │ +(((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|))) │ │ │ (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|PoincareBirkhoffWittLyndonBasis| |#1|)) . T) (((|OrderedFreeMonoid| |#1|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(((|#1|) . T)) │ │ │ ((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ +(((|#1|) . T)) │ │ │ ((($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T)) │ │ │ ((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ (((|#2|) . T)) │ │ │ ((((|BalancedPAdicInteger| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ -(|has| |#1| (|OrderedRing|)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +(|has| |#1| (|OrderedRing|)) │ │ │ (((|#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (((|#2| (|DirectProduct| (|#| |#1|) (|NonNegativeInteger|)) (|OrderedVariableList| |#1|)) . T)) │ │ │ -(OR (|has| |#4| (|OrderedAbelianMonoidSup|)) (|has| |#4| (|OrderedRing|))) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#1| (|CommutativeRing|)) │ │ │ +(OR (|has| |#4| (|OrderedAbelianMonoidSup|)) (|has| |#4| (|OrderedRing|))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((($) . T) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) . T)) │ │ │ +(|has| |#1| (|CharacteristicZero|)) │ │ │ (((|#1| (|IndexedExponents| (|SequentialDifferentialVariable| (|Symbol|))) (|SequentialDifferentialVariable| (|Symbol|))) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ -(|has| |#1| (|CharacteristicZero|)) │ │ │ (((|#1|) . T)) │ │ │ ((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1| (|Integer|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ @@ -1340,65 +1340,65 @@ │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|)) (($) . T)) │ │ │ (((|#1| |#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|IntegralDomain|)) (($ $) |has| |#1| (|IntegralDomain|))) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) |has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Evalable| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))))) │ │ │ +((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1| (|Integer|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (((|#1| |#2|) . T)) │ │ │ -(((|#1|) . T)) │ │ │ (OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|))) │ │ │ +(((|#1|) . T)) │ │ │ ((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (((|#1| (|IndexedExponents| |#2|)) . T)) │ │ │ ((((|Fraction| |#2|)) . T)) │ │ │ ((($) . T)) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|Fraction| |#2|) |#3|) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))) │ │ │ -(OR (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ -(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))) │ │ │ +(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ +(OR (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ (((|#3|) . T)) │ │ │ ((((|MachineFloat|) (|SparseUnivariatePolynomial| (|MachineFloat|))) . T)) │ │ │ ((($ $) . T) (((|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|))) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#1| |#1|) . T)) │ │ │ (|has| |#1| (|Group|)) │ │ │ (OR (|has| |#4| (|OrderedAbelianMonoidSup|)) (|has| |#4| (|OrderedRing|))) │ │ │ (((|#1|) . T)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (((|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|))))) │ │ │ ((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|)))) │ │ │ (|has| |#2| (|OrderedSet|)) │ │ │ -((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (((|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|))))) │ │ │ (|has| |#2| (|IntegralDomain|)) │ │ │ ((($ $) . T) (((|Symbol|) $) . T) (((|Symbol|) |#1|) . T)) │ │ │ -(((|#2| (|NonNegativeInteger|)) . T)) │ │ │ (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) │ │ │ +(((|#2| (|NonNegativeInteger|)) . T)) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) │ │ │ ((($) . T)) │ │ │ (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))) │ │ │ -(((|#1| |#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T)) │ │ │ -(|has| |#2| (|OrderedSet|)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))) │ │ │ +(((|#1| |#2|) . T)) │ │ │ +(|has| |#2| (|OrderedSet|)) │ │ │ ((((|Integer|) |#4|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#2| |#2|) |has| |#2| (|CommutativeRing|)) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#2| (|IntegralDomain|)) (($ $) . T)) │ │ │ ((((|Float|)) |has| |#1| (|PatternMatchable| (|Float|))) (((|Integer|)) |has| |#1| (|PatternMatchable| (|Integer|)))) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|)))) │ │ │ (((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)))) │ │ │ @@ -1414,18 +1414,18 @@ │ │ │ (((|#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#2| |#2|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ ((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ -(((|#1|) . T)) │ │ │ (((|#1| (|Symbol|) (|OrderlyDifferentialVariable| (|Symbol|)) (|IndexedExponents| (|OrderlyDifferentialVariable| (|Symbol|)))) . T)) │ │ │ -(((|#1| (|IndexedVector| |#1| |#3|) (|IndexedVector| |#1| |#2|)) . T)) │ │ │ +(((|#1|) . T)) │ │ │ ((((|Symbol|)) AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) │ │ │ +(((|#1| (|IndexedVector| |#1| |#3|) (|IndexedVector| |#1| |#2|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T)) │ │ │ (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ ((((|InputForm|)) . T)) │ │ │ @@ -1436,40 +1436,40 @@ │ │ │ ((($) . T)) │ │ │ (OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#3|) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|Symbol|) (|Any|)) . T)) │ │ │ -((((|OrderedVariableList| |#1|)) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|)) (((|Fraction| (|Integer|))) |has| |#1| (|IntegralDomain|))) │ │ │ +((((|OrderedVariableList| |#1|)) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ -((((|Integer|)) |has| |#2| (|PatternMatchable| (|Integer|))) (((|Float|)) |has| |#2| (|PatternMatchable| (|Float|)))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +((((|Integer|)) |has| |#2| (|PatternMatchable| (|Integer|))) (((|Float|)) |has| |#2| (|PatternMatchable| (|Float|)))) │ │ │ ((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ -(((|#3|) |has| |#3| (|Field|))) │ │ │ ((((|OutputForm|)) . T) (((|List| |#4|)) . T)) │ │ │ +(((|#3|) |has| |#3| (|Field|))) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|PseudoAlgebraicClosureOfRationalNumber|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ ((($) . T)) │ │ │ ((((|Symbol|)) |has| |#2| (|PartialDifferentialRing| (|Symbol|)))) │ │ │ (|has| |#1| (|StepThrough|)) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|SparseMultivariatePolynomial| |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|#2|) . T)) │ │ │ ((((|Integer|) |#3|) . T)) │ │ │ ((((|InputForm|)) . T) (((|Pattern| (|Integer|))) . T) (((|Float|)) . T) (((|DoubleFloat|)) . T)) │ │ │ (((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ -((((|Integer|)) . T)) │ │ │ -((((|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|)))) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ +((((|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|)))) . T)) │ │ │ +((((|Integer|)) . T)) │ │ │ (|has| |#1| (|OrderedAbelianGroup|)) │ │ │ ((((|MachineFloat|) (|SparseUnivariatePolynomial| (|MachineFloat|))) . T)) │ │ │ -(|has| |#1| (|Field|)) │ │ │ ((((|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) │ │ │ +(|has| |#1| (|Field|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Finite|)) │ │ │ (OR (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ (((|#1|) . T)) │ │ │ (OR (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|)) (|has| |#2| (|SetCategory|))) │ │ │ ((((|Symbol|)) |has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|)))) │ │ │ (((|#2|) . T)) │ │ │ @@ -1491,92 +1491,92 @@ │ │ │ (((|#1|) . T) (((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#2| (|HomogeneousDirectProduct| (|#| |#1|) (|NonNegativeInteger|))) . T)) │ │ │ ((((|PAdicInteger| |#1|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (((|#2|) . T)) │ │ │ -(((|#2|) |has| |#2| (|Ring|)) (((|Integer|)) AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|)))) │ │ │ +(|has| |#2| (|CommutativeRing|)) │ │ │ ((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (((|#1|) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ -(((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +(|has| |#1| (|IntegralDomain|)) │ │ │ (((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) │ │ │ -(|has| |#2| (|CommutativeRing|)) │ │ │ +(((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) │ │ │ (OR (|has| |#4| (|CommutativeRing|)) (|has| |#4| (|Monoid|)) (|has| |#4| (|OrderedRing|)) (|has| |#4| (|Ring|))) │ │ │ -(|has| |#1| (|IntegralDomain|)) │ │ │ +(((|#2|) |has| |#2| (|Ring|)) (((|Integer|)) AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|)))) │ │ │ ((((|MachineFloat|)) . T)) │ │ │ (OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ ((($) |has| |#1| (|IntegralDomain|))) │ │ │ -(((|#1|) . T)) │ │ │ (((|#2|) . T)) │ │ │ ((((|Symbol|)) AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) │ │ │ +(((|#1|) . T)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ (OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ -(|has| |#3| (|CommutativeRing|)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Integer|))) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Symbol|)) |has| |#1| (|RetractableTo| (|Symbol|))) ((|#1|) . T)) │ │ │ +(|has| |#3| (|CommutativeRing|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ -(((|#2|) |has| |#2| (|SetCategory|)) (((|Integer|)) AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|))) (((|Fraction| (|Integer|))) AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|)))) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ +(((|#2|) |has| |#2| (|SetCategory|)) (((|Integer|)) AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|))) (((|Fraction| (|Integer|))) AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|)))) │ │ │ (OR (AND (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|CharacteristicNonZero|)) (|has| |#1| (|Field|))) (|has| |#1| (|CharacteristicNonZero|))) │ │ │ -(|has| |#4| (|OrderedAbelianMonoidSup|)) │ │ │ -(((|#1|) . T)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ +(((|#1|) . T)) │ │ │ (((|#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) . T)) │ │ │ +(|has| |#4| (|OrderedAbelianMonoidSup|)) │ │ │ (OR (|has| |#1| (|Group|)) (|has| |#1| (|Monoid|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) │ │ │ ((($ $) . T)) │ │ │ (((|#2|) |has| |#2| (|Field|))) │ │ │ ((((|String|) (|Any|)) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ -((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (((|#1| |#1|) . T)) │ │ │ ((((|Float|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|PatternMatchable| (|Float|)))) (((|Integer|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|PatternMatchable| (|Integer|))))) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ ((((|Fraction| (|Integer|))) |has| |#2| (|Field|)) (($) . T)) │ │ │ (((|#1|) |has| |#1| (|Evalable| |#1|))) │ │ │ (OR (AND (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|DifferentialRing|)) (|has| |#1| (|Field|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))) │ │ │ -(|has| |#4| (|Finite|)) │ │ │ (((|#1|) . T)) │ │ │ +(|has| |#4| (|Finite|)) │ │ │ (((|#1|) . T)) │ │ │ ((((|Integer|) (|Boolean|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#3| |#3|) AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| (|SetCategory|)))) │ │ │ ((((|Float|)) . T)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#2| (|Field|)) │ │ │ ((((|InputForm|)) . T) (((|Pattern| (|Integer|))) . T) (((|Float|)) . T) (((|DoubleFloat|)) . T)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ ((((|Integer|)) . T)) │ │ │ (|has| |#2| (|Field|)) │ │ │ (((|#1|) . T)) │ │ │ -(((|#2|) . T)) │ │ │ -(((|#1|) . T) (((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T)) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ +(((|#1|) . T) (((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T)) │ │ │ +(((|#2|) . T)) │ │ │ ((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) (((|SequentialDifferentialVariable| (|Symbol|))) . T)) │ │ │ ((((|PAdicInteger| |#1|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#2|) . T) (($) . T)) │ │ │ (OR (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|)) (|has| (|Fraction| (|Integer|)) (|Finite|))) │ │ │ ((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) . T) (((|SparseUnivariateLaurentSeries| |#1| |#2| |#3|)) . T)) │ │ │ @@ -1585,25 +1585,25 @@ │ │ │ ((((|FileName|) (|String|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (OR (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedRing|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ +(((|#1| (|Integer|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OrderedFreeMonoid| |#1|)) . T)) │ │ │ -(((|#1| (|Integer|)) . T)) │ │ │ (((|#3|) |has| |#3| (|Field|))) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +((((|Integer|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -((((|Integer|)) . T)) │ │ │ ((((|PseudoAlgebraicClosureOfRationalNumber|)) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ ((($) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#1|) . T)) │ │ │ @@ -1618,49 +1618,49 @@ │ │ │ (((|#1|) . T)) │ │ │ (OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|))) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|Symbol|)) AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) │ │ │ ((((|Fraction| |#2|)) . T)) │ │ │ (((|#1| (|SparseUnivariatePolynomial| |#1|)) . T)) │ │ │ ((((|Boolean|)) . T)) │ │ │ -((((|Boolean|)) |has| |#1| (|SetCategory|)) (((|OutputForm|)) OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|AbelianSemiGroup|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|Group|)) (|has| |#1| (|Monoid|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|)) (|has| |#1| (|SemiGroup|)) (|has| |#1| (|SetCategory|)))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +((((|Boolean|)) |has| |#1| (|SetCategory|)) (((|OutputForm|)) OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|AbelianSemiGroup|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|Group|)) (|has| |#1| (|Monoid|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|)) (|has| |#1| (|SemiGroup|)) (|has| |#1| (|SetCategory|)))) │ │ │ (|has| |#2| (|CommutativeRing|)) │ │ │ (|has| |#4| (|OrderedRing|)) │ │ │ (((|#1| (|IndexedExponents| |#2|)) . T)) │ │ │ (OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ -((((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (((|Kernel| $)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +((((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (((|Kernel| $)) . T)) │ │ │ (|has| |#2| (|CharacteristicNonZero|)) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ -((((|SplittingNode| |#1| |#2|) (|SplittingNode| |#1| |#2|)) |has| (|SplittingNode| |#1| |#2|) (|Evalable| (|SplittingNode| |#1| |#2|)))) │ │ │ ((((|OutputForm|)) OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))) │ │ │ +((((|SplittingNode| |#1| |#2|) (|SplittingNode| |#1| |#2|)) |has| (|SplittingNode| |#1| |#2|) (|Evalable| (|SplittingNode| |#1| |#2|)))) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ (|has| |#1| (|OrderedSet|)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (((|#1| (|NonNegativeInteger|) (|SingletonAsOrderedSet|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ -((($) . T)) │ │ │ -((((|Integer|)) . T)) │ │ │ ((((|DoubleFloat|)) . T)) │ │ │ -(|has| |#1| (|OrderedRing|)) │ │ │ +((((|Integer|)) . T)) │ │ │ ((((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) . T)) │ │ │ -((((|String|) |#1|) . T)) │ │ │ -((((|SingletonAsOrderedSet|) |#2|) . T) (((|SingletonAsOrderedSet|) $) . T) (($ $) . T)) │ │ │ +(|has| |#1| (|OrderedRing|)) │ │ │ ((((|Symbol|)) AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) │ │ │ +((((|String|) |#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ +((($) . T)) │ │ │ +((((|SingletonAsOrderedSet|) |#2|) . T) (((|SingletonAsOrderedSet|) $) . T) (($ $) . T)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ ((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ (((|#1| (|NonNegativeInteger|)) . T)) │ │ │ (((|#2|) |has| |#2| (|CommutativeRing|))) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ (((|#3|) . T)) │ │ │ -(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|))) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))) │ │ │ +(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ (((|#4|) |has| |#4| (|Ring|))) │ │ │ ((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) |has| |#2| (|CommutativeRing|)) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|)))) |has| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))) (|Evalable| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|)))))) │ │ │ (|has| |#1| (|TranscendentalFunctionCategory|)) │ │ │ @@ -1689,109 +1689,109 @@ │ │ │ (((|#1| |#2| |#3| |#4|) . T)) │ │ │ (((|#3|) . T) ((|#2|) . T) (($) OR (|has| |#4| (|CommutativeRing|)) (|has| |#4| (|OrderedRing|)) (|has| |#4| (|Ring|))) ((|#4|) OR (|has| |#4| (|CommutativeRing|)) (|has| |#4| (|Field|)) (|has| |#4| (|Ring|)))) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (OR (|has| |#3| (|CancellationAbelianMonoid|)) (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedRing|)) (|has| |#3| (|Ring|))) │ │ │ ((((|Integer|) (|Integer|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ -(((|#1| (|NonNegativeInteger|)) . T)) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) │ │ │ +(((|#1| (|NonNegativeInteger|)) . T)) │ │ │ ((($) . T)) │ │ │ ((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ -((((|Integer|)) . T)) │ │ │ -(((|#1|) . T)) │ │ │ ((((|Float|)) . T)) │ │ │ +(((|#1|) . T)) │ │ │ +((((|Integer|)) . T)) │ │ │ (|has| |#2| (|PolynomialFactorizationExplicit|)) │ │ │ ((((|InnerPrimeField| |#1|)) . T)) │ │ │ ((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|)))) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|Integer|) (|Integer|)) . T)) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ (((|#2|) |has| |#2| (|SetCategory|))) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ -(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ +(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|OrderedRing|)) (|has| |#3| (|Ring|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|Matrix| |#2|)) . T) (((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T) (($) . T)) │ │ │ -(((|#1|) . T)) │ │ │ (((|#1| (|Fraction| (|Integer|)) (|SingletonAsOrderedSet|)) . T)) │ │ │ +(((|#1|) . T)) │ │ │ ((($) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#2| (|Field|)) │ │ │ ((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T)) │ │ │ ((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (|has| |#1| (|TranscendentalFunctionCategory|)) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|Integer|) |#2|) . T)) │ │ │ -(((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|))) (($) |has| |#2| (|CommutativeRing|))) │ │ │ ((($) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) ((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +(((|#2|) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Ring|))) (($) |has| |#2| (|CommutativeRing|))) │ │ │ ((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|DoubleFloat|)) . T)) │ │ │ (((|#2|) . T)) │ │ │ +(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ -(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|String|) (|Any|)) . T)) │ │ │ +(AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))) │ │ │ ((($) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|)) (($) . T)) │ │ │ ((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ -(AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (((|#1|) |has| |#1| (|Ring|))) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ -((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|)))) │ │ │ ((((|BalancedPAdicInteger| |#1|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))) │ │ │ (OR (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ -(|has| |#1| (|SetCategory|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (((|#1|) . T)) │ │ │ -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|)))) │ │ │ +(|has| |#1| (|SetCategory|)) │ │ │ ((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|))) │ │ │ +(OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))) │ │ │ (OR (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|)) (|has| (|Fraction| (|Integer|)) (|Finite|))) │ │ │ -(OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ ((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|))) │ │ │ +(OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ -(((|#1|) . T)) │ │ │ ((((|OrderedFreeMonoid| (|Symbol|))) . T)) │ │ │ ((((|Pattern| (|Float|))) . T) (((|Pattern| (|Integer|))) . T) (((|Symbol|)) . T) (((|InputForm|)) . T)) │ │ │ +(((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|Integer|) (|Integer|)) . T)) │ │ │ (AND (|has| |#1| (|Finite|)) (|has| |#2| (|Finite|))) │ │ │ ((((|Integer|) |#3|) . T)) │ │ │ ((((|OutputForm|)) OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|PrimeField| |#1|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#2| (|OrderedSet|)) │ │ │ ((((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) ((|#2|) . T)) │ │ │ -(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ +(|has| |#1| (|CharacteristicZero|)) │ │ │ (((|#1|) . T)) │ │ │ (((|#2| (|DirectProduct| (|#| |#1|) (|NonNegativeInteger|))) . T)) │ │ │ -(|has| |#4| (|OrderedRing|)) │ │ │ +(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((((|String|) |#1|) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ -(|has| |#1| (|CharacteristicZero|)) │ │ │ +(|has| |#4| (|OrderedRing|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) │ │ │ ((((|Expression| |#1|)) . T)) │ │ │ ((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|))) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ ((((|NonNegativeInteger|)) . T)) │ │ │ @@ -1806,17 +1806,17 @@ │ │ │ ((($) |has| |#1| (|OrderedRing|))) │ │ │ (|has| |#1| (|DifferentialRing|)) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ ((((|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))) (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|)))) |has| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|))) (|Evalable| (|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|)))))) │ │ │ (|has| |#1| (|Finite|)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ -((((|Integer|) |#1|) . T)) │ │ │ (((|#1| |#3|) . T)) │ │ │ +((((|Integer|) |#1|) . T)) │ │ │ +(OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ ((((|Integer|)) . T)) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|Expression| |#1|)) . T) (($) . T)) │ │ │ (|has| $ (|CharacteristicZero|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|InnerPrimeField| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ @@ -1825,16 +1825,16 @@ │ │ │ (|has| $ (|CharacteristicZero|)) │ │ │ ((((|PAdicInteger| |#1|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) . T)) │ │ │ ((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ -(|has| |#2| (|OrderedRing|)) │ │ │ (OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ +(|has| |#2| (|OrderedRing|)) │ │ │ (OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|))) │ │ │ (OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ (((|#1| |#2|) . T)) │ │ │ (((|#3| |#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Ring|))) (($ $) |has| |#3| (|CommutativeRing|))) │ │ │ (((|#1| (|Integer|)) . T)) │ │ │ (((|#2|) . T)) │ │ │ (OR (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) │ │ │ @@ -1854,25 +1854,25 @@ │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ (((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|)))) │ │ │ (((|#1| $) |has| |#1| (|Eltable| |#1| |#1|))) │ │ │ (OR (|has| |#3| (|AbelianSemiGroup|)) (|has| |#3| (|CancellationAbelianMonoid|)) (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Finite|)) (|has| |#3| (|Monoid|)) (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedRing|)) (|has| |#3| (|Ring|)) (|has| |#3| (|SetCategory|))) │ │ │ +((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|)))) │ │ │ ((((|OrderedVariableList| |#1|)) . T)) │ │ │ -((((|Boolean|)) . T)) │ │ │ ((((|Symbol|) (|Any|)) . T)) │ │ │ -((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|)))) │ │ │ +((((|Boolean|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#3| |#3|) . T)) │ │ │ ((((|Integer|) (|U16Vector|) (|U16Vector|)) . T)) │ │ │ -(((|#1|) OR (|has| |#2| (|FiniteRankNonAssociativeAlgebra| |#1|)) (|has| |#2| (|FramedNonAssociativeAlgebra| |#1|)))) │ │ │ (((|#1| |#2| |#3|) . T)) │ │ │ +(((|#1|) OR (|has| |#2| (|FiniteRankNonAssociativeAlgebra| |#1|)) (|has| |#2| (|FramedNonAssociativeAlgebra| |#1|)))) │ │ │ ((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) $) AND (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|Eltable| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|))) (|has| |#1| (|Field|))) (($ $) . T)) │ │ │ (OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ (((|#2|) |has| |#2| (|CommutativeRing|))) │ │ │ (((|#1|) . T)) │ │ │ ((((|PAdicInteger| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ @@ -1882,19 +1882,19 @@ │ │ │ (((|#1| |#2| |#3| |#4| |#5|) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|Float|)) . T) (((|Integer|)) . T)) │ │ │ ((((|Any|)) . T) (((|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|)))) . T)) │ │ │ ((((|Character|)) . T)) │ │ │ ((($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T)) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ -(|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ +(((|#4|) . T)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ (((|#1|) . T) (($) . T)) │ │ │ -(((|#4|) . T)) │ │ │ ((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) . T)) │ │ │ +(|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ (|has| |#2| (|DifferentialRing|)) │ │ │ ((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|))) │ │ │ (|has| $ (|CharacteristicZero|)) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T) (((|Fraction| |#1|)) . T) ((|#1|) . T)) │ │ │ ((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ @@ -1904,32 +1904,32 @@ │ │ │ (OR (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) │ │ │ (AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))) │ │ │ (((|#1|) . T)) │ │ │ ((((|Symbol|) (|Any|)) . T)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ (((|#2|) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T) ((|#1|) . T)) │ │ │ -(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (|has| |#1| (|FiniteFieldCategory|)) │ │ │ -((((|Integer|)) . T)) │ │ │ ((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) AND (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|Evalable| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|))) (|has| |#1| (|Field|))) (((|Symbol|) (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) AND (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|InnerEvalable| (|Symbol|) (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|))) (|has| |#1| (|Field|)))) │ │ │ +((((|Integer|)) . T)) │ │ │ +(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|Symbol|) (|Any|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Monoid|)) (|has| |#3| (|OrderedRing|)) (|has| |#3| (|Ring|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|NonNegativeInteger|) |#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ ((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|)))) │ │ │ (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))) │ │ │ -(((|#1|) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ -((((|Symbol|)) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ +(((|#1|) . T)) │ │ │ +((((|Symbol|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ (((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Ring|))) (($) |has| |#3| (|CommutativeRing|))) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) (((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) |has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Evalable| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))))) │ │ │ ((((|Integer|) (|Integer|)) . T)) │ │ │ ((($) . T) ((|#1|) . T)) │ │ │ ((((|Symbol|)) AND (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) │ │ │ @@ -1950,71 +1950,71 @@ │ │ │ ((($) . T)) │ │ │ (((|#1| |#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ (((|#2|) . T)) │ │ │ (((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) (($ $) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(|has| |#1| (|OrderedRing|)) │ │ │ -((((|String|) |#1|) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ -(((|#1|) . T)) │ │ │ +((((|String|) |#1|) . T)) │ │ │ +(|has| |#1| (|OrderedRing|)) │ │ │ (((|#2|) AND (|has| |#1| (|Field|)) (|has| |#2| (|Evalable| |#2|)))) │ │ │ +(((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|OrderedRing|)) (|has| |#3| (|Ring|))) │ │ │ (((|#1| |#1|) . T) (($ $) OR (|has| |#1| (|EntireRing|)) (|has| |#1| (|Field|))) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Field|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#2|) . T)) │ │ │ (|has| |#2| (|StepThrough|)) │ │ │ ((((|Character|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +(((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (((|#2|) . T) (((|Integer|)) |has| |#2| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) AND (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|Evalable| (|UnivariateTaylorSeries| |#1| |#2| |#3|))) (|has| |#1| (|Field|)))) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Field|))) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ (((|#2| |#2|) . T)) │ │ │ -((((|PseudoAlgebraicClosureOfFiniteField| |#1|) (|NeitherSparseOrDensePowerSeries| (|PseudoAlgebraicClosureOfFiniteField| |#1|))) . T)) │ │ │ ((((|PseudoAlgebraicClosureOfFiniteField| |#1|) |#2| (|DistributedMultivariatePolynomial| |#2| (|PseudoAlgebraicClosureOfFiniteField| |#1|)) (|DirectProduct| (|#| |#2|) (|NonNegativeInteger|)) (|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|) (|NeitherSparseOrDensePowerSeries| (|PseudoAlgebraicClosureOfFiniteField| |#1|)) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|) (|Divisor| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) |#3|) . T)) │ │ │ +((((|PseudoAlgebraicClosureOfFiniteField| |#1|) (|NeitherSparseOrDensePowerSeries| (|PseudoAlgebraicClosureOfFiniteField| |#1|))) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ (|has| |#1| (|TranscendentalFunctionCategory|)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ -(|has| |#1| (|IntegralDomain|)) │ │ │ (AND (|has| |#1| (|Field|)) (|has| |#2| (|RealConstant|))) │ │ │ +(|has| |#1| (|IntegralDomain|)) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) │ │ │ ((($) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) ((|#2|) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (((|#1|) . T)) │ │ │ -(((|#1| (|Fraction| (|Integer|))) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ +(((|#1| (|Fraction| (|Integer|))) . T)) │ │ │ (|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ (((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) │ │ │ -((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|#1|) . T) (((|Symbol|)) . T)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ -((((|SingletonAsOrderedSet|) |#1|) . T) (((|SingletonAsOrderedSet|) $) . T) (($ $) . T)) │ │ │ -(((|#1|) . T)) │ │ │ +((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|#1|) . T) (((|Symbol|)) . T)) │ │ │ ((((|OutputForm|)) OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))) │ │ │ +(((|#1|) . T)) │ │ │ +((((|SingletonAsOrderedSet|) |#1|) . T) (((|SingletonAsOrderedSet|) $) . T) (($ $) . T)) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ ((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (|has| (|Fraction| |#2|) (|DifferentialRing|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ ((($) . T)) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#1| (|Fraction| (|Integer|))) . T)) │ │ │ -((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ ((((|Integer|)) . T)) │ │ │ +((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ (|has| $ (|CharacteristicZero|)) │ │ │ (((|#2|) . T)) │ │ │ (((|#2| (|LyndonWord| |#1|)) . T)) │ │ │ (OR (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedRing|))) │ │ │ (|has| |#1| (|OrderedAbelianGroup|)) │ │ │ ((((|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|)) ((|#1| |#1|) |has| |#1| (|Evalable| |#1|))) │ │ │ (((|#1|) . T)) │ │ │ @@ -2032,52 +2032,52 @@ │ │ │ (((|#1| |#2| |#3| |#4|) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ (|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ -(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#2|) |has| |#1| (|Field|)) (($) . T) ((|#1|) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (((|#1| (|NonNegativeInteger|)) . T)) │ │ │ (((|#1|) . T) ((|#2|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ +(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (OR (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|)) (|has| |#2| (|SetCategory|))) │ │ │ ((((|Integer|) |#4|) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ ((((|SparseUnivariatePolynomial| |#1|)) . T) (((|SingletonAsOrderedSet|)) . T) ((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) (($ $) . T) ((|#1| |#1|) . T)) │ │ │ -(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (((|#1| (|Integer|)) . T)) │ │ │ (((|#1|) . T) (($) . T)) │ │ │ (((|#1| (|SparseUnivariatePolynomial| |#1|)) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (|has| |#2| (|OrderedAbelianMonoidSup|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ -(((|#1| |#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ +(((|#1| |#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (((|#1|) . T)) │ │ │ -(((|#1| (|IndexedExponents| (|OrderlyDifferentialVariable| (|Symbol|))) (|OrderlyDifferentialVariable| (|Symbol|))) . T)) │ │ │ -((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ +((((|OutputForm|)) . T)) │ │ │ +(((|#1| (|IndexedExponents| (|OrderlyDifferentialVariable| (|Symbol|))) (|OrderlyDifferentialVariable| (|Symbol|))) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#1| |#1|) . T)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ (((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)))) │ │ │ (|has| |#1| (|Finite|)) │ │ │ -((((|Polynomial| |#1|)) |has| |#2| (|ConvertibleTo| (|Symbol|))) (((|String|)) AND (|has| |#1| (|RetractableTo| (|Integer|))) (|has| |#2| (|ConvertibleTo| (|Symbol|)))) (((|Pattern| (|Integer|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|))))) (((|Pattern| (|Float|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Float|))))) (((|InputForm|)) AND (|has| |#1| (|ConvertibleTo| (|InputForm|))) (|has| |#2| (|ConvertibleTo| (|InputForm|))))) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ +((((|Polynomial| |#1|)) |has| |#2| (|ConvertibleTo| (|Symbol|))) (((|String|)) AND (|has| |#1| (|RetractableTo| (|Integer|))) (|has| |#2| (|ConvertibleTo| (|Symbol|)))) (((|Pattern| (|Integer|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|))))) (((|Pattern| (|Float|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Float|))))) (((|InputForm|)) AND (|has| |#1| (|ConvertibleTo| (|InputForm|))) (|has| |#2| (|ConvertibleTo| (|InputForm|))))) │ │ │ (((|#2|) |has| |#2| (|Ring|))) │ │ │ (((|#1| |#1|) . T) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|)))) │ │ │ (((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((|#1| |#1|) . T)) │ │ │ ((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|)))) │ │ │ (((|#4|) . T)) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ @@ -2111,62 +2111,62 @@ │ │ │ ((($) . T) (((|Integer|)) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (|has| |#1| (|OrderedSet|)) │ │ │ ((((|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))) │ │ │ -(OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|))) │ │ │ +((((|Symbol|)) OR (AND (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|PartialDifferentialRing| (|Symbol|)))))) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ -((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ ((((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T)) │ │ │ +((((|OutputForm|)) . T)) │ │ │ +(OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|))) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (((|#1|) . T)) │ │ │ -((((|Symbol|)) OR (AND (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|PartialDifferentialRing| (|Symbol|)))))) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ ((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (((|#2|) . T) (((|Integer|)) |has| |#2| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) │ │ │ ((((|OutputForm|)) . T) (((|Vector| |#4|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ -(((|#4|) . T)) │ │ │ (((|#1| |#2| |#3| |#4|) . T)) │ │ │ +(((|#4|) . T)) │ │ │ (OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ (((|#1|) . T)) │ │ │ -((((|Complex| (|DoubleFloat|)) (|ComplexDoubleFloatVector|) (|ComplexDoubleFloatVector|)) . T)) │ │ │ ((((|Complex| (|DoubleFloat|))) . T)) │ │ │ +((((|Complex| (|DoubleFloat|)) (|ComplexDoubleFloatVector|) (|ComplexDoubleFloatVector|)) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (OR (|has| |#1| (|CharacteristicZero|)) (AND (|has| |#1| (|Field|)) (|has| |#2| (|CharacteristicZero|)))) │ │ │ ((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T)) │ │ │ ((((|InputForm|)) |has| |#2| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Integer|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|)))) (((|Pattern| (|Float|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Float|))))) │ │ │ (|has| |#2| (|Field|)) │ │ │ ((($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1| |#1|) . T)) │ │ │ ((((|Fraction| |#2|)) . T)) │ │ │ ((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (|has| |#1| (|Finite|)) │ │ │ (((|#1| |#1|) . T) (($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T)) │ │ │ -((((|Integer|)) . T)) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#3|) . T)) │ │ │ (|has| |#2| (|Field|)) │ │ │ +((((|Integer|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|PseudoAlgebraicClosureOfFiniteField| |#1|)) . T)) │ │ │ ((((|PseudoAlgebraicClosureOfFiniteField| |#1|)) . T)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (((|#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ -((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) │ │ │ +((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#2|) . T)) │ │ │ (|has| |#1| (|Group|)) │ │ │ ((((|InputForm|)) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ ((((|Symbol|)) AND (|has| |#3| (|PartialDifferentialRing| (|Symbol|))) (|has| |#3| (|Ring|)))) │ │ │ (((|#2|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ @@ -2177,16 +2177,16 @@ │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (OR (AND (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|DifferentialRing|)) (|has| |#1| (|Field|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))) │ │ │ (|has| |#2| (|IntegralDomain|)) │ │ │ ((($) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ -(((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) │ │ │ (((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) │ │ │ +(((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ ((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (|has| |#2| (|IntegralDomain|)) │ │ │ ((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ ((((|Fraction| (|Integer|))) . T) (((|Fraction| |#1|)) . T) ((|#1|) . T) (($) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ @@ -2196,40 +2196,40 @@ │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))) │ │ │ (|has| |#1| (|OpenMath|)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) │ │ │ ((((|PAdicInteger| |#1|)) |has| (|PAdicInteger| |#1|) (|Evalable| (|PAdicInteger| |#1|)))) │ │ │ ((((|Symbol|)) |has| |#1| (|Ring|))) │ │ │ +((((|Symbol|)) OR (AND (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Field|))) (AND (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))))) │ │ │ (((|#1|) . T)) │ │ │ (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ -((((|Symbol|)) OR (AND (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Field|))) (AND (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))))) │ │ │ ((((|Integer|) |#2|) . T)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ ((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T) (($) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))) │ │ │ -(((|#1| |#2|) . T)) │ │ │ (|has| |#2| (|Finite|)) │ │ │ -(OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ +(((|#1| |#2|) . T)) │ │ │ (|has| |#2| (|OrderedRing|)) │ │ │ +(OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ (((|#1|) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ -(((|#1|) . T)) │ │ │ -(((|#1| |#2|) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((($) OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|IntegralDomain|))) │ │ │ (((|#1|) . T)) │ │ │ +(((|#1| |#2|) . T)) │ │ │ +(((|#1|) . T)) │ │ │ ((((|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) |has| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)) (|Evalable| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))))) │ │ │ (OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ (((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)))) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) │ │ │ (((|#1| (|NonNegativeInteger|)) . T)) │ │ │ @@ -2244,16 +2244,16 @@ │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (($) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T)) │ │ │ ((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ -(|has| |#1| (|SetCategory|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +(|has| |#1| (|SetCategory|)) │ │ │ ((((|Integer|)) . T)) │ │ │ ((($) . T)) │ │ │ (((|#3|) . T)) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ @@ -2261,36 +2261,36 @@ │ │ │ (((|#1| (|Integer|)) . T)) │ │ │ ((((|Integer|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ ((((|InputForm|)) |has| |#2| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Integer|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|)))) (((|Pattern| (|Float|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Float|)))) (((|Float|)) |has| |#2| (|RealConstant|)) (((|DoubleFloat|)) |has| |#2| (|RealConstant|))) │ │ │ (((|#2| |#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))) │ │ │ +((($ $) . T)) │ │ │ ((($) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -((($ $) . T)) │ │ │ (OR (AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedSet|)))) │ │ │ +(|has| |#1| (|Field|)) │ │ │ ((((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(OR (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ +(OR (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(|has| |#1| (|Field|)) │ │ │ (((|#1|) |has| |#1| (|Evalable| |#1|))) │ │ │ (|has| |#2| (|Finite|)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1| (|SparseUnivariatePolynomial| |#1|)) . T)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Group|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|)) (|has| |#1| (|SemiGroup|))) │ │ │ (|has| |#2| (|CharacteristicNonZero|)) │ │ │ ((((|Integer|)) . T)) │ │ │ -((($) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T)) │ │ │ ((((|Integer|) (|Character|)) . T)) │ │ │ +((($) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T)) │ │ │ ((((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|PrimeField| |#1|)) . T)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ ((((|Fraction| |#2|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ @@ -2300,42 +2300,42 @@ │ │ │ ((((|Integer|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Fraction| |#2|) |#3|) . T)) │ │ │ (|has| |#3| (|Finite|)) │ │ │ ((($ $) . T)) │ │ │ (((|#4|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(((|#1|) . T)) │ │ │ (((|#2|) . T)) │ │ │ +(((|#1|) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))) │ │ │ (((|#1| (|IndexedExponents| (|SequentialDifferentialVariable| (|Symbol|)))) . T)) │ │ │ (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|CharacteristicNonZero|)) │ │ │ ((((|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|)) ((|#1| |#1|) |has| |#1| (|Evalable| |#1|))) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ -((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ ((((|Integer|) |#2|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|))) │ │ │ ((((|Integer|) (|Character|)) . T)) │ │ │ ((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ ((($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T)) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (((|#1|) . T) (($) . T)) │ │ │ (|has| |#1| (|TranscendentalFunctionCategory|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((($) |has| |#1| (|Evalable| $)) ((|#1|) |has| |#1| (|Evalable| |#1|))) │ │ │ -((((|LyndonWord| |#1|)) . T)) │ │ │ (|has| |#1| (|Finite|)) │ │ │ +((((|LyndonWord| |#1|)) . T)) │ │ │ (|has| $ (|CharacteristicZero|)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ (((|#1|) . T)) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (((|#1|) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|Ring|))) (($) OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|)))) │ │ │ (AND (|has| |#1| (|Field|)) (|has| |#2| (|OrderedIntegralDomain|))) │ │ │ @@ -2352,78 +2352,78 @@ │ │ │ (((|#3|) . T)) │ │ │ ((($) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((($) . T)) │ │ │ (((|#2|) . T)) │ │ │ +((((|Integer|) |#1|) . T)) │ │ │ ((((|Integer|) (|Complex| (|DoubleFloat|))) . T)) │ │ │ +(((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#2| (|StepThrough|)) │ │ │ -((((|Integer|) |#1|) . T)) │ │ │ -(((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) │ │ │ -((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) . T) (((|UnivariateLaurentSeries| |#1| |#2| |#3|)) . T)) │ │ │ (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) │ │ │ +((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) . T) (((|UnivariateLaurentSeries| |#1| |#2| |#3|)) . T)) │ │ │ ((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|Integer|)) |has| |#1| (|PatternMatchable| (|Integer|))) (((|Float|)) |has| |#1| (|PatternMatchable| (|Float|)))) │ │ │ (((|#1|) . T)) │ │ │ ((((|Expression| |#1|)) . T)) │ │ │ ((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|))) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (|has| |#2| (|PolynomialFactorizationExplicit|)) │ │ │ ((($ $) . T)) │ │ │ (((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) │ │ │ (|has| |#1| (|Finite|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|))) │ │ │ ((((|List| |#4|)) . T) (((|OutputForm|)) . T)) │ │ │ -((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ +(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|OrderedRing|))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +((((|PrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ ((((|BalancedPAdicInteger| |#1|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((($ $) . T)) │ │ │ ((((|Integer|) |#2|) . T)) │ │ │ (((|#1| (|Symbol|)) . T)) │ │ │ (((|#2| (|IndexedExponents| (|OrderedVariableList| |#1|)) (|OrderedVariableList| |#1|)) . T)) │ │ │ ((((|Symbol|) (|PAdicInteger| |#1|)) |has| (|PAdicInteger| |#1|) (|InnerEvalable| (|Symbol|) (|PAdicInteger| |#1|))) (((|PAdicInteger| |#1|) (|PAdicInteger| |#1|)) |has| (|PAdicInteger| |#1|) (|Evalable| (|PAdicInteger| |#1|)))) │ │ │ (((|#1|) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) │ │ │ (((|#2|) |has| |#2| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#2| (|IntegralDomain|)) (($) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T)) │ │ │ -((((|OutputForm|)) . T)) │ │ │ -((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ ((((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) . T)) │ │ │ +((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ +((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T)) │ │ │ ((((|Integer|)) |has| |#1| (|PatternMatchable| (|Integer|))) (((|Float|)) |has| |#1| (|PatternMatchable| (|Float|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ -(((|#2|) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +(((|#2|) . T)) │ │ │ +(OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Integer|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ ((((|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|)))) . T)) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T)) │ │ │ -((($) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T)) │ │ │ +((((|OutputForm|)) . T)) │ │ │ ((((|Integer|) (|Boolean|)) . T)) │ │ │ +((($) . T) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ -(|has| |#1| (|SetCategory|)) │ │ │ (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ -((((|OutputForm|)) . T)) │ │ │ +(|has| |#1| (|SetCategory|)) │ │ │ (((|#1|) . T)) │ │ │ (((|#3|) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|CharacteristicZero|)) │ │ │ (((|#1| (|Partition|)) . T)) │ │ │ (((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) │ │ │ @@ -2476,16 +2476,16 @@ │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) │ │ │ ((($) . T)) │ │ │ (((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) │ │ │ ((((|Symbol|)) |has| |#2| (|PartialDifferentialRing| (|Symbol|)))) │ │ │ (|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ (|has| |#2| (|CharacteristicZero|)) │ │ │ -((((|Symbol|) |#1|) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ +((((|Symbol|) |#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#2| (|Field|)) (($) |has| |#2| (|Field|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ (((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((((|InnerPrimeField| |#1|)) . T)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) │ │ │ @@ -2502,24 +2502,24 @@ │ │ │ (((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|)) (($) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|))) │ │ │ (((|#2|) . T)) │ │ │ ((((|Expression| |#1|)) . T)) │ │ │ -((((|PrimeField| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (((|#4|) . T)) │ │ │ +((((|PrimeField| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (|has| |#1| (|CommutativeRing|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|InputForm|)) |has| |#2| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Float|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Float|)))) (((|Pattern| (|Integer|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|))))) │ │ │ -(((|#1|) . T)) │ │ │ (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|))) │ │ │ +(((|#1|) . T)) │ │ │ (((|#1| |#1|) |has| |#1| (|CommutativeRing|)) (($ $) |has| |#1| (|CommutativeRing|))) │ │ │ (((|#1|) . T)) │ │ │ (((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) │ │ │ ((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|)))) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (((|#1|) . T)) │ │ │ @@ -2550,16 +2550,16 @@ │ │ │ ((($) |has| |#1| (|IntegralDomain|))) │ │ │ (((|#1|) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) │ │ │ ((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|))) │ │ │ ((($) . T)) │ │ │ (((|#1| |#4|) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ (((|#1| |#1|) . T) (($ $) . T)) │ │ │ -(((|#1|) . T)) │ │ │ (((|#3| |#3|) . T)) │ │ │ +(((|#1|) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ ((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((((|Integer|) (|Boolean|)) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (|has| |#1| (|Field|)) │ │ │ (|has| |#3| (|OrderedRing|)) │ │ │ (|has| |#1| (|Finite|)) │ │ │ @@ -2592,156 +2592,156 @@ │ │ │ ((($ $) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|#1|) . T)) │ │ │ ((((|Symbol|)) AND (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) │ │ │ (((|#2| (|HomogeneousDirectProduct| (|#| |#1|) (|NonNegativeInteger|)) (|OrderedVariableList| |#1|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (((|Integer|)) . T)) │ │ │ -((((|Fraction| (|Polynomial| |#1|))) . T)) │ │ │ +(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (|has| |#1| (|Finite|)) │ │ │ (((|#1|) . T)) │ │ │ -(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +((((|Fraction| (|Polynomial| |#1|))) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((($) . T)) │ │ │ -(OR (|has| |#4| (|CommutativeRing|)) (|has| |#4| (|OrderedRing|)) (|has| |#4| (|Ring|))) │ │ │ -(((|#2| (|NonNegativeInteger|)) . T)) │ │ │ ((((|Expression| |#1|)) . T)) │ │ │ +(((|#2| (|NonNegativeInteger|)) . T)) │ │ │ +(OR (|has| |#4| (|CommutativeRing|)) (|has| |#4| (|OrderedRing|)) (|has| |#4| (|Ring|))) │ │ │ (((|#1| (|IndexedExponents| |#3|) |#3|) . T)) │ │ │ ((((|Fraction| $) (|Fraction| $)) |has| |#1| (|IntegralDomain|)) (($ $) . T) ((|#1| |#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -((((|Pattern| (|Integer|))) . T) (((|Pattern| (|Float|))) . T) (((|InputForm|)) . T) (((|Symbol|)) . T)) │ │ │ (|has| |#2| (|OrderedIntegralDomain|)) │ │ │ (|has| |#1| (|Field|)) │ │ │ +((((|Pattern| (|Integer|))) . T) (((|Pattern| (|Float|))) . T) (((|InputForm|)) . T) (((|Symbol|)) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (((|#1|) . T)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|Integer|) (|Integer|)) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) (($ $) . T)) │ │ │ (((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#2|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1| (|IndexedExponents| |#2|) |#2|) . T)) │ │ │ (((|#1| (|Integer|) (|SingletonAsOrderedSet|)) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) │ │ │ ((((|InputForm|)) . T) (((|DoubleFloat|)) . T) (((|Float|)) . T) (((|Pattern| (|Float|))) . T)) │ │ │ -(((|#1| |#2|) . T)) │ │ │ -(((|#1|) . T)) │ │ │ +(|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|CommutativeRing|))) │ │ │ -((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ -((((|Fraction| (|Integer|))) . T)) │ │ │ (OR (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedRing|))) │ │ │ -(|has| |#1| (|Field|)) │ │ │ +(((|#1| |#2|) . T)) │ │ │ +((((|Fraction| (|Integer|))) . T)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ +(|has| |#1| (|Field|)) │ │ │ +((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ +(((|#1|) . T)) │ │ │ ((((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| (|Fraction| |#2|) (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| (|Fraction| |#2|) (|RetractableTo| (|Integer|))) (((|Fraction| |#2|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ -(((|#1| |#2|) . T)) │ │ │ ((((|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) │ │ │ (OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ ((((|Symbol|)) |has| |#2| (|PartialDifferentialRing| (|Symbol|)))) │ │ │ -(((|#1|) . T)) │ │ │ ((($) |has| |#1| (|IntegralDomain|)) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ +(((|#1|) . T)) │ │ │ +(|has| |#1| (|IntegralDomain|)) │ │ │ ((($ $) |has| |#1| (|IntegralDomain|))) │ │ │ ((((|Integer|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ -(|has| |#1| (|IntegralDomain|)) │ │ │ +(((|#1| |#2|) . T)) │ │ │ ((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|)))) │ │ │ ((((|Fraction| |#2|)) . T)) │ │ │ -((((|Matrix| |#3|)) . T) (((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ +((((|Matrix| |#3|)) . T) (((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#2|) OR (|has| |#2| (ATTRIBUTE (|commutative| "*"))) (|has| |#2| (|CommutativeRing|)))) │ │ │ (|has| |#1| (|FiniteFieldCategory|)) │ │ │ (((|#1|) |has| |#1| (|Evalable| |#1|))) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ ((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ -((($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (((|#1| (|NonNegativeInteger|) (|SingletonAsOrderedSet|)) . T)) │ │ │ +((($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ ((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T)) │ │ │ (|has| |#2| (|Field|)) │ │ │ (((|#1|) |has| |#1| (|Ring|)) (((|Integer|)) AND (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#1| (|Ring|)))) │ │ │ ((((|List| (|Integer|))) . T)) │ │ │ -((((|Symbol|) (|Any|)) . T)) │ │ │ (|has| |#1| (|FiniteFieldCategory|)) │ │ │ +((((|Symbol|) (|Any|)) . T)) │ │ │ ((($) . T)) │ │ │ (((|#1| (|NonNegativeInteger|) (|SingletonAsOrderedSet|)) . T)) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) │ │ │ (|has| |#1| (|Field|)) │ │ │ (OR (AND (|has| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|CharacteristicNonZero|)) (|has| |#1| (|Field|))) (|has| |#1| (|CharacteristicNonZero|))) │ │ │ (((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) │ │ │ ((((|Integer|) (|U32Vector|) (|U32Vector|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|))) │ │ │ +((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((((|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) . T)) │ │ │ (((|#1| (|Vector| |#1|) (|Vector| |#1|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (((|Integer|)) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#1| (|DifferentialRing|)) │ │ │ (((|#1|) . T)) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ ((((|Integer|) (|U8Vector|) (|U8Vector|)) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ +((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ ((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T)) │ │ │ -((((|OutputForm|)) . T)) │ │ │ ((($) . T)) │ │ │ (((|#1|) . T)) │ │ │ +(((|#1|) . T)) │ │ │ ((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) (((|SingletonAsOrderedSet|)) . T)) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ (((|#1|) . T)) │ │ │ -(((|#1|) . T)) │ │ │ (|has| |#2| (|Field|)) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#2| (|Field|)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ (|has| |#1| (|Finite|)) │ │ │ (OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|OrderedRing|)) (|has| |#3| (|Ring|))) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (($) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T)) │ │ │ ((((|UnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|))) │ │ │ -((((|OutputForm|)) . T)) │ │ │ ((($) . T) ((|#2|) . T)) │ │ │ +((((|OutputForm|)) . T)) │ │ │ ((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ -(((|#1|) . T)) │ │ │ -(((|#1| |#2| |#3| |#4|) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ +(((|#1| |#2| |#3| |#4|) . T)) │ │ │ +(((|#1|) . T)) │ │ │ ((((|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)) (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) |has| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)) (|Evalable| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))))) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((((|Fraction| (|Polynomial| |#1|))) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|Complex| (|DoubleFloat|))) . T)) │ │ │ ((($) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|OrderedRing|)) (|has| |#3| (|Ring|))) ((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|Ring|)))) │ │ │ (((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|CommutativeRing|))) │ │ │ ((((|BalancedPAdicInteger| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T)) │ │ │ ((((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) . T)) │ │ │ -((($) . T) (((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ +((($) . T) (((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#2| (|RetractableTo| (|Integer|))) ((|#2|) . T) (((|OrderedVariableList| |#1|)) . T)) │ │ │ (AND (|has| |#1| (|Field|)) (|has| |#2| (|StepThrough|))) │ │ │ (|has| |#1| (|Field|)) │ │ │ ((((|Symbol|)) AND (|has| |#1| (|Field|)) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|)))) │ │ │ @@ -2773,20 +2773,20 @@ │ │ │ ((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((($) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ ((((|LyndonWord| |#1|)) . T)) │ │ │ -((((|Fraction| (|Polynomial| |#1|))) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ -(OR (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))) │ │ │ ((((|Integer|)) . T)) │ │ │ +((((|Fraction| (|Polynomial| |#1|))) . T)) │ │ │ +(OR (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ (OR (|has| |#1| (|CharacteristicNonZero|)) (AND (|has| |#1| (|Field|)) (|has| |#2| (|CharacteristicNonZero|)))) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (((|#3|) . T) (((|Kernel| $)) . T)) │ │ │ (((|#2|) |has| |#2| (|CommutativeRing|))) │ │ │ ((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (AND (|has| |#1| (|Finite|)) (|has| |#2| (|Finite|))) │ │ │ @@ -2801,16 +2801,16 @@ │ │ │ ((((|Character|)) . T)) │ │ │ ((($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (((|#1|) . T)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (((|#1|) . T)) │ │ │ (OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ -(((|#1|) . T)) │ │ │ (((|#1| (|Symbol|) (|SequentialDifferentialVariable| (|Symbol|)) (|IndexedExponents| (|SequentialDifferentialVariable| (|Symbol|)))) . T)) │ │ │ +(((|#1|) . T)) │ │ │ ((((|Integer|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((((|Fraction| |#2|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Monoid|)) (|has| |#3| (|OrderedRing|)) (|has| |#3| (|Ring|))) │ │ │ ((((|Integer|)) . T)) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ @@ -2852,96 +2852,96 @@ │ │ │ ((($ $) |has| |#1| (|Eltable| $ $)) ((|#1| $) |has| |#1| (|Eltable| |#1| |#1|))) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) │ │ │ (((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ -(((|#1|) . T)) │ │ │ (((|#1| (|UnivariateLaurentSeries| |#1| |#2| |#3|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ +(((|#1|) . T)) │ │ │ (((|#1| (|UnivariateTaylorSeries| |#1| |#2| |#3|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -((((|Boolean|)) . T)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ +((((|Boolean|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) . T)) │ │ │ (OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ ((((|SingletonAsOrderedSet|) |#2|) . T) (((|SingletonAsOrderedSet|) $) . T) (($ $) . T)) │ │ │ (|has| |#3| (|CommutativeRing|)) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) │ │ │ ((((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) |has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Evalable| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))))) │ │ │ (|has| |#1| (|Field|)) │ │ │ (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))) │ │ │ (OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#3|) |has| |#3| (|Ring|)) (((|Integer|)) AND (|has| |#3| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#3| (|Ring|)))) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ -((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|)))) │ │ │ +((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (((|MachineFloat|)) . T) (($) . T)) │ │ │ ((((|DoubleFloat|)) . T)) │ │ │ ((($) . T) ((|#2|) . T)) │ │ │ ((((|Fraction| |#2|) |#3|) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ (((|#2|) |has| |#2| (|Field|))) │ │ │ (|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|CharacteristicZero|)) │ │ │ ((((|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) AND (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|Evalable| (|UnivariateTaylorSeries| |#1| |#2| |#3|))) (|has| |#1| (|Field|))) (((|Symbol|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) AND (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|InnerEvalable| (|Symbol|) (|UnivariateTaylorSeries| |#1| |#2| |#3|))) (|has| |#1| (|Field|)))) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((((|SparseMultivariatePolynomial| |#1| |#2|)) . T) (((|Polynomial| |#1|)) |has| |#2| (|ConvertibleTo| (|Symbol|))) (((|OutputForm|)) . T)) │ │ │ ((((|PAdicInteger| |#1|)) . T)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ -(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ -(((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) (((|Integer|) (|Integer|)) . T) (($ $) . T)) │ │ │ +(((|#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|Integer|)) . T)) │ │ │ -((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ +((((|OutputForm|)) . T)) │ │ │ +(((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) (((|Integer|) (|Integer|)) . T) (($ $) . T)) │ │ │ ((((|PrimeField| |#1|)) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) |has| |#2| (|CommutativeRing|)) (($) OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))) │ │ │ ((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ (|has| |#1| (|OrderedSet|)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|)) (($) . T)) │ │ │ +(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|)))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ -(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|Symbol|)) |has| |#2| (|PartialDifferentialRing| (|Symbol|))) (((|SingletonAsOrderedSet|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|FileName|) (|SingleInteger|)) . T)) │ │ │ (((|#1| |#1|) . T) (($ $) . T)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ (|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ (((|#1| (|IndexedExponents| |#3|)) . T)) │ │ │ (OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Monoid|)) (|has| |#3| (|OrderedRing|)) (|has| |#3| (|Ring|))) │ │ │ (OR (|has| |#3| (|AbelianSemiGroup|)) (|has| |#3| (|CancellationAbelianMonoid|)) (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)) (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedRing|)) (|has| |#3| (|Ring|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ -((((|Integer|)) . T)) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ +((((|Integer|)) . T)) │ │ │ ((((|SparseMultivariatePolynomial| |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) │ │ │ (((|#1| |#1|) . T) (($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T)) │ │ │ -((((|Integer|) |#1|) . T)) │ │ │ (((|#1| (|NonNegativeInteger|)) . T)) │ │ │ +((((|Integer|) |#1|) . T)) │ │ │ (AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|))) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) . T)) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (((|#1|) . T) (($) . T)) │ │ │ -(OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|))) │ │ │ +((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) (($) . T) ((|#1|) . T)) │ │ │ (((|#1| |#1|) . T) (($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (($) . T)) │ │ │ ((((|Boolean|)) . T)) │ │ │ -((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) (($) . T) ((|#1|) . T)) │ │ │ +(OR (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Ring|))) │ │ │ (((|#2|) . T)) │ │ │ (OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|PrimeField| |#1|) (|PrimeField| |#1|)) . T) (($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T)) │ │ │ ((($ $) . T) ((|#2| $) |has| |#1| (|DifferentialRing|)) ((|#2| |#1|) |has| |#1| (|DifferentialRing|)) ((|#3| |#1|) . T) ((|#3| $) . T)) │ │ │ @@ -2959,32 +2959,32 @@ │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (((|#1|) . T)) │ │ │ (OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ ((((|Integer|) |#3|) . T)) │ │ │ ((((|Character|)) . T)) │ │ │ ((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +(((|#2|) |has| |#2| (|CommutativeRing|))) │ │ │ (((|#1|) . T)) │ │ │ -(((|#2| $) |has| |#2| (|Eltable| |#2| |#2|))) │ │ │ +(|has| |#1| (|OrderedSet|)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) . T) (((|Fraction| |#1|)) . T) ((|#1|) . T)) │ │ │ -(((|#2|) |has| |#2| (|CommutativeRing|))) │ │ │ -(|has| |#1| (|OrderedSet|)) │ │ │ +(((|#2| $) |has| |#2| (|Eltable| |#2| |#2|))) │ │ │ ((((|OutputForm|)) OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#1|) . T)) │ │ │ ((((|PrimeField| |#1|)) . T)) │ │ │ ((((|InputForm|)) AND (|has| |#1| (|ConvertibleTo| (|InputForm|))) (|has| |#2| (|ConvertibleTo| (|InputForm|)))) (((|Pattern| (|Float|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Float|))))) (((|Pattern| (|Integer|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|)))))) │ │ │ (OR (|has| |#4| (|OrderedAbelianMonoidSup|)) (|has| |#4| (|OrderedRing|))) │ │ │ ((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|)))) │ │ │ +(((|#1| (|Fraction| (|Integer|))) . T)) │ │ │ (((|#1| |#2| |#3| |#4|) . T)) │ │ │ ((((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) . T)) │ │ │ -(((|#1| |#2| |#3| |#4|) . T)) │ │ │ (|has| |#1| (|OrderedSet|)) │ │ │ (((|#2|) |has| |#2| (|Ring|))) │ │ │ -(((|#1| (|Fraction| (|Integer|))) . T)) │ │ │ +(((|#1| |#2| |#3| |#4|) . T)) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|InnerPrimeField| |#1|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#2|) . T)) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|))) │ │ │ (OR (|has| |#2| (|OrderedIntegralDomain|)) (|has| |#2| (|OrderedSet|))) │ │ │ @@ -2995,35 +2995,35 @@ │ │ │ (((|#2| |#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|Integer|) |#3|) . T)) │ │ │ ((((|DoubleFloat|)) . T)) │ │ │ ((((|PAdicInteger| |#1|) $) |has| (|PAdicInteger| |#1|) (|Eltable| (|PAdicInteger| |#1|) (|PAdicInteger| |#1|)))) │ │ │ (OR (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|IntegralDomain|))) │ │ │ (OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ -(|has| |#1| (|CharacteristicZero|)) │ │ │ -(((|#1|) . T)) │ │ │ ((((|PrimeField| |#1|) (|PrimeField| |#1|)) . T) (($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T)) │ │ │ +(((|#1|) . T)) │ │ │ +(|has| |#1| (|CharacteristicZero|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ -((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (|has| |#3| (|OrderedRing|)) │ │ │ (((|#1|) . T)) │ │ │ ((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|SingletonAsOrderedSet|)) . T) ((|#2|) . T) (((|Integer|)) |has| |#2| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#1| |#1|) . T)) │ │ │ -(((|#2|) . T)) │ │ │ ((($) . T)) │ │ │ +(((|#2|) . T)) │ │ │ (((|#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) │ │ │ (OR (AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|))) (AND (|has| |#1| (|AbelianMonoid|)) (|has| |#2| (|AbelianMonoid|))) (AND (|has| |#1| (|CancellationAbelianMonoid|)) (|has| |#2| (|CancellationAbelianMonoid|))) (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (AND (|has| |#1| (|Field|)) (|has| |#2| (|DifferentialRing|)))) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T) (((|Fraction| |#1|)) . T) ((|#1|) . T)) │ │ │ ((((|Integer|) (|DoubleFloat|)) . T)) │ │ │ ((((|Matrix| |#2|)) . T) (((|OutputForm|)) . T)) │ │ │ @@ -3040,18 +3040,18 @@ │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ -(OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ (|has| |#2| (|OrderedRing|)) │ │ │ -((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)))) │ │ │ (|has| |#1| (|DifferentialRing|)) │ │ │ +((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)))) │ │ │ +(OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ (|has| |#3| (|OrderedRing|)) │ │ │ (((|#1| |#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (((|#2|) . T)) │ │ │ ((((|PrimeField| |#1|)) . T)) │ │ │ (|has| |#2| (|IntegralDomain|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#3| (|NonNegativeInteger|)) . T)) │ │ │ @@ -3069,48 +3069,48 @@ │ │ │ (((|#2|) . T) (((|OutputForm|)) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Integer|) (|Character|)) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ +(((|#2|) |has| |#1| (|Field|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#3|) . T) (($) . T)) │ │ │ -(((|#2|) |has| |#1| (|Field|))) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (((|#2| |#2|) . T)) │ │ │ ((((|Symbol|)) AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|BalancedPAdicInteger| |#1|)) . T)) │ │ │ ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) │ │ │ (((|#4|) |has| |#4| (|SetCategory|)) (((|Integer|)) AND (|has| |#4| (|RetractableTo| (|Integer|))) (|has| |#4| (|SetCategory|))) (((|Fraction| (|Integer|))) AND (|has| |#4| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#4| (|SetCategory|)))) │ │ │ ((((|Fraction| (|Integer|))) |has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#2| (|RetractableTo| (|Integer|))) ((|#2|) . T) (((|OrderedVariableList| |#1|)) . T)) │ │ │ ((((|String|) (|Symbol|) (|Integer|) (|DoubleFloat|) (|OutputForm|)) . T)) │ │ │ ((((|Character|)) . T)) │ │ │ +((($) . T) (((|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T) (((|Fraction| (|Integer|))) |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (($) . T)) │ │ │ -((($) . T) (((|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T) (((|Fraction| (|Integer|))) |has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((($) . T)) │ │ │ (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ (((|#1| |#1|) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|BalancedPAdicInteger| |#1|)) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ +(|has| |#1| (|Field|)) │ │ │ ((((|Integer|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#2|) . T)) │ │ │ -(|has| |#1| (|Field|)) │ │ │ (((|#1| |#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (((|#1|) . T)) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -((((|Integer|) (|Boolean|)) . T)) │ │ │ -((((|OutputForm|)) . T)) │ │ │ (|has| |#2| (|CharacteristicZero|)) │ │ │ +((((|OutputForm|)) . T)) │ │ │ +((((|Integer|) (|Boolean|)) . T)) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ (|has| |#2| (|CommutativeRing|)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (|has| |#1| (|OrderedSet|)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|Character|)) . T)) │ │ │ @@ -3123,30 +3123,30 @@ │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ ((((|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (|has| (|Fraction| |#2|) (|DifferentialRing|)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ +(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((($ $) . T)) │ │ │ -(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|Integer|) (|Boolean|)) . T)) │ │ │ ((((|InputForm|)) . T) (((|Pattern| (|Integer|))) . T) (((|Float|)) . T) (((|DoubleFloat|)) . T)) │ │ │ (|has| |#1| (|Finite|)) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|AlgebraicNumber|)) AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Kernel| $)) . T) ((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) OR (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|RetractableTo| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Fraction| (|Polynomial| |#1|))) |has| |#1| (|IntegralDomain|)) (((|Polynomial| |#1|)) |has| |#1| (|Ring|)) (((|Symbol|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#2|) . T)) │ │ │ (|has| |#2| (|Finite|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) │ │ │ (OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ +(((|#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) │ │ │ (|has| |#2| (|OrderedAbelianMonoidSup|)) │ │ │ ((((|Character|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1| (|IndexedExponents| (|Symbol|))) . T)) │ │ │ (|has| |#1| (|OrderedSet|)) │ │ │ ((((|Float|)) . T) (((|DoubleFloat|)) . T) (((|OutputForm|)) . T)) │ │ │ ((((|Pattern| (|Integer|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Pattern| (|Integer|))))) (((|Pattern| (|Float|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#3| (|ConvertibleTo| (|Pattern| (|Float|))))) (((|InputForm|)) AND (|has| |#1| (|ConvertibleTo| (|InputForm|))) (|has| |#3| (|ConvertibleTo| (|InputForm|))))) │ │ │ @@ -3155,39 +3155,39 @@ │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ ((((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) . T)) │ │ │ ((((|Symbol|)) . T)) │ │ │ (((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ (((|#1|) . T)) │ │ │ -((((|DoubleFloat|) (|DoubleFloatVector|) (|DoubleFloatVector|)) . T)) │ │ │ ((((|DoubleFloat|)) . T)) │ │ │ +((((|DoubleFloat|) (|DoubleFloatVector|) (|DoubleFloatVector|)) . T)) │ │ │ ((($) OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((((|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) |has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Evalable| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))))) │ │ │ (|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#2|) |has| |#1| (|Field|))) │ │ │ ((((|Complex| (|DoubleFloat|))) . T)) │ │ │ +((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((((|Complex| (|DoubleFloat|))) . T)) │ │ │ (((|#2|) |has| |#2| (|CommutativeRing|)) (($) . T) (((|Fraction| (|Integer|))) |has| |#2| (|IntegralDomain|))) │ │ │ (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))) │ │ │ -((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T) (($) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))) │ │ │ (((|#1|) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|))) │ │ │ (|has| |#2| (|Field|)) │ │ │ (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (((|#1|) . T)) │ │ │ -(|has| |#1| (|FiniteFieldCategory|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +(|has| |#1| (|FiniteFieldCategory|)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ (((|#1|) . T)) │ │ │ (((|#2|) |has| |#2| (|Ring|)) (((|Integer|)) AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|)))) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (((|#1|) . T)) │ │ │ (((|#2| (|NonNegativeInteger|)) . T)) │ │ │ ((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) ((|#3|) . T)) │ │ │ @@ -3204,56 +3204,56 @@ │ │ │ (|has| |#1| (|StepThrough|)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ ((((|InputForm|)) |has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|ConvertibleTo| (|InputForm|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#3|) AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| (|SetCategory|)))) │ │ │ (|has| |#2| (|CharacteristicNonZero|)) │ │ │ -((((|BalancedPAdicInteger| |#1|) (|BalancedPAdicInteger| |#1|)) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) (($ $) . T)) │ │ │ (((|#1| (|Fraction| (|Integer|))) . T)) │ │ │ +((((|BalancedPAdicInteger| |#1|) (|BalancedPAdicInteger| |#1|)) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) (($ $) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ ((($) . T) ((|#2|) . T)) │ │ │ ((((|SingletonAsOrderedSet|) |#1|) . T) (((|SingletonAsOrderedSet|) $) . T) (($ $) . T)) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|))) │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ ((((|Integer|) (|DoubleFloat|)) . T)) │ │ │ (|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ (((|#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) │ │ │ ((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|)))) │ │ │ -((($) OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) ((|#2|) |has| |#2| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ +((($) OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) ((|#2|) |has| |#2| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((($) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) ((|#2|) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ -(((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)))) │ │ │ ((((|Fraction| |#2|) |#3|) . T)) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|#1|) . T)) │ │ │ +(((|#3|) OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Field|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((($ $) . T)) │ │ │ ((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (((|#3|) . T)) │ │ │ ((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|)))) │ │ │ ((((|Symbol|) (|Any|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ ((($) . T) ((|#2|) |has| |#2| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#2| (|IntegralDomain|))) │ │ │ +(|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| (|Complex| (|DoubleFloat|)) (|OrderedSet|)) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#1| (|OrderedSet|)) │ │ │ (((|#1|) . T)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) │ │ │ -(((|#3|) AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| (|SetCategory|)))) │ │ │ -((($ $) . T) (((|Kernel| $) $) . T)) │ │ │ ((($) . T)) │ │ │ +((($ $) . T) (((|Kernel| $) $) . T)) │ │ │ (AND (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ +(((|#3|) AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| (|SetCategory|)))) │ │ │ (((|#2| (|NonNegativeInteger|) (|SingletonAsOrderedSet|)) . T)) │ │ │ ((((|Integer|) (|Integer|)) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) (($ $) . T)) │ │ │ (((|#1| |#1|) . T) (($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T)) │ │ │ ((($) . T)) │ │ │ ((($) . T)) │ │ │ ((((|Symbol|)) AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) │ │ │ (((|#1| (|IndexedExponents| (|Symbol|))) . T)) │ │ │ @@ -3277,22 +3277,22 @@ │ │ │ (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ (((|#2|) . T)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|)) (($) |has| |#1| (|IntegralDomain|)) (((|Fraction| (|Integer|))) |has| |#1| (|IntegralDomain|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|Symbol|)) OR (AND (|has| (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (|Field|))) (AND (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))))) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ -(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((((|Integer|) |#2|) . T)) │ │ │ +(|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#1| (|TranscendentalFunctionCategory|)) │ │ │ ((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T)) │ │ │ -(|has| |#2| (|PolynomialFactorizationExplicit|)) │ │ │ (|has| |#1| (|OrderedSet|)) │ │ │ +(|has| |#2| (|PolynomialFactorizationExplicit|)) │ │ │ (|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (((|Integer|)) . T) (($) . T)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ (|has| |#2| (|OrderedSet|)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (|has| |#1| (|OrderedSet|)) │ │ │ @@ -3307,44 +3307,44 @@ │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ ((((|String|) (|Any|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((($) OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) ((|#2|) |has| |#2| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (((|#1| (|Fraction| (|Integer|)) (|SingletonAsOrderedSet|)) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ -(((|#1|) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ +(((|#1|) . T)) │ │ │ (((|#1| (|Integer|)) . T)) │ │ │ ((((|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) . T)) │ │ │ ((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) ((|#2|) |has| |#1| (|Field|)) ((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ -(((|#2|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ +(((|#2|) . T)) │ │ │ ((((|InputForm|)) |has| |#2| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Float|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Float|)))) (((|Pattern| (|Integer|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|))))) │ │ │ -(|has| |#2| (|IntegralDomain|)) │ │ │ (|has| |#1| (|Field|)) │ │ │ +(|has| |#2| (|IntegralDomain|)) │ │ │ (|has| |#1| (|Finite|)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ ((((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) (($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) |has| |#1| (|Field|)) ((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ ((((|OutputForm|)) |has| |#1| (|SetCategory|)) (((|PrimitiveArray| |#1|)) . T)) │ │ │ (OR (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|))) │ │ │ (((|#1| (|NonNegativeInteger|)) . T)) │ │ │ -(((|#1|) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) ((|#1|) |has| |#1| (|CommutativeRing|)) (((|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ +(((|#1|) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (((|#1|) OR (|has| |#2| (|FiniteRankNonAssociativeAlgebra| |#1|)) (|has| |#2| (|FramedNonAssociativeAlgebra| |#1|)))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ -(((|#1|) . T)) │ │ │ -(|has| |#1| (|Finite|)) │ │ │ -(((|#1| (|IndexedExponents| (|Symbol|))) . T)) │ │ │ -((((|Fraction| |#2|)) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ +(|has| |#1| (|Finite|)) │ │ │ +(((|#1|) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ +((((|Fraction| |#2|)) . T)) │ │ │ +(((|#1| (|IndexedExponents| (|Symbol|))) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (|has| |#1| (|TranscendentalFunctionCategory|)) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (|has| |#1| (|Finite|)) │ │ │ (((|#1| (|Vector| |#1|) (|Vector| |#1|)) . T)) │ │ │ ((((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) . T)) │ │ │ @@ -3354,34 +3354,34 @@ │ │ │ ((((|OutputForm|)) . T)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) │ │ │ ((((|SquareMatrix| |#2| (|Fraction| (|Polynomial| |#1|)))) . T) (((|Fraction| (|Polynomial| |#1|))) . T)) │ │ │ ((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|)))) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ -(((|#1|) . T)) │ │ │ ((((|Symbol|)) AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) │ │ │ +(((|#1|) . T)) │ │ │ (((|#2|) . T)) │ │ │ ((((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) |has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Evalable| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))))) │ │ │ ((((|Integer|) (|Character|)) . T)) │ │ │ ((((|InputForm|)) |has| |#2| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Float|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Float|)))) (((|Pattern| (|Integer|))) |has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|))))) │ │ │ (((|#2|) |has| |#1| (|Field|))) │ │ │ (((|#2|) . T)) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ -((((|OutputForm|)) . T)) │ │ │ ((((|PseudoAlgebraicClosureOfRationalNumber|) (|PseudoAlgebraicClosureOfRationalNumber|)) . T) (($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T)) │ │ │ +((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ ((((|PrimeField| |#1|)) . T)) │ │ │ (OR (AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|))) (AND (|has| |#1| (|CancellationAbelianMonoid|)) (|has| |#2| (|CancellationAbelianMonoid|))) (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|)))) │ │ │ (|has| |#2| (|DifferentialRing|)) │ │ │ (((|#1| |#1| |#2| (|DirectProduct| |#1| |#2|) (|DirectProduct| |#1| |#2|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|#1|) . T) ((|#2|) . T)) │ │ │ -(((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) │ │ │ ((($ $) OR (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|))) ((|#1| |#1|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ +(((|#2|) . T) (((|Integer|)) |has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Finite|)) │ │ │ (((|#2| |#3|) . T)) │ │ │ (((|#2|) |has| |#2| (|CommutativeRing|))) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ (((|#3|) . T)) │ │ │ (OR (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) │ │ │ @@ -3407,58 +3407,58 @@ │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ ((((|Integer|)) AND (|has| |#1| (|Field|)) (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) ((|#2|) |has| |#1| (|Field|))) │ │ │ (|has| |#1| (|Field|)) │ │ │ -(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (OR (|has| |#1| (|FiniteFieldCategory|)) (|has| |#1| (|Finite|))) │ │ │ +(((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|Group|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|)) (|has| |#1| (|SemiGroup|))) │ │ │ (((|#1|) |has| |#1| (|Field|))) │ │ │ ((($) . T)) │ │ │ (((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((((|Integer|) (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) . T) (($ $) . T)) │ │ │ (((|#1| |#4| |#5|) . T)) │ │ │ -(((|#2|) |has| |#2| (|CommutativeRing|))) │ │ │ (((|#4|) . T)) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ +(((|#2|) |has| |#2| (|CommutativeRing|))) │ │ │ ((((|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|)) ((|#1| |#1|) |has| |#1| (|Evalable| |#1|))) │ │ │ -(((|#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) │ │ │ ((((|Integer|)) . T)) │ │ │ ((((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|#1|) . T)) │ │ │ (((|#1| (|IndexedExponents| |#2|)) . T)) │ │ │ (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|))) │ │ │ (OR (|has| |#2| (|AbelianSemiGroup|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Ring|)) (|has| |#2| (|SetCategory|))) │ │ │ +(((|#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) │ │ │ ((((|Integer|)) AND (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#3| (|PatternMatchable| (|Integer|)))) (((|Float|)) AND (|has| |#1| (|PatternMatchable| (|Float|))) (|has| |#3| (|PatternMatchable| (|Float|))))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((((|SparseMultivariatePolynomial| |#1| (|Symbol|))) . T) (((|SequentialDifferentialVariable| (|Symbol|))) . T) ((|#1|) . T) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) (((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Symbol|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#2|) |has| |#2| (ATTRIBUTE (|commutative| "*")))) │ │ │ ((((|Fraction| (|Integer|))) . T) (((|MachineFloat|)) . T) (($) . T)) │ │ │ ((((|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) │ │ │ (((|#1| |#1|) . T)) │ │ │ (|has| |#1| (|CharacteristicNonZero|)) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ ((((|PseudoAlgebraicClosureOfRationalNumber|)) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ -(((|#1|) . T)) │ │ │ (|has| |#1| (|PolynomialFactorizationExplicit|)) │ │ │ +(((|#1|) . T)) │ │ │ (OR (|has| |#1| (|EuclideanDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) │ │ │ (|has| |#1| (|SetCategory|)) │ │ │ (|has| |#1| (|Field|)) │ │ │ (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ ((((|Symbol|)) AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) │ │ │ ((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1|) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(|has| |#2| (|CharacteristicZero|)) │ │ │ -(((|#1| |#1|) . T)) │ │ │ (((|#1|) . T) (((|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) │ │ │ +(((|#1| |#1|) . T)) │ │ │ +(|has| |#2| (|CharacteristicZero|)) │ │ │ (|has| |#2| (|DifferentialRing|)) │ │ │ ((((|Integer|) (|Integer|)) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) (($ $) . T)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ ((($ $) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|FiniteFieldCategory|))) ((|#1| |#1|) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((($) . T)) │ │ │ (((|#1|) . T)) │ │ │ @@ -3470,100 +3470,100 @@ │ │ │ (((|#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) │ │ │ (|has| |#1| (|OrderedRing|)) │ │ │ ((((|Integer|) |#4|) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (OR (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ (OR (|has| |#3| (|OrderedAbelianMonoidSup|)) (|has| |#3| (|OrderedRing|))) │ │ │ +(((|#1|) . T)) │ │ │ (((|#1| (|List| |#1|)) |has| |#1| (|OrderedRing|))) │ │ │ (((|#3|) . T)) │ │ │ -(((|#1|) . T)) │ │ │ ((((|Integer|) (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) . T)) │ │ │ (((|#2|) . T) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))) │ │ │ (|has| |#1| (|Field|)) │ │ │ (((|#1|) . T) (((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) . T) ((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2|) . T)) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (((|#1|) . T)) │ │ │ (((|#2|) |has| |#1| (|Field|))) │ │ │ (OR (|has| |#1| (|Field|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ -(|has| |#3| (|OrderedAbelianMonoidSup|)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ +(|has| |#3| (|OrderedAbelianMonoidSup|)) │ │ │ (AND (|has| |#3| (|DifferentialRing|)) (|has| |#3| (|Ring|))) │ │ │ ((((|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (((|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|#1|) . T)) │ │ │ -(((|#1|) . T)) │ │ │ ((((|Integer|) |#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ +(((|#1|) . T)) │ │ │ (((|#1| |#1|) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((($) OR (|has| |#1| (|Field|)) (|has| |#1| (|IntegralDomain|))) (((|Fraction| (|Integer|))) OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|Field|))) ((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|))) │ │ │ +(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|AbelianSemiGroup|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|))) │ │ │ ((((|Record| (|:| |key| (|String|)) (|:| |entry| (|Any|)))) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ -(OR (|has| |#1| (|AbelianGroup|)) (|has| |#1| (|AbelianSemiGroup|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Ring|))) │ │ │ (((|#2|) |has| |#2| (|SetCategory|))) │ │ │ -((((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#2|) . T)) │ │ │ +((((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ ((((|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) (((|SingletonAsOrderedSet|)) . T)) │ │ │ ((((|DoubleFloat|)) . T) (((|OutputForm|)) . T)) │ │ │ ((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ (|has| |#1| (|IntegralDomain|)) │ │ │ (((|#2|) . T)) │ │ │ ((((|SparseUnivariatePolynomial| |#1|)) . T) (((|OutputForm|)) . T)) │ │ │ (((|#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) │ │ │ ((((|OutputForm|)) . T)) │ │ │ ((($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ -(OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Monoid|)) (|has| |#3| (|OrderedRing|)) (|has| |#3| (|Ring|))) │ │ │ ((((|BalancedPAdicInteger| |#1|)) . T)) │ │ │ +(OR (|has| |#3| (|CommutativeRing|)) (|has| |#3| (|Monoid|)) (|has| |#3| (|OrderedRing|)) (|has| |#3| (|Ring|))) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T)) │ │ │ -((($) . T) ((|#2|) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ (((|#1| (|IndexedExponents| (|OrderlyDifferentialVariable| (|Symbol|)))) . T)) │ │ │ (|has| |#1| (|CharacteristicZero|)) │ │ │ ((((|Integer|)) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ ((((|Fraction| $) (|Fraction| $)) |has| |#1| (|IntegralDomain|)) (($ $) . T) ((|#1| |#1|) . T)) │ │ │ +((($) . T) ((|#2|) . T) (((|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ ((((|Integer|)) . T)) │ │ │ (((|#2| (|NonNegativeInteger|) (|SingletonAsOrderedSet|)) . T)) │ │ │ ((((|Kernel| $) $) . T) (($ $) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ ((((|Symbol|)) AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) │ │ │ ((((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|)))) │ │ │ (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) │ │ │ (|has| |#2| (|OrderedIntegralDomain|)) │ │ │ (((|#1|) |has| |#1| (|CommutativeRing|))) │ │ │ (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|SetCategory|))) │ │ │ -((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (((|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (((|Float|)) |has| |#1| (|RealConstant|)) (((|DoubleFloat|)) |has| |#1| (|RealConstant|))) │ │ │ (((|#1|) . T)) │ │ │ +((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) (((|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (((|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (((|Float|)) |has| |#1| (|RealConstant|)) (((|DoubleFloat|)) |has| |#1| (|RealConstant|))) │ │ │ ((($ $) OR (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|GcdDomain|)) (|has| |#2| (|IntegralDomain|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) ((|#2| |#2|) . T) (((|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#2| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ -(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) │ │ │ -(((|#1| (|SparseUnivariateLaurentSeries| |#1| |#2| |#3|)) . T)) │ │ │ (((|#1| (|SparseUnivariateTaylorSeries| |#1| |#2| |#3|)) . T)) │ │ │ +(((|#1| (|SparseUnivariateLaurentSeries| |#1| |#2| |#3|)) . T)) │ │ │ +(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) │ │ │ ((((|Fraction| (|Integer|))) . T) (($) . T)) │ │ │ (((|#2|) . T)) │ │ │ (((|#1| |#2|) . T)) │ │ │ ((((|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ ((((|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) . T)) │ │ │ (((|#3| |#3|) AND (|has| |#3| (|Evalable| |#3|)) (|has| |#3| (|SetCategory|)))) │ │ │ -((((|OutputForm|)) . T)) │ │ │ (|has| |#1| (|Field|)) │ │ │ +((((|OutputForm|)) . T)) │ │ │ (((|#1|) . T)) │ │ │ ((((|Symbol|) (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) |has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|InnerEvalable| (|Symbol|) (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|))) (((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) |has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|Evalable| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)))) │ │ │ (((|#1|) . T)) │ │ │ ((($) . T) ((|#2|) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ (((|#1| |#1|) . T)) │ │ │ ((((|Integer|)) . T)) │ │ │ -(((|#1| |#2|) . T)) │ │ │ (((|#1|) . T)) │ │ │ (((|#1|) . T) (($) . T) (((|Fraction| (|Integer|))) . T)) │ │ │ +(((|#1| |#2|) . T)) │ │ │ ((($) . T) ((|#1|) . T)) │ │ │ ((((|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) (((|DoubleFloat|)) |has| |#1| (|RealConstant|)) (((|Float|)) |has| |#1| (|RealConstant|))) │ │ │ -(((|AlgebraGivenByStructuralConstants| . |AbelianGroup|) T) ((|MachineComplex| . |Field|) T) ((|Factored| . |ConvertibleTo|) 224283) ((|SparseUnivariateSkewPolynomial| . |LeftModule|) 224257) ((|SingleInteger| . |LeftOreRing|) T) ((|Segment| . |Type|) T) ((|PrimeField| . |FiniteFieldCategory|) T) ((|FiniteFieldNormalBasisExtension| . |AbelianGroup|) T) ((|FiniteFieldCyclicGroup| . |CharacteristicNonZero|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |RightModule|) 224198) ((|ListMonoidOps| . |RetractableTo|) 224182) ((|SparseTable| . |TableAggregate|) 224161) ((|RadixExpansion| . |FullyPatternMatchable|) 224138) ((|SparseUnivariateSkewPolynomial| . |BiModule|) 224117) ((|PAdicRationalConstructor| . |LeftModule|) 224058) ((|FourierSeries| . |RightModule|) 224042) ((|ExponentialExpansion| . |InnerEvalable|) 223448) ((|AssociatedJordanAlgebra| . |LeftModule|) 223432) ((|AlgebraGivenByStructuralConstants| . |AbelianSemiGroup|) T) ((|UnivariatePuiseuxSeriesConstructor| . |PrincipalIdealDomain|) 223408) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Ring|) T) ((|MachineInteger| . |EuclideanDomain|) T) ((|HexadecimalExpansion| . |CoercibleTo|) 223382) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |BasicType|) T) ((|SplitHomogeneousDirectProduct| . |InnerEvalable|) 223301) ((|NeitherSparseOrDensePowerSeries| . |HomogeneousAggregate|) 223242) ((|MoebiusTransform| . |Group|) T) ((|EqTable| . |BagAggregate|) 223184) ((|GeneralSparseTable| . |KeyedDictionary|) 223163) ((|LieSquareMatrix| . |HomogeneousAggregate|) 223147) ((|DoubleFloat| . |LeftModule|) 223101) ((|SparseUnivariateLaurentSeries| . |UnivariateLaurentSeriesConstructorCategory|) 223037) ((|SparseUnivariatePuiseuxSeries| . |UnivariatePuiseuxSeriesConstructorCategory|) 222972) ((|FiniteFieldExtension| . |IntegralDomain|) T) ((|NewSparseMultivariatePolynomial| . |InnerEvalable|) 222924) ((|UnivariateSkewPolynomial| . |SemiGroup|) T) ((|NewSparseUnivariatePolynomial| . |AbelianMonoid|) T) ((|OrderedVariableList| . |OrderedFinite|) T) ((|MyUnivariatePolynomial| . |BiModule|) 222626) ((|Expression| . |FullyPatternMatchable|) 222610) ((|InnerAlgebraicNumber| . |DivisionRing|) T) ((|RadicalFunctionField| . |SetCategory|) T) ((|Fraction| . |ConvertibleTo|) 222298) ((|IndexedOneDimensionalArray| . |BasicType|) 222235) ((|CardinalNumber| . |BasicType|) T) ((|SparseUnivariateSkewPolynomial| . |Algebra|) 222192) ((|PAdicRationalConstructor| . |OrderedRing|) 222152) ((|U16Matrix| . |SetCategory|) T) ((|AssociatedLieAlgebra| . |AbelianMonoid|) T) ((|Kernel| . |BasicType|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |HyperbolicFunctionCategory|) 222101) ((|DistributedMultivariatePolynomial| . |BiModule|) 221826) ((|Integer| . |OrderedSet|) T) ((|Fraction| . |IntegralDomain|) T) ((|BinaryExpansion| . |StepThrough|) T) ((|GeneralUnivariatePowerSeries| . |PartialDifferentialRing|) 221688) ((|SparseUnivariateLaurentSeries| . |LeftOreRing|) 221664) ((|MachineFloat| . |LeftModule|) 221618) ((|LiePolynomial| . |AbelianMonoid|) T) ((|XPBWPolynomial| . |Monoid|) T) ((|MyExpression| . |InnerEvalable|) 221580) ((|PAdicRationalConstructor| . |SetCategory|) T) ((|MyUnivariatePolynomial| . |PolynomialCategory|) 221515) ((|RadixExpansion| . |AbelianSemiGroup|) T) ((|DecimalExpansion| . |QuotientFieldCategory|) 221492) ((|RegularChain| . |Type|) T) ((|SparseUnivariatePolynomial| . |Eltable|) 221395) ((|Float| . |RetractableTo|) 221339) ((|ModuleOperator| . |CharacteristicZero|) 221302) ((|OrderlyDifferentialPolynomial| . |FiniteAbelianMonoidRing|) 221222) ((|MyUnivariatePolynomial| . |LeftModule|) 221119) ((|WuWenTsunTriangularSet| . |Type|) T) ((|FreeModule| . |LeftModule|) 221103) ((|LinearOrdinaryDifferentialOperator1| . |FullyRetractableTo|) 221087) ((|DecimalExpansion| . |Eltable|) NIL) ((|BalancedPAdicRational| . |QuotientFieldCategory|) 221046) ((|DirectProductModule| . |Monoid|) 220932) ((|PseudoAlgebraicClosureOfFiniteField| . |Algebra|) 220886) ((|CardinalNumber| . |CoercibleTo|) 220860) ((|Permutation| . |SemiGroup|) T) ((|DirectProductMatrixModule| . |Evalable|) 220784) ((|NewSparseUnivariatePolynomial| . |CoercibleTo|) 220714) ((|Polynomial| . |AbelianSemiGroup|) T) ((|MyUnivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 220698) ((|SymmetricPolynomial| . |IntegralDomain|) 220665) ((|LinearOrdinaryDifferentialOperator2| . |FullyRetractableTo|) 220649) ((|HyperellipticFiniteDivisor| . |AbelianMonoid|) T) ((|e04nafAnnaType| . |CoercibleTo|) 220623) ((|Float| . |CoercibleTo|) 220573) ((|DoubleFloat| . |LeftOreRing|) T) ((|SparseUnivariatePolynomialExpressions| . |PartialDifferentialRing|) 220471) ((|GeneralDistributedMultivariatePolynomial| . |Rng|) T) ((|UnivariatePuiseuxSeries| . |UniqueFactorizationDomain|) 220447) ((|FreeModule1| . |RetractableTo|) 220431) ((|Pi| . |IntegralDomain|) T) ((|PolynomialRing| . |CoercibleTo|) 220405) ((|Result| . |Collection|) 220338) ((|HomogeneousDirectProduct| . |FullyRetractableTo|) 220299) ((|RomanNumeral| . |CharacteristicZero|) T) ((|Expression| . |AbelianSemiGroup|) 220067) ((|FiniteFieldCyclicGroup| . |CoercibleTo|) 220041) ((|Library| . |Collection|) 219974) ((|Product| . |OrderedAbelianSemiGroup|) 219885) ((|GeneralUnivariatePowerSeries| . |Module|) 219673) ((|FreeModule1| . |AbelianMonoid|) T) ((|DoubleFloat| . |AbelianGroup|) T) ((|HexadecimalExpansion| . |OrderedAbelianSemiGroup|) T) ((|XPBWPolynomial| . |XFreeAlgebra|) 219652) ((|FourierSeries| . |BiModule|) 219631) ((|Stream| . |LazyStreamAggregate|) 219615) ((|ModuleMonomial| . |OrderedSet|) T) ((|Stream| . |LinearAggregate|) 219599) ((|List| . |IndexedAggregate|) 219571) ((|GuessOption| . |SetCategory|) T) ((|IndexedList| . |Aggregate|) T) ((|Heap| . |BagAggregate|) 219555) ((|NottinghamGroup| . |Monoid|) T) ((|AlgebraicNumber| . |GcdDomain|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Field|) T) ((|SplittingNode| . |BasicType|) T) ((|U16Vector| . |Evalable|) NIL) ((|Enumeration| . |BasicType|) T) ((|ProjectiveSpace| . |SetCategory|) T) ((|NeitherSparseOrDensePowerSeries| . |EuclideanDomain|) T) ((|UnivariatePuiseuxSeries| . |AbelianMonoid|) T) ((|DistributedMultivariatePolynomial| . |BasicType|) T) ((|XPolynomial| . |SemiGroup|) T) ((|IndexedDirectProductAbelianMonoid| . |SetCategory|) T) ((|Factored| . |RetractableTo|) 219399) ((|DirectProductModule| . |DifferentialRing|) 219336) ((|ExtAlgBasis| . |CoercibleTo|) 219310) ((|DirectProductModule| . |OrderedAbelianMonoidSup|) 219268) ((|ModMonic| . |GcdDomain|) 219163) ((|UnivariateTaylorSeriesCZero| . |AbelianMonoid|) T) ((|BalancedPAdicRational| . |Type|) T) ((|UnivariateLaurentSeriesConstructor| . |FullyLinearlyExplicitRingOver|) 219130) ((|OrdinaryWeightedPolynomials| . |AbelianGroup|) T) ((|FiniteFieldExtension| . |SemiGroup|) T) ((|OneDimensionalArray| . |Type|) T) ((|Expression| . |FullyRetractableTo|) 219114) ((|DeRhamComplex| . |Rng|) T) ((|SparseMultivariateTaylorSeries| . |ArcHyperbolicFunctionCategory|) 219063) ((|PositiveInteger| . |AbelianSemiGroup|) T) ((|DistributedMultivariatePolynomial| . |LeftModule|) 218960) ((|AlgebraicNumber| . |DivisionRing|) T) ((|UnivariateTaylorSeriesCZero| . |ElementaryFunctionCategory|) 218909) ((|UnivariateLaurentSeries| . |Monoid|) T) ((|Boolean| . |OrderedSet|) T) ((|InnerFiniteField| . |GcdDomain|) T) ((|Commutator| . |CoercibleTo|) 218883) ((|ThreeDimensionalViewport| . |CoercibleTo|) 218857) ((|FiniteFieldExtensionByPolynomial| . |DivisionRing|) T) ((|NeitherSparseOrDensePowerSeries| . |Module|) 218771) ((|FiniteFieldExtension| . |LeftModule|) 218712) ((|LaurentPolynomial| . |PrincipalIdealDomain|) 218688) ((|FiniteFieldExtension| . |CharacteristicNonZero|) 218619) ((|Table| . |HomogeneousAggregate|) 218548) ((|OppositeMonogenicLinearOperator| . |AbelianSemiGroup|) T) ((|NeitherSparseOrDensePowerSeries| . |IndexedAggregate|) 218477) ((|SquareMatrix| . |Rng|) T) ((|OrderedDirectProduct| . |Aggregate|) T) ((|IndexedList| . |Collection|) 218461) ((|FreeNilpotentLie| . |LeftModule|) 218445) ((|UnivariateLaurentSeries| . |AbelianGroup|) T) ((|Segment| . |SegmentExpansionCategory|) 218392) ((|PAdicInteger| . |PrincipalIdealDomain|) T) ((|GeneralTriangularSet| . |SetCategory|) T) ((|NeitherSparseOrDensePowerSeries| . |BasicType|) T) ((|DirectProductModule| . |OrderedSet|) 218316) ((|HexadecimalExpansion| . |OrderedAbelianGroup|) T) ((|UnivariatePolynomial| . |Monoid|) T) ((|TaylorSeries| . |AbelianSemiGroup|) T) ((|Polynomial| . |GcdDomain|) 218234) ((|ModularField| . |Module|) 218188) ((|Asp8| . |FortranVectorCategory|) T) ((|IntegerMod| . |ConvertibleTo|) 218165) ((|DirectProductMatrixModule| . |Eltable|) 218137) ((|PAdicRational| . |PartialDifferentialRing|) NIL) ((|DistributedMultivariatePolynomial| . |SetCategory|) T) ((|OrderedCompletion| . |Rng|) 218107) ((|LieSquareMatrix| . |Monad|) T) ((|SplittingTree| . |BasicType|) T) ((|Stream| . |InnerEvalable|) 218026) ((|PseudoAlgebraicClosureOfRationalNumber| . |CharacteristicZero|) T) ((|ComplexDoubleFloatVector| . |Eltable|) 217975) ((|Vector| . |OrderedSet|) 217946) ((|d02bbfAnnaType| . |CoercibleTo|) 217920) ((|NottinghamGroup| . |SemiGroup|) T) ((|Pi| . |Ring|) T) ((|WeightedPolynomials| . |AbelianMonoid|) T) ((|Asp7| . |FortranProgramCategory|) T) ((|FiniteFieldCyclicGroupExtension| . |CoercibleTo|) 217894) ((|d02cjfAnnaType| . |SetCategory|) T) ((|Fraction| . |SetCategory|) T) ((|FiniteFieldCyclicGroup| . |Rng|) T) ((|Fraction| . |AbelianSemiGroup|) T) ((|IndexedString| . |Type|) T) ((|IntegrationResult| . |BasicType|) T) ((|FiniteFieldNormalBasis| . |SetCategory|) T) ((|Operator| . |BiModule|) 217846) ((|Stream| . |Collection|) 217830) ((|DataList| . |Type|) T) ((|InnerPAdicInteger| . |Module|) 217817) ((|TaylorSeries| . |RadicalCategory|) 217766) ((|Complex| . |BiModule|) 217616) ((|Point| . |IndexedAggregate|) 217588) ((|Asp19| . |FortranProgramCategory|) T) ((|DecimalExpansion| . |BiModule|) 217483) ((|LieSquareMatrix| . |DifferentialRing|) 217448) ((|XPolynomial| . |Ring|) T) ((|FiniteField| . |GcdDomain|) T) ((|Quaternion| . |LinearlyExplicitRingOver|) 217364) ((|LinearOrdinaryDifferentialOperator2| . |BiModule|) 217343) ((|DecimalExpansion| . |RealConstant|) T) ((|ModularField| . |DivisionRing|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |CharacteristicZero|) 217306) ((|FiniteField| . |Ring|) T) ((|Result| . |Type|) T) ((|XRecursivePolynomial| . |SetCategory|) T) ((|U32Vector| . |CoercibleTo|) 217280) ((|RealClosure| . |RadicalCategory|) T) ((|SimpleAlgebraicExtension| . |Algebra|) 217103) ((|SequentialDifferentialPolynomial| . |PatternMatchable|) NIL) ((|OrderedDirectProduct| . |PartialDifferentialRing|) 217007) ((|IndexedList| . |BasicType|) 216944) ((|PseudoAlgebraicClosureOfRationalNumber| . |EntireRing|) T) ((|Asp34| . |FortranProgramCategory|) T) ((|SparseUnivariatePuiseuxSeries| . |GcdDomain|) 216920) ((|UnivariateLaurentSeries| . |CancellationAbelianMonoid|) T) ((|Heap| . |BasicType|) 216890) ((|PolynomialRing| . |BasicType|) T) ((|Complex| . |GcdDomain|) 216791) ((|SparseMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 216741) ((|Polynomial| . |FullyRetractableTo|) 216725) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |OrderedCancellationAbelianMonoid|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |Module|) 216628) ((|Stack| . |SetCategory|) 216598) ((|NewSparseUnivariatePolynomial| . |Monoid|) T) ((|BalancedBinaryTree| . |BinaryRecursiveAggregate|) 216582) ((|PAdicRational| . |OrderedSet|) NIL) ((|SparseUnivariatePolynomial| . |CharacteristicNonZero|) 216542) ((|Operator| . |Eltable|) 216521) ((|AssociationList| . |Eltable|) 216433) ((|MachineComplex| . |RightModule|) 216362) ((|LieSquareMatrix| . |Algebra|) 216307) ((|PseudoAlgebraicClosureOfRationalNumber| . |Ring|) T) ((|Float| . |EuclideanDomain|) T) ((|IndexedList| . |LinearAggregate|) 216291) ((|StochasticDifferential| . |CancellationAbelianMonoid|) T) ((|OrdinaryWeightedPolynomials| . |BasicType|) T) ((|SequentialDifferentialPolynomial| . |RetractableTo|) 216005) ((|FortranExpression| . |AbelianSemiGroup|) T) ((|ModuleOperator| . |BasicType|) T) ((|SparseUnivariateLaurentSeries| . |HyperbolicFunctionCategory|) 215954) ((|IntegrationResult| . |AbelianMonoid|) T) ((|DifferentialSparseMultivariatePolynomial| . |PatternMatchable|) 215733) ((|SimpleAlgebraicExtension| . |EuclideanDomain|) 215667) ((|Operator| . |SetCategory|) T) ((|UnivariateTaylorSeriesCZero| . |Monoid|) T) ((|UnivariateFormalPowerSeries| . |SemiGroup|) T) ((|HomogeneousDirectProduct| . |SetCategory|) 215359) ((|IndexedExponents| . |OrderedSet|) T) ((|Product| . |OrderedAbelianMonoidSup|) 215270) ((|SparseMultivariatePolynomial| . |AbelianMonoidRing|) 215228) ((|SequentialDifferentialPolynomial| . |LinearlyExplicitRingOver|) 215144) ((|FiniteFieldCyclicGroupExtension| . |UniqueFactorizationDomain|) T) ((|DecimalExpansion| . |FullyEvalableOver|) 215121) ((|GeneralPolynomialSet| . |InnerEvalable|) 215040) ((|Fraction| . |InnerEvalable|) 214929) ((|Expression| . |Field|) 214896) ((|BalancedPAdicRational| . |OrderedAbelianMonoid|) NIL) ((|GeneralSparseTable| . |Dictionary|) 214838) ((|GeneralTriangularSet| . |Collection|) 214822) ((|GeneralDistributedMultivariatePolynomial| . |Monoid|) T) ((|DirectProduct| . |Algebra|) 214779) ((|InnerIndexedTwoDimensionalArray| . |TwoDimensionalArrayCategory|) 214753) ((|NeitherSparseOrDensePowerSeries| . |Eltable|) 214670) ((|FiniteFieldExtensionByPolynomial| . |RightModule|) 214611) ((|d03fafAnnaType| . |BasicType|) T) ((|SparseMultivariatePolynomial| . |Evalable|) 214598) ((|SimpleAlgebraicExtension| . |DifferentialExtension|) 214565) ((|Expression| . |SemiGroup|) 214347) ((|SimpleAlgebraicExtension| . |Finite|) 214280) ((|Dequeue| . |InnerEvalable|) 214199) ((|BinaryExpansion| . |LeftOreRing|) T) ((|QuadraticForm| . |CancellationAbelianMonoid|) T) ((|XPolynomialRing| . |AbelianSemiGroup|) T) ((|RealClosure| . |Ring|) T) ((|Divisor| . |AbelianSemiGroup|) T) ((|UnivariateLaurentSeries| . |EuclideanDomain|) 214175) ((|UnivariateLaurentSeriesConstructor| . |LinearlyExplicitRingOver|) 214045) ((|DoubleFloat| . |DifferentialRing|) T) ((|SparseUnivariatePolynomialExpressions| . |LeftOreRing|) 213940) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |AbelianSemiGroup|) T) ((|UnivariateLaurentSeries| . |LeftOreRing|) 213916) ((|Asp34| . |CoercibleTo|) 213890) ((|SequentialDifferentialPolynomial| . |UniqueFactorizationDomain|) 213840) ((|CliffordAlgebra| . |AbelianMonoid|) T) ((|BalancedPAdicRational| . |OrderedAbelianGroup|) NIL) ((|String| . |CoercibleTo|) 213814) ((|e04fdfAnnaType| . |CoercibleTo|) 213788) ((|SplitHomogeneousDirectProduct| . |OrderedAbelianMonoidSup|) 213746) ((|SparseMultivariatePolynomial| . |CoercibleTo|) 213720) ((|SplitHomogeneousDirectProduct| . |OrderedSet|) 213644) ((|PolynomialRing| . |CommutativeRing|) 213573) ((|IndexCard| . |BasicType|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |Ring|) T) ((|Quaternion| . |AbelianGroup|) T) ((|EuclideanModularRing| . |AbelianSemiGroup|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |RetractableTo|) 213517) ((|Multiset| . |BasicType|) T) ((|Kernel| . |SetCategory|) T) ((|Complex| . |RadicalCategory|) 213429) ((|BalancedPAdicInteger| . |CommutativeRing|) T) ((|Complex| . |LeftOreRing|) 213330) ((|Factored| . |RealConstant|) 213299) ((|ResidueRing| . |AbelianSemiGroup|) T) ((|RomanNumeral| . |AbelianGroup|) T) ((|SplitHomogeneousDirectProduct| . |FullyLinearlyExplicitRingOver|) 213267) ((|SparseUnivariatePolynomialExpressions| . |DifferentialRing|) T) ((|Float| . |ConvertibleTo|) 213151) ((|MyUnivariatePolynomial| . |PolynomialFactorizationExplicit|) 213101) ((|UnivariatePuiseuxSeries| . |CommutativeRing|) 213007) ((|UnivariateLaurentSeriesConstructor| . |AbelianSemiGroup|) T) ((|ExponentialExpansion| . |DivisionRing|) T) ((|IndexedOneDimensionalArray| . |Eltable|) 212979) ((|ThreeSpace| . |SetCategory|) T) ((|FiniteFieldNormalBasis| . |LeftModule|) 212905) ((|TaylorSeries| . |ArcTrigonometricFunctionCategory|) 212854) ((|ContinuedFraction| . |Field|) T) ((|SparseMultivariateTaylorSeries| . |CharacteristicZero|) 212817) ((|MyUnivariatePolynomial| . |UnivariatePolynomialCategory|) 212801) ((|Interval| . |BiModule|) 212786) ((|UnivariatePolynomial| . |IntegralDomain|) 212649) ((|FortranExpression| . |Algebra|) 212633) ((|Complex| . |CharacteristicZero|) 212596) ((|XDistributedPolynomial| . |Algebra|) 212553) ((|LinearOrdinaryDifferentialOperator| . |AbelianGroup|) T) ((|GeneralDistributedMultivariatePolynomial| . |AbelianMonoidRing|) 212532) ((|WuWenTsunTriangularSet| . |BasicType|) T) ((|BinaryExpansion| . |AbelianMonoid|) T) ((|FiniteFieldNormalBasisExtension| . |FiniteFieldCategory|) 212507) ((|Permutation| . |CoercibleTo|) 212481) ((|SubSpace| . |SetCategory|) T) ((|PolynomialRing| . |BiModule|) 212282) ((|HomogeneousDistributedMultivariatePolynomial| . |LinearlyExplicitRingOver|) 212198) ((|SparseMultivariatePolynomial| . |RetractableTo|) 212029) ((|InnerPAdicInteger| . |Monoid|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |PseudoAlgebraicClosureOfPerfectFieldCategory|) T) ((|SparseMultivariatePolynomial| . |FullyRetractableTo|) 212013) ((|LieSquareMatrix| . |RectangularMatrixCategory|) 211931) ((|LaurentPolynomial| . |DifferentialRing|) 211896) ((|Product| . |CancellationAbelianMonoid|) 211644) ((|FiniteFieldExtension| . |Field|) T) ((|FiniteField| . |ExtensionField|) 211613) ((|MyExpression| . |CombinatorialFunctionCategory|) T) ((|ResidueRing| . |Ring|) T) ((|FiniteField| . |DifferentialRing|) T) ((|HTMLFormat| . |SetCategory|) T) ((|SparseUnivariatePolynomialExpressions| . |CharacteristicNonZero|) 211573) ((|SingleInteger| . |OrderedIntegralDomain|) T) ((|DoubleFloat| . |HyperbolicFunctionCategory|) T) ((|Bits| . |SetCategory|) T) ((|ModuleOperator| . |AbelianGroup|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |BiModule|) 211406) ((|SimpleFortranProgram| . |CoercibleTo|) 211380) ((|BinaryExpansion| . |OrderedRing|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |SetCategory|) T) ((|d02ejfAnnaType| . |BasicType|) T) ((|XDistributedPolynomial| . |SetCategory|) T) ((|RadicalFunctionField| . |IntegralDomain|) T) ((|Polynomial| . |IntegralDomain|) 211266) ((|SquareMatrix| . |FullyLinearlyExplicitRingOver|) 211250) ((|IndexedString| . |Aggregate|) T) ((|UnivariateLaurentSeriesConstructor| . |Patternable|) 211217) ((|ExponentialExpansion| . |CancellationAbelianMonoid|) T) ((|DistributedMultivariatePolynomial| . |ConvertibleTo|) 210995) ((|Expression| . |SetCategory|) T) ((|String| . |IndexedAggregate|) 210958) ((|RoutinesTable| . |InnerEvalable|) 210708) ((|GeneralUnivariatePowerSeries| . |BasicType|) T) ((|CliffordAlgebra| . |Algebra|) 210692) ((|SparseUnivariateTaylorSeries| . |PartialDifferentialRing|) 210556) ((|FlexibleArray| . |HomogeneousAggregate|) 210540) ((|RadixExpansion| . |OrderedIntegralDomain|) T) ((|OrdinaryDifferentialRing| . |Rng|) T) ((|AssociationList| . |BagAggregate|) 210482) ((|ResidueRing| . |CancellationAbelianMonoid|) T) ((|Integer| . |AbelianMonoid|) T) ((|OrderedCompletion| . |Monoid|) 210452) ((|FlexibleArray| . |FiniteLinearAggregate|) 210436) ((|IndexedList| . |ConvertibleTo|) 210372) ((|OrdSetInts| . |SetCategory|) T) ((|SingleInteger| . |OrderedCancellationAbelianMonoid|) T) ((|GenericNonAssociativeAlgebra| . |LeftModule|) 210265) ((|OutputForm| . |BasicType|) T) ((|e04nafAnnaType| . |NumericalOptimizationCategory|) T) ((|NewSparseMultivariatePolynomial| . |BasicType|) T) ((|SparseUnivariatePuiseuxSeries| . |EntireRing|) 210204) ((|AnonymousFunction| . |CoercibleTo|) 210178) ((|SegmentBinding| . |SetCategory|) 210148) ((|XDistributedPolynomial| . |FreeModuleCat|) 210105) ((|d01asfAnnaType| . |CoercibleTo|) 210079) ((|ExponentialExpansion| . |OrderedAbelianMonoid|) NIL) ((|AntiSymm| . |CancellationAbelianMonoid|) T) ((|AlgebraicNumber| . |BasicType|) T) ((|NeitherSparseOrDensePowerSeries| . |IntegralDomain|) T) ((|ExponentialExpansion| . |FullyLinearlyExplicitRingOver|) 209994) ((|Matrix| . |TwoDimensionalArrayCategory|) 209946) ((|FiniteFieldExtensionByPolynomial| . |FiniteFieldCategory|) 209921) ((|FiniteFieldExtensionByPolynomial| . |AbelianSemiGroup|) T) ((|UnivariateLaurentSeries| . |RealConstant|) NIL) ((|Asp42| . |FortranProgramCategory|) T) ((|Asp24| . |FortranProgramCategory|) T) ((|SequentialDifferentialPolynomial| . |IntegralDomain|) 209807) ((|Complex| . |ElementaryFunctionCategory|) 209758) ((|FiniteFieldCyclicGroupExtension| . |Module|) 209699) ((|Fraction| . |CharacteristicZero|) 209662) ((|SingleInteger| . |LinearlyExplicitRingOver|) 209639) ((|UnivariatePuiseuxSeries| . |DivisionRing|) 209615) ((|AlgebraicFunctionField| . |FullyLinearlyExplicitRingOver|) 209586) ((|Factored| . |EntireRing|) T) ((|Polynomial| . |AbelianMonoidRing|) 209538) ((|Table| . |Aggregate|) T) ((|Bits| . |BitAggregate|) T) ((|PolynomialRing| . |AbelianMonoid|) T) ((|FiniteFieldNormalBasisExtension| . |Finite|) 209513) ((|Multiset| . |Collection|) 209497) ((|GeneralUnivariatePowerSeries| . |RadicalCategory|) 209446) ((|AssociatedJordanAlgebra| . |FiniteRankNonAssociativeAlgebra|) 209327) ((|MyExpression| . |EntireRing|) T) ((|FortranExpression| . |CancellationAbelianMonoid|) T) ((|DecimalExpansion| . |Type|) T) ((|SparseUnivariatePolynomial| . |Module|) 209067) ((|RealClosure| . |FullyRetractableTo|) 209018) ((|FreeModule| . |AbelianSemiGroup|) T) ((|SparseUnivariateTaylorSeries| . |UnivariatePowerSeriesCategory|) 208979) ((|HomogeneousDirectProduct| . |CancellationAbelianMonoid|) 208782) ((|MachineFloat| . |CommutativeRing|) T) ((|NewSparseUnivariatePolynomial| . |SetCategory|) T) ((|Tuple| . |CoercibleTo|) 208701) ((|SparseUnivariateLaurentSeries| . |Algebra|) 208416) ((|DirectProductMatrixModule| . |CancellationAbelianMonoid|) T) ((|UnivariatePolynomial| . |GcdDomain|) 208311) ((|DesingTree| . |BasicType|) 208281) ((|BasicOperator| . |SetCategory|) T) ((|Fraction| . |CharacteristicNonZero|) 208241) ((|SparseUnivariateTaylorSeries| . |HyperbolicFunctionCategory|) 208190) ((|Polynomial| . |Monoid|) T) ((|WeightedPolynomials| . |Monoid|) T) ((|BalancedPAdicInteger| . |GcdDomain|) T) ((|FiniteFieldCyclicGroupExtension| . |IntegralDomain|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |StepThrough|) 208165) ((|UnivariateLaurentSeriesConstructor| . |DivisionRing|) 208141) ((|MyExpression| . |PrincipalIdealDomain|) 208108) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |CancellationAbelianMonoid|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |ConvertibleTo|) 207886) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |RetractableTo|) 207870) ((|QuadraticForm| . |CoercibleTo|) 207844) ((|LieSquareMatrix| . |FullyRetractableTo|) 207828) ((|UnivariateLaurentSeriesConstructor| . |Module|) 207586) ((|NeitherSparseOrDensePowerSeries| . |RecursiveAggregate|) 207527) ((|NeitherSparseOrDensePowerSeries| . |UnivariatePowerSeriesCategory|) 207499) ((|UnivariatePuiseuxSeriesConstructor| . |LeftOreRing|) 207475) ((|DataList| . |ExtensibleLinearAggregate|) 207459) ((|FiniteFieldNormalBasis| . |CancellationAbelianMonoid|) T) ((|XDistributedPolynomial| . |BasicType|) T) ((|LaurentPolynomial| . |EuclideanDomain|) 207435) ((|FiniteField| . |PrincipalIdealDomain|) T) ((|FiniteFieldCyclicGroupExtension| . |EntireRing|) T) ((|TextFile| . |BasicType|) T) ((|RadixExpansion| . |UniqueFactorizationDomain|) T) ((|UnivariatePuiseuxSeriesConstructor| . |PowerSeriesCategory|) 207368) ((|UnivariatePolynomial| . |Algebra|) 207108) ((|U16Vector| . |InnerEvalable|) NIL) ((|Asp4| . |CoercibleTo|) 207082) ((|AssociationList| . |BasicType|) T) ((|Library| . |IndexedAggregate|) 207052) ((|FreeModule1| . |Module|) 207009) ((|CharacterClass| . |SetCategory|) T) ((|Expression| . |PrimitiveFunctionCategory|) 206976) ((|OrderedCompletion| . |LeftModule|) 206940) ((|QuadraticForm| . |BasicType|) T) ((|UnivariatePuiseuxSeries| . |PartialDifferentialRing|) 206802) ((|XDistributedPolynomial| . |CancellationAbelianMonoid|) T) ((|d01amfAnnaType| . |SetCategory|) T) ((|MachineInteger| . |Algebra|) 206789) ((|Octonion| . |AbelianMonoid|) T) ((|TaylorSeries| . |BasicType|) T) ((|SparseUnivariateTaylorSeries| . |AbelianMonoidRing|) 206750) ((|FourierSeries| . |SetCategory|) T) ((|Fraction| . |LeftOreRing|) T) ((|MachineComplex| . |CoercibleTo|) 206724) ((|LaurentPolynomial| . |LeftModule|) 206711) ((|Fraction| . |OrderedAbelianGroup|) 206671) ((|InnerPrimeField| . |DivisionRing|) T) ((|PAdicInteger| . |SetCategory|) T) ((|IndexedFlexibleArray| . |ExtensibleLinearAggregate|) 206655) ((|DataList| . |OrderedSet|) 206626) ((|IndexedMatrix| . |SetCategory|) 206596) ((|UnivariatePolynomial| . |OrderedSet|) 206567) ((|TaylorSeries| . |AbelianGroup|) T) ((|FortranExpression| . |Monoid|) T) ((|MachineComplex| . |GcdDomain|) T) ((|SExpression| . |SetCategory|) T) ((|AntiSymm| . |AbelianGroup|) T) ((|Operator| . |CharacteristicNonZero|) 206527) ((|HexadecimalExpansion| . |CommutativeRing|) T) ((|RealClosure| . |Algebra|) 206448) ((|SparseUnivariateTaylorSeries| . |BasicType|) T) ((|ContinuedFraction| . |AbelianSemiGroup|) T) ((|UnivariateLaurentSeries| . |PolynomialFactorizationExplicit|) NIL) ((|ExponentialOfUnivariatePuiseuxSeries| . |TrigonometricFunctionCategory|) 206397) ((|Fraction| . |PolynomialFactorizationExplicit|) 206347) ((|InnerAlgebraicNumber| . |EntireRing|) T) ((|LinearOrdinaryDifferentialOperator2| . |AbelianGroup|) T) ((|OrderlyDifferentialPolynomial| . |OrderedSet|) 206318) ((|HomogeneousDistributedMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 206268) ((|FramedModule| . |SemiGroup|) T) ((|DesingTree| . |Aggregate|) T) ((|ExponentialExpansion| . |DifferentialExtension|) 206183) ((|SymmetricPolynomial| . |BasicType|) T) ((|Complex| . |TrigonometricFunctionCategory|) 206134) ((|PrimitiveArray| . |OneDimensionalArrayAggregate|) 206118) ((|ContinuedFraction| . |Monoid|) T) ((|HomogeneousDirectProduct| . |Eltable|) 206090) ((|PseudoAlgebraicClosureOfRationalNumber| . |LeftModule|) 206044) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |EuclideanDomain|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |RadicalCategory|) 205993) ((|PrimeField| . |RightModule|) 205947) ((|Complex| . |BasicType|) T) ((|InnerAlgebraicNumber| . |Field|) T) ((|UnivariateLaurentSeries| . |PartialDifferentialRing|) 205699) ((|Operator| . |AbelianSemiGroup|) T) ((|FiniteFieldNormalBasisExtension| . |RetractableTo|) 205683) ((|Operator| . |CoercibleTo|) 205657) ((|RectangularMatrix| . |CancellationAbelianMonoid|) T) ((|InnerPrimeField| . |FieldOfPrimeCharacteristic|) T) ((|Expression| . |Module|) 205519) ((|PAdicRational| . |UniqueFactorizationDomain|) T) ((|Quaternion| . |AbelianMonoid|) T) ((|LocalAlgebra| . |Algebra|) 205503) ((|Float| . |TrigonometricFunctionCategory|) T) ((|Multiset| . |SetCategory|) T) ((|RadixExpansion| . |CancellationAbelianMonoid|) T) ((|RomanNumeral| . |AbelianSemiGroup|) T) ((|OneDimensionalArray| . |SetCategory|) 205440) ((|SequentialDifferentialPolynomial| . |InnerEvalable|) 205209) ((|InnerSparseUnivariatePowerSeries| . |BasicType|) T) ((|Multiset| . |BagAggregate|) 205193) ((|OrderedVariableList| . |CoercibleTo|) 205167) ((|Interval| . |SemiGroup|) T) ((|LinearOrdinaryDifferentialOperator| . |CoercibleTo|) 205141) ((|Fraction| . |OrderedSet|) 205068) ((|PseudoAlgebraicClosureOfFiniteField| . |CharacteristicNonZero|) T) ((|SparseUnivariateLaurentSeries| . |OrderedAbelianSemiGroup|) NIL) ((|OppositeMonogenicLinearOperator| . |AbelianGroup|) T) ((|Integer| . |ConvertibleTo|) 204930) ((|Complex| . |CommutativeRing|) T) ((|SymmetricPolynomial| . |SemiGroup|) T) ((|CharacterClass| . |Finite|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |AbelianMonoid|) T) ((|RadixExpansion| . |IntegralDomain|) T) ((|RegularChain| . |SetCategory|) T) ((|SplitHomogeneousDirectProduct| . |Evalable|) 204854) ((|DoubleFloat| . |RightModule|) 204808) ((|PendantTree| . |Type|) T) ((|SparseUnivariatePolynomial| . |RetractableTo|) 204618) ((|SimpleAlgebraicExtension| . |Module|) 204441) ((|HexadecimalExpansion| . |RealConstant|) T) ((|DirectProduct| . |SemiGroup|) 204327) ((|MachineComplex| . |ConvertibleTo|) 204172) ((|DrawOption| . |SetCategory|) T) ((|ExponentialExpansion| . |Patternable|) 204087) ((|InnerAlgebraicNumber| . |Rng|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |EntireRing|) T) ((|NewSparseMultivariatePolynomial| . |CharacteristicNonZero|) 204047) ((|RomanNumeral| . |UniqueFactorizationDomain|) T) ((|Quaternion| . |CancellationAbelianMonoid|) T) ((|BalancedPAdicRational| . |AbelianSemiGroup|) T) ((|ListMonoidOps| . |SetCategory|) T) ((|InnerAlgebraicNumber| . |LeftOreRing|) T) ((|InnerSparseUnivariatePowerSeries| . |LeftModule|) 203944) ((|SparseUnivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 203928) ((|Asp50| . |FortranVectorFunctionCategory|) T) ((|AlgebraicNumber| . |CommutativeRing|) T) ((|FlexibleArray| . |OneDimensionalArrayAggregate|) 203912) ((|BinaryExpansion| . |OrderedAbelianSemiGroup|) T) ((|TaylorSeries| . |AbelianMonoidRing|) 203864) ((|HomogeneousDirectProduct| . |PartialDifferentialRing|) 203768) ((|PrimeField| . |VectorSpace|) 203755) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |PseudoAlgebraicClosureOfPerfectFieldCategory|) T) ((|UnivariatePuiseuxSeries| . |Rng|) T) ((|SparseUnivariatePolynomial| . |Evalable|) 203742) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |BiModule|) 203651) ((|BinaryExpansion| . |BiModule|) 203546) ((|UnivariatePolynomial| . |PolynomialCategory|) 203481) ((|Complex| . |PolynomialFactorizationExplicit|) 203392) ((|InnerAlgebraicNumber| . |Evalable|) 203379) ((|AlgebraicNumber| . |InnerEvalable|) 203341) ((|DirectProductModule| . |Evalable|) 203265) ((|Integer| . |EntireRing|) T) ((|MyExpression| . |AbelianGroup|) T) ((|SimpleAlgebraicExtension| . |IntegralDomain|) 203199) ((|AssociatedLieAlgebra| . |LeftModule|) 203183) ((|NewSparseUnivariatePolynomial| . |OrderedSet|) 203154) ((|SymmetricPolynomial| . |FullyRetractableTo|) 203138) ((|SuchThat| . |BasicType|) T) ((|SquareFreeRegularTriangularSet| . |Type|) T) ((|Database| . |SetCategory|) T) ((|GuessOptionFunctions0| . |SetCategory|) T) ((|ComplexDoubleFloatVector| . |OrderedSet|) 203086) ((|UnivariatePolynomial| . |CoercibleTo|) 203060) ((|NeitherSparseOrDensePowerSeries| . |SemiGroup|) T) ((|MyExpression| . |LeftModule|) 202948) ((|PrimeField| . |CharacteristicNonZero|) T) ((|SequentialDifferentialPolynomial| . |PolynomialFactorizationExplicit|) 202898) ((|MyExpression| . |CancellationAbelianMonoid|) T) ((|FiniteFieldNormalBasis| . |UniqueFactorizationDomain|) T) ((|NumericalODEProblem| . |CoercibleTo|) 202872) ((|Result| . |KeyedDictionary|) 202842) ((|MoebiusTransform| . |BasicType|) T) ((|PrimitiveArray| . |ConvertibleTo|) 202778) ((|LinearOrdinaryDifferentialOperator| . |BasicType|) T) ((|RectangularMatrix| . |HomogeneousAggregate|) 202762) ((|NewSparseUnivariatePolynomial| . |Module|) 202502) ((|Integer| . |BiModule|) 202487) ((|LaurentPolynomial| . |SetCategory|) T) ((|e04dgfAnnaType| . |CoercibleTo|) 202461) ((|Integer| . |CancellationAbelianMonoid|) T) ((|OrderlyDifferentialPolynomial| . |AbelianSemiGroup|) T) ((|XPolynomialRing| . |CoercibleTo|) 202435) ((|SparseMultivariatePolynomial| . |LeftModule|) 202332) ((|FreeModule1| . |AbelianGroup|) T) ((|AlgebraicFunctionField| . |FramedAlgebra|) 202298) ((|DirectProductModule| . |Module|) 202227) ((|UnivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|LinearOrdinaryDifferentialOperator1| . |Monoid|) T) ((|IndexedExponents| . |OrderedAbelianMonoid|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |BasicType|) T) ((|PAdicInteger| . |CharacteristicZero|) T) ((|Integer| . |AbelianSemiGroup|) T) ((|UnivariatePolynomial| . |RightModule|) 201961) ((|SparseUnivariatePuiseuxSeries| . |TrigonometricFunctionCategory|) 201910) ((|UnivariatePolynomial| . |Module|) 201650) ((|Polynomial| . |Ring|) T) ((|FiniteFieldExtensionByPolynomial| . |PrincipalIdealDomain|) T) ((|IndexedFlexibleArray| . |ConvertibleTo|) 201586) ((|FiniteFieldNormalBasis| . |AbelianMonoid|) T) ((|GeneralTriangularSet| . |InnerEvalable|) 201505) ((|OrderlyDifferentialPolynomial| . |UniqueFactorizationDomain|) 201455) ((|OppositeMonogenicLinearOperator| . |CancellationAbelianMonoid|) T) ((|Factored| . |Rng|) T) ((|RadicalFunctionField| . |FiniteFieldCategory|) NIL) ((|OrderedFreeMonoid| . |Monoid|) T) ((|ExponentialExpansion| . |AbelianMonoid|) T) ((|Magma| . |BasicType|) T) ((|DoubleFloatVector| . |IndexedAggregate|) 201416) ((|DecimalExpansion| . |SetCategory|) T) ((|List| . |BasicType|) 201353) ((|Partition| . |OrderedAbelianMonoid|) T) ((|SparseUnivariatePuiseuxSeries| . |LeftOreRing|) 201329) ((|SimpleAlgebraicExtension| . |AbelianGroup|) T) ((|File| . |SetCategory|) T) ((|PAdicRational| . |SemiGroup|) T) ((|FiniteFieldNormalBasisExtension| . |CommutativeRing|) T) ((|SparseUnivariateTaylorSeries| . |IntegralDomain|) 201296) ((|GeneralDistributedMultivariatePolynomial| . |IntegralDomain|) 201182) ((|SetOfMIntegersInOneToN| . |BasicType|) T) ((|SparseUnivariateLaurentSeries| . |Ring|) T) ((|PAdicRational| . |Type|) T) ((|Octonion| . |CoercibleTo|) 201156) ((|PrimitiveArray| . |InnerEvalable|) 201075) ((|DoubleFloat| . |CancellationAbelianMonoid|) T) ((|IndexedMatrix| . |CoercibleTo|) 201026) ((|Float| . |OrderedCancellationAbelianMonoid|) T) ((|PAdicRational| . |CommutativeRing|) T) ((|d01aqfAnnaType| . |SetCategory|) T) ((|NewSparseUnivariatePolynomial| . |InnerEvalable|) 200936) ((|OppositeMonogenicLinearOperator| . |LeftModule|) 200910) ((|Expression| . |TranscendentalFunctionCategory|) 200877) ((|Bits| . |Evalable|) NIL) ((|Character| . |OrderedSet|) T) ((|UnivariatePuiseuxSeries| . |AbelianMonoidRing|) 200836) ((|BalancedPAdicRational| . |BiModule|) 200695) ((|FiniteField| . |CharacteristicNonZero|) T) ((|UnivariatePolynomial| . |CharacteristicNonZero|) 200655) ((|LinearOrdinaryDifferentialOperator1| . |AbelianGroup|) T) ((|RectangularMatrix| . |Evalable|) 200579) ((|FractionalIdeal| . |CoercibleTo|) 200553) ((|RegularChain| . |ConvertibleTo|) 200424) ((|OppositeMonogenicLinearOperator| . |Rng|) T) ((|XPBWPolynomial| . |Ring|) T) ((|Asp8| . |FortranProgramCategory|) T) ((|BasicFunctions| . |BasicType|) T) ((|MonoidRing| . |SemiGroup|) T) ((|SymmetricPolynomial| . |CharacteristicNonZero|) 200384) ((|DistributedMultivariatePolynomial| . |SemiGroup|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |CancellationAbelianMonoid|) T) ((|PrimitiveArray| . |EltableAggregate|) 200356) ((|ModMonic| . |StepThrough|) 200326) ((|LiePolynomial| . |AbelianSemiGroup|) T) ((|MachineComplex| . |FullyPatternMatchable|) 200298) ((|DoubleFloatVector| . |SetCategory|) T) ((|BalancedPAdicRational| . |InnerEvalable|) 200012) ((|RomanNumeral| . |SetCategory|) T) ((|FiniteField| . |Rng|) T) ((|SplittingNode| . |CoercibleTo|) 199986) ((|Operator| . |LeftModule|) 199933) ((|RadixExpansion| . |DivisionRing|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |RetractableTo|) 199917) ((|Expression| . |RightModule|) 199779) ((|AlgebraicNumber| . |ExpressionSpace|) T) ((|LaurentPolynomial| . |CancellationAbelianMonoid|) T) ((|BinaryExpansion| . |PartialDifferentialRing|) NIL) ((|Polynomial| . |Module|) 199542) ((|DistributedMultivariatePolynomial| . |CommutativeRing|) 199395) ((|AlgebraicFunctionField| . |AbelianSemiGroup|) T) ((|HexadecimalExpansion| . |LinearlyExplicitRingOver|) 199372) ((|MultivariatePolynomial| . |Module|) 199135) ((|InnerTaylorSeries| . |SemiGroup|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |CancellationAbelianMonoid|) T) ((|FortranExpression| . |SemiGroup|) T) ((|ModMonic| . |AbelianSemiGroup|) T) ((|Octonion| . |SemiGroup|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |DivisionRing|) T) ((|HexadecimalExpansion| . |PartialDifferentialRing|) NIL) ((|IndexedExponents| . |OrderedAbelianMonoidSup|) T) ((|DifferentialSparseMultivariatePolynomial| . |PartialDifferentialRing|) 199054) ((|MyUnivariatePolynomial| . |AbelianMonoidRing|) 199015) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |FiniteAlgebraicExtensionField|) 198999) ((|NumericalODEProblem| . |SetCategory|) T) ((|DesingTree| . |SetCategory|) 198969) ((|DoubleFloatVector| . |BasicType|) T) ((|HomogeneousDirectProduct| . |LinearlyExplicitRingOver|) 198841) ((|Product| . |SetCategory|) T) ((|AlgebraicNumber| . |EntireRing|) T) ((|HexadecimalExpansion| . |Ring|) T) ((|Interval| . |OrderedSet|) T) ((|Tree| . |HomogeneousAggregate|) 198825) ((|NewSparseMultivariatePolynomial| . |CharacteristicZero|) 198788) ((|NottinghamGroup| . |CoercibleTo|) 198762) ((|SimpleAlgebraicExtension| . |FieldOfPrimeCharacteristic|) 198724) ((|InnerPrimeField| . |CommutativeRing|) T) ((|DataList| . |StreamAggregate|) 198708) ((|BinaryExpansion| . |CommutativeRing|) T) ((|UniversalSegment| . |SetCategory|) 198678) ((|UnivariatePuiseuxSeriesConstructor| . |DifferentialRing|) 198613) ((|OrdinaryDifferentialRing| . |UniqueFactorizationDomain|) 198589) ((|InnerSparseUnivariatePowerSeries| . |Module|) 198433) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |VectorSpace|) 198417) ((|SparseMultivariatePolynomial| . |RightModule|) 198174) ((|Exit| . |CoercibleTo|) 198148) ((|UnivariateLaurentSeries| . |SemiGroup|) T) ((|UnivariateTaylorSeries| . |BiModule|) 197949) ((|HomogeneousDirectProduct| . |OrderedAbelianSemiGroup|) 197873) ((|MyExpression| . |Algebra|) 197761) ((|LieSquareMatrix| . |AbelianMonoid|) T) ((|ComplexDoubleFloatVector| . |Collection|) 197722) ((|ComplexDoubleFloatMatrix| . |HomogeneousAggregate|) 197683) ((|UnivariateLaurentSeriesConstructor| . |FullyEvalableOver|) 197650) ((|DifferentialSparseMultivariatePolynomial| . |FullyRetractableTo|) 197634) ((|SingleInteger| . |CommutativeRing|) T) ((|RomanNumeral| . |Rng|) T) ((|DistributedMultivariatePolynomial| . |CoercibleTo|) 197608) ((|PartialFraction| . |PrincipalIdealDomain|) T) ((|Polynomial| . |PolynomialFactorizationExplicit|) 197558) ((|RoutinesTable| . |Evalable|) 197364) ((|DirichletRing| . |CoercibleTo|) 197338) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |RetractableTo|) 197284) ((|SequentialDifferentialPolynomial| . |Algebra|) 197047) ((|DoubleFloatVector| . |VectorCategory|) 197020) ((|DoubleFloatMatrix| . |MatrixCategory|) 196949) ((|BinarySearchTree| . |BinaryTreeCategory|) 196933) ((|Interval| . |ArcTrigonometricFunctionCategory|) T) ((|SimpleAlgebraicExtension| . |CharacteristicZero|) 196896) ((|BinaryTree| . |CoercibleTo|) 196847) ((|PolynomialRing| . |RetractableTo|) 196691) ((|TaylorSeries| . |PartialDifferentialRing|) 196669) ((|Fraction| . |GcdDomain|) T) ((|HexadecimalExpansion| . |AbelianMonoid|) T) ((|RoutinesTable| . |Dictionary|) 196602) ((|OneDimensionalArray| . |Eltable|) 196574) ((|DoubleFloat| . |OrderedAbelianGroup|) T) ((|PrimeField| . |DifferentialRing|) T) ((|AlgebraicNumber| . |IntegralDomain|) T) ((|SymmetricPolynomial| . |AbelianMonoid|) T) ((|RegularChain| . |BasicType|) T) ((|SparseUnivariatePolynomial| . |RightModule|) 196308) ((|ScriptFormulaFormat| . |CoercibleTo|) 196282) ((|DifferentialSparseMultivariatePolynomial| . |ConvertibleTo|) 195889) ((|Pi| . |CoercibleTo|) 195821) ((|InnerAlgebraicNumber| . |PrincipalIdealDomain|) T) ((|Palette| . |BasicType|) T) ((|Complex| . |OrderedSet|) 195792) ((|Polynomial| . |FiniteAbelianMonoidRing|) 195744) ((|Integer| . |SetCategory|) T) ((|PendantTree| . |HomogeneousAggregate|) 195728) ((|String| . |HomogeneousAggregate|) 195703) ((|HomogeneousDirectProduct| . |OrderedAbelianMonoidSup|) 195661) ((|DeRhamComplex| . |CancellationAbelianMonoid|) T) ((|DistributedMultivariatePolynomial| . |EntireRing|) 195547) ((|LieSquareMatrix| . |Evalable|) 195471) ((|BlowUpWithQuadTrans| . |BlowUpMethodCategory|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |AbelianSemiGroup|) T) ((|PartialFraction| . |Monoid|) T) ((|SubSpace| . |BasicType|) T) ((|RewriteRule| . |CoercibleTo|) 195445) ((|HomogeneousDirectProduct| . |Finite|) 195420) ((|SquareMatrix| . |RightModule|) 195404) ((|QueryEquation| . |CoercibleTo|) 195378) ((|Expression| . |RetractableTo|) 194882) ((|GeneralSparseTable| . |EltableAggregate|) 194861) ((|DecimalExpansion| . |OrderedAbelianMonoid|) T) ((|AlgebraGivenByStructuralConstants| . |BasicType|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |FiniteFieldCategory|) 194836) ((|XPolynomialRing| . |SemiGroup|) T) ((|HexadecimalExpansion| . |ConvertibleTo|) 194737) ((|Bits| . |EltableAggregate|) 194702) ((|UnivariateTaylorSeriesCZero| . |HyperbolicFunctionCategory|) 194651) ((|BalancedPAdicInteger| . |BiModule|) 194636) ((|ModuleOperator| . |SetCategory|) T) ((|HexadecimalExpansion| . |IntegralDomain|) T) ((|e04mbfAnnaType| . |CoercibleTo|) 194610) ((|IndexedVector| . |OneDimensionalArrayAggregate|) 194594) ((|MachineInteger| . |CommutativeRing|) T) ((|FiniteFieldExtension| . |ExtensionField|) 194578) ((|EuclideanModularRing| . |SemiGroup|) T) ((|U32Matrix| . |Evalable|) NIL) ((|FiniteFieldNormalBasis| . |AbelianSemiGroup|) T) ((|FiniteField| . |Field|) T) ((|NewSparseMultivariatePolynomial| . |SetCategory|) T) ((|HexadecimalExpansion| . |OrderedAbelianMonoid|) T) ((|FiniteFieldExtensionByPolynomial| . |AbelianMonoid|) T) ((|PartialFraction| . |Algebra|) 194519) ((|Partition| . |BasicType|) T) ((|RealClosure| . |RealClosedField|) T) ((|AlgebraicFunctionField| . |DifferentialRing|) 194471) ((|d01anfAnnaType| . |BasicType|) T) ((|List| . |StreamAggregate|) 194455) ((|IndexedFlexibleArray| . |Type|) T) ((|SquareFreeRegularTriangularSet| . |SetCategory|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |VectorSpace|) 194439) ((|SequentialDifferentialVariable| . |BasicType|) T) ((|Set| . |Aggregate|) T) ((|OrderlyDifferentialPolynomial| . |Monoid|) T) ((|ExponentialExpansion| . |EntireRing|) T) ((|FiniteField| . |Monoid|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |FullyRetractableTo|) 194385) ((|GeneralDistributedMultivariatePolynomial| . |SemiGroup|) T) ((|DecimalExpansion| . |FullyPatternMatchable|) 194362) ((|MyExpression| . |CoercibleTo|) 194336) ((|Asp20| . |FortranProgramCategory|) T) ((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| . |BasicType|) T) ((|FiniteFieldExtensionByPolynomial| . |Monoid|) T) ((|GeneralDistributedMultivariatePolynomial| . |EntireRing|) 194222) ((|Boolean| . |ConvertibleTo|) 194197) ((|PAdicRational| . |RealConstant|) NIL) ((|XDistributedPolynomial| . |Module|) 194154) ((|Integer| . |UniqueFactorizationDomain|) T) ((|UnivariateSkewPolynomial| . |CoercibleTo|) 194128) ((|AssociatedLieAlgebra| . |AbelianGroup|) T) ((|FiniteField| . |Finite|) T) ((|Quaternion| . |FullyRetractableTo|) 194112) ((|U32Vector| . |HomogeneousAggregate|) 194089) ((|IndexedString| . |LinearAggregate|) 194064) ((|NeitherSparseOrDensePowerSeries| . |LocalPowerSeriesCategory|) 194048) ((|LinearOrdinaryDifferentialOperator1| . |Ring|) T) ((|SparseMultivariatePolynomial| . |AbelianMonoid|) T) ((|SparseUnivariatePolynomialExpressions| . |BasicType|) T) ((|d01apfAnnaType| . |BasicType|) T) ((|DataList| . |HomogeneousAggregate|) 194032) ((|DifferentialSparseMultivariatePolynomial| . |OrderedSet|) 194003) ((|LaurentPolynomial| . |LeftOreRing|) 193979) ((|DoubleFloat| . |OrderedAbelianSemiGroup|) T) ((|DirectProduct| . |CommutativeRing|) 193945) ((|OrderedCompletion| . |OrderedSet|) 193915) ((|PAdicInteger| . |LeftOreRing|) T) ((|MultivariatePolynomial| . |PatternMatchable|) NIL) ((|MyExpression| . |CharacteristicZero|) 193878) ((|LinearOrdinaryDifferentialOperator1| . |CoercibleTo|) 193852) ((|RealClosure| . |CharacteristicZero|) T) ((|LinearOrdinaryDifferentialOperator1| . |BasicType|) T) ((|IndexedBits| . |Aggregate|) T) ((|EqTable| . |ConvertibleTo|) NIL) ((|Bits| . |IndexedAggregate|) 193817) ((|Cell| . |CoercibleTo|) 193791) ((|TwoDimensionalArray| . |InnerEvalable|) 193710) ((|IndexedTwoDimensionalArray| . |HomogeneousAggregate|) 193694) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |AbelianMonoid|) T) ((|SparseUnivariatePolynomialExpressions| . |Ring|) T) ((|ModuleOperator| . |BiModule|) 193646) ((|ListMonoidOps| . |BasicType|) T) ((|NonNegativeInteger| . |BasicType|) T) ((|SparseUnivariatePuiseuxSeries| . |PrincipalIdealDomain|) 193622) ((|LieSquareMatrix| . |FullyLinearlyExplicitRingOver|) 193606) ((|FreeModule1| . |LeftModule|) 193590) ((|BinaryExpansion| . |LinearlyExplicitRingOver|) 193567) ((|ComplexDoubleFloatVector| . |Type|) T) ((|U32Matrix| . |SetCategory|) T) ((|FiniteFieldCyclicGroupExtension| . |CommutativeRing|) T) ((|FiniteFieldCyclicGroup| . |Monoid|) T) ((|BalancedPAdicRational| . |Module|) 193483) ((|XDistributedPolynomial| . |XPolynomialsCat|) 193462) ((|UnivariatePuiseuxSeriesConstructor| . |AbelianSemiGroup|) T) ((|Permutation| . |BasicType|) T) ((|XPolynomial| . |BiModule|) 193441) ((|NeitherSparseOrDensePowerSeries| . |Monoid|) T) ((|PrimitiveArray| . |SetCategory|) 193378) ((|Magma| . |SetCategory|) T) ((|Integer| . |Algebra|) 193365) ((|Queue| . |Type|) T) ((|DoubleFloat| . |PrincipalIdealDomain|) T) ((|d01TransformFunctionType| . |SetCategory|) T) ((|SquareMatrix| . |CancellationAbelianMonoid|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |RightModule|) 193186) ((|Asp9| . |FortranProgramCategory|) T) ((|SparseUnivariateTaylorSeries| . |LeftModule|) 193083) ((|Heap| . |SetCategory|) 193053) ((|UnivariatePolynomial| . |DifferentialRing|) T) ((|String| . |LinearAggregate|) 193028) ((|InputForm| . |SExpressionCategory|) 192952) ((|PAdicRational| . |Rng|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |RetractableTo|) 192759) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Field|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |IntegralDomain|) T) ((|RightOpenIntervalRootCharacterization| . |BasicType|) T) ((|SparseUnivariateSkewPolynomial| . |Monoid|) T) ((|DirectProductMatrixModule| . |RetractableTo|) 192510) ((|ExponentialExpansion| . |OrderedCancellationAbelianMonoid|) NIL) ((|SparseMultivariatePolynomial| . |InnerEvalable|) 192462) ((|BalancedPAdicRational| . |FullyEvalableOver|) 192421) ((|CharacterClass| . |CoercibleTo|) 192395) ((|PAdicInteger| . |AbelianMonoid|) T) ((|SparseUnivariatePuiseuxSeries| . |PartialDifferentialRing|) 192257) ((|SquareMatrix| . |BiModule|) 192236) ((|IndexedList| . |InnerEvalable|) 192155) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |CommutativeRing|) T) ((|FortranScalarType| . |CoercibleTo|) 192129) ((|AssociationList| . |FiniteLinearAggregate|) 192071) ((|d01asfAnnaType| . |NumericalIntegrationCategory|) T) ((|UnivariateLaurentSeriesConstructor| . |FullyPatternMatchable|) 192038) ((|FortranExpression| . |LeftModule|) 192012) ((|TwoDimensionalViewport| . |CoercibleTo|) 191986) ((|ExponentialOfUnivariatePuiseuxSeries| . |AbelianMonoid|) T) ((|OnePointCompletion| . |Ring|) 191956) ((|Asp41| . |CoercibleTo|) 191930) ((|HomogeneousDirectProduct| . |DirectProductCategory|) 191909) ((|String| . |EltableAggregate|) 191872) ((|PolynomialIdeals| . |CoercibleTo|) 191846) ((|MonoidRing| . |Rng|) T) ((|NonNegativeInteger| . |OrderedSet|) T) ((|FiniteFieldNormalBasisExtension| . |CancellationAbelianMonoid|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |PrincipalIdealDomain|) T) ((|XDistributedPolynomial| . |XFreeAlgebra|) 191825) ((|AssociatedLieAlgebra| . |CoercibleTo|) 191786) ((|SparseUnivariatePolynomialExpressions| . |ArcTrigonometricFunctionCategory|) 191737) ((|d01apfAnnaType| . |NumericalIntegrationCategory|) T) ((|OppositeMonogenicLinearOperator| . |BasicType|) T) ((|SparseTable| . |Collection|) 191679) ((|NeitherSparseOrDensePowerSeries| . |UnaryRecursiveAggregate|) 191620) ((|SparseUnivariateLaurentSeries| . |OrderedRing|) NIL) ((|GeneralPolynomialSet| . |CoercibleTo|) 191572) ((|DirectProductMatrixModule| . |SemiGroup|) 191458) ((|Partition| . |SetCategory|) T) ((|MultivariatePolynomial| . |AbelianSemiGroup|) T) ((|SparseUnivariateLaurentSeries| . |RealConstant|) NIL) ((|SparseUnivariatePuiseuxSeries| . |Monoid|) T) ((|MachineInteger| . |ConvertibleTo|) 191339) ((|ModularRing| . |Monoid|) T) ((|HexadecimalExpansion| . |RetractableTo|) 191283) ((|PartialFraction| . |CoercibleTo|) 191257) ((|HomogeneousDistributedMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|SparseUnivariatePolynomialExpressions| . |SetCategory|) T) ((|Any| . |BasicType|) T) ((|DifferentialSparseMultivariatePolynomial| . |AbelianMonoidRing|) 191215) ((|PseudoAlgebraicClosureOfFiniteField| . |AbelianGroup|) T) ((|Automorphism| . |CoercibleTo|) 191189) ((|RegularChain| . |Aggregate|) T) ((|FiniteDivisor| . |AbelianMonoid|) T) ((|Heap| . |Type|) T) ((|U32Vector| . |LinearAggregate|) 191166) ((|MachineComplex| . |InnerEvalable|) NIL) ((|BalancedPAdicRational| . |AbelianGroup|) T) ((|CartesianTensor| . |GradedAlgebra|) 191127) ((|DecimalExpansion| . |Evalable|) NIL) ((|PAdicRational| . |CoercibleTo|) 191101) ((|PAdicRationalConstructor| . |LeftOreRing|) T) ((|MyExpression| . |DivisionRing|) 191068) ((|FiniteFieldCyclicGroup| . |RetractableTo|) 191037) ((|SparseMultivariateTaylorSeries| . |PartialDifferentialRing|) 191021) ((|IndexedTwoDimensionalArray| . |Aggregate|) T) ((|MonoidRing| . |BiModule|) 190973) ((|SplitHomogeneousDirectProduct| . |OrderedAbelianGroup|) 190943) ((|DifferentialSparseMultivariatePolynomial| . |DifferentialRing|) 190908) ((|SparseMultivariatePolynomial| . |Ring|) T) ((|SparseMultivariateTaylorSeries| . |RightModule|) 190741) ((|IndexedDirectProductAbelianGroup| . |CancellationAbelianMonoid|) T) ((|OrderedDirectProduct| . |OrderedRing|) 190711) ((|DirectProduct| . |Ring|) 190621) ((|MachineFloat| . |DivisionRing|) T) ((|SparseUnivariatePuiseuxSeries| . |ElementaryFunctionCategory|) 190570) ((|ExponentialOfUnivariatePuiseuxSeries| . |Module|) 190358) ((|OrderedCompletion| . |FullyRetractableTo|) 190342) ((|FiniteFieldNormalBasis| . |CoercibleTo|) 190316) ((|None| . |BasicType|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |Field|) T) ((|BinaryTournament| . |BasicType|) 190286) ((|IndexedString| . |Evalable|) NIL) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |IntegralDomain|) T) ((|PartialFraction| . |BasicType|) T) ((|Plcs| . |SetCategoryWithDegree|) T) ((|Expression| . |CombinatorialOpsCategory|) 190253) ((|MakeCachableSet| . |BasicType|) T) ((|BinaryExpansion| . |Field|) T) ((|GuessOption| . |BasicType|) T) ((|ExponentialExpansion| . |PatternMatchable|) NIL) ((|Point| . |Eltable|) 190225) ((|XPBWPolynomial| . |CoercibleTo|) 190199) ((|PseudoAlgebraicClosureOfFiniteField| . |CommutativeRing|) T) ((|ModularField| . |AbelianGroup|) T) ((|OnePointCompletion| . |SetCategory|) T) ((|LiePolynomial| . |CancellationAbelianMonoid|) T) ((|Asp49| . |CoercibleTo|) 190173) ((|PAdicRationalConstructor| . |CharacteristicZero|) 190136) ((|OrdinaryWeightedPolynomials| . |RightModule|) 190093) ((|HyperellipticFiniteDivisor| . |CancellationAbelianMonoid|) T) ((|DistributedMultivariatePolynomial| . |Evalable|) 190080) ((|Octonion| . |Monoid|) T) ((|InnerPAdicInteger| . |EuclideanDomain|) T) ((|OpenMathError| . |SetCategory|) T) ((|SparseUnivariatePolynomialExpressions| . |BiModule|) 189782) ((|NewSparseUnivariatePolynomial| . |CommutativeRing|) 189612) ((|AntiSymm| . |AbelianSemiGroup|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |ArcHyperbolicFunctionCategory|) 189561) ((|ContinuedFraction| . |IntegralDomain|) T) ((|SquareFreeRegularTriangularSet| . |Evalable|) 189485) ((|ExponentialOfUnivariatePuiseuxSeries| . |GcdDomain|) 189461) ((|LieSquareMatrix| . |CoercibleTo|) 189411) ((|DoubleFloatVector| . |Eltable|) 189372) ((|AlgebraicFunctionField| . |IntegralDomain|) T) ((|ContinuedFraction| . |Module|) 189287) ((|GeneralPolynomialSet| . |SetCategory|) T) ((|BinaryExpansion| . |Ring|) T) ((|UnivariateLaurentSeriesConstructor| . |DifferentialRing|) 189167) ((|FiniteFieldExtensionByPolynomial| . |CoercibleTo|) 189141) ((|Product| . |AbelianSemiGroup|) 188821) ((|FiniteFieldExtensionByPolynomial| . |BasicType|) T) ((|Boolean| . |BasicType|) T) ((|GeneralTriangularSet| . |Evalable|) 188745) ((|InnerPrimeField| . |CharacteristicNonZero|) T) ((|Asp10| . |FortranProgramCategory|) T) ((|SingleInteger| . |Module|) 188732) ((|LocalAlgebra| . |RightModule|) 188716) ((|FreeModule| . |BiModule|) 188695) ((|PrimitiveArray| . |Aggregate|) T) ((|FiniteFieldCyclicGroup| . |Algebra|) 188649) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |AbelianGroup|) T) ((|U16Matrix| . |BasicType|) T) ((|MyUnivariatePolynomial| . |RetractableTo|) 188459) ((|LinearOrdinaryDifferentialOperator| . |AbelianSemiGroup|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |ExtensionField|) 188443) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |Algebra|) 188397) ((|SExpression| . |CoercibleTo|) 188371) ((|NewSparseUnivariatePolynomial| . |Algebra|) 188111) ((|Multiset| . |DictionaryOperations|) 188095) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |OrderedAbelianMonoid|) T) ((|SplitHomogeneousDirectProduct| . |OrderedRing|) 188065) ((|SparseUnivariatePuiseuxSeries| . |Ring|) T) ((|FiniteFieldExtensionByPolynomial| . |Module|) 188006) ((|SparseUnivariatePuiseuxSeries| . |BasicType|) T) ((|FiniteFieldCyclicGroupExtension| . |EuclideanDomain|) T) ((|U16Vector| . |SetCategory|) T) ((|BinaryExpansion| . |CancellationAbelianMonoid|) T) ((|AssociatedJordanAlgebra| . |Monad|) T) ((|RadixExpansion| . |OrderedAbelianSemiGroup|) T) ((|ModuleOperator| . |Module|) 187963) ((|SparseMultivariateTaylorSeries| . |AbelianMonoid|) T) ((|Enumeration| . |SetCategory|) T) ((|InnerFiniteField| . |Algebra|) 187917) ((|SparseUnivariatePuiseuxSeries| . |HyperbolicFunctionCategory|) 187866) ((|InnerTable| . |DictionaryOperations|) 187808) ((|Operator| . |Ring|) T) ((|IndexedFlexibleArray| . |Collection|) 187792) ((|Asp80| . |CoercibleTo|) 187766) ((|AlgebraicNumber| . |AbelianSemiGroup|) T) ((|String| . |SetCategory|) T) ((|FiniteFieldCyclicGroup| . |BiModule|) 187645) ((|InnerAlgebraicNumber| . |IntegralDomain|) T) ((|LinearOrdinaryDifferentialOperator2| . |SemiGroup|) T) ((|FiniteFieldCyclicGroupExtension| . |VectorSpace|) 187629) ((|MonoidRing| . |CharacteristicZero|) 187592) ((|UnivariatePolynomial| . |CommutativeRing|) 187422) ((|InnerFiniteField| . |CommutativeRing|) T) ((|BasicStochasticDifferential| . |SetCategory|) T) ((|AlgebraicFunctionField| . |EntireRing|) T) ((|Complex| . |IntegralDomain|) 187291) ((|PAdicRational| . |Eltable|) 187176) ((|DoubleFloatMatrix| . |HomogeneousAggregate|) 187149) ((|SplitHomogeneousDirectProduct| . |Eltable|) 187121) ((|SparseUnivariateSkewPolynomial| . |FullyRetractableTo|) 187105) ((|ModuleOperator| . |Eltable|) 187084) ((|SplitHomogeneousDirectProduct| . |Type|) T) ((|List| . |Collection|) 187068) ((|Integer| . |LeftModule|) 187055) ((|Octonion| . |BasicType|) T) ((|TwoDimensionalArray| . |SetCategory|) 187025) ((|MachineComplex| . |RetractableTo|) 186944) ((|PAdicRationalConstructor| . |OrderedSet|) 186871) ((|SparseMultivariateTaylorSeries| . |Algebra|) 186715) ((|ComplexDoubleFloatVector| . |InnerEvalable|) NIL) ((|DoubleFloat| . |DivisionRing|) T) ((|AssociationList| . |UnaryRecursiveAggregate|) 186657) ((|XDistributedPolynomial| . |XAlgebra|) 186641) ((|AssociationList| . |ConvertibleTo|) NIL) ((|UnivariatePolynomial| . |ConvertibleTo|) NIL) ((|OrdinaryWeightedPolynomials| . |CancellationAbelianMonoid|) T) ((|InnerFiniteField| . |LeftModule|) 186562) ((|PAdicRational| . |Field|) T) ((|DecimalExpansion| . |OrderedRing|) T) ((|UnivariatePuiseuxSeriesConstructor| . |ArcHyperbolicFunctionCategory|) 186511) ((|ExponentialExpansion| . |GcdDomain|) T) ((|UniversalSegment| . |CoercibleTo|) 186462) ((|GeneralUnivariatePowerSeries| . |UnivariatePowerSeriesCategory|) 186421) ((|MachineComplex| . |ArcHyperbolicFunctionCategory|) NIL) ((|OrderedDirectProduct| . |FullyLinearlyExplicitRingOver|) 186389) ((|Quaternion| . |OrderedSet|) 186360) ((|GeneralPolynomialSet| . |PolynomialSetCategory|) 186329) ((|Result| . |DictionaryOperations|) 186262) ((|GeneralTriangularSet| . |TriangularSetCategory|) 186231) ((|IndexedVector| . |ConvertibleTo|) 186167) ((|DirectProductMatrixModule| . |OrderedAbelianSemiGroup|) 186091) ((|SparseMultivariatePolynomial| . |ConvertibleTo|) 185698) ((|Asp35| . |FortranProgramCategory|) T) ((|SparseMultivariateTaylorSeries| . |CancellationAbelianMonoid|) T) ((|SparseMultivariatePolynomial| . |BasicType|) T) ((|FiniteField| . |VectorSpace|) 185667) ((|OneDimensionalArray| . |LinearAggregate|) 185651) ((|FiniteFieldCyclicGroupExtension| . |BasicType|) T) ((|PrimitiveArray| . |CoercibleTo|) 185569) ((|List| . |OrderedSet|) 185540) ((|XPBWPolynomial| . |Module|) 185497) ((|Bits| . |Logic|) T) ((|Interval| . |Rng|) T) ((|ContinuedFraction| . |RightModule|) 185412) ((|InnerSparseUnivariatePowerSeries| . |CharacteristicZero|) 185375) ((|PAdicRationalConstructor| . |Eltable|) 185328) ((|Quaternion| . |FullyLinearlyExplicitRingOver|) 185312) ((|DirectProductModule| . |CancellationAbelianMonoid|) T) ((|Plot| . |PlottablePlaneCurveCategory|) T) ((|SparseUnivariateLaurentSeries| . |ElementaryFunctionCategory|) 185261) ((|BlowUpWithQuadTrans| . |SetCategory|) T) ((|CartesianTensor| . |SetCategory|) T) ((|SparseUnivariateLaurentSeries| . |Module|) 184976) ((|U8Vector| . |Type|) T) ((|HyperellipticFiniteDivisor| . |AbelianGroup|) T) ((|IndexedString| . |FiniteLinearAggregate|) 184951) ((|PrimeField| . |LeftOreRing|) T) ((|SplitHomogeneousDirectProduct| . |EltableAggregate|) 184923) ((|OrderedDirectProduct| . |Rng|) 184833) ((|PolynomialRing| . |Rng|) T) ((|e04mbfAnnaType| . |SetCategory|) T) ((|Set| . |Dictionary|) 184817) ((|UnivariateFormalPowerSeries| . |ArcHyperbolicFunctionCategory|) 184766) ((|DirichletRing| . |AbelianSemiGroup|) T) ((|PAdicRational| . |PatternMatchable|) NIL) ((|U32Matrix| . |TwoDimensionalArrayCategory|) 184715) ((|HomogeneousDistributedMultivariatePolynomial| . |PatternMatchable|) NIL) ((|Divisor| . |BiModule|) 184680) ((|Float| . |LeftModule|) 184634) ((|SparseUnivariatePuiseuxSeries| . |CancellationAbelianMonoid|) T) ((|RegularTriangularSet| . |BasicType|) T) ((|Heap| . |CoercibleTo|) 184585) ((|EuclideanModularRing| . |BiModule|) 184570) ((|InfinitlyClosePoint| . |SetCategory|) T) ((|InnerFiniteField| . |Finite|) T) ((|DirectProductModule| . |AbelianSemiGroup|) T) ((|ModMonic| . |Eltable|) 184473) ((|TaylorSeries| . |Rng|) T) ((|Equation| . |VectorSpace|) 184440) ((|PAdicRationalConstructor| . |Monoid|) T) ((|NottinghamGroup| . |Group|) T) ((|UnivariateLaurentSeriesConstructor| . |Eltable|) 184352) ((|FiniteFieldExtensionByPolynomial| . |ExtensionField|) 184336) ((|SparseMultivariateTaylorSeries| . |TrigonometricFunctionCategory|) 184285) ((|NewSparseUnivariatePolynomial| . |DifferentialExtension|) 184269) ((|DifferentialSparseMultivariatePolynomial| . |InnerEvalable|) 184132) ((|AttributeButtons| . |BasicType|) T) ((|FiniteFieldNormalBasis| . |BiModule|) 184011) ((|AssociatedJordanAlgebra| . |NonAssociativeRng|) T) ((|ExponentialExpansion| . |RealConstant|) NIL) ((|UnivariateLaurentSeriesConstructor| . |TranscendentalFunctionCategory|) 183960) ((|Asp78| . |FortranProgramCategory|) T) ((|MultivariatePolynomial| . |Ring|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |DivisionRing|) T) ((|FramedModule| . |CoercibleTo|) 183934) ((|UnivariatePuiseuxSeriesConstructor| . |RadicalCategory|) 183883) ((|SparseMultivariatePolynomial| . |CommutativeRing|) 183736) ((|LiePolynomial| . |RightModule|) 183720) ((|AlgebraicFunctionField| . |SemiGroup|) T) ((|RealClosure| . |BasicType|) T) ((|SparseUnivariateLaurentSeries| . |LeftModule|) 183516) ((|IndexedBits| . |FiniteLinearAggregate|) 183493) ((|SymmetricPolynomial| . |LeftModule|) 183390) ((|FiniteFieldExtensionByPolynomial| . |BiModule|) 183299) ((|Equation| . |Ring|) 183219) ((|Factored| . |Module|) 183193) ((|AssociationList| . |Dictionary|) 183135) ((|SparseUnivariateLaurentSeries| . |Rng|) T) ((|KeyedAccessFile| . |DictionaryOperations|) 183071) ((|BlowUpWithHamburgerNoether| . |CoercibleTo|) 183045) ((|Library| . |Aggregate|) T) ((|Float| . |OpenMath|) T) ((|Octonion| . |AbelianSemiGroup|) T) ((|OnePointCompletion| . |OrderedSet|) 183015) ((|Product| . |AbelianGroup|) 182948) ((|UnivariateFormalPowerSeries| . |AbelianMonoidRing|) 182909) ((|DirectProductMatrixModule| . |Aggregate|) T) ((|ProjectivePlane| . |SetCategoryWithDegree|) T) ((|IndexedFlexibleArray| . |EltableAggregate|) 182881) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |BiModule|) 182790) ((|Integer| . |AbelianGroup|) T) ((|NewSparseMultivariatePolynomial| . |RetractableTo|) 182570) ((|PAdicRational| . |LeftOreRing|) T) ((|SparseUnivariatePolynomial| . |AbelianSemiGroup|) T) ((|Asp42| . |FortranVectorFunctionCategory|) T) ((|Vector| . |InnerEvalable|) 182489) ((|Integer| . |LinearlyExplicitRingOver|) 182466) ((|AssociatedJordanAlgebra| . |AbelianMonoid|) T) ((|ContinuedFraction| . |AbelianGroup|) T) ((|U32Vector| . |SetCategory|) T) ((|Multiset| . |InnerEvalable|) 182385) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |IntegralDomain|) T) ((|AntiSymm| . |RetractableTo|) 182369) ((|InnerSparseUnivariatePowerSeries| . |SetCategory|) T) ((|Palette| . |CoercibleTo|) 182343) ((|SplitHomogeneousDirectProduct| . |AbelianSemiGroup|) 182112) ((|SplitHomogeneousDirectProduct| . |Monoid|) 181998) ((|DifferentialSparseMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 181956) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Rng|) T) ((|OrderlyDifferentialPolynomial| . |PolynomialFactorizationExplicit|) 181906) ((|PatternMatchResult| . |BasicType|) T) ((|IndexedVector| . |Eltable|) 181878) ((|ResidueRing| . |BiModule|) 181845) ((|Table| . |Type|) T) ((|BinaryFile| . |FileCategory|) 181803) ((|BinaryExpansion| . |Eltable|) NIL) ((|BalancedPAdicRational| . |DivisionRing|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |AbelianGroup|) T) ((|LinearOrdinaryDifferentialOperator| . |UnivariateSkewPolynomialCategory|) 181787) ((|UnivariatePolynomial| . |PartialDifferentialRing|) 181685) ((|SparseUnivariateLaurentSeries| . |RadicalCategory|) 181634) ((|OnePointCompletion| . |OrderedAbelianSemiGroup|) 181604) ((|SparseMultivariateTaylorSeries| . |HyperbolicFunctionCategory|) 181553) ((|Set| . |ConvertibleTo|) 181489) ((|DirectProductMatrixModule| . |BasicType|) T) ((|ModuleOperator| . |LeftModule|) 181436) ((|SparseMultivariatePolynomial| . |OrderedSet|) 181407) ((|BinaryExpansion| . |DifferentialExtension|) 181384) ((|RomanNumeral| . |CoercibleTo|) 181358) ((|InnerSparseUnivariatePowerSeries| . |Algebra|) 181202) ((|FiniteFieldNormalBasis| . |Rng|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |Algebra|) 180965) ((|FiniteFieldCyclicGroup| . |VectorSpace|) 180934) ((|InnerIndexedTwoDimensionalArray| . |SetCategory|) 180904) ((|InnerTaylorSeries| . |Monoid|) T) ((|ProjectivePlane| . |CoercibleTo|) 180878) ((|Divisor| . |RightModule|) 180855) ((|SparseUnivariatePolynomialExpressions| . |CancellationAbelianMonoid|) T) ((|d01alfAnnaType| . |NumericalIntegrationCategory|) T) ((|RealClosure| . |BiModule|) 180732) ((|InnerIndexedTwoDimensionalArray| . |InnerEvalable|) 180651) ((|IndexedTwoDimensionalArray| . |Evalable|) 180575) ((|SparseUnivariatePuiseuxSeries| . |AbelianMonoid|) T) ((|FlexibleArray| . |EltableAggregate|) 180547) ((|PAdicRational| . |Patternable|) 180514) ((|Complex| . |SetCategory|) T) ((|PAdicRational| . |ConvertibleTo|) NIL) ((|NewSparseMultivariatePolynomial| . |CoercibleTo|) 180373) ((|HashTable| . |DictionaryOperations|) 180315) ((|LiePolynomial| . |AbelianGroup|) T) ((|UnivariateLaurentSeries| . |InnerEvalable|) 179887) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |CharacteristicZero|) 179812) ((|OrderedDirectProduct| . |VectorSpace|) 179779) ((|FreeModule1| . |FreeModuleCat|) 179758) ((|RadicalFunctionField| . |MonogenicAlgebra|) 179724) ((|BalancedPAdicRational| . |Ring|) T) ((|UnivariateSkewPolynomial| . |LeftModule|) 179698) ((|DoubleFloat| . |Monoid|) T) ((|DoubleFloatVector| . |FiniteLinearAggregate|) 179671) ((|HexadecimalExpansion| . |PrincipalIdealDomain|) T) ((|Asp29| . |Type|) T) ((|SplittingTree| . |SetCategory|) T) ((|SparseUnivariateSkewPolynomial| . |SemiGroup|) T) ((|MachineComplex| . |LeftModule|) 179600) ((|SparseUnivariatePuiseuxSeries| . |RightModule|) 179382) ((|InnerSparseUnivariatePowerSeries| . |Ring|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |Module|) 179336) ((|MachineInteger| . |AbelianSemiGroup|) T) ((|EuclideanModularRing| . |AbelianGroup|) T) ((|U8Vector| . |Evalable|) NIL) ((|ExponentialExpansion| . |PrincipalIdealDomain|) T) ((|SparseUnivariatePolynomial| . |ConvertibleTo|) NIL) ((|PseudoAlgebraicClosureOfFiniteField| . |LeftModule|) 179277) ((|BalancedPAdicInteger| . |EuclideanDomain|) T) ((|SplitHomogeneousDirectProduct| . |LinearlyExplicitRingOver|) 179149) ((|MachineComplex| . |Type|) T) ((|Complex| . |AbelianMonoid|) T) ((|PlacesOverPseudoAlgebraicClosureOfFiniteField| . |BasicType|) T) ((|CliffordAlgebra| . |Rng|) T) ((|ModMonic| . |CoercibleTo|) 179123) ((|MultivariatePolynomial| . |GcdDomain|) 179041) ((|FiniteFieldNormalBasisExtension| . |CharacteristicNonZero|) 178972) ((|NewSparseUnivariatePolynomial| . |EuclideanDomain|) 178948) ((|InnerPAdicInteger| . |CharacteristicZero|) T) ((|Result| . |Evalable|) 178754) ((|AssociationList| . |InnerEvalable|) 178462) ((|SplitHomogeneousDirectProduct| . |CommutativeRing|) 178428) ((|UnivariatePolynomial| . |InnerEvalable|) 178338) ((|UnivariatePolynomial| . |EntireRing|) 178201) ((|Result| . |BagAggregate|) 178134) ((|PrimitiveArray| . |FiniteLinearAggregate|) 178118) ((|DecimalExpansion| . |DifferentialRing|) T) ((|BinaryExpansion| . |PolynomialFactorizationExplicit|) NIL) ((|CardinalNumber| . |SetCategory|) T) ((|Localize| . |AbelianSemiGroup|) T) ((|FiniteFieldNormalBasis| . |CharacteristicNonZero|) T) ((|ExponentialExpansion| . |OrderedAbelianSemiGroup|) NIL) ((|ModularField| . |AbelianMonoid|) T) ((|UnivariatePuiseuxSeriesConstructor| . |EntireRing|) 178057) ((|DeRhamComplex| . |AbelianSemiGroup|) T) ((|Bits| . |Collection|) 178034) ((|LocalAlgebra| . |CoercibleTo|) 178008) ((|IndexedDirectProductOrderedAbelianMonoid| . |OrderedAbelianSemiGroup|) T) ((|IndexedDirectProductAbelianMonoid| . |AbelianSemiGroup|) T) ((|Float| . |DivisionRing|) T) ((|OrderlyDifferentialPolynomial| . |LinearlyExplicitRingOver|) 177924) ((|AssociationList| . |CoercibleTo|) 177898) ((|UnivariateLaurentSeries| . |UnivariateLaurentSeriesConstructorCategory|) 177840) ((|XDistributedPolynomial| . |AbelianSemiGroup|) T) ((|UnivariateLaurentSeriesConstructor| . |UnivariateLaurentSeriesCategory|) 177824) ((|UnivariatePuiseuxSeries| . |UnivariatePuiseuxSeriesConstructorCategory|) 177765) ((|UnivariatePuiseuxSeriesConstructor| . |UnivariatePuiseuxSeriesCategory|) 177749) ((|U32Vector| . |Evalable|) NIL) ((|BasicFunctions| . |SetCategory|) T) ((|SparseTable| . |ConvertibleTo|) NIL) ((|Queue| . |SetCategory|) 177719) ((|XPolynomial| . |AbelianGroup|) T) ((|GeneralUnivariatePowerSeries| . |ArcHyperbolicFunctionCategory|) 177668) ((|FreeAbelianGroup| . |CoercibleTo|) 177642) ((|RegularTriangularSet| . |SetCategory|) T) ((|SparseUnivariatePolynomialExpressions| . |Monoid|) T) ((|d01anfAnnaType| . |NumericalIntegrationCategory|) T) ((|BalancedPAdicRational| . |OrderedCancellationAbelianMonoid|) NIL) ((|SquareMatrix| . |Evalable|) 177566) ((|Record| . |BasicType|) T) ((|SparseTable| . |InnerEvalable|) 177274) ((|HashTable| . |Collection|) 177216) ((|Factored| . |Eltable|) 177134) ((|RealClosure| . |AbelianGroup|) T) ((|LaurentPolynomial| . |Monoid|) T) ((|SingleInteger| . |IntegralDomain|) T) ((|UnivariateFormalPowerSeries| . |CoercibleTo|) 177108) ((|Integer| . |IntegerNumberSystem|) T) ((|PAdicInteger| . |CoercibleTo|) 177082) ((|AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| . |BasicType|) T) ((|UnivariateSkewPolynomial| . |Algebra|) 177039) ((|MyUnivariatePolynomial| . |SemiGroup|) T) ((|Fraction| . |OrderedIntegralDomain|) 176999) ((|ModuleOperator| . |AbelianMonoid|) T) ((|SparseUnivariatePuiseuxSeries| . |AbelianMonoidRing|) 176958) ((|U32Matrix| . |Aggregate|) T) ((|Multiset| . |HomogeneousAggregate|) 176942) ((|PartialFraction| . |DivisionRing|) T) ((|RadicalFunctionField| . |RetractableTo|) 176747) ((|AlgebraicFunctionField| . |DivisionRing|) T) ((|Complex| . |FieldOfPrimeCharacteristic|) 176709) ((|ContinuedFraction| . |BasicType|) T) ((|DifferentialSparseMultivariatePolynomial| . |Evalable|) 176696) ((|MachineInteger| . |Ring|) T) ((|ResidueRing| . |RightModule|) 176670) ((|RegularChain| . |InnerEvalable|) 176364) ((|UnivariatePuiseuxSeriesConstructor| . |DivisionRing|) 176340) ((|InnerPrimeField| . |Algebra|) 176294) ((|WuWenTsunTriangularSet| . |Aggregate|) T) ((|SimpleAlgebraicExtension| . |FramedAlgebra|) 176273) ((|UnivariateLaurentSeries| . |PrincipalIdealDomain|) 176249) ((|MultivariatePolynomial| . |RightModule|) 176006) ((|RadicalFunctionField| . |FieldOfPrimeCharacteristic|) NIL) ((|ComplexDoubleFloatMatrix| . |CoercibleTo|) 175980) ((|MyUnivariatePolynomial| . |LeftOreRing|) 175875) ((|XPBWPolynomial| . |Algebra|) 175832) ((|FiniteFieldCyclicGroupExtension| . |CharacteristicZero|) 175795) ((|LocalAlgebra| . |BasicType|) T) ((|PAdicRational| . |OrderedCancellationAbelianMonoid|) NIL) ((|RegularTriangularSet| . |InnerEvalable|) 175714) ((|SequentialDifferentialPolynomial| . |SemiGroup|) T) ((|SparseMultivariatePolynomial| . |LeftOreRing|) 175632) ((|StringTable| . |IndexedAggregate|) 175605) ((|LocalAlgebra| . |AbelianSemiGroup|) T) ((|MachineComplex| . |BiModule|) 175490) ((|FreeNilpotentLie| . |AbelianGroup|) T) ((|GeneralSparseTable| . |Eltable|) 175469) ((|ExponentialOfUnivariatePuiseuxSeries| . |PrincipalIdealDomain|) 175445) ((|ExponentialExpansion| . |CommutativeRing|) T) ((|ModMonic| . |FullyRetractableTo|) 175429) ((|UnivariateTaylorSeries| . |Ring|) T) ((|NeitherSparseOrDensePowerSeries| . |LinearAggregate|) 175370) ((|FiniteFieldExtensionByPolynomial| . |Ring|) T) ((|SparseMultivariatePolynomial| . |PatternMatchable|) 175149) ((|ModuleOperator| . |Rng|) T) ((|RadicalFunctionField| . |CancellationAbelianMonoid|) T) ((|PositiveInteger| . |SetCategory|) T) ((|UnivariateLaurentSeries| . |Eltable|) 174913) ((|DistributedMultivariatePolynomial| . |RightModule|) 174670) ((|SparseUnivariatePolynomial| . |EntireRing|) 174533) ((|OrderedFreeMonoid| . |SemiGroup|) T) ((|IndexedOneDimensionalArray| . |Aggregate|) T) ((|OneDimensionalArray| . |IndexedAggregate|) 174505) ((|HomogeneousDirectProduct| . |Evalable|) 174429) ((|AssociationList| . |Evalable|) 174189) ((|Localize| . |AbelianMonoid|) T) ((|d02bhfAnnaType| . |OrdinaryDifferentialEquationsSolverCategory|) T) ((|AnonymousFunction| . |BasicType|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |CoercibleTo|) 174163) ((|OrderedCompletion| . |SemiGroup|) 174133) ((|BinaryExpansion| . |GcdDomain|) T) ((|RomanNumeral| . |RetractableTo|) 174110) ((|DirectProductModule| . |SemiGroup|) 173996) ((|Queue| . |BasicType|) 173966) ((|SquareMatrix| . |BasicType|) T) ((|AlgebraicFunctionField| . |Module|) 173894) ((|BinaryExpansion| . |Module|) 173828) ((|SequentialDifferentialPolynomial| . |DifferentialPolynomialCategory|) 173688) ((|SequentialDifferentialVariable| . |DifferentialVariableCategory|) 173672) ((|HomogeneousDistributedMultivariatePolynomial| . |LeftOreRing|) 173590) ((|Dequeue| . |BagAggregate|) 173574) ((|ModMonic| . |IntegralDomain|) 173437) ((|Point| . |Collection|) 173421) ((|WeightedPolynomials| . |RightModule|) 173378) ((|UnivariateTaylorSeries| . |RightModule|) 173211) ((|DeRhamComplex| . |AbelianGroup|) T) ((|CharacterClass| . |BagAggregate|) 173186) ((|Fraction| . |AbelianMonoid|) T) ((|Octonion| . |FullyRetractableTo|) 173142) ((|String| . |OneDimensionalArrayAggregate|) 173117) ((|ExponentialExpansion| . |Rng|) T) ((|AssociatedLieAlgebra| . |BiModule|) 173096) ((|UnivariateTaylorSeriesCZero| . |IntegralDomain|) 173063) ((|UnivariatePuiseuxSeriesConstructor| . |GcdDomain|) 173039) ((|List| . |Evalable|) 172963) ((|DifferentialSparseMultivariatePolynomial| . |Rng|) T) ((|UnivariateTaylorSeries| . |AbelianSemiGroup|) T) ((|CliffordAlgebra| . |SemiGroup|) T) ((|RealClosure| . |AbelianMonoid|) T) ((|UnivariateFormalPowerSeries| . |PowerSeriesCategory|) 172898) ((|LinearOrdinaryDifferentialOperator1| . |Algebra|) 172855) ((|MonoidRing| . |Finite|) 172800) ((|MyExpression| . |AbelianSemiGroup|) T) ((|Asp24| . |FortranFunctionCategory|) T) ((|DecimalExpansion| . |SemiGroup|) T) ((|NewSparseMultivariatePolynomial| . |BiModule|) 172525) ((|UnivariateSkewPolynomial| . |Module|) 172482) ((|FortranExpression| . |RetractableTo|) 172445) ((|PseudoAlgebraicClosureOfFiniteField| . |Monoid|) T) ((|ListMultiDictionary| . |BasicType|) 172415) ((|Stream| . |IndexedAggregate|) 172387) ((|DifferentialSparseMultivariatePolynomial| . |BasicType|) T) ((|ExponentialExpansion| . |Field|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |OrderedSet|) T) ((|UnivariateLaurentSeriesConstructor| . |CharacteristicNonZero|) 172274) ((|SingleInteger| . |RetractableTo|) 172251) ((|FiniteField| . |UniqueFactorizationDomain|) T) ((|SquareFreeRegularTriangularSet| . |BasicType|) T) ((|OrderedDirectProduct| . |OrderedCancellationAbelianMonoid|) 172175) ((|LieSquareMatrix| . |AbelianGroup|) T) ((|SparseUnivariatePolynomialExpressions| . |AbelianMonoid|) T) ((|FortranCode| . |SetCategory|) T) ((|Asp31| . |Type|) T) ((|DirectProduct| . |CancellationAbelianMonoid|) 171978) ((|HexadecimalExpansion| . |Type|) T) ((|Tree| . |Evalable|) 171902) ((|OrderlyDifferentialVariable| . |CoercibleTo|) 171876) ((|GenericNonAssociativeAlgebra| . |Module|) 171832) ((|LiePolynomial| . |RetractableTo|) 171801) ((|PlacesOverPseudoAlgebraicClosureOfFiniteField| . |SetCategory|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |IntegralDomain|) T) ((|UnivariatePuiseuxSeriesConstructor| . |IntegralDomain|) 171740) ((|Places| . |BasicType|) T) ((|Operator| . |RightModule|) 171697) ((|RadixExpansion| . |LeftOreRing|) T) ((|Integer| . |Module|) 171684) ((|BinaryTournament| . |Evalable|) 171608) ((|Symbol| . |OpenMath|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |AbelianGroup|) T) ((|DecimalExpansion| . |EntireRing|) T) ((|d01alfAnnaType| . |BasicType|) T) ((|ResidueRing| . |Monoid|) T) ((|Octonion| . |FullyEvalableOver|) 171592) ((|U8Matrix| . |Aggregate|) T) ((|UnivariateFormalPowerSeries| . |AbelianGroup|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |UniqueFactorizationDomain|) T) ((|Octonion| . |AbelianGroup|) T) ((|XPolynomialRing| . |Rng|) T) ((|SequentialDifferentialPolynomial| . |BiModule|) 171317) ((|Polynomial| . |CharacteristicNonZero|) 171277) ((|FiniteFieldNormalBasis| . |BasicType|) T) ((|Float| . |CharacteristicZero|) T) ((|AssociatedLieAlgebra| . |BasicType|) T) ((|ModuleOperator| . |CoercibleTo|) 171251) ((|BasicStochasticDifferential| . |CoercibleTo|) 171225) ((|NonNegativeInteger| . |AbelianSemiGroup|) T) ((|MachineInteger| . |BasicType|) T) ((|SingleInteger| . |EuclideanDomain|) T) ((|Interval| . |AbelianMonoid|) T) ((|ContinuedFraction| . |Rng|) T) ((|PartialFraction| . |AbelianMonoid|) T) ((|WuWenTsunTriangularSet| . |SetCategory|) T) ((|Bits| . |BasicType|) T) ((|PrimeField| . |FieldOfPrimeCharacteristic|) T) ((|UnivariateTaylorSeriesCZero| . |UnivariateTaylorSeriesCategory|) 171209) ((|MyUnivariatePolynomial| . |EuclideanDomain|) 171185) ((|Asp74| . |FortranProgramCategory|) T) ((|HexadecimalExpansion| . |Monoid|) T) ((|SingleInteger| . |CoercibleTo|) 171159) ((|DirichletRing| . |AbelianMonoid|) T) ((|InnerPrimeField| . |CancellationAbelianMonoid|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |RetractableTo|) 171052) ((|SequentialDifferentialPolynomial| . |OrderedSet|) 171023) ((|Matrix| . |BasicType|) 170993) ((|Equation| . |AbelianGroup|) 170827) ((|AlgebraicNumber| . |LeftModule|) 170781) ((|MachineFloat| . |ConvertibleTo|) 170706) ((|Complex| . |AbelianSemiGroup|) T) ((|FiniteFieldNormalBasisExtension| . |DivisionRing|) T) ((|DecimalExpansion| . |CancellationAbelianMonoid|) T) ((|OppositeMonogenicLinearOperator| . |Ring|) T) ((|BalancedPAdicRational| . |RetractableTo|) 170665) ((|NewSparseUnivariatePolynomial| . |LeftModule|) 170562) ((|Asp12| . |CoercibleTo|) 170536) ((|Equation| . |PartialDifferentialRing|) 170468) ((|GeneralUnivariatePowerSeries| . |CharacteristicZero|) 170431) ((|NumericalPDEProblem| . |CoercibleTo|) 170405) ((|Fraction| . |BasicType|) T) ((|XDistributedPolynomial| . |SemiGroup|) T) ((|OnePointCompletion| . |CoercibleTo|) 170379) ((|Equation| . |AbelianMonoid|) 170213) ((|ContinuedFraction| . |CoercibleTo|) 170187) ((|DirectProductMatrixModule| . |CommutativeRing|) 170153) ((|Pi| . |AbelianGroup|) T) ((|SequentialDifferentialPolynomial| . |BasicType|) T) ((|Library| . |BasicType|) T) ((|DoubleFloat| . |OrderedSet|) T) ((|DataList| . |Eltable|) 170125) ((|UnivariateTaylorSeries| . |Eltable|) 170110) ((|List| . |LinearAggregate|) 170094) ((|UnivariatePuiseuxSeries| . |Module|) 169882) ((|SimpleAlgebraicExtension| . |PartialDifferentialRing|) 169785) ((|SparseUnivariatePolynomialExpressions| . |PrincipalIdealDomain|) 169761) ((|SparseMultivariateTaylorSeries| . |BasicType|) T) ((|UnivariateLaurentSeriesConstructor| . |StepThrough|) 169702) ((|PseudoAlgebraicClosureOfFiniteField| . |DifferentialRing|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |PseudoAlgebraicClosureOfPerfectFieldCategory|) T) ((|RadixExpansion| . |GcdDomain|) T) ((|UnivariateLaurentSeriesConstructor| . |AbelianMonoid|) T) ((|DistributedMultivariatePolynomial| . |RetractableTo|) 169509) ((|IndexedOneDimensionalArray| . |FiniteLinearAggregate|) 169493) ((|PseudoAlgebraicClosureOfFiniteField| . |RightModule|) 169434) ((|SingleInteger| . |AbelianMonoid|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Algebra|) 169388) ((|ExponentialExpansion| . |LeftModule|) 169260) ((|PAdicRationalConstructor| . |CommutativeRing|) T) ((|SparseUnivariateLaurentSeries| . |RetractableTo|) 169201) ((|TaylorSeries| . |LeftModule|) 169098) ((|Character| . |OrderedFinite|) T) ((|BalancedPAdicRational| . |RightModule|) 169014) ((|DirichletRing| . |Module|) 168934) ((|Complex| . |RetractableTo|) 168778) ((|GenericNonAssociativeAlgebra| . |BasicType|) T) ((|SplitHomogeneousDirectProduct| . |LeftModule|) 168592) ((|ComplexDoubleFloatVector| . |LinearAggregate|) 168553) ((|SimpleAlgebraicExtension| . |FiniteRankAlgebra|) 168532) ((|GenericNonAssociativeAlgebra| . |FramedNonAssociativeAlgebra|) 168488) ((|HashTable| . |BagAggregate|) 168430) ((|FiniteFieldExtension| . |AbelianMonoid|) T) ((|NeitherSparseOrDensePowerSeries| . |InnerEvalable|) 168212) ((|Expression| . |TrigonometricFunctionCategory|) 168179) ((|WuWenTsunTriangularSet| . |TriangularSetCategory|) 168148) ((|GeneralTriangularSet| . |Type|) T) ((|DataList| . |ListAggregate|) 168132) ((|FiniteDivisor| . |AbelianSemiGroup|) T) ((|RealClosure| . |OrderedRing|) T) ((|RadicalFunctionField| . |Algebra|) 168060) ((|XDistributedPolynomial| . |LeftModule|) 168034) ((|IndexedExponents| . |BasicType|) T) ((|ListMonoidOps| . |CoercibleTo|) 168008) ((|DecimalExpansion| . |OrderedSet|) T) ((|InnerPAdicInteger| . |EntireRing|) T) ((|UnivariateLaurentSeries| . |FullyLinearlyExplicitRingOver|) 167938) ((|RealClosure| . |Module|) 167859) ((|Queue| . |BagAggregate|) 167843) ((|NewSparseMultivariatePolynomial| . |LeftModule|) 167740) ((|FiniteFieldCyclicGroupExtension| . |RetractableTo|) 167724) ((|NewSparseUnivariatePolynomial| . |AbelianGroup|) T) ((|SplitHomogeneousDirectProduct| . |Ring|) 167634) ((|DoubleFloat| . |Field|) T) ((|FiniteFieldExtensionByPolynomial| . |Finite|) 167609) ((|MachineComplex| . |TranscendentalFunctionCategory|) NIL) ((|UnivariatePuiseuxSeriesConstructor| . |SetCategory|) T) ((|UnivariateLaurentSeriesConstructor| . |SetCategory|) T) ((|Vector| . |Eltable|) 167581) ((|OrdinaryDifferentialRing| . |LeftOreRing|) 167557) ((|IntegerMod| . |AbelianGroup|) T) ((|Float| . |Monoid|) T) ((|MachineComplex| . |PartialDifferentialRing|) NIL) ((|SequentialDifferentialPolynomial| . |Ring|) T) ((|OrderlyDifferentialPolynomial| . |CancellationAbelianMonoid|) T) ((|EqTable| . |SetCategory|) T) ((|SimpleAlgebraicExtension| . |Rng|) T) ((|Exit| . |SetCategory|) T) ((|FourierSeries| . |Algebra|) 167541) ((|GeneralUnivariatePowerSeries| . |LeftOreRing|) 167517) ((|UnivariatePuiseuxSeries| . |AbelianSemiGroup|) T) ((|Float| . |RightModule|) 167471) ((|AttributeButtons| . |SetCategory|) T) ((|UnivariatePolynomial| . |EuclideanDomain|) 167447) ((|OrderlyDifferentialPolynomial| . |DifferentialExtension|) 167431) ((|SparseUnivariateSkewPolynomial| . |BasicType|) T) ((|SequentialDifferentialPolynomial| . |CancellationAbelianMonoid|) T) ((|SparseMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 167415) ((|OnePointCompletion| . |Rng|) 167385) ((|ModMonic| . |PartialDifferentialRing|) 167283) ((|ResidueRing| . |Algebra|) 167267) ((|Interval| . |RightModule|) 167254) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |SemiGroup|) T) ((|OpenMathEncoding| . |BasicType|) T) ((|HyperellipticFiniteDivisor| . |CoercibleTo|) 167228) ((|StringTable| . |BagAggregate|) 167164) ((|InnerTaylorSeries| . |EntireRing|) 167131) ((|GeneralUnivariatePowerSeries| . |DivisionRing|) 167107) ((|PseudoAlgebraicClosureOfFiniteField| . |Ring|) T) ((|CliffordAlgebra| . |AbelianGroup|) T) ((|PartialFraction| . |AbelianSemiGroup|) T) ((|U8Matrix| . |TwoDimensionalArrayCategory|) 167058) ((|DifferentialSparseMultivariatePolynomial| . |LeftOreRing|) 166976) ((|Float| . |PrincipalIdealDomain|) T) ((|Float| . |GcdDomain|) T) ((|Asp8| . |Type|) T) ((|Set| . |Collection|) 166960) ((|CardinalNumber| . |OrderedSet|) T) ((|IntegerMod| . |BasicType|) T) ((|GeneralModulePolynomial| . |AbelianSemiGroup|) T) ((|PAdicRational| . |CharacteristicNonZero|) NIL) ((|OppositeMonogenicLinearOperator| . |DifferentialRing|) 166925) ((|MachineFloat| . |CharacteristicZero|) T) ((|IndexedOneDimensionalArray| . |LinearAggregate|) 166909) ((|Dequeue| . |SetCategory|) 166879) ((|FiniteFieldCyclicGroupExtension| . |PrincipalIdealDomain|) T) ((|FiniteFieldExtension| . |AbelianGroup|) T) ((|NeitherSparseOrDensePowerSeries| . |DivisionRing|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |SetCategory|) T) ((|UnivariatePuiseuxSeries| . |EuclideanDomain|) 166855) ((|d02cjfAnnaType| . |BasicType|) T) ((|IndexedVector| . |Type|) T) ((|MachineFloat| . |SemiGroup|) T) ((|e04mbfAnnaType| . |BasicType|) T) ((|BinaryExpansion| . |RetractableTo|) 166799) ((|Asp20| . |CoercibleTo|) 166773) ((|PendantTree| . |RecursiveAggregate|) 166757) ((|DenavitHartenbergMatrix| . |TwoDimensionalArrayCategory|) 166709) ((|NeitherSparseOrDensePowerSeries| . |LazyStreamAggregate|) 166650) ((|Product| . |OrderedCancellationAbelianMonoid|) 166561) ((|DoubleFloatMatrix| . |Aggregate|) T) ((|SparseTable| . |BagAggregate|) 166503) ((|GeneralTriangularSet| . |Aggregate|) T) ((|BalancedPAdicRational| . |CancellationAbelianMonoid|) T) ((|Interval| . |LeftOreRing|) T) ((|Table| . |CoercibleTo|) 166477) ((|AffineSpace| . |SetCategory|) T) ((|MonoidRing| . |Ring|) T) ((|AffinePlane| . |CoercibleTo|) 166451) ((|U32Matrix| . |MatrixCategory|) 166400) ((|GeneralSparseTable| . |InnerEvalable|) 166108) ((|SparseUnivariateLaurentSeries| . |CharacteristicNonZero|) 165952) ((|NewSparseUnivariatePolynomial| . |PrincipalIdealDomain|) 165928) ((|UnivariatePuiseuxSeries| . |CancellationAbelianMonoid|) T) ((|DirectProductMatrixModule| . |InnerEvalable|) 165847) ((|GenericNonAssociativeAlgebra| . |SetCategory|) T) ((|TwoDimensionalArray| . |Evalable|) 165771) ((|FiniteFieldExtension| . |Module|) 165712) ((|SparseMultivariatePolynomial| . |Module|) 165475) ((|HashTable| . |Dictionary|) 165417) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |SetCategory|) T) ((|ExponentialExpansion| . |IntegralDomain|) T) ((|UnivariateTaylorSeries| . |PowerSeriesCategory|) 165352) ((|PrimeField| . |RetractableTo|) 165339) ((|SimpleAlgebraicExtension| . |StepThrough|) 165301) ((|Result| . |EltableAggregate|) 165271) ((|RomanNumeral| . |StepThrough|) T) ((|Partition| . |ConvertibleTo|) 165239) ((|XRecursivePolynomial| . |SemiGroup|) T) ((|Expression| . |LinearlyExplicitRingOver|) 165111) ((|OrdinaryDifferentialRing| . |DivisionRing|) 165087) ((|EuclideanModularRing| . |SetCategory|) T) ((|StringTable| . |Collection|) 165023) ((|PolynomialRing| . |CharacteristicZero|) 164986) ((|UnivariateTaylorSeriesCZero| . |PowerSeriesCategory|) 164921) ((|Pi| . |RightModule|) 164875) ((|DecimalExpansion| . |Algebra|) 164809) ((|Segment| . |CoercibleTo|) 164760) ((|InnerFiniteField| . |Monoid|) T) ((|AssociationList| . |StreamAggregate|) 164702) ((|Complex| . |Evalable|) 164661) ((|SimpleAlgebraicExtension| . |FiniteFieldCategory|) 164623) ((|U32Vector| . |BasicType|) T) ((|SquareMatrix| . |Module|) 164530) ((|PAdicRationalConstructor| . |CoercibleTo|) 164504) ((|DoubleFloat| . |OrderedCancellationAbelianMonoid|) T) ((|SimpleFortranProgram| . |Type|) T) ((|Expression| . |UniqueFactorizationDomain|) 164471) ((|RectangularMatrix| . |CoercibleTo|) 164421) ((|SparseMultivariatePolynomial| . |SetCategory|) T) ((|AssociatedJordanAlgebra| . |AbelianSemiGroup|) T) ((|AlgebraicFunctionField| . |DifferentialExtension|) 164392) ((|Complex| . |PartialDifferentialRing|) 164324) ((|MachineComplex| . |DifferentialRing|) NIL) ((|Expression| . |CommutativeRing|) 164291) ((|RadixExpansion| . |RightModule|) 164225) ((|InnerTaylorSeries| . |BiModule|) 164184) ((|SparseUnivariateTaylorSeries| . |Algebra|) 164028) ((|MachineInteger| . |RealConstant|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |VectorSpace|) 164012) ((|LaurentPolynomial| . |PartialDifferentialRing|) 163944) ((|DistributedMultivariatePolynomial| . |IntegralDomain|) 163830) ((|AssociationList| . |IndexedAggregate|) 163742) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |IndexedDirectProductCategory|) 163721) ((|LaurentPolynomial| . |AbelianGroup|) T) ((|QuasiAlgebraicSet| . |BasicType|) T) ((|UnivariateFormalPowerSeries| . |HyperbolicFunctionCategory|) 163670) ((|AlgebraicFunctionField| . |RetractableTo|) 163475) ((|NewSparseMultivariatePolynomial| . |LinearlyExplicitRingOver|) 163391) ((|Reference| . |BasicType|) 163361) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |LeftOreRing|) T) ((|UnivariateLaurentSeriesConstructor| . |Field|) 163337) ((|RadicalFunctionField| . |AbelianGroup|) T) ((|SplitHomogeneousDirectProduct| . |OrderedAbelianMonoid|) 163261) ((|PseudoAlgebraicClosureOfRationalNumber| . |SemiGroup|) T) ((|IntegrationResult| . |LeftModule|) 163225) ((|Dequeue| . |CoercibleTo|) 163176) ((|ExponentialExpansion| . |PolynomialFactorizationExplicit|) NIL) ((|BalancedPAdicInteger| . |AbelianMonoid|) T) ((|DirichletRing| . |Algebra|) 163096) ((|IndexCard| . |CoercibleTo|) 163070) ((|GenericNonAssociativeAlgebra| . |CancellationAbelianMonoid|) T) ((|InnerFiniteField| . |FiniteFieldCategory|) T) ((|InnerPAdicInteger| . |PAdicIntegerCategory|) 163054) ((|DecimalExpansion| . |DivisionRing|) T) ((|InnerFreeAbelianMonoid| . |FreeAbelianMonoidCategory|) 163033) ((|SparseUnivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|Quaternion| . |BasicType|) T) ((|DoubleFloat| . |ConvertibleTo|) 162936) ((|UnivariateTaylorSeries| . |DifferentialRing|) 162873) ((|UnivariateFormalPowerSeries| . |Ring|) T) ((|Pattern| . |CoercibleTo|) 162847) ((|AlgebraicNumber| . |RightModule|) 162801) ((|UnivariateLaurentSeries| . |PowerSeriesCategory|) 162747) ((|NeitherSparseOrDensePowerSeries| . |CancellationAbelianMonoid|) T) ((|Pi| . |CancellationAbelianMonoid|) T) ((|FiniteFieldNormalBasisExtension| . |GcdDomain|) T) ((|SparseMultivariateTaylorSeries| . |PowerSeriesCategory|) 162700) ((|UnivariateFormalPowerSeries| . |AbelianSemiGroup|) T) ((|UnivariatePuiseuxSeries| . |CoercibleTo|) 162674) ((|PAdicRationalConstructor| . |FullyEvalableOver|) 162658) ((|PlaneAlgebraicCurvePlot| . |CoercibleTo|) 162632) ((|InnerPAdicInteger| . |AbelianSemiGroup|) T) ((|FreeNilpotentLie| . |AbelianSemiGroup|) T) ((|HomogeneousDirectProduct| . |InnerEvalable|) 162551) ((|Asp20| . |Type|) T) ((|HexadecimalExpansion| . |BiModule|) 162446) ((|EqTable| . |TableAggregate|) 162425) ((|PAdicInteger| . |GcdDomain|) T) ((|RadicalFunctionField| . |SemiGroup|) T) ((|Factored| . |DifferentialExtension|) 162409) ((|PrimitiveArray| . |IndexedAggregate|) 162381) ((|List| . |HomogeneousAggregate|) 162365) ((|ExponentialOfUnivariatePuiseuxSeries| . |SemiGroup|) T) ((|UnivariatePuiseuxSeriesConstructor| . |EuclideanDomain|) 162341) ((|PAdicRationalConstructor| . |CancellationAbelianMonoid|) T) ((|SparseUnivariateLaurentSeries| . |SemiGroup|) T) ((|StochasticDifferential| . |Rng|) T) ((|Quaternion| . |DivisionRing|) 162317) ((|PAdicRationalConstructor| . |OrderedIntegralDomain|) 162277) ((|OrderedVariableList| . |ConvertibleTo|) 162171) ((|XPolynomialRing| . |SetCategory|) T) ((|InnerAlgebraicNumber| . |UniqueFactorizationDomain|) T) ((|InnerFreeAbelianMonoid| . |CoercibleTo|) 162145) ((|SparseUnivariatePolynomialExpressions| . |Eltable|) 162048) ((|DifferentialSparseMultivariatePolynomial| . |PolynomialCategory|) 162001) ((|Integer| . |Rng|) T) ((|MonoidRing| . |SetCategory|) T) ((|DoubleFloat| . |EntireRing|) T) ((|StochasticDifferential| . |Module|) 161970) ((|UnivariatePolynomial| . |FiniteAbelianMonoidRing|) 161931) ((|Asp50| . |FortranProgramCategory|) T) ((|DirectProductMatrixModule| . |Rng|) 161841) ((|EuclideanModularRing| . |LeftModule|) 161828) ((|BasicOperator| . |CoercibleTo|) 161802) ((|PseudoAlgebraicClosureOfFiniteField| . |StepThrough|) T) ((|SequentialDifferentialPolynomial| . |AbelianGroup|) T) ((|UnivariatePuiseuxSeries| . |ArcHyperbolicFunctionCategory|) 161751) ((|Set| . |FiniteSetAggregate|) 161735) ((|FiniteFieldExtension| . |Finite|) 161710) ((|Localize| . |CancellationAbelianMonoid|) T) ((|NewSparseUnivariatePolynomial| . |BiModule|) 161412) ((|GenericNonAssociativeAlgebra| . |NonAssociativeAlgebra|) 161368) ((|Point| . |Type|) T) ((|RoutinesTable| . |Type|) T) ((|MachineInteger| . |Monoid|) T) ((|Pi| . |RetractableTo|) 161312) ((|SubSpaceComponentProperty| . |CoercibleTo|) 161286) ((|OpenMathErrorKind| . |CoercibleTo|) 161260) ((|HomogeneousDistributedMultivariatePolynomial| . |PolynomialCategory|) 161152) ((|NeitherSparseOrDensePowerSeries| . |PartialDifferentialRing|) 161027) ((|LinearOrdinaryDifferentialOperator1| . |RetractableTo|) 160871) ((|LaurentPolynomial| . |BiModule|) 160856) ((|DifferentialSparseMultivariatePolynomial| . |CharacteristicNonZero|) 160816) ((|MultivariatePolynomial| . |LinearlyExplicitRingOver|) 160732) ((|FiniteFieldExtensionByPolynomial| . |AbelianGroup|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |UniqueFactorizationDomain|) T) ((|Expression| . |PrincipalIdealDomain|) 160699) ((|ThreeDimensionalMatrix| . |HomogeneousAggregate|) 160683) ((|FiniteFieldNormalBasis| . |FiniteFieldCategory|) T) ((|ExtAlgBasis| . |BasicType|) T) ((|TextFile| . |CoercibleTo|) 160657) ((|GeneralModulePolynomial| . |BiModule|) 160618) ((|MonoidRing| . |Module|) 160575) ((|IndexedOneDimensionalArray| . |InnerEvalable|) 160494) ((|AlgebraicNumber| . |SetCategory|) T) ((|IndexedDirectProductAbelianGroup| . |CoercibleTo|) 160468) ((|MyExpression| . |IntegralDomain|) T) ((|AlgebraGivenByStructuralConstants| . |RightModule|) 160452) ((|FiniteFieldCyclicGroupExtension| . |LeftOreRing|) T) ((|FiniteField| . |CharacteristicZero|) 160418) ((|SimpleAlgebraicExtension| . |Ring|) T) ((|BalancedPAdicRational| . |CharacteristicNonZero|) NIL) ((|DenavitHartenbergMatrix| . |HomogeneousAggregate|) 160402) ((|XRecursivePolynomial| . |Algebra|) 160359) ((|DirectProductMatrixModule| . |OrderedCancellationAbelianMonoid|) 160283) ((|Localize| . |OrderedSet|) 160245) ((|ModuleOperator| . |AbelianSemiGroup|) T) ((|ThreeDimensionalMatrix| . |Aggregate|) T) ((|SymbolTable| . |CoercibleTo|) 160219) ((|Asp8| . |CoercibleTo|) 160193) ((|UnivariateLaurentSeriesConstructor| . |Algebra|) 159951) ((|InnerPrimeField| . |LeftModule|) 159905) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |RetractableTo|) 159889) ((|MachineComplex| . |DifferentialExtension|) 159861) ((|Set| . |Finite|) 159836) ((|InnerFiniteField| . |EntireRing|) T) ((|SparseUnivariatePolynomial| . |GcdDomain|) 159731) ((|RealClosure| . |LeftModule|) 159652) ((|Bits| . |OneDimensionalArrayAggregate|) 159629) ((|IndexedVector| . |LinearAggregate|) 159613) ((|ModMonic| . |Finite|) 159588) ((|DoubleFloat| . |SpecialFunctionCategory|) T) ((|DirectProductModule| . |OrderedAbelianGroup|) 159558) ((|LaurentPolynomial| . |GcdDomain|) 159534) ((|Fraction| . |Field|) T) ((|InfinitlyClosePoint| . |BasicType|) T) ((|MyExpression| . |SetCategory|) T) ((|LinearOrdinaryDifferentialOperator2| . |Algebra|) 159491) ((|IndexedBits| . |Eltable|) 159456) ((|SparseUnivariatePolynomialExpressions| . |RightModule|) 159190) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |CharacteristicZero|) 159153) ((|DoubleFloat| . |ArcTrigonometricFunctionCategory|) T) ((|Ruleset| . |Eltable|) 159132) ((|BinaryTree| . |RecursiveAggregate|) 159116) ((|Factored| . |BiModule|) 159083) ((|U8Vector| . |OneDimensionalArrayAggregate|) 159060) ((|AlgebraicFunctionField| . |StepThrough|) NIL) ((|SetOfMIntegersInOneToN| . |Finite|) T) ((|DirectProductMatrixModule| . |DirectProductCategory|) 159039) ((|FiniteField| . |SemiGroup|) T) ((|RomanNumeral| . |LeftModule|) 159026) ((|XPBWPolynomial| . |BasicType|) T) ((|Asp80| . |FortranProgramCategory|) T) ((|UnivariatePolynomial| . |AbelianSemiGroup|) T) ((|GeneralPolynomialSet| . |Aggregate|) T) ((|UnivariateLaurentSeries| . |DifferentialExtension|) 158956) ((|FiniteFieldCyclicGroup| . |EuclideanDomain|) T) ((|DirectProductModule| . |Aggregate|) T) ((|Polynomial| . |LinearlyExplicitRingOver|) 158872) ((|InnerTaylorSeries| . |Algebra|) 158833) ((|InnerPrimeField| . |AbelianSemiGroup|) T) ((|BlowUpWithHamburgerNoether| . |BasicType|) T) ((|MachineComplex| . |FullyLinearlyExplicitRingOver|) 158805) ((|InnerTable| . |Type|) T) ((|SparseUnivariatePuiseuxSeries| . |EuclideanDomain|) 158781) ((|UnivariateTaylorSeries| . |UnivariatePowerSeriesCategory|) 158742) ((|TaylorSeries| . |PowerSeriesCategory|) 158683) ((|ExponentialOfUnivariatePuiseuxSeries| . |OrderedSet|) T) ((|LyndonWord| . |CoercibleTo|) 158657) ((|Set| . |BasicType|) T) ((|XPolynomial| . |Monoid|) T) ((|FreeNilpotentLie| . |BasicType|) T) ((|IndexedString| . |StringAggregate|) T) ((|IndexedList| . |ListAggregate|) 158641) ((|RightOpenIntervalRootCharacterization| . |SetCategory|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |SetCategory|) T) ((|IndexedOneDimensionalArray| . |OneDimensionalArrayAggregate|) 158625) ((|Localize| . |AbelianGroup|) T) ((|HomogeneousDirectProduct| . |DifferentialRing|) 158562) ((|NeitherSparseOrDensePowerSeries| . |EltableAggregate|) 158491) ((|SparseTable| . |HomogeneousAggregate|) 158420) ((|UnivariatePuiseuxSeries| . |SetCategory|) T) ((|SparseMultivariatePolynomial| . |GcdDomain|) 158338) ((|SparseMultivariateTaylorSeries| . |Rng|) T) ((|DoubleFloat| . |OrderedRing|) T) ((|DifferentialSparseMultivariatePolynomial| . |DifferentialPolynomialCategory|) 158286) ((|SparseMultivariatePolynomial| . |PolynomialCategory|) 158239) ((|U32Matrix| . |HomogeneousAggregate|) 158216) ((|FiniteField| . |EntireRing|) T) ((|ContinuedFraction| . |SemiGroup|) T) ((|DecimalExpansion| . |Ring|) T) ((|d03fafAnnaType| . |SetCategory|) T) ((|U32Vector| . |Type|) T) ((|PAdicRational| . |BasicType|) T) ((|DecimalExpansion| . |RightModule|) 158150) ((|Expression| . |ExpressionSpace|) T) ((|ThreeDimensionalViewport| . |BasicType|) T) ((|OrdinaryDifferentialRing| . |Field|) 158126) ((|SimpleAlgebraicExtension| . |Monoid|) T) ((|e04jafAnnaType| . |CoercibleTo|) 158100) ((|WeightedPolynomials| . |SemiGroup|) T) ((|LinearOrdinaryDifferentialOperator| . |SetCategory|) T) ((|RomanNumeral| . |LinearlyExplicitRingOver|) 158077) ((|PseudoAlgebraicClosureOfRationalNumber| . |BiModule|) 158004) ((|ModuleMonomial| . |CoercibleTo|) 157978) ((|UnivariatePuiseuxSeriesConstructor| . |Eltable|) 157963) ((|FiniteFieldNormalBasisExtension| . |IntegralDomain|) T) ((|IntegerMod| . |CancellationAbelianMonoid|) T) ((|Color| . |SetCategory|) T) ((|GraphImage| . |CoercibleTo|) 157937) ((|Quaternion| . |ConvertibleTo|) 157873) ((|UnivariatePuiseuxSeries| . |BasicType|) T) ((|d01amfAnnaType| . |CoercibleTo|) 157847) ((|FiniteFieldNormalBasisExtension| . |ExtensionField|) 157831) ((|FiniteFieldNormalBasis| . |Field|) T) ((|AlgebraicNumber| . |Algebra|) 157785) ((|UnivariateTaylorSeriesCZero| . |Rng|) T) ((|WeightedPolynomials| . |CancellationAbelianMonoid|) T) ((|PositiveInteger| . |Monoid|) T) ((|GeneralSparseTable| . |DictionaryOperations|) 157727) ((|InnerTable| . |BasicType|) T) ((|BinaryExpansion| . |UniqueFactorizationDomain|) T) ((|OneDimensionalArray| . |ConvertibleTo|) 157663) ((|PAdicRationalConstructor| . |LinearlyExplicitRingOver|) 157579) ((|IndexedOneDimensionalArray| . |Collection|) 157563) ((|DirichletRing| . |BiModule|) 157476) ((|InnerPrimeField| . |IntegralDomain|) T) ((|FiniteFieldCyclicGroupExtension| . |Ring|) T) ((|SingletonAsOrderedSet| . |BasicType|) T) ((|AlgebraicFunctionField| . |Monoid|) T) ((|NonNegativeInteger| . |OrderedAbelianMonoidSup|) T) ((|Expression| . |Ring|) 157308) ((|OrderedFreeMonoid| . |RetractableTo|) 157292) ((|String| . |ConvertibleTo|) NIL) ((|FiniteFieldExtensionByPolynomial| . |EuclideanDomain|) T) ((|MultivariatePolynomial| . |ConvertibleTo|) 157070) ((|ModularField| . |CoercibleTo|) 157044) ((|DirichletRing| . |IntegralDomain|) 157010) ((|Pi| . |SetCategory|) T) ((|MonoidRing| . |Algebra|) 156967) ((|RadixExpansion| . |CoercibleTo|) 156941) ((|Factored| . |AbelianMonoid|) T) ((|ResidueRing| . |Rng|) T) ((|UnivariatePuiseuxSeries| . |Ring|) T) ((|SparseMultivariatePolynomial| . |IntegralDomain|) 156827) ((|Asp28| . |FortranMatrixCategory|) T) ((|DirichletRing| . |SetCategory|) T) ((|SquareFreeRegularTriangularSet| . |Collection|) 156811) ((|FiniteFieldNormalBasis| . |RightModule|) 156737) ((|StochasticDifferential| . |RightModule|) 156706) ((|FiniteFieldCyclicGroupExtension| . |CancellationAbelianMonoid|) T) ((|CliffordAlgebra| . |Module|) 156690) ((|TaylorSeries| . |Algebra|) 156534) ((|OrdinaryWeightedPolynomials| . |LeftModule|) 156481) ((|Boolean| . |Logic|) T) ((|Fraction| . |UniqueFactorizationDomain|) T) ((|List| . |EltableAggregate|) 156453) ((|FortranProgram| . |CoercibleTo|) 156427) ((|LiePolynomial| . |SetCategory|) T) ((|IndexedList| . |ExtensibleLinearAggregate|) 156411) ((|FiniteFieldNormalBasisExtension| . |PrincipalIdealDomain|) T) ((|XRecursivePolynomial| . |AbelianGroup|) T) ((|U16Matrix| . |MatrixCategory|) 156360) ((|IndexedOneDimensionalArray| . |Evalable|) 156284) ((|FiniteFieldCyclicGroup| . |BasicType|) T) ((|LinearOrdinaryDifferentialOperator| . |RetractableTo|) 156128) ((|AlgebraicNumber| . |PrincipalIdealDomain|) T) ((|DirectProductModule| . |Finite|) 156103) ((|HexadecimalExpansion| . |AbelianGroup|) T) ((|UnivariateLaurentSeriesConstructor| . |TrigonometricFunctionCategory|) 156052) ((|Asp27| . |FortranProgramCategory|) T) ((|InnerAlgebraicNumber| . |Algebra|) 156006) ((|d02cjfAnnaType| . |CoercibleTo|) 155980) ((|FlexibleArray| . |CoercibleTo|) 155898) ((|PseudoAlgebraicClosureOfFiniteField| . |CancellationAbelianMonoid|) T) ((|U8Matrix| . |SetCategory|) T) ((|Integer| . |OrderedAbelianMonoid|) T) ((|Fraction| . |QuotientFieldCategory|) 155882) ((|UnivariatePuiseuxSeries| . |TrigonometricFunctionCategory|) 155831) ((|InnerPrimeField| . |FiniteFieldCategory|) T) ((|d03eefAnnaType| . |SetCategory|) T) ((|HexadecimalExpansion| . |OrderedRing|) T) ((|Complex| . |Field|) 155765) ((|InnerFiniteField| . |ExtensionField|) 155729) ((|Fraction| . |Algebra|) 155670) ((|RomanNumeral| . |BasicType|) T) ((|BinaryExpansion| . |FullyEvalableOver|) 155647) ((|InfClsPt| . |CoercibleTo|) 155621) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |CancellationAbelianMonoid|) T) ((|OrdinaryDifferentialRing| . |Algebra|) 155541) ((|Asp9| . |CoercibleTo|) 155515) ((|LiePolynomial| . |FreeLieAlgebra|) 155494) ((|XPolynomial| . |XFreeAlgebra|) 155467) ((|GeneralDistributedMultivariatePolynomial| . |CharacteristicZero|) 155430) ((|ModMonic| . |UniqueFactorizationDomain|) 155380) ((|SquareMatrix| . |PartialDifferentialRing|) 155312) ((|ExponentialExpansion| . |EuclideanDomain|) T) ((|BinaryExpansion| . |AbelianSemiGroup|) T) ((|SquareMatrix| . |LinearlyExplicitRingOver|) 155228) ((|SparseMultivariateTaylorSeries| . |Evalable|) 155215) ((|GeneralPolynomialSet| . |Type|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |Rng|) T) ((|SquareMatrix| . |InnerEvalable|) 155134) ((|AffinePlane| . |SetCategoryWithDegree|) T) ((|UnivariateLaurentSeriesConstructor| . |CoercibleTo|) 155108) ((|OrdinaryDifferentialRing| . |CancellationAbelianMonoid|) T) ((|UnivariateTaylorSeriesCZero| . |AbelianSemiGroup|) T) ((|StringTable| . |Dictionary|) 155044) ((|Set| . |InnerEvalable|) 154963) ((|Quaternion| . |Monoid|) T) ((|ModularField| . |LeftModule|) 154917) ((|List| . |OpenMath|) 154890) ((|MachineComplex| . |StepThrough|) NIL) ((|InnerIndexedTwoDimensionalArray| . |Type|) T) ((|MyExpression| . |Module|) 154778) ((|SparseUnivariatePolynomialExpressions| . |PatternMatchable|) NIL) ((|IndexCard| . |SetCategory|) T) ((|RadixExpansion| . |EntireRing|) T) ((|StringTable| . |KeyedDictionary|) 154751) ((|Result| . |Aggregate|) T) ((|NeitherSparseOrDensePowerSeries| . |AbelianGroup|) T) ((|Factored| . |Ring|) T) ((|SequentialDifferentialPolynomial| . |DifferentialExtension|) 154735) ((|MachineFloat| . |IntegralDomain|) T) ((|DirectProductModule| . |LeftModule|) 154536) ((|GeneralModulePolynomial| . |RightModule|) 154507) ((|Table| . |Eltable|) 154486) ((|PAdicRational| . |BiModule|) 154361) ((|InnerAlgebraicNumber| . |CommutativeRing|) T) ((|OrdinaryWeightedPolynomials| . |Module|) 154318) ((|CharacterClass| . |BasicType|) T) ((|List| . |ConvertibleTo|) 154254) ((|AlgebraicFunctionField| . |LinearlyExplicitRingOver|) 154144) ((|OpenMathEncoding| . |CoercibleTo|) 154118) ((|ModularField| . |CancellationAbelianMonoid|) T) ((|Matrix| . |HomogeneousAggregate|) 154102) ((|ModMonic| . |CancellationAbelianMonoid|) T) ((|HexadecimalExpansion| . |DifferentialRing|) T) ((|UnivariateLaurentSeries| . |IntegralDomain|) 154041) ((|SparseUnivariateTaylorSeries| . |AbelianSemiGroup|) T) ((|AlgebraicNumber| . |AbelianGroup|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |CoercibleTo|) 154015) ((|List| . |Eltable|) 153987) ((|Tuple| . |SetCategory|) 153957) ((|MultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|Permutation| . |OrderedSet|) 153899) ((|Library| . |Eltable|) 153869) ((|ExponentialExpansion| . |LeftOreRing|) T) ((|NewSparseUnivariatePolynomial| . |PolynomialFactorizationExplicit|) 153819) ((|NewSparseUnivariatePolynomial| . |Ring|) T) ((|PrimeField| . |UniqueFactorizationDomain|) T) ((|PendantTree| . |Evalable|) 153743) ((|InnerFiniteField| . |BiModule|) 153612) ((|InnerAlgebraicNumber| . |Monoid|) T) ((|SparseUnivariateLaurentSeries| . |IntegralDomain|) 153551) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |FiniteAbelianMonoidRing|) 153441) ((|GeneralDistributedMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |AbelianMonoid|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |CoercibleTo|) 153415) ((|FreeModule| . |SetCategory|) T) ((|RomanNumeral| . |SemiGroup|) T) ((|PolynomialRing| . |Module|) 153259) ((|KeyedAccessFile| . |Collection|) 153195) ((|StringTable| . |Eltable|) 153168) ((|TaylorSeries| . |Module|) 153012) ((|PartialFraction| . |CancellationAbelianMonoid|) T) ((|LocalAlgebra| . |AbelianGroup|) T) ((|PrimeField| . |AbelianSemiGroup|) T) ((|RealClosure| . |CommutativeRing|) T) ((|SequentialDifferentialPolynomial| . |CharacteristicZero|) 152975) ((|Quaternion| . |EntireRing|) 152918) ((|IndexedOneDimensionalArray| . |IndexedAggregate|) 152890) ((|OneDimensionalArray| . |Aggregate|) T) ((|UnivariateLaurentSeries| . |Type|) 152866) ((|FlexibleArray| . |SetCategory|) 152803) ((|XDistributedPolynomial| . |AbelianGroup|) T) ((|MyExpression| . |PatternMatchable|) 152684) ((|MachineFloat| . |RadicalCategory|) T) ((|EuclideanModularRing| . |Module|) 152671) ((|ExponentialOfUnivariatePuiseuxSeries| . |PartialDifferentialRing|) 152533) ((|UnivariateFormalPowerSeries| . |RadicalCategory|) 152482) ((|UnivariatePuiseuxSeriesConstructor| . |RightModule|) 152264) ((|PAdicRational| . |DifferentialExtension|) 152231) ((|DataList| . |CoercibleTo|) 152149) ((|BinaryExpansion| . |QuotientFieldCategory|) 152126) ((|DirectProductModule| . |AbelianGroup|) T) ((|SparseMultivariatePolynomial| . |Monoid|) T) ((|QuasiAlgebraicSet| . |CoercibleTo|) 152100) ((|GeneralDistributedMultivariatePolynomial| . |LinearlyExplicitRingOver|) 152016) ((|MachineComplex| . |Monoid|) T) ((|NeitherSparseOrDensePowerSeries| . |ConvertibleTo|) NIL) ((|FiniteFieldNormalBasisExtension| . |UniqueFactorizationDomain|) T) ((|FiniteFieldExtension| . |SetCategory|) T) ((|SymmetricPolynomial| . |AbelianMonoidRing|) 151986) ((|ExponentialExpansion| . |CharacteristicZero|) 151880) ((|Set| . |CoercibleTo|) 151854) ((|CardinalNumber| . |SemiGroup|) T) ((|GeneralUnivariatePowerSeries| . |GcdDomain|) 151830) ((|ElementaryFunctionsUnivariatePuiseuxSeries| . |PartialTranscendentalFunctions|) 151814) ((|SparseUnivariatePolynomialExpressions| . |ConvertibleTo|) NIL) ((|LinearOrdinaryDifferentialOperator2| . |UnivariateSkewPolynomialCategory|) 151798) ((|Integer| . |CoercibleTo|) 151772) ((|Point| . |BasicType|) 151709) ((|Tuple| . |BasicType|) 151679) ((|FiniteField| . |Algebra|) 151633) ((|FiniteFieldNormalBasis| . |GcdDomain|) T) ((|BinarySearchTree| . |HomogeneousAggregate|) 151617) ((|IndexedBits| . |IndexedAggregate|) 151582) ((|Bits| . |Aggregate|) T) ((|SimpleAlgebraicExtension| . |LeftModule|) 151464) ((|RadixExpansion| . |CharacteristicNonZero|) NIL) ((|GeneralDistributedMultivariatePolynomial| . |LeftModule|) 151361) ((|Library| . |Dictionary|) 151294) ((|DataList| . |BasicType|) 151231) ((|FiniteFieldExtensionByPolynomial| . |GcdDomain|) T) ((|MyUnivariatePolynomial| . |CoercibleTo|) 151205) ((|HexadecimalExpansion| . |RightModule|) 151139) ((|Asp42| . |CoercibleTo|) 151113) ((|Asp24| . |CoercibleTo|) 151087) ((|ExponentialOfUnivariatePuiseuxSeries| . |ElementaryFunctionCategory|) 151036) ((|RoutinesTable| . |ConvertibleTo|) NIL) ((|FiniteFieldCyclicGroupExtension| . |AbelianMonoid|) T) ((|SparseUnivariatePuiseuxSeries| . |RadicalCategory|) 150985) ((|LiePolynomial| . |Module|) 150969) ((|ModMonic| . |LeftOreRing|) 150864) ((|SingletonAsOrderedSet| . |SetCategory|) T) ((|U32Matrix| . |CoercibleTo|) 150838) ((|InnerPrimeField| . |AbelianGroup|) T) ((|Expression| . |PatternMatchable|) 150719) ((|RealClosure| . |PrincipalIdealDomain|) T) ((|IntegrationResult| . |Module|) 150683) ((|Asp4| . |FortranProgramCategory|) T) ((|UnivariatePolynomial| . |SemiGroup|) T) ((|RoutinesTable| . |BasicType|) T) ((|Library| . |ConvertibleTo|) NIL) ((|BlowUpWithQuadTrans| . |CoercibleTo|) 150657) ((|RegularChain| . |HomogeneousAggregate|) 150576) ((|LieSquareMatrix| . |CancellationAbelianMonoid|) T) ((|InnerIndexedTwoDimensionalArray| . |CoercibleTo|) 150527) ((|FiniteFieldExtension| . |CoercibleTo|) 150501) ((|HomogeneousDistributedMultivariatePolynomial| . |LeftModule|) 150398) ((|UnivariateTaylorSeries| . |ArcHyperbolicFunctionCategory|) 150347) ((|Pi| . |Monoid|) T) ((|DoubleFloatMatrix| . |CoercibleTo|) 150321) ((|LaurentPolynomial| . |Ring|) T) ((|Boolean| . |Finite|) T) ((|MyExpression| . |RightModule|) 150209) ((|Complex| . |LinearlyExplicitRingOver|) 150125) ((|RealClosure| . |Monoid|) T) ((|StochasticDifferential| . |AbelianGroup|) T) ((|RadixExpansion| . |Evalable|) NIL) ((|PAdicRational| . |InnerEvalable|) 149895) ((|MultivariatePolynomial| . |PolynomialCategory|) 149800) ((|TaylorSeries| . |MultivariateTaylorSeriesCategory|) 149773) ((|d01akfAnnaType| . |SetCategory|) T) ((|RadixExpansion| . |Type|) T) ((|GeneralDistributedMultivariatePolynomial| . |SetCategory|) T) ((|ContinuedFraction| . |EuclideanDomain|) T) ((|BasicStochasticDifferential| . |OrderedSet|) T) ((|DirectProduct| . |EltableAggregate|) 149745) ((|ModularRing| . |BasicType|) T) ((|Fraction| . |Ring|) T) ((|InnerFreeAbelianMonoid| . |AbelianMonoid|) T) ((|GeneralModulePolynomial| . |AbelianGroup|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |Eltable|) 149730) ((|LinearOrdinaryDifferentialOperator2| . |CoercibleTo|) 149704) ((|BalancedPAdicRational| . |FullyLinearlyExplicitRingOver|) 149663) ((|GeneralModulePolynomial| . |SetCategory|) T) ((|FortranExpression| . |ExpressionSpace|) T) ((|Expression| . |IntegralDomain|) 149630) ((|SparseUnivariateTaylorSeries| . |ArcHyperbolicFunctionCategory|) 149579) ((|Any| . |SetCategory|) T) ((|FiniteField| . |LeftModule|) 149505) ((|MachineFloat| . |OrderedAbelianMonoid|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |EuclideanDomain|) T) ((|InnerTaylorSeries| . |AbelianGroup|) T) ((|Interval| . |TrigonometricFunctionCategory|) T) ((|LocalAlgebra| . |CancellationAbelianMonoid|) T) ((|RegularTriangularSet| . |CoercibleTo|) 149457) ((|BinaryExpansion| . |CharacteristicZero|) T) ((|OnePointCompletion| . |AbelianGroup|) 149392) ((|FiniteField| . |IntegralDomain|) T) ((|OrderlyDifferentialVariable| . |OrderedSet|) T) ((|RuleCalled| . |CoercibleTo|) 149366) ((|LinearOrdinaryDifferentialOperator| . |Monoid|) T) ((|FiniteFieldNormalBasisExtension| . |StepThrough|) 149341) ((|MachineComplex| . |LeftOreRing|) T) ((|HashTable| . |InnerEvalable|) 149049) ((|InnerSparseUnivariatePowerSeries| . |Eltable|) 149034) ((|MultivariatePolynomial| . |PolynomialFactorizationExplicit|) 148984) ((|ModMonic| . |EntireRing|) 148847) ((|SparseUnivariateLaurentSeries| . |LinearlyExplicitRingOver|) 148771) ((|StochasticDifferential| . |LeftModule|) 148740) ((|UnivariateTaylorSeriesCZero| . |SetCategory|) T) ((|BalancedPAdicRational| . |PatternMatchable|) NIL) ((|MyExpression| . |Monoid|) T) ((|AntiSymm| . |SemiGroup|) T) ((|FiniteFieldNormalBasis| . |LeftOreRing|) T) ((|HexadecimalExpansion| . |CharacteristicNonZero|) NIL) ((|Heap| . |HomogeneousAggregate|) 148724) ((|FiniteFieldCyclicGroupExtension| . |SetCategory|) T) ((|MakeCachableSet| . |OrderedSet|) T) ((|FreeGroup| . |SemiGroup|) T) ((|FreeAbelianGroup| . |AbelianSemiGroup|) T) ((|Complex| . |PatternMatchable|) 148605) ((|Point| . |Evalable|) 148529) ((|SingleInteger| . |IntegerNumberSystem|) T) ((|NeitherSparseOrDensePowerSeries| . |LeftOreRing|) T) ((|d01gbfAnnaType| . |NumericalIntegrationCategory|) T) ((|CharacterClass| . |Evalable|) NIL) ((|UnivariateLaurentSeries| . |Module|) 148250) ((|UnivariatePuiseuxSeries| . |DifferentialRing|) 148185) ((|UnivariatePuiseuxSeries| . |RetractableTo|) 148081) ((|GeneralUnivariatePowerSeries| . |AbelianGroup|) T) ((|Kernel| . |OrderedSet|) T) ((|SimpleAlgebraicExtension| . |DivisionRing|) 148015) ((|KeyedAccessFile| . |BasicType|) T) ((|MachineFloat| . |BiModule|) 147942) ((|ArrayStack| . |StackAggregate|) 147926) ((|InnerPrimeField| . |Finite|) T) ((|NeitherSparseOrDensePowerSeries| . |Field|) T) ((|DifferentialSparseMultivariatePolynomial| . |Monoid|) T) ((|Vector| . |HomogeneousAggregate|) 147910) ((|Vector| . |IndexedAggregate|) 147882) ((|DecimalExpansion| . |OrderedAbelianSemiGroup|) T) ((|UnivariatePolynomial| . |StepThrough|) 147852) ((|InnerAlgebraicNumber| . |DifferentialRing|) T) ((|FortranType| . |CoercibleTo|) 147826) ((|ComplexDoubleFloatVector| . |EltableAggregate|) 147775) ((|IndexedVector| . |Aggregate|) T) ((|InnerAlgebraicNumber| . |Ring|) T) ((|NewSparseMultivariatePolynomial| . |PartialDifferentialRing|) 147759) ((|InfClsPt| . |SetCategory|) T) ((|CharacterClass| . |InnerEvalable|) NIL) ((|InnerTaylorSeries| . |LeftModule|) 147746) ((|DirectProductMatrixModule| . |AbelianSemiGroup|) T) ((|LaurentPolynomial| . |Rng|) T) ((|FreeNilpotentLie| . |CoercibleTo|) 147720) ((|OneDimensionalArray| . |Evalable|) 147644) ((|SparseMultivariateTaylorSeries| . |EntireRing|) 147611) ((|UnivariatePolynomial| . |Evalable|) 147598) ((|FreeNilpotentLie| . |RightModule|) 147582) ((|Fraction| . |PatternMatchable|) 147463) ((|PAdicRational| . |IntegralDomain|) T) ((|InnerPAdicInteger| . |CoercibleTo|) 147437) ((|CliffordAlgebra| . |Ring|) T) ((|Equation| . |BasicType|) 147134) ((|LieSquareMatrix| . |Ring|) T) ((|PrimeField| . |ExtensionField|) 147121) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |CharacteristicNonZero|) 147052) ((|DirectProductModule| . |CoercibleTo|) 147002) ((|Float| . |UniqueFactorizationDomain|) T) ((|SplitHomogeneousDirectProduct| . |Aggregate|) T) ((|Asp6| . |Type|) T) ((|e04jafAnnaType| . |SetCategory|) T) ((|SparseUnivariatePolynomial| . |CommutativeRing|) 146832) ((|InfiniteTuple| . |CoercibleTo|) 146806) ((|Fraction| . |OrderedCancellationAbelianMonoid|) 146766) ((|AssociatedJordanAlgebra| . |Module|) 146750) ((|MachineComplex| . |ArcTrigonometricFunctionCategory|) NIL) ((|BinaryExpansion| . |PrincipalIdealDomain|) T) ((|UnivariateLaurentSeriesConstructor| . |OrderedAbelianGroup|) 146681) ((|Equation| . |LeftModule|) 146505) ((|InnerTable| . |BagAggregate|) 146447) ((|SingleInteger| . |OrderedAbelianSemiGroup|) T) ((|LinearOrdinaryDifferentialOperator2| . |RightModule|) 146431) ((|UnivariatePolynomial| . |Ring|) T) ((|UnivariateTaylorSeriesCZero| . |EntireRing|) 146398) ((|AssociatedJordanAlgebra| . |SetCategory|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Module|) 146339) ((|DoubleFloatMatrix| . |InnerEvalable|) NIL) ((|Commutator| . |SetCategory|) T) ((|InnerPrimeField| . |CharacteristicZero|) 146305) ((|FiniteFieldCyclicGroupExtension| . |DifferentialRing|) 146280) ((|PoincareBirkhoffWittLyndonBasis| . |RetractableTo|) 146249) ((|FiniteFieldCyclicGroupExtension| . |AbelianSemiGroup|) T) ((|Factored| . |Evalable|) 146176) ((|Asp30| . |CoercibleTo|) 146150) ((|Divisor| . |BasicType|) T) ((|XDistributedPolynomial| . |Ring|) T) ((|UnivariateFormalPowerSeries| . |Module|) 145994) ((|FreeMonoid| . |CoercibleTo|) 145968) ((|UnivariatePuiseuxSeries| . |AbelianGroup|) T) ((|DecimalExpansion| . |CommutativeRing|) T) ((|SparseUnivariatePolynomialExpressions| . |HyperbolicFunctionCategory|) 145919) ((|UniversalSegment| . |Type|) T) ((|AlgebraGivenByStructuralConstants| . |CancellationAbelianMonoid|) T) ((|LinearOrdinaryDifferentialOperator| . |LeftModule|) 145893) ((|OrderlyDifferentialPolynomial| . |CommutativeRing|) 145746) ((|BalancedPAdicRational| . |CharacteristicZero|) T) ((|MyUnivariatePolynomial| . |SetCategory|) T) ((|ModularField| . |BiModule|) 145673) ((|LieSquareMatrix| . |AbelianSemiGroup|) T) ((|LinearOrdinaryDifferentialOperator| . |Module|) 145630) ((|BinaryTournament| . |SetCategory|) 145600) ((|HexadecimalExpansion| . |OrderedCancellationAbelianMonoid|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |GcdDomain|) T) ((|InnerPAdicInteger| . |SemiGroup|) T) ((|Pi| . |LeftOreRing|) T) ((|SymmetricPolynomial| . |Module|) 145444) ((|String| . |Eltable|) 145407) ((|OrderedCompletion| . |CancellationAbelianMonoid|) 145342) ((|MachineInteger| . |CoercibleTo|) 145316) ((|HomogeneousDirectProduct| . |EltableAggregate|) 145288) ((|ExponentialOfUnivariatePuiseuxSeries| . |Algebra|) 145076) ((|PAdicRationalConstructor| . |IntegralDomain|) T) ((|HexadecimalExpansion| . |Patternable|) 145053) ((|MachineComplex| . |PolynomialFactorizationExplicit|) NIL) ((|Polynomial| . |AbelianMonoid|) T) ((|PolynomialRing| . |AbelianMonoidRing|) 145032) ((|Complex| . |Rng|) T) ((|Quaternion| . |InnerEvalable|) 144921) ((|ExtAlgBasis| . |SetCategory|) T) ((|ExponentialExpansion| . |CharacteristicNonZero|) 144812) ((|BasicOperator| . |OrderedSet|) T) ((|SequentialDifferentialPolynomial| . |AbelianMonoidRing|) 144729) ((|FiniteFieldExtensionByPolynomial| . |CharacteristicNonZero|) 144660) ((|BinaryExpansion| . |EntireRing|) T) ((|NewSparseUnivariatePolynomial| . |EntireRing|) 144523) ((|Polynomial| . |Algebra|) 144286) ((|LiePolynomial| . |LieAlgebra|) 144270) ((|XPolynomial| . |XAlgebra|) 144254) ((|DoubleFloatVector| . |CoercibleTo|) 144228) ((|AlgebraicFunctionField| . |SetCategory|) T) ((|ModMonic| . |ConvertibleTo|) NIL) ((|ScriptFormulaFormat| . |BasicType|) T) ((|Fraction| . |Type|) T) ((|RegularTriangularSet| . |Collection|) 144212) ((|FortranTemplate| . |SetCategory|) T) ((|GeneralUnivariatePowerSeries| . |Eltable|) 144197) ((|SplitHomogeneousDirectProduct| . |Finite|) 144172) ((|AlgebraicFunctionField| . |MonogenicAlgebra|) 144138) ((|Switch| . |CoercibleTo|) 144112) ((|HexadecimalExpansion| . |FullyPatternMatchable|) 144089) ((|LieSquareMatrix| . |SemiGroup|) T) ((|UnivariatePuiseuxSeriesConstructor| . |SemiGroup|) T) ((|LinearOrdinaryDifferentialOperator2| . |Rng|) T) ((|OnePointCompletion| . |OrderedCancellationAbelianMonoid|) 144059) ((|SimpleAlgebraicExtension| . |LeftOreRing|) 143993) ((|Stream| . |Evalable|) 143917) ((|ExponentialExpansion| . |CoercibleTo|) 143891) ((|RadicalFunctionField| . |DifferentialExtension|) 143862) ((|NeitherSparseOrDensePowerSeries| . |CharacteristicNonZero|) 143822) ((|SingleInteger| . |AbelianGroup|) T) ((|UnivariatePuiseuxSeriesConstructor| . |Monoid|) T) ((|d03eefAnnaType| . |PartialDifferentialEquationsSolverCategory|) T) ((|RadixExpansion| . |Ring|) T) ((|UnivariateSkewPolynomial| . |Monoid|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |BasicType|) T) ((|RadixExpansion| . |AbelianGroup|) T) ((|FiniteFieldNormalBasis| . |VectorSpace|) 143791) ((|KeyedAccessFile| . |CoercibleTo|) 143765) ((|Dequeue| . |HomogeneousAggregate|) 143749) ((|BalancedPAdicInteger| . |CancellationAbelianMonoid|) T) ((|MachineInteger| . |OrderedSet|) T) ((|SparseUnivariatePolynomial| . |LinearlyExplicitRingOver|) 143665) ((|Asp78| . |Type|) T) ((|BalancedPAdicInteger| . |BasicType|) T) ((|IndexedString| . |Eltable|) 143628) ((|Polynomial| . |LeftModule|) 143525) ((|PartialFraction| . |Rng|) T) ((|RomanNumeral| . |PatternMatchable|) 143502) ((|Float| . |OrderedSet|) T) ((|GeneralDistributedMultivariatePolynomial| . |CharacteristicNonZero|) 143462) ((|Expression| . |Monoid|) 143244) ((|Stream| . |Eltable|) 143216) ((|AlgebraicFunctionField| . |Finite|) NIL) ((|UnivariateFormalPowerSeries| . |Monoid|) T) ((|FiniteFieldNormalBasis| . |AbelianGroup|) T) ((|CliffordAlgebra| . |SetCategory|) T) ((|FiniteFieldNormalBasis| . |DivisionRing|) T) ((|NottinghamGroup| . |BasicType|) T) ((|Complex| . |FiniteRankAlgebra|) 143164) ((|SparseUnivariatePolynomialExpressions| . |DifferentialExtension|) 143148) ((|NeitherSparseOrDensePowerSeries| . |Ring|) T) ((|OrderedDirectProduct| . |Finite|) 143123) ((|Float| . |DifferentialRing|) T) ((|Octonion| . |Evalable|) 143082) ((|ModularField| . |SetCategory|) T) ((|GeneralUnivariatePowerSeries| . |UniqueFactorizationDomain|) 143058) ((|FortranTemplate| . |CoercibleTo|) 143032) ((|Multiset| . |CoercibleTo|) 143006) ((|Octonion| . |CharacteristicZero|) 142969) ((|OrderedDirectProduct| . |OrderedAbelianSemiGroup|) 142893) ((|DirectProduct| . |AbelianSemiGroup|) 142662) ((|ComplexDoubleFloatVector| . |CoercibleTo|) 142636) ((|ModMonic| . |Rng|) T) ((|RoutinesTable| . |BagAggregate|) 142569) ((|FortranCode| . |BasicType|) T) ((|SparseTable| . |Aggregate|) T) ((|UnivariateLaurentSeriesConstructor| . |OrderedSet|) 142438) ((|PositiveInteger| . |OrderedSet|) T) ((|UnivariateTaylorSeriesCZero| . |Eltable|) 142423) ((|InnerFreeAbelianMonoid| . |SetCategory|) T) ((|OrderlyDifferentialPolynomial| . |CoercibleTo|) 142397) ((|GeneralDistributedMultivariatePolynomial| . |Evalable|) 142384) ((|PendantTree| . |Aggregate|) T) ((|ListMultiDictionary| . |Type|) T) ((|SimpleAlgebraicExtension| . |SemiGroup|) T) ((|SparseMultivariatePolynomial| . |Algebra|) 142147) ((|Queue| . |HomogeneousAggregate|) 142131) ((|Polynomial| . |SemiGroup|) T) ((|XDistributedPolynomial| . |BiModule|) 142110) ((|PAdicRationalConstructor| . |ConvertibleTo|) 141798) ((|Expression| . |CharacteristicZero|) 141761) ((|Partition| . |AbelianMonoid|) T) ((|DirichletRing| . |BasicType|) T) ((|Fraction| . |AbelianGroup|) T) ((|U8Matrix| . |InnerEvalable|) NIL) ((|MachineInteger| . |CharacteristicZero|) T) ((|BinaryExpansion| . |RightModule|) 141695) ((|SparseUnivariateLaurentSeries| . |AbelianMonoidRing|) 141667) ((|MachineInteger| . |AbelianGroup|) T) ((|PAdicRational| . |OrderedAbelianSemiGroup|) NIL) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |CoercibleTo|) 141641) ((|e04jafAnnaType| . |BasicType|) T) ((|MachineFloat| . |CoercibleTo|) 141615) ((|SimpleAlgebraicExtension| . |CoercibleTo|) 141589) ((|RomanNumeral| . |PrincipalIdealDomain|) T) ((|d02cjfAnnaType| . |OrdinaryDifferentialEquationsSolverCategory|) T) ((|Boolean| . |CoercibleTo|) 141563) ((|EqTable| . |DictionaryOperations|) 141505) ((|U16Vector| . |Aggregate|) T) ((|FortranExpression| . |RightModule|) 141489) ((|Union| . |BasicType|) T) ((|GuessOptionFunctions0| . |BasicType|) T) ((|Polynomial| . |Evalable|) 141476) ((|RadixExpansion| . |QuotientFieldCategory|) 141453) ((|NonNegativeInteger| . |CoercibleTo|) 141427) ((|IndexedMatrix| . |BasicType|) 141397) ((|ExponentialExpansion| . |Module|) 141269) ((|SExpression| . |BasicType|) T) ((|PrimeField| . |AbelianMonoid|) T) ((|RealClosure| . |RightModule|) 141190) ((|Fraction| . |EuclideanDomain|) T) ((|AlgebraGivenByStructuralConstants| . |FiniteRankNonAssociativeAlgebra|) 141174) ((|FortranType| . |SetCategory|) T) ((|RadixExpansion| . |LinearlyExplicitRingOver|) 141151) ((|Integer| . |OrderedAbelianSemiGroup|) T) ((|UnivariateFormalPowerSeries| . |LeftModule|) 141048) ((|NewSparseMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 141032) ((|LinearOrdinaryDifferentialOperator1| . |UnivariateSkewPolynomialCategory|) 141016) ((|RomanNumeral| . |OrderedRing|) T) ((|MakeCachableSet| . |CachableSet|) T) ((|MyExpression| . |FullyRetractableTo|) 141000) ((|AssociatedLieAlgebra| . |Module|) 140984) ((|AlgebraGivenByStructuralConstants| . |CoercibleTo|) 140958) ((|InnerFiniteField| . |FieldOfPrimeCharacteristic|) T) ((|Bits| . |InnerEvalable|) NIL) ((|UnivariatePuiseuxSeriesConstructor| . |ElementaryFunctionCategory|) 140907) ((|CartesianTensor| . |GradedModule|) 140825) ((|SparseUnivariateLaurentSeries| . |PowerSeriesCategory|) 140771) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |LeftOreRing|) T) ((|AssociatedLieAlgebra| . |AbelianSemiGroup|) T) ((|SimpleAlgebraicExtension| . |FullyLinearlyExplicitRingOver|) 140755) ((|SparseMultivariateTaylorSeries| . |CoercibleTo|) 140729) ((|BalancedPAdicRational| . |OrderedIntegralDomain|) NIL) ((|SparseUnivariatePolynomialExpressions| . |AbelianMonoidRing|) 140690) ((|InnerFiniteField| . |EuclideanDomain|) T) ((|RectangularMatrix| . |SetCategory|) T) ((|SparseMultivariateTaylorSeries| . |CommutativeRing|) 140619) ((|Plcs| . |SetCategory|) T) ((|InnerSparseUnivariatePowerSeries| . |RightModule|) 140452) ((|Asp27| . |CoercibleTo|) 140426) ((|SparseUnivariatePolynomial| . |FullyRetractableTo|) 140410) ((|InnerPrimeField| . |Field|) T) ((|HomogeneousDirectProduct| . |Monoid|) 140296) ((|NeitherSparseOrDensePowerSeries| . |Evalable|) 140126) ((|List| . |ListAggregate|) 140110) ((|Expression| . |LeftModule|) 139837) ((|Set| . |SetAggregate|) 139821) ((|Multiset| . |MultisetAggregate|) 139805) ((|Table| . |TableAggregate|) 139784) ((|AssociationList| . |AssociationListAggregate|) 139763) ((|String| . |StringAggregate|) T) ((|Stream| . |StreamAggregate|) 139747) ((|OneDimensionalArray| . |OneDimensionalArrayAggregate|) 139731) ((|Stack| . |StackAggregate|) 139715) ((|Queue| . |QueueAggregate|) 139699) ((|IndexedDirectProductAbelianMonoid| . |CoercibleTo|) 139673) ((|FiniteFieldNormalBasisExtension| . |Algebra|) 139627) ((|Dequeue| . |DequeueAggregate|) 139611) ((|IndexedDirectProductAbelianMonoid| . |BasicType|) T) ((|LieSquareMatrix| . |Type|) T) ((|IntegerMod| . |Ring|) T) ((|OrderedDirectProduct| . |OrderedAbelianGroup|) 139581) ((|DirectProduct| . |AbelianGroup|) 139468) ((|BinaryExpansion| . |CharacteristicNonZero|) NIL) ((|DirectProduct| . |Finite|) 139443) ((|SparseTable| . |IndexedAggregate|) 139422) ((|HomogeneousDistributedMultivariatePolynomial| . |RightModule|) 139179) ((|ResidueRing| . |BasicType|) T) ((|InnerSparseUnivariatePowerSeries| . |SemiGroup|) T) ((|XPolynomial| . |Algebra|) 139136) ((|InnerSparseUnivariatePowerSeries| . |CancellationAbelianMonoid|) T) ((|ModularField| . |EuclideanDomain|) T) ((|SimpleAlgebraicExtension| . |PrincipalIdealDomain|) 139070) ((|FreeGroup| . |BasicType|) T) ((|RadicalFunctionField| . |EuclideanDomain|) T) ((|DirectProduct| . |IndexedAggregate|) 139042) ((|SparseUnivariateLaurentSeries| . |PartialDifferentialRing|) 138788) ((|Expression| . |ArcHyperbolicFunctionCategory|) 138755) ((|UnivariatePuiseuxSeries| . |RadicalCategory|) 138704) ((|WeightedPolynomials| . |SetCategory|) T) ((|FiniteFieldExtensionByPolynomial| . |FieldOfPrimeCharacteristic|) 138635) ((|UnivariateLaurentSeries| . |OrderedRing|) NIL) ((|OnePointCompletion| . |FullyRetractableTo|) 138619) ((|Expression| . |PartialDifferentialRing|) 138581) ((|PAdicRational| . |Evalable|) 138489) ((|FiniteFieldNormalBasisExtension| . |SetCategory|) T) ((|InnerSparseUnivariatePowerSeries| . |DifferentialRing|) 138437) ((|SparseUnivariatePolynomialExpressions| . |IntegralDomain|) 138300) ((|Complex| . |OpenMath|) 138273) ((|FiniteFieldCyclicGroupExtension| . |FieldOfPrimeCharacteristic|) 138204) ((|FiniteFieldNormalBasisExtension| . |EntireRing|) T) ((|Stream| . |BasicType|) 138174) ((|Factored| . |AbelianSemiGroup|) T) ((|ModMonic| . |EuclideanDomain|) 138150) ((|UnivariatePuiseuxSeries| . |LeftModule|) 138019) ((|UnivariatePolynomial| . |LeftModule|) 137916) ((|Bits| . |CoercibleTo|) 137890) ((|ContinuedFraction| . |LeftModule|) 137805) ((|BalancedPAdicRational| . |SetCategory|) T) ((|UnivariateLaurentSeries| . |Algebra|) 137526) ((|MyExpression| . |LeftOreRing|) 137493) ((|IndexCard| . |OrderedSet|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |LeftModule|) 137434) ((|UnivariateTaylorSeriesCZero| . |BiModule|) 137235) ((|NewSparseUnivariatePolynomial| . |GcdDomain|) 137130) ((|Table| . |Evalable|) 136890) ((|InnerTable| . |InnerEvalable|) 136598) ((|FiniteFieldCyclicGroup| . |Finite|) T) ((|EuclideanModularRing| . |CancellationAbelianMonoid|) T) ((|Point| . |FiniteLinearAggregate|) 136582) ((|NewSparseUnivariatePolynomial| . |AbelianSemiGroup|) T) ((|Interval| . |CommutativeRing|) T) ((|FourierSeries| . |SemiGroup|) T) ((|BalancedPAdicInteger| . |CharacteristicZero|) T) ((|FreeModule| . |RightModule|) 136566) ((|d03eefAnnaType| . |CoercibleTo|) 136540) ((|ModMonic| . |SemiGroup|) T) ((|Interval| . |LeftModule|) 136527) ((|Integer| . |StepThrough|) T) ((|MyExpression| . |EuclideanDomain|) 136494) ((|RewriteRule| . |SetCategory|) T) ((|UnivariateLaurentSeries| . |DifferentialRing|) 136337) ((|MyExpression| . |Rng|) T) ((|Asp6| . |FortranVectorFunctionCategory|) T) ((|HexadecimalExpansion| . |OrderedIntegralDomain|) T) ((|Mapping| . |BasicType|) T) ((|DirectProductModule| . |SetCategory|) T) ((|DifferentialSparseMultivariatePolynomial| . |IntegralDomain|) 136223) ((|FiniteFieldExtension| . |FieldOfPrimeCharacteristic|) 136154) ((|MyUnivariatePolynomial| . |Monoid|) T) ((|HexadecimalExpansion| . |DifferentialExtension|) 136131) ((|DistributedMultivariatePolynomial| . |OrderedSet|) 136102) ((|SparseMultivariateTaylorSeries| . |LeftModule|) 135999) ((|Float| . |IntegralDomain|) T) ((|AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| . |CoercibleTo|) 135973) ((|OrderlyDifferentialPolynomial| . |Ring|) T) ((|NumericalIntegrationProblem| . |SetCategory|) T) ((|FiniteFieldCyclicGroupExtension| . |Monoid|) T) ((|RadixExpansion| . |InnerEvalable|) NIL) ((|XDistributedPolynomial| . |RightModule|) 135957) ((|SparseUnivariatePuiseuxSeries| . |SetCategory|) T) ((|RomanNumeral| . |CancellationAbelianMonoid|) T) ((|DirectProductModule| . |PartialDifferentialRing|) 135861) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |CharacteristicZero|) 135824) ((|Bits| . |ConvertibleTo|) 135799) ((|Equation| . |Group|) 135775) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |AbelianMonoid|) T) ((|UnivariateSkewPolynomial| . |FullyRetractableTo|) 135759) ((|UnivariateTaylorSeries| . |CommutativeRing|) 135688) ((|Float| . |Algebra|) 135642) ((|PendantTree| . |BinaryRecursiveAggregate|) 135626) ((|GeneralDistributedMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 135610) ((|BalancedPAdicRational| . |OrderedAbelianSemiGroup|) NIL) ((|SparseUnivariateLaurentSeries| . |TranscendentalFunctionCategory|) 135559) ((|Tree| . |SetCategory|) 135529) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |EuclideanDomain|) T) ((|NewSparseMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|UnivariateTaylorSeriesCZero| . |SemiGroup|) T) ((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| . |ProjectiveSpaceCategory|) 135473) ((|AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| . |AffineSpaceCategory|) 135417) ((|FiniteFieldCyclicGroup| . |SemiGroup|) T) ((|Permutation| . |SetCategory|) T) ((|Asp19| . |CoercibleTo|) 135391) ((|HexadecimalExpansion| . |Rng|) T) ((|Float| . |AbelianGroup|) T) ((|OrdinaryDifferentialRing| . |EuclideanDomain|) 135367) ((|RectangularMatrix| . |RightModule|) 135351) ((|FlexibleArray| . |InnerEvalable|) 135270) ((|RomanNumeral| . |Ring|) T) ((|DecimalExpansion| . |DifferentialExtension|) 135247) ((|FortranExpression| . |Rng|) T) ((|ExponentialExpansion| . |AbelianGroup|) T) ((|FiniteFieldCyclicGroupExtension| . |BiModule|) 135156) ((|LocalAlgebra| . |Rng|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |Finite|) T) ((|d01fcfAnnaType| . |BasicType|) T) ((|SimpleAlgebraicExtension| . |AbelianSemiGroup|) T) ((|FiniteFieldExtensionByPolynomial| . |DifferentialRing|) 135131) ((|Pi| . |Algebra|) 135085) ((|UnivariateTaylorSeriesCZero| . |Algebra|) 134929) ((|InnerAlgebraicNumber| . |AbelianMonoid|) T) ((|AlgebraicFunctionField| . |FullyRetractableTo|) 134900) ((|FiniteFieldCyclicGroup| . |AbelianSemiGroup|) T) ((|SimpleAlgebraicExtension| . |BiModule|) 134750) ((|e04nafAnnaType| . |BasicType|) T) ((|OrdinaryDifferentialRing| . |IntegralDomain|) 134726) ((|MyExpression| . |ConvertibleTo|) 134504) ((|ExponentialExpansion| . |FullyEvalableOver|) 134419) ((|RadixExpansion| . |OrderedAbelianMonoid|) T) ((|InnerPAdicInteger| . |CancellationAbelianMonoid|) T) ((|UnivariateLaurentSeriesConstructor| . |CharacteristicZero|) 134312) ((|IntegerMod| . |CommutativeRing|) T) ((|SparseMultivariateTaylorSeries| . |ElementaryFunctionCategory|) 134261) ((|InnerSparseUnivariatePowerSeries| . |EntireRing|) 134228) ((|DoubleFloatMatrix| . |Type|) T) ((|ComplexDoubleFloatVector| . |VectorCategory|) 134189) ((|ComplexDoubleFloatMatrix| . |MatrixCategory|) 134092) ((|AntiSymm| . |SetCategory|) T) ((|FiniteFieldExtensionByPolynomial| . |RetractableTo|) 134076) ((|ExponentialExpansion| . |Monoid|) T) ((|MyUnivariatePolynomial| . |EntireRing|) 133939) ((|WuWenTsunTriangularSet| . |PolynomialSetCategory|) 133908) ((|SparseUnivariateTaylorSeries| . |Ring|) T) ((|GeneralPolynomialSet| . |HomogeneousAggregate|) 133892) ((|WeightedPolynomials| . |Ring|) T) ((|AlgebraicFunctionField| . |BasicType|) T) ((|Equation| . |Type|) T) ((|Stream| . |RecursiveAggregate|) 133876) ((|DirectProductMatrixModule| . |CoercibleTo|) 133826) ((|UnivariateSkewPolynomial| . |RetractableTo|) 133670) ((|Segment| . |BasicType|) 133640) ((|Set| . |DictionaryOperations|) 133624) ((|NeitherSparseOrDensePowerSeries| . |Rng|) T) ((|UnivariateTaylorSeriesCZero| . |Module|) 133468) ((|IndexedTwoDimensionalArray| . |SetCategory|) 133438) ((|ExponentialOfUnivariatePuiseuxSeries| . |UnivariatePuiseuxSeriesCategory|) 133422) ((|HexadecimalExpansion| . |Evalable|) NIL) ((|Color| . |AbelianSemiGroup|) T) ((|PrimitiveArray| . |Evalable|) 133346) ((|UnivariateLaurentSeriesConstructor| . |PartialDifferentialRing|) 133135) ((|Plot3D| . |PlottableSpaceCurveCategory|) T) ((|MyUnivariatePolynomial| . |ConvertibleTo|) NIL) ((|NewSparseUnivariatePolynomial| . |UnivariatePolynomialCategory|) 133119) ((|Segment| . |SetCategory|) 133089) ((|MyUnivariatePolynomial| . |PatternMatchable|) NIL) ((|AlgebraicNumber| . |Ring|) T) ((|SparseMultivariatePolynomial| . |SemiGroup|) T) ((|IntegrationResult| . |BiModule|) 133028) ((|Queue| . |CoercibleTo|) 132979) ((|GenericNonAssociativeAlgebra| . |CoercibleTo|) 132953) ((|MultivariatePolynomial| . |SetCategory|) T) ((|ArrayStack| . |InnerEvalable|) 132872) ((|Equation| . |Rng|) 132792) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |FieldOfPrimeCharacteristic|) 132723) ((|UnivariateTaylorSeries| . |CharacteristicNonZero|) 132683) ((|NewSparseMultivariatePolynomial| . |IntegralDomain|) 132569) ((|MachineFloat| . |OrderedAbelianGroup|) T) ((|Asp74| . |FortranMatrixFunctionCategory|) T) ((|Interval| . |ElementaryFunctionCategory|) T) ((|SparseUnivariatePuiseuxSeries| . |AbelianSemiGroup|) T) ((|IntegrationResult| . |RetractableTo|) 132553) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |AbelianMonoidRing|) 132443) ((|FlexibleArray| . |OrderedSet|) 132414) ((|InnerPrimeField| . |SetCategory|) T) ((|DecimalExpansion| . |LeftModule|) 132348) ((|NewSparseMultivariatePolynomial| . |Module|) 132111) ((|Complex| . |Monoid|) T) ((|MonoidRing| . |BasicType|) T) ((|OnePointCompletion| . |Monoid|) 132081) ((|Ruleset| . |SetCategory|) T) ((|IndexedFlexibleArray| . |OrderedSet|) 132052) ((|SimpleAlgebraicExtension| . |UniqueFactorizationDomain|) 131986) ((|DirectProduct| . |BiModule|) 131849) ((|Asp29| . |FortranProgramCategory|) T) ((|InnerPAdicInteger| . |Algebra|) 131836) ((|OrderedCompletion| . |AbelianGroup|) 131771) ((|MachineInteger| . |Rng|) T) ((|UnivariateLaurentSeriesConstructor| . |GcdDomain|) 131747) ((|BinaryExpansion| . |EuclideanDomain|) T) ((|InnerSparseUnivariatePowerSeries| . |BiModule|) 131548) ((|HexadecimalExpansion| . |GcdDomain|) T) ((|SquareMatrix| . |AbelianSemiGroup|) T) ((|AssociatedLieAlgebra| . |RightModule|) 131532) ((|AlgebraicFunctionField| . |CommutativeRing|) T) ((|SparseUnivariateTaylorSeries| . |CharacteristicNonZero|) 131492) ((|OrderlyDifferentialVariable| . |SetCategory|) T) ((|RomanNumeral| . |OrderedAbelianGroup|) T) ((|DirectProductMatrixModule| . |Type|) T) ((|IndexedString| . |InnerEvalable|) NIL) ((|NewSparseUnivariatePolynomial| . |FullyRetractableTo|) 131476) ((|DifferentialSparseMultivariatePolynomial| . |DifferentialExtension|) 131460) ((|GeneralSparseTable| . |SetCategory|) T) ((|SparseUnivariateLaurentSeries| . |BiModule|) 131089) ((|ComplexDoubleFloatVector| . |FiniteLinearAggregate|) 131050) ((|HexadecimalExpansion| . |AbelianSemiGroup|) T) ((|Dequeue| . |Type|) T) ((|Tree| . |CoercibleTo|) 131001) ((|PAdicInteger| . |RightModule|) 130988) ((|SparseUnivariatePuiseuxSeries| . |DivisionRing|) 130964) ((|SquareMatrix| . |LeftModule|) 130938) ((|NumericalOptimizationProblem| . |SetCategory|) T) ((|SquareMatrix| . |FullyRetractableTo|) 130922) ((|DirichletRing| . |Ring|) T) ((|Equation| . |RightModule|) 130829) ((|PrimitiveArray| . |OrderedSet|) 130800) ((|AlgebraicFunctionField| . |ConvertibleTo|) 130784) ((|SparseUnivariateLaurentSeries| . |Evalable|) 130585) ((|DoubleFloatMatrix| . |SetCategory|) T) ((|d03eefAnnaType| . |BasicType|) T) ((|BalancedPAdicInteger| . |Ring|) T) ((|RegularChain| . |Collection|) 130504) ((|OneDimensionalArray| . |InnerEvalable|) 130423) ((|InnerTable| . |Collection|) 130365) ((|NewSparseMultivariatePolynomial| . |SemiGroup|) T) ((|AssociationList| . |ExtensibleLinearAggregate|) 130307) ((|FiniteFieldExtensionByPolynomial| . |Rng|) T) ((|RegularTriangularSet| . |HomogeneousAggregate|) 130291) ((|BalancedPAdicRational| . |SemiGroup|) T) ((|Matrix| . |ConvertibleTo|) 130227) ((|d01gbfAnnaType| . |SetCategory|) T) ((|Multiset| . |Aggregate|) T) ((|Asp1| . |FortranProgramCategory|) T) ((|GeneralUnivariatePowerSeries| . |BiModule|) 129977) ((|PseudoAlgebraicClosureOfFiniteField| . |Module|) 129918) ((|UnivariatePuiseuxSeries| . |BiModule|) 129668) ((|PAdicRationalConstructor| . |BasicType|) T) ((|DirectProduct| . |FullyLinearlyExplicitRingOver|) 129636) ((|OpenMathErrorKind| . |SetCategory|) T) ((|GeneralModulePolynomial| . |CancellationAbelianMonoid|) T) ((|ModuleOperator| . |Algebra|) 129593) ((|NewSparseMultivariatePolynomial| . |ConvertibleTo|) 129032) ((|DirectProductMatrixModule| . |AbelianMonoid|) T) ((|SparseTable| . |Type|) T) ((|FiniteFieldExtensionByPolynomial| . |StepThrough|) 129007) ((|TaylorSeries| . |SemiGroup|) T) ((|RectangularMatrix| . |Module|) 128936) ((|IndexedOneDimensionalArray| . |EltableAggregate|) 128908) ((|Tree| . |Type|) T) ((|TwoDimensionalArray| . |Aggregate|) T) ((|SparseUnivariateTaylorSeries| . |Monoid|) T) ((|LinearOrdinaryDifferentialOperator1| . |Eltable|) 128887) ((|SparseUnivariateSkewPolynomial| . |AbelianGroup|) T) ((|MachineFloat| . |Module|) 128841) ((|ModularField| . |SemiGroup|) T) ((|ComplexDoubleFloatMatrix| . |InnerEvalable|) NIL) ((|List| . |SetCategory|) 128778) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |EntireRing|) T) ((|Asp78| . |CoercibleTo|) 128752) ((|OrderlyDifferentialPolynomial| . |PolynomialCategory|) 128629) ((|Integer| . |RealConstant|) T) ((|DeRhamComplex| . |Monoid|) T) ((|SparseUnivariateLaurentSeries| . |UnivariateLaurentSeriesCategory|) 128613) ((|UnivariatePuiseuxSeries| . |GcdDomain|) 128589) ((|SparseUnivariatePuiseuxSeries| . |UnivariatePuiseuxSeriesCategory|) 128573) ((|SparseUnivariateTaylorSeries| . |UnivariateTaylorSeriesCategory|) 128557) ((|PAdicInteger| . |EuclideanDomain|) T) ((|Octonion| . |Ring|) T) ((|DecimalExpansion| . |StepThrough|) T) ((|SparseUnivariatePolynomial| . |UnivariatePolynomialCategory|) 128541) ((|SparseMultivariateTaylorSeries| . |MultivariateTaylorSeriesCategory|) 128520) ((|SparseUnivariateSkewPolynomial| . |UnivariateSkewPolynomialCategory|) 128504) ((|d03fafAnnaType| . |CoercibleTo|) 128478) ((|OrderedDirectProduct| . |OrderedAbelianMonoidSup|) 128436) ((|SparseUnivariatePolynomial| . |PrincipalIdealDomain|) 128412) ((|Complex| . |FramedAlgebra|) 128360) ((|Complex| . |Type|) T) ((|Factored| . |Algebra|) 128334) ((|UnivariateLaurentSeriesConstructor| . |AbelianMonoidRing|) 128306) ((|RadicalFunctionField| . |Rng|) T) ((|U8Vector| . |OrderedSet|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |RightModule|) 128260) ((|UnivariatePuiseuxSeriesConstructor| . |HyperbolicFunctionCategory|) 128209) ((|BinaryExpansion| . |OrderedAbelianMonoid|) T) ((|NeitherSparseOrDensePowerSeries| . |BiModule|) 128118) ((|ProjectiveSpace| . |CoercibleTo|) 128092) ((|NewSparseUnivariatePolynomial| . |RetractableTo|) 127858) ((|Float| . |Field|) T) ((|MachineInteger| . |OrderedRing|) T) ((|ModMonic| . |CharacteristicZero|) 127821) ((|DirectProductMatrixModule| . |IndexedAggregate|) 127793) ((|MyUnivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|DirectProduct| . |BasicType|) 127485) ((|DecimalExpansion| . |OrderedIntegralDomain|) T) ((|SequentialDifferentialPolynomial| . |ConvertibleTo|) NIL) ((|FiniteFieldExtension| . |Ring|) T) ((|e04dgfAnnaType| . |SetCategory|) T) ((|Factored| . |BasicType|) T) ((|BinaryTournament| . |HomogeneousAggregate|) 127469) ((|HashTable| . |CoercibleTo|) 127443) ((|MonoidRing| . |RetractableTo|) 127414) ((|NewSparseUnivariatePolynomial| . |FiniteAbelianMonoidRing|) 127375) ((|GeneralUnivariatePowerSeries| . |TrigonometricFunctionCategory|) 127324) ((|UnivariateLaurentSeriesConstructor| . |LeftModule|) 127163) ((|InnerFiniteField| . |StepThrough|) T) ((|SparseUnivariateTaylorSeries| . |TrigonometricFunctionCategory|) 127112) ((|IndexedFlexibleArray| . |HomogeneousAggregate|) 127096) ((|GeneralDistributedMultivariatePolynomial| . |PatternMatchable|) NIL) ((|PartialFraction| . |GcdDomain|) T) ((|List| . |RecursiveAggregate|) 127080) ((|UnivariateSkewPolynomial| . |SetCategory|) T) ((|List| . |Type|) T) ((|InnerTaylorSeries| . |IntegralDomain|) 127047) ((|DifferentialSparseMultivariatePolynomial| . |Ring|) T) ((|Expression| . |AlgebraicallyClosedField|) 127014) ((|SparseUnivariateLaurentSeries| . |CancellationAbelianMonoid|) T) ((|UnivariateFormalPowerSeries| . |Rng|) T) ((|SparseUnivariatePolynomialExpressions| . |PolynomialFactorizationExplicit|) 126964) ((|FreeModule| . |IndexedDirectProductCategory|) 126943) ((|SquareFreeRegularTriangularSet| . |TriangularSetCategory|) 126912) ((|SymmetricPolynomial| . |RightModule|) 126745) ((|Equation| . |AbelianSemiGroup|) 126545) ((|Divisor| . |CoercibleTo|) 126519) ((|InnerFiniteField| . |Module|) 126440) ((|RadixExpansion| . |Rng|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |GcdDomain|) T) ((|DeRhamComplex| . |SetCategory|) T) ((|PAdicRationalConstructor| . |OrderedCancellationAbelianMonoid|) 126400) ((|Equation| . |BiModule|) 126302) ((|ExponentialExpansion| . |RightModule|) 126174) ((|SparseUnivariateLaurentSeries| . |OrderedAbelianMonoid|) NIL) ((|UnivariateTaylorSeries| . |AbelianGroup|) T) ((|UnivariatePuiseuxSeries| . |Eltable|) 126159) ((|GeneralUnivariatePowerSeries| . |SemiGroup|) T) ((|PrimitiveArray| . |LinearAggregate|) 126143) ((|PartialFraction| . |IntegralDomain|) T) ((|BinaryExpansion| . |Rng|) T) ((|ExponentialExpansion| . |Type|) T) ((|Boolean| . |SetCategory|) T) ((|EqTable| . |Dictionary|) 126085) ((|OrderedDirectProduct| . |Module|) 126014) ((|GraphImage| . |SetCategory|) T) ((|FlexibleArray| . |ExtensibleLinearAggregate|) 125998) ((|SymmetricPolynomial| . |AbelianSemiGroup|) T) ((|Octonion| . |InnerEvalable|) 125887) ((|StochasticDifferential| . |SemiGroup|) T) ((|Localize| . |OrderedAbelianMonoid|) 125849) ((|SplitHomogeneousDirectProduct| . |OrderedCancellationAbelianMonoid|) 125773) ((|XPBWPolynomial| . |SemiGroup|) T) ((|Polynomial| . |BasicType|) T) ((|LiePolynomial| . |FreeModuleCat|) 125737) ((|OppositeMonogenicLinearOperator| . |MonogenicLinearOperator|) 125721) ((|PrimeField| . |CharacteristicZero|) 125687) ((|Integer| . |RetractableTo|) 125664) ((|Stream| . |CoercibleTo|) 125615) ((|ExponentialOfUnivariatePuiseuxSeries| . |UnivariatePowerSeriesCategory|) 125574) ((|DesingTree| . |InnerEvalable|) 125493) ((|LaurentPolynomial| . |RightModule|) 125480) ((|NewSparseMultivariatePolynomial| . |LeftOreRing|) 125398) ((|Record| . |CoercibleTo|) 125372) ((|RadicalFunctionField| . |DifferentialRing|) 125324) ((|NewSparseMultivariatePolynomial| . |RightModule|) 125081) ((|InnerPrimeField| . |PrincipalIdealDomain|) T) ((|UnivariateSkewPolynomial| . |CancellationAbelianMonoid|) T) ((|OrderlyDifferentialPolynomial| . |GcdDomain|) 124999) ((|DenavitHartenbergMatrix| . |Type|) T) ((|IndexedExponents| . |OrderedAbelianSemiGroup|) T) ((|Vector| . |CoercibleTo|) 124917) ((|UnivariateFormalPowerSeries| . |UnivariateTaylorSeriesCategory|) 124901) ((|ModMonic| . |InnerEvalable|) 124811) ((|NeitherSparseOrDensePowerSeries| . |EntireRing|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |LeftModule|) 124752) ((|Polynomial| . |RetractableTo|) 124577) ((|Quaternion| . |RetractableTo|) 124421) ((|NewSparseMultivariatePolynomial| . |UniqueFactorizationDomain|) 124371) ((|Integer| . |PatternMatchable|) 124348) ((|Pi| . |DivisionRing|) T) ((|RealClosure| . |UniqueFactorizationDomain|) T) ((|UnivariatePuiseuxSeriesConstructor| . |UnivariatePowerSeriesCategory|) 124307) ((|ExponentialOfUnivariatePuiseuxSeries| . |SetCategory|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |FiniteAlgebraicExtensionField|) 124291) ((|MyUnivariatePolynomial| . |RightModule|) 124025) ((|SparseUnivariateTaylorSeries| . |DifferentialRing|) 123962) ((|DifferentialSparseMultivariatePolynomial| . |GcdDomain|) 123880) ((|AssociationList| . |RecursiveAggregate|) 123822) ((|UnivariateLaurentSeriesConstructor| . |RealConstant|) 123762) ((|MyUnivariatePolynomial| . |AbelianMonoid|) T) ((|InnerTaylorSeries| . |CommutativeRing|) 123729) ((|PrimeField| . |CancellationAbelianMonoid|) T) ((|UnivariatePuiseuxSeries| . |CharacteristicNonZero|) 123689) ((|InnerAlgebraicNumber| . |AbelianSemiGroup|) T) ((|HexadecimalExpansion| . |PolynomialFactorizationExplicit|) NIL) ((|InnerPrimeField| . |EntireRing|) T) ((|RadixExpansion| . |PolynomialFactorizationExplicit|) NIL) ((|FourierComponent| . |OrderedSet|) T) ((|Bits| . |Type|) T) ((|SparseUnivariateTaylorSeries| . |AbelianMonoid|) T) ((|Complex| . |HyperbolicFunctionCategory|) 123640) ((|Vector| . |SetCategory|) 123577) ((|SingleInteger| . |StepThrough|) T) ((|FourierSeries| . |CoercibleTo|) 123551) ((|InfinitlyClosePoint| . |CoercibleTo|) 123525) ((|FiniteFieldExtensionByPolynomial| . |CharacteristicZero|) 123488) ((|OrderlyDifferentialPolynomial| . |BasicType|) T) ((|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| . |InfinitlyClosePointCategory|) 123015) ((|PolynomialRing| . |SetCategory|) T) ((|Commutator| . |BasicType|) T) ((|PlacesOverPseudoAlgebraicClosureOfFiniteField| . |PlacesCategory|) 122878) ((|XPBWPolynomial| . |BiModule|) 122857) ((|Expression| . |HyperbolicFunctionCategory|) 122824) ((|ComplexDoubleFloatMatrix| . |Aggregate|) T) ((|d03fafAnnaType| . |PartialDifferentialEquationsSolverCategory|) T) ((|ComplexDoubleFloatVector| . |Aggregate|) T) ((|Float| . |OrderedAbelianSemiGroup|) T) ((|Quaternion| . |Algebra|) 122758) ((|UnivariateLaurentSeries| . |Evalable|) 122577) ((|InnerFiniteField| . |CoercibleTo|) 122551) ((|ComplexDoubleFloatMatrix| . |BasicType|) T) ((|UnivariateLaurentSeries| . |OrderedAbelianGroup|) NIL) ((|LieSquareMatrix| . |RetractableTo|) 122395) ((|GeneralUnivariatePowerSeries| . |Field|) 122371) ((|IndexedDirectProductObject| . |SetCategory|) T) ((|UnivariateTaylorSeriesCZero| . |TrigonometricFunctionCategory|) 122320) ((|Fraction| . |Module|) 122261) ((|d02bbfAnnaType| . |SetCategory|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |CancellationAbelianMonoid|) T) ((|QuadraticForm| . |SetCategory|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |Monoid|) T) ((|U8Matrix| . |CoercibleTo|) 122235) ((|Stack| . |BagAggregate|) 122219) ((|ThreeDimensionalMatrix| . |Type|) T) ((|FiniteFieldCyclicGroup| . |IntegralDomain|) T) ((|IndexedString| . |Collection|) 122194) ((|PAdicRationalConstructor| . |StepThrough|) 122164) ((|FiniteFieldCyclicGroup| . |GcdDomain|) T) ((|LiePolynomial| . |LeftModule|) 122148) ((|IndexedString| . |OrderedSet|) T) ((|UnivariateLaurentSeries| . |CoercibleTo|) 122122) ((|Quaternion| . |BiModule|) 121964) ((|SplitHomogeneousDirectProduct| . |Rng|) 121874) ((|DirectProduct| . |Type|) T) ((|FreeModule1| . |SetCategory|) T) ((|XRecursivePolynomial| . |CoercibleTo|) 121848) ((|UnivariateLaurentSeriesConstructor| . |Evalable|) 121778) ((|Factored| . |FullyRetractableTo|) 121762) ((|SparseMultivariatePolynomial| . |CharacteristicZero|) 121725) ((|KeyedAccessFile| . |IndexedAggregate|) 121698) ((|OnePointCompletion| . |OrderedRing|) 121668) ((|Asp6| . |CoercibleTo|) 121642) ((|PseudoAlgebraicClosureOfFiniteField| . |BiModule|) 121551) ((|PAdicRationalConstructor| . |FullyPatternMatchable|) 121535) ((|OrderedCompletion| . |OrderedRing|) 121505) ((|AlgebraicFunctionField| . |PrincipalIdealDomain|) T) ((|OrderedCompletion| . |OrderedAbelianSemiGroup|) 121475) ((|OrdinaryWeightedPolynomials| . |BiModule|) 121427) ((|IntegerMod| . |RightModule|) 121414) ((|d01ajfAnnaType| . |NumericalIntegrationCategory|) T) ((|SingleInteger| . |RightModule|) 121401) ((|PrimeField| . |Module|) 121355) ((|Table| . |KeyedDictionary|) 121334) ((|DoubleFloatVector| . |ConvertibleTo|) 121309) ((|OrdinaryWeightedPolynomials| . |Algebra|) 121266) ((|ArrayStack| . |Aggregate|) T) ((|Stream| . |UnaryRecursiveAggregate|) 121250) ((|SparseUnivariateLaurentSeries| . |AbelianGroup|) T) ((|Kernel| . |CachableSet|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |DivisionRing|) 121226) ((|ComplexDoubleFloatMatrix| . |Type|) T) ((|InnerTaylorSeries| . |AbelianMonoid|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |Monoid|) T) ((|Divisor| . |RetractableTo|) 121210) ((|ModMonic| . |FiniteAbelianMonoidRing|) 121171) ((|DifferentialSparseMultivariatePolynomial| . |CommutativeRing|) 121024) ((|XRecursivePolynomial| . |XFreeAlgebra|) 121003) ((|TwoDimensionalViewport| . |BasicType|) T) ((|SingleInteger| . |OrderedAbelianGroup|) T) ((|Polynomial| . |FullyLinearlyExplicitRingOver|) 120987) ((|Stack| . |BasicType|) 120957) ((|RadixExpansion| . |FullyEvalableOver|) 120934) ((|InnerSparseUnivariatePowerSeries| . |PartialDifferentialRing|) 120809) ((|KeyedAccessFile| . |Type|) T) ((|Float| . |SetCategory|) T) ((|ResidueRing| . |SetCategory|) T) ((|Octonion| . |LeftModule|) 120783) ((|U32Vector| . |IndexedAggregate|) 120748) ((|KeyedAccessFile| . |InnerEvalable|) 120432) ((|PAdicRationalConstructor| . |DivisionRing|) T) ((|Stream| . |Aggregate|) T) ((|SymmetricPolynomial| . |AbelianGroup|) T) ((|Places| . |SetCategory|) T) ((|SplitHomogeneousDirectProduct| . |RightModule|) 120302) ((|RadixExpansion| . |PatternMatchable|) 120279) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |CoercibleTo|) 120253) ((|UnivariatePuiseuxSeries| . |Monoid|) T) ((|SparseUnivariateLaurentSeries| . |GcdDomain|) 120229) ((|HexadecimalExpansion| . |EuclideanDomain|) T) ((|Polynomial| . |PartialDifferentialRing|) 120207) ((|UnivariateLaurentSeriesConstructor| . |Type|) 120183) ((|Fraction| . |DifferentialExtension|) 120167) ((|MultivariatePolynomial| . |AbelianGroup|) T) ((|BalancedPAdicInteger| . |AbelianGroup|) T) ((|Product| . |Group|) 120114) ((|Octonion| . |ConvertibleTo|) 120050) ((|UnivariateLaurentSeries| . |Field|) 120026) ((|TaylorSeries| . |CoercibleTo|) 120000) ((|PrimeField| . |EntireRing|) T) ((|IndexedExponents| . |IndexedDirectProductCategory|) 119961) ((|Complex| . |CoercibleTo|) 119935) ((|InnerTaylorSeries| . |Rng|) T) ((|SplitHomogeneousDirectProduct| . |SemiGroup|) 119821) ((|Asp12| . |Type|) T) ((|MachineFloat| . |Rng|) T) ((|SparseEchelonMatrix| . |CoercibleTo|) 119795) ((|AlgebraGivenByStructuralConstants| . |FramedNonAssociativeAlgebra|) 119779) ((|SExpressionOf| . |BasicType|) T) ((|Result| . |TableAggregate|) 119749) ((|SparseUnivariateLaurentSeries| . |InnerEvalable|) 119279) ((|UnivariateLaurentSeries| . |OrderedIntegralDomain|) NIL) ((|U16Vector| . |Collection|) 119256) ((|ExponentialExpansion| . |StepThrough|) NIL) ((|Permutation| . |Group|) T) ((|XPolynomial| . |CancellationAbelianMonoid|) T) ((|Complex| . |FiniteFieldCategory|) 119218) ((|XRecursivePolynomial| . |BasicType|) T) ((|Matrix| . |Evalable|) 119142) ((|NeitherSparseOrDensePowerSeries| . |RightModule|) 119083) ((|Automorphism| . |Group|) T) ((|PAdicRationalConstructor| . |AbelianSemiGroup|) T) ((|RadixExpansion| . |OrderedAbelianGroup|) T) ((|DirichletRing| . |SemiGroup|) T) ((|SimpleFortranProgram| . |FortranProgramCategory|) T) ((|MyExpression| . |Patternable|) 119067) ((|List| . |Aggregate|) T) ((|IndexedList| . |IndexedAggregate|) 119039) ((|InnerAlgebraicNumber| . |SetCategory|) T) ((|RoutinesTable| . |IndexedAggregate|) 119009) ((|BalancedBinaryTree| . |RecursiveAggregate|) 118993) ((|UnivariateLaurentSeriesConstructor| . |OrderedAbelianMonoid|) 118924) ((|PartialFraction| . |SemiGroup|) T) ((|Complex| . |EuclideanDomain|) 118825) ((|RoutinesTable| . |KeyedDictionary|) 118795) ((|DirichletRing| . |Eltable|) 118759) ((|DifferentialSparseMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|OneDimensionalArray| . |BasicType|) 118696) ((|PlacesOverPseudoAlgebraicClosureOfFiniteField| . |SetCategoryWithDegree|) T) ((|e04dgfAnnaType| . |NumericalOptimizationCategory|) T) ((|BinaryExpansion| . |LeftModule|) 118630) ((|AlgebraicFunctionField| . |EuclideanDomain|) T) ((|ContinuedFraction| . |Algebra|) 118545) ((|IndexedDirectProductAbelianGroup| . |AbelianSemiGroup|) T) ((|UnivariatePuiseuxSeriesConstructor| . |CharacteristicNonZero|) 118505) ((|FiniteFieldExtension| . |EuclideanDomain|) T) ((|ArrayStack| . |BagAggregate|) 118489) ((|FiniteFieldNormalBasis| . |CharacteristicZero|) 118455) ((|UnivariateLaurentSeries| . |FullyPatternMatchable|) 118385) ((|EqTable| . |Aggregate|) T) ((|PAdicRationalConstructor| . |DifferentialRing|) 118350) ((|SparseUnivariateLaurentSeries| . |RightModule|) 118059) ((|WuWenTsunTriangularSet| . |Collection|) 118043) ((|Factored| . |LeftModule|) 118017) ((|Stream| . |EltableAggregate|) 117989) ((|MachineInteger| . |PrincipalIdealDomain|) T) ((|Polynomial| . |UniqueFactorizationDomain|) 117939) ((|MachineFloat| . |RightModule|) 117893) ((|SparseUnivariatePolynomial| . |AbelianGroup|) T) ((|RadixExpansion| . |PrincipalIdealDomain|) T) ((|Multiset| . |Type|) T) ((|Float| . |BiModule|) 117820) ((|String| . |FiniteLinearAggregate|) 117795) ((|InnerFiniteField| . |Ring|) T) ((|Library| . |HomogeneousAggregate|) 117712) ((|Symbol| . |PatternMatchable|) 117671) ((|InnerTable| . |EltableAggregate|) 117650) ((|Fraction| . |PrincipalIdealDomain|) T) ((|SExpressionOf| . |SExpressionCategory|) 117614) ((|MachineFloat| . |FloatingPointSystem|) T) ((|IndexedExponents| . |OrderedCancellationAbelianMonoid|) T) ((|IndexedExponents| . |AbelianSemiGroup|) T) ((|SExpressionOf| . |CoercibleTo|) 117588) ((|SplitHomogeneousDirectProduct| . |FullyRetractableTo|) 117549) ((|LinearOrdinaryDifferentialOperator| . |Eltable|) 117528) ((|FiniteFieldNormalBasis| . |EntireRing|) T) ((|RadicalFunctionField| . |PrincipalIdealDomain|) T) ((|e04gcfAnnaType| . |CoercibleTo|) 117502) ((|Integer| . |IntegralDomain|) T) ((|PermutationGroup| . |SetCategory|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |Rng|) T) ((|Vector| . |Aggregate|) T) ((|IndexedVector| . |IndexedAggregate|) 117474) ((|PseudoAlgebraicClosureOfRationalNumber| . |AbelianSemiGroup|) T) ((|FiniteFieldExtensionByPolynomial| . |CommutativeRing|) T) ((|U8Matrix| . |Type|) T) ((|UnivariateLaurentSeries| . |PatternMatchable|) NIL) ((|d01gbfAnnaType| . |BasicType|) T) ((|PAdicRational| . |RightModule|) 117398) ((|BinarySearchTree| . |BinaryRecursiveAggregate|) 117382) ((|HomogeneousDirectProduct| . |Algebra|) 117339) ((|InnerTaylorSeries| . |BasicType|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |BasicType|) T) ((|DistributedMultivariatePolynomial| . |LeftOreRing|) 117257) ((|SparseUnivariateLaurentSeries| . |Eltable|) 116997) ((|SingleInteger| . |AbelianSemiGroup|) T) ((|RadicalFunctionField| . |FunctionFieldCategory|) 116971) ((|AssociatedLieAlgebra| . |FiniteRankNonAssociativeAlgebra|) 116852) ((|U16Matrix| . |TwoDimensionalArrayCategory|) 116801) ((|FreeNilpotentLie| . |BiModule|) 116780) ((|DataList| . |Evalable|) 116704) ((|Quaternion| . |Rng|) T) ((|InnerPrimeField| . |CoercibleTo|) 116678) ((|Asp49| . |FortranProgramCategory|) T) ((|DifferentialSparseMultivariatePolynomial| . |AbelianMonoid|) T) ((|MathMLFormat| . |SetCategory|) T) ((|DoubleFloatVector| . |Evalable|) NIL) ((|InnerAlgebraicNumber| . |AlgebraicallyClosedField|) T) ((|UnivariateFormalPowerSeries| . |TranscendentalFunctionCategory|) 116627) ((|Vector| . |ConvertibleTo|) 116563) ((|Asp28| . |Type|) T) ((|FiniteField| . |AbelianMonoid|) T) ((|RoutinesTable| . |EltableAggregate|) 116533) ((|Bits| . |HomogeneousAggregate|) 116510) ((|Automorphism| . |BasicType|) T) ((|Automorphism| . |SetCategory|) T) ((|GeneralDistributedMultivariatePolynomial| . |PartialDifferentialRing|) 116470) ((|SplitHomogeneousDirectProduct| . |BasicType|) 116162) ((|Complex| . |Eltable|) 116115) ((|Table| . |ConvertibleTo|) NIL) ((|Quaternion| . |PartialDifferentialRing|) 116047) ((|WeightedPolynomials| . |CoercibleTo|) 116021) ((|AssociatedJordanAlgebra| . |NonAssociativeAlgebra|) 116005) ((|Matrix| . |Type|) T) ((|HomogeneousDirectProduct| . |AbelianSemiGroup|) 115774) ((|Database| . |CoercibleTo|) 115748) ((|SimpleAlgebraicExtension| . |CancellationAbelianMonoid|) T) ((|Factored| . |SetCategory|) T) ((|FiniteFieldCyclicGroup| . |RightModule|) 115674) ((|AssociatedJordanAlgebra| . |FramedNonAssociativeAlgebra|) 115614) ((|FlexibleArray| . |LinearAggregate|) 115598) ((|SequentialDifferentialPolynomial| . |FullyLinearlyExplicitRingOver|) 115582) ((|SparseUnivariatePuiseuxSeries| . |UnivariatePowerSeriesCategory|) 115541) ((|MyUnivariatePolynomial| . |Ring|) T) ((|DirectProductMatrixModule| . |LinearlyExplicitRingOver|) 115413) ((|DirectProduct| . |CoercibleTo|) 115062) ((|BinaryFile| . |CoercibleTo|) 115036) ((|SparseUnivariatePuiseuxSeries| . |BiModule|) 114786) ((|ProjectiveSpace| . |BasicType|) T) ((|FortranProgram| . |Type|) T) ((|SuchThat| . |SetCategory|) T) ((|Fraction| . |BiModule|) 114695) ((|PAdicRationalConstructor| . |GcdDomain|) T) ((|AlgebraicFunctionField| . |FunctionFieldCategory|) 114669) ((|U16Vector| . |EltableAggregate|) 114634) ((|Product| . |SemiGroup|) 114522) ((|OrdinaryDifferentialRing| . |AbelianSemiGroup|) T) ((|FiniteFieldExtension| . |EntireRing|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |EntireRing|) T) ((|CardinalNumber| . |Monoid|) T) ((|SExpressionOf| . |SetCategory|) T) ((|RadixExpansion| . |Field|) T) ((|Complex| . |PrincipalIdealDomain|) 114423) ((|XRecursivePolynomial| . |RightModule|) 114407) ((|UnivariateLaurentSeries| . |UnivariatePowerSeriesCategory|) 114379) ((|SplitHomogeneousDirectProduct| . |BiModule|) 114242) ((|IndexedDirectProductOrderedAbelianMonoid| . |IndexedDirectProductCategory|) 114221) ((|HomogeneousDirectProduct| . |SemiGroup|) 114107) ((|OnePointCompletion| . |AbelianMonoid|) 114042) ((|LocalAlgebra| . |Monoid|) T) ((|UnivariateTaylorSeriesCZero| . |Ring|) T) ((|OrderedDirectProduct| . |Ring|) 113952) ((|ModuleMonomial| . |BasicType|) T) ((|DirectProduct| . |OrderedRing|) 113922) ((|AlgebraicFunctionField| . |RightModule|) 113850) ((|RadicalFunctionField| . |Module|) 113778) ((|NeitherSparseOrDensePowerSeries| . |StreamAggregate|) 113719) ((|SparseTable| . |BasicType|) T) ((|HashTable| . |KeyedDictionary|) 113698) ((|InnerTable| . |SetCategory|) T) ((|Factored| . |CoercibleTo|) 113672) ((|ModularRing| . |AbelianGroup|) T) ((|Quaternion| . |SemiGroup|) T) ((|Integer| . |Monoid|) T) ((|FreeMonoid| . |SetCategory|) T) ((|PAdicRational| . |FullyPatternMatchable|) 113639) ((|InnerFiniteField| . |CharacteristicZero|) 113605) ((|NonNegativeInteger| . |OrderedCancellationAbelianMonoid|) T) ((|AlgebraicNumber| . |RetractableTo|) 113528) ((|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| . |BasicType|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |FieldOfPrimeCharacteristic|) T) ((|BinarySearchTree| . |RecursiveAggregate|) 113512) ((|InnerFiniteField| . |RightModule|) 113433) ((|SparseUnivariateSkewPolynomial| . |RightModule|) 113417) ((|MachineFloat| . |BasicType|) T) ((|Complex| . |AbelianGroup|) T) ((|NumericalIntegrationProblem| . |CoercibleTo|) 113391) ((|FiniteFieldCyclicGroup| . |CharacteristicZero|) 113357) ((|DeRhamComplex| . |Ring|) T) ((|FortranExpression| . |Ring|) T) ((|FramedModule| . |BasicType|) T) ((|DeRhamComplex| . |LeftModule|) 113316) ((|MachineComplex| . |FortranMachineTypeCategory|) T) ((|Point| . |InnerEvalable|) 113235) ((|Fraction| . |CancellationAbelianMonoid|) T) ((|XDistributedPolynomial| . |Rng|) T) ((|Operator| . |Rng|) T) ((|BinaryExpansion| . |FullyLinearlyExplicitRingOver|) 113212) ((|SplitHomogeneousDirectProduct| . |DirectProductCategory|) 113191) ((|IndexedFlexibleArray| . |IndexedAggregate|) 113163) ((|FlexibleArray| . |Aggregate|) T) ((|Table| . |SetCategory|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |EntireRing|) 113049) ((|SingleInteger| . |Monoid|) T) ((|EuclideanModularRing| . |CoercibleTo|) 113023) ((|FiniteFieldCyclicGroup| . |FiniteFieldCategory|) T) ((|SegmentBinding| . |BasicType|) 112993) ((|BalancedPAdicRational| . |IntegralDomain|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Finite|) 112968) ((|InnerAlgebraicNumber| . |RealConstant|) T) ((|Library| . |InnerEvalable|) 112718) ((|NewSparseMultivariatePolynomial| . |EntireRing|) 112604) ((|SequentialDifferentialPolynomial| . |DifferentialRing|) 112569) ((|SingleInteger| . |DifferentialRing|) T) ((|OnePointCompletion| . |LeftModule|) 112533) ((|U16Vector| . |CoercibleTo|) 112507) ((|DoubleFloat| . |RealNumberSystem|) T) ((|MachineInteger| . |OrderedAbelianMonoid|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |CharacteristicNonZero|) 112467) ((|IntegerMod| . |SemiGroup|) T) ((|Asp20| . |FortranMatrixFunctionCategory|) T) ((|FortranCode| . |CoercibleTo|) 112441) ((|ExponentialExpansion| . |QuotientFieldCategory|) 112356) ((|PartialFraction| . |AbelianGroup|) T) ((|BalancedBinaryTree| . |BasicType|) 112326) ((|SplitHomogeneousDirectProduct| . |IndexedAggregate|) 112298) ((|PAdicRational| . |FullyLinearlyExplicitRingOver|) 112265) ((|MachineComplex| . |FullyRetractableTo|) 112237) ((|PoincareBirkhoffWittLyndonBasis| . |OrderedSet|) T) ((|CardinalNumber| . |RetractableTo|) 112203) ((|MyExpression| . |AbelianMonoid|) T) ((|SparseUnivariateTaylorSeries| . |EntireRing|) 112170) ((|BinarySearchTree| . |CoercibleTo|) 112121) ((|UnivariateLaurentSeries| . |QuotientFieldCategory|) 112051) ((|OrderlyDifferentialPolynomial| . |SemiGroup|) T) ((|DeRhamComplex| . |RetractableTo|) 112020) ((|FortranExpression| . |SetCategory|) T) ((|DirichletRing| . |AbelianGroup|) T) ((|PrimeField| . |BasicType|) T) ((|WuWenTsunTriangularSet| . |InnerEvalable|) 111939) ((|Float| . |EntireRing|) T) ((|MachineFloat| . |AbelianSemiGroup|) T) ((|DoubleFloat| . |AbelianSemiGroup|) T) ((|IndexedString| . |CoercibleTo|) 111913) ((|HTMLFormat| . |BasicType|) T) ((|SparseUnivariatePuiseuxSeries| . |CharacteristicZero|) 111876) ((|FiniteDivisor| . |CancellationAbelianMonoid|) T) ((|SparseMultivariateTaylorSeries| . |TranscendentalFunctionCategory|) 111825) ((|StringTable| . |EltableAggregate|) 111798) ((|DirectProductMatrixModule| . |OrderedAbelianGroup|) 111768) ((|DistributedMultivariatePolynomial| . |AbelianMonoidRing|) 111700) ((|DataList| . |LinearAggregate|) 111684) ((|FiniteFieldCyclicGroupExtension| . |RightModule|) 111625) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |BasicType|) T) ((|AntiSymm| . |AbelianMonoid|) T) ((|MyUnivariatePolynomial| . |LinearlyExplicitRingOver|) 111541) ((|MultivariatePolynomial| . |OrderedSet|) 111512) ((|TexFormat| . |CoercibleTo|) 111486) ((|LaurentPolynomial| . |FullyRetractableTo|) 111470) ((|FiniteFieldCyclicGroup| . |FiniteAlgebraicExtensionField|) 111439) ((|ProjectiveSpace| . |SetCategoryWithDegree|) T) ((|IndexedOneDimensionalArray| . |CoercibleTo|) 111357) ((|DirectProductModule| . |Eltable|) 111329) ((|MachineFloat| . |LeftOreRing|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |SemiGroup|) T) ((|d01alfAnnaType| . |SetCategory|) T) ((|GeneralSparseTable| . |Type|) T) ((|Product| . |Finite|) 111274) ((|BalancedPAdicRational| . |EntireRing|) T) ((|U8Vector| . |Eltable|) 111239) ((|Partition| . |CancellationAbelianMonoid|) T) ((|IndexedFlexibleArray| . |CoercibleTo|) 111157) ((|Color| . |CoercibleTo|) 111131) ((|SubSpaceComponentProperty| . |BasicType|) T) ((|ComplexDoubleFloatVector| . |BasicType|) T) ((|Symbol| . |ConvertibleTo|) 111025) ((|HomogeneousDistributedMultivariatePolynomial| . |SetCategory|) T) ((|XPolynomial| . |RetractableTo|) 110981) ((|SequentialDifferentialVariable| . |RetractableTo|) 110965) ((|Asp42| . |Type|) T) ((|Asp24| . |Type|) T) ((|UnivariateLaurentSeries| . |Rng|) T) ((|UnivariateLaurentSeries| . |UniqueFactorizationDomain|) 110941) ((|d02ejfAnnaType| . |CoercibleTo|) 110915) ((|SparseUnivariateLaurentSeries| . |FullyEvalableOver|) 110839) ((|HexadecimalExpansion| . |Eltable|) NIL) ((|NeitherSparseOrDensePowerSeries| . |AbelianSemiGroup|) T) ((|IndexedOneDimensionalArray| . |SetCategory|) 110776) ((|InnerFiniteField| . |Rng|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |AbelianMonoid|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |CharacteristicNonZero|) 110667) ((|AlgebraicNumber| . |EuclideanDomain|) T) ((|OrdinaryWeightedPolynomials| . |AbelianMonoid|) T) ((|SegmentBinding| . |Type|) T) ((|UnivariateLaurentSeries| . |FullyEvalableOver|) 110597) ((|UnivariatePuiseuxSeriesConstructor| . |BiModule|) 110347) ((|HexadecimalExpansion| . |InnerEvalable|) NIL) ((|XPolynomial| . |RightModule|) 110331) ((|XPolynomial| . |Rng|) T) ((|GeneralDistributedMultivariatePolynomial| . |CoercibleTo|) 110305) ((|ListMultiDictionary| . |SetCategory|) 110275) ((|OrderedDirectProduct| . |AbelianMonoid|) 110078) ((|U16Matrix| . |Type|) T) ((|DirectProduct| . |OrderedAbelianMonoid|) 110002) ((|ModularField| . |AbelianSemiGroup|) T) ((|LiePolynomial| . |CoercibleTo|) 109976) ((|ExponentialExpansion| . |PartialDifferentialRing|) NIL) ((|BalancedPAdicRational| . |LinearlyExplicitRingOver|) 109935) ((|ModMonic| . |BiModule|) 109637) ((|PermutationGroup| . |BasicType|) T) ((|PartialFraction| . |LeftModule|) 109578) ((|Expression| . |FullyLinearlyExplicitRingOver|) 109546) ((|SingleInteger| . |OrderedSet|) T) ((|UnivariateLaurentSeries| . |TrigonometricFunctionCategory|) 109495) ((|KeyedAccessFile| . |ConvertibleTo|) NIL) ((|UnivariateLaurentSeriesConstructor| . |OrderedAbelianSemiGroup|) 109426) ((|PolynomialRing| . |RightModule|) 109259) ((|WeightedPolynomials| . |LeftModule|) 109206) ((|MultivariatePolynomial| . |Evalable|) 109193) ((|DrawOption| . |BasicType|) T) ((|GeneralModulePolynomial| . |AbelianMonoid|) T) ((|LieSquareMatrix| . |Aggregate|) T) ((|Library| . |TableAggregate|) 109163) ((|UnivariateTaylorSeries| . |TranscendentalFunctionCategory|) 109112) ((|FreeNilpotentLie| . |NonAssociativeRng|) T) ((|WeightedPolynomials| . |Algebra|) 109069) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |EuclideanDomain|) T) ((|InnerAlgebraicNumber| . |RightModule|) 109023) ((|StringTable| . |Aggregate|) T) ((|Localize| . |Module|) 109007) ((|DoubleFloatVector| . |Collection|) 108980) ((|List| . |FiniteLinearAggregate|) 108964) ((|RadixExpansion| . |Algebra|) 108898) ((|DoubleFloat| . |FloatingPointSystem|) T) ((|IndexedBits| . |CoercibleTo|) 108872) ((|OrderedDirectProduct| . |LeftModule|) 108686) ((|DirectProduct| . |RightModule|) 108556) ((|HomogeneousDirectProduct| . |IndexedAggregate|) 108528) ((|PseudoAlgebraicClosureOfFiniteField| . |AbelianMonoid|) T) ((|GeneralSparseTable| . |IndexedAggregate|) 108507) ((|ComplexDoubleFloatVector| . |Evalable|) NIL) ((|Polynomial| . |CommutativeRing|) 108360) ((|Complex| . |ArcHyperbolicFunctionCategory|) 108311) ((|QuadraticForm| . |AbelianSemiGroup|) T) ((|GeneralUnivariatePowerSeries| . |Algebra|) 108099) ((|KeyedAccessFile| . |Dictionary|) 108035) ((|OrdinaryDifferentialRing| . |PrincipalIdealDomain|) 108011) ((|XPolynomialRing| . |BasicType|) T) ((|SimpleAlgebraicExtension| . |FullyRetractableTo|) 107995) ((|SparseUnivariateSkewPolynomial| . |Ring|) T) ((|SimpleAlgebraicExtension| . |RetractableTo|) 107839) ((|Asp41| . |Type|) T) ((|UnivariateLaurentSeriesConstructor| . |EuclideanDomain|) 107815) ((|NewSparseUnivariatePolynomial| . |Evalable|) 107802) ((|SparseUnivariatePuiseuxSeries| . |PowerSeriesCategory|) 107735) ((|FiniteFieldExtensionByPolynomial| . |VectorSpace|) 107719) ((|AntiSymm| . |LeftModule|) 107693) ((|UnivariateTaylorSeries| . |CancellationAbelianMonoid|) T) ((|Product| . |CoercibleTo|) 107667) ((|SquareMatrix| . |CoercibleTo|) 107617) ((|UnivariateTaylorSeries| . |ElementaryFunctionCategory|) 107566) ((|ExponentialOfUnivariatePuiseuxSeries| . |CoercibleTo|) 107540) ((|DirectProductModule| . |Rng|) 107450) ((|Ruleset| . |CoercibleTo|) 107424) ((|SingleInteger| . |SetCategory|) T) ((|d01anfAnnaType| . |CoercibleTo|) 107398) ((|PrimeField| . |IntegralDomain|) T) ((|Complex| . |FullyLinearlyExplicitRingOver|) 107382) ((|MultivariatePolynomial| . |IntegralDomain|) 107268) ((|NewSparseMultivariatePolynomial| . |AbelianGroup|) T) ((|ListMultiDictionary| . |Evalable|) 107192) ((|Dequeue| . |BasicType|) 107162) ((|ExponentialExpansion| . |ConvertibleTo|) NIL) ((|Asp1| . |Type|) T) ((|ModularRing| . |AbelianMonoid|) T) ((|FortranExpression| . |OrderedSet|) T) ((|FreeMonoid| . |SemiGroup|) T) ((|AntiSymm| . |Ring|) T) ((|DirectProduct| . |FullyRetractableTo|) 107123) ((|FreeAbelianMonoid| . |AbelianSemiGroup|) T) ((|LinearOrdinaryDifferentialOperator| . |Ring|) T) ((|Vector| . |BasicType|) 107060) ((|BalancedBinaryTree| . |CoercibleTo|) 107011) ((|PAdicInteger| . |Monoid|) T) ((|U8Vector| . |IndexedAggregate|) 106976) ((|LinearOrdinaryDifferentialOperator1| . |LinearOrdinaryDifferentialOperatorCategory|) 106960) ((|RomanNumeral| . |IntegerNumberSystem|) T) ((|Fraction| . |FullyPatternMatchable|) 106944) ((|Factored| . |PartialDifferentialRing|) 106876) ((|ResidueRing| . |CommutativeRing|) T) ((|InnerFiniteField| . |FiniteAlgebraicExtensionField|) 106840) ((|RomanNumeral| . |RealConstant|) T) ((|OrderlyDifferentialPolynomial| . |ConvertibleTo|) NIL) ((|IndexedDirectProductAbelianGroup| . |AbelianMonoid|) T) ((|Pi| . |RealConstant|) T) ((|DistributedMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 106790) ((|DoubleFloat| . |PatternMatchable|) 106769) ((|Divisor| . |AbelianMonoid|) T) ((|PolynomialRing| . |FullyRetractableTo|) 106753) ((|RadixExpansion| . |DifferentialExtension|) 106730) ((|Float| . |RealNumberSystem|) T) ((|HexadecimalExpansion| . |Module|) 106664) ((|MyUnivariatePolynomial| . |AbelianGroup|) T) ((|TaylorSeries| . |Evalable|) 106651) ((|Factored| . |CancellationAbelianMonoid|) T) ((|UnivariateTaylorSeriesCZero| . |CommutativeRing|) 106580) ((|SparseUnivariatePolynomial| . |FiniteAbelianMonoidRing|) 106541) ((|UnivariateLaurentSeries| . |CommutativeRing|) 106447) ((|UnivariateTaylorSeriesCZero| . |RadicalCategory|) 106396) ((|UnivariatePuiseuxSeriesConstructor| . |CancellationAbelianMonoid|) T) ((|OrderedCompletion| . |BasicType|) T) ((|PrimeField| . |GcdDomain|) T) ((|AffineSpace| . |SetCategoryWithDegree|) T) ((|HexadecimalExpansion| . |UniqueFactorizationDomain|) T) ((|RadixExpansion| . |SetCategory|) T) ((|Operator| . |Monoid|) T) ((|U32Vector| . |EltableAggregate|) 106361) ((|Pi| . |GcdDomain|) T) ((|ContinuedFraction| . |PrincipalIdealDomain|) T) ((|RadicalFunctionField| . |Field|) T) ((|SplitHomogeneousDirectProduct| . |CancellationAbelianMonoid|) 106164) ((|PendantTree| . |BasicType|) 106134) ((|DirectProductMatrixModule| . |LeftModule|) 105922) ((|SquareFreeRegularTriangularSet| . |RegularTriangularSetCategory|) 105891) ((|UnivariateLaurentSeriesConstructor| . |SemiGroup|) T) ((|TextFile| . |SetCategory|) T) ((|OrderedDirectProduct| . |BiModule|) 105754) ((|OrdSetInts| . |BasicType|) T) ((|Library| . |EltableAggregate|) 105724) ((|ModMonic| . |FullyLinearlyExplicitRingOver|) 105708) ((|SparseUnivariatePolynomial| . |PolynomialCategory|) 105643) ((|FreeModule1| . |CoercibleTo|) 105617) ((|LinearOrdinaryDifferentialOperator2| . |RetractableTo|) 105461) ((|FreeModule1| . |CancellationAbelianMonoid|) T) ((|NumericalODEProblem| . |BasicType|) T) ((|PAdicInteger| . |BiModule|) 105446) ((|SparseUnivariatePolynomialExpressions| . |TrigonometricFunctionCategory|) 105397) ((|OppositeMonogenicLinearOperator| . |Algebra|) 105354) ((|Asp10| . |Type|) T) ((|Pi| . |AbelianSemiGroup|) T) ((|BinarySearchTree| . |BasicType|) 105324) ((|Pi| . |Field|) T) ((|UnivariatePuiseuxSeriesConstructor| . |Algebra|) 105112) ((|U32Vector| . |Collection|) 105089) ((|Symbol| . |SetCategory|) T) ((|SparseUnivariateLaurentSeries| . |BasicType|) T) ((|PAdicInteger| . |Rng|) T) ((|RectangularMatrix| . |BiModule|) 105068) ((|BinaryExpansion| . |Evalable|) NIL) ((|MultivariatePolynomial| . |LeftOreRing|) 104986) ((|Pi| . |EuclideanDomain|) T) ((|MachineFloat| . |UniqueFactorizationDomain|) T) ((|UnivariateLaurentSeriesConstructor| . |AbelianGroup|) T) ((|PAdicInteger| . |SemiGroup|) T) ((|InnerPrimeField| . |StepThrough|) T) ((|DoubleFloatVector| . |HomogeneousAggregate|) 104959) ((|Color| . |BasicType|) T) ((|BalancedPAdicInteger| . |EntireRing|) T) ((|MyExpression| . |CombinatorialOpsCategory|) T) ((|Polynomial| . |AbelianGroup|) T) ((|EqTable| . |Eltable|) 104938) ((|LieSquareMatrix| . |PartialDifferentialRing|) 104870) ((|BalancedPAdicInteger| . |SemiGroup|) T) ((|TwoDimensionalArray| . |CoercibleTo|) 104821) ((|QuadraticForm| . |AbelianGroup|) T) ((|HomogeneousDirectProduct| . |VectorSpace|) 104788) ((|RealClosure| . |OrderedSet|) T) ((|Complex| . |InnerEvalable|) 104677) ((|OnePointCompletion| . |BasicType|) T) ((|PartialFraction| . |EntireRing|) T) ((|NeitherSparseOrDensePowerSeries| . |PrincipalIdealDomain|) T) ((|InnerPAdicInteger| . |Ring|) T) ((|OrderlyDifferentialVariable| . |RetractableTo|) 104661) ((|UnivariateLaurentSeries| . |ArcHyperbolicFunctionCategory|) 104610) ((|OutputForm| . |SetCategory|) T) ((|Complex| . |ArcTrigonometricFunctionCategory|) 104561) ((|Library| . |Evalable|) 104367) ((|SparseUnivariateSkewPolynomial| . |CoercibleTo|) 104341) ((|MultivariatePolynomial| . |Algebra|) 104104) ((|BalancedPAdicRational| . |OrderedSet|) NIL) ((|DirectProductMatrixModule| . |FullyLinearlyExplicitRingOver|) 104072) ((|PolynomialRing| . |IntegralDomain|) 104039) ((|Float| . |FloatingPointSystem|) T) ((|AffineSpace| . |CoercibleTo|) 104013) ((|UnivariatePuiseuxSeries| . |Algebra|) 103801) ((|OrderedCompletion| . |AbelianSemiGroup|) 103736) ((|Set| . |Type|) T) ((|AntiSymm| . |Monoid|) T) ((|OpenMathErrorKind| . |BasicType|) T) ((|FortranExpression| . |Module|) 103720) ((|HexadecimalExpansion| . |CharacteristicZero|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |EntireRing|) 103659) ((|MachineComplex| . |AbelianSemiGroup|) T) ((|OrderedDirectProduct| . |Algebra|) 103616) ((|MachineComplex| . |AbelianMonoid|) T) ((|FiniteField| . |StepThrough|) T) ((|NewSparseUnivariatePolynomial| . |AbelianMonoidRing|) 103577) ((|DecimalExpansion| . |Field|) T) ((|Integer| . |SemiGroup|) T) ((|Point| . |EltableAggregate|) 103549) ((|HexadecimalExpansion| . |Algebra|) 103483) ((|AlgebraicNumber| . |LeftOreRing|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |CharacteristicNonZero|) 103443) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |IntegralDomain|) T) ((|PrimitiveArray| . |Collection|) 103427) ((|UnivariateTaylorSeriesCZero| . |PartialDifferentialRing|) 103291) ((|InnerSparseUnivariatePowerSeries| . |Monoid|) T) ((|MyUnivariatePolynomial| . |InnerEvalable|) 103201) ((|XPolynomialRing| . |AbelianMonoid|) T) ((|KeyedAccessFile| . |Eltable|) 103174) ((|PoincareBirkhoffWittLyndonBasis| . |SetCategory|) T) ((|RoutinesTable| . |Collection|) 103107) ((|InnerFiniteField| . |SemiGroup|) T) ((|BinaryExpansion| . |OrderedIntegralDomain|) T) ((|OnePointCompletion| . |OrderedAbelianGroup|) 103077) ((|DoubleFloatVector| . |OneDimensionalArrayAggregate|) 103050) ((|U16Vector| . |FiniteLinearAggregate|) 103027) ((|HomogeneousDistributedMultivariatePolynomial| . |Evalable|) 103014) ((|Complex| . |DifferentialExtension|) 102998) ((|HomogeneousDistributedMultivariatePolynomial| . |AbelianMonoid|) T) ((|ModMonic| . |PolynomialCategory|) 102933) ((|U8Vector| . |InnerEvalable|) NIL) ((|GeneralUnivariatePowerSeries| . |HyperbolicFunctionCategory|) 102882) ((|SparseUnivariatePolynomial| . |OrderedSet|) 102853) ((|UnivariateTaylorSeries| . |CharacteristicZero|) 102816) ((|IndexedList| . |CoercibleTo|) 102734) ((|SplittingTree| . |InnerEvalable|) 102596) ((|DoubleFloat| . |TrigonometricFunctionCategory|) T) ((|Table| . |DictionaryOperations|) 102538) ((|MyExpression| . |CharacteristicNonZero|) 102498) ((|MachineInteger| . |OrderedIntegralDomain|) T) ((|OrdinaryDifferentialRing| . |SetCategory|) T) ((|Asp31| . |FortranProgramCategory|) T) ((|LaurentPolynomial| . |EntireRing|) T) ((|InnerAlgebraicNumber| . |EuclideanDomain|) T) ((|LinearOrdinaryDifferentialOperator1| . |CancellationAbelianMonoid|) T) ((|UnivariateTaylorSeries| . |CoercibleTo|) 102472) ((|InnerAlgebraicNumber| . |RetractableTo|) 102395) ((|String| . |Evalable|) NIL) ((|DirectProduct| . |Rng|) 102305) ((|ModuleOperator| . |Ring|) T) ((|NewSparseMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 102263) ((|LyndonWord| . |SetCategory|) T) ((|DirectProductMatrixModule| . |OrderedRing|) 102233) ((|Factored| . |CommutativeRing|) T) ((|OrderedDirectProduct| . |CommutativeRing|) 102199) ((|UnivariatePuiseuxSeries| . |HyperbolicFunctionCategory|) 102148) ((|Equation| . |CoercibleTo|) 101783) ((|PatternMatchResult| . |SetCategory|) T) ((|Asp77| . |FortranMatrixFunctionCategory|) T) ((|IndexedBits| . |LinearAggregate|) 101760) ((|Complex| . |MonogenicAlgebra|) 101708) ((|RadicalFunctionField| . |FullyRetractableTo|) 101679) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |AbelianMonoid|) T) ((|DirectProduct| . |PartialDifferentialRing|) 101583) ((|HashTable| . |Aggregate|) T) ((|Dequeue| . |Evalable|) 101507) ((|OnePointCompletion| . |AbelianSemiGroup|) 101442) ((|IndexedFlexibleArray| . |LinearAggregate|) 101426) ((|MonoidRing| . |AbelianGroup|) T) ((|RadicalFunctionField| . |CharacteristicZero|) 101376) ((|PAdicRational| . |Algebra|) 101300) ((|DecimalExpansion| . |AbelianSemiGroup|) T) ((|ThreeSpace| . |CoercibleTo|) 101274) ((|MyUnivariatePolynomial| . |BasicType|) T) ((|IndexedMatrix| . |Type|) T) ((|MachineFloat| . |Monoid|) T) ((|Integer| . |Ring|) T) ((|InnerPAdicInteger| . |GcdDomain|) T) ((|FiniteFieldNormalBasis| . |StepThrough|) T) ((|MachineInteger| . |EntireRing|) T) ((|UnivariateTaylorSeriesCZero| . |RightModule|) 101107) ((|XPolynomialRing| . |FreeModuleCat|) 101086) ((|SingleInteger| . |UniqueFactorizationDomain|) T) ((|Complex| . |FullyPatternMatchable|) 101070) ((|FiniteFieldExtension| . |DivisionRing|) T) ((|UnivariatePuiseuxSeries| . |TranscendentalFunctionCategory|) 101019) ((|DecimalExpansion| . |CharacteristicNonZero|) NIL) ((|FiniteFieldExtensionByPolynomial| . |FiniteAlgebraicExtensionField|) 101003) ((|List| . |ExtensibleLinearAggregate|) 100987) ((|DoubleFloat| . |Module|) 100941) ((|StochasticDifferential| . |AbelianMonoid|) T) ((|ModularField| . |Algebra|) 100895) ((|BasicOperator| . |BasicType|) T) ((|MachineInteger| . |Module|) 100882) ((|TaylorSeries| . |AbelianMonoid|) T) ((|UnivariateFormalPowerSeries| . |IntegralDomain|) 100849) ((|MachineInteger| . |CombinatorialFunctionCategory|) T) ((|HashTable| . |EltableAggregate|) 100828) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |ExtensionField|) 100741) ((|Partition| . |OrderedAbelianSemiGroup|) T) ((|U16Vector| . |OneDimensionalArrayAggregate|) 100718) ((|IndexedDirectProductObject| . |CoercibleTo|) 100692) ((|Octonion| . |Algebra|) 100676) ((|MoebiusTransform| . |CoercibleTo|) 100650) ((|SparseMultivariatePolynomial| . |EntireRing|) 100536) ((|DistributedMultivariatePolynomial| . |Ring|) T) ((|Vector| . |Evalable|) 100460) ((|PseudoAlgebraicClosureOfFiniteField| . |BasicType|) T) ((|Integer| . |DifferentialRing|) T) ((|Divisor| . |AbelianGroup|) T) ((|SimpleAlgebraicExtension| . |SetCategory|) T) ((|FunctionCalled| . |BasicType|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Monoid|) T) ((|MachineComplex| . |SetCategory|) T) ((|IndexedVector| . |FiniteLinearAggregate|) 100444) ((|RectangularMatrix| . |VectorSpace|) 100411) ((|UnivariateLaurentSeriesConstructor| . |UnivariatePowerSeriesCategory|) 100383) ((|XRecursivePolynomial| . |RetractableTo|) 100345) ((|Plcs| . |CoercibleTo|) 100319) ((|Interval| . |ArcHyperbolicFunctionCategory|) T) ((|XPolynomial| . |Module|) 100276) ((|ThreeDimensionalMatrix| . |BasicType|) 100246) ((|MachineFloat| . |Ring|) T) ((|Magma| . |CoercibleTo|) 100220) ((|BinaryExpansion| . |CoercibleTo|) 100194) ((|SplitHomogeneousDirectProduct| . |OrderedAbelianSemiGroup|) 100118) ((|String| . |InnerEvalable|) NIL) ((|DifferentialSparseMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 100102) ((|TextFile| . |FileCategory|) 100067) ((|IndexedString| . |ConvertibleTo|) NIL) ((|BinaryTree| . |BasicType|) 100037) ((|UnivariatePuiseuxSeries| . |PrincipalIdealDomain|) 100013) ((|PartialFraction| . |UniqueFactorizationDomain|) T) ((|MachineComplex| . |CharacteristicZero|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |OrderedAbelianMonoid|) T) ((|SparseUnivariatePuiseuxSeries| . |RetractableTo|) 99897) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |FieldOfPrimeCharacteristic|) 99788) ((|XRecursivePolynomial| . |LeftModule|) 99762) ((|SparseUnivariatePuiseuxSeries| . |CoercibleTo|) 99736) ((|UnivariateTaylorSeries| . |TrigonometricFunctionCategory|) 99685) ((|DecimalExpansion| . |OrderedCancellationAbelianMonoid|) T) ((|PAdicRational| . |QuotientFieldCategory|) 99652) ((|AffineSpace| . |BasicType|) T) ((|SequentialDifferentialPolynomial| . |PartialDifferentialRing|) 99530) ((|GeneralUnivariatePowerSeries| . |CommutativeRing|) 99436) ((|KeyedAccessFile| . |HomogeneousAggregate|) 99359) ((|MachineComplex| . |EntireRing|) T) ((|LieSquareMatrix| . |FiniteRankNonAssociativeAlgebra|) 99343) ((|IndexedBits| . |SetCategory|) T) ((|IndexedFlexibleArray| . |OneDimensionalArrayAggregate|) 99327) ((|BinaryExpansion| . |OrderedCancellationAbelianMonoid|) T) ((|SingleInteger| . |Ring|) T) ((|MyUnivariatePolynomial| . |PrincipalIdealDomain|) 99303) ((|DecimalExpansion| . |LinearlyExplicitRingOver|) 99280) ((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| . |SetCategory|) T) ((|FiniteField| . |CommutativeRing|) T) ((|PAdicInteger| . |BasicType|) T) ((|LaurentPolynomial| . |CharacteristicNonZero|) 99240) ((|DifferentialSparseMultivariatePolynomial| . |SemiGroup|) T) ((|FiniteFieldCyclicGroup| . |EntireRing|) T) ((|RadixExpansion| . |ConvertibleTo|) 99141) ((|OrdinaryDifferentialRing| . |EntireRing|) 99117) ((|RadicalFunctionField| . |AbelianSemiGroup|) T) ((|EuclideanModularRing| . |BasicType|) T) ((|DecimalExpansion| . |PolynomialFactorizationExplicit|) NIL) ((|Stack| . |HomogeneousAggregate|) 99101) ((|MachineFloat| . |Field|) T) ((|TaylorSeries| . |IntegralDomain|) 99068) ((|SparseUnivariatePolynomial| . |IntegralDomain|) 98931) ((|MachineComplex| . |PatternMatchable|) 98910) ((|SingleInteger| . |BasicType|) T) ((|RectangularMatrix| . |InnerEvalable|) 98829) ((|ArrayStack| . |HomogeneousAggregate|) 98813) ((|PseudoAlgebraicClosureOfRationalNumber| . |AbelianMonoid|) T) ((|Union| . |SetCategory|) T) ((|Bits| . |Eltable|) 98778) ((|FiniteDivisor| . |BasicType|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |ExtensionField|) 98762) ((|FiniteFieldExtension| . |VectorSpace|) 98746) ((|Asp30| . |FortranProgramCategory|) T) ((|DirectProductMatrixModule| . |Finite|) 98721) ((|XPolynomial| . |AbelianSemiGroup|) T) ((|AlgebraicFunctionField| . |AbelianGroup|) T) ((|SparseUnivariateLaurentSeries| . |DifferentialRing|) 98558) ((|Fraction| . |Evalable|) 98517) ((|IndexedDirectProductOrderedAbelianMonoid| . |BasicType|) T) ((|OrdinaryDifferentialRing| . |RightModule|) 98454) ((|NewSparseUnivariatePolynomial| . |IntegralDomain|) 98317) ((|UnivariateLaurentSeriesConstructor| . |PatternMatchable|) 98140) ((|OppositeMonogenicLinearOperator| . |Monoid|) T) ((|AlgebraGivenByStructuralConstants| . |BiModule|) 98119) ((|OrderedVariableList| . |BasicType|) T) ((|UnivariatePuiseuxSeriesConstructor| . |Field|) 98095) ((|RadicalFunctionField| . |CoercibleTo|) 98069) ((|Interval| . |GcdDomain|) T) ((|ContinuedFraction| . |LeftOreRing|) T) ((|LinearOrdinaryDifferentialOperator2| . |CancellationAbelianMonoid|) T) ((|UnivariatePuiseuxSeriesConstructor| . |TrigonometricFunctionCategory|) 98018) ((|SparseTable| . |Dictionary|) 97960) ((|FiniteFieldNormalBasis| . |Algebra|) 97914) ((|Expression| . |GcdDomain|) 97881) ((|DecimalExpansion| . |GcdDomain|) T) ((|DifferentialSparseMultivariatePolynomial| . |CharacteristicZero|) 97844) ((|Library| . |KeyedDictionary|) 97814) ((|DirectProduct| . |VectorSpace|) 97781) ((|IntegerMod| . |BiModule|) 97766) ((|FreeModule1| . |BasicType|) T) ((|GeneralModulePolynomial| . |BasicType|) T) ((|SymmetricPolynomial| . |CommutativeRing|) 97695) ((|Union| . |CoercibleTo|) 97669) ((|SparseUnivariateTaylorSeries| . |RadicalCategory|) 97618) ((|Asp7| . |CoercibleTo|) 97592) ((|NeitherSparseOrDensePowerSeries| . |UniqueFactorizationDomain|) T) ((|Quaternion| . |Ring|) T) ((|Equation| . |Monoid|) 97465) ((|RegularChain| . |PolynomialSetCategory|) 97300) ((|BinarySearchTree| . |SetCategory|) 97270) ((|OrdSetInts| . |OrderedSet|) T) ((|InnerIndexedTwoDimensionalArray| . |HomogeneousAggregate|) 97254) ((|DirectProductMatrixModule| . |OrderedAbelianMonoidSup|) 97212) ((|UnivariateLaurentSeries| . |CharacteristicNonZero|) 97062) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |GcdDomain|) T) ((|ArrayStack| . |BasicType|) 97032) ((|ListMultiDictionary| . |Collection|) 97016) ((|DirectProduct| . |RetractableTo|) 96767) ((|SparseUnivariatePolynomial| . |CharacteristicZero|) 96730) ((|FiniteFieldExtension| . |BasicType|) T) ((|MachineComplex| . |CancellationAbelianMonoid|) T) ((|SparseUnivariateTaylorSeries| . |CoercibleTo|) 96704) ((|PAdicRationalConstructor| . |EuclideanDomain|) T) ((|Asp50| . |CoercibleTo|) 96678) ((|None| . |SetCategory|) T) ((|OrderedFreeMonoid| . |BasicType|) T) ((|Fraction| . |RetractableTo|) 96480) ((|ModMonic| . |AbelianGroup|) T) ((|DirectProductModule| . |CommutativeRing|) 96446) ((|OrdinaryWeightedPolynomials| . |SemiGroup|) T) ((|PAdicRational| . |EntireRing|) T) ((|FiniteFieldNormalBasisExtension| . |CharacteristicZero|) 96409) ((|EqTable| . |Collection|) 96351) ((|File| . |CoercibleTo|) 96325) ((|Asp49| . |Type|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |Ring|) T) ((|OnePointCompletion| . |CancellationAbelianMonoid|) 96260) ((|Library| . |Type|) T) ((|SegmentBinding| . |CoercibleTo|) 96211) ((|SymmetricPolynomial| . |SetCategory|) T) ((|GraphImage| . |BasicType|) T) ((|PartialFraction| . |SetCategory|) T) ((|RomanNumeral| . |IntegralDomain|) T) ((|XRecursivePolynomial| . |AbelianMonoid|) T) ((|InnerTable| . |KeyedDictionary|) 96190) ((|GuessOptionFunctions0| . |CoercibleTo|) 96164) ((|PrimeField| . |Algebra|) 96118) ((|DoubleFloat| . |RadicalCategory|) T) ((|InnerSparseUnivariatePowerSeries| . |CharacteristicNonZero|) 96078) ((|UnivariateLaurentSeries| . |OrderedAbelianMonoid|) NIL) ((|Factored| . |AbelianGroup|) T) ((|Float| . |BasicType|) T) ((|DesingTree| . |Type|) T) ((|UnivariateTaylorSeries| . |PartialDifferentialRing|) 95942) ((|SquareMatrix| . |DifferentialExtension|) 95926) ((|IndexedOneDimensionalArray| . |HomogeneousAggregate|) 95910) ((|InnerTaylorSeries| . |RightModule|) 95871) ((|Float| . |OrderedAbelianGroup|) T) ((|ExponentialExpansion| . |OrderedSet|) NIL) ((|HomogeneousDistributedMultivariatePolynomial| . |GcdDomain|) 95789) ((|SparseMultivariateTaylorSeries| . |SetCategory|) T) ((|Asp4| . |FortranFunctionCategory|) T) ((|MachineComplex| . |LinearlyExplicitRingOver|) 95761) ((|Expression| . |ArcTrigonometricFunctionCategory|) 95728) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |AbelianGroup|) T) ((|OrderedVariableList| . |OrderedSet|) T) ((|DirectProductMatrixModule| . |Monoid|) 95614) ((|HomogeneousDirectProduct| . |CommutativeRing|) 95580) ((|Table| . |InnerEvalable|) 95288) ((|PatternMatchResult| . |CoercibleTo|) 95262) ((|InnerTable| . |Evalable|) 95022) ((|FreeModule| . |AbelianGroup|) T) ((|FreeAbelianGroup| . |Module|) 94999) ((|FlexibleArray| . |Collection|) 94983) ((|SparseUnivariatePolynomial| . |BiModule|) 94685) ((|DirectProduct| . |LinearlyExplicitRingOver|) 94557) ((|UnivariatePolynomial| . |FullyRetractableTo|) 94541) ((|InnerPAdicInteger| . |AbelianGroup|) T) ((|Asp12| . |FortranProgramCategory|) T) ((|String| . |BasicType|) T) ((|PositiveInteger| . |SemiGroup|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |EuclideanDomain|) 94517) ((|PseudoAlgebraicClosureOfRationalNumber| . |IntegralDomain|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |CoercibleTo|) 94491) ((|Float| . |OrderedAbelianMonoid|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |AbelianGroup|) T) ((|PAdicRational| . |LinearlyExplicitRingOver|) 94458) ((|MonoidRing| . |CancellationAbelianMonoid|) T) ((|FreeModule| . |CancellationAbelianMonoid|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 94379) ((|List| . |CoercibleTo|) 94297) ((|DifferentialSparseMultivariatePolynomial| . |AbelianGroup|) T) ((|MakeCachableSet| . |CoercibleTo|) 94258) ((|Product| . |AbelianMonoid|) 93938) ((|UnivariatePuiseuxSeriesConstructor| . |Ring|) T) ((|FramedModule| . |Monoid|) T) ((|ArrayStack| . |Evalable|) 93862) ((|PseudoAlgebraicClosureOfRationalNumber| . |CommutativeRing|) T) ((|DirectProduct| . |DifferentialExtension|) 93830) ((|PendantTree| . |SetCategory|) 93800) ((|SymmetricPolynomial| . |Monoid|) T) ((|NonNegativeInteger| . |OrderedAbelianMonoid|) T) ((|InnerTaylorSeries| . |CancellationAbelianMonoid|) T) ((|SparseUnivariateLaurentSeries| . |ConvertibleTo|) NIL) ((|Equation| . |InnerEvalable|) 93732) ((|DenavitHartenbergMatrix| . |BasicType|) 93702) ((|HexadecimalExpansion| . |StepThrough|) T) ((|Octonion| . |Eltable|) 93655) ((|CharacterClass| . |DictionaryOperations|) 93630) ((|OneDimensionalArray| . |CoercibleTo|) 93548) ((|TwoDimensionalArray| . |Type|) T) ((|BalancedPAdicInteger| . |LeftModule|) 93535) ((|String| . |Type|) T) ((|PAdicRational| . |Monoid|) T) ((|UnivariateLaurentSeries| . |Patternable|) 93465) ((|CharacterClass| . |FiniteSetAggregate|) 93440) ((|ModMonic| . |SetCategory|) T) ((|e04fdfAnnaType| . |NumericalOptimizationCategory|) T) ((|UnivariatePolynomial| . |PatternMatchable|) NIL) ((|NewSparseMultivariatePolynomial| . |CommutativeRing|) 93293) ((|PrimeField| . |AbelianGroup|) T) ((|SquareMatrix| . |Type|) T) ((|SimpleAlgebraicExtension| . |DifferentialRing|) 93187) ((|RectangularMatrix| . |AbelianSemiGroup|) T) ((|DirectProductModule| . |OrderedAbelianSemiGroup|) 93111) ((|CliffordAlgebra| . |VectorSpace|) 93095) ((|RadicalFunctionField| . |PartialDifferentialRing|) 93014) ((|InnerPAdicInteger| . |IntegralDomain|) T) ((|DirectProduct| . |SetCategory|) 92706) ((|SequentialDifferentialPolynomial| . |AbelianMonoid|) T) ((|LinearOrdinaryDifferentialOperator| . |RightModule|) 92690) ((|FiniteFieldNormalBasisExtension| . |EuclideanDomain|) T) ((|UnivariateLaurentSeries| . |OrderedCancellationAbelianMonoid|) NIL) ((|HomogeneousDirectProduct| . |AbelianMonoid|) 92493) ((|FiniteFieldExtension| . |DifferentialRing|) 92468) ((|InnerFiniteField| . |LeftOreRing|) T) ((|d01aqfAnnaType| . |NumericalIntegrationCategory|) T) ((|IntegrationResult| . |CoercibleTo|) 92442) ((|AssociationList| . |EltableAggregate|) 92354) ((|ExponentialOfUnivariatePuiseuxSeries| . |Field|) 92330) ((|MachineComplex| . |FiniteRankAlgebra|) 92254) ((|AlgebraGivenByStructuralConstants| . |Monad|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |OrderedAbelianMonoidSup|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |OrderedAbelianMonoid|) T) ((|Localize| . |OrderedAbelianSemiGroup|) 92216) ((|IndexedDirectProductAbelianMonoid| . |AbelianMonoid|) T) ((|IndexedDirectProductAbelianGroup| . |AbelianGroup|) T) ((|AntiSymm| . |Rng|) T) ((|UnivariateFormalPowerSeries| . |EntireRing|) 92183) ((|Library| . |BagAggregate|) 92116) ((|DecimalExpansion| . |Patternable|) 92093) ((|FiniteFieldExtension| . |RightModule|) 92034) ((|UnivariateSkewPolynomial| . |AbelianSemiGroup|) T) ((|BinaryExpansion| . |ConvertibleTo|) 91935) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |SetCategory|) T) ((|FiniteField| . |AbelianGroup|) T) ((|Vector| . |Type|) T) ((|DirectProductModule| . |EltableAggregate|) 91907) ((|Heap| . |Aggregate|) T) ((|OrderlyDifferentialPolynomial| . |PatternMatchable|) NIL) ((|OrderedVariableList| . |SetCategory|) T) ((|SequentialDifferentialVariable| . |SetCategory|) T) ((|OppositeMonogenicLinearOperator| . |SemiGroup|) T) ((|DifferentialSparseMultivariatePolynomial| . |RetractableTo|) 91674) ((|DesingTree| . |Evalable|) 91598) ((|Fraction| . |StepThrough|) 91568) ((|PAdicRationalConstructor| . |PartialDifferentialRing|) 91500) ((|LaurentPolynomial| . |Module|) 91487) ((|WeightedPolynomials| . |Module|) 91444) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |LeftModule|) 91347) ((|InnerTable| . |Eltable|) 91326) ((|WuWenTsunTriangularSet| . |CoercibleTo|) 91278) ((|DirectProductModule| . |VectorSpace|) 91245) ((|PolynomialIdeals| . |SetCategory|) T) ((|UnivariateFormalPowerSeries| . |Algebra|) 91089) ((|LaurentPolynomial| . |IntegralDomain|) T) ((|MachineComplex| . |FiniteFieldCategory|) NIL) ((|UnivariateTaylorSeries| . |Monoid|) T) ((|OrdinaryDifferentialRing| . |BasicType|) T) ((|DoubleFloat| . |SemiGroup|) T) ((|UnivariateTaylorSeries| . |ArcTrigonometricFunctionCategory|) 91038) ((|PAdicRationalConstructor| . |PatternMatchable|) 90919) ((|RoutinesTable| . |Aggregate|) T) ((|Exit| . |BasicType|) T) ((|U32Vector| . |OneDimensionalArrayAggregate|) 90896) ((|Expression| . |Algebra|) 90758) ((|MachineComplex| . |Eltable|) NIL) ((|d02bhfAnnaType| . |SetCategory|) T) ((|FiniteFieldNormalBasisExtension| . |Rng|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |PartialDifferentialRing|) 90718) ((|Result| . |Eltable|) 90688) ((|InnerTable| . |IndexedAggregate|) 90667) ((|CartesianTensor| . |RetractableTo|) 90651) ((|FiniteFieldNormalBasis| . |IntegralDomain|) T) ((|DoubleFloatMatrix| . |Evalable|) NIL) ((|GeneralUnivariatePowerSeries| . |UnivariatePuiseuxSeriesCategory|) 90635) ((|DistributedMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|PAdicRational| . |OrderedAbelianMonoid|) NIL) ((|InnerSparseUnivariatePowerSeries| . |CoercibleTo|) 90609) ((|FiniteField| . |FieldOfPrimeCharacteristic|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |CommutativeRing|) 90462) ((|SparseUnivariatePolynomialExpressions| . |Evalable|) 90449) ((|RadicalFunctionField| . |EntireRing|) T) ((|TwoDimensionalArray| . |BasicType|) 90419) ((|Product| . |BasicType|) T) ((|DirectProduct| . |OrderedAbelianMonoidSup|) 90377) ((|BinaryTree| . |Evalable|) 90301) ((|DoubleFloat| . |CharacteristicZero|) T) ((|UnivariateTaylorSeriesCZero| . |AbelianGroup|) T) ((|XPolynomialRing| . |CancellationAbelianMonoid|) T) ((|PolynomialRing| . |AbelianGroup|) T) ((|UnivariateTaylorSeries| . |Rng|) T) ((|LaurentPolynomial| . |AbelianMonoid|) T) ((|IndexedDirectProductAbelianGroup| . |SetCategory|) T) ((|AssociationList| . |HomogeneousAggregate|) 90230) ((|UnivariatePuiseuxSeriesConstructor| . |BasicType|) T) ((|AlgebraicFunctionField| . |FieldOfPrimeCharacteristic|) NIL) ((|U8Vector| . |ConvertibleTo|) 90205) ((|GeneralUnivariatePowerSeries| . |EntireRing|) 90144) ((|SimpleAlgebraicExtension| . |GcdDomain|) 90078) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |DivisionRing|) T) ((|IndexedFlexibleArray| . |SetCategory|) 90015) ((|Pi| . |BiModule|) 89942) ((|TwoDimensionalArray| . |HomogeneousAggregate|) 89926) ((|FreeModule1| . |AbelianSemiGroup|) T) ((|LinearOrdinaryDifferentialOperator2| . |LinearOrdinaryDifferentialOperatorCategory|) 89910) ((|UnivariateTaylorSeries| . |SemiGroup|) T) ((|UnivariatePuiseuxSeriesConstructor| . |PartialDifferentialRing|) 89772) ((|U32Matrix| . |Type|) T) ((|IndexedMatrix| . |TwoDimensionalArrayCategory|) 89700) ((|MachineFloat| . |OrderedCancellationAbelianMonoid|) T) ((|FlexibleArray| . |Type|) T) ((|ModuleOperator| . |SemiGroup|) T) ((|OrderlyDifferentialPolynomial| . |DifferentialPolynomialCategory|) 89566) ((|OrderlyDifferentialVariable| . |DifferentialVariableCategory|) 89550) ((|SparseUnivariatePolynomialExpressions| . |Module|) 89290) ((|GenericNonAssociativeAlgebra| . |AbelianSemiGroup|) T) ((|LocalAlgebra| . |OrderedRing|) 89260) ((|GeneralUnivariatePowerSeries| . |CoercibleTo|) 89234) ((|FiniteFieldCyclicGroup| . |DifferentialRing|) T) ((|NumericalPDEProblem| . |SetCategory|) T) ((|UnivariateLaurentSeriesConstructor| . |CancellationAbelianMonoid|) T) ((|NumericalOptimizationProblem| . |BasicType|) T) ((|LieSquareMatrix| . |BiModule|) 89213) ((|Point| . |OneDimensionalArrayAggregate|) 89197) ((|FreeModule1| . |RightModule|) 89181) ((|Quaternion| . |AbelianSemiGroup|) T) ((|BlowUpWithHamburgerNoether| . |BlowUpMethodCategory|) T) ((|OppositeMonogenicLinearOperator| . |RightModule|) 89165) ((|OrdinaryDifferentialRing| . |CoercibleTo|) 89139) ((|Interval| . |HyperbolicFunctionCategory|) T) ((|MoebiusTransform| . |SetCategory|) T) ((|FunctionCalled| . |CoercibleTo|) 89113) ((|ListMultiDictionary| . |Aggregate|) T) ((|e04gcfAnnaType| . |NumericalOptimizationCategory|) T) ((|SplitHomogeneousDirectProduct| . |PartialDifferentialRing|) 89017) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Monoid|) T) ((|RewriteRule| . |Eltable|) 88996) ((|Complex| . |CancellationAbelianMonoid|) T) ((|PAdicRational| . |PrincipalIdealDomain|) T) ((|XDistributedPolynomial| . |Monoid|) T) ((|RuleCalled| . |SetCategory|) T) ((|DirectProduct| . |DifferentialRing|) 88933) ((|HomogeneousDirectProduct| . |BasicType|) 88625) ((|TaylorSeries| . |CharacteristicZero|) 88588) ((|TaylorSeries| . |RightModule|) 88421) ((|InnerPrimeField| . |UniqueFactorizationDomain|) T) ((|Fraction| . |OpenMath|) 88351) ((|SplitHomogeneousDirectProduct| . |Module|) 88280) ((|GeneralPolynomialSet| . |ConvertibleTo|) 88216) ((|IndexedDirectProductAbelianMonoid| . |IndexedDirectProductCategory|) 88195) ((|d01amfAnnaType| . |BasicType|) T) ((|Polynomial| . |PatternMatchable|) 88076) ((|MyExpression| . |BiModule|) 87932) ((|AntiSymm| . |LeftAlgebra|) 87916) ((|PseudoAlgebraicClosureOfFiniteField| . |AbelianSemiGroup|) T) ((|DirectProductMatrixModule| . |EltableAggregate|) 87888) ((|UnivariatePuiseuxSeriesConstructor| . |Module|) 87676) ((|MyUnivariatePolynomial| . |OrderedSet|) 87647) ((|Complex| . |LeftModule|) 87529) ((|Heap| . |PriorityQueueAggregate|) 87513) ((|FiniteFieldNormalBasis| . |EuclideanDomain|) T) ((|IndexedDirectProductAbelianGroup| . |IndexedDirectProductCategory|) 87492) ((|ContinuedFraction| . |GcdDomain|) T) ((|CardinalNumber| . |AbelianMonoid|) T) ((|GeneralSparseTable| . |BasicType|) T) ((|SquareMatrix| . |AbelianMonoid|) T) ((|HomogeneousDirectProduct| . |OrderedCancellationAbelianMonoid|) 87416) ((|Integer| . |OrderedCancellationAbelianMonoid|) T) ((|SingleInteger| . |Algebra|) 87403) ((|SparseUnivariateTaylorSeries| . |CommutativeRing|) 87332) ((|BalancedPAdicInteger| . |PrincipalIdealDomain|) T) ((|UnivariateTaylorSeriesCZero| . |DifferentialRing|) 87269) ((|FiniteFieldExtension| . |CommutativeRing|) T) ((|MyUnivariatePolynomial| . |FiniteAbelianMonoidRing|) 87230) ((|Polynomial| . |InnerEvalable|) 87170) ((|MyExpression| . |GcdDomain|) 87137) ((|Expression| . |ConvertibleTo|) 86915) ((|HomogeneousDistributedMultivariatePolynomial| . |OrderedSet|) 86886) ((|ListMultiDictionary| . |ConvertibleTo|) 86822) ((|FullPartialFractionExpansion| . |CoercibleTo|) 86796) ((|SparseMultivariatePolynomial| . |Rng|) T) ((|NewSparseUnivariatePolynomial| . |LeftOreRing|) 86691) ((|SparseUnivariatePolynomial| . |DifferentialExtension|) 86675) ((|GenericNonAssociativeAlgebra| . |NonAssociativeRng|) T) ((|DirectProductMatrixModule| . |OrderedAbelianMonoid|) 86599) ((|Expression| . |Group|) 86575) ((|HashTable| . |Type|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |OrderedAbelianSemiGroup|) T) ((|InnerFiniteField| . |AbelianMonoid|) T) ((|FreeModule1| . |BiModule|) 86554) ((|IndexedVector| . |Evalable|) 86478) ((|AssociationList| . |Aggregate|) T) ((|SingleInteger| . |RealConstant|) T) ((|Factored| . |FullyEvalableOver|) 86462) ((|SparseUnivariateLaurentSeries| . |CommutativeRing|) 86368) ((|Expression| . |AbelianGroup|) 86170) ((|MonoidRing| . |AbelianSemiGroup|) T) ((|Polynomial| . |SetCategory|) T) ((|Float| . |LeftOreRing|) T) ((|U8Vector| . |CoercibleTo|) 86144) ((|PrimeField| . |StepThrough|) T) ((|FreeAbelianGroup| . |BasicType|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |LeftOreRing|) T) ((|ModularField| . |EntireRing|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |BiModule|) 85895) ((|FileName| . |BasicType|) T) ((|MachineComplex| . |FramedAlgebra|) 85819) ((|SparseUnivariateSkewPolynomial| . |AbelianMonoid|) T) ((|SplitHomogeneousDirectProduct| . |HomogeneousAggregate|) 85803) ((|PAdicRationalConstructor| . |UniqueFactorizationDomain|) T) ((|GeneralUnivariatePowerSeries| . |CancellationAbelianMonoid|) T) ((|InnerPAdicInteger| . |SetCategory|) T) ((|OrderedDirectProduct| . |OrderedAbelianMonoid|) 85727) ((|DataList| . |InnerEvalable|) 85646) ((|DirectProduct| . |AbelianMonoid|) 85449) ((|Float| . |ArcTrigonometricFunctionCategory|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |GcdDomain|) T) ((|FreeNilpotentLie| . |Monad|) T) ((|DecimalExpansion| . |PrincipalIdealDomain|) T) ((|FiniteFieldNormalBasisExtension| . |FieldOfPrimeCharacteristic|) 85380) ((|SparseUnivariatePuiseuxSeries| . |CharacteristicNonZero|) 85340) ((|GeneralTriangularSet| . |BasicType|) T) ((|HexadecimalExpansion| . |Field|) T) ((|UnivariateLaurentSeries| . |AbelianSemiGroup|) T) ((|MachineFloat| . |CancellationAbelianMonoid|) T) ((|UnivariateLaurentSeries| . |StepThrough|) NIL) ((|InnerAlgebraicNumber| . |AbelianGroup|) T) ((|BalancedPAdicRational| . |BasicType|) T) ((|UnivariateLaurentSeriesConstructor| . |PrincipalIdealDomain|) 85316) ((|AssociatedJordanAlgebra| . |AbelianGroup|) T) ((|PartialFraction| . |Field|) T) ((|RadicalFunctionField| . |FiniteRankAlgebra|) 85282) ((|Stack| . |Evalable|) 85206) ((|ScriptFormulaFormat| . |SetCategory|) T) ((|BalancedPAdicInteger| . |Algebra|) 85193) ((|RadicalFunctionField| . |FullyLinearlyExplicitRingOver|) 85164) ((|EuclideanModularRing| . |LeftOreRing|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|SparseMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 85122) ((|EqTable| . |BasicType|) T) ((|SparseMultivariateTaylorSeries| . |RadicalCategory|) 85071) ((|SparseUnivariatePolynomialExpressions| . |Algebra|) 84811) ((|Expression| . |CancellationAbelianMonoid|) 84613) ((|FiniteFieldNormalBasisExtension| . |FiniteAlgebraicExtensionField|) 84597) ((|AssociationList| . |KeyedDictionary|) 84576) ((|LinearOrdinaryDifferentialOperator1| . |SemiGroup|) T) ((|UnivariateTaylorSeries| . |RadicalCategory|) 84525) ((|RegularTriangularSet| . |Aggregate|) T) ((|EuclideanModularRing| . |EuclideanDomain|) T) ((|BinaryExpansion| . |DivisionRing|) T) ((|RectangularMatrix| . |Type|) T) ((|XRecursivePolynomial| . |Rng|) T) ((|GenericNonAssociativeAlgebra| . |AbelianMonoid|) T) ((|InnerSparseUnivariatePowerSeries| . |AbelianMonoidRing|) 84497) ((|FreeAbelianMonoid| . |RetractableTo|) 84481) ((|SparseUnivariatePolynomialExpressions| . |UnivariatePolynomialCategory|) 84465) ((|Result| . |InnerEvalable|) 84215) ((|Table| . |BagAggregate|) 84157) ((|Polynomial| . |Rng|) T) ((|Asp31| . |CoercibleTo|) 84131) ((|InnerFiniteField| . |SetCategory|) T) ((|BinaryExpansion| . |OrderedSet|) T) ((|ModularRing| . |SemiGroup|) T) ((|EuclideanModularRing| . |PrincipalIdealDomain|) T) ((|Pi| . |CharacteristicZero|) T) ((|AssociationList| . |LinearAggregate|) 84073) ((|FiniteField| . |LeftOreRing|) T) ((|Character| . |CoercibleTo|) 84047) ((|KeyedAccessFile| . |Aggregate|) T) ((|SequentialDifferentialPolynomial| . |EntireRing|) 83933) ((|LocalAlgebra| . |SemiGroup|) T) ((|UnivariateFormalPowerSeries| . |CommutativeRing|) 83862) ((|PartialFraction| . |LeftOreRing|) T) ((|Expression| . |BiModule|) 83692) ((|MonoidRing| . |LeftModule|) 83639) ((|UnivariateTaylorSeries| . |AbelianMonoidRing|) 83600) ((|ModuleMonomial| . |SetCategory|) T) ((|MachineComplex| . |SemiGroup|) T) ((|SparseMultivariatePolynomial| . |UniqueFactorizationDomain|) 83550) ((|Variable| . |SetCategory|) T) ((|FortranExpression| . |Evalable|) 83537) ((|UnivariateLaurentSeriesConstructor| . |OrderedCancellationAbelianMonoid|) 83468) ((|ModularRing| . |AbelianSemiGroup|) T) ((|BalancedPAdicRational| . |PolynomialFactorizationExplicit|) NIL) ((|Set| . |HomogeneousAggregate|) 83452) ((|BinaryTournament| . |Aggregate|) T) ((|Heap| . |Evalable|) 83376) ((|SparseUnivariatePolynomial| . |EuclideanDomain|) 83352) ((|RightOpenIntervalRootCharacterization| . |RealRootCharacterizationCategory|) 83331) ((|DataList| . |RecursiveAggregate|) 83315) ((|FractionalIdeal| . |SemiGroup|) T) ((|PAdicRationalConstructor| . |RetractableTo|) 83117) ((|IndexedMatrix| . |Evalable|) 83041) ((|OrderlyDifferentialPolynomial| . |CharacteristicNonZero|) 83001) ((|FractionalIdeal| . |Monoid|) T) ((|Fraction| . |CoercibleTo|) 82975) ((|Divisor| . |FreeAbelianMonoidCategory|) 82947) ((|OrdinaryDifferentialRing| . |AbelianMonoid|) T) ((|ComplexDoubleFloatVector| . |SetCategory|) T) ((|Any| . |CoercibleTo|) 82921) ((|MultivariatePolynomial| . |Rng|) T) ((|UnivariateLaurentSeries| . |LinearlyExplicitRingOver|) 82851) ((|FourierSeries| . |Module|) 82835) ((|UnivariateFormalPowerSeries| . |CharacteristicZero|) 82798) ((|SparseUnivariatePolynomialExpressions| . |UniqueFactorizationDomain|) 82748) ((|GeneralSparseTable| . |CoercibleTo|) 82722) ((|SequentialDifferentialPolynomial| . |PolynomialCategory|) 82593) ((|RoutinesTable| . |DictionaryOperations|) 82526) ((|InputForm| . |SetCategory|) T) ((|FiniteFieldNormalBasis| . |Ring|) T) ((|NonNegativeInteger| . |Monoid|) T) ((|SparseUnivariatePolynomialExpressions| . |LeftModule|) 82423) ((|U16Vector| . |Type|) T) ((|StochasticDifferential| . |CoercibleTo|) 82397) ((|ExponentialOfUnivariatePuiseuxSeries| . |TranscendentalFunctionCategory|) 82346) ((|MachineInteger| . |CancellationAbelianMonoid|) T) ((|DirichletRing| . |EntireRing|) 82312) ((|FiniteFieldNormalBasisExtension| . |VectorSpace|) 82296) ((|DirectProductMatrixModule| . |OrderedSet|) 82220) ((|DistributedMultivariatePolynomial| . |PolynomialCategory|) 82123) ((|ModularField| . |Rng|) T) ((|OrderlyDifferentialPolynomial| . |Module|) 81886) ((|NewSparseUnivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 81870) ((|UnivariatePolynomial| . |DifferentialExtension|) 81854) ((|UnivariateTaylorSeries| . |HyperbolicFunctionCategory|) 81803) ((|OnePointCompletion| . |OrderedAbelianMonoid|) 81773) ((|FullPartialFractionExpansion| . |BasicType|) T) ((|MonoidRing| . |RightModule|) 81730) ((|BalancedPAdicRational| . |Algebra|) 81646) ((|SquareMatrix| . |HomogeneousAggregate|) 81630) ((|SymmetricPolynomial| . |EntireRing|) 81597) ((|UnivariateLaurentSeries| . |RightModule|) 81312) ((|RealClosure| . |Field|) T) ((|InnerFiniteField| . |CancellationAbelianMonoid|) T) ((|PrimeField| . |BiModule|) 81239) ((|StringTable| . |ConvertibleTo|) NIL) ((|PolynomialRing| . |Algebra|) 81083) ((|XPolynomialRing| . |XAlgebra|) 81067) ((|Library| . |SetCategory|) T) ((|Ruleset| . |BasicType|) T) ((|SparseUnivariatePolynomial| . |CoercibleTo|) 81041) ((|XPBWPolynomial| . |RetractableTo|) 80954) ((|PatternMatchListResult| . |SetCategory|) T) ((|Asp7| . |Type|) T) ((|XPBWPolynomial| . |XPolynomialsCat|) 80933) ((|DirectProduct| . |OrderedSet|) 80857) ((|Expression| . |Rng|) 80689) ((|LinearOrdinaryDifferentialOperator1| . |Rng|) T) ((|d02bhfAnnaType| . |BasicType|) T) ((|ResidueRing| . |AbelianGroup|) T) ((|Variable| . |BasicType|) T) ((|ModularField| . |UniqueFactorizationDomain|) T) ((|UnivariatePuiseuxSeriesConstructor| . |CharacteristicZero|) 80652) ((|Asp29| . |CoercibleTo|) 80626) ((|StringTable| . |DictionaryOperations|) 80562) ((|PAdicRationalConstructor| . |CharacteristicNonZero|) 80522) ((|LieSquareMatrix| . |InnerEvalable|) 80441) ((|MachineComplex| . |BasicType|) T) ((|IntegerMod| . |AbelianSemiGroup|) T) ((|Asp7| . |FortranVectorFunctionCategory|) T) ((|LocalAlgebra| . |OrderedAbelianGroup|) 80411) ((|BalancedPAdicInteger| . |CoercibleTo|) 80385) ((|DirectProductMatrixModule| . |BiModule|) 80248) ((|d01ajfAnnaType| . |SetCategory|) T) ((|HexadecimalExpansion| . |PatternMatchable|) 80225) ((|EqTable| . |IndexedAggregate|) 80204) ((|SparseUnivariateLaurentSeries| . |FullyPatternMatchable|) 80128) ((|SparseUnivariatePuiseuxSeries| . |SemiGroup|) T) ((|U8Vector| . |BasicType|) T) ((|MyExpression| . |Ring|) T) ((|InnerPrimeField| . |SemiGroup|) T) ((|DecimalExpansion| . |InnerEvalable|) NIL) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |RightModule|) 80069) ((|GeneralSparseTable| . |HomogeneousAggregate|) 79998) ((|DifferentialSparseMultivariatePolynomial| . |LinearlyExplicitRingOver|) 79914) ((|Operator| . |CharacteristicZero|) 79877) ((|LocalAlgebra| . |BiModule|) 79856) ((|DecimalExpansion| . |OrderedAbelianGroup|) T) ((|MachineFloat| . |FortranMachineTypeCategory|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |EntireRing|) T) ((|CliffordAlgebra| . |BiModule|) 79835) ((|OrderedDirectProduct| . |DirectProductCategory|) 79814) ((|BinaryExpansion| . |OrderedAbelianGroup|) T) ((|SplitHomogeneousDirectProduct| . |VectorSpace|) 79781) ((|UnivariateSkewPolynomial| . |AbelianMonoid|) T) ((|UnivariatePuiseuxSeries| . |UnivariatePowerSeriesCategory|) 79740) ((|DirichletRing| . |Monoid|) T) ((|MachineFloat| . |OrderedSet|) T) ((|BinaryExpansion| . |Monoid|) T) ((|Multiset| . |Evalable|) 79664) ((|d01fcfAnnaType| . |SetCategory|) T) ((|BalancedPAdicRational| . |CommutativeRing|) T) ((|SquareMatrix| . |RetractableTo|) 79508) ((|SparseMultivariateTaylorSeries| . |AbelianGroup|) T) ((|InnerFiniteField| . |UniqueFactorizationDomain|) T) ((|SingleInteger| . |ConvertibleTo|) 79389) ((|e04ucfAnnaType| . |NumericalOptimizationCategory|) T) ((|SparseUnivariatePolynomial| . |Algebra|) 79129) ((|Asp73| . |FortranVectorFunctionCategory|) T) ((|FiniteFieldCyclicGroupExtension| . |Rng|) T) ((|Complex| . |UniqueFactorizationDomain|) 78975) ((|InfinitlyClosePoint| . |SetCategoryWithDegree|) T) ((|UnivariateTaylorSeriesCZero| . |CancellationAbelianMonoid|) T) ((|OrderedCompletion| . |OrderedCancellationAbelianMonoid|) 78945) ((|SparseUnivariatePolynomial| . |AbelianMonoidRing|) 78906) ((|HexadecimalExpansion| . |SemiGroup|) T) ((|Character| . |SetCategory|) T) ((|NumericalOptimizationProblem| . |CoercibleTo|) 78880) ((|BalancedPAdicInteger| . |Rng|) T) ((|FiniteField| . |SetCategory|) T) ((|ProjectivePlane| . |ProjectiveSpaceCategory|) 78864) ((|AffinePlane| . |AffineSpaceCategory|) 78848) ((|SparseUnivariateTaylorSeries| . |PowerSeriesCategory|) 78783) ((|IndexedDirectProductObject| . |IndexedDirectProductCategory|) 78762) ((|IndexedFlexibleArray| . |Aggregate|) T) ((|FlexibleArray| . |IndexedAggregate|) 78734) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |CharacteristicNonZero|) 78665) ((|PlacesOverPseudoAlgebraicClosureOfFiniteField| . |CoercibleTo|) 78639) ((|DirichletRing| . |CommutativeRing|) 78605) ((|HexadecimalExpansion| . |BasicType|) T) ((|Complex| . |Ring|) T) ((|MultivariatePolynomial| . |FullyRetractableTo|) 78589) ((|IndexedDirectProductObject| . |BasicType|) T) ((|BalancedPAdicRational| . |FullyPatternMatchable|) 78548) ((|Integer| . |OrderedIntegralDomain|) T) ((|StringTable| . |CoercibleTo|) 78522) ((|SymmetricPolynomial| . |CancellationAbelianMonoid|) T) ((|WeightedPolynomials| . |BasicType|) T) ((|FiniteFieldCyclicGroupExtension| . |Finite|) 78497) ((|SequentialDifferentialVariable| . |CoercibleTo|) 78471) ((|DenavitHartenbergMatrix| . |CoercibleTo|) 78422) ((|PseudoAlgebraicClosureOfFiniteField| . |DivisionRing|) T) ((|WuWenTsunTriangularSet| . |Evalable|) 78346) ((|Float| . |CancellationAbelianMonoid|) T) ((|EqTable| . |Type|) T) ((|MachineComplex| . |RadicalCategory|) NIL) ((|SingleInteger| . |CancellationAbelianMonoid|) T) ((|SubSpaceComponentProperty| . |SetCategory|) T) ((|FiniteFieldExtensionByPolynomial| . |Field|) T) ((|MachineComplex| . |Finite|) NIL) ((|FreeAbelianMonoid| . |SetCategory|) T) ((|PAdicRational| . |DifferentialRing|) NIL) ((|WuWenTsunTriangularSet| . |ConvertibleTo|) 78282) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |BasicType|) T) ((|OnePointCompletion| . |RetractableTo|) 78126) ((|Fraction| . |Monoid|) T) ((|Asp77| . |FortranProgramCategory|) T) ((|Asp55| . |FortranProgramCategory|) T) ((|Asp33| . |FortranProgramCategory|) T) ((|Fraction| . |OrderedRing|) 78086) ((|UnivariateFormalPowerSeries| . |AbelianMonoid|) T) ((|PAdicRationalConstructor| . |OrderedAbelianGroup|) 78046) ((|Fraction| . |CommutativeRing|) T) ((|BinaryFile| . |SetCategory|) T) ((|InnerFiniteField| . |VectorSpace|) 78010) ((|StochasticDifferential| . |SetCategory|) T) ((|FourierSeries| . |AbelianMonoid|) T) ((|EuclideanModularRing| . |Monoid|) T) ((|Complex| . |Algebra|) 77768) ((|Symbol| . |BasicType|) T) ((|ContinuedFraction| . |CancellationAbelianMonoid|) T) ((|RealClosure| . |OrderedAbelianMonoid|) T) ((|Asp10| . |FortranVectorFunctionCategory|) T) ((|BinaryExpansion| . |PatternMatchable|) 77745) ((|RomanNumeral| . |OrderedIntegralDomain|) T) ((|HashTable| . |Evalable|) 77505) ((|DistributedMultivariatePolynomial| . |Algebra|) 77268) ((|AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| . |SetCategory|) T) ((|Fraction| . |RightModule|) 77209) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |CoercibleTo|) 77183) ((|IndexedBits| . |EltableAggregate|) 77148) ((|DirectProductModule| . |OrderedAbelianMonoid|) 77072) ((|FramedModule| . |SetCategory|) T) ((|ModMonic| . |AbelianMonoid|) T) ((|SplittingNode| . |SetCategory|) T) ((|SymmetricPolynomial| . |BiModule|) 76873) ((|ModMonic| . |Evalable|) 76860) ((|InnerFreeAbelianMonoid| . |BasicType|) T) ((|U8Vector| . |HomogeneousAggregate|) 76837) ((|UnivariateLaurentSeriesConstructor| . |PowerSeriesCategory|) 76783) ((|Bits| . |FiniteLinearAggregate|) 76760) ((|InnerAlgebraicNumber| . |CoercibleTo|) 76734) ((|Quaternion| . |SetCategory|) T) ((|FiniteFieldCyclicGroup| . |CancellationAbelianMonoid|) T) ((|UnivariatePuiseuxSeriesConstructor| . |Rng|) T) ((|Interval| . |TranscendentalFunctionCategory|) T) ((|OrderlyDifferentialPolynomial| . |DifferentialRing|) 76699) ((|UnivariatePolynomial| . |LeftOreRing|) 76594) ((|SingleInteger| . |OrderedRing|) T) ((|SingleInteger| . |LeftModule|) 76581) ((|OutputForm| . |CoercibleTo|) 76555) ((|SquareFreeRegularTriangularSet| . |Aggregate|) T) ((|UnivariatePolynomial| . |RetractableTo|) 76365) ((|SparseMultivariatePolynomial| . |CharacteristicNonZero|) 76325) ((|SparseUnivariateTaylorSeries| . |ArcTrigonometricFunctionCategory|) 76274) ((|NewSparseMultivariatePolynomial| . |GcdDomain|) 76192) ((|e04jafAnnaType| . |NumericalOptimizationCategory|) T) ((|MonoidRing| . |AbelianMonoid|) T) ((|DifferentialSparseMultivariatePolynomial| . |BiModule|) 75917) ((|FiniteFieldNormalBasisExtension| . |AbelianMonoid|) T) ((|FiniteFieldExtensionByPolynomial| . |LeftOreRing|) T) ((|UnivariatePuiseuxSeriesConstructor| . |AbelianGroup|) T) ((|UnivariateLaurentSeriesConstructor| . |CommutativeRing|) 75823) ((|MyExpression| . |Evalable|) 75810) ((|Stream| . |ConvertibleTo|) 75746) ((|ContinuedFraction| . |Ring|) T) ((|GeneralUnivariatePowerSeries| . |Monoid|) T) ((|SingleInteger| . |Logic|) T) ((|d01amfAnnaType| . |NumericalIntegrationCategory|) T) ((|CardinalNumber| . |AbelianSemiGroup|) T) ((|e04ucfAnnaType| . |BasicType|) T) ((|SequentialDifferentialPolynomial| . |Module|) 75509) ((|MultivariatePolynomial| . |FiniteAbelianMonoidRing|) 75443) ((|LieExponentials| . |BasicType|) T) ((|PrimitiveArray| . |Type|) T) ((|RadixExpansion| . |LeftModule|) 75377) ((|FreeNilpotentLie| . |Module|) 75361) ((|Expression| . |CombinatorialFunctionCategory|) 75328) ((|d01akfAnnaType| . |BasicType|) T) ((|WuWenTsunTriangularSet| . |HomogeneousAggregate|) 75312) ((|SparseUnivariatePolynomial| . |LeftOreRing|) 75207) ((|U16Matrix| . |HomogeneousAggregate|) 75184) ((|SparseUnivariateLaurentSeries| . |FullyLinearlyExplicitRingOver|) 75108) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Module|) 75049) ((|Integer| . |CombinatorialFunctionCategory|) T) ((|d01aqfAnnaType| . |CoercibleTo|) 75023) ((|HashTable| . |TableAggregate|) 75002) ((|SparseUnivariatePolynomialExpressions| . |EuclideanDomain|) 74978) ((|ModularField| . |BasicType|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |PrincipalIdealDomain|) T) ((|FiniteFieldCyclicGroup| . |DivisionRing|) T) ((|EuclideanModularRing| . |EntireRing|) T) ((|IndexedDirectProductAbelianGroup| . |BasicType|) T) ((|GeneralSparseTable| . |BagAggregate|) 74920) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |CharacteristicZero|) T) ((|Stack| . |CoercibleTo|) 74871) ((|SparseUnivariateTaylorSeries| . |SetCategory|) T) ((|MyExpression| . |BasicType|) T) ((|InnerPrimeField| . |FiniteAlgebraicExtensionField|) 74858) ((|PAdicInteger| . |LeftModule|) 74845) ((|FiniteFieldCyclicGroupExtension| . |ExtensionField|) 74829) ((|FiniteFieldCyclicGroup| . |Field|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |Algebra|) 74783) ((|IntegerMod| . |CoercibleTo|) 74757) ((|BalancedBinaryTree| . |Aggregate|) T) ((|MachineComplex| . |Evalable|) NIL) ((|DirectProductMatrixModule| . |DifferentialRing|) 74694) ((|FullPartialFractionExpansion| . |SetCategory|) T) ((|LaurentPolynomial| . |RetractableTo|) 74525) ((|OrderedCompletion| . |AbelianMonoid|) 74460) ((|LieSquareMatrix| . |Monoid|) T) ((|InputForm| . |ConvertibleTo|) 74433) ((|LinearOrdinaryDifferentialOperator| . |Algebra|) 74390) ((|IntegrationResult| . |RightModule|) 74354) ((|Fraction| . |LinearlyExplicitRingOver|) 74270) ((|UnivariateLaurentSeries| . |OrderedSet|) NIL) ((|ModularRing| . |SetCategory|) T) ((|FiniteFieldCyclicGroupExtension| . |Algebra|) 74224) ((|ContinuedFraction| . |UniqueFactorizationDomain|) T) ((|PAdicRationalConstructor| . |Type|) T) ((|UnivariateLaurentSeriesConstructor| . |ArcTrigonometricFunctionCategory|) 74173) ((|Product| . |OrderedSet|) 74017) ((|AssociatedLieAlgebra| . |NonAssociativeRng|) T) ((|BinaryTournament| . |CoercibleTo|) 73968) ((|BinaryExpansion| . |AbelianGroup|) T) ((|CliffordAlgebra| . |CancellationAbelianMonoid|) T) ((|PatternMatchListResult| . |BasicType|) T) ((|ModMonic| . |Monoid|) T) ((|Factored| . |DifferentialRing|) 73933) ((|RomanNumeral| . |Module|) 73920) ((|MonoidRing| . |Monoid|) T) ((|UnivariateFormalPowerSeries| . |PartialDifferentialRing|) 73784) ((|OrderedCompletion| . |Ring|) 73754) ((|FiniteFieldCyclicGroupExtension| . |FiniteAlgebraicExtensionField|) 73738) ((|MultivariatePolynomial| . |Monoid|) T) ((|HashTable| . |IndexedAggregate|) 73717) ((|AlgebraicFunctionField| . |GcdDomain|) T) ((|Pi| . |Rng|) T) ((|d01asfAnnaType| . |SetCategory|) T) ((|UnivariateLaurentSeries| . |RadicalCategory|) 73666) ((|UnivariateLaurentSeries| . |ArcTrigonometricFunctionCategory|) 73615) ((|InnerAlgebraicNumber| . |GcdDomain|) T) ((|MyUnivariatePolynomial| . |CommutativeRing|) 73445) ((|U32Vector| . |OrderedSet|) T) ((|d01apfAnnaType| . |CoercibleTo|) 73419) ((|DifferentialSparseMultivariatePolynomial| . |EntireRing|) 73305) ((|MultivariatePolynomial| . |AbelianMonoidRing|) 73239) ((|Point| . |SetCategory|) 73176) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Rng|) T) ((|AlgebraicFunctionField| . |Rng|) T) ((|FiniteFieldCyclicGroupExtension| . |CharacteristicNonZero|) 73107) ((|SparseMultivariatePolynomial| . |BiModule|) 72832) ((|ExponentialOfUnivariatePuiseuxSeries| . |CommutativeRing|) 72738) ((|InnerTaylorSeries| . |SetCategory|) T) ((|XPolynomial| . |SetCategory|) T) ((|NonNegativeInteger| . |AbelianMonoid|) T) ((|SparseUnivariatePolynomial| . |PartialDifferentialRing|) 72636) ((|GeneralDistributedMultivariatePolynomial| . |Module|) 72399) ((|FiniteField| . |DivisionRing|) T) ((|HexadecimalExpansion| . |FullyEvalableOver|) 72376) ((|XDistributedPolynomial| . |RetractableTo|) 72338) ((|GeneralDistributedMultivariatePolynomial| . |UniqueFactorizationDomain|) 72288) ((|Asp77| . |Type|) T) ((|Asp55| . |Type|) T) ((|IntegerMod| . |Finite|) T) ((|Asp33| . |Type|) T) ((|RoutinesTable| . |CoercibleTo|) 72262) ((|UnivariateLaurentSeries| . |CharacteristicZero|) 72118) ((|IndexedOneDimensionalArray| . |ConvertibleTo|) 72054) ((|NonNegativeInteger| . |SetCategory|) T) ((|MachineInteger| . |SetCategory|) T) ((|Expression| . |EntireRing|) 72021) ((|Interval| . |EntireRing|) T) ((|ComplexDoubleFloatMatrix| . |TwoDimensionalArrayCategory|) 71924) ((|DenavitHartenbergMatrix| . |Aggregate|) T) ((|DoubleFloat| . |Algebra|) 71878) ((|InnerPrimeField| . |ExtensionField|) 71865) ((|UnivariateLaurentSeriesConstructor| . |ArcHyperbolicFunctionCategory|) 71814) ((|MyExpression| . |Type|) T) ((|SequentialDifferentialPolynomial| . |FiniteAbelianMonoidRing|) 71731) ((|IntegerMod| . |Monoid|) T) ((|InputForm| . |BasicType|) T) ((|RectangularMatrix| . |BasicType|) T) ((|BalancedBinaryTree| . |SetCategory|) 71701) ((|ThreeDimensionalViewport| . |SetCategory|) T) ((|RadixExpansion| . |OrderedRing|) T) ((|UnivariateSkewPolynomial| . |AbelianGroup|) T) ((|PAdicRational| . |StepThrough|) NIL) ((|PartialFraction| . |Ring|) T) ((|DirectProduct| . |Monoid|) 71587) ((|Quaternion| . |CharacteristicNonZero|) 71547) ((|MachineInteger| . |RetractableTo|) 71524) ((|UnivariateFormalPowerSeries| . |UnivariatePowerSeriesCategory|) 71485) ((|BalancedPAdicRational| . |PartialDifferentialRing|) NIL) ((|AlgebraicNumber| . |OrderedSet|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |DifferentialRing|) 71460) ((|OrderedDirectProduct| . |Evalable|) 71384) ((|RegularChain| . |TriangularSetCategory|) 71219) ((|MachineFloat| . |AbelianGroup|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |BiModule|) 70969) ((|InnerFiniteField| . |IntegralDomain|) T) ((|Asp31| . |FortranVectorFunctionCategory|) T) ((|DataList| . |FiniteLinearAggregate|) 70953) ((|XRecursivePolynomial| . |XAlgebra|) 70937) ((|AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| . |SetCategoryWithDegree|) T) ((|RealClosure| . |IntegralDomain|) T) ((|PAdicInteger| . |Ring|) T) ((|BalancedPAdicRational| . |ConvertibleTo|) NIL) ((|DataList| . |ConvertibleTo|) 70873) ((|UnivariatePuiseuxSeriesConstructor| . |AbelianMonoidRing|) 70832) ((|OrdinaryWeightedPolynomials| . |Rng|) T) ((|Asp74| . |Type|) T) ((|IndexedList| . |Eltable|) 70804) ((|DeRhamComplex| . |CoercibleTo|) 70778) ((|ContinuedFraction| . |DivisionRing|) T) ((|InnerPrimeField| . |Ring|) T) ((|FourierSeries| . |CancellationAbelianMonoid|) T) ((|InnerFreeAbelianMonoid| . |CancellationAbelianMonoid|) T) ((|Dequeue| . |StackAggregate|) 70762) ((|Pi| . |SemiGroup|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |LeftOreRing|) 70738) ((|BalancedPAdicInteger| . |SetCategory|) T) ((|BinaryTournament| . |BinaryTreeCategory|) 70722) ((|DirectProductMatrixModule| . |SetCategory|) T) ((|Point| . |CoercibleTo|) 70640) ((|HashTable| . |ConvertibleTo|) NIL) ((|PAdicRational| . |CancellationAbelianMonoid|) T) ((|DecimalExpansion| . |Rng|) T) ((|MathMLFormat| . |BasicType|) T) ((|Integer| . |OrderedRing|) T) ((|NewSparseUnivariatePolynomial| . |PartialDifferentialRing|) 70538) ((|SequentialDifferentialPolynomial| . |CoercibleTo|) 70512) ((|IndexedTwoDimensionalArray| . |BasicType|) 70482) ((|CliffordAlgebra| . |BasicType|) T) ((|DoubleFloat| . |Ring|) T) ((|GeneralPolynomialSet| . |Collection|) 70466) ((|InnerFiniteField| . |BasicType|) T) ((|ModMonic| . |LeftModule|) 70363) ((|IndexedOneDimensionalArray| . |OrderedSet|) 70334) ((|MyExpression| . |FullyPatternMatchable|) 70318) ((|BlowUpWithQuadTrans| . |BasicType|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |BasicType|) T) ((|d01apfAnnaType| . |SetCategory|) T) ((|PAdicRationalConstructor| . |OrderedAbelianMonoid|) 70278) ((|RectangularMatrix| . |AbelianGroup|) T) ((|HomogeneousDirectProduct| . |Type|) T) ((|TaylorSeries| . |CharacteristicNonZero|) 70238) ((|BalancedPAdicInteger| . |IntegralDomain|) T) ((|DistributedMultivariatePolynomial| . |LinearlyExplicitRingOver|) 70154) ((|Integer| . |CommutativeRing|) T) ((|FreeNilpotentLie| . |SetCategory|) T) ((|SingletonAsOrderedSet| . |OrderedSet|) T) ((|GeneralDistributedMultivariatePolynomial| . |ConvertibleTo|) 69932) ((|MyUnivariatePolynomial| . |DifferentialExtension|) 69916) ((|FreeAbelianGroup| . |SetCategory|) T) ((|Pi| . |EntireRing|) T) ((|FreeModule| . |BasicType|) T) ((|UnivariatePuiseuxSeriesConstructor| . |LeftModule|) 69785) ((|SparseUnivariateLaurentSeries| . |EntireRing|) 69724) ((|SparseUnivariatePolynomial| . |PolynomialFactorizationExplicit|) 69674) ((|MyExpression| . |LinearlyExplicitRingOver|) 69546) ((|MyUnivariatePolynomial| . |UniqueFactorizationDomain|) 69496) ((|Automorphism| . |Monoid|) T) ((|SparseUnivariateLaurentSeries| . |StepThrough|) NIL) ((|MachineInteger| . |PatternMatchable|) 69473) ((|MyUnivariatePolynomial| . |CharacteristicNonZero|) 69433) ((|InnerTable| . |TableAggregate|) 69412) ((|NeitherSparseOrDensePowerSeries| . |AbelianMonoidRing|) 69384) ((|IndexedFlexibleArray| . |BasicType|) 69321) ((|d01gbfAnnaType| . |CoercibleTo|) 69295) ((|U8Vector| . |Collection|) 69272) ((|NewSparseMultivariatePolynomial| . |Monoid|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |DifferentialRing|) 69247) ((|FiniteFieldNormalBasis| . |FiniteAlgebraicExtensionField|) 69216) ((|SuchThat| . |CoercibleTo|) 69190) ((|RegularChain| . |Evalable|) 68954) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |SemiGroup|) T) ((|NeitherSparseOrDensePowerSeries| . |Type|) T) ((|Localize| . |RightModule|) 68938) ((|DoubleFloat| . |Rng|) T) ((|SparseUnivariatePolynomial| . |SemiGroup|) T) ((|MachineInteger| . |IntegralDomain|) T) ((|InnerSparseUnivariatePowerSeries| . |AbelianSemiGroup|) T) ((|ListMultiDictionary| . |DictionaryOperations|) 68922) ((|RealClosure| . |LeftOreRing|) T) ((|SparseUnivariatePolynomialExpressions| . |CommutativeRing|) 68752) ((|FiniteFieldNormalBasisExtension| . |CoercibleTo|) 68726) ((|Matrix| . |Aggregate|) T) ((|Queue| . |Evalable|) 68650) ((|AlgebraicFunctionField| . |Field|) T) ((|Asp10| . |CoercibleTo|) 68624) ((|FortranExpression| . |AbelianMonoid|) T) ((|PrimeField| . |CoercibleTo|) 68598) ((|Float| . |RadicalCategory|) T) ((|U16Vector| . |BasicType|) T) ((|AlgebraicNumber| . |AlgebraicallyClosedField|) T) ((|SparseTable| . |DictionaryOperations|) 68540) ((|SparseMultivariatePolynomial| . |LinearlyExplicitRingOver|) 68456) ((|TaylorSeries| . |Ring|) T) ((|PAdicRationalConstructor| . |InnerEvalable|) 68345) ((|FreeNilpotentLie| . |AbelianMonoid|) T) ((|UnivariateLaurentSeriesConstructor| . |PolynomialFactorizationExplicit|) 68266) ((|FlexibleArray| . |Evalable|) 68190) ((|MachineFloat| . |SetCategory|) T) ((|ThreeDimensionalMatrix| . |CoercibleTo|) 68141) ((|ResidueRing| . |SemiGroup|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |ArcTrigonometricFunctionCategory|) 68090) ((|ComplexDoubleFloatMatrix| . |SetCategory|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |AbelianSemiGroup|) T) ((|RealClosure| . |EntireRing|) T) ((|Localize| . |SetCategory|) T) ((|OrderedDirectProduct| . |BasicType|) 67782) ((|PAdicRational| . |AbelianGroup|) T) ((|IndexedVector| . |SetCategory|) 67719) ((|BalancedBinaryTree| . |Type|) T) ((|LieExponentials| . |Monoid|) T) ((|SparseUnivariatePuiseuxSeries| . |Field|) 67695) ((|Equation| . |SemiGroup|) 67541) ((|PAdicRationalConstructor| . |Evalable|) 67500) ((|AntiSymm| . |CoercibleTo|) 67474) ((|InnerAlgebraicNumber| . |ExpressionSpace|) T) ((|FiniteFieldCyclicGroup| . |AbelianMonoid|) T) ((|Operator| . |Algebra|) 67431) ((|AlgebraicFunctionField| . |AbelianMonoid|) T) ((|Expression| . |ElementaryFunctionCategory|) 67398) ((|GeneralSparseTable| . |Aggregate|) T) ((|GeneralDistributedMultivariatePolynomial| . |InnerEvalable|) 67302) ((|U16Matrix| . |Evalable|) NIL) ((|XPBWPolynomial| . |XAlgebra|) 67286) ((|AlgebraicFunctionField| . |Algebra|) 67214) ((|BinarySearchTree| . |Type|) T) ((|LiePolynomial| . |BasicType|) T) ((|None| . |CoercibleTo|) 67188) ((|HomogeneousDirectProduct| . |OrderedAbelianGroup|) 67158) ((|DirectProductMatrixModule| . |FullyRetractableTo|) 67119) ((|PartialFraction| . |BiModule|) 67028) ((|OrdinaryDifferentialRing| . |SemiGroup|) T) ((|SparseUnivariatePolynomialExpressions| . |EntireRing|) 66891) ((|MachineComplex| . |MonogenicAlgebra|) 66815) ((|MyExpression| . |RetractableTo|) 66414) ((|NewSparseUnivariatePolynomial| . |Rng|) T) ((|SparseUnivariatePolynomialExpressions| . |Rng|) T) ((|FiniteField| . |CancellationAbelianMonoid|) T) ((|SimpleCell| . |CoercibleTo|) 66388) ((|SparseMultivariateTaylorSeries| . |SemiGroup|) T) ((|LocalAlgebra| . |AbelianMonoid|) T) ((|GeneralUnivariatePowerSeries| . |LeftModule|) 66257) ((|Float| . |PatternMatchable|) 66236) ((|OrderedVariableList| . |Finite|) T) ((|e04ucfAnnaType| . |CoercibleTo|) 66210) ((|DecimalExpansion| . |RetractableTo|) 66154) ((|OppositeMonogenicLinearOperator| . |CoercibleTo|) 66128) ((|FreeGroup| . |Monoid|) T) ((|FreeAbelianGroup| . |AbelianMonoid|) T) ((|AssociationList| . |Collection|) 66070) ((|DifferentialSparseMultivariatePolynomial| . |UniqueFactorizationDomain|) 66020) ((|Fraction| . |LeftModule|) 65961) ((|GeneralPolynomialSet| . |BasicType|) T) ((|InnerPAdicInteger| . |BasicType|) T) ((|SparseUnivariatePolynomial| . |AbelianMonoid|) T) ((|Point| . |LinearAggregate|) 65945) ((|PseudoAlgebraicClosureOfFiniteField| . |CoercibleTo|) 65919) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Monoid|) T) ((|EuclideanModularRing| . |Ring|) T) ((|LieSquareMatrix| . |RightModule|) 65903) ((|DecimalExpansion| . |LeftOreRing|) T) ((|LocalAlgebra| . |Ring|) T) ((|InnerTaylorSeries| . |Ring|) T) ((|DirectProductModule| . |BasicType|) T) ((|GeneralSparseTable| . |ConvertibleTo|) NIL) ((|AlgebraicNumber| . |BiModule|) 65830) ((|IndexedDirectProductOrderedAbelianMonoid| . |AbelianSemiGroup|) T) ((|Reference| . |SetCategory|) 65800) ((|UnivariateLaurentSeriesConstructor| . |RetractableTo|) 65515) ((|e04nafAnnaType| . |SetCategory|) T) ((|ExponentialExpansion| . |BiModule|) 65286) ((|DistributedMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 65270) ((|Stack| . |Aggregate|) T) ((|DirectProduct| . |Eltable|) 65242) ((|DataList| . |UnaryRecursiveAggregate|) 65226) ((|PolynomialRing| . |EntireRing|) 65193) ((|MachineFloat| . |AbelianMonoid|) T) ((|IndexedMatrix| . |HomogeneousAggregate|) 65177) ((|BinaryExpansion| . |SemiGroup|) T) ((|RadicalFunctionField| . |FramedAlgebra|) 65143) ((|InnerTaylorSeries| . |Module|) 65104) ((|EuclideanModularRing| . |Algebra|) 65091) ((|RuleCalled| . |BasicType|) T) ((|DistributedMultivariatePolynomial| . |PartialDifferentialRing|) 65051) ((|RadixExpansion| . |StepThrough|) T) ((|IndexedList| . |Type|) T) ((|PrimeField| . |Finite|) T) ((|FreeAbelianGroup| . |FreeAbelianMonoidCategory|) 65023) ((|SingleInteger| . |Rng|) T) ((|SparseUnivariatePolynomial| . |StepThrough|) 64993) ((|SparseUnivariatePolynomialExpressions| . |RetractableTo|) 64803) ((|PAdicInteger| . |Module|) 64790) ((|UnivariateLaurentSeries| . |AbelianMonoid|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |FullyRetractableTo|) 64774) ((|Complex| . |DifferentialRing|) 64697) ((|ModMonic| . |LinearlyExplicitRingOver|) 64613) ((|SparseUnivariateLaurentSeries| . |CharacteristicZero|) 64463) ((|UnivariateLaurentSeriesConstructor| . |DifferentialExtension|) 64430) ((|Expression| . |Patternable|) 64414) ((|ExponentialOfUnivariatePuiseuxSeries| . |DifferentialRing|) 64349) ((|MachineFloat| . |RealConstant|) T) ((|MultivariatePolynomial| . |BasicType|) T) ((|SplittingTree| . |CoercibleTo|) 64323) ((|DecimalExpansion| . |Module|) 64257) ((|NeitherSparseOrDensePowerSeries| . |GcdDomain|) T) ((|ComplexDoubleFloatMatrix| . |Evalable|) NIL) ((|UnivariatePolynomial| . |SetCategory|) T) ((|RomanNumeral| . |OrderedCancellationAbelianMonoid|) T) ((|DifferentialSparseMultivariatePolynomial| . |SetCategory|) T) ((|SequentialDifferentialPolynomial| . |LeftModule|) 64154) ((|CliffordAlgebra| . |RightModule|) 64138) ((|FiniteFieldCyclicGroupExtension| . |GcdDomain|) T) ((|InnerAlgebraicNumber| . |LeftModule|) 64092) ((|AlgebraicNumber| . |RealConstant|) T) ((|GeneralDistributedMultivariatePolynomial| . |AbelianMonoid|) T) ((|IndexedExponents| . |SetCategory|) T) ((|PAdicRational| . |SetCategory|) T) ((|ModularField| . |LeftOreRing|) T) ((|Interval| . |AbelianSemiGroup|) T) ((|MachineComplex| . |DivisionRing|) T) ((|FreeNilpotentLie| . |CancellationAbelianMonoid|) T) ((|ExponentialExpansion| . |FullyPatternMatchable|) 64007) ((|AlgebraicFunctionField| . |FiniteFieldCategory|) NIL) ((|PoincareBirkhoffWittLyndonBasis| . |CoercibleTo|) 63981) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |SetCategory|) T) ((|AssociationList| . |OrderedSet|) NIL) ((|FiniteField| . |Module|) 63907) ((|UnivariateLaurentSeries| . |ConvertibleTo|) NIL) ((|FiniteField| . |RetractableTo|) 63876) ((|MachineComplex| . |UniqueFactorizationDomain|) T) ((|Octonion| . |Rng|) T) ((|Fraction| . |OrderedAbelianSemiGroup|) 63836) ((|BalancedPAdicRational| . |Rng|) T) ((|UnivariatePuiseuxSeriesConstructor| . |UniqueFactorizationDomain|) 63812) ((|SimpleAlgebraicExtension| . |LinearlyExplicitRingOver|) 63728) ((|Complex| . |CharacteristicNonZero|) 63646) ((|Float| . |RealConstant|) T) ((|LinearOrdinaryDifferentialOperator1| . |BiModule|) 63625) ((|MultivariatePolynomial| . |SemiGroup|) T) ((|XPBWPolynomial| . |AbelianMonoid|) T) ((|UnivariateLaurentSeriesConstructor| . |ConvertibleTo|) 63168) ((|DenavitHartenbergMatrix| . |MatrixCategory|) 63120) ((|SparseUnivariateTaylorSeries| . |Rng|) T) ((|Float| . |CommutativeRing|) T) ((|ModMonic| . |PrincipalIdealDomain|) 63096) ((|RomanNumeral| . |DifferentialRing|) T) ((|ThreeDimensionalMatrix| . |SetCategory|) 63066) ((|NonNegativeInteger| . |OrderedAbelianSemiGroup|) T) ((|InnerFiniteField| . |AbelianSemiGroup|) T) ((|OrderedDirectProduct| . |AbelianGroup|) 62953) ((|DirectProduct| . |OrderedAbelianGroup|) 62923) ((|Polynomial| . |RightModule|) 62680) ((|SequentialDifferentialPolynomial| . |LeftOreRing|) 62598) ((|UnivariateFormalPowerSeries| . |Eltable|) 62583) ((|InnerPAdicInteger| . |LeftModule|) 62570) ((|SparseUnivariateLaurentSeries| . |ArcTrigonometricFunctionCategory|) 62519) ((|DirectProductMatrixModule| . |AbelianGroup|) T) ((|BinarySearchTree| . |Aggregate|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |StepThrough|) 62494) ((|ExponentialExpansion| . |Eltable|) 62171) ((|UniversalSegment| . |SegmentExpansionCategory|) 62116) ((|BalancedBinaryTree| . |HomogeneousAggregate|) 62100) ((|AssociationList| . |Type|) T) ((|LocalAlgebra| . |OrderedCancellationAbelianMonoid|) 62070) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Finite|) 62045) ((|AffinePlane| . |BasicType|) T) ((|ModMonic| . |Algebra|) 61785) ((|Vector| . |OneDimensionalArrayAggregate|) 61769) ((|Quaternion| . |FullyEvalableOver|) 61753) ((|UnivariatePuiseuxSeries| . |ElementaryFunctionCategory|) 61702) ((|FourierSeries| . |Monoid|) T) ((|SparseUnivariatePolynomialExpressions| . |PolynomialCategory|) 61637) ((|OrderedCompletion| . |SetCategory|) T) ((|InnerAlgebraicNumber| . |SemiGroup|) T) ((|InnerPrimeField| . |ConvertibleTo|) 61614) ((|UnivariatePuiseuxSeries| . |IntegralDomain|) 61553) ((|Integer| . |LeftOreRing|) T) ((|Asp41| . |FortranProgramCategory|) T) ((|Factored| . |LeftOreRing|) 61477) ((|MachineComplex| . |HyperbolicFunctionCategory|) NIL) ((|EuclideanModularRing| . |RightModule|) 61464) ((|DecimalExpansion| . |EuclideanDomain|) T) ((|FiniteFieldNormalBasisExtension| . |Ring|) T) ((|SingleInteger| . |EntireRing|) T) ((|Polynomial| . |BiModule|) 61189) ((|SparseUnivariateLaurentSeries| . |OrderedSet|) NIL) ((|NewSparseUnivariatePolynomial| . |UniqueFactorizationDomain|) 61139) ((|XPolynomialRing| . |Monoid|) T) ((|InnerAlgebraicNumber| . |CancellationAbelianMonoid|) T) ((|IndexedBits| . |ConvertibleTo|) 61114) ((|HomogeneousDirectProduct| . |LeftModule|) 60928) ((|Localize| . |LeftModule|) 60912) ((|FiniteFieldExtensionByPolynomial| . |IntegralDomain|) T) ((|Asp73| . |FortranProgramCategory|) T) ((|SymmetricPolynomial| . |Algebra|) 60756) ((|BinarySearchTree| . |Evalable|) 60680) ((|DifferentialSparseMultivariatePolynomial| . |Module|) 60443) ((|List| . |InnerEvalable|) 60362) ((|KeyedAccessFile| . |Evalable|) 60104) ((|DecimalExpansion| . |CoercibleTo|) 60078) ((|XPolynomialRing| . |RightModule|) 60062) ((|Magma| . |RetractableTo|) 60046) ((|PrimeField| . |SemiGroup|) T) ((|CliffordAlgebra| . |AbelianSemiGroup|) T) ((|MachineComplex| . |FullyEvalableOver|) 60018) ((|Octonion| . |SetCategory|) T) ((|FreeMonoid| . |OrderedSet|) 59989) ((|FiniteFieldNormalBasisExtension| . |LeftOreRing|) T) ((|DataList| . |Collection|) 59973) ((|UnivariatePolynomial| . |LinearlyExplicitRingOver|) 59889) ((|IndexedMatrix| . |Aggregate|) T) ((|GenericNonAssociativeAlgebra| . |BiModule|) 59812) ((|MachineInteger| . |IntegerNumberSystem|) T) ((|InnerPrimeField| . |DifferentialRing|) T) ((|BinaryExpansion| . |Type|) T) ((|Expression| . |CharacteristicNonZero|) 59772) ((|RomanNumeral| . |EuclideanDomain|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |OrderedAbelianSemiGroup|) T) ((|NewSparseMultivariatePolynomial| . |Algebra|) 59535) ((|InnerSparseUnivariatePowerSeries| . |Rng|) T) ((|RadixExpansion| . |EuclideanDomain|) T) ((|AlgebraicNumber| . |UniqueFactorizationDomain|) T) ((|RealClosure| . |CoercibleTo|) 59509) ((|InnerSparseUnivariatePowerSeries| . |AbelianMonoid|) T) ((|SparseUnivariatePuiseuxSeries| . |ArcHyperbolicFunctionCategory|) 59458) ((|DoubleFloat| . |BiModule|) 59385) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |Rng|) T) ((|StochasticDifferential| . |AbelianSemiGroup|) T) ((|ComplexDoubleFloatVector| . |HomogeneousAggregate|) 59346) ((|Complex| . |Patternable|) 59330) ((|FiniteFieldCyclicGroup| . |CommutativeRing|) T) ((|Factored| . |SemiGroup|) T) ((|U16Vector| . |IndexedAggregate|) 59295) ((|DecimalExpansion| . |CharacteristicZero|) T) ((|UnivariateSkewPolynomial| . |BiModule|) 59274) ((|FractionalIdeal| . |Group|) T) ((|NeitherSparseOrDensePowerSeries| . |CoercibleTo|) 59248) ((|XPolynomial| . |AbelianMonoid|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |FieldOfPrimeCharacteristic|) 59188) ((|DirectProduct| . |LeftModule|) 59002) ((|FractionalIdeal| . |SetCategory|) T) ((|LinearOrdinaryDifferentialOperator1| . |AbelianSemiGroup|) T) ((|PAdicInteger| . |Algebra|) 58989) ((|Complex| . |StepThrough|) 58951) ((|OrderlyDifferentialPolynomial| . |InnerEvalable|) 58726) ((|HashTable| . |BasicType|) T) ((|OrderedFreeMonoid| . |SetCategory|) T) ((|InnerIndexedTwoDimensionalArray| . |BasicType|) 58696) ((|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| . |SetCategoryWithDegree|) T) ((|HexadecimalExpansion| . |LeftOreRing|) T) ((|UnivariateLaurentSeriesConstructor| . |HyperbolicFunctionCategory|) 58645) ((|DirectProductModule| . |HomogeneousAggregate|) 58629) ((|MultivariatePolynomial| . |RetractableTo|) 58436) ((|OpenMathError| . |BasicType|) T) ((|OrderedDirectProduct| . |Eltable|) 58408) ((|Interval| . |Algebra|) 58395) ((|Fraction| . |FullyLinearlyExplicitRingOver|) 58379) ((|ListMultiDictionary| . |InnerEvalable|) 58298) ((|HomogeneousDirectProduct| . |CoercibleTo|) 57947) ((|NeitherSparseOrDensePowerSeries| . |DifferentialRing|) 57895) ((|XPolynomialRing| . |BiModule|) 57874) ((|Mapping| . |CoercibleTo|) 57848) ((|d01TransformFunctionType| . |NumericalIntegrationCategory|) T) ((|UnivariateFormalPowerSeries| . |CancellationAbelianMonoid|) T) ((|SequentialDifferentialPolynomial| . |SetCategory|) T) ((|RealClosure| . |CancellationAbelianMonoid|) T) ((|Pattern| . |SetCategory|) T) ((|DoubleFloat| . |TranscendentalFunctionCategory|) T) ((|NewSparseMultivariatePolynomial| . |Ring|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |VectorSpace|) 57761) ((|SparseUnivariateLaurentSeries| . |DivisionRing|) 57737) ((|ElementaryFunctionsUnivariateLaurentSeries| . |PartialTranscendentalFunctions|) 57721) ((|ModMonic| . |DifferentialRing|) T) ((|SparseUnivariateSkewPolynomial| . |Module|) 57678) ((|OppositeMonogenicLinearOperator| . |BiModule|) 57657) ((|Tree| . |InnerEvalable|) 57576) ((|DifferentialSparseMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 57526) ((|WeightedPolynomials| . |AbelianGroup|) T) ((|Integer| . |GcdDomain|) T) ((|XPBWPolynomial| . |LeftModule|) 57500) ((|KeyedAccessFile| . |EltableAggregate|) 57473) ((|SimpleAlgebraicExtension| . |CommutativeRing|) T) ((|InnerTable| . |Dictionary|) 57415) ((|SparseUnivariatePuiseuxSeries| . |AbelianGroup|) T) ((|Pi| . |Module|) 57369) ((|MachineComplex| . |Patternable|) 57341) ((|GeneralTriangularSet| . |ConvertibleTo|) 57277) ((|UnivariateLaurentSeries| . |HyperbolicFunctionCategory|) 57226) ((|SparseMultivariateTaylorSeries| . |InnerEvalable|) 57196) ((|Polynomial| . |ConvertibleTo|) 56974) ((|Octonion| . |RightModule|) 56958) ((|RegularChain| . |CoercibleTo|) 56845) ((|Interval| . |Ring|) T) ((|NewSparseUnivariatePolynomial| . |ConvertibleTo|) NIL) ((|PAdicRationalConstructor| . |QuotientFieldCategory|) 56829) ((|UnivariatePuiseuxSeries| . |EntireRing|) 56768) ((|LyndonWord| . |RetractableTo|) 56752) ((|FiniteFieldExtension| . |AbelianSemiGroup|) T) ((|OneDimensionalArray| . |FiniteLinearAggregate|) 56736) ((|PolynomialRing| . |AbelianSemiGroup|) T) ((|NewSparseUnivariatePolynomial| . |PolynomialCategory|) 56671) ((|MyUnivariatePolynomial| . |Algebra|) 56411) ((|ExponentialExpansion| . |OrderedIntegralDomain|) NIL) ((|Operator| . |AbelianGroup|) T) ((|ListMultiDictionary| . |HomogeneousAggregate|) 56395) ((|e04mbfAnnaType| . |NumericalOptimizationCategory|) T) ((|XPolynomialRing| . |Ring|) T) ((|RealClosure| . |RetractableTo|) 56221) ((|IndexedExponents| . |CoercibleTo|) 56195) ((|InnerFreeAbelianMonoid| . |AbelianSemiGroup|) T) ((|BalancedBinaryTree| . |InnerEvalable|) 56114) ((|UnivariateTaylorSeries| . |Module|) 55958) ((|FiniteFieldExtension| . |StepThrough|) 55933) ((|Permutation| . |Monoid|) T) ((|OrderlyDifferentialPolynomial| . |LeftOreRing|) 55851) ((|SimpleAlgebraicExtension| . |BasicType|) T) ((|UnivariatePuiseuxSeriesConstructor| . |TranscendentalFunctionCategory|) 55800) ((|PseudoAlgebraicClosureOfRationalNumber| . |DivisionRing|) T) ((|AlgebraicFunctionField| . |CancellationAbelianMonoid|) T) ((|TaylorSeries| . |CancellationAbelianMonoid|) T) ((|ModMonic| . |Ring|) T) ((|Asp27| . |Type|) T) ((|UnivariateLaurentSeries| . |RetractableTo|) 55747) ((|NewSparseUnivariatePolynomial| . |LinearlyExplicitRingOver|) 55663) ((|FractionalIdeal| . |BasicType|) T) ((|InnerAlgebraicNumber| . |OrderedSet|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |UniqueFactorizationDomain|) T) ((|BalancedPAdicRational| . |OrderedRing|) NIL) ((|SequentialDifferentialVariable| . |OrderedSet|) T) ((|InnerSparseUnivariatePowerSeries| . |PowerSeriesCategory|) 55609) ((|NeitherSparseOrDensePowerSeries| . |AbelianMonoid|) T) ((|ListMultiDictionary| . |MultiDictionary|) 55593) ((|Database| . |BasicType|) T) ((|InnerFiniteField| . |RetractableTo|) 55557) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |PrincipalIdealDomain|) T) ((|PAdicRational| . |AbelianMonoid|) T) ((|Partition| . |OrderedCancellationAbelianMonoid|) T) ((|PAdicRationalConstructor| . |FullyLinearlyExplicitRingOver|) 55541) ((|GeneralSparseTable| . |Evalable|) 55301) ((|MonoidRing| . |CharacteristicNonZero|) 55261) ((|UnivariateLaurentSeriesConstructor| . |RightModule|) 55013) ((|SparseUnivariateTaylorSeries| . |CharacteristicZero|) 54976) ((|ContinuedFraction| . |AbelianMonoid|) T) ((|StringTable| . |InnerEvalable|) 54660) ((|OrderedDirectProduct| . |DifferentialExtension|) 54628) ((|XPolynomial| . |BasicType|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |ExtensionField|) 54612) ((|Bits| . |OrderedSet|) T) ((|SparseUnivariateLaurentSeries| . |PolynomialFactorizationExplicit|) NIL) ((|FortranExpression| . |AbelianGroup|) T) ((|NewSparseMultivariatePolynomial| . |PatternMatchable|) 54391) ((|AlgebraicNumber| . |Monoid|) T) ((|OrdinaryWeightedPolynomials| . |AbelianSemiGroup|) T) ((|Complex| . |TranscendentalFunctionCategory|) 54342) ((|Polynomial| . |CharacteristicZero|) 54305) ((|IndexedBits| . |Logic|) T) ((|GeneralDistributedMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 54255) ((|BalancedPAdicInteger| . |PAdicIntegerCategory|) 54239) ((|MachineInteger| . |OrderedCancellationAbelianMonoid|) T) ((|BalancedBinaryTree| . |BinaryTreeCategory|) 54223) ((|GeneralTriangularSet| . |HomogeneousAggregate|) 54207) ((|DirectProductMatrixModule| . |RightModule|) 54077) ((|MachineInteger| . |OrderedAbelianGroup|) T) ((|PrimeField| . |Field|) T) ((|MachineInteger| . |FortranMachineTypeCategory|) T) ((|DesingTree| . |HomogeneousAggregate|) 54061) ((|BinaryTree| . |Aggregate|) T) ((|LinearOrdinaryDifferentialOperator2| . |Ring|) T) ((|LinearOrdinaryDifferentialOperator| . |AbelianMonoid|) T) ((|FiniteFieldNormalBasis| . |RetractableTo|) 54030) ((|Pi| . |UniqueFactorizationDomain|) T) ((|ModMonic| . |RightModule|) 53764) ((|GeneralUnivariatePowerSeries| . |CharacteristicNonZero|) 53724) ((|RadixExpansion| . |RealConstant|) T) ((|Vector| . |EltableAggregate|) 53696) ((|DistributedMultivariatePolynomial| . |Rng|) T) ((|DirectProductModule| . |InnerEvalable|) 53615) ((|RadixExpansion| . |Eltable|) NIL) ((|Octonion| . |Finite|) 53590) ((|InnerPAdicInteger| . |Rng|) T) ((|InnerPAdicInteger| . |CommutativeRing|) T) ((|BasicFunctions| . |CoercibleTo|) 53564) ((|SparseUnivariateLaurentSeries| . |AbelianMonoid|) T) ((|Localize| . |OrderedCancellationAbelianMonoid|) 53526) ((|ExponentialExpansion| . |Ring|) T) ((|Pi| . |LeftModule|) 53480) ((|WeightedPolynomials| . |AbelianSemiGroup|) T) ((|SequentialDifferentialPolynomial| . |Evalable|) 53467) ((|ModMonic| . |UnivariatePolynomialCategory|) 53451) ((|SequentialDifferentialPolynomial| . |Rng|) T) ((|GeneralDistributedMultivariatePolynomial| . |RetractableTo|) 53258) ((|RomanNumeral| . |AbelianMonoid|) T) ((|BinaryExpansion| . |RealConstant|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |AbelianSemiGroup|) T) ((|IndexedTwoDimensionalArray| . |CoercibleTo|) 53209) ((|UnivariatePuiseuxSeriesConstructor| . |CommutativeRing|) 53115) ((|OrdinaryWeightedPolynomials| . |Monoid|) T) ((|SequentialDifferentialPolynomial| . |CommutativeRing|) 52968) ((|DoubleFloatVector| . |Type|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |CharacteristicNonZero|) 52908) ((|Symbol| . |CoercibleTo|) 52882) ((|SingleInteger| . |GcdDomain|) T) ((|SparseUnivariateLaurentSeries| . |UnivariatePowerSeriesCategory|) 52854) ((|MyUnivariatePolynomial| . |CharacteristicZero|) 52817) ((|UnivariateLaurentSeriesConstructor| . |OrderedIntegralDomain|) 52748) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Module|) 52504) ((|FiniteFieldExtension| . |CharacteristicZero|) 52467) ((|SparseUnivariateTaylorSeries| . |RightModule|) 52300) ((|MultivariatePolynomial| . |CharacteristicZero|) 52263) ((|MachineInteger| . |LeftModule|) 52250) ((|IndexedVector| . |HomogeneousAggregate|) 52234) ((|GeneralTriangularSet| . |CoercibleTo|) 52186) ((|UnivariatePolynomial| . |Eltable|) 52089) ((|AlgebraicNumber| . |SemiGroup|) T) ((|FreeAbelianGroup| . |BiModule|) 52054) ((|Factored| . |RightModule|) 52028) ((|InnerAlgebraicNumber| . |BiModule|) 51955) ((|HexadecimalExpansion| . |DivisionRing|) T) ((|DirectProductModule| . |RetractableTo|) 51706) ((|ModuleOperator| . |CharacteristicNonZero|) 51666) ((|SymmetricPolynomial| . |FiniteAbelianMonoidRing|) 51636) ((|U32Matrix| . |InnerEvalable|) NIL) ((|BalancedPAdicRational| . |DifferentialRing|) NIL) ((|LocalAlgebra| . |Module|) 51620) ((|BinaryFile| . |BasicType|) T) ((|Polynomial| . |CoercibleTo|) 51594) ((|ArrayStack| . |CoercibleTo|) 51545) ((|KeyedAccessFile| . |SetCategory|) T) ((|RoutinesTable| . |Eltable|) 51515) ((|RoutinesTable| . |SetCategory|) T) ((|RegularTriangularSet| . |Evalable|) 51439) ((|ResidueRing| . |Module|) 51423) ((|SparseMultivariatePolynomial| . |PartialDifferentialRing|) 51407) ((|MachineComplex| . |CommutativeRing|) T) ((|CliffordAlgebra| . |LeftModule|) 51381) ((|NottinghamGroup| . |SetCategory|) T) ((|SimpleAlgebraicExtension| . |AbelianMonoid|) T) ((|UnivariateLaurentSeries| . |BiModule|) 51022) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |GcdDomain|) T) ((|UnivariateLaurentSeries| . |SetCategory|) T) ((|PAdicInteger| . |CancellationAbelianMonoid|) T) ((|ExponentialExpansion| . |SemiGroup|) T) ((|Queue| . |InnerEvalable|) 50941) ((|FunctionCalled| . |SetCategory|) T) ((|SparseUnivariatePolynomial| . |SetCategory|) T) ((|InfClsPt| . |BasicType|) T) ((|OrderedDirectProduct| . |DifferentialRing|) 50878) ((|LinearOrdinaryDifferentialOperator1| . |Module|) 50835) ((|DataList| . |IndexedAggregate|) 50807) ((|DecimalExpansion| . |FullyLinearlyExplicitRingOver|) 50784) ((|e04dgfAnnaType| . |BasicType|) T) ((|HTMLFormat| . |CoercibleTo|) 50758) ((|SingleInteger| . |OpenMath|) T) ((|Plot| . |CoercibleTo|) 50732) ((|RegularTriangularSet| . |ConvertibleTo|) 50668) ((|OppositeMonogenicLinearOperator| . |SetCategory|) T) ((|Asp78| . |FortranVectorFunctionCategory|) T) ((|SplitHomogeneousDirectProduct| . |CoercibleTo|) 50317) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |PrincipalIdealDomain|) T) ((|UnivariateLaurentSeriesConstructor| . |Ring|) T) ((|DistributedMultivariatePolynomial| . |InnerEvalable|) 50221) ((|SparseUnivariatePolynomialExpressions| . |FiniteAbelianMonoidRing|) 50182) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |Ring|) T) ((|DirichletRing| . |LeftModule|) 50129) ((|DirectProductModule| . |RightModule|) 49999) ((|InnerPAdicInteger| . |LeftOreRing|) T) ((|HyperellipticFiniteDivisor| . |FiniteDivisorCategory|) 49968) ((|Asp80| . |Type|) T) ((|IndexedString| . |OneDimensionalArrayAggregate|) 49943) ((|MachineFloat| . |PrincipalIdealDomain|) T) ((|Polynomial| . |LeftOreRing|) 49861) ((|Multiset| . |ConvertibleTo|) 49797) ((|Result| . |BasicType|) T) ((|IndexedFlexibleArray| . |FiniteLinearAggregate|) 49781) ((|InnerTable| . |CoercibleTo|) 49755) ((|Asp4| . |Type|) T) ((|LieSquareMatrix| . |BasicType|) T) ((|OrderedDirectProduct| . |FullyRetractableTo|) 49716) ((|MachineComplex| . |Ring|) T) ((|BalancedPAdicRational| . |EuclideanDomain|) T) ((|RadicalFunctionField| . |BiModule|) 49599) ((|DecimalExpansion| . |PartialDifferentialRing|) NIL) ((|SquareMatrix| . |DifferentialRing|) 49564) ((|NewSparseMultivariatePolynomial| . |Rng|) T) ((|SparseMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|d02bhfAnnaType| . |CoercibleTo|) 49538) ((|RadixExpansion| . |BiModule|) 49433) ((|FourierComponent| . |SetCategory|) T) ((|e04ucfAnnaType| . |SetCategory|) T) ((|SequentialDifferentialPolynomial| . |RightModule|) 49190) ((|InnerFiniteField| . |DifferentialRing|) T) ((|MoebiusTransform| . |Monoid|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |Monoid|) T) ((|Library| . |CoercibleTo|) 49164) ((|DifferentialSparseMultivariatePolynomial| . |RightModule|) 48921) ((|AttributeButtons| . |CoercibleTo|) 48895) ((|UnivariateFormalPowerSeries| . |DifferentialRing|) 48832) ((|UnivariateFormalPowerSeries| . |TrigonometricFunctionCategory|) 48781) ((|MultivariatePolynomial| . |UniqueFactorizationDomain|) 48731) ((|GeneralDistributedMultivariatePolynomial| . |Ring|) T) ((|NonNegativeInteger| . |SemiGroup|) T) ((|Asp35| . |Type|) T) ((|SplitHomogeneousDirectProduct| . |DifferentialRing|) 48668) ((|OrderedDirectProduct| . |RightModule|) 48538) ((|d01anfAnnaType| . |SetCategory|) T) ((|RegularTriangularSet| . |Type|) T) ((|SimpleAlgebraicExtension| . |EntireRing|) 48472) ((|FileName| . |CoercibleTo|) 48446) ((|Complex| . |Finite|) 48379) ((|FiniteFieldCyclicGroup| . |SetCategory|) T) ((|LieSquareMatrix| . |NonAssociativeRng|) T) ((|IndexedString| . |HomogeneousAggregate|) 48354) ((|AssociatedJordanAlgebra| . |BiModule|) 48333) ((|KeyedAccessFile| . |TableAggregate|) 48306) ((|FiniteFieldCyclicGroup| . |LeftModule|) 48232) ((|AlgebraicFunctionField| . |CoercibleTo|) 48206) ((|IndexedMatrix| . |InnerEvalable|) 48125) ((|Interval| . |SetCategory|) T) ((|SparseUnivariatePolynomial| . |Ring|) T) ((|SetOfMIntegersInOneToN| . |CoercibleTo|) 48099) ((|FiniteFieldExtension| . |LeftOreRing|) T) ((|RadicalFunctionField| . |Finite|) NIL) ((|Equation| . |Module|) 48028) ((|PositiveInteger| . |BasicType|) T) ((|Octonion| . |BiModule|) 48007) ((|NewSparseUnivariatePolynomial| . |DifferentialRing|) T) ((|IndexedVector| . |EltableAggregate|) 47979) ((|ExponentialOfUnivariatePuiseuxSeries| . |PowerSeriesCategory|) 47912) ((|AntiSymm| . |BasicType|) T) ((|FreeAbelianMonoid| . |CoercibleTo|) 47886) ((|SparseUnivariatePolynomialExpressions| . |CharacteristicZero|) 47849) ((|ModularField| . |IntegralDomain|) T) ((|BalancedPAdicInteger| . |LeftOreRing|) T) ((|Factored| . |Monoid|) T) ((|FiniteFieldNormalBasisExtension| . |DifferentialRing|) 47824) ((|MyUnivariatePolynomial| . |AbelianSemiGroup|) T) ((|UnivariateTaylorSeriesCZero| . |TranscendentalFunctionCategory|) 47773) ((|DistributedMultivariatePolynomial| . |CharacteristicZero|) 47736) ((|InnerPrimeField| . |RetractableTo|) 47723) ((|Interval| . |RadicalCategory|) T) ((|Fraction| . |Rng|) T) ((|DoubleFloatMatrix| . |TwoDimensionalArrayCategory|) 47652) ((|IntegrationResult| . |SetCategory|) T) ((|LinearOrdinaryDifferentialOperator| . |FullyRetractableTo|) 47636) ((|FiniteField| . |FiniteAlgebraicExtensionField|) 47605) ((|Enumeration| . |CoercibleTo|) 47579) ((|LinearOrdinaryDifferentialOperator2| . |Monoid|) T) ((|Matrix| . |CoercibleTo|) 47530) ((|DecimalExpansion| . |IntegralDomain|) T) ((|HyperellipticFiniteDivisor| . |SetCategory|) T) ((|Expression| . |LiouvillianFunctionCategory|) 47497) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |CharacteristicNonZero|) 47419) ((|Divisor| . |LeftModule|) 47396) ((|BinaryExpansion| . |InnerEvalable|) NIL) ((|FlexibleArray| . |ConvertibleTo|) 47332) ((|LinearOrdinaryDifferentialOperator| . |Rng|) T) ((|DirectProduct| . |InnerEvalable|) 47251) ((|PseudoAlgebraicClosureOfRationalNumber| . |EuclideanDomain|) T) ((|DifferentialSparseMultivariatePolynomial| . |Algebra|) 47014) ((|DecimalExpansion| . |UniqueFactorizationDomain|) T) ((|SparseUnivariatePolynomialExpressions| . |CoercibleTo|) 46988) ((|PrimeField| . |Ring|) T) ((|DoubleFloatVector| . |EltableAggregate|) 46949) ((|RadixExpansion| . |Monoid|) T) ((|StringTable| . |HomogeneousAggregate|) 46872) ((|PAdicRational| . |CharacteristicZero|) T) ((|OrderedDirectProduct| . |CancellationAbelianMonoid|) 46675) ((|DirectProduct| . |OrderedCancellationAbelianMonoid|) 46599) ((|FourierSeries| . |Rng|) T) ((|UnivariateFormalPowerSeries| . |ArcTrigonometricFunctionCategory|) 46548) ((|NewSparseMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|DifferentialSparseMultivariatePolynomial| . |CoercibleTo|) 46522) ((|UnivariateLaurentSeriesConstructor| . |QuotientFieldCategory|) 46489) ((|OrdinaryDifferentialRing| . |Ring|) T) ((|HomogeneousDirectProduct| . |FullyLinearlyExplicitRingOver|) 46457) ((|OrderlyDifferentialPolynomial| . |SetCategory|) T) ((|XPolynomialRing| . |RetractableTo|) 46441) ((|e04gcfAnnaType| . |BasicType|) T) ((|ModMonic| . |BasicType|) T) ((|ModMonic| . |Module|) 46181) ((|DoubleFloat| . |ElementaryFunctionCategory|) T) ((|DataList| . |SetCategory|) 46118) ((|RealClosure| . |AbelianSemiGroup|) T) ((|BalancedPAdicRational| . |GcdDomain|) T) ((|Polynomial| . |CancellationAbelianMonoid|) T) ((|Fraction| . |Patternable|) 46102) ((|DoubleFloat| . |AbelianMonoid|) T) ((|InnerPrimeField| . |Module|) 46056) ((|U16Vector| . |ConvertibleTo|) 46031) ((|SingletonAsOrderedSet| . |CoercibleTo|) 46005) ((|DecimalExpansion| . |BasicType|) T) ((|SquareMatrix| . |Aggregate|) T) ((|RectangularMatrix| . |Aggregate|) T) ((|HexadecimalExpansion| . |LeftModule|) 45939) ((|d01fcfAnnaType| . |NumericalIntegrationCategory|) T) ((|UnivariatePuiseuxSeriesConstructor| . |AbelianMonoid|) T) ((|OrdinaryDifferentialRing| . |LeftModule|) 45876) ((|XPolynomialRing| . |Module|) 45833) ((|Complex| . |SemiGroup|) T) ((|PAdicRationalConstructor| . |EntireRing|) T) ((|PAdicRational| . |DivisionRing|) T) ((|SparseUnivariateLaurentSeries| . |DifferentialExtension|) 45757) ((|InnerPAdicInteger| . |BiModule|) 45742) ((|Vector| . |VectorCategory|) 45726) ((|SingleInteger| . |SemiGroup|) T) ((|PrimitiveArray| . |Eltable|) 45698) ((|Integer| . |BasicType|) T) ((|DoubleFloat| . |SetCategory|) T) ((|NeitherSparseOrDensePowerSeries| . |PowerSeriesCategory|) 45644) ((|ListMultiDictionary| . |BagAggregate|) 45628) ((|Factored| . |InnerEvalable|) 45424) ((|DoubleFloat| . |RetractableTo|) 45368) ((|SparseUnivariatePolynomialExpressions| . |TranscendentalFunctionCategory|) 45319) ((|FiniteField| . |BasicType|) T) ((|RadicalFunctionField| . |AbelianMonoid|) T) ((|InfinitlyClosePoint| . |InfinitlyClosePointCategory|) 45263) ((|SquareFreeRegularTriangularSet| . |SquareFreeRegularTriangularSetCategory|) 45232) ((|ExponentialExpansion| . |UniqueFactorizationDomain|) T) ((|GeneralUnivariatePowerSeries| . |RightModule|) 45014) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |PseudoAlgebraicClosureOfAlgExtOfRationalNumberCategory|) T) ((|UnivariateLaurentSeries| . |UnivariateLaurentSeriesCategory|) 44998) ((|UnivariateTaylorSeries| . |UnivariateTaylorSeriesCategory|) 44982) ((|UnivariateTaylorSeries| . |IntegralDomain|) 44949) ((|UnivariateLaurentSeriesConstructor| . |UnivariateLaurentSeriesConstructorCategory|) 44928) ((|LocalAlgebra| . |OrderedAbelianMonoid|) 44898) ((|UnivariatePuiseuxSeries| . |LeftOreRing|) 44874) ((|IndexedVector| . |OrderedSet|) 44845) ((|UnivariatePuiseuxSeries| . |UnivariatePuiseuxSeriesCategory|) 44829) ((|LieSquareMatrix| . |NonAssociativeAlgebra|) 44813) ((|UnivariatePuiseuxSeriesConstructor| . |UnivariatePuiseuxSeriesConstructorCategory|) 44792) ((|UnivariatePuiseuxSeriesConstructor| . |RetractableTo|) 44776) ((|SparseUnivariatePuiseuxSeries| . |UniqueFactorizationDomain|) 44752) ((|ProjectivePlane| . |BasicType|) T) ((|IntegerMod| . |AbelianMonoid|) T) ((|FiniteFieldCyclicGroupExtension| . |StepThrough|) 44727) ((|HexadecimalExpansion| . |QuotientFieldCategory|) 44704) ((|OrdinaryWeightedPolynomials| . |CoercibleTo|) 44678) ((|InnerAlgebraicNumber| . |InnerEvalable|) 44640) ((|AlgebraicNumber| . |Evalable|) 44627) ((|FortranExpression| . |BiModule|) 44606) ((|U32Vector| . |InnerEvalable|) NIL) ((|FiniteFieldCyclicGroup| . |StepThrough|) T) ((|Tree| . |BasicType|) 44576) ((|OrderlyDifferentialPolynomial| . |PartialDifferentialRing|) 44457) ((|ExponentialExpansion| . |OrderedAbelianGroup|) NIL) ((|SparseUnivariatePuiseuxSeries| . |ArcTrigonometricFunctionCategory|) 44406) ((|RegularTriangularSet| . |RegularTriangularSetCategory|) 44375) ((|GeneralUnivariatePowerSeries| . |ElementaryFunctionCategory|) 44324) ((|FiniteDivisor| . |FiniteDivisorCategory|) 44293) ((|Expression| . |AbelianMonoid|) 44061) ((|MyUnivariatePolynomial| . |Module|) 43801) ((|DistributedMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 43733) ((|HexadecimalExpansion| . |SetCategory|) T) ((|FiniteFieldNormalBasis| . |Finite|) T) ((|UnivariateFormalPowerSeries| . |CharacteristicNonZero|) 43693) ((|LiePolynomial| . |BiModule|) 43672) ((|ExponentialExpansion| . |Evalable|) 43424) ((|UnivariatePolynomial| . |BiModule|) 43126) ((|OrderedFreeMonoid| . |OrderedMonoid|) T) ((|FreeMonoid| . |Monoid|) T) ((|FreeModule| . |Module|) 43083) ((|FreeGroup| . |Group|) T) ((|FreeAbelianMonoid| . |AbelianMonoid|) T) ((|FreeAbelianGroup| . |AbelianGroup|) T) ((|IndexedVector| . |CoercibleTo|) 43001) ((|MachineInteger| . |SemiGroup|) T) ((|SplittingTree| . |RecursiveAggregate|) 42962) ((|LaurentPolynomial| . |CharacteristicZero|) 42925) ((|Stack| . |Type|) T) ((|BinaryTournament| . |RecursiveAggregate|) 42909) ((|StringTable| . |Type|) T) ((|FreeAbelianGroup| . |RightModule|) 42886) ((|DirectProductModule| . |FullyLinearlyExplicitRingOver|) 42854) ((|DirectProductMatrixModule| . |HomogeneousAggregate|) 42838) ((|IndexedBits| . |HomogeneousAggregate|) 42815) ((|ModularField| . |PrincipalIdealDomain|) T) ((|Quaternion| . |Evalable|) 42774) ((|PAdicRational| . |OrderedAbelianGroup|) NIL) ((|MakeCachableSet| . |SetCategory|) T) ((|InnerAlgebraicNumber| . |ConvertibleTo|) 42699) ((|U16Vector| . |HomogeneousAggregate|) 42676) ((|PendantTree| . |InnerEvalable|) 42595) ((|FiniteFieldNormalBasis| . |CommutativeRing|) T) ((|BalancedPAdicRational| . |LeftModule|) 42511) ((|Queue| . |Aggregate|) T) ((|CharacterClass| . |Type|) T) ((|DecimalExpansion| . |AbelianGroup|) T) ((|HashTable| . |HomogeneousAggregate|) 42440) ((|BalancedPAdicInteger| . |Module|) 42427) ((|TexFormat| . |BasicType|) T) ((|Divisor| . |Module|) 42404) ((|Point| . |Aggregate|) T) ((|OnePointCompletion| . |SemiGroup|) 42374) ((|BinaryExpansion| . |Algebra|) 42308) ((|Quaternion| . |QuaternionCategory|) 42292) ((|Places| . |PlacesCategory|) 42235) ((|MathMLFormat| . |CoercibleTo|) 42209) ((|Octonion| . |OctonionCategory|) 42193) ((|FortranProgram| . |FortranProgramCategory|) T) ((|Complex| . |ComplexCategory|) 42177) ((|SquareMatrix| . |SquareMatrixCategory|) 42100) ((|Set| . |SetCategory|) T) ((|RectangularMatrix| . |RectangularMatrixCategory|) 42018) ((|Polynomial| . |PolynomialCategory|) 41959) ((|PseudoAlgebraicClosureOfRationalNumber| . |PseudoAlgebraicClosureOfRationalNumberCategory|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |PseudoAlgebraicClosureOfFiniteFieldCategory|) T) ((|Matrix| . |MatrixCategory|) 41911) ((|LinearOrdinaryDifferentialOperator| . |LinearOrdinaryDifferentialOperatorCategory|) 41895) ((|BalancedPAdicRational| . |RealConstant|) NIL) ((|ThreeSpace| . |ThreeSpaceCategory|) 41879) ((|AlgebraGivenByStructuralConstants| . |LeftModule|) 41828) ((|Permutation| . |PermutationCategory|) 41812) ((|OppositeMonogenicLinearOperator| . |Module|) 41769) ((|UnivariatePolynomial| . |UnivariatePolynomialCategory|) 41753) ((|FileName| . |FileNameCategory|) T) ((|File| . |FileCategory|) 41724) ((|FiniteField| . |FiniteFieldCategory|) T) ((|DesingTree| . |DesingTreeCategory|) 41708) ((|DirectProduct| . |DirectProductCategory|) 41687) ((|String| . |StringCategory|) T) ((|SExpression| . |SExpressionCategory|) 41611) ((|Point| . |PointCategory|) 41595) ((|Interval| . |IntervalCategory|) 41579) ((|ProjectiveSpace| . |ProjectiveSpaceCategory|) 41563) ((|UnivariateSkewPolynomial| . |UnivariateSkewPolynomialCategory|) 41547) ((|TwoDimensionalArray| . |TwoDimensionalArrayCategory|) 41473) ((|AffineSpace| . |AffineSpaceCategory|) 41457) ((|Segment| . |SegmentCategory|) 41441) ((|PAdicInteger| . |PAdicIntegerCategory|) 41425) ((|Divisor| . |DivisorCategory|) 41409) ((|BinaryTree| . |BinaryTreeCategory|) 41393) ((|FreeAbelianMonoid| . |FreeAbelianMonoidCategory|) 41354) ((|Enumeration| . |EnumerationCategory|) T) ((|Record| . |RecordCategory|) T) ((|IndexedBits| . |BitAggregate|) T) ((|RomanNumeral| . |GcdDomain|) T) ((|FiniteFieldNormalBasisExtension| . |Monoid|) T) ((|XRecursivePolynomial| . |CancellationAbelianMonoid|) T) ((|ModularRing| . |CoercibleTo|) 41328) ((|MyUnivariatePolynomial| . |Rng|) T) ((|d01ajfAnnaType| . |BasicType|) T) ((|IndexedString| . |IndexedAggregate|) 41291) ((|ContinuedFraction| . |CommutativeRing|) T) ((|StringTable| . |TableAggregate|) 41264) ((|String| . |Aggregate|) T) ((|Table| . |EltableAggregate|) 41243) ((|Operator| . |SemiGroup|) T) ((|IndexedExponents| . |AbelianMonoid|) T) ((|AlgebraicFunctionField| . |CharacteristicZero|) 41193) ((|UnivariateFormalPowerSeries| . |BiModule|) 40994) ((|InnerIndexedTwoDimensionalArray| . |Aggregate|) T) ((|UnivariateLaurentSeriesConstructor| . |BasicType|) T) ((|RadicalFunctionField| . |LeftModule|) 40922) ((|OrdinaryDifferentialRing| . |CommutativeRing|) 40898) ((|PseudoAlgebraicClosureOfRationalNumber| . |UniqueFactorizationDomain|) T) ((|SparseMultivariateTaylorSeries| . |AbelianMonoidRing|) 40856) ((|Quaternion| . |CoercibleTo|) 40830) ((|DoubleFloat| . |CommutativeRing|) T) ((|Equation| . |CancellationAbelianMonoid|) 40664) ((|SequentialDifferentialPolynomial| . |Monoid|) T) ((|BinaryExpansion| . |Patternable|) 40641) ((|U32Vector| . |Eltable|) 40606) ((|FiniteFieldCyclicGroupExtension| . |Field|) T) ((|FiniteFieldCyclicGroup| . |AbelianGroup|) T) ((|FiniteFieldCyclicGroup| . |ExtensionField|) 40575) ((|d01alfAnnaType| . |CoercibleTo|) 40549) ((|Asp27| . |FortranMatrixCategory|) T) ((|UnivariateLaurentSeries| . |BasicType|) T) ((|ResidueRing| . |AbelianMonoid|) T) ((|MyExpression| . |ExpressionSpace|) T) ((|CharacterClass| . |HomogeneousAggregate|) 40524) ((|IndexedVector| . |VectorCategory|) 40508) ((|IndexedMatrix| . |MatrixCategory|) 40436) ((|IndexedTwoDimensionalArray| . |TwoDimensionalArrayCategory|) 40338) ((|SparseUnivariatePolynomial| . |InnerEvalable|) 40248) ((|IndexedList| . |UnaryRecursiveAggregate|) 40232) ((|UnivariateTaylorSeries| . |LeftModule|) 40129) ((|PseudoAlgebraicClosureOfRationalNumber| . |LeftOreRing|) T) ((|Asp30| . |Type|) T) ((|IntegrationResult| . |CancellationAbelianMonoid|) T) ((|MachineFloat| . |EuclideanDomain|) T) ((|LinearOrdinaryDifferentialOperator2| . |LeftModule|) 40103) ((|EuclideanModularRing| . |Rng|) T) ((|Asp77| . |CoercibleTo|) 40077) ((|TaylorSeries| . |TrigonometricFunctionCategory|) 40026) ((|AssociationList| . |SetCategory|) T) ((|Asp55| . |CoercibleTo|) 40000) ((|Asp33| . |CoercibleTo|) 39974) ((|MyExpression| . |Group|) 39950) ((|RadicalFunctionField| . |LeftOreRing|) T) ((|Integer| . |OpenMath|) T) ((|Pi| . |PrincipalIdealDomain|) T) ((|LocalAlgebra| . |OrderedAbelianSemiGroup|) 39920) ((|OrdinaryDifferentialRing| . |DifferentialRing|) T) ((|CharacterClass| . |Collection|) 39895) ((|OrderedDirectProduct| . |AbelianSemiGroup|) 39664) ((|DirectProduct| . |OrderedAbelianSemiGroup|) 39588) ((|SingleInteger| . |BiModule|) 39573) ((|DirichletRing| . |RightModule|) 39493) ((|ModuleOperator| . |RetractableTo|) 39451) ((|Localize| . |OrderedAbelianGroup|) 39413) ((|U16Matrix| . |Aggregate|) T) ((|SplitHomogeneousDirectProduct| . |AbelianGroup|) 39300) ((|SparseMultivariateTaylorSeries| . |Monoid|) T) ((|IndexedBits| . |OrderedSet|) T) ((|Float| . |Ring|) T) ((|SparseUnivariateLaurentSeries| . |QuotientFieldCategory|) 39224) ((|FiniteFieldExtensionByPolynomial| . |Algebra|) 39178) ((|Octonion| . |RetractableTo|) 38855) ((|LyndonWord| . |BasicType|) T) ((|ModularField| . |Ring|) T) ((|SparseMultivariateTaylorSeries| . |AbelianSemiGroup|) T) ((|MachineComplex| . |Module|) 38784) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Algebra|) 38738) ((|SparseUnivariatePuiseuxSeries| . |Eltable|) 38723) ((|CartesianTensor| . |CoercibleTo|) 38697) ((|SparseUnivariatePuiseuxSeries| . |IntegralDomain|) 38636) ((|MyUnivariatePolynomial| . |IntegralDomain|) 38499) ((|NeitherSparseOrDensePowerSeries| . |Algebra|) 38413) ((|Asp34| . |Type|) T) ((|KeyedAccessFile| . |BagAggregate|) 38349) ((|GeneralDistributedMultivariatePolynomial| . |PolynomialCategory|) 38299) ((|LaurentPolynomial| . |CommutativeRing|) T) ((|U8Matrix| . |HomogeneousAggregate|) 38276) ((|IndexedBits| . |Type|) T) ((|KeyedAccessFile| . |KeyedDictionary|) 38249) ((|HomogeneousDirectProduct| . |BiModule|) 38112) ((|BlowUpWithHamburgerNoether| . |SetCategory|) T) ((|InnerPrimeField| . |Monoid|) T) ((|DirectProductMatrixModule| . |DifferentialExtension|) 38080) ((|MyUnivariatePolynomial| . |Eltable|) 37983) ((|MyUnivariatePolynomial| . |DifferentialRing|) T) ((|FiniteFieldExtension| . |UniqueFactorizationDomain|) T) ((|SparseUnivariatePuiseuxSeries| . |TranscendentalFunctionCategory|) 37932) ((|MachineInteger| . |OrderedAbelianSemiGroup|) T) ((|InnerAlgebraicNumber| . |Module|) 37886) ((|ExponentialOfUnivariatePuiseuxSeries| . |IntegralDomain|) 37825) ((|InnerPAdicInteger| . |RightModule|) 37812) ((|LinearOrdinaryDifferentialOperator2| . |SetCategory|) T) ((|InnerSparseUnivariatePowerSeries| . |CommutativeRing|) 37741) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |AbelianSemiGroup|) T) ((|StochasticDifferential| . |BiModule|) 37690) ((|SparseUnivariateLaurentSeries| . |CoercibleTo|) 37664) ((|SequentialDifferentialPolynomial| . |FullyRetractableTo|) 37648) ((|MoebiusTransform| . |SemiGroup|) T) ((|LieSquareMatrix| . |Module|) 37632) ((|MyExpression| . |FunctionSpace|) 37616) ((|FreeNilpotentLie| . |NonAssociativeAlgebra|) 37600) ((|DoubleFloatVector| . |LinearAggregate|) 37573) ((|FiniteFieldExtensionByPolynomial| . |SemiGroup|) T) ((|Stack| . |InnerEvalable|) 37492) ((|Matrix| . |InnerEvalable|) 37411) ((|OrderedFreeMonoid| . |OrderedSet|) T) ((|UnivariateSkewPolynomial| . |Rng|) T) ((|Quaternion| . |CharacteristicZero|) 37374) ((|SplitHomogeneousDirectProduct| . |SetCategory|) 37066) ((|SingleInteger| . |CharacteristicZero|) T) ((|CharacterClass| . |ConvertibleTo|) 37013) ((|MultivariatePolynomial| . |CharacteristicNonZero|) 36973) ((|XPolynomialRing| . |AbelianGroup|) T) ((|GenericNonAssociativeAlgebra| . |RightModule|) 36929) ((|NewSparseMultivariatePolynomial| . |AbelianMonoid|) T) ((|RomanNumeral| . |Monoid|) T) ((|LaurentPolynomial| . |DifferentialExtension|) 36913) ((|ExtAlgBasis| . |OrderedSet|) T) ((|LinearOrdinaryDifferentialOperator2| . |AbelianSemiGroup|) T) ((|Result| . |ConvertibleTo|) NIL) ((|Dequeue| . |Aggregate|) T) ((|GeneralDistributedMultivariatePolynomial| . |BasicType|) T) ((|Pi| . |AbelianMonoid|) T) ((|LocalAlgebra| . |SetCategory|) T) ((|OrdinaryDifferentialRing| . |Monoid|) T) ((|Result| . |HomogeneousAggregate|) 36830) ((|UnivariatePuiseuxSeries| . |SemiGroup|) T) ((|FortranTemplate| . |FileCategory|) 36795) ((|HomogeneousDistributedMultivariatePolynomial| . |AbelianGroup|) T) ((|IndexedString| . |BasicType|) T) ((|MyUnivariatePolynomial| . |PartialDifferentialRing|) 36693) ((|SplitHomogeneousDirectProduct| . |DifferentialExtension|) 36661) ((|SplittingTree| . |Evalable|) 36551) ((|InnerSparseUnivariatePowerSeries| . |AbelianGroup|) T) ((|Float| . |Module|) 36505) ((|AffinePlane| . |SetCategory|) T) ((|DoubleFloatVector| . |Aggregate|) T) ((|OrderedFreeMonoid| . |CoercibleTo|) 36479) ((|UnivariateTaylorSeries| . |BasicType|) T) ((|ExponentialExpansion| . |RetractableTo|) 36343) ((|EuclideanModularRing| . |GcdDomain|) T) ((|FiniteFieldNormalBasisExtension| . |Module|) 36284) ((|NewSparseMultivariatePolynomial| . |OrderedSet|) 36255) ((|OrderlyDifferentialVariable| . |BasicType|) T) ((|RealClosure| . |OrderedCancellationAbelianMonoid|) T) ((|U8Vector| . |EltableAggregate|) 36220) ((|FiniteFieldExtension| . |PrincipalIdealDomain|) T) ((|AnonymousFunction| . |SetCategory|) T) ((|Expression| . |BasicType|) T) ((|DecimalExpansion| . |ConvertibleTo|) 36121) ((|WeightedPolynomials| . |Rng|) T) ((|FourierSeries| . |AbelianGroup|) T) ((|OrderlyDifferentialPolynomial| . |RetractableTo|) 35838) ((|SparseUnivariatePolynomialExpressions| . |StepThrough|) 35808) ((|StochasticDifferential| . |BasicType|) T) ((|Localize| . |BiModule|) 35787) ((|Quaternion| . |LeftModule|) 35711) ((|InnerAlgebraicNumber| . |BasicType|) T) ((|OneDimensionalArray| . |EltableAggregate|) 35683) ((|FiniteFieldNormalBasis| . |FieldOfPrimeCharacteristic|) T) ((|Asp35| . |FortranVectorFunctionCategory|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |LeftModule|) 35504) ((|PartialFraction| . |RightModule|) 35445) ((|SymmetricPolynomial| . |CoercibleTo|) 35419) ((|SymmetricPolynomial| . |CharacteristicZero|) 35382) ((|FiniteFieldCyclicGroup| . |Module|) 35308) ((|Asp55| . |FortranVectorFunctionCategory|) T) ((|Plcs| . |PlacesCategory|) 35287) ((|XRecursivePolynomial| . |XPolynomialsCat|) 35266) ((|GenericNonAssociativeAlgebra| . |Monad|) T) ((|SparseUnivariateLaurentSeries| . |SetCategory|) T) ((|UnivariateLaurentSeries| . |LeftModule|) 35068) ((|IndexedBits| . |BasicType|) T) ((|InnerFreeAbelianMonoid| . |RetractableTo|) 35052) ((|UnivariatePolynomial| . |CharacteristicZero|) 35015) ((|RadicalFunctionField| . |CharacteristicNonZero|) 34962) ((|MachineComplex| . |Rng|) T) ((|SparseUnivariatePolynomialExpressions| . |FullyLinearlyExplicitRingOver|) 34946) ((|UnivariateLaurentSeriesConstructor| . |BiModule|) 34661) ((|ExponentialExpansion| . |BasicType|) T) ((|Asp28| . |CoercibleTo|) 34635) ((|SparseUnivariateSkewPolynomial| . |SetCategory|) T) ((|Float| . |SemiGroup|) T) ((|String| . |Collection|) 34610) ((|SparseUnivariatePolynomialExpressions| . |ArcHyperbolicFunctionCategory|) 34561) ((|GeneralUnivariatePowerSeries| . |Rng|) T) ((|SequentialDifferentialPolynomial| . |AbelianSemiGroup|) T) ((|UnivariatePuiseuxSeries| . |ArcTrigonometricFunctionCategory|) 34510) ((|AlgebraicNumber| . |ConvertibleTo|) 34435) ((|IndexedFlexibleArray| . |InnerEvalable|) 34354) ((|PAdicInteger| . |EntireRing|) T) ((|GeneralDistributedMultivariatePolynomial| . |AbelianGroup|) T) ((|MachineFloat| . |OrderedAbelianSemiGroup|) T) ((|InnerPrimeField| . |Rng|) T) ((|GuessOption| . |CoercibleTo|) 34328) ((|GeneralDistributedMultivariatePolynomial| . |Algebra|) 34091) ((|IndexedString| . |SetCategory|) T) ((|Asp6| . |FortranProgramCategory|) T) ((|Library| . |DictionaryOperations|) 34024) ((|ModularRing| . |CancellationAbelianMonoid|) T) ((|GeneralDistributedMultivariatePolynomial| . |RightModule|) 33781) ((|Float| . |ArcHyperbolicFunctionCategory|) T) ((|UnivariateTaylorSeriesCZero| . |ArcHyperbolicFunctionCategory|) 33730) ((|Magma| . |OrderedSet|) T) ((|AlgebraGivenByStructuralConstants| . |NonAssociativeAlgebra|) 33714) ((|StringTable| . |SetCategory|) T) ((|OrdinaryDifferentialRing| . |AbelianGroup|) T) ((|OrderlyDifferentialPolynomial| . |Rng|) T) ((|RealClosure| . |EuclideanDomain|) T) ((|DataList| . |EltableAggregate|) 33686) ((|Table| . |Dictionary|) 33628) ((|ModularRing| . |LeftModule|) 33615) ((|Octonion| . |CharacteristicNonZero|) 33575) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Ring|) T) ((|IntegrationResult| . |AbelianSemiGroup|) T) ((|PrimeField| . |CommutativeRing|) T) ((|NeitherSparseOrDensePowerSeries| . |SetCategory|) T) ((|Complex| . |ConvertibleTo|) 33195) ((|CharacterClass| . |Aggregate|) T) ((|BinaryTournament| . |InnerEvalable|) 33114) ((|LinearOrdinaryDifferentialOperator1| . |RightModule|) 33098) ((|MonoidRing| . |CoercibleTo|) 33072) ((|UnivariateLaurentSeries| . |EntireRing|) 33011) ((|RealClosure| . |SemiGroup|) T) ((|BalancedPAdicRational| . |LeftOreRing|) T) ((|SparseUnivariateTaylorSeries| . |TranscendentalFunctionCategory|) 32960) ((|LieExponentials| . |SemiGroup|) T) ((|ExponentialExpansion| . |AbelianSemiGroup|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |EntireRing|) T) ((|Kernel| . |Patternable|) 32944) ((|DirectProductMatrixModule| . |Module|) 32873) ((|IndexedString| . |EltableAggregate|) 32836) ((|OrderedDirectProduct| . |SemiGroup|) 32722) ((|PAdicRational| . |EuclideanDomain|) T) ((|DeRhamComplex| . |LeftAlgebra|) 32691) ((|LinearOrdinaryDifferentialOperator2| . |Module|) 32648) ((|Kernel| . |CoercibleTo|) 32622) ((|SplittingTree| . |Aggregate|) T) ((|Integer| . |EuclideanDomain|) T) ((|MyUnivariatePolynomial| . |GcdDomain|) 32517) ((|LinearOrdinaryDifferentialOperator2| . |Eltable|) 32478) ((|DirectProductModule| . |LinearlyExplicitRingOver|) 32350) ((|DistributedMultivariatePolynomial| . |Monoid|) T) ((|OrderedCompletion| . |OrderedAbelianGroup|) 32320) ((|Localize| . |BasicType|) T) ((|DecimalExpansion| . |Monoid|) T) ((|SparseUnivariatePolynomial| . |PatternMatchable|) NIL) ((|MachineInteger| . |StepThrough|) T) ((|ModularRing| . |Rng|) T) ((|UnivariateTaylorSeries| . |Algebra|) 32164) ((|RealClosure| . |Rng|) T) ((|PartialFraction| . |CommutativeRing|) T) ((|OrderlyDifferentialPolynomial| . |LeftModule|) 32061) ((|SymmetricPolynomial| . |Ring|) T) ((|FiniteFieldExtension| . |GcdDomain|) T) ((|NewSparseUnivariatePolynomial| . |RightModule|) 31795) ((|GeneralDistributedMultivariatePolynomial| . |BiModule|) 31520) ((|SymmetricPolynomial| . |RetractableTo|) 31364) ((|SplitHomogeneousDirectProduct| . |Algebra|) 31321) ((|FreeAbelianMonoid| . |BasicType|) T) ((|DenavitHartenbergMatrix| . |Evalable|) 31245) ((|MachineComplex| . |Algebra|) 31174) ((|PAdicRationalConstructor| . |Algebra|) 31115) ((|HexadecimalExpansion| . |EntireRing|) T) ((|UnivariateLaurentSeries| . |ElementaryFunctionCategory|) 31064) ((|Complex| . |Module|) 30822) ((|U8Vector| . |SetCategory|) T) ((|Point| . |HomogeneousAggregate|) 30806) ((|HomogeneousDirectProduct| . |AbelianGroup|) 30693) ((|SplitHomogeneousDirectProduct| . |AbelianMonoid|) 30496) ((|NewSparseMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 30446) ((|UnivariateSkewPolynomial| . |RightModule|) 30430) ((|NewSparseMultivariatePolynomial| . |RecursivePolynomialCategory|) 30383) ((|SquareMatrix| . |RectangularMatrixCategory|) 30301) ((|DifferentialSparseMultivariatePolynomial| . |LeftModule|) 30198) ((|XPBWPolynomial| . |CancellationAbelianMonoid|) T) ((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| . |CoercibleTo|) 30172) ((|ExponentialOfUnivariatePuiseuxSeries| . |UniqueFactorizationDomain|) 30148) ((|Factored| . |UniqueFactorizationDomain|) 30104) ((|HomogeneousDirectProduct| . |OrderedSet|) 30028) ((|SparseUnivariatePolynomialExpressions| . |GcdDomain|) 29923) ((|RewriteRule| . |RetractableTo|) 29894) ((|FiniteFieldCyclicGroup| . |FieldOfPrimeCharacteristic|) T) ((|SparseMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|RadixExpansion| . |CommutativeRing|) T) ((|XPBWPolynomial| . |RightModule|) 29878) ((|SparseUnivariatePolynomialExpressions| . |LinearlyExplicitRingOver|) 29794) ((|FortranExpression| . |BasicType|) T) ((|BalancedPAdicRational| . |StepThrough|) NIL) ((|LieExponentials| . |CoercibleTo|) 29768) ((|CharacterClass| . |Dictionary|) 29743) ((|Places| . |CoercibleTo|) 29717) ((|LieSquareMatrix| . |FramedNonAssociativeAlgebra|) 29701) ((|UnivariatePolynomial| . |AbelianMonoid|) T) ((|SparseUnivariatePolynomial| . |BasicType|) T) ((|UnivariateLaurentSeriesConstructor| . |IntegralDomain|) 29640) ((|FiniteFieldCyclicGroup| . |LeftOreRing|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Algebra|) 29396) ((|InnerAlgebraicNumber| . |RadicalCategory|) T) ((|Factored| . |IntegralDomain|) T) ((|EqTable| . |CoercibleTo|) 29370) ((|SparseTable| . |CoercibleTo|) 29344) ((|OrderedCompletion| . |CoercibleTo|) 29318) ((|EqTable| . |HomogeneousAggregate|) 29247) ((|AlgebraGivenByStructuralConstants| . |SetCategory|) T) ((|RomanNumeral| . |ConvertibleTo|) 29128) ((|BinaryExpansion| . |IntegralDomain|) T) ((|BalancedPAdicInteger| . |RightModule|) 29115) ((|SparseUnivariatePolynomial| . |UniqueFactorizationDomain|) 29065) ((|Factored| . |GcdDomain|) 28989) ((|ExponentialOfUnivariatePuiseuxSeries| . |AbelianMonoidRing|) 28948) ((|GeneralPolynomialSet| . |Evalable|) 28872) ((|LocalAlgebra| . |LeftModule|) 28846) ((|BinaryExpansion| . |SetCategory|) T) ((|d02bbfAnnaType| . |OrdinaryDifferentialEquationsSolverCategory|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |SemiGroup|) T) ((|MachineComplex| . |CharacteristicNonZero|) NIL) ((|HexadecimalExpansion| . |CancellationAbelianMonoid|) T) ((|Table| . |Collection|) 28788) ((|DifferentialSparseMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|AssociatedLieAlgebra| . |CancellationAbelianMonoid|) T) ((|BalancedPAdicRational| . |DifferentialExtension|) 28747) ((|U8Vector| . |LinearAggregate|) 28724) ((|RadicalFunctionField| . |LinearlyExplicitRingOver|) 28614) ((|OrderedDirectProduct| . |Type|) T) ((|LieSquareMatrix| . |SquareMatrixCategory|) 28537) ((|Operator| . |RetractableTo|) 28495) ((|Asp9| . |FortranFunctionCategory|) T) ((|ResidueRing| . |LeftModule|) 28469) ((|SquareMatrix| . |Monoid|) T) ((|RadicalFunctionField| . |GcdDomain|) T) ((|PolynomialRing| . |CharacteristicNonZero|) 28429) ((|CliffordAlgebra| . |CoercibleTo|) 28403) ((|PAdicRationalConstructor| . |Patternable|) 28387) ((|ModMonic| . |DifferentialExtension|) 28371) ((|StringTable| . |Evalable|) 28113) ((|UnivariateSkewPolynomial| . |BasicType|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |FiniteFieldCategory|) 28088) ((|HomogeneousDirectProduct| . |HomogeneousAggregate|) 28072) ((|DirectProduct| . |Aggregate|) T) ((|FiniteFieldExtension| . |Algebra|) 28026) ((|HomogeneousDirectProduct| . |RightModule|) 27896) ((|Interval| . |Monoid|) T) ((|PAdicRationalConstructor| . |RealConstant|) 27865) ((|PolynomialRing| . |CancellationAbelianMonoid|) T) ((|OrdinaryWeightedPolynomials| . |Ring|) T) ((|UnivariatePuiseuxSeries| . |CharacteristicZero|) 27828) ((|PAdicRationalConstructor| . |Rng|) T) ((|IndexedList| . |EltableAggregate|) 27800) ((|LinearOrdinaryDifferentialOperator1| . |SetCategory|) T) ((|OrderedDirectProduct| . |RetractableTo|) 27551) ((|RoutinesTable| . |HomogeneousAggregate|) 27468) ((|SplittingTree| . |HomogeneousAggregate|) 27429) ((|Result| . |IndexedAggregate|) 27399) ((|DirectProductMatrixModule| . |PartialDifferentialRing|) 27303) ((|DecimalExpansion| . |PatternMatchable|) 27280) ((|InnerFiniteField| . |AbelianGroup|) T) ((|FourierSeries| . |BasicType|) T) ((|BalancedPAdicRational| . |Patternable|) 27239) ((|d01aqfAnnaType| . |BasicType|) T) ((|PAdicRationalConstructor| . |SemiGroup|) T) ((|RadicalFunctionField| . |DivisionRing|) T) ((|NewSparseUnivariatePolynomial| . |CharacteristicNonZero|) 27199) ((|MachineFloat| . |RetractableTo|) 27125) ((|LaurentPolynomial| . |BasicType|) T) ((|XRecursivePolynomial| . |Monoid|) T) ((|SparseUnivariateLaurentSeries| . |OrderedCancellationAbelianMonoid|) NIL) ((|LinearOrdinaryDifferentialOperator2| . |AbelianMonoid|) T) ((|Stream| . |Type|) T) ((|GeneralUnivariatePowerSeries| . |SetCategory|) T) ((|MyExpression| . |Field|) 27092) ((|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| . |CoercibleTo|) 27066) ((|PseudoAlgebraicClosureOfFiniteField| . |FiniteFieldCategory|) T) ((|UnivariateTaylorSeriesCZero| . |ArcTrigonometricFunctionCategory|) 27015) ((|MachineFloat| . |GcdDomain|) T) ((|Expression| . |Evalable|) 27002) ((|Palette| . |SetCategory|) T) ((|IndexedFlexibleArray| . |Eltable|) 26974) ((|TaylorSeries| . |InnerEvalable|) 26938) ((|TaylorSeries| . |ArcHyperbolicFunctionCategory|) 26887) ((|Character| . |BasicType|) T) ((|GeneralUnivariatePowerSeries| . |AbelianMonoidRing|) 26846) ((|FiniteField| . |RightModule|) 26772) ((|SquareFreeRegularTriangularSet| . |InnerEvalable|) 26691) ((|PrimitiveArray| . |BasicType|) 26628) ((|OrderlyDifferentialPolynomial| . |IntegralDomain|) 26514) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |CommutativeRing|) T) ((|UnivariatePolynomial| . |PrincipalIdealDomain|) 26490) ((|Quaternion| . |DifferentialRing|) 26455) ((|GeneralDistributedMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|AlgebraicNumber| . |RadicalCategory|) T) ((|Partition| . |OrderedSet|) T) ((|MachineFloat| . |OrderedRing|) T) ((|SparseUnivariatePolynomial| . |DifferentialRing|) T) ((|InnerPrimeField| . |LeftOreRing|) T) ((|FiniteFieldExtensionByPolynomial| . |SetCategory|) T) ((|SparseUnivariateSkewPolynomial| . |RetractableTo|) 26299) ((|IndexedTwoDimensionalArray| . |Type|) T) ((|HomogeneousDirectProduct| . |Aggregate|) T) ((|DirectProduct| . |HomogeneousAggregate|) 26283) ((|UnivariatePolynomial| . |AbelianGroup|) T) ((|DirectProductModule| . |Type|) T) ((|AlgebraGivenByStructuralConstants| . |Module|) 26267) ((|InfClsPt| . |SetCategoryWithDegree|) T) ((|FullPartialFractionExpansion| . |ConvertibleTo|) 26238) ((|TwoDimensionalViewport| . |SetCategory|) T) ((|BinaryTournament| . |BinaryRecursiveAggregate|) 26222) ((|InnerPrimeField| . |BiModule|) 26149) ((|PrimeField| . |EuclideanDomain|) T) ((|Float| . |AbelianMonoid|) T) ((|Heap| . |InnerEvalable|) 26068) ((|Reference| . |CoercibleTo|) 26019) ((|RealClosure| . |OrderedAbelianGroup|) T) ((|Integer| . |OrderedAbelianGroup|) T) ((|PrimeField| . |Monoid|) T) ((|SparseUnivariatePuiseuxSeries| . |Module|) 25807) ((|ExponentialOfUnivariatePuiseuxSeries| . |LeftModule|) 25676) ((|PAdicRationalConstructor| . |AbelianGroup|) T) ((|GeneralUnivariatePowerSeries| . |EuclideanDomain|) 25652) ((|PAdicRational| . |AbelianSemiGroup|) T) ((|Tree| . |RecursiveAggregate|) 25636) ((|PseudoAlgebraicClosureOfFiniteField| . |UniqueFactorizationDomain|) T) ((|MachineInteger| . |UniqueFactorizationDomain|) T) ((|XRecursivePolynomial| . |Ring|) T) ((|BinaryTree| . |BinaryRecursiveAggregate|) 25620) ((|PAdicRational| . |RetractableTo|) 25587) ((|SparseTable| . |Evalable|) 25347) ((|OrderlyDifferentialPolynomial| . |AbelianMonoid|) T) ((|Automorphism| . |SemiGroup|) T) ((|PAdicRationalConstructor| . |OrderedAbelianSemiGroup|) 25307) ((|e04fdfAnnaType| . |BasicType|) T) ((|GeneralSparseTable| . |Collection|) 25249) ((|SparseUnivariatePolynomialExpressions| . |SemiGroup|) T) ((|BalancedPAdicInteger| . |Monoid|) T) ((|UnivariateLaurentSeriesConstructor| . |ElementaryFunctionCategory|) 25198) ((|PseudoAlgebraicClosureOfFiniteField| . |SetCategory|) T) ((|UnivariateLaurentSeries| . |TranscendentalFunctionCategory|) 25147) ((|AlgebraicFunctionField| . |LeftOreRing|) T) ((|SparseUnivariateLaurentSeries| . |OrderedIntegralDomain|) NIL) ((|SparseUnivariatePuiseuxSeries| . |CommutativeRing|) 25053) ((|OrderlyDifferentialPolynomial| . |Algebra|) 24816) ((|LieSquareMatrix| . |LinearlyExplicitRingOver|) 24732) ((|Polynomial| . |OrderedSet|) 24703) ((|GeneralUnivariatePowerSeries| . |ArcTrigonometricFunctionCategory|) 24652) ((|FiniteFieldNormalBasis| . |Monoid|) T) ((|AlgebraicFunctionField| . |FiniteRankAlgebra|) 24618) ((|Vector| . |Collection|) 24602) ((|UnivariateLaurentSeries| . |OrderedAbelianSemiGroup|) NIL) ((|ModMonic| . |OrderedSet|) 24573) ((|Expression| . |DivisionRing|) 24540) ((|PAdicRationalConstructor| . |PolynomialFactorizationExplicit|) 24490) ((|FiniteFieldNormalBasisExtension| . |Field|) T) ((|Divisor| . |SetCategory|) T) ((|FiniteFieldNormalBasis| . |ExtensionField|) 24459) ((|SparseUnivariatePolynomialExpressions| . |FullyRetractableTo|) 24443) ((|ExponentialExpansion| . |Algebra|) 24315) ((|PAdicInteger| . |AbelianGroup|) T) ((|XRecursivePolynomial| . |Module|) 24272) ((|AssociatedJordanAlgebra| . |RightModule|) 24256) ((|DesingTree| . |CoercibleTo|) 24207) ((|TaylorSeries| . |CommutativeRing|) 24136) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |CancellationAbelianMonoid|) T) ((|InputForm| . |CoercibleTo|) 24110) ((|Partition| . |AbelianSemiGroup|) T) ((|U16Vector| . |Eltable|) 24075) ((|PseudoAlgebraicClosureOfRationalNumber| . |PrincipalIdealDomain|) T) ((|DoubleFloatVector| . |OrderedSet|) T) ((|FiniteFieldExtensionByPolynomial| . |CancellationAbelianMonoid|) T) ((|PrimeField| . |Rng|) T) ((|SparseUnivariatePolynomialExpressions| . |ElementaryFunctionCategory|) 24026) ((|InnerSparseUnivariatePowerSeries| . |UnivariatePowerSeriesCategory|) 23998) ((|e04gcfAnnaType| . |SetCategory|) T) ((|AlgebraicFunctionField| . |BiModule|) 23881) ((|ContinuedFraction| . |EntireRing|) T) ((|ModularField| . |GcdDomain|) T) ((|RectangularMatrix| . |ConvertibleTo|) 23817) ((|PseudoAlgebraicClosureOfRationalNumber| . |ExtensionField|) 23781) ((|Asp1| . |CoercibleTo|) 23755) ((|FileName| . |SetCategory|) T) ((|FiniteFieldNormalBasis| . |PrincipalIdealDomain|) T) ((|PendantTree| . |CoercibleTo|) 23706) ((|UniversalSegment| . |SegmentCategory|) 23690) ((|RealClosure| . |SetCategory|) T) ((|GeneralUnivariatePowerSeries| . |IntegralDomain|) 23629) ((|DoubleFloatVector| . |InnerEvalable|) NIL) ((|HashTable| . |Eltable|) 23608) ((|FourierSeries| . |AbelianSemiGroup|) T) ((|Expression| . |SpecialFunctionCategory|) 23575) ((|SparseUnivariateTaylorSeries| . |Eltable|) 23560) ((|File| . |BasicType|) T) ((|PAdicRationalConstructor| . |PrincipalIdealDomain|) T) ((|RomanNumeral| . |EntireRing|) T) ((|LieSquareMatrix| . |SetCategory|) T) ((|d01asfAnnaType| . |BasicType|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Ring|) T) ((|NewSparseMultivariatePolynomial| . |Evalable|) 23547) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |AbelianSemiGroup|) T) ((|FiniteDivisor| . |AbelianGroup|) T) ((|SparseMultivariateTaylorSeries| . |CharacteristicNonZero|) 23507) ((|SparseUnivariatePuiseuxSeries| . |Rng|) T) ((|RadixExpansion| . |Module|) 23441) ((|DirectProductModule| . |AbelianMonoid|) T) ((|DeRhamComplex| . |BasicType|) T) ((|DoubleFloat| . |ArcHyperbolicFunctionCategory|) T) ((|RadixExpansion| . |OrderedCancellationAbelianMonoid|) T) ((|InnerPrimeField| . |GcdDomain|) T) ((|SingleInteger| . |CombinatorialFunctionCategory|) T) ((|Character| . |Finite|) T) ((|PrimeField| . |ConvertibleTo|) 23418) ((|StringTable| . |BasicType|) T) ((|e04fdfAnnaType| . |SetCategory|) T) ((|DoubleFloat| . |OpenMath|) T) ((|EqTable| . |KeyedDictionary|) 23397) ((|GeneralDistributedMultivariatePolynomial| . |CommutativeRing|) 23250) ((|U8Vector| . |Aggregate|) T) ((|TaylorSeries| . |ElementaryFunctionCategory|) 23199) ((|LocalAlgebra| . |OrderedSet|) 23169) ((|NeitherSparseOrDensePowerSeries| . |Collection|) 23110) ((|IndexedDirectProductOrderedAbelianMonoid| . |OrderedSet|) T) ((|OrderedDirectProduct| . |HomogeneousAggregate|) 23094) ((|SparseUnivariateLaurentSeries| . |PrincipalIdealDomain|) 23070) ((|Expression| . |OrderedSet|) T) ((|Expression| . |CoercibleTo|) 23044) ((|AlgebraicNumber| . |DifferentialRing|) T) ((|RadicalFunctionField| . |Monoid|) T) ((|FourierSeries| . |LeftModule|) 23018) ((|InnerAlgebraicNumber| . |LinearlyExplicitRingOver|) 22962) ((|FourierComponent| . |BasicType|) T) ((|OrderedDirectProduct| . |InnerEvalable|) 22881) ((|Asp80| . |FortranMatrixFunctionCategory|) T) ((|MachineComplex| . |ComplexCategory|) 22853) ((|UnivariatePolynomial| . |BasicType|) T) ((|HomogeneousDirectProduct| . |Rng|) 22763) ((|AlgebraicNumber| . |CoercibleTo|) 22737) ((|DistributedMultivariatePolynomial| . |FullyRetractableTo|) 22721) ((|QuasiAlgebraicSet| . |SetCategory|) T) ((|MyUnivariatePolynomial| . |FullyRetractableTo|) 22705) ((|Places| . |SetCategoryWithDegree|) T) ((|UnivariatePolynomial| . |AbelianMonoidRing|) 22666) ((|Reference| . |Type|) T) ((|SparseMultivariateTaylorSeries| . |BiModule|) 22467) ((|HomogeneousDirectProduct| . |Ring|) 22377) ((|Asp30| . |FortranMatrixCategory|) T) ((|AlgebraicNumber| . |Module|) 22331) ((|NewSparseMultivariatePolynomial| . |FullyRetractableTo|) 22315) ((|FiniteFieldCyclicGroupExtension| . |LeftModule|) 22256) ((|GeneralDistributedMultivariatePolynomial| . |FullyRetractableTo|) 22240) ((|d02ejfAnnaType| . |OrdinaryDifferentialEquationsSolverCategory|) T) ((|FortranExpression| . |PartialDifferentialRing|) 22218) ((|Operator| . |Module|) 22175) ((|HomogeneousDirectProduct| . |OrderedRing|) 22145) ((|U16Matrix| . |CoercibleTo|) 22119) ((|RadixExpansion| . |DifferentialRing|) T) ((|UnivariateLaurentSeriesConstructor| . |Rng|) T) ((|d01TransformFunctionType| . |CoercibleTo|) 22093) ((|DenavitHartenbergMatrix| . |InnerEvalable|) 22012) ((|RectangularMatrix| . |AbelianMonoid|) T) ((|IndexedFlexibleArray| . |Evalable|) 21936) ((|FreeAbelianGroup| . |CancellationAbelianMonoid|) T) ((|Float| . |ElementaryFunctionCategory|) T) ((|MachineComplex| . |PrincipalIdealDomain|) T) ((|RoutinesTable| . |TableAggregate|) 21906) ((|BalancedPAdicRational| . |Evalable|) 21790) ((|UnivariateFormalPowerSeries| . |RightModule|) 21623) ((|SimpleAlgebraicExtension| . |RightModule|) 21505) ((|Octonion| . |Module|) 21489) ((|FiniteField| . |EuclideanDomain|) T) ((|MachineComplex| . |IntegralDomain|) T) ((|DistributedMultivariatePolynomial| . |PatternMatchable|) NIL) ((|Interval| . |CancellationAbelianMonoid|) T) ((|FortranTemplate| . |BasicType|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |SemiGroup|) T) ((|SquareMatrix| . |Ring|) T) ((|SquareFreeRegularTriangularSet| . |CoercibleTo|) 21441) ((|OrdinaryDifferentialRing| . |GcdDomain|) 21417) ((|FiniteFieldCyclicGroupExtension| . |DivisionRing|) T) ((|LieExponentials| . |Group|) T) ((|OrderedCompletion| . |RetractableTo|) 21261) ((|FreeAbelianGroup| . |OrderedSet|) 21232) ((|IndexedList| . |FiniteLinearAggregate|) 21216) ((|IndexedList| . |HomogeneousAggregate|) 21200) ((|FiniteFieldCyclicGroup| . |UniqueFactorizationDomain|) T) ((|Pattern| . |RetractableTo|) 21165) ((|FiniteFieldNormalBasisExtension| . |BiModule|) 21074) ((|GeneralUnivariatePowerSeries| . |PrincipalIdealDomain|) 21050) ((|BinaryTree| . |HomogeneousAggregate|) 21034) ((|MultivariatePolynomial| . |InnerEvalable|) 20938) ((|TaylorSeries| . |BiModule|) 20739) ((|ModularField| . |RightModule|) 20693) ((|SquareFreeRegularTriangularSet| . |ConvertibleTo|) 20629) ((|MachineInteger| . |DifferentialRing|) T) ((|Product| . |Monoid|) 20517) ((|OppositeMonogenicLinearOperator| . |AbelianMonoid|) T) ((|Asp49| . |FortranFunctionCategory|) T) ((|RadicalFunctionField| . |CommutativeRing|) T) ((|AlgebraicNumber| . |LinearlyExplicitRingOver|) 20461) ((|HomogeneousDistributedMultivariatePolynomial| . |UniqueFactorizationDomain|) 20411) ((|Expression| . |FunctionSpace|) 20395) ((|PolynomialRing| . |LeftModule|) 20292) ((|FiniteFieldExtension| . |RetractableTo|) 20276) ((|CartesianTensor| . |BasicType|) T) ((|SparseUnivariatePolynomial| . |Rng|) T) ((|TaylorSeries| . |SetCategory|) T) ((|UnivariatePolynomial| . |Rng|) T) ((|UnivariateLaurentSeriesConstructor| . |UniqueFactorizationDomain|) 20252) ((|Fraction| . |DivisionRing|) T) ((|d01akfAnnaType| . |CoercibleTo|) 20226) ((|DoubleFloat| . |EuclideanDomain|) T) ((|RadixExpansion| . |FullyLinearlyExplicitRingOver|) 20203) ((|Integer| . |CharacteristicZero|) T) ((|DirectProduct| . |Evalable|) 20127) ((|FreeGroup| . |SetCategory|) T) ((|FiniteFieldNormalBasisExtension| . |AbelianSemiGroup|) T) ((|SquareMatrix| . |AbelianGroup|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |FieldOfPrimeCharacteristic|) 20058) ((|SparseTable| . |Eltable|) 20037) ((|Table| . |BasicType|) T) ((|UnivariatePuiseuxSeriesConstructor| . |CoercibleTo|) 20011) ((|ExponentialExpansion| . |LinearlyExplicitRingOver|) 19926) ((|XDistributedPolynomial| . |CoercibleTo|) 19900) ((|BasicStochasticDifferential| . |BasicType|) T) ((|DirectProductModule| . |Ring|) 19810) ((|SparseUnivariateSkewPolynomial| . |Rng|) T) ((|MachineFloat| . |EntireRing|) T) ((|MyExpression| . |CommutativeRing|) T) ((|SquareFreeRegularTriangularSet| . |PolynomialSetCategory|) 19779) ((|UnivariateTaylorSeriesCZero| . |CharacteristicNonZero|) 19739) ((|TaylorSeries| . |HyperbolicFunctionCategory|) 19688) ((|FlexibleArray| . |Eltable|) 19660) ((|XRecursivePolynomial| . |BiModule|) 19639) ((|DirectProductModule| . |DirectProductCategory|) 19618) ((|Fraction| . |FullyEvalableOver|) 19602) ((|SparseUnivariatePolynomial| . |Monoid|) T) ((|FiniteFieldNormalBasis| . |SemiGroup|) T) ((|DistributedMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |BiModule|) 19327) ((|Multiset| . |SetAggregate|) 19311) ((|DistributedMultivariatePolynomial| . |Module|) 19074) ((|FreeAbelianMonoid| . |CancellationAbelianMonoid|) T) ((|SparseMultivariateTaylorSeries| . |Module|) 18918) ((|NewSparseMultivariatePolynomial| . |AbelianMonoidRing|) 18876) ((|HomogeneousDistributedMultivariatePolynomial| . |Module|) 18639) ((|String| . |OrderedSet|) T) ((|ProjectivePlane| . |SetCategory|) T) ((|EqTable| . |EltableAggregate|) 18618) ((|HomogeneousDistributedMultivariatePolynomial| . |IntegralDomain|) 18504) ((|IndexedBits| . |Collection|) 18481) ((|UnivariateSkewPolynomial| . |Ring|) T) ((|HashTable| . |SetCategory|) T) ((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| . |SetCategoryWithDegree|) T) ((|SquareMatrix| . |SemiGroup|) T) ((|UnivariateLaurentSeries| . |DivisionRing|) 18457) ((|UnivariateLaurentSeriesConstructor| . |EntireRing|) 18396) ((|FortranExpression| . |CoercibleTo|) 18370) ((|InnerTable| . |HomogeneousAggregate|) 18299) ((|BinaryExpansion| . |DifferentialRing|) T) ((|LinearOrdinaryDifferentialOperator1| . |LeftModule|) 18273) ((|GeneralDistributedMultivariatePolynomial| . |GcdDomain|) 18191) ((|CliffordAlgebra| . |Monoid|) T) ((|ThreeDimensionalMatrix| . |Evalable|) 18115) ((|NonNegativeInteger| . |CancellationAbelianMonoid|) T) ((|PermutationGroup| . |CoercibleTo|) 18089) ((|Fraction| . |OrderedAbelianMonoid|) 18049) ((|MachineInteger| . |AbelianMonoid|) T) ((|GeneralTriangularSet| . |PolynomialSetCategory|) 18018) ((|MultivariatePolynomial| . |AbelianMonoid|) T) ((|UnivariatePuiseuxSeriesConstructor| . |ArcTrigonometricFunctionCategory|) 17967) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |RightModule|) 17870) ((|U8Matrix| . |Evalable|) NIL) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |CommutativeRing|) T) ((|UnivariateLaurentSeriesConstructor| . |OrderedRing|) 17801) ((|RewriteRule| . |BasicType|) T) ((|ComplexDoubleFloatVector| . |IndexedAggregate|) 17750) ((|DistributedMultivariatePolynomial| . |GcdDomain|) 17668) ((|Record| . |SetCategory|) T) ((|RealClosure| . |DivisionRing|) T) ((|Interval| . |IntegralDomain|) T) ((|Expression| . |LeftOreRing|) 17635) ((|NewSparseUnivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|Fraction| . |DifferentialRing|) 17600) ((|PolynomialRing| . |Ring|) T) ((|Quaternion| . |Module|) 17534) ((|PAdicInteger| . |AbelianSemiGroup|) T) ((|RomanNumeral| . |BiModule|) 17519) ((|BalancedPAdicRational| . |Eltable|) 17372) ((|UnivariateLaurentSeriesConstructor| . |InnerEvalable|) 17203) ((|SimpleAlgebraicExtension| . |MonogenicAlgebra|) 17182) ((|CharacterClass| . |SetAggregate|) 17157) ((|SparseUnivariateLaurentSeries| . |Monoid|) T) ((|Interval| . |RetractableTo|) 17134) ((|GeneralSparseTable| . |TableAggregate|) 17113) ((|AssociatedLieAlgebra| . |FramedNonAssociativeAlgebra|) 17053) ((|FiniteFieldExtensionByPolynomial| . |EntireRing|) T) ((|MultivariatePolynomial| . |EntireRing|) 16939) ((|RectangularMatrix| . |LeftModule|) 16923) ((|XPBWPolynomial| . |FreeModuleCat|) 16866) ((|RadicalFunctionField| . |BasicType|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |Field|) T) ((|XPBWPolynomial| . |Rng|) T) ((|SingleInteger| . |PatternMatchable|) 16843) ((|SparseMultivariateTaylorSeries| . |Ring|) T) ((|MultivariatePolynomial| . |PartialDifferentialRing|) 16803) ((|HexadecimalExpansion| . |FullyLinearlyExplicitRingOver|) 16780) ((|OrderedDirectProduct| . |EltableAggregate|) 16752) ((|MachineInteger| . |LeftOreRing|) T) ((|RomanNumeral| . |CombinatorialFunctionCategory|) T) ((|SparseTable| . |EltableAggregate|) 16731) ((|FiniteFieldExtension| . |Rng|) T) ((|EqTable| . |InnerEvalable|) 16439) ((|RomanNumeral| . |OrderedAbelianSemiGroup|) T) ((|XPBWPolynomial| . |AbelianSemiGroup|) T) ((|IndexedVector| . |BasicType|) 16376) ((|Interval| . |BasicType|) T) ((|SimpleAlgebraicExtension| . |ConvertibleTo|) 16360) ((|SequentialDifferentialPolynomial| . |GcdDomain|) 16278) ((|Interval| . |CoercibleTo|) 16252) ((|FiniteFieldNormalBasis| . |Module|) 16178) ((|RadixExpansion| . |CharacteristicZero|) T) ((|PrimeField| . |SetCategory|) T) ((|LaurentPolynomial| . |CoercibleTo|) 16152) ((|DirectProductModule| . |Algebra|) 16109) ((|Polynomial| . |EntireRing|) 15995) ((|UnivariateTaylorSeriesCZero| . |CharacteristicZero|) 15958) ((|ExponentialOfUnivariatePuiseuxSeries| . |CancellationAbelianMonoid|) T) ((|HyperellipticFiniteDivisor| . |BasicType|) T) ((|DirectProductMatrixModule| . |Algebra|) 15915) ((|GeneralDistributedMultivariatePolynomial| . |LeftOreRing|) 15833) ((|ArrayStack| . |Type|) T) ((|RomanNumeral| . |Algebra|) 15820) ((|Result| . |SetCategory|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 15804) ((|Fraction| . |PartialDifferentialRing|) 15736) ((|NeitherSparseOrDensePowerSeries| . |CommutativeRing|) T) ((|SequentialDifferentialPolynomial| . |CharacteristicNonZero|) 15696) ((|FiniteFieldExtension| . |FiniteAlgebraicExtensionField|) 15680) ((|UnivariateLaurentSeriesConstructor| . |LeftOreRing|) 15656) ((|Point| . |ConvertibleTo|) 15592) ((|InnerTaylorSeries| . |AbelianSemiGroup|) T) ((|Symbol| . |OrderedSet|) T) ((|FiniteFieldNormalBasisExtension| . |RightModule|) 15533) ((|Matrix| . |SetCategory|) 15503) ((|Vector| . |FiniteLinearAggregate|) 15487) ((|NumericalIntegrationProblem| . |BasicType|) T) ((|RadicalFunctionField| . |ConvertibleTo|) 15471) ((|Kernel| . |ConvertibleTo|) 15249) ((|DoubleFloat| . |BasicType|) T) ((|FiniteFieldCyclicGroup| . |Ring|) T) ((|IndexedList| . |OrderedSet|) 15220) ((|SquareMatrix| . |Algebra|) 15165) ((|SparseUnivariateTaylorSeries| . |SemiGroup|) T) ((|IntegerMod| . |LeftModule|) 15152) ((|Octonion| . |OrderedSet|) 15123) ((|IntegerMod| . |SetCategory|) T) ((|SparseUnivariateLaurentSeries| . |UniqueFactorizationDomain|) 15099) ((|DoubleFloat| . |GcdDomain|) T) ((|UnivariatePuiseuxSeries| . |Field|) 15075) ((|U16Matrix| . |InnerEvalable|) NIL) ((|UnivariateLaurentSeries| . |Ring|) T) ((|MyUnivariatePolynomial| . |StepThrough|) 15045) ((|SparseUnivariatePolynomialExpressions| . |InnerEvalable|) 14955) ((|OpenMathError| . |CoercibleTo|) 14929) ((|Vector| . |LinearAggregate|) 14913) ((|GeneralUnivariatePowerSeries| . |PowerSeriesCategory|) 14846) ((|OrdinaryDifferentialRing| . |BiModule|) 14756) ((|FourierSeries| . |Ring|) T) ((|HexadecimalExpansion| . |OrderedSet|) T) ((|Operator| . |CancellationAbelianMonoid|) T) ((|Bits| . |LinearAggregate|) 14733) ((|SparseUnivariateLaurentSeries| . |OrderedAbelianGroup|) NIL) ((|AssociatedJordanAlgebra| . |CoercibleTo|) 14694) ((|TexFormat| . |SetCategory|) T) ((|XRecursivePolynomial| . |AbelianSemiGroup|) T) ((|SquareMatrix| . |SetCategory|) T) ((|SingleInteger| . |OrderedAbelianMonoid|) T) ((|IntegerMod| . |Rng|) T) ((|FiniteFieldExtensionByPolynomial| . |UniqueFactorizationDomain|) T) ((|DoubleFloat| . |RealConstant|) T) ((|FiniteFieldExtension| . |FiniteFieldCategory|) 14669) ((|PolynomialIdeals| . |BasicType|) T) ((|DirectProductModule| . |FullyRetractableTo|) 14630) ((|OneDimensionalArray| . |OrderedSet|) 14601) ((|OrderedDirectProduct| . |SetCategory|) 14293) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Rng|) T) ((|FourierComponent| . |CoercibleTo|) 14267) ((|ExponentialOfUnivariatePuiseuxSeries| . |Rng|) T) ((|DistributedMultivariatePolynomial| . |CharacteristicNonZero|) 14227) ((|FiniteFieldNormalBasis| . |DifferentialRing|) T) ((|FiniteFieldExtensionByPolynomial| . |LeftModule|) 14168) ((|OrderedDirectProduct| . |IndexedAggregate|) 14140) ((|RadicalFunctionField| . |StepThrough|) NIL) ((|RomanNumeral| . |OrderedSet|) T) ((|Multiset| . |MultiDictionary|) 14124) ((|UnivariateFormalPowerSeries| . |BasicType|) T) ((|InfClsPt| . |InfinitlyClosePointCategory|) 13888) ((|PatternMatchListResult| . |CoercibleTo|) 13862) ((|Plot3D| . |CoercibleTo|) 13836) ((|OrderlyDifferentialPolynomial| . |FullyRetractableTo|) 13820) ((|PAdicRationalConstructor| . |AbelianMonoid|) T) ((|PartialFraction| . |EuclideanDomain|) T) ((|NeitherSparseOrDensePowerSeries| . |Aggregate|) T) ((|BalancedPAdicInteger| . |AbelianSemiGroup|) T) ((|OrderlyDifferentialPolynomial| . |RightModule|) 13577) ((|FreeGroup| . |RetractableTo|) 13561) ((|FiniteField| . |BiModule|) 13440) ((|LaurentPolynomial| . |ConvertibleTo|) 13411) ((|EuclideanModularRing| . |AbelianMonoid|) T) ((|FiniteFieldCyclicGroupExtension| . |FiniteFieldCategory|) 13386) ((|Stream| . |SetCategory|) 13356) ((|RadicalFunctionField| . |Ring|) T) ((|MachineComplex| . |AbelianGroup|) T) ((|SparseUnivariateSkewPolynomial| . |CancellationAbelianMonoid|) T) ((|KeyedAccessFile| . |FileCategory|) 13279) ((|EuclideanModularRing| . |IntegralDomain|) T) ((|RomanNumeral| . |CommutativeRing|) T) ((|ThreeDimensionalMatrix| . |InnerEvalable|) 13198) ((|U16Vector| . |OrderedSet|) T) ((|PrimeField| . |DivisionRing|) T) ((|XPBWPolynomial| . |AbelianGroup|) T) ((|ModMonic| . |RetractableTo|) 13008) ((|IndexedVector| . |Collection|) 12992) ((|Quaternion| . |DifferentialExtension|) 12976) ((|IndexedList| . |StreamAggregate|) 12960) ((|OrderlyDifferentialPolynomial| . |AbelianMonoidRing|) 12880) ((|MyExpression| . |OrderedSet|) T) ((|RealClosure| . |OrderedAbelianSemiGroup|) T) ((|U32Matrix| . |BasicType|) T) ((|TaylorSeries| . |TranscendentalFunctionCategory|) 12829) ((|Fraction| . |RealConstant|) 12798) ((|Table| . |IndexedAggregate|) 12777) ((|SparseUnivariateLaurentSeries| . |PatternMatchable|) NIL) ((|U8Vector| . |FiniteLinearAggregate|) 12754) ((|ModuleOperator| . |Monoid|) T) ((|XPolynomial| . |CoercibleTo|) 12728) ((|Asp73| . |CoercibleTo|) 12702) ((|XPBWPolynomial| . |SetCategory|) T) ((|SparseUnivariateTaylorSeries| . |BiModule|) 12503) ((|ComplexDoubleFloatVector| . |OneDimensionalArrayAggregate|) 12464) ((|IndexedList| . |Evalable|) 12388) ((|PAdicRational| . |Ring|) T) ((|PAdicRational| . |OrderedRing|) NIL) ((|RadixExpansion| . |BasicType|) T) ((|Asp19| . |FortranVectorFunctionCategory|) T) ((|Asp50| . |Type|) T) ((|Automorphism| . |Eltable|) 12367) ((|BinaryTree| . |SetCategory|) 12337) ((|MyExpression| . |UniqueFactorizationDomain|) 12304) ((|Operator| . |BasicType|) T) ((|OrderedDirectProduct| . |OrderedSet|) 12228) ((|RightOpenIntervalRootCharacterization| . |CoercibleTo|) 12202) ((|SquareMatrix| . |ConvertibleTo|) 12138) ((|UnivariateTaylorSeriesCZero| . |BasicType|) T) ((|AssociatedJordanAlgebra| . |BasicType|) T) ((|GeneralUnivariatePowerSeries| . |Ring|) T) ((|SparseUnivariatePolynomialExpressions| . |OrderedSet|) 12109) ((|Asp9| . |Type|) T) ((|MyUnivariatePolynomial| . |Evalable|) 12096) ((|U32Vector| . |Aggregate|) T) ((|Mapping| . |SetCategory|) T) ((|DirectProductModule| . |OrderedRing|) 12066) ((|SparseUnivariatePolynomial| . |LeftModule|) 11963) ((|Pi| . |BasicType|) T) ((|MachineInteger| . |LinearlyExplicitRingOver|) 11940) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |CoercibleTo|) 11914) ((|FiniteFieldCyclicGroupExtension| . |SemiGroup|) T) ((|SparseUnivariateLaurentSeries| . |Field|) 11890) ((|SparseUnivariateLaurentSeries| . |Type|) 11866) ((|SymmetricPolynomial| . |Rng|) T) ((|AssociationList| . |ListAggregate|) 11808) ((|HyperellipticFiniteDivisor| . |AbelianSemiGroup|) T) ((|MachineFloat| . |PatternMatchable|) 11787) ((|U32Vector| . |FiniteLinearAggregate|) 11764) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |BasicType|) T) ((|DoubleFloatMatrix| . |BasicType|) T) ((|PrimeField| . |LeftModule|) 11718) ((|AlgebraicNumber| . |Rng|) T) ((|Fraction| . |EntireRing|) T) ((|InnerTaylorSeries| . |CoercibleTo|) 11692) ((|HomogeneousDirectProduct| . |DifferentialExtension|) 11660) ((|SparseUnivariatePuiseuxSeries| . |LeftModule|) 11529) ((|AssociationList| . |TableAggregate|) 11508) ((|SparseUnivariateLaurentSeries| . |Patternable|) 11432) ((|UnivariateFormalPowerSeries| . |SetCategory|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |AbelianMonoidRing|) 11353) ((|FreeAbelianGroup| . |RetractableTo|) 11337) ((|Asp41| . |FortranVectorFunctionCategory|) T) ((|DirectProduct| . |Module|) 11266) ((|InnerFiniteField| . |CharacteristicNonZero|) T) ((|SparseTable| . |SetCategory|) T) ((|MachineComplex| . |ElementaryFunctionCategory|) NIL) ((|Interval| . |Module|) 11253) ((|LieSquareMatrix| . |Rng|) T) ((|Fraction| . |Eltable|) 11206) ((|PAdicRational| . |PolynomialFactorizationExplicit|) NIL) ((|d02bbfAnnaType| . |BasicType|) T) ((|PAdicRationalConstructor| . |BiModule|) 11115) ((|InnerPrimeField| . |RightModule|) 11069) ((|PAdicRationalConstructor| . |Module|) 11010) ((|IndexedBits| . |OneDimensionalArrayAggregate|) 10987) ((|OrdinaryWeightedPolynomials| . |SetCategory|) T) ((|Float| . |TranscendentalFunctionCategory|) T) ((|SingleInteger| . |PrincipalIdealDomain|) T) ((|MyExpression| . |FullyLinearlyExplicitRingOver|) 10955) ((|SparseMultivariateTaylorSeries| . |ArcTrigonometricFunctionCategory|) 10904) ((|Set| . |BagAggregate|) 10888) ((|ModMonic| . |CharacteristicNonZero|) 10848) ((|U16Vector| . |LinearAggregate|) 10825) ((|PAdicRational| . |Module|) 10749) ((|FreeAbelianGroup| . |LeftModule|) 10726) ((|PAdicInteger| . |IntegralDomain|) T) ((|GeneralUnivariatePowerSeries| . |AbelianSemiGroup|) T) ((|InnerFiniteField| . |DivisionRing|) T) ((|Equation| . |SetCategory|) 10423) ((|PAdicRational| . |OrderedIntegralDomain|) NIL) ((|RadicalFunctionField| . |RightModule|) 10351) ((|Partition| . |CoercibleTo|) 10325) ((|SparseUnivariateTaylorSeries| . |CancellationAbelianMonoid|) T) ((|NeitherSparseOrDensePowerSeries| . |CharacteristicZero|) 10288) ((|MyExpression| . |SemiGroup|) T) ((|DistributedMultivariatePolynomial| . |AbelianGroup|) T) ((|MachineInteger| . |RightModule|) 10275) ((|IndexedList| . |SetCategory|) 10212) ((|d02ejfAnnaType| . |SetCategory|) T) ((|SimpleAlgebraicExtension| . |CharacteristicNonZero|) 10130) ((|OrderlyDifferentialPolynomial| . |EntireRing|) 10016) ((|AssociatedLieAlgebra| . |SetCategory|) T) ((|GeneralDistributedMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 9995) ((|FiniteFieldNormalBasisExtension| . |LeftModule|) 9936) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |CommutativeRing|) T) ((|AssociatedJordanAlgebra| . |CancellationAbelianMonoid|) T) ((|SparseUnivariatePuiseuxSeries| . |DifferentialRing|) 9871) ((|InnerTable| . |ConvertibleTo|) NIL) ((|AlgebraicFunctionField| . |LeftModule|) 9799) ((|InnerPAdicInteger| . |AbelianMonoid|) T) ((|OrdSetInts| . |CoercibleTo|) 9773) ((|SparseUnivariateLaurentSeries| . |EuclideanDomain|) 9749) ((|FiniteFieldCyclicGroup| . |PrincipalIdealDomain|) T) ((|UnivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 9733) ((|NewSparseUnivariatePolynomial| . |CharacteristicZero|) 9696) ((|MyExpression| . |PartialDifferentialRing|) 9674) ((|RadixExpansion| . |RetractableTo|) 9618) ((|MachineFloat| . |Algebra|) 9572) ((|RealClosure| . |GcdDomain|) T) ((|ContinuedFraction| . |BiModule|) 9437) ((|OneDimensionalArray| . |HomogeneousAggregate|) 9421) ((|FiniteFieldNormalBasisExtension| . |BasicType|) T) ((|Asp73| . |Type|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |Monoid|) T) ((|PolynomialRing| . |SemiGroup|) T) ((|Pi| . |CommutativeRing|) T) ((|BalancedPAdicRational| . |UniqueFactorizationDomain|) T) ((|MultivariatePolynomial| . |CommutativeRing|) 9274) ((|AlgebraicNumber| . |AbelianMonoid|) T) ((|Operator| . |AbelianMonoid|) T) ((|Expression| . |AlgebraicallyClosedFunctionSpace|) 9232) ((|DrawOption| . |CoercibleTo|) 9206) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |SemiGroup|) T) ((|Divisor| . |CancellationAbelianMonoid|) T) ((|PoincareBirkhoffWittLyndonBasis| . |BasicType|) T) ((|RadixExpansion| . |SemiGroup|) T) ((|OrderedDirectProduct| . |CoercibleTo|) 8855) ((|InnerIndexedTwoDimensionalArray| . |Evalable|) 8779) ((|IndexedTwoDimensionalArray| . |InnerEvalable|) 8698) ((|ExponentialExpansion| . |OrderedRing|) NIL) ((|DirectProductModule| . |DifferentialExtension|) 8666) ((|Pi| . |ConvertibleTo|) 8535) ((|UnivariateTaylorSeries| . |SetCategory|) T) ((|GeneralUnivariatePowerSeries| . |DifferentialRing|) 8470) ((|LinearOrdinaryDifferentialOperator2| . |BasicType|) T) ((|InnerFiniteField| . |PrincipalIdealDomain|) T) ((|DistributedMultivariatePolynomial| . |AbelianMonoid|) T) ((|ModularField| . |CommutativeRing|) T) ((|MachineComplex| . |OrderedSet|) T) ((|Localize| . |CoercibleTo|) 8444) ((|SquareFreeRegularTriangularSet| . |HomogeneousAggregate|) 8428) ((|NewSparseUnivariatePolynomial| . |PatternMatchable|) NIL) ((|LieSquareMatrix| . |DifferentialExtension|) 8412) ((|Float| . |Rng|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |SetCategory|) T) ((|ArrayStack| . |SetCategory|) 8382) ((|ExponentialOfUnivariatePuiseuxSeries| . |RightModule|) 8164) ((|d01akfAnnaType| . |NumericalIntegrationCategory|) T) ((|Result| . |Dictionary|) 8097) ((|ModMonic| . |PatternMatchable|) NIL) ((|HomogeneousDirectProduct| . |OrderedAbelianMonoid|) 8021) ((|LaurentPolynomial| . |Algebra|) 8008) ((|Fraction| . |SemiGroup|) T) ((|SparseMultivariatePolynomial| . |AbelianGroup|) T) ((|FiniteDivisor| . |SetCategory|) T) ((|RomanNumeral| . |OrderedAbelianMonoid|) T) ((|PAdicRationalConstructor| . |RightModule|) 7949) ((|SparseUnivariatePolynomialExpressions| . |AbelianSemiGroup|) T) ((|BinaryTree| . |InnerEvalable|) 7868) ((|List| . |UnaryRecursiveAggregate|) 7852) ((|Point| . |VectorCategory|) 7836) ((|ExponentialExpansion| . |DifferentialRing|) NIL) ((|RegularChain| . |RegularTriangularSetCategory|) 7671) ((|Set| . |Evalable|) 7595) ((|Expression| . |InnerEvalable|) 7557) ((|PolynomialRing| . |Monoid|) T) ((|RomanNumeral| . |RightModule|) 7544) ((|SparseUnivariateSkewPolynomial| . |AbelianSemiGroup|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |Rng|) T) ((|DirectProductMatrixModule| . |VectorSpace|) 7511) ((|BalancedPAdicRational| . |CoercibleTo|) 7485) ((|UnivariatePuiseuxSeries| . |PowerSeriesCategory|) 7418) ((|d01ajfAnnaType| . |CoercibleTo|) 7392) ((|FreeGroup| . |CoercibleTo|) 7366) ((|RadicalFunctionField| . |UniqueFactorizationDomain|) T) ((|UnivariateLaurentSeriesConstructor| . |RadicalCategory|) 7315) ((|FortranExpression| . |InnerEvalable|) 7277) ((|InnerPrimeField| . |BasicType|) T) ((|EuclideanModularRing| . |CommutativeRing|) T) ((|Complex| . |FullyRetractableTo|) 7261) ((|ExponentialOfUnivariatePuiseuxSeries| . |AbelianGroup|) T) ((|AlgebraicNumber| . |Field|) T) ((|BalancedPAdicRational| . |AbelianMonoid|) T) ((|FreeModule| . |CoercibleTo|) 7235) ((|Product| . |OrderedAbelianMonoid|) 7146) ((|OrdinaryDifferentialRing| . |Module|) 7066) ((|NewSparseUnivariatePolynomial| . |StepThrough|) 7036) ((|InnerSparseUnivariatePowerSeries| . |IntegralDomain|) 7003) ((|NewSparseUnivariatePolynomial| . |Eltable|) 6906) ((|GeneralUnivariatePowerSeries| . |AbelianMonoid|) T) ((|UnivariateLaurentSeriesConstructor| . |Monoid|) T) ((|ModMonic| . |PolynomialFactorizationExplicit|) 6856) ((|RadixExpansion| . |PartialDifferentialRing|) NIL) ((|PrimitiveArray| . |HomogeneousAggregate|) 6840) ((|HomogeneousDirectProduct| . |Module|) 6769) ((|UnivariateFormalPowerSeries| . |ElementaryFunctionCategory|) 6718) ((|Asp34| . |FortranMatrixCategory|) T) ((|ModularField| . |Field|) T) ((|MultivariatePolynomial| . |BiModule|) 6443) ((|ModularRing| . |Ring|) T) ((|NeitherSparseOrDensePowerSeries| . |LeftModule|) 6384) ((|Stream| . |HomogeneousAggregate|) 6368) ((|MultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 6352) ((|PAdicRationalConstructor| . |Ring|) T) ((|OrderlyDifferentialPolynomial| . |FullyLinearlyExplicitRingOver|) 6336) ((|Pattern| . |BasicType|) T) ((|XPolynomial| . |XPolynomialsCat|) 6309) ((|RadixExpansion| . |AbelianMonoid|) T) ((|FreeMonoid| . |BasicType|) T) ((|LinearOrdinaryDifferentialOperator| . |CancellationAbelianMonoid|) T) ((|d01TransformFunctionType| . |BasicType|) T) ((|Complex| . |DivisionRing|) 6243) ((|FortranType| . |BasicType|) T) ((|IntegerMod| . |StepThrough|) T) ((|LyndonWord| . |OrderedSet|) T) ((|PlaneAlgebraicCurvePlot| . |PlottablePlaneCurveCategory|) T) ((|MachineInteger| . |BiModule|) 6228) ((|ExponentialExpansion| . |SetCategory|) T) ((|OrderlyDifferentialPolynomial| . |AbelianGroup|) T) ((|IndexedOneDimensionalArray| . |Type|) T) ((|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| . |SetCategory|) T) ((|FreeMonoid| . |RetractableTo|) 6212) ((|TheSymbolTable| . |CoercibleTo|) 6186) ((|DirectProductModule| . |OrderedCancellationAbelianMonoid|) 6110) ((|IndexedBits| . |Evalable|) NIL) ((|Quaternion| . |RightModule|) 5984) ((|AlgebraicFunctionField| . |CharacteristicNonZero|) 5931) ((|InnerTable| . |Aggregate|) T) ((|Plcs| . |BasicType|) T) ((|InnerPrimeField| . |AbelianMonoid|) T) ((|GenericNonAssociativeAlgebra| . |FiniteRankNonAssociativeAlgebra|) 5887) ((|OrderedDirectProduct| . |LinearlyExplicitRingOver|) 5759) ((|FreeModule| . |AbelianMonoid|) T) ((|GenericNonAssociativeAlgebra| . |AbelianGroup|) T) ((|RadixExpansion| . |OrderedSet|) T) ((|LaurentPolynomial| . |SemiGroup|) T) ((|AlgebraicNumber| . |CancellationAbelianMonoid|) T) ((|XPolynomialRing| . |Algebra|) 5716) ((|PartialFraction| . |Module|) 5657) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |PseudoAlgebraicClosureOfRationalNumberCategory|) T) ((|PAdicRationalConstructor| . |DifferentialExtension|) 5641) ((|SparseUnivariateTaylorSeries| . |Module|) 5485) ((|Asp1| . |FortranFunctionCategory|) T) ((|SparseMultivariateTaylorSeries| . |IntegralDomain|) 5452) ((|Asp28| . |FortranProgramCategory|) T) ((|SparseUnivariatePolynomialExpressions| . |AbelianGroup|) T) ((|DirichletRing| . |Rng|) T) ((|BinarySearchTree| . |InnerEvalable|) 5371) ((|NewSparseMultivariatePolynomial| . |PolynomialCategory|) 5324) ((|AlgebraGivenByStructuralConstants| . |NonAssociativeRng|) T) ((|SparseUnivariateLaurentSeries| . |TrigonometricFunctionCategory|) 5273) ((|DirectProductModule| . |BiModule|) 5136) ((|Complex| . |EntireRing|) 5005) ((|Octonion| . |CancellationAbelianMonoid|) T) ((|Quaternion| . |Eltable|) 4958) ((|OrderlyDifferentialPolynomial| . |Evalable|) 4945) ((|LieSquareMatrix| . |LeftModule|) 4919) ((|BinaryExpansion| . |BasicType|) T) ((|LaurentPolynomial| . |AbelianSemiGroup|) T) ((|FiniteFieldExtension| . |CancellationAbelianMonoid|) T) ((|FiniteFieldExtension| . |BiModule|) 4828) ((|PAdicRational| . |LeftModule|) 4752) ((|NumericalPDEProblem| . |BasicType|) T) ((|QuadraticForm| . |AbelianMonoid|) T) ((|LieExponentials| . |SetCategory|) T) ((|DesingTree| . |RecursiveAggregate|) 4736) ((|Complex| . |RightModule|) 4618) ((|ContinuedFraction| . |SetCategory|) T) ((|PAdicRational| . |FullyEvalableOver|) 4585) ((|TaylorSeries| . |EntireRing|) 4552) ((|EqTable| . |Evalable|) 4312) ((|ModMonic| . |CommutativeRing|) 4142) ((|PseudoAlgebraicClosureOfRationalNumber| . |Field|) T) ((|ListMultiDictionary| . |CoercibleTo|) 4093) ((|SparseUnivariateTaylorSeries| . |ElementaryFunctionCategory|) 4042) ((|BalancedPAdicRational| . |Monoid|) T) ((|InnerAlgebraicNumber| . |CharacteristicZero|) T) ((|PositiveInteger| . |CoercibleTo|) 4016) ((|DeRhamComplex| . |SemiGroup|) T) ((|BinaryExpansion| . |FullyPatternMatchable|) 3993) ((|DirectProductModule| . |IndexedAggregate|) 3965) ((|GeneralModulePolynomial| . |LeftModule|) 3936) ((|PrimeField| . |PrincipalIdealDomain|) T) ((|String| . |OpenMath|) T) ((|LinearOrdinaryDifferentialOperator| . |BiModule|) 3915) ((|MultivariatePolynomial| . |LeftModule|) 3812) ((|BalancedPAdicRational| . |Field|) T) ((|AssociatedLieAlgebra| . |Monad|) T) ((|UnivariateLaurentSeries| . |AbelianMonoidRing|) 3784) ((|SparseUnivariatePuiseuxSeries| . |Algebra|) 3572) ((|RegularTriangularSet| . |PolynomialSetCategory|) 3541) ((|UnivariateTaylorSeriesCZero| . |LeftModule|) 3438) ((|PseudoAlgebraicClosureOfRationalNumber| . |VectorSpace|) 3402) ((|Float| . |OrderedRing|) T) ((|PAdicRational| . |GcdDomain|) T) ((|PolynomialRing| . |FiniteAbelianMonoidRing|) 3381) ((|InnerPAdicInteger| . |PrincipalIdealDomain|) T) ((|LinearOrdinaryDifferentialOperator1| . |AbelianMonoid|) T) ((|SimpleAlgebraicExtension| . |Field|) 3315) ((|OrderedDirectProduct| . |Monoid|) 3201) ((|DoubleFloat| . |IntegralDomain|) T) ((|GeneralDistributedMultivariatePolynomial| . |OrderedSet|) 3172) ((|SparseTable| . |KeyedDictionary|) 3151) ((|UnivariatePuiseuxSeries| . |RightModule|) 2933) ((|PseudoAlgebraicClosureOfFiniteField| . |CharacteristicZero|) 2896) ((|WeightedPolynomials| . |BiModule|) 2848) ((|Float| . |AbelianSemiGroup|) T) ((|MachineFloat| . |RealNumberSystem|) T) ((|SetOfMIntegersInOneToN| . |SetCategory|) T) ((|GeneralModulePolynomial| . |CoercibleTo|) 2822) ((|Point| . |OrderedSet|) 2793) ((|Asp35| . |CoercibleTo|) 2767) ((|UnivariateTaylorSeriesCZero| . |AbelianMonoidRing|) 2728) ((|GeneralUnivariatePowerSeries| . |TranscendentalFunctionCategory|) 2677) ((|FiniteField| . |AbelianSemiGroup|) T) ((|LinearOrdinaryDifferentialOperator| . |SemiGroup|) T) ((|IntegrationResult| . |AbelianGroup|) T) ((|MachineComplex| . |EuclideanDomain|) T) ((|InnerFiniteField| . |Field|) T) ((|MultivariatePolynomial| . |CoercibleTo|) 2651) ((|PrimeField| . |FiniteAlgebraicExtensionField|) 2638) ((|ResidueRing| . |CoercibleTo|) 2612) ((|ThreeSpace| . |BasicType|) T) ((|HomogeneousDirectProduct| . |RetractableTo|) 2363) ((|BinaryTree| . |Type|) T) ((|DataList| . |Aggregate|) T) ((|PAdicRationalConstructor| . |Field|) T) ((|ModuleOperator| . |RightModule|) 2320) ((|RadixExpansion| . |Patternable|) 2297) ((|AlgebraGivenByStructuralConstants| . |AbelianMonoid|) T) ((|NewSparseUnivariatePolynomial| . |BasicType|) T) ((|OrderlyDifferentialPolynomial| . |CharacteristicZero|) 2260) ((|FiniteFieldNormalBasisExtension| . |SemiGroup|) T) ((|DoubleFloat| . |CoercibleTo|) 2234) ((|Result| . |CoercibleTo|) 2208) ((|SubSpace| . |CoercibleTo|) 2182) ((|SplitHomogeneousDirectProduct| . |RetractableTo|) 1933) ((|UnivariateTaylorSeries| . |AbelianMonoid|) T) ((|ComplexDoubleFloatVector| . |ConvertibleTo|) 1846) ((|AlgebraicFunctionField| . |UniqueFactorizationDomain|) T) ((|Variable| . |CoercibleTo|) 1801) ((|UnivariatePolynomial| . |PolynomialFactorizationExplicit|) 1751) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |LeftOreRing|) T) ((|UnivariateTaylorSeriesCZero| . |UnivariatePowerSeriesCategory|) 1712) ((|Expression| . |EuclideanDomain|) 1679) ((|BalancedBinaryTree| . |Evalable|) 1603) ((|MachineComplex| . |FieldOfPrimeCharacteristic|) NIL) ((|DirichletRing| . |CancellationAbelianMonoid|) T) ((|DecimalExpansion| . |AbelianMonoid|) T) ((|RomanNumeral| . |LeftOreRing|) T) ((|Complex| . |FullyEvalableOver|) 1587) ((|RegularTriangularSet| . |TriangularSetCategory|) 1556) ((|ModuleOperator| . |CancellationAbelianMonoid|) T) ((|UnivariateTaylorSeriesCZero| . |CoercibleTo|) 1530) ((|FiniteField| . |CoercibleTo|) 1504) ((|Integer| . |RightModule|) 1491) ((|OneDimensionalArray| . |Collection|) 1475) ((|DistributedMultivariatePolynomial| . |UniqueFactorizationDomain|) 1425) ((|FiniteFieldCyclicGroupExtension| . |AbelianGroup|) T) ((|DeRhamComplex| . |AbelianMonoid|) T) ((|Dequeue| . |QueueAggregate|) 1409) ((|OrderedCompletion| . |OrderedAbelianMonoid|) 1379) ((|OrderlyDifferentialPolynomial| . |BiModule|) 1104) ((|ModularField| . |Monoid|) T) ((|AlgebraicFunctionField| . |PartialDifferentialRing|) 1023) ((|NewSparseUnivariatePolynomial| . |SemiGroup|) T) ((|Float| . |HyperbolicFunctionCategory|) T) ((|DirectProductMatrixModule| . |Ring|) 933) ((|HomogeneousDistributedMultivariatePolynomial| . |InnerEvalable|) 837) ((|FiniteDivisor| . |CoercibleTo|) 811) ((|Asp19| . |Type|) T) ((|Expression| . |RadicalCategory|) 778) ((|SparseUnivariateLaurentSeries| . |AbelianSemiGroup|) T) ((|Integer| . |PrincipalIdealDomain|) T) ((|SparseUnivariateLaurentSeries| . |ArcHyperbolicFunctionCategory|) 727) ((|UnivariateTaylorSeries| . |EntireRing|) 694) ((|AssociationList| . |DictionaryOperations|) 636) ((|U8Matrix| . |BasicType|) T) ((|Expression| . |Type|) T) ((|AlgebraicNumber| . |CharacteristicZero|) T) ((|UnivariatePolynomial| . |UniqueFactorizationDomain|) 586) ((|PAdicInteger| . |CommutativeRing|) T) ((|XDistributedPolynomial| . |AbelianMonoid|) T) ((|XPolynomial| . |LeftModule|) 560) ((|IndexedBits| . |InnerEvalable|) NIL) ((|OpenMathEncoding| . |SetCategory|) T) ((|IndexedVector| . |InnerEvalable|) 479) ((|SparseUnivariateTaylorSeries| . |AbelianGroup|) T) ((|UnivariateLaurentSeries| . |GcdDomain|) 455) ((|Tree| . |Aggregate|) T) ((|U8Matrix| . |MatrixCategory|) 406) ((|FiniteFieldExtension| . |Monoid|) T) ((|MachineInteger| . |GcdDomain|) T) ((|AssociatedLieAlgebra| . |NonAssociativeAlgebra|) 390) ((|UniversalSegment| . |BasicType|) 360) ((|DenavitHartenbergMatrix| . |SetCategory|) 330) ((|MachineComplex| . |TrigonometricFunctionCategory|) NIL) ((|SplittingTree| . |Type|) T) ((|AlgebraicFunctionField| . |Ring|) T) ((|BalancedPAdicRational| . |PrincipalIdealDomain|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |CharacteristicZero|) 293) ((|FlexibleArray| . |BasicType|) 230) ((|GeneralModulePolynomial| . |Module|) 201) ((|ModMonic| . |AbelianMonoidRing|) 162) ((|BinaryTournament| . |Type|) T) ((|XPolynomialRing| . |LeftModule|) 136) ((|InnerPrimeField| . |EuclideanDomain|) T) ((|IndexedExponents| . |CancellationAbelianMonoid|) T) ((|DoubleFloat| . |UniqueFactorizationDomain|) T) ((|Interval| . |AbelianGroup|) T) ((|d01fcfAnnaType| . |CoercibleTo|) 110) ((|DoubleFloat| . |OrderedAbelianMonoid|) T) ((|TaylorSeries| . |Monoid|) T) ((|U32Vector| . |ConvertibleTo|) 85) ((|IndexedList| . |RecursiveAggregate|) 69) ((|InnerPrimeField| . |VectorSpace|) 56) ((|Asp74| . |CoercibleTo|) 30)) │ │ │ +(((|AlgebraGivenByStructuralConstants| . |AbelianGroup|) T) ((|MachineComplex| . |Field|) T) ((|Factored| . |ConvertibleTo|) 224283) ((|SparseUnivariateSkewPolynomial| . |LeftModule|) 224257) ((|SingleInteger| . |LeftOreRing|) T) ((|Segment| . |Type|) T) ((|PrimeField| . |FiniteFieldCategory|) T) ((|SparseTable| . |TableAggregate|) 224236) ((|FiniteFieldCyclicGroup| . |CharacteristicNonZero|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |RightModule|) 224177) ((|ListMonoidOps| . |RetractableTo|) 224161) ((|FiniteFieldNormalBasisExtension| . |AbelianGroup|) T) ((|RadixExpansion| . |FullyPatternMatchable|) 224138) ((|SparseUnivariateSkewPolynomial| . |BiModule|) 224117) ((|PAdicRationalConstructor| . |LeftModule|) 224058) ((|FourierSeries| . |RightModule|) 224042) ((|ExponentialExpansion| . |InnerEvalable|) 223448) ((|AssociatedJordanAlgebra| . |LeftModule|) 223432) ((|AlgebraGivenByStructuralConstants| . |AbelianSemiGroup|) T) ((|MachineInteger| . |EuclideanDomain|) T) ((|HexadecimalExpansion| . |CoercibleTo|) 223406) ((|UnivariatePuiseuxSeriesConstructor| . |PrincipalIdealDomain|) 223382) ((|SplitHomogeneousDirectProduct| . |InnerEvalable|) 223301) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Ring|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |BasicType|) T) ((|NeitherSparseOrDensePowerSeries| . |HomogeneousAggregate|) 223242) ((|MoebiusTransform| . |Group|) T) ((|EqTable| . |BagAggregate|) 223184) ((|GeneralSparseTable| . |KeyedDictionary|) 223163) ((|LieSquareMatrix| . |HomogeneousAggregate|) 223147) ((|DoubleFloat| . |LeftModule|) 223101) ((|FiniteFieldExtension| . |IntegralDomain|) T) ((|NewSparseUnivariatePolynomial| . |AbelianMonoid|) T) ((|UnivariateSkewPolynomial| . |SemiGroup|) T) ((|NewSparseMultivariatePolynomial| . |InnerEvalable|) 223053) ((|SparseUnivariatePuiseuxSeries| . |UnivariatePuiseuxSeriesConstructorCategory|) 222988) ((|SparseUnivariateLaurentSeries| . |UnivariateLaurentSeriesConstructorCategory|) 222924) ((|OrderedVariableList| . |OrderedFinite|) T) ((|MyUnivariatePolynomial| . |BiModule|) 222626) ((|RadicalFunctionField| . |SetCategory|) T) ((|InnerAlgebraicNumber| . |DivisionRing|) T) ((|Fraction| . |ConvertibleTo|) 222314) ((|Expression| . |FullyPatternMatchable|) 222298) ((|IndexedOneDimensionalArray| . |BasicType|) 222235) ((|CardinalNumber| . |BasicType|) T) ((|SparseUnivariateSkewPolynomial| . |Algebra|) 222192) ((|PAdicRationalConstructor| . |OrderedRing|) 222152) ((|AssociatedLieAlgebra| . |AbelianMonoid|) T) ((|Kernel| . |BasicType|) T) ((|U16Matrix| . |SetCategory|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |HyperbolicFunctionCategory|) 222101) ((|DistributedMultivariatePolynomial| . |BiModule|) 221826) ((|Integer| . |OrderedSet|) T) ((|Fraction| . |IntegralDomain|) T) ((|BinaryExpansion| . |StepThrough|) T) ((|GeneralUnivariatePowerSeries| . |PartialDifferentialRing|) 221688) ((|SparseUnivariateLaurentSeries| . |LeftOreRing|) 221664) ((|MachineFloat| . |LeftModule|) 221618) ((|LiePolynomial| . |AbelianMonoid|) T) ((|XPBWPolynomial| . |Monoid|) T) ((|MyExpression| . |InnerEvalable|) 221580) ((|PAdicRationalConstructor| . |SetCategory|) T) ((|MyUnivariatePolynomial| . |PolynomialCategory|) 221515) ((|RadixExpansion| . |AbelianSemiGroup|) T) ((|DecimalExpansion| . |QuotientFieldCategory|) 221492) ((|MyUnivariatePolynomial| . |LeftModule|) 221389) ((|SparseUnivariatePolynomial| . |Eltable|) 221292) ((|Float| . |RetractableTo|) 221236) ((|ModuleOperator| . |CharacteristicZero|) 221199) ((|OrderlyDifferentialPolynomial| . |FiniteAbelianMonoidRing|) 221119) ((|RegularChain| . |Type|) T) ((|WuWenTsunTriangularSet| . |Type|) T) ((|FreeModule| . |LeftModule|) 221103) ((|LinearOrdinaryDifferentialOperator1| . |FullyRetractableTo|) 221087) ((|DirectProductModule| . |Monoid|) 220973) ((|DecimalExpansion| . |Eltable|) NIL) ((|BalancedPAdicRational| . |QuotientFieldCategory|) 220932) ((|PseudoAlgebraicClosureOfFiniteField| . |Algebra|) 220886) ((|CardinalNumber| . |CoercibleTo|) 220860) ((|Permutation| . |SemiGroup|) T) ((|DirectProductMatrixModule| . |Evalable|) 220784) ((|Polynomial| . |AbelianSemiGroup|) T) ((|NewSparseUnivariatePolynomial| . |CoercibleTo|) 220714) ((|MyUnivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 220698) ((|SymmetricPolynomial| . |IntegralDomain|) 220665) ((|LinearOrdinaryDifferentialOperator2| . |FullyRetractableTo|) 220649) ((|HyperellipticFiniteDivisor| . |AbelianMonoid|) T) ((|e04nafAnnaType| . |CoercibleTo|) 220623) ((|Float| . |CoercibleTo|) 220573) ((|SparseUnivariatePolynomialExpressions| . |PartialDifferentialRing|) 220471) ((|DoubleFloat| . |LeftOreRing|) T) ((|GeneralDistributedMultivariatePolynomial| . |Rng|) T) ((|UnivariatePuiseuxSeries| . |UniqueFactorizationDomain|) 220447) ((|Result| . |Collection|) 220380) ((|FreeModule1| . |RetractableTo|) 220364) ((|PolynomialRing| . |CoercibleTo|) 220338) ((|Pi| . |IntegralDomain|) T) ((|HomogeneousDirectProduct| . |FullyRetractableTo|) 220299) ((|RomanNumeral| . |CharacteristicZero|) T) ((|FiniteFieldCyclicGroup| . |CoercibleTo|) 220273) ((|Library| . |Collection|) 220206) ((|Expression| . |AbelianSemiGroup|) 219974) ((|Product| . |OrderedAbelianSemiGroup|) 219885) ((|FreeModule1| . |AbelianMonoid|) T) ((|GeneralUnivariatePowerSeries| . |Module|) 219673) ((|DoubleFloat| . |AbelianGroup|) T) ((|HexadecimalExpansion| . |OrderedAbelianSemiGroup|) T) ((|XPBWPolynomial| . |XFreeAlgebra|) 219652) ((|FourierSeries| . |BiModule|) 219631) ((|Stream| . |LazyStreamAggregate|) 219615) ((|ModuleMonomial| . |OrderedSet|) T) ((|Stream| . |LinearAggregate|) 219599) ((|Heap| . |BagAggregate|) 219583) ((|GuessOption| . |SetCategory|) T) ((|IndexedList| . |Aggregate|) T) ((|List| . |IndexedAggregate|) 219555) ((|NottinghamGroup| . |Monoid|) T) ((|AlgebraicNumber| . |GcdDomain|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Field|) T) ((|SplittingNode| . |BasicType|) T) ((|U16Vector| . |Evalable|) NIL) ((|Enumeration| . |BasicType|) T) ((|ProjectiveSpace| . |SetCategory|) T) ((|NeitherSparseOrDensePowerSeries| . |EuclideanDomain|) T) ((|UnivariatePuiseuxSeries| . |AbelianMonoid|) T) ((|DistributedMultivariatePolynomial| . |BasicType|) T) ((|XPolynomial| . |SemiGroup|) T) ((|IndexedDirectProductAbelianMonoid| . |SetCategory|) T) ((|Factored| . |RetractableTo|) 219399) ((|DirectProductModule| . |DifferentialRing|) 219336) ((|DirectProductModule| . |OrderedAbelianMonoidSup|) 219294) ((|ExtAlgBasis| . |CoercibleTo|) 219268) ((|ModMonic| . |GcdDomain|) 219163) ((|BalancedPAdicRational| . |Type|) T) ((|OrdinaryWeightedPolynomials| . |AbelianGroup|) T) ((|UnivariateLaurentSeriesConstructor| . |FullyLinearlyExplicitRingOver|) 219130) ((|DeRhamComplex| . |Rng|) T) ((|FiniteFieldExtension| . |SemiGroup|) T) ((|OneDimensionalArray| . |Type|) T) ((|Expression| . |FullyRetractableTo|) 219114) ((|SparseMultivariateTaylorSeries| . |ArcHyperbolicFunctionCategory|) 219063) ((|UnivariateTaylorSeriesCZero| . |AbelianMonoid|) T) ((|PositiveInteger| . |AbelianSemiGroup|) T) ((|DistributedMultivariatePolynomial| . |LeftModule|) 218960) ((|AlgebraicNumber| . |DivisionRing|) T) ((|UnivariateTaylorSeriesCZero| . |ElementaryFunctionCategory|) 218909) ((|UnivariateLaurentSeries| . |Monoid|) T) ((|Commutator| . |CoercibleTo|) 218883) ((|Boolean| . |OrderedSet|) T) ((|InnerFiniteField| . |GcdDomain|) T) ((|ThreeDimensionalViewport| . |CoercibleTo|) 218857) ((|FiniteFieldExtensionByPolynomial| . |DivisionRing|) T) ((|NeitherSparseOrDensePowerSeries| . |Module|) 218771) ((|FiniteFieldExtension| . |LeftModule|) 218712) ((|LaurentPolynomial| . |PrincipalIdealDomain|) 218688) ((|FiniteFieldExtension| . |CharacteristicNonZero|) 218619) ((|Table| . |HomogeneousAggregate|) 218548) ((|OppositeMonogenicLinearOperator| . |AbelianSemiGroup|) T) ((|NeitherSparseOrDensePowerSeries| . |IndexedAggregate|) 218477) ((|SquareMatrix| . |Rng|) T) ((|OrderedDirectProduct| . |Aggregate|) T) ((|UnivariateLaurentSeries| . |AbelianGroup|) T) ((|FreeNilpotentLie| . |LeftModule|) 218461) ((|Segment| . |SegmentExpansionCategory|) 218408) ((|IndexedList| . |Collection|) 218392) ((|PAdicInteger| . |PrincipalIdealDomain|) T) ((|GeneralTriangularSet| . |SetCategory|) T) ((|NeitherSparseOrDensePowerSeries| . |BasicType|) T) ((|DirectProductModule| . |OrderedSet|) 218316) ((|HexadecimalExpansion| . |OrderedAbelianGroup|) T) ((|UnivariatePolynomial| . |Monoid|) T) ((|TaylorSeries| . |AbelianSemiGroup|) T) ((|Polynomial| . |GcdDomain|) 218234) ((|ModularField| . |Module|) 218188) ((|Asp8| . |FortranVectorCategory|) T) ((|IntegerMod| . |ConvertibleTo|) 218165) ((|DirectProductMatrixModule| . |Eltable|) 218137) ((|PAdicRational| . |PartialDifferentialRing|) NIL) ((|DistributedMultivariatePolynomial| . |SetCategory|) T) ((|OrderedCompletion| . |Rng|) 218107) ((|LieSquareMatrix| . |Monad|) T) ((|SplittingTree| . |BasicType|) T) ((|Stream| . |InnerEvalable|) 218026) ((|PseudoAlgebraicClosureOfRationalNumber| . |CharacteristicZero|) T) ((|ComplexDoubleFloatVector| . |Eltable|) 217975) ((|Vector| . |OrderedSet|) 217946) ((|d02bbfAnnaType| . |CoercibleTo|) 217920) ((|NottinghamGroup| . |SemiGroup|) T) ((|Pi| . |Ring|) T) ((|WeightedPolynomials| . |AbelianMonoid|) T) ((|Asp7| . |FortranProgramCategory|) T) ((|FiniteFieldCyclicGroupExtension| . |CoercibleTo|) 217894) ((|d02cjfAnnaType| . |SetCategory|) T) ((|Fraction| . |SetCategory|) T) ((|FiniteFieldCyclicGroup| . |Rng|) T) ((|Fraction| . |AbelianSemiGroup|) T) ((|IndexedString| . |Type|) T) ((|IntegrationResult| . |BasicType|) T) ((|FiniteFieldNormalBasis| . |SetCategory|) T) ((|Operator| . |BiModule|) 217846) ((|Stream| . |Collection|) 217830) ((|DataList| . |Type|) T) ((|InnerPAdicInteger| . |Module|) 217817) ((|TaylorSeries| . |RadicalCategory|) 217766) ((|Complex| . |BiModule|) 217616) ((|Point| . |IndexedAggregate|) 217588) ((|Asp19| . |FortranProgramCategory|) T) ((|DecimalExpansion| . |BiModule|) 217483) ((|LieSquareMatrix| . |DifferentialRing|) 217448) ((|XPolynomial| . |Ring|) T) ((|FiniteField| . |GcdDomain|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |CharacteristicZero|) 217411) ((|LinearOrdinaryDifferentialOperator2| . |BiModule|) 217390) ((|DecimalExpansion| . |RealConstant|) T) ((|ModularField| . |DivisionRing|) T) ((|Result| . |Type|) T) ((|FiniteField| . |Ring|) T) ((|Quaternion| . |LinearlyExplicitRingOver|) 217306) ((|XRecursivePolynomial| . |SetCategory|) T) ((|RealClosure| . |RadicalCategory|) T) ((|U32Vector| . |CoercibleTo|) 217280) ((|SimpleAlgebraicExtension| . |Algebra|) 217103) ((|SequentialDifferentialPolynomial| . |PatternMatchable|) NIL) ((|OrderedDirectProduct| . |PartialDifferentialRing|) 217007) ((|IndexedList| . |BasicType|) 216944) ((|PseudoAlgebraicClosureOfRationalNumber| . |EntireRing|) T) ((|Asp34| . |FortranProgramCategory|) T) ((|SparseUnivariatePuiseuxSeries| . |GcdDomain|) 216920) ((|UnivariateLaurentSeries| . |CancellationAbelianMonoid|) T) ((|Heap| . |BasicType|) 216890) ((|PolynomialRing| . |BasicType|) T) ((|Complex| . |GcdDomain|) 216791) ((|Polynomial| . |FullyRetractableTo|) 216775) ((|SparseMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 216725) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |OrderedCancellationAbelianMonoid|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |Module|) 216628) ((|Stack| . |SetCategory|) 216598) ((|NewSparseUnivariatePolynomial| . |Monoid|) T) ((|BalancedBinaryTree| . |BinaryRecursiveAggregate|) 216582) ((|PAdicRational| . |OrderedSet|) NIL) ((|SparseUnivariatePolynomial| . |CharacteristicNonZero|) 216542) ((|Operator| . |Eltable|) 216521) ((|AssociationList| . |Eltable|) 216433) ((|MachineComplex| . |RightModule|) 216362) ((|LieSquareMatrix| . |Algebra|) 216307) ((|PseudoAlgebraicClosureOfRationalNumber| . |Ring|) T) ((|Float| . |EuclideanDomain|) T) ((|IndexedList| . |LinearAggregate|) 216291) ((|StochasticDifferential| . |CancellationAbelianMonoid|) T) ((|OrdinaryWeightedPolynomials| . |BasicType|) T) ((|SequentialDifferentialPolynomial| . |RetractableTo|) 216005) ((|FortranExpression| . |AbelianSemiGroup|) T) ((|ModuleOperator| . |BasicType|) T) ((|SparseUnivariateLaurentSeries| . |HyperbolicFunctionCategory|) 215954) ((|IntegrationResult| . |AbelianMonoid|) T) ((|DifferentialSparseMultivariatePolynomial| . |PatternMatchable|) 215733) ((|SimpleAlgebraicExtension| . |EuclideanDomain|) 215667) ((|Operator| . |SetCategory|) T) ((|GeneralPolynomialSet| . |InnerEvalable|) 215586) ((|IndexedExponents| . |OrderedSet|) T) ((|UnivariateTaylorSeriesCZero| . |Monoid|) T) ((|HomogeneousDirectProduct| . |SetCategory|) 215278) ((|Product| . |OrderedAbelianMonoidSup|) 215189) ((|SparseMultivariatePolynomial| . |AbelianMonoidRing|) 215147) ((|SequentialDifferentialPolynomial| . |LinearlyExplicitRingOver|) 215063) ((|FiniteFieldCyclicGroupExtension| . |UniqueFactorizationDomain|) T) ((|DecimalExpansion| . |FullyEvalableOver|) 215040) ((|UnivariateFormalPowerSeries| . |SemiGroup|) T) ((|Fraction| . |InnerEvalable|) 214929) ((|DirectProduct| . |Algebra|) 214886) ((|BalancedPAdicRational| . |OrderedAbelianMonoid|) NIL) ((|Expression| . |Field|) 214853) ((|GeneralSparseTable| . |Dictionary|) 214795) ((|GeneralTriangularSet| . |Collection|) 214779) ((|GeneralDistributedMultivariatePolynomial| . |Monoid|) T) ((|InnerIndexedTwoDimensionalArray| . |TwoDimensionalArrayCategory|) 214753) ((|NeitherSparseOrDensePowerSeries| . |Eltable|) 214670) ((|FiniteFieldExtensionByPolynomial| . |RightModule|) 214611) ((|d03fafAnnaType| . |BasicType|) T) ((|SparseMultivariatePolynomial| . |Evalable|) 214598) ((|SimpleAlgebraicExtension| . |DifferentialExtension|) 214565) ((|Expression| . |SemiGroup|) 214347) ((|Dequeue| . |InnerEvalable|) 214266) ((|SimpleAlgebraicExtension| . |Finite|) 214199) ((|BinaryExpansion| . |LeftOreRing|) T) ((|XPolynomialRing| . |AbelianSemiGroup|) T) ((|QuadraticForm| . |CancellationAbelianMonoid|) T) ((|RealClosure| . |Ring|) T) ((|Divisor| . |AbelianSemiGroup|) T) ((|UnivariateLaurentSeries| . |EuclideanDomain|) 214175) ((|UnivariateLaurentSeriesConstructor| . |LinearlyExplicitRingOver|) 214045) ((|DoubleFloat| . |DifferentialRing|) T) ((|SparseUnivariatePolynomialExpressions| . |LeftOreRing|) 213940) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |AbelianSemiGroup|) T) ((|UnivariateLaurentSeries| . |LeftOreRing|) 213916) ((|Asp34| . |CoercibleTo|) 213890) ((|SequentialDifferentialPolynomial| . |UniqueFactorizationDomain|) 213840) ((|CliffordAlgebra| . |AbelianMonoid|) T) ((|BalancedPAdicRational| . |OrderedAbelianGroup|) NIL) ((|String| . |CoercibleTo|) 213814) ((|e04fdfAnnaType| . |CoercibleTo|) 213788) ((|SplitHomogeneousDirectProduct| . |OrderedAbelianMonoidSup|) 213746) ((|SparseMultivariatePolynomial| . |CoercibleTo|) 213720) ((|SplitHomogeneousDirectProduct| . |OrderedSet|) 213644) ((|PolynomialRing| . |CommutativeRing|) 213573) ((|IndexCard| . |BasicType|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |Ring|) T) ((|Quaternion| . |AbelianGroup|) T) ((|EuclideanModularRing| . |AbelianSemiGroup|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |RetractableTo|) 213517) ((|Multiset| . |BasicType|) T) ((|Kernel| . |SetCategory|) T) ((|Complex| . |RadicalCategory|) 213429) ((|BalancedPAdicInteger| . |CommutativeRing|) T) ((|Complex| . |LeftOreRing|) 213330) ((|Factored| . |RealConstant|) 213299) ((|ResidueRing| . |AbelianSemiGroup|) T) ((|RomanNumeral| . |AbelianGroup|) T) ((|SplitHomogeneousDirectProduct| . |FullyLinearlyExplicitRingOver|) 213267) ((|SparseUnivariatePolynomialExpressions| . |DifferentialRing|) T) ((|Float| . |ConvertibleTo|) 213151) ((|MyUnivariatePolynomial| . |PolynomialFactorizationExplicit|) 213101) ((|UnivariatePuiseuxSeries| . |CommutativeRing|) 213007) ((|ExponentialExpansion| . |DivisionRing|) T) ((|UnivariateLaurentSeriesConstructor| . |AbelianSemiGroup|) T) ((|IndexedOneDimensionalArray| . |Eltable|) 212979) ((|ThreeSpace| . |SetCategory|) T) ((|FiniteFieldNormalBasis| . |LeftModule|) 212905) ((|TaylorSeries| . |ArcTrigonometricFunctionCategory|) 212854) ((|ContinuedFraction| . |Field|) T) ((|SparseMultivariateTaylorSeries| . |CharacteristicZero|) 212817) ((|MyUnivariatePolynomial| . |UnivariatePolynomialCategory|) 212801) ((|Interval| . |BiModule|) 212786) ((|UnivariatePolynomial| . |IntegralDomain|) 212649) ((|FortranExpression| . |Algebra|) 212633) ((|Complex| . |CharacteristicZero|) 212596) ((|XDistributedPolynomial| . |Algebra|) 212553) ((|LinearOrdinaryDifferentialOperator| . |AbelianGroup|) T) ((|GeneralDistributedMultivariatePolynomial| . |AbelianMonoidRing|) 212532) ((|WuWenTsunTriangularSet| . |BasicType|) T) ((|BinaryExpansion| . |AbelianMonoid|) T) ((|FiniteFieldNormalBasisExtension| . |FiniteFieldCategory|) 212507) ((|Permutation| . |CoercibleTo|) 212481) ((|SubSpace| . |SetCategory|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |LinearlyExplicitRingOver|) 212397) ((|PolynomialRing| . |BiModule|) 212198) ((|SparseMultivariatePolynomial| . |RetractableTo|) 212029) ((|InnerPAdicInteger| . |Monoid|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |PseudoAlgebraicClosureOfPerfectFieldCategory|) T) ((|SparseMultivariatePolynomial| . |FullyRetractableTo|) 212013) ((|LieSquareMatrix| . |RectangularMatrixCategory|) 211931) ((|LaurentPolynomial| . |DifferentialRing|) 211896) ((|Product| . |CancellationAbelianMonoid|) 211644) ((|FiniteFieldExtension| . |Field|) T) ((|FiniteField| . |ExtensionField|) 211613) ((|MyExpression| . |CombinatorialFunctionCategory|) T) ((|ResidueRing| . |Ring|) T) ((|FiniteField| . |DifferentialRing|) T) ((|HTMLFormat| . |SetCategory|) T) ((|SparseUnivariatePolynomialExpressions| . |CharacteristicNonZero|) 211573) ((|SingleInteger| . |OrderedIntegralDomain|) T) ((|DoubleFloat| . |HyperbolicFunctionCategory|) T) ((|Bits| . |SetCategory|) T) ((|ModuleOperator| . |AbelianGroup|) T) ((|SimpleFortranProgram| . |CoercibleTo|) 211547) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |BiModule|) 211380) ((|BinaryExpansion| . |OrderedRing|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |SetCategory|) T) ((|d02ejfAnnaType| . |BasicType|) T) ((|XDistributedPolynomial| . |SetCategory|) T) ((|Polynomial| . |IntegralDomain|) 211266) ((|RadicalFunctionField| . |IntegralDomain|) T) ((|SquareMatrix| . |FullyLinearlyExplicitRingOver|) 211250) ((|IndexedString| . |Aggregate|) T) ((|ExponentialExpansion| . |CancellationAbelianMonoid|) T) ((|UnivariateLaurentSeriesConstructor| . |Patternable|) 211217) ((|DistributedMultivariatePolynomial| . |ConvertibleTo|) 210995) ((|Expression| . |SetCategory|) T) ((|String| . |IndexedAggregate|) 210958) ((|RoutinesTable| . |InnerEvalable|) 210708) ((|GeneralUnivariatePowerSeries| . |BasicType|) T) ((|CliffordAlgebra| . |Algebra|) 210692) ((|FlexibleArray| . |HomogeneousAggregate|) 210676) ((|SparseUnivariateTaylorSeries| . |PartialDifferentialRing|) 210540) ((|RadixExpansion| . |OrderedIntegralDomain|) T) ((|OrdinaryDifferentialRing| . |Rng|) T) ((|AssociationList| . |BagAggregate|) 210482) ((|ResidueRing| . |CancellationAbelianMonoid|) T) ((|OrderedCompletion| . |Monoid|) 210452) ((|Integer| . |AbelianMonoid|) T) ((|FlexibleArray| . |FiniteLinearAggregate|) 210436) ((|IndexedList| . |ConvertibleTo|) 210372) ((|OrdSetInts| . |SetCategory|) T) ((|GenericNonAssociativeAlgebra| . |LeftModule|) 210265) ((|SingleInteger| . |OrderedCancellationAbelianMonoid|) T) ((|e04nafAnnaType| . |NumericalOptimizationCategory|) T) ((|OutputForm| . |BasicType|) T) ((|NewSparseMultivariatePolynomial| . |BasicType|) T) ((|SparseUnivariatePuiseuxSeries| . |EntireRing|) 210204) ((|AnonymousFunction| . |CoercibleTo|) 210178) ((|SegmentBinding| . |SetCategory|) 210148) ((|XDistributedPolynomial| . |FreeModuleCat|) 210105) ((|d01asfAnnaType| . |CoercibleTo|) 210079) ((|ExponentialExpansion| . |OrderedAbelianMonoid|) NIL) ((|AntiSymm| . |CancellationAbelianMonoid|) T) ((|AlgebraicNumber| . |BasicType|) T) ((|NeitherSparseOrDensePowerSeries| . |IntegralDomain|) T) ((|ExponentialExpansion| . |FullyLinearlyExplicitRingOver|) 209994) ((|Matrix| . |TwoDimensionalArrayCategory|) 209946) ((|FiniteFieldExtensionByPolynomial| . |FiniteFieldCategory|) 209921) ((|FiniteFieldExtensionByPolynomial| . |AbelianSemiGroup|) T) ((|UnivariateLaurentSeries| . |RealConstant|) NIL) ((|Asp24| . |FortranProgramCategory|) T) ((|Asp42| . |FortranProgramCategory|) T) ((|SequentialDifferentialPolynomial| . |IntegralDomain|) 209807) ((|Complex| . |ElementaryFunctionCategory|) 209758) ((|FiniteFieldCyclicGroupExtension| . |Module|) 209699) ((|Fraction| . |CharacteristicZero|) 209662) ((|Bits| . |BitAggregate|) T) ((|Polynomial| . |AbelianMonoidRing|) 209614) ((|AlgebraicFunctionField| . |FullyLinearlyExplicitRingOver|) 209585) ((|Factored| . |EntireRing|) T) ((|Table| . |Aggregate|) T) ((|PolynomialRing| . |AbelianMonoid|) T) ((|SingleInteger| . |LinearlyExplicitRingOver|) 209562) ((|Multiset| . |Collection|) 209546) ((|FiniteFieldNormalBasisExtension| . |Finite|) 209521) ((|UnivariatePuiseuxSeries| . |DivisionRing|) 209497) ((|GeneralUnivariatePowerSeries| . |RadicalCategory|) 209446) ((|AssociatedJordanAlgebra| . |FiniteRankNonAssociativeAlgebra|) 209327) ((|DecimalExpansion| . |Type|) T) ((|RealClosure| . |FullyRetractableTo|) 209278) ((|FortranExpression| . |CancellationAbelianMonoid|) T) ((|SparseUnivariatePolynomial| . |Module|) 209018) ((|MyExpression| . |EntireRing|) T) ((|FreeModule| . |AbelianSemiGroup|) T) ((|SparseUnivariateTaylorSeries| . |UnivariatePowerSeriesCategory|) 208979) ((|HomogeneousDirectProduct| . |CancellationAbelianMonoid|) 208782) ((|MachineFloat| . |CommutativeRing|) T) ((|Tuple| . |CoercibleTo|) 208701) ((|NewSparseUnivariatePolynomial| . |SetCategory|) T) ((|SparseUnivariateLaurentSeries| . |Algebra|) 208416) ((|DirectProductMatrixModule| . |CancellationAbelianMonoid|) T) ((|UnivariatePolynomial| . |GcdDomain|) 208311) ((|DesingTree| . |BasicType|) 208281) ((|BasicOperator| . |SetCategory|) T) ((|Fraction| . |CharacteristicNonZero|) 208241) ((|Polynomial| . |Monoid|) T) ((|SparseUnivariateTaylorSeries| . |HyperbolicFunctionCategory|) 208190) ((|WeightedPolynomials| . |Monoid|) T) ((|BalancedPAdicInteger| . |GcdDomain|) T) ((|FiniteFieldCyclicGroupExtension| . |IntegralDomain|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |StepThrough|) 208165) ((|MyExpression| . |PrincipalIdealDomain|) 208132) ((|UnivariateLaurentSeriesConstructor| . |DivisionRing|) 208108) ((|HomogeneousDistributedMultivariatePolynomial| . |ConvertibleTo|) 207886) ((|LieSquareMatrix| . |FullyRetractableTo|) 207870) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |RetractableTo|) 207854) ((|QuadraticForm| . |CoercibleTo|) 207828) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |CancellationAbelianMonoid|) T) ((|UnivariateLaurentSeriesConstructor| . |Module|) 207586) ((|NeitherSparseOrDensePowerSeries| . |RecursiveAggregate|) 207527) ((|NeitherSparseOrDensePowerSeries| . |UnivariatePowerSeriesCategory|) 207499) ((|DataList| . |ExtensibleLinearAggregate|) 207483) ((|UnivariatePuiseuxSeriesConstructor| . |LeftOreRing|) 207459) ((|FiniteFieldNormalBasis| . |CancellationAbelianMonoid|) T) ((|XDistributedPolynomial| . |BasicType|) T) ((|LaurentPolynomial| . |EuclideanDomain|) 207435) ((|FiniteField| . |PrincipalIdealDomain|) T) ((|FiniteFieldCyclicGroupExtension| . |EntireRing|) T) ((|TextFile| . |BasicType|) T) ((|RadixExpansion| . |UniqueFactorizationDomain|) T) ((|UnivariatePuiseuxSeriesConstructor| . |PowerSeriesCategory|) 207368) ((|UnivariatePolynomial| . |Algebra|) 207108) ((|U16Vector| . |InnerEvalable|) NIL) ((|Asp4| . |CoercibleTo|) 207082) ((|AssociationList| . |BasicType|) T) ((|Library| . |IndexedAggregate|) 207052) ((|FreeModule1| . |Module|) 207009) ((|CharacterClass| . |SetCategory|) T) ((|Expression| . |PrimitiveFunctionCategory|) 206976) ((|OrderedCompletion| . |LeftModule|) 206940) ((|QuadraticForm| . |BasicType|) T) ((|UnivariatePuiseuxSeries| . |PartialDifferentialRing|) 206802) ((|XDistributedPolynomial| . |CancellationAbelianMonoid|) T) ((|d01amfAnnaType| . |SetCategory|) T) ((|MachineInteger| . |Algebra|) 206789) ((|Octonion| . |AbelianMonoid|) T) ((|TaylorSeries| . |BasicType|) T) ((|SparseUnivariateTaylorSeries| . |AbelianMonoidRing|) 206750) ((|FourierSeries| . |SetCategory|) T) ((|Fraction| . |LeftOreRing|) T) ((|MachineComplex| . |CoercibleTo|) 206724) ((|LaurentPolynomial| . |LeftModule|) 206711) ((|Fraction| . |OrderedAbelianGroup|) 206671) ((|InnerPrimeField| . |DivisionRing|) T) ((|PAdicInteger| . |SetCategory|) T) ((|IndexedFlexibleArray| . |ExtensibleLinearAggregate|) 206655) ((|DataList| . |OrderedSet|) 206626) ((|IndexedMatrix| . |SetCategory|) 206596) ((|UnivariatePolynomial| . |OrderedSet|) 206567) ((|TaylorSeries| . |AbelianGroup|) T) ((|FortranExpression| . |Monoid|) T) ((|MachineComplex| . |GcdDomain|) T) ((|SExpression| . |SetCategory|) T) ((|AntiSymm| . |AbelianGroup|) T) ((|Operator| . |CharacteristicNonZero|) 206527) ((|HexadecimalExpansion| . |CommutativeRing|) T) ((|RealClosure| . |Algebra|) 206448) ((|SparseUnivariateTaylorSeries| . |BasicType|) T) ((|ContinuedFraction| . |AbelianSemiGroup|) T) ((|UnivariateLaurentSeries| . |PolynomialFactorizationExplicit|) NIL) ((|ExponentialOfUnivariatePuiseuxSeries| . |TrigonometricFunctionCategory|) 206397) ((|Fraction| . |PolynomialFactorizationExplicit|) 206347) ((|InnerAlgebraicNumber| . |EntireRing|) T) ((|LinearOrdinaryDifferentialOperator2| . |AbelianGroup|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 206297) ((|OrderlyDifferentialPolynomial| . |OrderedSet|) 206268) ((|FramedModule| . |SemiGroup|) T) ((|DesingTree| . |Aggregate|) T) ((|ExponentialExpansion| . |DifferentialExtension|) 206183) ((|SymmetricPolynomial| . |BasicType|) T) ((|Complex| . |TrigonometricFunctionCategory|) 206134) ((|PrimitiveArray| . |OneDimensionalArrayAggregate|) 206118) ((|ExponentialOfUnivariatePuiseuxSeries| . |RadicalCategory|) 206067) ((|ContinuedFraction| . |Monoid|) T) ((|HomogeneousDirectProduct| . |Eltable|) 206039) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |EuclideanDomain|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |LeftModule|) 205993) ((|PrimeField| . |RightModule|) 205947) ((|Complex| . |BasicType|) T) ((|InnerAlgebraicNumber| . |Field|) T) ((|UnivariateLaurentSeries| . |PartialDifferentialRing|) 205699) ((|Operator| . |AbelianSemiGroup|) T) ((|FiniteFieldNormalBasisExtension| . |RetractableTo|) 205683) ((|Operator| . |CoercibleTo|) 205657) ((|RectangularMatrix| . |CancellationAbelianMonoid|) T) ((|InnerPrimeField| . |FieldOfPrimeCharacteristic|) T) ((|PAdicRational| . |UniqueFactorizationDomain|) T) ((|Quaternion| . |AbelianMonoid|) T) ((|Expression| . |Module|) 205519) ((|LocalAlgebra| . |Algebra|) 205503) ((|Float| . |TrigonometricFunctionCategory|) T) ((|Multiset| . |SetCategory|) T) ((|RadixExpansion| . |CancellationAbelianMonoid|) T) ((|RomanNumeral| . |AbelianSemiGroup|) T) ((|OneDimensionalArray| . |SetCategory|) 205440) ((|SequentialDifferentialPolynomial| . |InnerEvalable|) 205209) ((|InnerSparseUnivariatePowerSeries| . |BasicType|) T) ((|Multiset| . |BagAggregate|) 205193) ((|OrderedVariableList| . |CoercibleTo|) 205167) ((|Interval| . |SemiGroup|) T) ((|LinearOrdinaryDifferentialOperator| . |CoercibleTo|) 205141) ((|Fraction| . |OrderedSet|) 205068) ((|PseudoAlgebraicClosureOfFiniteField| . |CharacteristicNonZero|) T) ((|SparseUnivariateLaurentSeries| . |OrderedAbelianSemiGroup|) NIL) ((|OppositeMonogenicLinearOperator| . |AbelianGroup|) T) ((|Complex| . |CommutativeRing|) T) ((|Integer| . |ConvertibleTo|) 204930) ((|SymmetricPolynomial| . |SemiGroup|) T) ((|CharacterClass| . |Finite|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |AbelianMonoid|) T) ((|RadixExpansion| . |IntegralDomain|) T) ((|RegularChain| . |SetCategory|) T) ((|SplitHomogeneousDirectProduct| . |Evalable|) 204854) ((|PendantTree| . |Type|) T) ((|DoubleFloat| . |RightModule|) 204808) ((|SparseUnivariatePolynomial| . |RetractableTo|) 204618) ((|SimpleAlgebraicExtension| . |Module|) 204441) ((|HexadecimalExpansion| . |RealConstant|) T) ((|DirectProduct| . |SemiGroup|) 204327) ((|MachineComplex| . |ConvertibleTo|) 204172) ((|DrawOption| . |SetCategory|) T) ((|ExponentialExpansion| . |Patternable|) 204087) ((|InnerAlgebraicNumber| . |Rng|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |EntireRing|) T) ((|NewSparseMultivariatePolynomial| . |CharacteristicNonZero|) 204047) ((|RomanNumeral| . |UniqueFactorizationDomain|) T) ((|Quaternion| . |CancellationAbelianMonoid|) T) ((|BalancedPAdicRational| . |AbelianSemiGroup|) T) ((|ListMonoidOps| . |SetCategory|) T) ((|InnerAlgebraicNumber| . |LeftOreRing|) T) ((|InnerSparseUnivariatePowerSeries| . |LeftModule|) 203944) ((|SparseUnivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 203928) ((|Asp50| . |FortranVectorFunctionCategory|) T) ((|AlgebraicNumber| . |CommutativeRing|) T) ((|FlexibleArray| . |OneDimensionalArrayAggregate|) 203912) ((|BinaryExpansion| . |OrderedAbelianSemiGroup|) T) ((|TaylorSeries| . |AbelianMonoidRing|) 203864) ((|HomogeneousDirectProduct| . |PartialDifferentialRing|) 203768) ((|PrimeField| . |VectorSpace|) 203755) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |PseudoAlgebraicClosureOfPerfectFieldCategory|) T) ((|UnivariatePuiseuxSeries| . |Rng|) T) ((|SparseUnivariatePolynomial| . |Evalable|) 203742) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |BiModule|) 203651) ((|BinaryExpansion| . |BiModule|) 203546) ((|UnivariatePolynomial| . |PolynomialCategory|) 203481) ((|DirectProductModule| . |Evalable|) 203405) ((|Complex| . |PolynomialFactorizationExplicit|) 203316) ((|AlgebraicNumber| . |InnerEvalable|) 203278) ((|InnerAlgebraicNumber| . |Evalable|) 203265) ((|MyExpression| . |AbelianGroup|) T) ((|Integer| . |EntireRing|) T) ((|SimpleAlgebraicExtension| . |IntegralDomain|) 203199) ((|AssociatedLieAlgebra| . |LeftModule|) 203183) ((|NewSparseUnivariatePolynomial| . |OrderedSet|) 203154) ((|SymmetricPolynomial| . |FullyRetractableTo|) 203138) ((|SuchThat| . |BasicType|) T) ((|Database| . |SetCategory|) T) ((|SquareFreeRegularTriangularSet| . |Type|) T) ((|GuessOptionFunctions0| . |SetCategory|) T) ((|ComplexDoubleFloatVector| . |OrderedSet|) 203086) ((|UnivariatePolynomial| . |CoercibleTo|) 203060) ((|NeitherSparseOrDensePowerSeries| . |SemiGroup|) T) ((|FiniteFieldNormalBasis| . |UniqueFactorizationDomain|) T) ((|PrimeField| . |CharacteristicNonZero|) T) ((|SequentialDifferentialPolynomial| . |PolynomialFactorizationExplicit|) 203010) ((|MyExpression| . |CancellationAbelianMonoid|) T) ((|MyExpression| . |LeftModule|) 202898) ((|NumericalODEProblem| . |CoercibleTo|) 202872) ((|Result| . |KeyedDictionary|) 202842) ((|MoebiusTransform| . |BasicType|) T) ((|PrimitiveArray| . |ConvertibleTo|) 202778) ((|LinearOrdinaryDifferentialOperator| . |BasicType|) T) ((|RectangularMatrix| . |HomogeneousAggregate|) 202762) ((|NewSparseUnivariatePolynomial| . |Module|) 202502) ((|Integer| . |BiModule|) 202487) ((|LaurentPolynomial| . |SetCategory|) T) ((|e04dgfAnnaType| . |CoercibleTo|) 202461) ((|XPolynomialRing| . |CoercibleTo|) 202435) ((|Integer| . |CancellationAbelianMonoid|) T) ((|DirectProductModule| . |Module|) 202364) ((|SparseMultivariatePolynomial| . |LeftModule|) 202261) ((|OrderlyDifferentialPolynomial| . |AbelianSemiGroup|) T) ((|FreeModule1| . |AbelianGroup|) T) ((|AlgebraicFunctionField| . |FramedAlgebra|) 202227) ((|UnivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|LinearOrdinaryDifferentialOperator1| . |Monoid|) T) ((|IndexedExponents| . |OrderedAbelianMonoid|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |BasicType|) T) ((|PAdicInteger| . |CharacteristicZero|) T) ((|Integer| . |AbelianSemiGroup|) T) ((|UnivariatePolynomial| . |RightModule|) 201961) ((|Polynomial| . |Ring|) T) ((|UnivariatePolynomial| . |Module|) 201701) ((|SparseUnivariatePuiseuxSeries| . |TrigonometricFunctionCategory|) 201650) ((|FiniteFieldExtensionByPolynomial| . |PrincipalIdealDomain|) T) ((|IndexedFlexibleArray| . |ConvertibleTo|) 201586) ((|FiniteFieldNormalBasis| . |AbelianMonoid|) T) ((|GeneralTriangularSet| . |InnerEvalable|) 201505) ((|OrderlyDifferentialPolynomial| . |UniqueFactorizationDomain|) 201455) ((|OppositeMonogenicLinearOperator| . |CancellationAbelianMonoid|) T) ((|Factored| . |Rng|) T) ((|RadicalFunctionField| . |FiniteFieldCategory|) NIL) ((|OrderedFreeMonoid| . |Monoid|) T) ((|ExponentialExpansion| . |AbelianMonoid|) T) ((|Magma| . |BasicType|) T) ((|DoubleFloatVector| . |IndexedAggregate|) 201416) ((|DecimalExpansion| . |SetCategory|) T) ((|List| . |BasicType|) 201353) ((|Partition| . |OrderedAbelianMonoid|) T) ((|SimpleAlgebraicExtension| . |AbelianGroup|) T) ((|SparseUnivariatePuiseuxSeries| . |LeftOreRing|) 201329) ((|File| . |SetCategory|) T) ((|PAdicRational| . |SemiGroup|) T) ((|FiniteFieldNormalBasisExtension| . |CommutativeRing|) T) ((|SparseUnivariateTaylorSeries| . |IntegralDomain|) 201296) ((|GeneralDistributedMultivariatePolynomial| . |IntegralDomain|) 201182) ((|SetOfMIntegersInOneToN| . |BasicType|) T) ((|SparseUnivariateLaurentSeries| . |Ring|) T) ((|PAdicRational| . |Type|) T) ((|Octonion| . |CoercibleTo|) 201156) ((|PrimitiveArray| . |InnerEvalable|) 201075) ((|IndexedMatrix| . |CoercibleTo|) 201026) ((|Float| . |OrderedCancellationAbelianMonoid|) T) ((|DoubleFloat| . |CancellationAbelianMonoid|) T) ((|PAdicRational| . |CommutativeRing|) T) ((|d01aqfAnnaType| . |SetCategory|) T) ((|NewSparseUnivariatePolynomial| . |InnerEvalable|) 200936) ((|OppositeMonogenicLinearOperator| . |LeftModule|) 200910) ((|Expression| . |TranscendentalFunctionCategory|) 200877) ((|Bits| . |Evalable|) NIL) ((|BalancedPAdicRational| . |BiModule|) 200736) ((|UnivariatePuiseuxSeries| . |AbelianMonoidRing|) 200695) ((|Character| . |OrderedSet|) T) ((|FiniteField| . |CharacteristicNonZero|) T) ((|UnivariatePolynomial| . |CharacteristicNonZero|) 200655) ((|LinearOrdinaryDifferentialOperator1| . |AbelianGroup|) T) ((|RectangularMatrix| . |Evalable|) 200579) ((|FractionalIdeal| . |CoercibleTo|) 200553) ((|RegularChain| . |ConvertibleTo|) 200424) ((|OppositeMonogenicLinearOperator| . |Rng|) T) ((|XPBWPolynomial| . |Ring|) T) ((|Asp8| . |FortranProgramCategory|) T) ((|MonoidRing| . |SemiGroup|) T) ((|BasicFunctions| . |BasicType|) T) ((|SymmetricPolynomial| . |CharacteristicNonZero|) 200384) ((|DistributedMultivariatePolynomial| . |SemiGroup|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |CancellationAbelianMonoid|) T) ((|PrimitiveArray| . |EltableAggregate|) 200356) ((|ModMonic| . |StepThrough|) 200326) ((|LiePolynomial| . |AbelianSemiGroup|) T) ((|MachineComplex| . |FullyPatternMatchable|) 200298) ((|DoubleFloatVector| . |SetCategory|) T) ((|BalancedPAdicRational| . |InnerEvalable|) 200012) ((|RomanNumeral| . |SetCategory|) T) ((|FiniteField| . |Rng|) T) ((|SplittingNode| . |CoercibleTo|) 199986) ((|Operator| . |LeftModule|) 199933) ((|RadixExpansion| . |DivisionRing|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |RetractableTo|) 199917) ((|AlgebraicNumber| . |ExpressionSpace|) T) ((|Expression| . |RightModule|) 199779) ((|LaurentPolynomial| . |CancellationAbelianMonoid|) T) ((|BinaryExpansion| . |PartialDifferentialRing|) NIL) ((|Polynomial| . |Module|) 199542) ((|DistributedMultivariatePolynomial| . |CommutativeRing|) 199395) ((|AlgebraicFunctionField| . |AbelianSemiGroup|) T) ((|HexadecimalExpansion| . |LinearlyExplicitRingOver|) 199372) ((|MultivariatePolynomial| . |Module|) 199135) ((|InnerTaylorSeries| . |SemiGroup|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |CancellationAbelianMonoid|) T) ((|FortranExpression| . |SemiGroup|) T) ((|ModMonic| . |AbelianSemiGroup|) T) ((|Octonion| . |SemiGroup|) T) ((|IndexedExponents| . |OrderedAbelianMonoidSup|) T) ((|HexadecimalExpansion| . |PartialDifferentialRing|) NIL) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |DivisionRing|) T) ((|DifferentialSparseMultivariatePolynomial| . |PartialDifferentialRing|) 199054) ((|MyUnivariatePolynomial| . |AbelianMonoidRing|) 199015) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |FiniteAlgebraicExtensionField|) 198999) ((|NumericalODEProblem| . |SetCategory|) T) ((|DesingTree| . |SetCategory|) 198969) ((|DoubleFloatVector| . |BasicType|) T) ((|HomogeneousDirectProduct| . |LinearlyExplicitRingOver|) 198841) ((|Product| . |SetCategory|) T) ((|AlgebraicNumber| . |EntireRing|) T) ((|HexadecimalExpansion| . |Ring|) T) ((|Interval| . |OrderedSet|) T) ((|Tree| . |HomogeneousAggregate|) 198825) ((|NewSparseMultivariatePolynomial| . |CharacteristicZero|) 198788) ((|SimpleAlgebraicExtension| . |FieldOfPrimeCharacteristic|) 198750) ((|NottinghamGroup| . |CoercibleTo|) 198724) ((|InnerPrimeField| . |CommutativeRing|) T) ((|DataList| . |StreamAggregate|) 198708) ((|BinaryExpansion| . |CommutativeRing|) T) ((|UniversalSegment| . |SetCategory|) 198678) ((|UnivariatePuiseuxSeriesConstructor| . |DifferentialRing|) 198613) ((|OrdinaryDifferentialRing| . |UniqueFactorizationDomain|) 198589) ((|InnerSparseUnivariatePowerSeries| . |Module|) 198433) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |VectorSpace|) 198417) ((|SparseMultivariatePolynomial| . |RightModule|) 198174) ((|Exit| . |CoercibleTo|) 198148) ((|UnivariateLaurentSeries| . |SemiGroup|) T) ((|LieSquareMatrix| . |AbelianMonoid|) T) ((|HomogeneousDirectProduct| . |OrderedAbelianSemiGroup|) 198072) ((|MyExpression| . |Algebra|) 197960) ((|ComplexDoubleFloatVector| . |Collection|) 197921) ((|UnivariateTaylorSeries| . |BiModule|) 197722) ((|ComplexDoubleFloatMatrix| . |HomogeneousAggregate|) 197683) ((|UnivariateLaurentSeriesConstructor| . |FullyEvalableOver|) 197650) ((|DifferentialSparseMultivariatePolynomial| . |FullyRetractableTo|) 197634) ((|SingleInteger| . |CommutativeRing|) T) ((|RomanNumeral| . |Rng|) T) ((|DistributedMultivariatePolynomial| . |CoercibleTo|) 197608) ((|Polynomial| . |PolynomialFactorizationExplicit|) 197558) ((|PartialFraction| . |PrincipalIdealDomain|) T) ((|RoutinesTable| . |Evalable|) 197364) ((|DirichletRing| . |CoercibleTo|) 197338) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |RetractableTo|) 197284) ((|SequentialDifferentialPolynomial| . |Algebra|) 197047) ((|DoubleFloatMatrix| . |MatrixCategory|) 196976) ((|DoubleFloatVector| . |VectorCategory|) 196949) ((|BinarySearchTree| . |BinaryTreeCategory|) 196933) ((|Interval| . |ArcTrigonometricFunctionCategory|) T) ((|SimpleAlgebraicExtension| . |CharacteristicZero|) 196896) ((|BinaryTree| . |CoercibleTo|) 196847) ((|PolynomialRing| . |RetractableTo|) 196691) ((|TaylorSeries| . |PartialDifferentialRing|) 196669) ((|Fraction| . |GcdDomain|) T) ((|HexadecimalExpansion| . |AbelianMonoid|) T) ((|RoutinesTable| . |Dictionary|) 196602) ((|OneDimensionalArray| . |Eltable|) 196574) ((|PrimeField| . |DifferentialRing|) T) ((|DoubleFloat| . |OrderedAbelianGroup|) T) ((|AlgebraicNumber| . |IntegralDomain|) T) ((|SymmetricPolynomial| . |AbelianMonoid|) T) ((|SparseUnivariatePolynomial| . |RightModule|) 196308) ((|RegularChain| . |BasicType|) T) ((|ScriptFormulaFormat| . |CoercibleTo|) 196282) ((|DifferentialSparseMultivariatePolynomial| . |ConvertibleTo|) 195889) ((|Pi| . |CoercibleTo|) 195821) ((|InnerAlgebraicNumber| . |PrincipalIdealDomain|) T) ((|Palette| . |BasicType|) T) ((|Complex| . |OrderedSet|) 195792) ((|Polynomial| . |FiniteAbelianMonoidRing|) 195744) ((|Integer| . |SetCategory|) T) ((|PendantTree| . |HomogeneousAggregate|) 195728) ((|String| . |HomogeneousAggregate|) 195703) ((|HomogeneousDirectProduct| . |OrderedAbelianMonoidSup|) 195661) ((|DeRhamComplex| . |CancellationAbelianMonoid|) T) ((|LieSquareMatrix| . |Evalable|) 195585) ((|DistributedMultivariatePolynomial| . |EntireRing|) 195471) ((|BlowUpWithQuadTrans| . |BlowUpMethodCategory|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |AbelianSemiGroup|) T) ((|SubSpace| . |BasicType|) T) ((|PartialFraction| . |Monoid|) T) ((|RewriteRule| . |CoercibleTo|) 195445) ((|HomogeneousDirectProduct| . |Finite|) 195420) ((|SquareMatrix| . |RightModule|) 195404) ((|QueryEquation| . |CoercibleTo|) 195378) ((|Expression| . |RetractableTo|) 194882) ((|GeneralSparseTable| . |EltableAggregate|) 194861) ((|DecimalExpansion| . |OrderedAbelianMonoid|) T) ((|AlgebraGivenByStructuralConstants| . |BasicType|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |FiniteFieldCategory|) 194836) ((|XPolynomialRing| . |SemiGroup|) T) ((|HexadecimalExpansion| . |ConvertibleTo|) 194737) ((|Bits| . |EltableAggregate|) 194702) ((|ModuleOperator| . |SetCategory|) T) ((|BalancedPAdicInteger| . |BiModule|) 194687) ((|e04mbfAnnaType| . |CoercibleTo|) 194661) ((|HexadecimalExpansion| . |IntegralDomain|) T) ((|MachineInteger| . |CommutativeRing|) T) ((|IndexedVector| . |OneDimensionalArrayAggregate|) 194645) ((|FiniteFieldExtension| . |ExtensionField|) 194629) ((|UnivariateTaylorSeriesCZero| . |HyperbolicFunctionCategory|) 194578) ((|EuclideanModularRing| . |SemiGroup|) T) ((|U32Matrix| . |Evalable|) NIL) ((|FiniteFieldNormalBasis| . |AbelianSemiGroup|) T) ((|FiniteField| . |Field|) T) ((|NewSparseMultivariatePolynomial| . |SetCategory|) T) ((|HexadecimalExpansion| . |OrderedAbelianMonoid|) T) ((|FiniteFieldExtensionByPolynomial| . |AbelianMonoid|) T) ((|PartialFraction| . |Algebra|) 194519) ((|Partition| . |BasicType|) T) ((|RealClosure| . |RealClosedField|) T) ((|AlgebraicFunctionField| . |DifferentialRing|) 194471) ((|d01anfAnnaType| . |BasicType|) T) ((|SquareFreeRegularTriangularSet| . |SetCategory|) T) ((|IndexedFlexibleArray| . |Type|) T) ((|List| . |StreamAggregate|) 194455) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |VectorSpace|) 194439) ((|SequentialDifferentialVariable| . |BasicType|) T) ((|Set| . |Aggregate|) T) ((|OrderlyDifferentialPolynomial| . |Monoid|) T) ((|ExponentialExpansion| . |EntireRing|) T) ((|FiniteField| . |Monoid|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |FullyRetractableTo|) 194385) ((|DecimalExpansion| . |FullyPatternMatchable|) 194362) ((|GeneralDistributedMultivariatePolynomial| . |SemiGroup|) T) ((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| . |BasicType|) T) ((|Asp20| . |FortranProgramCategory|) T) ((|FiniteFieldExtensionByPolynomial| . |Monoid|) T) ((|MyExpression| . |CoercibleTo|) 194336) ((|GeneralDistributedMultivariatePolynomial| . |EntireRing|) 194222) ((|Boolean| . |ConvertibleTo|) 194197) ((|PAdicRational| . |RealConstant|) NIL) ((|XDistributedPolynomial| . |Module|) 194154) ((|AssociatedLieAlgebra| . |AbelianGroup|) T) ((|UnivariateSkewPolynomial| . |CoercibleTo|) 194128) ((|Integer| . |UniqueFactorizationDomain|) T) ((|FiniteField| . |Finite|) T) ((|Quaternion| . |FullyRetractableTo|) 194112) ((|U32Vector| . |HomogeneousAggregate|) 194089) ((|IndexedString| . |LinearAggregate|) 194064) ((|NeitherSparseOrDensePowerSeries| . |LocalPowerSeriesCategory|) 194048) ((|LinearOrdinaryDifferentialOperator1| . |Ring|) T) ((|SparseMultivariatePolynomial| . |AbelianMonoid|) T) ((|SparseUnivariatePolynomialExpressions| . |BasicType|) T) ((|d01apfAnnaType| . |BasicType|) T) ((|DataList| . |HomogeneousAggregate|) 194032) ((|DifferentialSparseMultivariatePolynomial| . |OrderedSet|) 194003) ((|LaurentPolynomial| . |LeftOreRing|) 193979) ((|DoubleFloat| . |OrderedAbelianSemiGroup|) T) ((|DirectProduct| . |CommutativeRing|) 193945) ((|OrderedCompletion| . |OrderedSet|) 193915) ((|PAdicInteger| . |LeftOreRing|) T) ((|MultivariatePolynomial| . |PatternMatchable|) NIL) ((|Bits| . |IndexedAggregate|) 193880) ((|LinearOrdinaryDifferentialOperator1| . |CoercibleTo|) 193854) ((|RealClosure| . |CharacteristicZero|) T) ((|LinearOrdinaryDifferentialOperator1| . |BasicType|) T) ((|MyExpression| . |CharacteristicZero|) 193817) ((|EqTable| . |ConvertibleTo|) NIL) ((|IndexedBits| . |Aggregate|) T) ((|Cell| . |CoercibleTo|) 193791) ((|TwoDimensionalArray| . |InnerEvalable|) 193710) ((|IndexedTwoDimensionalArray| . |HomogeneousAggregate|) 193694) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |AbelianMonoid|) T) ((|SparseUnivariatePolynomialExpressions| . |Ring|) T) ((|ModuleOperator| . |BiModule|) 193646) ((|ListMonoidOps| . |BasicType|) T) ((|LieSquareMatrix| . |FullyLinearlyExplicitRingOver|) 193630) ((|U32Matrix| . |SetCategory|) T) ((|NonNegativeInteger| . |BasicType|) T) ((|FreeModule1| . |LeftModule|) 193614) ((|BinaryExpansion| . |LinearlyExplicitRingOver|) 193591) ((|ComplexDoubleFloatVector| . |Type|) T) ((|SparseUnivariatePuiseuxSeries| . |PrincipalIdealDomain|) 193567) ((|FiniteFieldCyclicGroupExtension| . |CommutativeRing|) T) ((|FiniteFieldCyclicGroup| . |Monoid|) T) ((|BalancedPAdicRational| . |Module|) 193483) ((|XDistributedPolynomial| . |XPolynomialsCat|) 193462) ((|UnivariatePuiseuxSeriesConstructor| . |AbelianSemiGroup|) T) ((|Permutation| . |BasicType|) T) ((|XPolynomial| . |BiModule|) 193441) ((|NeitherSparseOrDensePowerSeries| . |Monoid|) T) ((|PrimitiveArray| . |SetCategory|) 193378) ((|Magma| . |SetCategory|) T) ((|Integer| . |Algebra|) 193365) ((|Queue| . |Type|) T) ((|DoubleFloat| . |PrincipalIdealDomain|) T) ((|d01TransformFunctionType| . |SetCategory|) T) ((|SquareMatrix| . |CancellationAbelianMonoid|) T) ((|Asp9| . |FortranProgramCategory|) T) ((|SparseUnivariateTaylorSeries| . |LeftModule|) 193262) ((|Heap| . |SetCategory|) 193232) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |RightModule|) 193053) ((|UnivariatePolynomial| . |DifferentialRing|) T) ((|String| . |LinearAggregate|) 193028) ((|InputForm| . |SExpressionCategory|) 192952) ((|PAdicRational| . |Rng|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |RetractableTo|) 192759) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Field|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |IntegralDomain|) T) ((|RightOpenIntervalRootCharacterization| . |BasicType|) T) ((|SparseUnivariateSkewPolynomial| . |Monoid|) T) ((|DirectProductMatrixModule| . |RetractableTo|) 192510) ((|ExponentialExpansion| . |OrderedCancellationAbelianMonoid|) NIL) ((|SparseMultivariatePolynomial| . |InnerEvalable|) 192462) ((|BalancedPAdicRational| . |FullyEvalableOver|) 192421) ((|CharacterClass| . |CoercibleTo|) 192395) ((|PAdicInteger| . |AbelianMonoid|) T) ((|SparseUnivariatePuiseuxSeries| . |PartialDifferentialRing|) 192257) ((|SquareMatrix| . |BiModule|) 192236) ((|IndexedList| . |InnerEvalable|) 192155) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |CommutativeRing|) T) ((|FortranScalarType| . |CoercibleTo|) 192129) ((|AssociationList| . |FiniteLinearAggregate|) 192071) ((|d01asfAnnaType| . |NumericalIntegrationCategory|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |AbelianMonoid|) T) ((|FortranExpression| . |LeftModule|) 192045) ((|TwoDimensionalViewport| . |CoercibleTo|) 192019) ((|UnivariateLaurentSeriesConstructor| . |FullyPatternMatchable|) 191986) ((|OnePointCompletion| . |Ring|) 191956) ((|PolynomialIdeals| . |CoercibleTo|) 191930) ((|HomogeneousDirectProduct| . |DirectProductCategory|) 191909) ((|String| . |EltableAggregate|) 191872) ((|Asp41| . |CoercibleTo|) 191846) ((|MonoidRing| . |Rng|) T) ((|NonNegativeInteger| . |OrderedSet|) T) ((|FiniteFieldNormalBasisExtension| . |CancellationAbelianMonoid|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |PrincipalIdealDomain|) T) ((|XDistributedPolynomial| . |XFreeAlgebra|) 191825) ((|AssociatedLieAlgebra| . |CoercibleTo|) 191786) ((|SparseUnivariatePolynomialExpressions| . |ArcTrigonometricFunctionCategory|) 191737) ((|d01apfAnnaType| . |NumericalIntegrationCategory|) T) ((|OppositeMonogenicLinearOperator| . |BasicType|) T) ((|SparseTable| . |Collection|) 191679) ((|NeitherSparseOrDensePowerSeries| . |UnaryRecursiveAggregate|) 191620) ((|SparseUnivariateLaurentSeries| . |OrderedRing|) NIL) ((|GeneralPolynomialSet| . |CoercibleTo|) 191572) ((|DirectProductMatrixModule| . |SemiGroup|) 191458) ((|Partition| . |SetCategory|) T) ((|MultivariatePolynomial| . |AbelianSemiGroup|) T) ((|SparseUnivariateLaurentSeries| . |RealConstant|) NIL) ((|SparseUnivariatePuiseuxSeries| . |Monoid|) T) ((|MachineInteger| . |ConvertibleTo|) 191339) ((|ModularRing| . |Monoid|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|Any| . |BasicType|) T) ((|HexadecimalExpansion| . |RetractableTo|) 191283) ((|SparseUnivariatePolynomialExpressions| . |SetCategory|) T) ((|PartialFraction| . |CoercibleTo|) 191257) ((|DifferentialSparseMultivariatePolynomial| . |AbelianMonoidRing|) 191215) ((|PseudoAlgebraicClosureOfFiniteField| . |AbelianGroup|) T) ((|Automorphism| . |CoercibleTo|) 191189) ((|RegularChain| . |Aggregate|) T) ((|FiniteDivisor| . |AbelianMonoid|) T) ((|Heap| . |Type|) T) ((|U32Vector| . |LinearAggregate|) 191166) ((|MachineComplex| . |InnerEvalable|) NIL) ((|DecimalExpansion| . |Evalable|) NIL) ((|BalancedPAdicRational| . |AbelianGroup|) T) ((|CartesianTensor| . |GradedAlgebra|) 191127) ((|PAdicRational| . |CoercibleTo|) 191101) ((|PAdicRationalConstructor| . |LeftOreRing|) T) ((|MyExpression| . |DivisionRing|) 191068) ((|FiniteFieldCyclicGroup| . |RetractableTo|) 191037) ((|SparseMultivariateTaylorSeries| . |PartialDifferentialRing|) 191021) ((|IndexedTwoDimensionalArray| . |Aggregate|) T) ((|MonoidRing| . |BiModule|) 190973) ((|SplitHomogeneousDirectProduct| . |OrderedAbelianGroup|) 190943) ((|DirectProduct| . |Ring|) 190853) ((|IndexedDirectProductAbelianGroup| . |CancellationAbelianMonoid|) T) ((|SparseMultivariateTaylorSeries| . |RightModule|) 190686) ((|DifferentialSparseMultivariatePolynomial| . |DifferentialRing|) 190651) ((|SparseMultivariatePolynomial| . |Ring|) T) ((|OrderedDirectProduct| . |OrderedRing|) 190621) ((|MachineFloat| . |DivisionRing|) T) ((|SparseUnivariatePuiseuxSeries| . |ElementaryFunctionCategory|) 190570) ((|ExponentialOfUnivariatePuiseuxSeries| . |Module|) 190358) ((|OrderedCompletion| . |FullyRetractableTo|) 190342) ((|FiniteFieldNormalBasis| . |CoercibleTo|) 190316) ((|None| . |BasicType|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |Field|) T) ((|BinaryTournament| . |BasicType|) 190286) ((|IndexedString| . |Evalable|) NIL) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |IntegralDomain|) T) ((|PartialFraction| . |BasicType|) T) ((|Plcs| . |SetCategoryWithDegree|) T) ((|Expression| . |CombinatorialOpsCategory|) 190253) ((|MakeCachableSet| . |BasicType|) T) ((|BinaryExpansion| . |Field|) T) ((|GuessOption| . |BasicType|) T) ((|ExponentialExpansion| . |PatternMatchable|) NIL) ((|Point| . |Eltable|) 190225) ((|XPBWPolynomial| . |CoercibleTo|) 190199) ((|PseudoAlgebraicClosureOfFiniteField| . |CommutativeRing|) T) ((|OnePointCompletion| . |SetCategory|) T) ((|ModularField| . |AbelianGroup|) T) ((|LiePolynomial| . |CancellationAbelianMonoid|) T) ((|Asp49| . |CoercibleTo|) 190173) ((|PAdicRationalConstructor| . |CharacteristicZero|) 190136) ((|OrdinaryWeightedPolynomials| . |RightModule|) 190093) ((|InnerPAdicInteger| . |EuclideanDomain|) T) ((|DistributedMultivariatePolynomial| . |Evalable|) 190080) ((|Octonion| . |Monoid|) T) ((|HyperellipticFiniteDivisor| . |CancellationAbelianMonoid|) T) ((|OpenMathError| . |SetCategory|) T) ((|SparseUnivariatePolynomialExpressions| . |BiModule|) 189782) ((|NewSparseUnivariatePolynomial| . |CommutativeRing|) 189612) ((|AntiSymm| . |AbelianSemiGroup|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |ArcHyperbolicFunctionCategory|) 189561) ((|ContinuedFraction| . |IntegralDomain|) T) ((|SquareFreeRegularTriangularSet| . |Evalable|) 189485) ((|ExponentialOfUnivariatePuiseuxSeries| . |GcdDomain|) 189461) ((|LieSquareMatrix| . |CoercibleTo|) 189411) ((|DoubleFloatVector| . |Eltable|) 189372) ((|AlgebraicFunctionField| . |IntegralDomain|) T) ((|ContinuedFraction| . |Module|) 189287) ((|GeneralPolynomialSet| . |SetCategory|) T) ((|BinaryExpansion| . |Ring|) T) ((|UnivariateLaurentSeriesConstructor| . |DifferentialRing|) 189167) ((|FiniteFieldExtensionByPolynomial| . |CoercibleTo|) 189141) ((|Product| . |AbelianSemiGroup|) 188821) ((|FiniteFieldExtensionByPolynomial| . |BasicType|) T) ((|Boolean| . |BasicType|) T) ((|GeneralTriangularSet| . |Evalable|) 188745) ((|InnerPrimeField| . |CharacteristicNonZero|) T) ((|Asp10| . |FortranProgramCategory|) T) ((|LocalAlgebra| . |RightModule|) 188729) ((|SingleInteger| . |Module|) 188716) ((|FreeModule| . |BiModule|) 188695) ((|PrimitiveArray| . |Aggregate|) T) ((|FiniteFieldCyclicGroup| . |Algebra|) 188649) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |AbelianGroup|) T) ((|U16Matrix| . |BasicType|) T) ((|MyUnivariatePolynomial| . |RetractableTo|) 188459) ((|LinearOrdinaryDifferentialOperator| . |AbelianSemiGroup|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |ExtensionField|) 188443) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |Algebra|) 188397) ((|SExpression| . |CoercibleTo|) 188371) ((|NewSparseUnivariatePolynomial| . |Algebra|) 188111) ((|Multiset| . |DictionaryOperations|) 188095) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |OrderedAbelianMonoid|) T) ((|SplitHomogeneousDirectProduct| . |OrderedRing|) 188065) ((|SparseUnivariatePuiseuxSeries| . |Ring|) T) ((|FiniteFieldExtensionByPolynomial| . |Module|) 188006) ((|AssociatedJordanAlgebra| . |Monad|) T) ((|SparseUnivariatePuiseuxSeries| . |BasicType|) T) ((|FiniteFieldCyclicGroupExtension| . |EuclideanDomain|) T) ((|U16Vector| . |SetCategory|) T) ((|BinaryExpansion| . |CancellationAbelianMonoid|) T) ((|RadixExpansion| . |OrderedAbelianSemiGroup|) T) ((|ModuleOperator| . |Module|) 187963) ((|SparseMultivariateTaylorSeries| . |AbelianMonoid|) T) ((|Enumeration| . |SetCategory|) T) ((|InnerFiniteField| . |Algebra|) 187917) ((|InnerTable| . |DictionaryOperations|) 187859) ((|SparseUnivariatePuiseuxSeries| . |HyperbolicFunctionCategory|) 187808) ((|Operator| . |Ring|) T) ((|IndexedFlexibleArray| . |Collection|) 187792) ((|Asp80| . |CoercibleTo|) 187766) ((|AlgebraicNumber| . |AbelianSemiGroup|) T) ((|MonoidRing| . |CharacteristicZero|) 187729) ((|String| . |SetCategory|) T) ((|InnerAlgebraicNumber| . |IntegralDomain|) T) ((|LinearOrdinaryDifferentialOperator2| . |SemiGroup|) T) ((|FiniteFieldCyclicGroupExtension| . |VectorSpace|) 187713) ((|FiniteFieldCyclicGroup| . |BiModule|) 187592) ((|UnivariatePolynomial| . |CommutativeRing|) 187422) ((|InnerFiniteField| . |CommutativeRing|) T) ((|BasicStochasticDifferential| . |SetCategory|) T) ((|AlgebraicFunctionField| . |EntireRing|) T) ((|Complex| . |IntegralDomain|) 187291) ((|PAdicRational| . |Eltable|) 187176) ((|DoubleFloatMatrix| . |HomogeneousAggregate|) 187149) ((|SplitHomogeneousDirectProduct| . |Eltable|) 187121) ((|SparseUnivariateSkewPolynomial| . |FullyRetractableTo|) 187105) ((|ModuleOperator| . |Eltable|) 187084) ((|SplitHomogeneousDirectProduct| . |Type|) T) ((|List| . |Collection|) 187068) ((|Octonion| . |BasicType|) T) ((|Integer| . |LeftModule|) 187055) ((|TwoDimensionalArray| . |SetCategory|) 187025) ((|MachineComplex| . |RetractableTo|) 186944) ((|PAdicRationalConstructor| . |OrderedSet|) 186871) ((|SparseMultivariateTaylorSeries| . |Algebra|) 186715) ((|ComplexDoubleFloatVector| . |InnerEvalable|) NIL) ((|DecimalExpansion| . |OrderedRing|) T) ((|AssociationList| . |UnaryRecursiveAggregate|) 186657) ((|XDistributedPolynomial| . |XAlgebra|) 186641) ((|AssociationList| . |ConvertibleTo|) NIL) ((|UnivariatePolynomial| . |ConvertibleTo|) NIL) ((|OrdinaryWeightedPolynomials| . |CancellationAbelianMonoid|) T) ((|InnerFiniteField| . |LeftModule|) 186562) ((|DoubleFloat| . |DivisionRing|) T) ((|PAdicRational| . |Field|) T) ((|UnivariatePuiseuxSeriesConstructor| . |ArcHyperbolicFunctionCategory|) 186511) ((|ExponentialExpansion| . |GcdDomain|) T) ((|UniversalSegment| . |CoercibleTo|) 186462) ((|GeneralPolynomialSet| . |PolynomialSetCategory|) 186431) ((|MachineComplex| . |ArcHyperbolicFunctionCategory|) NIL) ((|OrderedDirectProduct| . |FullyLinearlyExplicitRingOver|) 186399) ((|Quaternion| . |OrderedSet|) 186370) ((|Result| . |DictionaryOperations|) 186303) ((|GeneralTriangularSet| . |TriangularSetCategory|) 186272) ((|GeneralUnivariatePowerSeries| . |UnivariatePowerSeriesCategory|) 186231) ((|IndexedVector| . |ConvertibleTo|) 186167) ((|DirectProductMatrixModule| . |OrderedAbelianSemiGroup|) 186091) ((|SparseMultivariatePolynomial| . |ConvertibleTo|) 185698) ((|Asp35| . |FortranProgramCategory|) T) ((|SparseMultivariateTaylorSeries| . |CancellationAbelianMonoid|) T) ((|SparseMultivariatePolynomial| . |BasicType|) T) ((|FiniteField| . |VectorSpace|) 185667) ((|OneDimensionalArray| . |LinearAggregate|) 185651) ((|FiniteFieldCyclicGroupExtension| . |BasicType|) T) ((|DirectProductModule| . |CancellationAbelianMonoid|) T) ((|Bits| . |Logic|) T) ((|PrimitiveArray| . |CoercibleTo|) 185569) ((|Interval| . |Rng|) T) ((|PAdicRationalConstructor| . |Eltable|) 185522) ((|ContinuedFraction| . |RightModule|) 185437) ((|InnerSparseUnivariatePowerSeries| . |CharacteristicZero|) 185400) ((|List| . |OrderedSet|) 185371) ((|Quaternion| . |FullyLinearlyExplicitRingOver|) 185355) ((|XPBWPolynomial| . |Module|) 185312) ((|Plot| . |PlottablePlaneCurveCategory|) T) ((|SparseUnivariateLaurentSeries| . |ElementaryFunctionCategory|) 185261) ((|BlowUpWithQuadTrans| . |SetCategory|) T) ((|CartesianTensor| . |SetCategory|) T) ((|U8Vector| . |Type|) T) ((|SparseUnivariateLaurentSeries| . |Module|) 184976) ((|HyperellipticFiniteDivisor| . |AbelianGroup|) T) ((|IndexedString| . |FiniteLinearAggregate|) 184951) ((|PrimeField| . |LeftOreRing|) T) ((|SplitHomogeneousDirectProduct| . |EltableAggregate|) 184923) ((|OrderedDirectProduct| . |Rng|) 184833) ((|PolynomialRing| . |Rng|) T) ((|e04mbfAnnaType| . |SetCategory|) T) ((|Set| . |Dictionary|) 184817) ((|UnivariateFormalPowerSeries| . |ArcHyperbolicFunctionCategory|) 184766) ((|DirichletRing| . |AbelianSemiGroup|) T) ((|PAdicRational| . |PatternMatchable|) NIL) ((|U32Matrix| . |TwoDimensionalArrayCategory|) 184715) ((|HomogeneousDistributedMultivariatePolynomial| . |PatternMatchable|) NIL) ((|Divisor| . |BiModule|) 184680) ((|Float| . |LeftModule|) 184634) ((|SparseUnivariatePuiseuxSeries| . |CancellationAbelianMonoid|) T) ((|RegularTriangularSet| . |BasicType|) T) ((|Heap| . |CoercibleTo|) 184585) ((|EuclideanModularRing| . |BiModule|) 184570) ((|InfinitlyClosePoint| . |SetCategory|) T) ((|InnerFiniteField| . |Finite|) T) ((|DirectProductModule| . |AbelianSemiGroup|) T) ((|ModMonic| . |Eltable|) 184473) ((|TaylorSeries| . |Rng|) T) ((|Equation| . |VectorSpace|) 184440) ((|PAdicRationalConstructor| . |Monoid|) T) ((|NottinghamGroup| . |Group|) T) ((|UnivariateLaurentSeriesConstructor| . |Eltable|) 184352) ((|FiniteFieldExtensionByPolynomial| . |ExtensionField|) 184336) ((|SparseMultivariateTaylorSeries| . |TrigonometricFunctionCategory|) 184285) ((|NewSparseUnivariatePolynomial| . |DifferentialExtension|) 184269) ((|DifferentialSparseMultivariatePolynomial| . |InnerEvalable|) 184132) ((|AttributeButtons| . |BasicType|) T) ((|FiniteFieldNormalBasis| . |BiModule|) 184011) ((|AssociatedJordanAlgebra| . |NonAssociativeRng|) T) ((|ExponentialExpansion| . |RealConstant|) NIL) ((|UnivariateLaurentSeriesConstructor| . |TranscendentalFunctionCategory|) 183960) ((|Asp78| . |FortranProgramCategory|) T) ((|MultivariatePolynomial| . |Ring|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |DivisionRing|) T) ((|FramedModule| . |CoercibleTo|) 183934) ((|UnivariatePuiseuxSeriesConstructor| . |RadicalCategory|) 183883) ((|SparseMultivariatePolynomial| . |CommutativeRing|) 183736) ((|LiePolynomial| . |RightModule|) 183720) ((|RealClosure| . |BasicType|) T) ((|AlgebraicFunctionField| . |SemiGroup|) T) ((|Equation| . |Ring|) 183640) ((|IndexedBits| . |FiniteLinearAggregate|) 183617) ((|SymmetricPolynomial| . |LeftModule|) 183514) ((|FiniteFieldExtensionByPolynomial| . |BiModule|) 183423) ((|SparseUnivariateLaurentSeries| . |LeftModule|) 183219) ((|Factored| . |Module|) 183193) ((|AssociationList| . |Dictionary|) 183135) ((|SparseUnivariateLaurentSeries| . |Rng|) T) ((|KeyedAccessFile| . |DictionaryOperations|) 183071) ((|BlowUpWithHamburgerNoether| . |CoercibleTo|) 183045) ((|OnePointCompletion| . |OrderedSet|) 183015) ((|Octonion| . |AbelianSemiGroup|) T) ((|Float| . |OpenMath|) T) ((|Library| . |Aggregate|) T) ((|Product| . |AbelianGroup|) 182948) ((|DirectProductMatrixModule| . |Aggregate|) T) ((|ProjectivePlane| . |SetCategoryWithDegree|) T) ((|IndexedFlexibleArray| . |EltableAggregate|) 182920) ((|UnivariateFormalPowerSeries| . |AbelianMonoidRing|) 182881) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |BiModule|) 182790) ((|Integer| . |AbelianGroup|) T) ((|NewSparseMultivariatePolynomial| . |RetractableTo|) 182570) ((|PAdicRational| . |LeftOreRing|) T) ((|SparseUnivariatePolynomial| . |AbelianSemiGroup|) T) ((|Asp42| . |FortranVectorFunctionCategory|) T) ((|AssociatedJordanAlgebra| . |AbelianMonoid|) T) ((|Integer| . |LinearlyExplicitRingOver|) 182547) ((|Vector| . |InnerEvalable|) 182466) ((|ContinuedFraction| . |AbelianGroup|) T) ((|U32Vector| . |SetCategory|) T) ((|Multiset| . |InnerEvalable|) 182385) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |IntegralDomain|) T) ((|AntiSymm| . |RetractableTo|) 182369) ((|InnerSparseUnivariatePowerSeries| . |SetCategory|) T) ((|Palette| . |CoercibleTo|) 182343) ((|SplitHomogeneousDirectProduct| . |AbelianSemiGroup|) 182112) ((|SplitHomogeneousDirectProduct| . |Monoid|) 181998) ((|DifferentialSparseMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 181956) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Rng|) T) ((|OrderlyDifferentialPolynomial| . |PolynomialFactorizationExplicit|) 181906) ((|PatternMatchResult| . |BasicType|) T) ((|IndexedVector| . |Eltable|) 181878) ((|ResidueRing| . |BiModule|) 181845) ((|Table| . |Type|) T) ((|BinaryFile| . |FileCategory|) 181803) ((|BinaryExpansion| . |Eltable|) NIL) ((|BalancedPAdicRational| . |DivisionRing|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |AbelianGroup|) T) ((|LinearOrdinaryDifferentialOperator| . |UnivariateSkewPolynomialCategory|) 181787) ((|UnivariatePolynomial| . |PartialDifferentialRing|) 181685) ((|OnePointCompletion| . |OrderedAbelianSemiGroup|) 181655) ((|DirectProductMatrixModule| . |BasicType|) T) ((|SparseMultivariateTaylorSeries| . |HyperbolicFunctionCategory|) 181604) ((|Set| . |ConvertibleTo|) 181540) ((|SparseUnivariateLaurentSeries| . |RadicalCategory|) 181489) ((|ModuleOperator| . |LeftModule|) 181436) ((|SparseMultivariatePolynomial| . |OrderedSet|) 181407) ((|BinaryExpansion| . |DifferentialExtension|) 181384) ((|RomanNumeral| . |CoercibleTo|) 181358) ((|InnerSparseUnivariatePowerSeries| . |Algebra|) 181202) ((|FiniteFieldNormalBasis| . |Rng|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |Algebra|) 180965) ((|FiniteFieldCyclicGroup| . |VectorSpace|) 180934) ((|d01alfAnnaType| . |NumericalIntegrationCategory|) T) ((|RealClosure| . |BiModule|) 180811) ((|ProjectivePlane| . |CoercibleTo|) 180785) ((|InnerTaylorSeries| . |Monoid|) T) ((|SparseUnivariatePolynomialExpressions| . |CancellationAbelianMonoid|) T) ((|InnerIndexedTwoDimensionalArray| . |SetCategory|) 180755) ((|Divisor| . |RightModule|) 180732) ((|IndexedTwoDimensionalArray| . |Evalable|) 180656) ((|InnerIndexedTwoDimensionalArray| . |InnerEvalable|) 180575) ((|SparseUnivariatePuiseuxSeries| . |AbelianMonoid|) T) ((|FlexibleArray| . |EltableAggregate|) 180547) ((|PAdicRational| . |Patternable|) 180514) ((|Complex| . |SetCategory|) T) ((|PAdicRational| . |ConvertibleTo|) NIL) ((|NewSparseMultivariatePolynomial| . |CoercibleTo|) 180373) ((|HashTable| . |DictionaryOperations|) 180315) ((|LiePolynomial| . |AbelianGroup|) T) ((|UnivariateLaurentSeries| . |InnerEvalable|) 179887) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |CharacteristicZero|) 179812) ((|OrderedDirectProduct| . |VectorSpace|) 179779) ((|FreeModule1| . |FreeModuleCat|) 179758) ((|RadicalFunctionField| . |MonogenicAlgebra|) 179724) ((|BalancedPAdicRational| . |Ring|) T) ((|UnivariateSkewPolynomial| . |LeftModule|) 179698) ((|DoubleFloat| . |Monoid|) T) ((|DoubleFloatVector| . |FiniteLinearAggregate|) 179671) ((|HexadecimalExpansion| . |PrincipalIdealDomain|) T) ((|Asp29| . |Type|) T) ((|SplittingTree| . |SetCategory|) T) ((|SparseUnivariateSkewPolynomial| . |SemiGroup|) T) ((|MachineComplex| . |LeftModule|) 179600) ((|PseudoAlgebraicClosureOfRationalNumber| . |Module|) 179554) ((|InnerSparseUnivariatePowerSeries| . |Ring|) T) ((|EuclideanModularRing| . |AbelianGroup|) T) ((|MachineInteger| . |AbelianSemiGroup|) T) ((|SparseUnivariatePuiseuxSeries| . |RightModule|) 179336) ((|U8Vector| . |Evalable|) NIL) ((|ExponentialExpansion| . |PrincipalIdealDomain|) T) ((|SparseUnivariatePolynomial| . |ConvertibleTo|) NIL) ((|PseudoAlgebraicClosureOfFiniteField| . |LeftModule|) 179277) ((|BalancedPAdicInteger| . |EuclideanDomain|) T) ((|SplitHomogeneousDirectProduct| . |LinearlyExplicitRingOver|) 179149) ((|MachineComplex| . |Type|) T) ((|Complex| . |AbelianMonoid|) T) ((|PlacesOverPseudoAlgebraicClosureOfFiniteField| . |BasicType|) T) ((|CliffordAlgebra| . |Rng|) T) ((|ModMonic| . |CoercibleTo|) 179123) ((|MultivariatePolynomial| . |GcdDomain|) 179041) ((|FiniteFieldNormalBasisExtension| . |CharacteristicNonZero|) 178972) ((|NewSparseUnivariatePolynomial| . |EuclideanDomain|) 178948) ((|InnerPAdicInteger| . |CharacteristicZero|) T) ((|Result| . |Evalable|) 178754) ((|AssociationList| . |InnerEvalable|) 178462) ((|SplitHomogeneousDirectProduct| . |CommutativeRing|) 178428) ((|UnivariatePolynomial| . |InnerEvalable|) 178338) ((|UnivariatePolynomial| . |EntireRing|) 178201) ((|Result| . |BagAggregate|) 178134) ((|DecimalExpansion| . |DifferentialRing|) T) ((|PrimitiveArray| . |FiniteLinearAggregate|) 178118) ((|BinaryExpansion| . |PolynomialFactorizationExplicit|) NIL) ((|CardinalNumber| . |SetCategory|) T) ((|Localize| . |AbelianSemiGroup|) T) ((|FiniteFieldNormalBasis| . |CharacteristicNonZero|) T) ((|ExponentialExpansion| . |OrderedAbelianSemiGroup|) NIL) ((|ModularField| . |AbelianMonoid|) T) ((|Bits| . |Collection|) 178095) ((|UnivariatePuiseuxSeriesConstructor| . |EntireRing|) 178034) ((|DeRhamComplex| . |AbelianSemiGroup|) T) ((|LocalAlgebra| . |CoercibleTo|) 178008) ((|IndexedDirectProductAbelianMonoid| . |AbelianSemiGroup|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |OrderedAbelianSemiGroup|) T) ((|Float| . |DivisionRing|) T) ((|OrderlyDifferentialPolynomial| . |LinearlyExplicitRingOver|) 177924) ((|AssociationList| . |CoercibleTo|) 177898) ((|SparseTable| . |ConvertibleTo|) NIL) ((|XDistributedPolynomial| . |AbelianSemiGroup|) T) ((|UnivariateLaurentSeries| . |UnivariateLaurentSeriesConstructorCategory|) 177840) ((|UnivariateLaurentSeriesConstructor| . |UnivariateLaurentSeriesCategory|) 177824) ((|UnivariatePuiseuxSeriesConstructor| . |UnivariatePuiseuxSeriesCategory|) 177808) ((|UnivariatePuiseuxSeries| . |UnivariatePuiseuxSeriesConstructorCategory|) 177749) ((|U32Vector| . |Evalable|) NIL) ((|BasicFunctions| . |SetCategory|) T) ((|Queue| . |SetCategory|) 177719) ((|XPolynomial| . |AbelianGroup|) T) ((|GeneralUnivariatePowerSeries| . |ArcHyperbolicFunctionCategory|) 177668) ((|FreeAbelianGroup| . |CoercibleTo|) 177642) ((|RegularTriangularSet| . |SetCategory|) T) ((|SparseUnivariatePolynomialExpressions| . |Monoid|) T) ((|d01anfAnnaType| . |NumericalIntegrationCategory|) T) ((|BalancedPAdicRational| . |OrderedCancellationAbelianMonoid|) NIL) ((|SquareMatrix| . |Evalable|) 177566) ((|Record| . |BasicType|) T) ((|SparseTable| . |InnerEvalable|) 177274) ((|HashTable| . |Collection|) 177216) ((|Factored| . |Eltable|) 177134) ((|RealClosure| . |AbelianGroup|) T) ((|LaurentPolynomial| . |Monoid|) T) ((|SingleInteger| . |IntegralDomain|) T) ((|UnivariateFormalPowerSeries| . |CoercibleTo|) 177108) ((|Integer| . |IntegerNumberSystem|) T) ((|AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| . |BasicType|) T) ((|PAdicInteger| . |CoercibleTo|) 177082) ((|UnivariateSkewPolynomial| . |Algebra|) 177039) ((|MyUnivariatePolynomial| . |SemiGroup|) T) ((|Fraction| . |OrderedIntegralDomain|) 176999) ((|ModuleOperator| . |AbelianMonoid|) T) ((|SparseUnivariatePuiseuxSeries| . |AbelianMonoidRing|) 176958) ((|U32Matrix| . |Aggregate|) T) ((|Multiset| . |HomogeneousAggregate|) 176942) ((|PartialFraction| . |DivisionRing|) T) ((|RadicalFunctionField| . |RetractableTo|) 176747) ((|AlgebraicFunctionField| . |DivisionRing|) T) ((|Complex| . |FieldOfPrimeCharacteristic|) 176709) ((|ContinuedFraction| . |BasicType|) T) ((|DifferentialSparseMultivariatePolynomial| . |Evalable|) 176696) ((|MachineInteger| . |Ring|) T) ((|ResidueRing| . |RightModule|) 176670) ((|RegularChain| . |InnerEvalable|) 176364) ((|UnivariatePuiseuxSeriesConstructor| . |DivisionRing|) 176340) ((|InnerPrimeField| . |Algebra|) 176294) ((|WuWenTsunTriangularSet| . |Aggregate|) T) ((|SimpleAlgebraicExtension| . |FramedAlgebra|) 176273) ((|UnivariateLaurentSeries| . |PrincipalIdealDomain|) 176249) ((|MultivariatePolynomial| . |RightModule|) 176006) ((|RadicalFunctionField| . |FieldOfPrimeCharacteristic|) NIL) ((|ComplexDoubleFloatMatrix| . |CoercibleTo|) 175980) ((|MyUnivariatePolynomial| . |LeftOreRing|) 175875) ((|XPBWPolynomial| . |Algebra|) 175832) ((|FiniteFieldCyclicGroupExtension| . |CharacteristicZero|) 175795) ((|LocalAlgebra| . |BasicType|) T) ((|PAdicRational| . |OrderedCancellationAbelianMonoid|) NIL) ((|RegularTriangularSet| . |InnerEvalable|) 175714) ((|SequentialDifferentialPolynomial| . |SemiGroup|) T) ((|SparseMultivariatePolynomial| . |LeftOreRing|) 175632) ((|StringTable| . |IndexedAggregate|) 175605) ((|LocalAlgebra| . |AbelianSemiGroup|) T) ((|MachineComplex| . |BiModule|) 175490) ((|FreeNilpotentLie| . |AbelianGroup|) T) ((|GeneralSparseTable| . |Eltable|) 175469) ((|ExponentialOfUnivariatePuiseuxSeries| . |PrincipalIdealDomain|) 175445) ((|ExponentialExpansion| . |CommutativeRing|) T) ((|ModMonic| . |FullyRetractableTo|) 175429) ((|UnivariateTaylorSeries| . |Ring|) T) ((|NeitherSparseOrDensePowerSeries| . |LinearAggregate|) 175370) ((|FiniteFieldExtensionByPolynomial| . |Ring|) T) ((|SparseMultivariatePolynomial| . |PatternMatchable|) 175149) ((|ModuleOperator| . |Rng|) T) ((|RadicalFunctionField| . |CancellationAbelianMonoid|) T) ((|PositiveInteger| . |SetCategory|) T) ((|UnivariateLaurentSeries| . |Eltable|) 174913) ((|DistributedMultivariatePolynomial| . |RightModule|) 174670) ((|IndexedOneDimensionalArray| . |Aggregate|) T) ((|SparseUnivariatePolynomial| . |EntireRing|) 174533) ((|OrderedFreeMonoid| . |SemiGroup|) T) ((|OneDimensionalArray| . |IndexedAggregate|) 174505) ((|HomogeneousDirectProduct| . |Evalable|) 174429) ((|AssociationList| . |Evalable|) 174189) ((|Localize| . |AbelianMonoid|) T) ((|d02bhfAnnaType| . |OrdinaryDifferentialEquationsSolverCategory|) T) ((|AnonymousFunction| . |BasicType|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |CoercibleTo|) 174163) ((|OrderedCompletion| . |SemiGroup|) 174133) ((|BinaryExpansion| . |GcdDomain|) T) ((|RomanNumeral| . |RetractableTo|) 174110) ((|DirectProductModule| . |SemiGroup|) 173996) ((|Queue| . |BasicType|) 173966) ((|SquareMatrix| . |BasicType|) T) ((|AlgebraicFunctionField| . |Module|) 173894) ((|BinaryExpansion| . |Module|) 173828) ((|SequentialDifferentialVariable| . |DifferentialVariableCategory|) 173812) ((|SequentialDifferentialPolynomial| . |DifferentialPolynomialCategory|) 173672) ((|HomogeneousDistributedMultivariatePolynomial| . |LeftOreRing|) 173590) ((|Dequeue| . |BagAggregate|) 173574) ((|ModMonic| . |IntegralDomain|) 173437) ((|Point| . |Collection|) 173421) ((|WeightedPolynomials| . |RightModule|) 173378) ((|UnivariateTaylorSeries| . |RightModule|) 173211) ((|DeRhamComplex| . |AbelianGroup|) T) ((|CharacterClass| . |BagAggregate|) 173186) ((|Fraction| . |AbelianMonoid|) T) ((|Octonion| . |FullyRetractableTo|) 173142) ((|String| . |OneDimensionalArrayAggregate|) 173117) ((|ExponentialExpansion| . |Rng|) T) ((|AssociatedLieAlgebra| . |BiModule|) 173096) ((|UnivariateTaylorSeriesCZero| . |IntegralDomain|) 173063) ((|UnivariatePuiseuxSeriesConstructor| . |GcdDomain|) 173039) ((|CliffordAlgebra| . |SemiGroup|) T) ((|DifferentialSparseMultivariatePolynomial| . |Rng|) T) ((|UnivariateTaylorSeries| . |AbelianSemiGroup|) T) ((|List| . |Evalable|) 172963) ((|RealClosure| . |AbelianMonoid|) T) ((|UnivariateFormalPowerSeries| . |PowerSeriesCategory|) 172898) ((|LinearOrdinaryDifferentialOperator1| . |Algebra|) 172855) ((|MonoidRing| . |Finite|) 172800) ((|Asp24| . |FortranFunctionCategory|) T) ((|MyExpression| . |AbelianSemiGroup|) T) ((|DecimalExpansion| . |SemiGroup|) T) ((|NewSparseMultivariatePolynomial| . |BiModule|) 172525) ((|UnivariateSkewPolynomial| . |Module|) 172482) ((|FortranExpression| . |RetractableTo|) 172445) ((|PseudoAlgebraicClosureOfFiniteField| . |Monoid|) T) ((|ListMultiDictionary| . |BasicType|) 172415) ((|Stream| . |IndexedAggregate|) 172387) ((|DifferentialSparseMultivariatePolynomial| . |BasicType|) T) ((|ExponentialExpansion| . |Field|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |OrderedSet|) T) ((|UnivariateLaurentSeriesConstructor| . |CharacteristicNonZero|) 172274) ((|DirectProduct| . |CancellationAbelianMonoid|) 172077) ((|FiniteField| . |UniqueFactorizationDomain|) T) ((|GenericNonAssociativeAlgebra| . |Module|) 172033) ((|SingleInteger| . |RetractableTo|) 172010) ((|LieSquareMatrix| . |AbelianGroup|) T) ((|SparseUnivariatePolynomialExpressions| . |AbelianMonoid|) T) ((|FortranCode| . |SetCategory|) T) ((|Asp31| . |Type|) T) ((|OrderedDirectProduct| . |OrderedCancellationAbelianMonoid|) 171934) ((|HexadecimalExpansion| . |Type|) T) ((|Tree| . |Evalable|) 171858) ((|OrderlyDifferentialVariable| . |CoercibleTo|) 171832) ((|SquareFreeRegularTriangularSet| . |BasicType|) T) ((|LiePolynomial| . |RetractableTo|) 171801) ((|PlacesOverPseudoAlgebraicClosureOfFiniteField| . |SetCategory|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |IntegralDomain|) T) ((|UnivariatePuiseuxSeriesConstructor| . |IntegralDomain|) 171740) ((|Places| . |BasicType|) T) ((|Operator| . |RightModule|) 171697) ((|RadixExpansion| . |LeftOreRing|) T) ((|Integer| . |Module|) 171684) ((|BinaryTournament| . |Evalable|) 171608) ((|Symbol| . |OpenMath|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |AbelianGroup|) T) ((|DecimalExpansion| . |EntireRing|) T) ((|d01alfAnnaType| . |BasicType|) T) ((|ResidueRing| . |Monoid|) T) ((|Octonion| . |FullyEvalableOver|) 171592) ((|U8Matrix| . |Aggregate|) T) ((|XPolynomialRing| . |Rng|) T) ((|Octonion| . |AbelianGroup|) T) ((|UnivariateFormalPowerSeries| . |AbelianGroup|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |UniqueFactorizationDomain|) T) ((|SequentialDifferentialPolynomial| . |BiModule|) 171317) ((|AssociatedLieAlgebra| . |BasicType|) T) ((|Polynomial| . |CharacteristicNonZero|) 171277) ((|FiniteFieldNormalBasis| . |BasicType|) T) ((|Float| . |CharacteristicZero|) T) ((|ModuleOperator| . |CoercibleTo|) 171251) ((|BasicStochasticDifferential| . |CoercibleTo|) 171225) ((|MachineInteger| . |BasicType|) T) ((|NonNegativeInteger| . |AbelianSemiGroup|) T) ((|SingleInteger| . |EuclideanDomain|) T) ((|Interval| . |AbelianMonoid|) T) ((|ContinuedFraction| . |Rng|) T) ((|PartialFraction| . |AbelianMonoid|) T) ((|WuWenTsunTriangularSet| . |SetCategory|) T) ((|Bits| . |BasicType|) T) ((|PrimeField| . |FieldOfPrimeCharacteristic|) T) ((|UnivariateTaylorSeriesCZero| . |UnivariateTaylorSeriesCategory|) 171209) ((|MyUnivariatePolynomial| . |EuclideanDomain|) 171185) ((|Asp74| . |FortranProgramCategory|) T) ((|HexadecimalExpansion| . |Monoid|) T) ((|SingleInteger| . |CoercibleTo|) 171159) ((|DirichletRing| . |AbelianMonoid|) T) ((|InnerPrimeField| . |CancellationAbelianMonoid|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |RetractableTo|) 171052) ((|SequentialDifferentialPolynomial| . |OrderedSet|) 171023) ((|Matrix| . |BasicType|) 170993) ((|Equation| . |AbelianGroup|) 170827) ((|AlgebraicNumber| . |LeftModule|) 170781) ((|MachineFloat| . |ConvertibleTo|) 170706) ((|Complex| . |AbelianSemiGroup|) T) ((|FiniteFieldNormalBasisExtension| . |DivisionRing|) T) ((|DecimalExpansion| . |CancellationAbelianMonoid|) T) ((|OppositeMonogenicLinearOperator| . |Ring|) T) ((|BalancedPAdicRational| . |RetractableTo|) 170665) ((|NewSparseUnivariatePolynomial| . |LeftModule|) 170562) ((|Asp12| . |CoercibleTo|) 170536) ((|Equation| . |PartialDifferentialRing|) 170468) ((|GeneralUnivariatePowerSeries| . |CharacteristicZero|) 170431) ((|NumericalPDEProblem| . |CoercibleTo|) 170405) ((|Fraction| . |BasicType|) T) ((|XDistributedPolynomial| . |SemiGroup|) T) ((|OnePointCompletion| . |CoercibleTo|) 170379) ((|Equation| . |AbelianMonoid|) 170213) ((|ContinuedFraction| . |CoercibleTo|) 170187) ((|DirectProductMatrixModule| . |CommutativeRing|) 170153) ((|Pi| . |AbelianGroup|) T) ((|SequentialDifferentialPolynomial| . |BasicType|) T) ((|Library| . |BasicType|) T) ((|DataList| . |Eltable|) 170125) ((|DoubleFloat| . |OrderedSet|) T) ((|UnivariateTaylorSeries| . |Eltable|) 170110) ((|List| . |LinearAggregate|) 170094) ((|UnivariatePuiseuxSeries| . |Module|) 169882) ((|SimpleAlgebraicExtension| . |PartialDifferentialRing|) 169785) ((|SparseUnivariatePolynomialExpressions| . |PrincipalIdealDomain|) 169761) ((|SparseMultivariateTaylorSeries| . |BasicType|) T) ((|UnivariateLaurentSeriesConstructor| . |StepThrough|) 169702) ((|PseudoAlgebraicClosureOfFiniteField| . |DifferentialRing|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |PseudoAlgebraicClosureOfPerfectFieldCategory|) T) ((|RadixExpansion| . |GcdDomain|) T) ((|UnivariateLaurentSeriesConstructor| . |AbelianMonoid|) T) ((|DistributedMultivariatePolynomial| . |RetractableTo|) 169509) ((|IndexedOneDimensionalArray| . |FiniteLinearAggregate|) 169493) ((|PseudoAlgebraicClosureOfFiniteField| . |RightModule|) 169434) ((|ExponentialExpansion| . |LeftModule|) 169306) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Algebra|) 169260) ((|SingleInteger| . |AbelianMonoid|) T) ((|PAdicRationalConstructor| . |CommutativeRing|) T) ((|SparseUnivariateLaurentSeries| . |RetractableTo|) 169201) ((|TaylorSeries| . |LeftModule|) 169098) ((|Character| . |OrderedFinite|) T) ((|BalancedPAdicRational| . |RightModule|) 169014) ((|DirichletRing| . |Module|) 168934) ((|Complex| . |RetractableTo|) 168778) ((|GenericNonAssociativeAlgebra| . |BasicType|) T) ((|SplitHomogeneousDirectProduct| . |LeftModule|) 168592) ((|ComplexDoubleFloatVector| . |LinearAggregate|) 168553) ((|SimpleAlgebraicExtension| . |FiniteRankAlgebra|) 168532) ((|GenericNonAssociativeAlgebra| . |FramedNonAssociativeAlgebra|) 168488) ((|HashTable| . |BagAggregate|) 168430) ((|FiniteFieldExtension| . |AbelianMonoid|) T) ((|NeitherSparseOrDensePowerSeries| . |InnerEvalable|) 168212) ((|DataList| . |ListAggregate|) 168196) ((|WuWenTsunTriangularSet| . |TriangularSetCategory|) 168165) ((|GeneralTriangularSet| . |Type|) T) ((|Expression| . |TrigonometricFunctionCategory|) 168132) ((|FiniteDivisor| . |AbelianSemiGroup|) T) ((|RealClosure| . |OrderedRing|) T) ((|RadicalFunctionField| . |Algebra|) 168060) ((|DecimalExpansion| . |OrderedSet|) T) ((|IndexedExponents| . |BasicType|) T) ((|ListMonoidOps| . |CoercibleTo|) 168034) ((|XDistributedPolynomial| . |LeftModule|) 168008) ((|InnerPAdicInteger| . |EntireRing|) T) ((|UnivariateLaurentSeries| . |FullyLinearlyExplicitRingOver|) 167938) ((|RealClosure| . |Module|) 167859) ((|Queue| . |BagAggregate|) 167843) ((|NewSparseMultivariatePolynomial| . |LeftModule|) 167740) ((|FiniteFieldCyclicGroupExtension| . |RetractableTo|) 167724) ((|NewSparseUnivariatePolynomial| . |AbelianGroup|) T) ((|SplitHomogeneousDirectProduct| . |Ring|) 167634) ((|MachineComplex| . |TranscendentalFunctionCategory|) NIL) ((|FiniteFieldExtensionByPolynomial| . |Finite|) 167609) ((|DoubleFloat| . |Field|) T) ((|UnivariatePuiseuxSeriesConstructor| . |SetCategory|) T) ((|UnivariateLaurentSeriesConstructor| . |SetCategory|) T) ((|Vector| . |Eltable|) 167581) ((|OrdinaryDifferentialRing| . |LeftOreRing|) 167557) ((|IntegerMod| . |AbelianGroup|) T) ((|Float| . |Monoid|) T) ((|MachineComplex| . |PartialDifferentialRing|) NIL) ((|SequentialDifferentialPolynomial| . |Ring|) T) ((|OrderlyDifferentialPolynomial| . |CancellationAbelianMonoid|) T) ((|EqTable| . |SetCategory|) T) ((|SimpleAlgebraicExtension| . |Rng|) T) ((|Exit| . |SetCategory|) T) ((|FourierSeries| . |Algebra|) 167541) ((|GeneralUnivariatePowerSeries| . |LeftOreRing|) 167517) ((|UnivariatePuiseuxSeries| . |AbelianSemiGroup|) T) ((|Float| . |RightModule|) 167471) ((|AttributeButtons| . |SetCategory|) T) ((|UnivariatePolynomial| . |EuclideanDomain|) 167447) ((|OrderlyDifferentialPolynomial| . |DifferentialExtension|) 167431) ((|SparseUnivariateSkewPolynomial| . |BasicType|) T) ((|SequentialDifferentialPolynomial| . |CancellationAbelianMonoid|) T) ((|OnePointCompletion| . |Rng|) 167401) ((|ModMonic| . |PartialDifferentialRing|) 167299) ((|SparseMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 167283) ((|ResidueRing| . |Algebra|) 167267) ((|Interval| . |RightModule|) 167254) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |SemiGroup|) T) ((|OpenMathEncoding| . |BasicType|) T) ((|StringTable| . |BagAggregate|) 167190) ((|PseudoAlgebraicClosureOfFiniteField| . |Ring|) T) ((|InnerTaylorSeries| . |EntireRing|) 167157) ((|HyperellipticFiniteDivisor| . |CoercibleTo|) 167131) ((|CliffordAlgebra| . |AbelianGroup|) T) ((|GeneralUnivariatePowerSeries| . |DivisionRing|) 167107) ((|PartialFraction| . |AbelianSemiGroup|) T) ((|U8Matrix| . |TwoDimensionalArrayCategory|) 167058) ((|DifferentialSparseMultivariatePolynomial| . |LeftOreRing|) 166976) ((|Float| . |PrincipalIdealDomain|) T) ((|Float| . |GcdDomain|) T) ((|Asp8| . |Type|) T) ((|Set| . |Collection|) 166960) ((|CardinalNumber| . |OrderedSet|) T) ((|IntegerMod| . |BasicType|) T) ((|GeneralModulePolynomial| . |AbelianSemiGroup|) T) ((|PAdicRational| . |CharacteristicNonZero|) NIL) ((|OppositeMonogenicLinearOperator| . |DifferentialRing|) 166925) ((|MachineFloat| . |CharacteristicZero|) T) ((|IndexedOneDimensionalArray| . |LinearAggregate|) 166909) ((|Dequeue| . |SetCategory|) 166879) ((|FiniteFieldCyclicGroupExtension| . |PrincipalIdealDomain|) T) ((|FiniteFieldExtension| . |AbelianGroup|) T) ((|NeitherSparseOrDensePowerSeries| . |DivisionRing|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |SetCategory|) T) ((|UnivariatePuiseuxSeries| . |EuclideanDomain|) 166855) ((|d02cjfAnnaType| . |BasicType|) T) ((|IndexedVector| . |Type|) T) ((|MachineFloat| . |SemiGroup|) T) ((|e04mbfAnnaType| . |BasicType|) T) ((|BinaryExpansion| . |RetractableTo|) 166799) ((|Asp20| . |CoercibleTo|) 166773) ((|PendantTree| . |RecursiveAggregate|) 166757) ((|DenavitHartenbergMatrix| . |TwoDimensionalArrayCategory|) 166709) ((|NeitherSparseOrDensePowerSeries| . |LazyStreamAggregate|) 166650) ((|SparseTable| . |BagAggregate|) 166592) ((|DoubleFloatMatrix| . |Aggregate|) T) ((|Product| . |OrderedCancellationAbelianMonoid|) 166503) ((|GeneralTriangularSet| . |Aggregate|) T) ((|BalancedPAdicRational| . |CancellationAbelianMonoid|) T) ((|Interval| . |LeftOreRing|) T) ((|Table| . |CoercibleTo|) 166477) ((|MonoidRing| . |Ring|) T) ((|AffineSpace| . |SetCategory|) T) ((|AffinePlane| . |CoercibleTo|) 166451) ((|U32Matrix| . |MatrixCategory|) 166400) ((|GeneralSparseTable| . |InnerEvalable|) 166108) ((|SparseUnivariateLaurentSeries| . |CharacteristicNonZero|) 165952) ((|NewSparseUnivariatePolynomial| . |PrincipalIdealDomain|) 165928) ((|UnivariatePuiseuxSeries| . |CancellationAbelianMonoid|) T) ((|DirectProductMatrixModule| . |InnerEvalable|) 165847) ((|GenericNonAssociativeAlgebra| . |SetCategory|) T) ((|TwoDimensionalArray| . |Evalable|) 165771) ((|FiniteFieldExtension| . |Module|) 165712) ((|SparseMultivariatePolynomial| . |Module|) 165475) ((|HashTable| . |Dictionary|) 165417) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |SetCategory|) T) ((|ExponentialExpansion| . |IntegralDomain|) T) ((|UnivariateTaylorSeries| . |PowerSeriesCategory|) 165352) ((|PrimeField| . |RetractableTo|) 165339) ((|Result| . |EltableAggregate|) 165309) ((|SimpleAlgebraicExtension| . |StepThrough|) 165271) ((|RomanNumeral| . |StepThrough|) T) ((|Partition| . |ConvertibleTo|) 165239) ((|XRecursivePolynomial| . |SemiGroup|) T) ((|Expression| . |LinearlyExplicitRingOver|) 165111) ((|OrdinaryDifferentialRing| . |DivisionRing|) 165087) ((|EuclideanModularRing| . |SetCategory|) T) ((|StringTable| . |Collection|) 165023) ((|PolynomialRing| . |CharacteristicZero|) 164986) ((|Pi| . |RightModule|) 164940) ((|UnivariateTaylorSeriesCZero| . |PowerSeriesCategory|) 164875) ((|DecimalExpansion| . |Algebra|) 164809) ((|Segment| . |CoercibleTo|) 164760) ((|InnerFiniteField| . |Monoid|) T) ((|AssociationList| . |StreamAggregate|) 164702) ((|Complex| . |Evalable|) 164661) ((|SimpleAlgebraicExtension| . |FiniteFieldCategory|) 164623) ((|U32Vector| . |BasicType|) T) ((|SquareMatrix| . |Module|) 164530) ((|PAdicRationalConstructor| . |CoercibleTo|) 164504) ((|DoubleFloat| . |OrderedCancellationAbelianMonoid|) T) ((|SimpleFortranProgram| . |Type|) T) ((|SparseMultivariatePolynomial| . |SetCategory|) T) ((|RectangularMatrix| . |CoercibleTo|) 164454) ((|Expression| . |UniqueFactorizationDomain|) 164421) ((|AssociatedJordanAlgebra| . |AbelianSemiGroup|) T) ((|AlgebraicFunctionField| . |DifferentialExtension|) 164392) ((|Complex| . |PartialDifferentialRing|) 164324) ((|MachineComplex| . |DifferentialRing|) NIL) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |IndexedDirectProductCategory|) 164303) ((|RadixExpansion| . |RightModule|) 164237) ((|InnerTaylorSeries| . |BiModule|) 164196) ((|Expression| . |CommutativeRing|) 164163) ((|PseudoAlgebraicClosureOfFiniteField| . |VectorSpace|) 164147) ((|SparseUnivariateTaylorSeries| . |Algebra|) 163991) ((|LaurentPolynomial| . |PartialDifferentialRing|) 163923) ((|MachineInteger| . |RealConstant|) T) ((|DistributedMultivariatePolynomial| . |IntegralDomain|) 163809) ((|AssociationList| . |IndexedAggregate|) 163721) ((|LaurentPolynomial| . |AbelianGroup|) T) ((|QuasiAlgebraicSet| . |BasicType|) T) ((|UnivariateFormalPowerSeries| . |HyperbolicFunctionCategory|) 163670) ((|AlgebraicFunctionField| . |RetractableTo|) 163475) ((|NewSparseMultivariatePolynomial| . |LinearlyExplicitRingOver|) 163391) ((|InnerPAdicInteger| . |PAdicIntegerCategory|) 163375) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |LeftOreRing|) T) ((|Dequeue| . |CoercibleTo|) 163326) ((|UnivariateLaurentSeriesConstructor| . |Field|) 163302) ((|Reference| . |BasicType|) 163272) ((|PseudoAlgebraicClosureOfRationalNumber| . |SemiGroup|) T) ((|IntegrationResult| . |LeftModule|) 163236) ((|GenericNonAssociativeAlgebra| . |CancellationAbelianMonoid|) T) ((|ExponentialExpansion| . |PolynomialFactorizationExplicit|) NIL) ((|BalancedPAdicInteger| . |AbelianMonoid|) T) ((|InnerFreeAbelianMonoid| . |FreeAbelianMonoidCategory|) 163215) ((|SplitHomogeneousDirectProduct| . |OrderedAbelianMonoid|) 163139) ((|DirichletRing| . |Algebra|) 163059) ((|IndexCard| . |CoercibleTo|) 163033) ((|DecimalExpansion| . |DivisionRing|) T) ((|RadicalFunctionField| . |AbelianGroup|) T) ((|InnerFiniteField| . |FiniteFieldCategory|) T) ((|SparseUnivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|Quaternion| . |BasicType|) T) ((|UnivariateTaylorSeries| . |DifferentialRing|) 162970) ((|UnivariateFormalPowerSeries| . |Ring|) T) ((|DoubleFloat| . |ConvertibleTo|) 162873) ((|Pattern| . |CoercibleTo|) 162847) ((|AlgebraicNumber| . |RightModule|) 162801) ((|UnivariateLaurentSeries| . |PowerSeriesCategory|) 162747) ((|NeitherSparseOrDensePowerSeries| . |CancellationAbelianMonoid|) T) ((|Pi| . |CancellationAbelianMonoid|) T) ((|FiniteFieldNormalBasisExtension| . |GcdDomain|) T) ((|SparseMultivariateTaylorSeries| . |PowerSeriesCategory|) 162700) ((|UnivariateFormalPowerSeries| . |AbelianSemiGroup|) T) ((|InnerPAdicInteger| . |AbelianSemiGroup|) T) ((|UnivariatePuiseuxSeries| . |CoercibleTo|) 162674) ((|PAdicRationalConstructor| . |FullyEvalableOver|) 162658) ((|PlaneAlgebraicCurvePlot| . |CoercibleTo|) 162632) ((|FreeNilpotentLie| . |AbelianSemiGroup|) T) ((|HomogeneousDirectProduct| . |InnerEvalable|) 162551) ((|Asp20| . |Type|) T) ((|HexadecimalExpansion| . |BiModule|) 162446) ((|EqTable| . |TableAggregate|) 162425) ((|PAdicInteger| . |GcdDomain|) T) ((|RadicalFunctionField| . |SemiGroup|) T) ((|Factored| . |DifferentialExtension|) 162409) ((|PrimitiveArray| . |IndexedAggregate|) 162381) ((|ExponentialOfUnivariatePuiseuxSeries| . |SemiGroup|) T) ((|List| . |HomogeneousAggregate|) 162365) ((|UnivariatePuiseuxSeriesConstructor| . |EuclideanDomain|) 162341) ((|PAdicRationalConstructor| . |CancellationAbelianMonoid|) T) ((|XPolynomialRing| . |SetCategory|) T) ((|OrderedVariableList| . |ConvertibleTo|) 162235) ((|Quaternion| . |DivisionRing|) 162211) ((|PAdicRationalConstructor| . |OrderedIntegralDomain|) 162171) ((|StochasticDifferential| . |Rng|) T) ((|InnerFreeAbelianMonoid| . |CoercibleTo|) 162145) ((|SparseUnivariateLaurentSeries| . |SemiGroup|) T) ((|InnerAlgebraicNumber| . |UniqueFactorizationDomain|) T) ((|SparseUnivariatePolynomialExpressions| . |Eltable|) 162048) ((|DifferentialSparseMultivariatePolynomial| . |PolynomialCategory|) 162001) ((|Integer| . |Rng|) T) ((|MonoidRing| . |SetCategory|) T) ((|DirectProductMatrixModule| . |Rng|) 161911) ((|UnivariatePolynomial| . |FiniteAbelianMonoidRing|) 161872) ((|DoubleFloat| . |EntireRing|) T) ((|Asp50| . |FortranProgramCategory|) T) ((|StochasticDifferential| . |Module|) 161841) ((|EuclideanModularRing| . |LeftModule|) 161828) ((|BasicOperator| . |CoercibleTo|) 161802) ((|PseudoAlgebraicClosureOfFiniteField| . |StepThrough|) T) ((|SequentialDifferentialPolynomial| . |AbelianGroup|) T) ((|GenericNonAssociativeAlgebra| . |NonAssociativeAlgebra|) 161758) ((|Set| . |FiniteSetAggregate|) 161742) ((|FiniteFieldExtension| . |Finite|) 161717) ((|Localize| . |CancellationAbelianMonoid|) T) ((|NewSparseUnivariatePolynomial| . |BiModule|) 161419) ((|Point| . |Type|) T) ((|UnivariatePuiseuxSeries| . |ArcHyperbolicFunctionCategory|) 161368) ((|RoutinesTable| . |Type|) T) ((|MachineInteger| . |Monoid|) T) ((|Pi| . |RetractableTo|) 161312) ((|SubSpaceComponentProperty| . |CoercibleTo|) 161286) ((|OpenMathErrorKind| . |CoercibleTo|) 161260) ((|HomogeneousDistributedMultivariatePolynomial| . |PolynomialCategory|) 161152) ((|NeitherSparseOrDensePowerSeries| . |PartialDifferentialRing|) 161027) ((|LinearOrdinaryDifferentialOperator1| . |RetractableTo|) 160871) ((|LaurentPolynomial| . |BiModule|) 160856) ((|DifferentialSparseMultivariatePolynomial| . |CharacteristicNonZero|) 160816) ((|MultivariatePolynomial| . |LinearlyExplicitRingOver|) 160732) ((|FiniteFieldExtensionByPolynomial| . |AbelianGroup|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |UniqueFactorizationDomain|) T) ((|Expression| . |PrincipalIdealDomain|) 160699) ((|ThreeDimensionalMatrix| . |HomogeneousAggregate|) 160683) ((|FiniteFieldNormalBasis| . |FiniteFieldCategory|) T) ((|ExtAlgBasis| . |BasicType|) T) ((|TextFile| . |CoercibleTo|) 160657) ((|GeneralModulePolynomial| . |BiModule|) 160618) ((|MonoidRing| . |Module|) 160575) ((|IndexedOneDimensionalArray| . |InnerEvalable|) 160494) ((|AlgebraicNumber| . |SetCategory|) T) ((|IndexedDirectProductAbelianGroup| . |CoercibleTo|) 160468) ((|MyExpression| . |IntegralDomain|) T) ((|AlgebraGivenByStructuralConstants| . |RightModule|) 160452) ((|FiniteFieldCyclicGroupExtension| . |LeftOreRing|) T) ((|FiniteField| . |CharacteristicZero|) 160418) ((|SimpleAlgebraicExtension| . |Ring|) T) ((|BalancedPAdicRational| . |CharacteristicNonZero|) NIL) ((|DenavitHartenbergMatrix| . |HomogeneousAggregate|) 160402) ((|XRecursivePolynomial| . |Algebra|) 160359) ((|DirectProductMatrixModule| . |OrderedCancellationAbelianMonoid|) 160283) ((|Localize| . |OrderedSet|) 160245) ((|ModuleOperator| . |AbelianSemiGroup|) T) ((|ThreeDimensionalMatrix| . |Aggregate|) T) ((|SymbolTable| . |CoercibleTo|) 160219) ((|Asp8| . |CoercibleTo|) 160193) ((|UnivariateLaurentSeriesConstructor| . |Algebra|) 159951) ((|InnerPrimeField| . |LeftModule|) 159905) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |RetractableTo|) 159889) ((|MachineComplex| . |DifferentialExtension|) 159861) ((|Set| . |Finite|) 159836) ((|InnerFiniteField| . |EntireRing|) T) ((|SparseUnivariatePolynomial| . |GcdDomain|) 159731) ((|RealClosure| . |LeftModule|) 159652) ((|Bits| . |OneDimensionalArrayAggregate|) 159629) ((|IndexedVector| . |LinearAggregate|) 159613) ((|ModMonic| . |Finite|) 159588) ((|DoubleFloat| . |SpecialFunctionCategory|) T) ((|DirectProductModule| . |OrderedAbelianGroup|) 159558) ((|LaurentPolynomial| . |GcdDomain|) 159534) ((|Fraction| . |Field|) T) ((|InfinitlyClosePoint| . |BasicType|) T) ((|MyExpression| . |SetCategory|) T) ((|LinearOrdinaryDifferentialOperator2| . |Algebra|) 159491) ((|IndexedBits| . |Eltable|) 159456) ((|SparseUnivariatePolynomialExpressions| . |RightModule|) 159190) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |CharacteristicZero|) 159153) ((|BinaryTree| . |RecursiveAggregate|) 159137) ((|Ruleset| . |Eltable|) 159116) ((|AlgebraicFunctionField| . |StepThrough|) NIL) ((|Factored| . |BiModule|) 159083) ((|U8Vector| . |OneDimensionalArrayAggregate|) 159060) ((|DoubleFloat| . |ArcTrigonometricFunctionCategory|) T) ((|DirectProductMatrixModule| . |DirectProductCategory|) 159039) ((|SetOfMIntegersInOneToN| . |Finite|) T) ((|FiniteField| . |SemiGroup|) T) ((|RomanNumeral| . |LeftModule|) 159026) ((|XPBWPolynomial| . |BasicType|) T) ((|Asp80| . |FortranProgramCategory|) T) ((|UnivariatePolynomial| . |AbelianSemiGroup|) T) ((|GeneralPolynomialSet| . |Aggregate|) T) ((|UnivariateLaurentSeries| . |DifferentialExtension|) 158956) ((|FiniteFieldCyclicGroup| . |EuclideanDomain|) T) ((|DirectProductModule| . |Aggregate|) T) ((|Polynomial| . |LinearlyExplicitRingOver|) 158872) ((|InnerTaylorSeries| . |Algebra|) 158833) ((|InnerPrimeField| . |AbelianSemiGroup|) T) ((|BlowUpWithHamburgerNoether| . |BasicType|) T) ((|MachineComplex| . |FullyLinearlyExplicitRingOver|) 158805) ((|InnerTable| . |Type|) T) ((|SparseUnivariatePuiseuxSeries| . |EuclideanDomain|) 158781) ((|UnivariateTaylorSeries| . |UnivariatePowerSeriesCategory|) 158742) ((|TaylorSeries| . |PowerSeriesCategory|) 158683) ((|ExponentialOfUnivariatePuiseuxSeries| . |OrderedSet|) T) ((|LyndonWord| . |CoercibleTo|) 158657) ((|Set| . |BasicType|) T) ((|XPolynomial| . |Monoid|) T) ((|FreeNilpotentLie| . |BasicType|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |SetCategory|) T) ((|IndexedOneDimensionalArray| . |OneDimensionalArrayAggregate|) 158641) ((|RightOpenIntervalRootCharacterization| . |SetCategory|) T) ((|IndexedString| . |StringAggregate|) T) ((|IndexedList| . |ListAggregate|) 158625) ((|Localize| . |AbelianGroup|) T) ((|HomogeneousDirectProduct| . |DifferentialRing|) 158562) ((|NeitherSparseOrDensePowerSeries| . |EltableAggregate|) 158491) ((|SparseTable| . |HomogeneousAggregate|) 158420) ((|SparseMultivariatePolynomial| . |GcdDomain|) 158338) ((|UnivariatePuiseuxSeries| . |SetCategory|) T) ((|SparseMultivariateTaylorSeries| . |Rng|) T) ((|DoubleFloat| . |OrderedRing|) T) ((|DifferentialSparseMultivariatePolynomial| . |DifferentialPolynomialCategory|) 158286) ((|SparseMultivariatePolynomial| . |PolynomialCategory|) 158239) ((|U32Matrix| . |HomogeneousAggregate|) 158216) ((|FiniteField| . |EntireRing|) T) ((|DecimalExpansion| . |Ring|) T) ((|ContinuedFraction| . |SemiGroup|) T) ((|d03fafAnnaType| . |SetCategory|) T) ((|U32Vector| . |Type|) T) ((|PAdicRational| . |BasicType|) T) ((|DecimalExpansion| . |RightModule|) 158150) ((|ThreeDimensionalViewport| . |BasicType|) T) ((|OrdinaryDifferentialRing| . |Field|) 158126) ((|Expression| . |ExpressionSpace|) T) ((|SimpleAlgebraicExtension| . |Monoid|) T) ((|e04jafAnnaType| . |CoercibleTo|) 158100) ((|WeightedPolynomials| . |SemiGroup|) T) ((|LinearOrdinaryDifferentialOperator| . |SetCategory|) T) ((|RomanNumeral| . |LinearlyExplicitRingOver|) 158077) ((|PseudoAlgebraicClosureOfRationalNumber| . |BiModule|) 158004) ((|ModuleMonomial| . |CoercibleTo|) 157978) ((|IntegerMod| . |CancellationAbelianMonoid|) T) ((|FiniteFieldNormalBasisExtension| . |IntegralDomain|) T) ((|UnivariatePuiseuxSeriesConstructor| . |Eltable|) 157963) ((|Color| . |SetCategory|) T) ((|GraphImage| . |CoercibleTo|) 157937) ((|Quaternion| . |ConvertibleTo|) 157873) ((|UnivariatePuiseuxSeries| . |BasicType|) T) ((|d01amfAnnaType| . |CoercibleTo|) 157847) ((|FiniteFieldNormalBasisExtension| . |ExtensionField|) 157831) ((|FiniteFieldNormalBasis| . |Field|) T) ((|AlgebraicNumber| . |Algebra|) 157785) ((|UnivariateTaylorSeriesCZero| . |Rng|) T) ((|WeightedPolynomials| . |CancellationAbelianMonoid|) T) ((|PositiveInteger| . |Monoid|) T) ((|GeneralSparseTable| . |DictionaryOperations|) 157727) ((|InnerTable| . |BasicType|) T) ((|BinaryExpansion| . |UniqueFactorizationDomain|) T) ((|OneDimensionalArray| . |ConvertibleTo|) 157663) ((|PAdicRationalConstructor| . |LinearlyExplicitRingOver|) 157579) ((|IndexedOneDimensionalArray| . |Collection|) 157563) ((|DirichletRing| . |BiModule|) 157476) ((|InnerPrimeField| . |IntegralDomain|) T) ((|FiniteFieldCyclicGroupExtension| . |Ring|) T) ((|SingletonAsOrderedSet| . |BasicType|) T) ((|AlgebraicFunctionField| . |Monoid|) T) ((|NonNegativeInteger| . |OrderedAbelianMonoidSup|) T) ((|OrderedFreeMonoid| . |RetractableTo|) 157460) ((|Expression| . |Ring|) 157292) ((|String| . |ConvertibleTo|) NIL) ((|FiniteFieldExtensionByPolynomial| . |EuclideanDomain|) T) ((|MultivariatePolynomial| . |ConvertibleTo|) 157070) ((|ModularField| . |CoercibleTo|) 157044) ((|DirichletRing| . |IntegralDomain|) 157010) ((|Pi| . |SetCategory|) T) ((|MonoidRing| . |Algebra|) 156967) ((|RadixExpansion| . |CoercibleTo|) 156941) ((|Factored| . |AbelianMonoid|) T) ((|ResidueRing| . |Rng|) T) ((|SparseMultivariatePolynomial| . |IntegralDomain|) 156827) ((|UnivariatePuiseuxSeries| . |Ring|) T) ((|Asp28| . |FortranMatrixCategory|) T) ((|DirichletRing| . |SetCategory|) T) ((|FiniteFieldNormalBasis| . |RightModule|) 156753) ((|SquareFreeRegularTriangularSet| . |Collection|) 156737) ((|StochasticDifferential| . |RightModule|) 156706) ((|FiniteFieldCyclicGroupExtension| . |CancellationAbelianMonoid|) T) ((|CliffordAlgebra| . |Module|) 156690) ((|TaylorSeries| . |Algebra|) 156534) ((|OrdinaryWeightedPolynomials| . |LeftModule|) 156481) ((|Boolean| . |Logic|) T) ((|Fraction| . |UniqueFactorizationDomain|) T) ((|List| . |EltableAggregate|) 156453) ((|FortranProgram| . |CoercibleTo|) 156427) ((|LiePolynomial| . |SetCategory|) T) ((|IndexedList| . |ExtensibleLinearAggregate|) 156411) ((|FiniteFieldNormalBasisExtension| . |PrincipalIdealDomain|) T) ((|XRecursivePolynomial| . |AbelianGroup|) T) ((|U16Matrix| . |MatrixCategory|) 156360) ((|IndexedOneDimensionalArray| . |Evalable|) 156284) ((|FiniteFieldCyclicGroup| . |BasicType|) T) ((|LinearOrdinaryDifferentialOperator| . |RetractableTo|) 156128) ((|AlgebraicNumber| . |PrincipalIdealDomain|) T) ((|DirectProductModule| . |Finite|) 156103) ((|HexadecimalExpansion| . |AbelianGroup|) T) ((|UnivariateLaurentSeriesConstructor| . |TrigonometricFunctionCategory|) 156052) ((|Asp27| . |FortranProgramCategory|) T) ((|InnerAlgebraicNumber| . |Algebra|) 156006) ((|d02cjfAnnaType| . |CoercibleTo|) 155980) ((|FlexibleArray| . |CoercibleTo|) 155898) ((|PseudoAlgebraicClosureOfFiniteField| . |CancellationAbelianMonoid|) T) ((|U8Matrix| . |SetCategory|) T) ((|Integer| . |OrderedAbelianMonoid|) T) ((|Fraction| . |QuotientFieldCategory|) 155882) ((|InnerPrimeField| . |FiniteFieldCategory|) T) ((|UnivariatePuiseuxSeries| . |TrigonometricFunctionCategory|) 155831) ((|d03eefAnnaType| . |SetCategory|) T) ((|HexadecimalExpansion| . |OrderedRing|) T) ((|Complex| . |Field|) 155765) ((|InnerFiniteField| . |ExtensionField|) 155729) ((|Fraction| . |Algebra|) 155670) ((|RomanNumeral| . |BasicType|) T) ((|BinaryExpansion| . |FullyEvalableOver|) 155647) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |CancellationAbelianMonoid|) T) ((|InfClsPt| . |CoercibleTo|) 155621) ((|OrdinaryDifferentialRing| . |Algebra|) 155541) ((|Asp9| . |CoercibleTo|) 155515) ((|XPolynomial| . |XFreeAlgebra|) 155488) ((|LiePolynomial| . |FreeLieAlgebra|) 155467) ((|GeneralDistributedMultivariatePolynomial| . |CharacteristicZero|) 155430) ((|ModMonic| . |UniqueFactorizationDomain|) 155380) ((|SquareMatrix| . |PartialDifferentialRing|) 155312) ((|ExponentialExpansion| . |EuclideanDomain|) T) ((|BinaryExpansion| . |AbelianSemiGroup|) T) ((|SquareMatrix| . |LinearlyExplicitRingOver|) 155228) ((|SparseMultivariateTaylorSeries| . |Evalable|) 155215) ((|GeneralPolynomialSet| . |Type|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |Rng|) T) ((|SquareMatrix| . |InnerEvalable|) 155134) ((|AffinePlane| . |SetCategoryWithDegree|) T) ((|UnivariateLaurentSeriesConstructor| . |CoercibleTo|) 155108) ((|OrdinaryDifferentialRing| . |CancellationAbelianMonoid|) T) ((|UnivariateTaylorSeriesCZero| . |AbelianSemiGroup|) T) ((|StringTable| . |Dictionary|) 155044) ((|Set| . |InnerEvalable|) 154963) ((|Quaternion| . |Monoid|) T) ((|ModularField| . |LeftModule|) 154917) ((|List| . |OpenMath|) 154890) ((|MachineComplex| . |StepThrough|) NIL) ((|InnerIndexedTwoDimensionalArray| . |Type|) T) ((|Result| . |Aggregate|) T) ((|SparseUnivariatePolynomialExpressions| . |PatternMatchable|) NIL) ((|IndexCard| . |SetCategory|) T) ((|MyExpression| . |Module|) 154778) ((|StringTable| . |KeyedDictionary|) 154751) ((|RadixExpansion| . |EntireRing|) T) ((|NeitherSparseOrDensePowerSeries| . |AbelianGroup|) T) ((|Factored| . |Ring|) T) ((|SequentialDifferentialPolynomial| . |DifferentialExtension|) 154735) ((|DirectProductModule| . |LeftModule|) 154536) ((|MachineFloat| . |IntegralDomain|) T) ((|GeneralModulePolynomial| . |RightModule|) 154507) ((|Table| . |Eltable|) 154486) ((|PAdicRational| . |BiModule|) 154361) ((|InnerAlgebraicNumber| . |CommutativeRing|) T) ((|OrdinaryWeightedPolynomials| . |Module|) 154318) ((|CharacterClass| . |BasicType|) T) ((|List| . |ConvertibleTo|) 154254) ((|AlgebraicFunctionField| . |LinearlyExplicitRingOver|) 154144) ((|OpenMathEncoding| . |CoercibleTo|) 154118) ((|ModularField| . |CancellationAbelianMonoid|) T) ((|Matrix| . |HomogeneousAggregate|) 154102) ((|ModMonic| . |CancellationAbelianMonoid|) T) ((|HexadecimalExpansion| . |DifferentialRing|) T) ((|UnivariateLaurentSeries| . |IntegralDomain|) 154041) ((|SparseUnivariateTaylorSeries| . |AbelianSemiGroup|) T) ((|AlgebraicNumber| . |AbelianGroup|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |CoercibleTo|) 154015) ((|List| . |Eltable|) 153987) ((|Tuple| . |SetCategory|) 153957) ((|MultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|Permutation| . |OrderedSet|) 153899) ((|Library| . |Eltable|) 153869) ((|ExponentialExpansion| . |LeftOreRing|) T) ((|NewSparseUnivariatePolynomial| . |PolynomialFactorizationExplicit|) 153819) ((|NewSparseUnivariatePolynomial| . |Ring|) T) ((|PrimeField| . |UniqueFactorizationDomain|) T) ((|PendantTree| . |Evalable|) 153743) ((|InnerFiniteField| . |BiModule|) 153612) ((|InnerAlgebraicNumber| . |Monoid|) T) ((|SparseUnivariateLaurentSeries| . |IntegralDomain|) 153551) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |FiniteAbelianMonoidRing|) 153441) ((|GeneralDistributedMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |AbelianMonoid|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |CoercibleTo|) 153415) ((|FreeModule| . |SetCategory|) T) ((|RomanNumeral| . |SemiGroup|) T) ((|PolynomialRing| . |Module|) 153259) ((|KeyedAccessFile| . |Collection|) 153195) ((|StringTable| . |Eltable|) 153168) ((|TaylorSeries| . |Module|) 153012) ((|PartialFraction| . |CancellationAbelianMonoid|) T) ((|LocalAlgebra| . |AbelianGroup|) T) ((|PrimeField| . |AbelianSemiGroup|) T) ((|RealClosure| . |CommutativeRing|) T) ((|SequentialDifferentialPolynomial| . |CharacteristicZero|) 152975) ((|Quaternion| . |EntireRing|) 152918) ((|IndexedOneDimensionalArray| . |IndexedAggregate|) 152890) ((|OneDimensionalArray| . |Aggregate|) T) ((|UnivariateLaurentSeries| . |Type|) 152866) ((|FlexibleArray| . |SetCategory|) 152803) ((|XDistributedPolynomial| . |AbelianGroup|) T) ((|MyExpression| . |PatternMatchable|) 152684) ((|MachineFloat| . |RadicalCategory|) T) ((|EuclideanModularRing| . |Module|) 152671) ((|ExponentialOfUnivariatePuiseuxSeries| . |PartialDifferentialRing|) 152533) ((|UnivariateFormalPowerSeries| . |RadicalCategory|) 152482) ((|UnivariatePuiseuxSeriesConstructor| . |RightModule|) 152264) ((|PAdicRational| . |DifferentialExtension|) 152231) ((|DataList| . |CoercibleTo|) 152149) ((|BinaryExpansion| . |QuotientFieldCategory|) 152126) ((|DirectProductModule| . |AbelianGroup|) T) ((|SparseMultivariatePolynomial| . |Monoid|) T) ((|QuasiAlgebraicSet| . |CoercibleTo|) 152100) ((|GeneralDistributedMultivariatePolynomial| . |LinearlyExplicitRingOver|) 152016) ((|MachineComplex| . |Monoid|) T) ((|NeitherSparseOrDensePowerSeries| . |ConvertibleTo|) NIL) ((|FiniteFieldNormalBasisExtension| . |UniqueFactorizationDomain|) T) ((|FiniteFieldExtension| . |SetCategory|) T) ((|SymmetricPolynomial| . |AbelianMonoidRing|) 151986) ((|ExponentialExpansion| . |CharacteristicZero|) 151880) ((|Set| . |CoercibleTo|) 151854) ((|CardinalNumber| . |SemiGroup|) T) ((|GeneralUnivariatePowerSeries| . |GcdDomain|) 151830) ((|ElementaryFunctionsUnivariatePuiseuxSeries| . |PartialTranscendentalFunctions|) 151814) ((|SparseUnivariatePolynomialExpressions| . |ConvertibleTo|) NIL) ((|LinearOrdinaryDifferentialOperator2| . |UnivariateSkewPolynomialCategory|) 151798) ((|Tuple| . |BasicType|) 151768) ((|Point| . |BasicType|) 151705) ((|Bits| . |Aggregate|) T) ((|FiniteField| . |Algebra|) 151659) ((|FiniteFieldNormalBasis| . |GcdDomain|) T) ((|BinarySearchTree| . |HomogeneousAggregate|) 151643) ((|SimpleAlgebraicExtension| . |LeftModule|) 151525) ((|IndexedBits| . |IndexedAggregate|) 151490) ((|Integer| . |CoercibleTo|) 151464) ((|RadixExpansion| . |CharacteristicNonZero|) NIL) ((|GeneralDistributedMultivariatePolynomial| . |LeftModule|) 151361) ((|Library| . |Dictionary|) 151294) ((|DataList| . |BasicType|) 151231) ((|FiniteFieldExtensionByPolynomial| . |GcdDomain|) T) ((|MyUnivariatePolynomial| . |CoercibleTo|) 151205) ((|HexadecimalExpansion| . |RightModule|) 151139) ((|Asp24| . |CoercibleTo|) 151113) ((|Asp42| . |CoercibleTo|) 151087) ((|ExponentialOfUnivariatePuiseuxSeries| . |ElementaryFunctionCategory|) 151036) ((|RoutinesTable| . |ConvertibleTo|) NIL) ((|FiniteFieldCyclicGroupExtension| . |AbelianMonoid|) T) ((|ModMonic| . |LeftOreRing|) 150931) ((|LiePolynomial| . |Module|) 150915) ((|SparseUnivariatePuiseuxSeries| . |RadicalCategory|) 150864) ((|SingletonAsOrderedSet| . |SetCategory|) T) ((|U32Matrix| . |CoercibleTo|) 150838) ((|InnerPrimeField| . |AbelianGroup|) T) ((|Expression| . |PatternMatchable|) 150719) ((|RealClosure| . |PrincipalIdealDomain|) T) ((|IntegrationResult| . |Module|) 150683) ((|Asp4| . |FortranProgramCategory|) T) ((|UnivariatePolynomial| . |SemiGroup|) T) ((|RoutinesTable| . |BasicType|) T) ((|Library| . |ConvertibleTo|) NIL) ((|BlowUpWithQuadTrans| . |CoercibleTo|) 150657) ((|LieSquareMatrix| . |CancellationAbelianMonoid|) T) ((|FiniteFieldExtension| . |CoercibleTo|) 150631) ((|InnerIndexedTwoDimensionalArray| . |CoercibleTo|) 150582) ((|RegularChain| . |HomogeneousAggregate|) 150501) ((|HomogeneousDistributedMultivariatePolynomial| . |LeftModule|) 150398) ((|UnivariateTaylorSeries| . |ArcHyperbolicFunctionCategory|) 150347) ((|Pi| . |Monoid|) T) ((|DoubleFloatMatrix| . |CoercibleTo|) 150321) ((|LaurentPolynomial| . |Ring|) T) ((|RealClosure| . |Monoid|) T) ((|MyExpression| . |RightModule|) 150209) ((|Complex| . |LinearlyExplicitRingOver|) 150125) ((|Boolean| . |Finite|) T) ((|RadixExpansion| . |Type|) T) ((|RadixExpansion| . |Evalable|) NIL) ((|PAdicRational| . |InnerEvalable|) 149895) ((|MultivariatePolynomial| . |PolynomialCategory|) 149800) ((|TaylorSeries| . |MultivariateTaylorSeriesCategory|) 149773) ((|d01akfAnnaType| . |SetCategory|) T) ((|StochasticDifferential| . |AbelianGroup|) T) ((|GeneralDistributedMultivariatePolynomial| . |SetCategory|) T) ((|ContinuedFraction| . |EuclideanDomain|) T) ((|BasicStochasticDifferential| . |OrderedSet|) T) ((|DirectProduct| . |EltableAggregate|) 149745) ((|ModularRing| . |BasicType|) T) ((|Fraction| . |Ring|) T) ((|InnerFreeAbelianMonoid| . |AbelianMonoid|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |Eltable|) 149730) ((|GeneralModulePolynomial| . |AbelianGroup|) T) ((|LinearOrdinaryDifferentialOperator2| . |CoercibleTo|) 149704) ((|BalancedPAdicRational| . |FullyLinearlyExplicitRingOver|) 149663) ((|GeneralModulePolynomial| . |SetCategory|) T) ((|FortranExpression| . |ExpressionSpace|) T) ((|Expression| . |IntegralDomain|) 149630) ((|Interval| . |TrigonometricFunctionCategory|) T) ((|Any| . |SetCategory|) T) ((|FiniteField| . |LeftModule|) 149556) ((|MachineFloat| . |OrderedAbelianMonoid|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |EuclideanDomain|) T) ((|InnerTaylorSeries| . |AbelianGroup|) T) ((|SparseUnivariateTaylorSeries| . |ArcHyperbolicFunctionCategory|) 149505) ((|LocalAlgebra| . |CancellationAbelianMonoid|) T) ((|OnePointCompletion| . |AbelianGroup|) 149440) ((|BinaryExpansion| . |CharacteristicZero|) T) ((|RegularTriangularSet| . |CoercibleTo|) 149392) ((|FiniteField| . |IntegralDomain|) T) ((|OrderlyDifferentialVariable| . |OrderedSet|) T) ((|RuleCalled| . |CoercibleTo|) 149366) ((|LinearOrdinaryDifferentialOperator| . |Monoid|) T) ((|FiniteFieldNormalBasisExtension| . |StepThrough|) 149341) ((|MachineComplex| . |LeftOreRing|) T) ((|HashTable| . |InnerEvalable|) 149049) ((|InnerSparseUnivariatePowerSeries| . |Eltable|) 149034) ((|MultivariatePolynomial| . |PolynomialFactorizationExplicit|) 148984) ((|ModMonic| . |EntireRing|) 148847) ((|SparseUnivariateLaurentSeries| . |LinearlyExplicitRingOver|) 148771) ((|StochasticDifferential| . |LeftModule|) 148740) ((|UnivariateTaylorSeriesCZero| . |SetCategory|) T) ((|BalancedPAdicRational| . |PatternMatchable|) NIL) ((|FreeGroup| . |SemiGroup|) T) ((|AntiSymm| . |SemiGroup|) T) ((|MyExpression| . |Monoid|) T) ((|HexadecimalExpansion| . |CharacteristicNonZero|) NIL) ((|Heap| . |HomogeneousAggregate|) 148724) ((|FiniteFieldCyclicGroupExtension| . |SetCategory|) T) ((|FiniteFieldNormalBasis| . |LeftOreRing|) T) ((|MakeCachableSet| . |OrderedSet|) T) ((|FreeAbelianGroup| . |AbelianSemiGroup|) T) ((|Complex| . |PatternMatchable|) 148605) ((|Point| . |Evalable|) 148529) ((|SingleInteger| . |IntegerNumberSystem|) T) ((|d01gbfAnnaType| . |NumericalIntegrationCategory|) T) ((|NeitherSparseOrDensePowerSeries| . |LeftOreRing|) T) ((|CharacterClass| . |Evalable|) NIL) ((|UnivariateLaurentSeries| . |Module|) 148250) ((|Kernel| . |OrderedSet|) T) ((|GeneralUnivariatePowerSeries| . |AbelianGroup|) T) ((|UnivariatePuiseuxSeries| . |RetractableTo|) 148146) ((|UnivariatePuiseuxSeries| . |DifferentialRing|) 148081) ((|SimpleAlgebraicExtension| . |DivisionRing|) 148015) ((|KeyedAccessFile| . |BasicType|) T) ((|MachineFloat| . |BiModule|) 147942) ((|ArrayStack| . |StackAggregate|) 147926) ((|InnerPrimeField| . |Finite|) T) ((|NeitherSparseOrDensePowerSeries| . |Field|) T) ((|DifferentialSparseMultivariatePolynomial| . |Monoid|) T) ((|DecimalExpansion| . |OrderedAbelianSemiGroup|) T) ((|UnivariatePolynomial| . |StepThrough|) 147896) ((|FortranType| . |CoercibleTo|) 147870) ((|Vector| . |HomogeneousAggregate|) 147854) ((|InnerAlgebraicNumber| . |DifferentialRing|) T) ((|ComplexDoubleFloatVector| . |EltableAggregate|) 147803) ((|IndexedVector| . |Aggregate|) T) ((|Vector| . |IndexedAggregate|) 147775) ((|InnerAlgebraicNumber| . |Ring|) T) ((|NewSparseMultivariatePolynomial| . |PartialDifferentialRing|) 147759) ((|DirectProductMatrixModule| . |AbelianSemiGroup|) T) ((|CharacterClass| . |InnerEvalable|) NIL) ((|InnerTaylorSeries| . |LeftModule|) 147746) ((|InfClsPt| . |SetCategory|) T) ((|LaurentPolynomial| . |Rng|) T) ((|FreeNilpotentLie| . |CoercibleTo|) 147720) ((|OneDimensionalArray| . |Evalable|) 147644) ((|SparseMultivariateTaylorSeries| . |EntireRing|) 147611) ((|UnivariatePolynomial| . |Evalable|) 147598) ((|FreeNilpotentLie| . |RightModule|) 147582) ((|Fraction| . |PatternMatchable|) 147463) ((|PAdicRational| . |IntegralDomain|) T) ((|InnerPAdicInteger| . |CoercibleTo|) 147437) ((|CliffordAlgebra| . |Ring|) T) ((|Equation| . |BasicType|) 147134) ((|LieSquareMatrix| . |Ring|) T) ((|PrimeField| . |ExtensionField|) 147121) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |CharacteristicNonZero|) 147052) ((|DirectProductModule| . |CoercibleTo|) 147002) ((|Float| . |UniqueFactorizationDomain|) T) ((|SplitHomogeneousDirectProduct| . |Aggregate|) T) ((|Asp6| . |Type|) T) ((|e04jafAnnaType| . |SetCategory|) T) ((|SparseUnivariatePolynomial| . |CommutativeRing|) 146832) ((|InfiniteTuple| . |CoercibleTo|) 146806) ((|Fraction| . |OrderedCancellationAbelianMonoid|) 146766) ((|AssociatedJordanAlgebra| . |Module|) 146750) ((|MachineComplex| . |ArcTrigonometricFunctionCategory|) NIL) ((|BinaryExpansion| . |PrincipalIdealDomain|) T) ((|UnivariateLaurentSeriesConstructor| . |OrderedAbelianGroup|) 146681) ((|Equation| . |LeftModule|) 146505) ((|InnerTable| . |BagAggregate|) 146447) ((|LinearOrdinaryDifferentialOperator2| . |RightModule|) 146431) ((|SingleInteger| . |OrderedAbelianSemiGroup|) T) ((|UnivariatePolynomial| . |Ring|) T) ((|UnivariateTaylorSeriesCZero| . |EntireRing|) 146398) ((|AssociatedJordanAlgebra| . |SetCategory|) T) ((|Commutator| . |SetCategory|) T) ((|DoubleFloatMatrix| . |InnerEvalable|) NIL) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Module|) 146339) ((|InnerPrimeField| . |CharacteristicZero|) 146305) ((|PoincareBirkhoffWittLyndonBasis| . |RetractableTo|) 146274) ((|FiniteFieldCyclicGroupExtension| . |DifferentialRing|) 146249) ((|FiniteFieldCyclicGroupExtension| . |AbelianSemiGroup|) T) ((|Factored| . |Evalable|) 146176) ((|Asp30| . |CoercibleTo|) 146150) ((|Divisor| . |BasicType|) T) ((|XDistributedPolynomial| . |Ring|) T) ((|UnivariateFormalPowerSeries| . |Module|) 145994) ((|FreeMonoid| . |CoercibleTo|) 145968) ((|DecimalExpansion| . |CommutativeRing|) T) ((|UnivariatePuiseuxSeries| . |AbelianGroup|) T) ((|SparseUnivariatePolynomialExpressions| . |HyperbolicFunctionCategory|) 145919) ((|UniversalSegment| . |Type|) T) ((|AlgebraGivenByStructuralConstants| . |CancellationAbelianMonoid|) T) ((|LinearOrdinaryDifferentialOperator| . |LeftModule|) 145893) ((|OrderlyDifferentialPolynomial| . |CommutativeRing|) 145746) ((|BalancedPAdicRational| . |CharacteristicZero|) T) ((|MyUnivariatePolynomial| . |SetCategory|) T) ((|LieSquareMatrix| . |AbelianSemiGroup|) T) ((|ModularField| . |BiModule|) 145673) ((|LinearOrdinaryDifferentialOperator| . |Module|) 145630) ((|BinaryTournament| . |SetCategory|) 145600) ((|HexadecimalExpansion| . |OrderedCancellationAbelianMonoid|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |GcdDomain|) T) ((|InnerPAdicInteger| . |SemiGroup|) T) ((|Pi| . |LeftOreRing|) T) ((|SymmetricPolynomial| . |Module|) 145444) ((|String| . |Eltable|) 145407) ((|OrderedCompletion| . |CancellationAbelianMonoid|) 145342) ((|ExponentialOfUnivariatePuiseuxSeries| . |Algebra|) 145130) ((|MachineInteger| . |CoercibleTo|) 145104) ((|HomogeneousDirectProduct| . |EltableAggregate|) 145076) ((|PAdicRationalConstructor| . |IntegralDomain|) T) ((|HexadecimalExpansion| . |Patternable|) 145053) ((|MachineComplex| . |PolynomialFactorizationExplicit|) NIL) ((|Polynomial| . |AbelianMonoid|) T) ((|PolynomialRing| . |AbelianMonoidRing|) 145032) ((|Complex| . |Rng|) T) ((|Quaternion| . |InnerEvalable|) 144921) ((|ExtAlgBasis| . |SetCategory|) T) ((|ExponentialExpansion| . |CharacteristicNonZero|) 144812) ((|BasicOperator| . |OrderedSet|) T) ((|SequentialDifferentialPolynomial| . |AbelianMonoidRing|) 144729) ((|FiniteFieldExtensionByPolynomial| . |CharacteristicNonZero|) 144660) ((|BinaryExpansion| . |EntireRing|) T) ((|NewSparseUnivariatePolynomial| . |EntireRing|) 144523) ((|Polynomial| . |Algebra|) 144286) ((|XPolynomial| . |XAlgebra|) 144270) ((|LiePolynomial| . |LieAlgebra|) 144254) ((|DoubleFloatVector| . |CoercibleTo|) 144228) ((|AlgebraicFunctionField| . |SetCategory|) T) ((|ModMonic| . |ConvertibleTo|) NIL) ((|ScriptFormulaFormat| . |BasicType|) T) ((|Fraction| . |Type|) T) ((|RegularTriangularSet| . |Collection|) 144212) ((|FortranTemplate| . |SetCategory|) T) ((|GeneralUnivariatePowerSeries| . |Eltable|) 144197) ((|SplitHomogeneousDirectProduct| . |Finite|) 144172) ((|AlgebraicFunctionField| . |MonogenicAlgebra|) 144138) ((|Switch| . |CoercibleTo|) 144112) ((|HexadecimalExpansion| . |FullyPatternMatchable|) 144089) ((|LieSquareMatrix| . |SemiGroup|) T) ((|UnivariatePuiseuxSeriesConstructor| . |SemiGroup|) T) ((|LinearOrdinaryDifferentialOperator2| . |Rng|) T) ((|OnePointCompletion| . |OrderedCancellationAbelianMonoid|) 144059) ((|SimpleAlgebraicExtension| . |LeftOreRing|) 143993) ((|Stream| . |Evalable|) 143917) ((|ExponentialExpansion| . |CoercibleTo|) 143891) ((|RadicalFunctionField| . |DifferentialExtension|) 143862) ((|NeitherSparseOrDensePowerSeries| . |CharacteristicNonZero|) 143822) ((|SingleInteger| . |AbelianGroup|) T) ((|d03eefAnnaType| . |PartialDifferentialEquationsSolverCategory|) T) ((|FiniteFieldNormalBasis| . |VectorSpace|) 143791) ((|RadixExpansion| . |Ring|) T) ((|UnivariateSkewPolynomial| . |Monoid|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |BasicType|) T) ((|RadixExpansion| . |AbelianGroup|) T) ((|UnivariatePuiseuxSeriesConstructor| . |Monoid|) T) ((|KeyedAccessFile| . |CoercibleTo|) 143765) ((|Dequeue| . |HomogeneousAggregate|) 143749) ((|BalancedPAdicInteger| . |CancellationAbelianMonoid|) T) ((|MachineInteger| . |OrderedSet|) T) ((|SparseUnivariatePolynomial| . |LinearlyExplicitRingOver|) 143665) ((|Asp78| . |Type|) T) ((|BalancedPAdicInteger| . |BasicType|) T) ((|Polynomial| . |LeftModule|) 143562) ((|IndexedString| . |Eltable|) 143525) ((|PartialFraction| . |Rng|) T) ((|RomanNumeral| . |PatternMatchable|) 143502) ((|Float| . |OrderedSet|) T) ((|GeneralDistributedMultivariatePolynomial| . |CharacteristicNonZero|) 143462) ((|Expression| . |Monoid|) 143244) ((|Stream| . |Eltable|) 143216) ((|AlgebraicFunctionField| . |Finite|) NIL) ((|UnivariateFormalPowerSeries| . |Monoid|) T) ((|FiniteFieldNormalBasis| . |AbelianGroup|) T) ((|CliffordAlgebra| . |SetCategory|) T) ((|FiniteFieldNormalBasis| . |DivisionRing|) T) ((|NottinghamGroup| . |BasicType|) T) ((|Complex| . |FiniteRankAlgebra|) 143164) ((|SparseUnivariatePolynomialExpressions| . |DifferentialExtension|) 143148) ((|NeitherSparseOrDensePowerSeries| . |Ring|) T) ((|OrderedDirectProduct| . |Finite|) 143123) ((|Float| . |DifferentialRing|) T) ((|Octonion| . |Evalable|) 143082) ((|ModularField| . |SetCategory|) T) ((|SparseTable| . |Aggregate|) T) ((|FortranTemplate| . |CoercibleTo|) 143056) ((|Multiset| . |CoercibleTo|) 143030) ((|DirectProduct| . |AbelianSemiGroup|) 142799) ((|Octonion| . |CharacteristicZero|) 142762) ((|OrderedDirectProduct| . |OrderedAbelianSemiGroup|) 142686) ((|ComplexDoubleFloatVector| . |CoercibleTo|) 142660) ((|ModMonic| . |Rng|) T) ((|RoutinesTable| . |BagAggregate|) 142593) ((|GeneralUnivariatePowerSeries| . |UniqueFactorizationDomain|) 142569) ((|FortranCode| . |BasicType|) T) ((|UnivariateLaurentSeriesConstructor| . |OrderedSet|) 142438) ((|ListMultiDictionary| . |Type|) T) ((|InnerFreeAbelianMonoid| . |SetCategory|) T) ((|OrderlyDifferentialPolynomial| . |CoercibleTo|) 142412) ((|GeneralDistributedMultivariatePolynomial| . |Evalable|) 142399) ((|UnivariateTaylorSeriesCZero| . |Eltable|) 142384) ((|PendantTree| . |Aggregate|) T) ((|PositiveInteger| . |OrderedSet|) T) ((|SimpleAlgebraicExtension| . |SemiGroup|) T) ((|SparseMultivariatePolynomial| . |Algebra|) 142147) ((|Queue| . |HomogeneousAggregate|) 142131) ((|Polynomial| . |SemiGroup|) T) ((|XDistributedPolynomial| . |BiModule|) 142110) ((|PAdicRationalConstructor| . |ConvertibleTo|) 141798) ((|DirichletRing| . |BasicType|) T) ((|Partition| . |AbelianMonoid|) T) ((|Fraction| . |AbelianGroup|) T) ((|U8Matrix| . |InnerEvalable|) NIL) ((|Expression| . |CharacteristicZero|) 141761) ((|MachineInteger| . |CharacteristicZero|) T) ((|BinaryExpansion| . |RightModule|) 141695) ((|SparseUnivariateLaurentSeries| . |AbelianMonoidRing|) 141667) ((|MachineInteger| . |AbelianGroup|) T) ((|PAdicRational| . |OrderedAbelianSemiGroup|) NIL) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |CoercibleTo|) 141641) ((|e04jafAnnaType| . |BasicType|) T) ((|MachineFloat| . |CoercibleTo|) 141615) ((|SimpleAlgebraicExtension| . |CoercibleTo|) 141589) ((|RomanNumeral| . |PrincipalIdealDomain|) T) ((|d02cjfAnnaType| . |OrdinaryDifferentialEquationsSolverCategory|) T) ((|Boolean| . |CoercibleTo|) 141563) ((|EqTable| . |DictionaryOperations|) 141505) ((|U16Vector| . |Aggregate|) T) ((|FortranExpression| . |RightModule|) 141489) ((|Union| . |BasicType|) T) ((|GuessOptionFunctions0| . |BasicType|) T) ((|Polynomial| . |Evalable|) 141476) ((|RadixExpansion| . |QuotientFieldCategory|) 141453) ((|IndexedMatrix| . |BasicType|) 141423) ((|NonNegativeInteger| . |CoercibleTo|) 141397) ((|ExponentialExpansion| . |Module|) 141269) ((|SExpression| . |BasicType|) T) ((|PrimeField| . |AbelianMonoid|) T) ((|RealClosure| . |RightModule|) 141190) ((|Fraction| . |EuclideanDomain|) T) ((|AlgebraGivenByStructuralConstants| . |FiniteRankNonAssociativeAlgebra|) 141174) ((|FortranType| . |SetCategory|) T) ((|RadixExpansion| . |LinearlyExplicitRingOver|) 141151) ((|Integer| . |OrderedAbelianSemiGroup|) T) ((|UnivariateFormalPowerSeries| . |LeftModule|) 141048) ((|NewSparseMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 141032) ((|LinearOrdinaryDifferentialOperator1| . |UnivariateSkewPolynomialCategory|) 141016) ((|RomanNumeral| . |OrderedRing|) T) ((|MakeCachableSet| . |CachableSet|) T) ((|MyExpression| . |FullyRetractableTo|) 141000) ((|AssociatedLieAlgebra| . |Module|) 140984) ((|AlgebraGivenByStructuralConstants| . |CoercibleTo|) 140958) ((|InnerFiniteField| . |FieldOfPrimeCharacteristic|) T) ((|Bits| . |InnerEvalable|) NIL) ((|UnivariatePuiseuxSeriesConstructor| . |ElementaryFunctionCategory|) 140907) ((|CartesianTensor| . |GradedModule|) 140825) ((|SparseUnivariateLaurentSeries| . |PowerSeriesCategory|) 140771) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |LeftOreRing|) T) ((|AssociatedLieAlgebra| . |AbelianSemiGroup|) T) ((|SimpleAlgebraicExtension| . |FullyLinearlyExplicitRingOver|) 140755) ((|SparseMultivariateTaylorSeries| . |CoercibleTo|) 140729) ((|BalancedPAdicRational| . |OrderedIntegralDomain|) NIL) ((|SparseUnivariatePolynomialExpressions| . |AbelianMonoidRing|) 140690) ((|InnerFiniteField| . |EuclideanDomain|) T) ((|RectangularMatrix| . |SetCategory|) T) ((|SparseMultivariateTaylorSeries| . |CommutativeRing|) 140619) ((|Plcs| . |SetCategory|) T) ((|InnerSparseUnivariatePowerSeries| . |RightModule|) 140452) ((|Asp27| . |CoercibleTo|) 140426) ((|SparseUnivariatePolynomial| . |FullyRetractableTo|) 140410) ((|InnerPrimeField| . |Field|) T) ((|HomogeneousDirectProduct| . |Monoid|) 140296) ((|NeitherSparseOrDensePowerSeries| . |Evalable|) 140126) ((|Dequeue| . |DequeueAggregate|) 140110) ((|Table| . |TableAggregate|) 140089) ((|Set| . |SetAggregate|) 140073) ((|Expression| . |LeftModule|) 139800) ((|Queue| . |QueueAggregate|) 139784) ((|String| . |StringAggregate|) T) ((|Stack| . |StackAggregate|) 139768) ((|AssociationList| . |AssociationListAggregate|) 139747) ((|Stream| . |StreamAggregate|) 139731) ((|List| . |ListAggregate|) 139715) ((|Multiset| . |MultisetAggregate|) 139699) ((|IndexedDirectProductAbelianMonoid| . |CoercibleTo|) 139673) ((|FiniteFieldNormalBasisExtension| . |Algebra|) 139627) ((|OneDimensionalArray| . |OneDimensionalArrayAggregate|) 139611) ((|IndexedDirectProductAbelianMonoid| . |BasicType|) T) ((|DirectProduct| . |AbelianGroup|) 139498) ((|IntegerMod| . |Ring|) T) ((|LieSquareMatrix| . |Type|) T) ((|OrderedDirectProduct| . |OrderedAbelianGroup|) 139468) ((|BinaryExpansion| . |CharacteristicNonZero|) NIL) ((|SparseTable| . |IndexedAggregate|) 139447) ((|DirectProduct| . |Finite|) 139422) ((|HomogeneousDistributedMultivariatePolynomial| . |RightModule|) 139179) ((|ResidueRing| . |BasicType|) T) ((|FreeGroup| . |BasicType|) T) ((|InnerSparseUnivariatePowerSeries| . |SemiGroup|) T) ((|XPolynomial| . |Algebra|) 139136) ((|ModularField| . |EuclideanDomain|) T) ((|SimpleAlgebraicExtension| . |PrincipalIdealDomain|) 139070) ((|InnerSparseUnivariatePowerSeries| . |CancellationAbelianMonoid|) T) ((|RadicalFunctionField| . |EuclideanDomain|) T) ((|DirectProduct| . |IndexedAggregate|) 139042) ((|UnivariateLaurentSeries| . |OrderedRing|) NIL) ((|Expression| . |ArcHyperbolicFunctionCategory|) 139009) ((|UnivariatePuiseuxSeries| . |RadicalCategory|) 138958) ((|WeightedPolynomials| . |SetCategory|) T) ((|FiniteFieldExtensionByPolynomial| . |FieldOfPrimeCharacteristic|) 138889) ((|OnePointCompletion| . |FullyRetractableTo|) 138873) ((|SparseUnivariateLaurentSeries| . |PartialDifferentialRing|) 138619) ((|Expression| . |PartialDifferentialRing|) 138581) ((|PAdicRational| . |Evalable|) 138489) ((|FiniteFieldNormalBasisExtension| . |SetCategory|) T) ((|InnerSparseUnivariatePowerSeries| . |DifferentialRing|) 138437) ((|SparseUnivariatePolynomialExpressions| . |IntegralDomain|) 138300) ((|Complex| . |OpenMath|) 138273) ((|FiniteFieldCyclicGroupExtension| . |FieldOfPrimeCharacteristic|) 138204) ((|FiniteFieldNormalBasisExtension| . |EntireRing|) T) ((|Stream| . |BasicType|) 138174) ((|Factored| . |AbelianSemiGroup|) T) ((|ModMonic| . |EuclideanDomain|) 138150) ((|UnivariatePuiseuxSeries| . |LeftModule|) 138019) ((|UnivariatePolynomial| . |LeftModule|) 137916) ((|Bits| . |CoercibleTo|) 137890) ((|ContinuedFraction| . |LeftModule|) 137805) ((|BalancedPAdicRational| . |SetCategory|) T) ((|UnivariateLaurentSeries| . |Algebra|) 137526) ((|MyExpression| . |LeftOreRing|) 137493) ((|IndexCard| . |OrderedSet|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |LeftModule|) 137434) ((|UnivariateTaylorSeriesCZero| . |BiModule|) 137235) ((|NewSparseUnivariatePolynomial| . |GcdDomain|) 137130) ((|InnerTable| . |InnerEvalable|) 136838) ((|Table| . |Evalable|) 136598) ((|FiniteFieldCyclicGroup| . |Finite|) T) ((|EuclideanModularRing| . |CancellationAbelianMonoid|) T) ((|Point| . |FiniteLinearAggregate|) 136582) ((|Interval| . |CommutativeRing|) T) ((|NewSparseUnivariatePolynomial| . |AbelianSemiGroup|) T) ((|FourierSeries| . |SemiGroup|) T) ((|BalancedPAdicInteger| . |CharacteristicZero|) T) ((|FreeModule| . |RightModule|) 136566) ((|d03eefAnnaType| . |CoercibleTo|) 136540) ((|ModMonic| . |SemiGroup|) T) ((|Interval| . |LeftModule|) 136527) ((|Integer| . |StepThrough|) T) ((|MyExpression| . |EuclideanDomain|) 136494) ((|RewriteRule| . |SetCategory|) T) ((|UnivariateLaurentSeries| . |DifferentialRing|) 136337) ((|MyExpression| . |Rng|) T) ((|DirectProductModule| . |SetCategory|) T) ((|HexadecimalExpansion| . |OrderedIntegralDomain|) T) ((|Asp6| . |FortranVectorFunctionCategory|) T) ((|Mapping| . |BasicType|) T) ((|DifferentialSparseMultivariatePolynomial| . |IntegralDomain|) 136223) ((|FiniteFieldExtension| . |FieldOfPrimeCharacteristic|) 136154) ((|MyUnivariatePolynomial| . |Monoid|) T) ((|HexadecimalExpansion| . |DifferentialExtension|) 136131) ((|DistributedMultivariatePolynomial| . |OrderedSet|) 136102) ((|SparseMultivariateTaylorSeries| . |LeftModule|) 135999) ((|Float| . |IntegralDomain|) T) ((|AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| . |CoercibleTo|) 135973) ((|OrderlyDifferentialPolynomial| . |Ring|) T) ((|NumericalIntegrationProblem| . |SetCategory|) T) ((|FiniteFieldCyclicGroupExtension| . |Monoid|) T) ((|RadixExpansion| . |InnerEvalable|) NIL) ((|XDistributedPolynomial| . |RightModule|) 135957) ((|SparseUnivariatePuiseuxSeries| . |SetCategory|) T) ((|DirectProductModule| . |PartialDifferentialRing|) 135861) ((|RomanNumeral| . |CancellationAbelianMonoid|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |CharacteristicZero|) 135824) ((|Bits| . |ConvertibleTo|) 135799) ((|Equation| . |Group|) 135775) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |AbelianMonoid|) T) ((|UnivariateSkewPolynomial| . |FullyRetractableTo|) 135759) ((|Float| . |Algebra|) 135713) ((|UnivariateTaylorSeries| . |CommutativeRing|) 135642) ((|PendantTree| . |BinaryRecursiveAggregate|) 135626) ((|GeneralDistributedMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 135610) ((|BalancedPAdicRational| . |OrderedAbelianSemiGroup|) NIL) ((|SparseUnivariateLaurentSeries| . |TranscendentalFunctionCategory|) 135559) ((|Tree| . |SetCategory|) 135529) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |EuclideanDomain|) T) ((|NewSparseMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| . |AffineSpaceCategory|) 135473) ((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| . |ProjectiveSpaceCategory|) 135417) ((|FiniteFieldCyclicGroup| . |SemiGroup|) T) ((|UnivariateTaylorSeriesCZero| . |SemiGroup|) T) ((|Permutation| . |SetCategory|) T) ((|Asp19| . |CoercibleTo|) 135391) ((|DecimalExpansion| . |DifferentialExtension|) 135368) ((|Float| . |AbelianGroup|) T) ((|OrdinaryDifferentialRing| . |EuclideanDomain|) 135344) ((|RectangularMatrix| . |RightModule|) 135328) ((|FlexibleArray| . |InnerEvalable|) 135247) ((|RomanNumeral| . |Ring|) T) ((|HexadecimalExpansion| . |Rng|) T) ((|FortranExpression| . |Rng|) T) ((|ExponentialExpansion| . |AbelianGroup|) T) ((|FiniteFieldCyclicGroupExtension| . |BiModule|) 135156) ((|LocalAlgebra| . |Rng|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |Finite|) T) ((|d01fcfAnnaType| . |BasicType|) T) ((|SimpleAlgebraicExtension| . |AbelianSemiGroup|) T) ((|FiniteFieldExtensionByPolynomial| . |DifferentialRing|) 135131) ((|Pi| . |Algebra|) 135085) ((|InnerAlgebraicNumber| . |AbelianMonoid|) T) ((|UnivariateTaylorSeriesCZero| . |Algebra|) 134929) ((|AlgebraicFunctionField| . |FullyRetractableTo|) 134900) ((|FiniteFieldCyclicGroup| . |AbelianSemiGroup|) T) ((|SimpleAlgebraicExtension| . |BiModule|) 134750) ((|e04nafAnnaType| . |BasicType|) T) ((|OrdinaryDifferentialRing| . |IntegralDomain|) 134726) ((|MyExpression| . |ConvertibleTo|) 134504) ((|ExponentialExpansion| . |FullyEvalableOver|) 134419) ((|RadixExpansion| . |OrderedAbelianMonoid|) T) ((|InnerPAdicInteger| . |CancellationAbelianMonoid|) T) ((|UnivariateLaurentSeriesConstructor| . |CharacteristicZero|) 134312) ((|IntegerMod| . |CommutativeRing|) T) ((|SparseMultivariateTaylorSeries| . |ElementaryFunctionCategory|) 134261) ((|InnerSparseUnivariatePowerSeries| . |EntireRing|) 134228) ((|DoubleFloatMatrix| . |Type|) T) ((|ComplexDoubleFloatMatrix| . |MatrixCategory|) 134131) ((|ComplexDoubleFloatVector| . |VectorCategory|) 134092) ((|AntiSymm| . |SetCategory|) T) ((|FiniteFieldExtensionByPolynomial| . |RetractableTo|) 134076) ((|ExponentialExpansion| . |Monoid|) T) ((|MyUnivariatePolynomial| . |EntireRing|) 133939) ((|Equation| . |Type|) T) ((|SparseUnivariateTaylorSeries| . |Ring|) T) ((|GeneralPolynomialSet| . |HomogeneousAggregate|) 133923) ((|WeightedPolynomials| . |Ring|) T) ((|AlgebraicFunctionField| . |BasicType|) T) ((|WuWenTsunTriangularSet| . |PolynomialSetCategory|) 133892) ((|Stream| . |RecursiveAggregate|) 133876) ((|DirectProductMatrixModule| . |CoercibleTo|) 133826) ((|UnivariateSkewPolynomial| . |RetractableTo|) 133670) ((|Segment| . |BasicType|) 133640) ((|Set| . |DictionaryOperations|) 133624) ((|NeitherSparseOrDensePowerSeries| . |Rng|) T) ((|UnivariateTaylorSeriesCZero| . |Module|) 133468) ((|IndexedTwoDimensionalArray| . |SetCategory|) 133438) ((|ExponentialOfUnivariatePuiseuxSeries| . |UnivariatePuiseuxSeriesCategory|) 133422) ((|HexadecimalExpansion| . |Evalable|) NIL) ((|Color| . |AbelianSemiGroup|) T) ((|MyUnivariatePolynomial| . |ConvertibleTo|) NIL) ((|MyUnivariatePolynomial| . |PatternMatchable|) NIL) ((|Plot3D| . |PlottableSpaceCurveCategory|) T) ((|PrimitiveArray| . |Evalable|) 133346) ((|NewSparseUnivariatePolynomial| . |UnivariatePolynomialCategory|) 133330) ((|Segment| . |SetCategory|) 133300) ((|Equation| . |Rng|) 133220) ((|GenericNonAssociativeAlgebra| . |CoercibleTo|) 133194) ((|SparseMultivariatePolynomial| . |SemiGroup|) T) ((|IntegrationResult| . |BiModule|) 133133) ((|Queue| . |CoercibleTo|) 133084) ((|AlgebraicNumber| . |Ring|) T) ((|MultivariatePolynomial| . |SetCategory|) T) ((|ArrayStack| . |InnerEvalable|) 133003) ((|UnivariateLaurentSeriesConstructor| . |PartialDifferentialRing|) 132792) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |FieldOfPrimeCharacteristic|) 132723) ((|UnivariateTaylorSeries| . |CharacteristicNonZero|) 132683) ((|NewSparseMultivariatePolynomial| . |IntegralDomain|) 132569) ((|MachineFloat| . |OrderedAbelianGroup|) T) ((|Asp74| . |FortranMatrixFunctionCategory|) T) ((|Interval| . |ElementaryFunctionCategory|) T) ((|SparseUnivariatePuiseuxSeries| . |AbelianSemiGroup|) T) ((|IntegrationResult| . |RetractableTo|) 132553) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |AbelianMonoidRing|) 132443) ((|FlexibleArray| . |OrderedSet|) 132414) ((|InnerPrimeField| . |SetCategory|) T) ((|DecimalExpansion| . |LeftModule|) 132348) ((|NewSparseMultivariatePolynomial| . |Module|) 132111) ((|Complex| . |Monoid|) T) ((|MonoidRing| . |BasicType|) T) ((|OnePointCompletion| . |Monoid|) 132081) ((|IndexedFlexibleArray| . |OrderedSet|) 132052) ((|Ruleset| . |SetCategory|) T) ((|SimpleAlgebraicExtension| . |UniqueFactorizationDomain|) 131986) ((|DirectProduct| . |BiModule|) 131849) ((|Asp29| . |FortranProgramCategory|) T) ((|InnerPAdicInteger| . |Algebra|) 131836) ((|OrderedCompletion| . |AbelianGroup|) 131771) ((|MachineInteger| . |Rng|) T) ((|BinaryExpansion| . |EuclideanDomain|) T) ((|UnivariateLaurentSeriesConstructor| . |GcdDomain|) 131747) ((|InnerSparseUnivariatePowerSeries| . |BiModule|) 131548) ((|HexadecimalExpansion| . |GcdDomain|) T) ((|SquareMatrix| . |AbelianSemiGroup|) T) ((|AssociatedLieAlgebra| . |RightModule|) 131532) ((|AlgebraicFunctionField| . |CommutativeRing|) T) ((|SparseUnivariateTaylorSeries| . |CharacteristicNonZero|) 131492) ((|OrderlyDifferentialVariable| . |SetCategory|) T) ((|RomanNumeral| . |OrderedAbelianGroup|) T) ((|DirectProductMatrixModule| . |Type|) T) ((|IndexedString| . |InnerEvalable|) NIL) ((|NewSparseUnivariatePolynomial| . |FullyRetractableTo|) 131476) ((|DifferentialSparseMultivariatePolynomial| . |DifferentialExtension|) 131460) ((|GeneralSparseTable| . |SetCategory|) T) ((|SparseUnivariateLaurentSeries| . |BiModule|) 131089) ((|ComplexDoubleFloatVector| . |FiniteLinearAggregate|) 131050) ((|Dequeue| . |Type|) T) ((|HexadecimalExpansion| . |AbelianSemiGroup|) T) ((|Tree| . |CoercibleTo|) 131001) ((|PAdicInteger| . |RightModule|) 130988) ((|SparseUnivariatePuiseuxSeries| . |DivisionRing|) 130964) ((|SquareMatrix| . |LeftModule|) 130938) ((|NumericalOptimizationProblem| . |SetCategory|) T) ((|SquareMatrix| . |FullyRetractableTo|) 130922) ((|DirichletRing| . |Ring|) T) ((|Equation| . |RightModule|) 130829) ((|PrimitiveArray| . |OrderedSet|) 130800) ((|AlgebraicFunctionField| . |ConvertibleTo|) 130784) ((|SparseUnivariateLaurentSeries| . |Evalable|) 130585) ((|DoubleFloatMatrix| . |SetCategory|) T) ((|d03eefAnnaType| . |BasicType|) T) ((|BalancedPAdicInteger| . |Ring|) T) ((|RegularChain| . |Collection|) 130504) ((|OneDimensionalArray| . |InnerEvalable|) 130423) ((|InnerTable| . |Collection|) 130365) ((|NewSparseMultivariatePolynomial| . |SemiGroup|) T) ((|AssociationList| . |ExtensibleLinearAggregate|) 130307) ((|FiniteFieldExtensionByPolynomial| . |Rng|) T) ((|RegularTriangularSet| . |HomogeneousAggregate|) 130291) ((|BalancedPAdicRational| . |SemiGroup|) T) ((|Matrix| . |ConvertibleTo|) 130227) ((|d01gbfAnnaType| . |SetCategory|) T) ((|Multiset| . |Aggregate|) T) ((|Asp1| . |FortranProgramCategory|) T) ((|GeneralUnivariatePowerSeries| . |BiModule|) 129977) ((|PseudoAlgebraicClosureOfFiniteField| . |Module|) 129918) ((|UnivariatePuiseuxSeries| . |BiModule|) 129668) ((|PAdicRationalConstructor| . |BasicType|) T) ((|DirectProduct| . |FullyLinearlyExplicitRingOver|) 129636) ((|OpenMathErrorKind| . |SetCategory|) T) ((|GeneralModulePolynomial| . |CancellationAbelianMonoid|) T) ((|SparseTable| . |Type|) T) ((|NewSparseMultivariatePolynomial| . |ConvertibleTo|) 129075) ((|DirectProductMatrixModule| . |AbelianMonoid|) T) ((|ModuleOperator| . |Algebra|) 129032) ((|FiniteFieldExtensionByPolynomial| . |StepThrough|) 129007) ((|TaylorSeries| . |SemiGroup|) T) ((|RectangularMatrix| . |Module|) 128936) ((|IndexedOneDimensionalArray| . |EltableAggregate|) 128908) ((|Tree| . |Type|) T) ((|TwoDimensionalArray| . |Aggregate|) T) ((|SparseUnivariateTaylorSeries| . |Monoid|) T) ((|LinearOrdinaryDifferentialOperator1| . |Eltable|) 128887) ((|SparseUnivariateSkewPolynomial| . |AbelianGroup|) T) ((|MachineFloat| . |Module|) 128841) ((|ModularField| . |SemiGroup|) T) ((|ComplexDoubleFloatMatrix| . |InnerEvalable|) NIL) ((|OrderlyDifferentialPolynomial| . |PolynomialCategory|) 128718) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |EntireRing|) T) ((|Asp78| . |CoercibleTo|) 128692) ((|List| . |SetCategory|) 128629) ((|DecimalExpansion| . |StepThrough|) T) ((|DeRhamComplex| . |Monoid|) T) ((|Octonion| . |Ring|) T) ((|SparseUnivariatePuiseuxSeries| . |UnivariatePuiseuxSeriesCategory|) 128613) ((|Integer| . |RealConstant|) T) ((|UnivariatePuiseuxSeries| . |GcdDomain|) 128589) ((|PAdicInteger| . |EuclideanDomain|) T) ((|SparseUnivariateLaurentSeries| . |UnivariateLaurentSeriesCategory|) 128573) ((|SparseMultivariateTaylorSeries| . |MultivariateTaylorSeriesCategory|) 128552) ((|SparseUnivariatePolynomial| . |UnivariatePolynomialCategory|) 128536) ((|SparseUnivariateTaylorSeries| . |UnivariateTaylorSeriesCategory|) 128520) ((|SparseUnivariateSkewPolynomial| . |UnivariateSkewPolynomialCategory|) 128504) ((|d03fafAnnaType| . |CoercibleTo|) 128478) ((|OrderedDirectProduct| . |OrderedAbelianMonoidSup|) 128436) ((|SparseUnivariatePolynomial| . |PrincipalIdealDomain|) 128412) ((|Complex| . |FramedAlgebra|) 128360) ((|Complex| . |Type|) T) ((|Factored| . |Algebra|) 128334) ((|UnivariateLaurentSeriesConstructor| . |AbelianMonoidRing|) 128306) ((|RadicalFunctionField| . |Rng|) T) ((|U8Vector| . |OrderedSet|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |RightModule|) 128260) ((|MyUnivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|BinaryExpansion| . |OrderedAbelianMonoid|) T) ((|NeitherSparseOrDensePowerSeries| . |BiModule|) 128169) ((|ProjectiveSpace| . |CoercibleTo|) 128143) ((|NewSparseUnivariatePolynomial| . |RetractableTo|) 127909) ((|Float| . |Field|) T) ((|MachineInteger| . |OrderedRing|) T) ((|ModMonic| . |CharacteristicZero|) 127872) ((|DirectProductMatrixModule| . |IndexedAggregate|) 127844) ((|DirectProduct| . |BasicType|) 127536) ((|UnivariatePuiseuxSeriesConstructor| . |HyperbolicFunctionCategory|) 127485) ((|DecimalExpansion| . |OrderedIntegralDomain|) T) ((|SequentialDifferentialPolynomial| . |ConvertibleTo|) NIL) ((|FiniteFieldExtension| . |Ring|) T) ((|e04dgfAnnaType| . |SetCategory|) T) ((|Factored| . |BasicType|) T) ((|BinaryTournament| . |HomogeneousAggregate|) 127469) ((|HashTable| . |CoercibleTo|) 127443) ((|MonoidRing| . |RetractableTo|) 127414) ((|NewSparseUnivariatePolynomial| . |FiniteAbelianMonoidRing|) 127375) ((|GeneralUnivariatePowerSeries| . |TrigonometricFunctionCategory|) 127324) ((|InnerFiniteField| . |StepThrough|) T) ((|SparseUnivariateTaylorSeries| . |TrigonometricFunctionCategory|) 127273) ((|UnivariateLaurentSeriesConstructor| . |LeftModule|) 127112) ((|IndexedFlexibleArray| . |HomogeneousAggregate|) 127096) ((|GeneralDistributedMultivariatePolynomial| . |PatternMatchable|) NIL) ((|PartialFraction| . |GcdDomain|) T) ((|List| . |RecursiveAggregate|) 127080) ((|UnivariateSkewPolynomial| . |SetCategory|) T) ((|InnerTaylorSeries| . |IntegralDomain|) 127047) ((|List| . |Type|) T) ((|DifferentialSparseMultivariatePolynomial| . |Ring|) T) ((|Expression| . |AlgebraicallyClosedField|) 127014) ((|SparseUnivariatePolynomialExpressions| . |PolynomialFactorizationExplicit|) 126964) ((|UnivariateFormalPowerSeries| . |Rng|) T) ((|FreeModule| . |IndexedDirectProductCategory|) 126943) ((|SparseUnivariateLaurentSeries| . |CancellationAbelianMonoid|) T) ((|SquareFreeRegularTriangularSet| . |TriangularSetCategory|) 126912) ((|SymmetricPolynomial| . |RightModule|) 126745) ((|Equation| . |AbelianSemiGroup|) 126545) ((|Divisor| . |CoercibleTo|) 126519) ((|InnerFiniteField| . |Module|) 126440) ((|RadixExpansion| . |Rng|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |GcdDomain|) T) ((|DeRhamComplex| . |SetCategory|) T) ((|PAdicRationalConstructor| . |OrderedCancellationAbelianMonoid|) 126400) ((|Equation| . |BiModule|) 126302) ((|ExponentialExpansion| . |RightModule|) 126174) ((|SparseUnivariateLaurentSeries| . |OrderedAbelianMonoid|) NIL) ((|UnivariateTaylorSeries| . |AbelianGroup|) T) ((|UnivariatePuiseuxSeries| . |Eltable|) 126159) ((|GeneralUnivariatePowerSeries| . |SemiGroup|) T) ((|PrimitiveArray| . |LinearAggregate|) 126143) ((|PartialFraction| . |IntegralDomain|) T) ((|BinaryExpansion| . |Rng|) T) ((|ExponentialExpansion| . |Type|) T) ((|Boolean| . |SetCategory|) T) ((|EqTable| . |Dictionary|) 126085) ((|OrderedDirectProduct| . |Module|) 126014) ((|GraphImage| . |SetCategory|) T) ((|FlexibleArray| . |ExtensibleLinearAggregate|) 125998) ((|SymmetricPolynomial| . |AbelianSemiGroup|) T) ((|Octonion| . |InnerEvalable|) 125887) ((|Localize| . |OrderedAbelianMonoid|) 125849) ((|StochasticDifferential| . |SemiGroup|) T) ((|SplitHomogeneousDirectProduct| . |OrderedCancellationAbelianMonoid|) 125773) ((|XPBWPolynomial| . |SemiGroup|) T) ((|Polynomial| . |BasicType|) T) ((|LiePolynomial| . |FreeModuleCat|) 125737) ((|OppositeMonogenicLinearOperator| . |MonogenicLinearOperator|) 125721) ((|PrimeField| . |CharacteristicZero|) 125687) ((|Stream| . |CoercibleTo|) 125638) ((|Integer| . |RetractableTo|) 125615) ((|ExponentialOfUnivariatePuiseuxSeries| . |UnivariatePowerSeriesCategory|) 125574) ((|DesingTree| . |InnerEvalable|) 125493) ((|LaurentPolynomial| . |RightModule|) 125480) ((|NewSparseMultivariatePolynomial| . |LeftOreRing|) 125398) ((|Record| . |CoercibleTo|) 125372) ((|RadicalFunctionField| . |DifferentialRing|) 125324) ((|NewSparseMultivariatePolynomial| . |RightModule|) 125081) ((|InnerPrimeField| . |PrincipalIdealDomain|) T) ((|UnivariateSkewPolynomial| . |CancellationAbelianMonoid|) T) ((|OrderlyDifferentialPolynomial| . |GcdDomain|) 124999) ((|IndexedExponents| . |OrderedAbelianSemiGroup|) T) ((|DenavitHartenbergMatrix| . |Type|) T) ((|ModMonic| . |InnerEvalable|) 124909) ((|UnivariateFormalPowerSeries| . |UnivariateTaylorSeriesCategory|) 124893) ((|NeitherSparseOrDensePowerSeries| . |EntireRing|) T) ((|Vector| . |CoercibleTo|) 124811) ((|Polynomial| . |RetractableTo|) 124636) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |LeftModule|) 124577) ((|Quaternion| . |RetractableTo|) 124421) ((|NewSparseMultivariatePolynomial| . |UniqueFactorizationDomain|) 124371) ((|ExponentialOfUnivariatePuiseuxSeries| . |SetCategory|) T) ((|Pi| . |DivisionRing|) T) ((|RealClosure| . |UniqueFactorizationDomain|) T) ((|UnivariatePuiseuxSeriesConstructor| . |UnivariatePowerSeriesCategory|) 124330) ((|Integer| . |PatternMatchable|) 124307) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |FiniteAlgebraicExtensionField|) 124291) ((|MyUnivariatePolynomial| . |RightModule|) 124025) ((|SparseUnivariateTaylorSeries| . |DifferentialRing|) 123962) ((|DifferentialSparseMultivariatePolynomial| . |GcdDomain|) 123880) ((|AssociationList| . |RecursiveAggregate|) 123822) ((|MyUnivariatePolynomial| . |AbelianMonoid|) T) ((|InnerTaylorSeries| . |CommutativeRing|) 123789) ((|UnivariateLaurentSeriesConstructor| . |RealConstant|) 123729) ((|PrimeField| . |CancellationAbelianMonoid|) T) ((|UnivariatePuiseuxSeries| . |CharacteristicNonZero|) 123689) ((|InnerAlgebraicNumber| . |AbelianSemiGroup|) T) ((|HexadecimalExpansion| . |PolynomialFactorizationExplicit|) NIL) ((|InnerPrimeField| . |EntireRing|) T) ((|Bits| . |Type|) T) ((|RadixExpansion| . |PolynomialFactorizationExplicit|) NIL) ((|FourierComponent| . |OrderedSet|) T) ((|SparseUnivariateTaylorSeries| . |AbelianMonoid|) T) ((|Complex| . |HyperbolicFunctionCategory|) 123640) ((|Vector| . |SetCategory|) 123577) ((|SingleInteger| . |StepThrough|) T) ((|FourierSeries| . |CoercibleTo|) 123551) ((|InfinitlyClosePoint| . |CoercibleTo|) 123525) ((|FiniteFieldExtensionByPolynomial| . |CharacteristicZero|) 123488) ((|OrderlyDifferentialPolynomial| . |BasicType|) T) ((|Commutator| . |BasicType|) T) ((|PolynomialRing| . |SetCategory|) T) ((|PlacesOverPseudoAlgebraicClosureOfFiniteField| . |PlacesCategory|) 123351) ((|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| . |InfinitlyClosePointCategory|) 122878) ((|XPBWPolynomial| . |BiModule|) 122857) ((|Expression| . |HyperbolicFunctionCategory|) 122824) ((|ComplexDoubleFloatMatrix| . |Aggregate|) T) ((|d03fafAnnaType| . |PartialDifferentialEquationsSolverCategory|) T) ((|ComplexDoubleFloatVector| . |Aggregate|) T) ((|Float| . |OrderedAbelianSemiGroup|) T) ((|Quaternion| . |Algebra|) 122758) ((|UnivariateLaurentSeries| . |Evalable|) 122577) ((|InnerFiniteField| . |CoercibleTo|) 122551) ((|ComplexDoubleFloatMatrix| . |BasicType|) T) ((|UnivariateLaurentSeries| . |OrderedAbelianGroup|) NIL) ((|LieSquareMatrix| . |RetractableTo|) 122395) ((|GeneralUnivariatePowerSeries| . |Field|) 122371) ((|IndexedDirectProductObject| . |SetCategory|) T) ((|Fraction| . |Module|) 122312) ((|d02bbfAnnaType| . |SetCategory|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |CancellationAbelianMonoid|) T) ((|UnivariateTaylorSeriesCZero| . |TrigonometricFunctionCategory|) 122261) ((|QuadraticForm| . |SetCategory|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |Monoid|) T) ((|U8Matrix| . |CoercibleTo|) 122235) ((|Stack| . |BagAggregate|) 122219) ((|ThreeDimensionalMatrix| . |Type|) T) ((|FiniteFieldCyclicGroup| . |IntegralDomain|) T) ((|IndexedString| . |Collection|) 122194) ((|PAdicRationalConstructor| . |StepThrough|) 122164) ((|FiniteFieldCyclicGroup| . |GcdDomain|) T) ((|LiePolynomial| . |LeftModule|) 122148) ((|UnivariateLaurentSeries| . |CoercibleTo|) 122122) ((|IndexedString| . |OrderedSet|) T) ((|Quaternion| . |BiModule|) 121964) ((|SplitHomogeneousDirectProduct| . |Rng|) 121874) ((|DirectProduct| . |Type|) T) ((|FreeModule1| . |SetCategory|) T) ((|XRecursivePolynomial| . |CoercibleTo|) 121848) ((|Factored| . |FullyRetractableTo|) 121832) ((|UnivariateLaurentSeriesConstructor| . |Evalable|) 121762) ((|OnePointCompletion| . |OrderedRing|) 121732) ((|KeyedAccessFile| . |IndexedAggregate|) 121705) ((|SparseMultivariatePolynomial| . |CharacteristicZero|) 121668) ((|Asp6| . |CoercibleTo|) 121642) ((|PseudoAlgebraicClosureOfFiniteField| . |BiModule|) 121551) ((|PAdicRationalConstructor| . |FullyPatternMatchable|) 121535) ((|OrderedCompletion| . |OrderedRing|) 121505) ((|AlgebraicFunctionField| . |PrincipalIdealDomain|) T) ((|OrderedCompletion| . |OrderedAbelianSemiGroup|) 121475) ((|OrdinaryWeightedPolynomials| . |BiModule|) 121427) ((|IntegerMod| . |RightModule|) 121414) ((|d01ajfAnnaType| . |NumericalIntegrationCategory|) T) ((|SingleInteger| . |RightModule|) 121401) ((|PrimeField| . |Module|) 121355) ((|Table| . |KeyedDictionary|) 121334) ((|DoubleFloatVector| . |ConvertibleTo|) 121309) ((|OrdinaryWeightedPolynomials| . |Algebra|) 121266) ((|ArrayStack| . |Aggregate|) T) ((|Stream| . |UnaryRecursiveAggregate|) 121250) ((|Kernel| . |CachableSet|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |DivisionRing|) 121226) ((|ExponentialOfUnivariatePuiseuxSeries| . |Monoid|) T) ((|ComplexDoubleFloatMatrix| . |Type|) T) ((|InnerTaylorSeries| . |AbelianMonoid|) T) ((|Divisor| . |RetractableTo|) 121210) ((|SparseUnivariateLaurentSeries| . |AbelianGroup|) T) ((|ModMonic| . |FiniteAbelianMonoidRing|) 121171) ((|DifferentialSparseMultivariatePolynomial| . |CommutativeRing|) 121024) ((|XRecursivePolynomial| . |XFreeAlgebra|) 121003) ((|TwoDimensionalViewport| . |BasicType|) T) ((|SingleInteger| . |OrderedAbelianGroup|) T) ((|Polynomial| . |FullyLinearlyExplicitRingOver|) 120987) ((|Stack| . |BasicType|) 120957) ((|RadixExpansion| . |FullyEvalableOver|) 120934) ((|InnerSparseUnivariatePowerSeries| . |PartialDifferentialRing|) 120809) ((|KeyedAccessFile| . |Type|) T) ((|Float| . |SetCategory|) T) ((|ResidueRing| . |SetCategory|) T) ((|Octonion| . |LeftModule|) 120783) ((|U32Vector| . |IndexedAggregate|) 120748) ((|KeyedAccessFile| . |InnerEvalable|) 120432) ((|PAdicRationalConstructor| . |DivisionRing|) T) ((|Stream| . |Aggregate|) T) ((|SymmetricPolynomial| . |AbelianGroup|) T) ((|Places| . |SetCategory|) T) ((|SplitHomogeneousDirectProduct| . |RightModule|) 120302) ((|RadixExpansion| . |PatternMatchable|) 120279) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |CoercibleTo|) 120253) ((|UnivariatePuiseuxSeries| . |Monoid|) T) ((|Polynomial| . |PartialDifferentialRing|) 120231) ((|Fraction| . |DifferentialExtension|) 120215) ((|HexadecimalExpansion| . |EuclideanDomain|) T) ((|UnivariateLaurentSeriesConstructor| . |Type|) 120191) ((|SparseUnivariateLaurentSeries| . |GcdDomain|) 120167) ((|MultivariatePolynomial| . |AbelianGroup|) T) ((|BalancedPAdicInteger| . |AbelianGroup|) T) ((|Product| . |Group|) 120114) ((|Octonion| . |ConvertibleTo|) 120050) ((|UnivariateLaurentSeries| . |Field|) 120026) ((|TaylorSeries| . |CoercibleTo|) 120000) ((|PrimeField| . |EntireRing|) T) ((|IndexedExponents| . |IndexedDirectProductCategory|) 119961) ((|Complex| . |CoercibleTo|) 119935) ((|InnerTaylorSeries| . |Rng|) T) ((|SplitHomogeneousDirectProduct| . |SemiGroup|) 119821) ((|Asp12| . |Type|) T) ((|MachineFloat| . |Rng|) T) ((|SparseEchelonMatrix| . |CoercibleTo|) 119795) ((|AlgebraGivenByStructuralConstants| . |FramedNonAssociativeAlgebra|) 119779) ((|SExpressionOf| . |BasicType|) T) ((|Result| . |TableAggregate|) 119749) ((|Matrix| . |Evalable|) 119673) ((|UnivariateLaurentSeries| . |OrderedIntegralDomain|) NIL) ((|U16Vector| . |Collection|) 119650) ((|ExponentialExpansion| . |StepThrough|) NIL) ((|Permutation| . |Group|) T) ((|SparseUnivariateLaurentSeries| . |InnerEvalable|) 119180) ((|XPolynomial| . |CancellationAbelianMonoid|) T) ((|XRecursivePolynomial| . |BasicType|) T) ((|Complex| . |FiniteFieldCategory|) 119142) ((|NeitherSparseOrDensePowerSeries| . |RightModule|) 119083) ((|Automorphism| . |Group|) T) ((|PAdicRationalConstructor| . |AbelianSemiGroup|) T) ((|RadixExpansion| . |OrderedAbelianGroup|) T) ((|DirichletRing| . |SemiGroup|) T) ((|SimpleFortranProgram| . |FortranProgramCategory|) T) ((|MyExpression| . |Patternable|) 119067) ((|IndexedList| . |IndexedAggregate|) 119039) ((|List| . |Aggregate|) T) ((|InnerAlgebraicNumber| . |SetCategory|) T) ((|RoutinesTable| . |IndexedAggregate|) 119009) ((|BalancedBinaryTree| . |RecursiveAggregate|) 118993) ((|UnivariateLaurentSeriesConstructor| . |OrderedAbelianMonoid|) 118924) ((|PartialFraction| . |SemiGroup|) T) ((|Complex| . |EuclideanDomain|) 118825) ((|RoutinesTable| . |KeyedDictionary|) 118795) ((|DirichletRing| . |Eltable|) 118759) ((|DifferentialSparseMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|OneDimensionalArray| . |BasicType|) 118696) ((|PlacesOverPseudoAlgebraicClosureOfFiniteField| . |SetCategoryWithDegree|) T) ((|e04dgfAnnaType| . |NumericalOptimizationCategory|) T) ((|BinaryExpansion| . |LeftModule|) 118630) ((|AlgebraicFunctionField| . |EuclideanDomain|) T) ((|ContinuedFraction| . |Algebra|) 118545) ((|IndexedDirectProductAbelianGroup| . |AbelianSemiGroup|) T) ((|FiniteFieldExtension| . |EuclideanDomain|) T) ((|UnivariatePuiseuxSeriesConstructor| . |CharacteristicNonZero|) 118505) ((|ArrayStack| . |BagAggregate|) 118489) ((|FiniteFieldNormalBasis| . |CharacteristicZero|) 118455) ((|UnivariateLaurentSeries| . |FullyPatternMatchable|) 118385) ((|EqTable| . |Aggregate|) T) ((|PAdicRationalConstructor| . |DifferentialRing|) 118350) ((|Polynomial| . |UniqueFactorizationDomain|) 118300) ((|SparseUnivariateLaurentSeries| . |RightModule|) 118009) ((|Factored| . |LeftModule|) 117983) ((|Stream| . |EltableAggregate|) 117955) ((|WuWenTsunTriangularSet| . |Collection|) 117939) ((|MachineInteger| . |PrincipalIdealDomain|) T) ((|MachineFloat| . |RightModule|) 117893) ((|SparseUnivariatePolynomial| . |AbelianGroup|) T) ((|RadixExpansion| . |PrincipalIdealDomain|) T) ((|Multiset| . |Type|) T) ((|Float| . |BiModule|) 117820) ((|String| . |FiniteLinearAggregate|) 117795) ((|InnerFiniteField| . |Ring|) T) ((|Library| . |HomogeneousAggregate|) 117712) ((|IndexedExponents| . |AbelianSemiGroup|) T) ((|Symbol| . |PatternMatchable|) 117671) ((|Fraction| . |PrincipalIdealDomain|) T) ((|InnerTable| . |EltableAggregate|) 117650) ((|MachineFloat| . |FloatingPointSystem|) T) ((|IndexedExponents| . |OrderedCancellationAbelianMonoid|) T) ((|SExpressionOf| . |SExpressionCategory|) 117614) ((|SExpressionOf| . |CoercibleTo|) 117588) ((|SplitHomogeneousDirectProduct| . |FullyRetractableTo|) 117549) ((|LinearOrdinaryDifferentialOperator| . |Eltable|) 117528) ((|FiniteFieldNormalBasis| . |EntireRing|) T) ((|RadicalFunctionField| . |PrincipalIdealDomain|) T) ((|e04gcfAnnaType| . |CoercibleTo|) 117502) ((|PermutationGroup| . |SetCategory|) T) ((|Integer| . |IntegralDomain|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |Rng|) T) ((|IndexedVector| . |IndexedAggregate|) 117474) ((|Vector| . |Aggregate|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |AbelianSemiGroup|) T) ((|FiniteFieldExtensionByPolynomial| . |CommutativeRing|) T) ((|U8Matrix| . |Type|) T) ((|d01gbfAnnaType| . |BasicType|) T) ((|UnivariateLaurentSeries| . |PatternMatchable|) NIL) ((|PAdicRational| . |RightModule|) 117398) ((|BinarySearchTree| . |BinaryRecursiveAggregate|) 117382) ((|HomogeneousDirectProduct| . |Algebra|) 117339) ((|InnerTaylorSeries| . |BasicType|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |BasicType|) T) ((|DistributedMultivariatePolynomial| . |LeftOreRing|) 117257) ((|SparseUnivariateLaurentSeries| . |Eltable|) 116997) ((|AssociatedLieAlgebra| . |FiniteRankNonAssociativeAlgebra|) 116878) ((|SingleInteger| . |AbelianSemiGroup|) T) ((|RadicalFunctionField| . |FunctionFieldCategory|) 116852) ((|U16Matrix| . |TwoDimensionalArrayCategory|) 116801) ((|FreeNilpotentLie| . |BiModule|) 116780) ((|DataList| . |Evalable|) 116704) ((|Quaternion| . |Rng|) T) ((|InnerPrimeField| . |CoercibleTo|) 116678) ((|Asp49| . |FortranProgramCategory|) T) ((|DifferentialSparseMultivariatePolynomial| . |AbelianMonoid|) T) ((|MathMLFormat| . |SetCategory|) T) ((|DoubleFloatVector| . |Evalable|) NIL) ((|InnerAlgebraicNumber| . |AlgebraicallyClosedField|) T) ((|UnivariateFormalPowerSeries| . |TranscendentalFunctionCategory|) 116627) ((|Bits| . |HomogeneousAggregate|) 116604) ((|Asp28| . |Type|) T) ((|FiniteField| . |AbelianMonoid|) T) ((|RoutinesTable| . |EltableAggregate|) 116574) ((|GeneralDistributedMultivariatePolynomial| . |PartialDifferentialRing|) 116534) ((|Automorphism| . |BasicType|) T) ((|Automorphism| . |SetCategory|) T) ((|Vector| . |ConvertibleTo|) 116470) ((|SplitHomogeneousDirectProduct| . |BasicType|) 116162) ((|Complex| . |Eltable|) 116115) ((|Table| . |ConvertibleTo|) NIL) ((|Quaternion| . |PartialDifferentialRing|) 116047) ((|WeightedPolynomials| . |CoercibleTo|) 116021) ((|AssociatedJordanAlgebra| . |NonAssociativeAlgebra|) 116005) ((|Matrix| . |Type|) T) ((|HomogeneousDirectProduct| . |AbelianSemiGroup|) 115774) ((|Database| . |CoercibleTo|) 115748) ((|SimpleAlgebraicExtension| . |CancellationAbelianMonoid|) T) ((|Factored| . |SetCategory|) T) ((|FiniteFieldCyclicGroup| . |RightModule|) 115674) ((|AssociatedJordanAlgebra| . |FramedNonAssociativeAlgebra|) 115614) ((|FlexibleArray| . |LinearAggregate|) 115598) ((|SequentialDifferentialPolynomial| . |FullyLinearlyExplicitRingOver|) 115582) ((|SparseUnivariatePuiseuxSeries| . |UnivariatePowerSeriesCategory|) 115541) ((|MyUnivariatePolynomial| . |Ring|) T) ((|DirectProductMatrixModule| . |LinearlyExplicitRingOver|) 115413) ((|DirectProduct| . |CoercibleTo|) 115062) ((|BinaryFile| . |CoercibleTo|) 115036) ((|SparseUnivariatePuiseuxSeries| . |BiModule|) 114786) ((|ProjectiveSpace| . |BasicType|) T) ((|FortranProgram| . |Type|) T) ((|SuchThat| . |SetCategory|) T) ((|Fraction| . |BiModule|) 114695) ((|PAdicRationalConstructor| . |GcdDomain|) T) ((|AlgebraicFunctionField| . |FunctionFieldCategory|) 114669) ((|U16Vector| . |EltableAggregate|) 114634) ((|Product| . |SemiGroup|) 114522) ((|OrdinaryDifferentialRing| . |AbelianSemiGroup|) T) ((|FiniteFieldExtension| . |EntireRing|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |EntireRing|) T) ((|CardinalNumber| . |Monoid|) T) ((|SExpressionOf| . |SetCategory|) T) ((|RadixExpansion| . |Field|) T) ((|Complex| . |PrincipalIdealDomain|) 114423) ((|XRecursivePolynomial| . |RightModule|) 114407) ((|UnivariateLaurentSeries| . |UnivariatePowerSeriesCategory|) 114379) ((|SplitHomogeneousDirectProduct| . |BiModule|) 114242) ((|IndexedDirectProductOrderedAbelianMonoid| . |IndexedDirectProductCategory|) 114221) ((|HomogeneousDirectProduct| . |SemiGroup|) 114107) ((|OnePointCompletion| . |AbelianMonoid|) 114042) ((|LocalAlgebra| . |Monoid|) T) ((|UnivariateTaylorSeriesCZero| . |Ring|) T) ((|DirectProduct| . |OrderedRing|) 114012) ((|ModuleMonomial| . |BasicType|) T) ((|OrderedDirectProduct| . |Ring|) 113922) ((|AlgebraicFunctionField| . |RightModule|) 113850) ((|RadicalFunctionField| . |Module|) 113778) ((|NeitherSparseOrDensePowerSeries| . |StreamAggregate|) 113719) ((|SparseTable| . |BasicType|) T) ((|InnerTable| . |SetCategory|) T) ((|HashTable| . |KeyedDictionary|) 113698) ((|Factored| . |CoercibleTo|) 113672) ((|ModularRing| . |AbelianGroup|) T) ((|Quaternion| . |SemiGroup|) T) ((|FreeMonoid| . |SetCategory|) T) ((|Integer| . |Monoid|) T) ((|PAdicRational| . |FullyPatternMatchable|) 113639) ((|InnerFiniteField| . |CharacteristicZero|) 113605) ((|NonNegativeInteger| . |OrderedCancellationAbelianMonoid|) T) ((|AlgebraicNumber| . |RetractableTo|) 113528) ((|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| . |BasicType|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |FieldOfPrimeCharacteristic|) T) ((|BinarySearchTree| . |RecursiveAggregate|) 113512) ((|InnerFiniteField| . |RightModule|) 113433) ((|SparseUnivariateSkewPolynomial| . |RightModule|) 113417) ((|MachineFloat| . |BasicType|) T) ((|Complex| . |AbelianGroup|) T) ((|NumericalIntegrationProblem| . |CoercibleTo|) 113391) ((|FiniteFieldCyclicGroup| . |CharacteristicZero|) 113357) ((|DeRhamComplex| . |Ring|) T) ((|FortranExpression| . |Ring|) T) ((|FramedModule| . |BasicType|) T) ((|MachineComplex| . |FortranMachineTypeCategory|) T) ((|DeRhamComplex| . |LeftModule|) 113316) ((|Point| . |InnerEvalable|) 113235) ((|Fraction| . |CancellationAbelianMonoid|) T) ((|XDistributedPolynomial| . |Rng|) T) ((|Operator| . |Rng|) T) ((|BinaryExpansion| . |FullyLinearlyExplicitRingOver|) 113212) ((|HomogeneousDistributedMultivariatePolynomial| . |EntireRing|) 113098) ((|FlexibleArray| . |Aggregate|) T) ((|IndexedFlexibleArray| . |IndexedAggregate|) 113070) ((|Table| . |SetCategory|) T) ((|SplitHomogeneousDirectProduct| . |DirectProductCategory|) 113049) ((|EuclideanModularRing| . |CoercibleTo|) 113023) ((|SegmentBinding| . |BasicType|) 112993) ((|FiniteFieldCyclicGroup| . |FiniteFieldCategory|) T) ((|SingleInteger| . |Monoid|) T) ((|BalancedPAdicRational| . |IntegralDomain|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Finite|) 112968) ((|InnerAlgebraicNumber| . |RealConstant|) T) ((|Library| . |InnerEvalable|) 112718) ((|NewSparseMultivariatePolynomial| . |EntireRing|) 112604) ((|SequentialDifferentialPolynomial| . |DifferentialRing|) 112569) ((|SingleInteger| . |DifferentialRing|) T) ((|OnePointCompletion| . |LeftModule|) 112533) ((|U16Vector| . |CoercibleTo|) 112507) ((|DoubleFloat| . |RealNumberSystem|) T) ((|MachineInteger| . |OrderedAbelianMonoid|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |CharacteristicNonZero|) 112467) ((|IntegerMod| . |SemiGroup|) T) ((|Asp20| . |FortranMatrixFunctionCategory|) T) ((|FortranCode| . |CoercibleTo|) 112441) ((|ExponentialExpansion| . |QuotientFieldCategory|) 112356) ((|PartialFraction| . |AbelianGroup|) T) ((|BalancedBinaryTree| . |BasicType|) 112326) ((|SplitHomogeneousDirectProduct| . |IndexedAggregate|) 112298) ((|PAdicRational| . |FullyLinearlyExplicitRingOver|) 112265) ((|MachineComplex| . |FullyRetractableTo|) 112237) ((|PoincareBirkhoffWittLyndonBasis| . |OrderedSet|) T) ((|CardinalNumber| . |RetractableTo|) 112203) ((|MyExpression| . |AbelianMonoid|) T) ((|SparseUnivariateTaylorSeries| . |EntireRing|) 112170) ((|BinarySearchTree| . |CoercibleTo|) 112121) ((|UnivariateLaurentSeries| . |QuotientFieldCategory|) 112051) ((|OrderlyDifferentialPolynomial| . |SemiGroup|) T) ((|DeRhamComplex| . |RetractableTo|) 112020) ((|FortranExpression| . |SetCategory|) T) ((|DirichletRing| . |AbelianGroup|) T) ((|PrimeField| . |BasicType|) T) ((|Float| . |EntireRing|) T) ((|WuWenTsunTriangularSet| . |InnerEvalable|) 111939) ((|MachineFloat| . |AbelianSemiGroup|) T) ((|DoubleFloat| . |AbelianSemiGroup|) T) ((|IndexedString| . |CoercibleTo|) 111913) ((|HTMLFormat| . |BasicType|) T) ((|DirectProductMatrixModule| . |OrderedAbelianGroup|) 111883) ((|SparseMultivariateTaylorSeries| . |TranscendentalFunctionCategory|) 111832) ((|FiniteDivisor| . |CancellationAbelianMonoid|) T) ((|StringTable| . |EltableAggregate|) 111805) ((|FiniteFieldCyclicGroupExtension| . |RightModule|) 111746) ((|DistributedMultivariatePolynomial| . |AbelianMonoidRing|) 111678) ((|DataList| . |LinearAggregate|) 111662) ((|SparseUnivariatePuiseuxSeries| . |CharacteristicZero|) 111625) ((|MyUnivariatePolynomial| . |LinearlyExplicitRingOver|) 111541) ((|AntiSymm| . |AbelianMonoid|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |BasicType|) T) ((|MultivariatePolynomial| . |OrderedSet|) 111512) ((|TexFormat| . |CoercibleTo|) 111486) ((|LaurentPolynomial| . |FullyRetractableTo|) 111470) ((|FiniteFieldCyclicGroup| . |FiniteAlgebraicExtensionField|) 111439) ((|ProjectiveSpace| . |SetCategoryWithDegree|) T) ((|IndexedOneDimensionalArray| . |CoercibleTo|) 111357) ((|DirectProductModule| . |Eltable|) 111329) ((|MachineFloat| . |LeftOreRing|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |SemiGroup|) T) ((|d01alfAnnaType| . |SetCategory|) T) ((|GeneralSparseTable| . |Type|) T) ((|Product| . |Finite|) 111274) ((|BalancedPAdicRational| . |EntireRing|) T) ((|U8Vector| . |Eltable|) 111239) ((|Partition| . |CancellationAbelianMonoid|) T) ((|IndexedFlexibleArray| . |CoercibleTo|) 111157) ((|Color| . |CoercibleTo|) 111131) ((|SubSpaceComponentProperty| . |BasicType|) T) ((|ComplexDoubleFloatVector| . |BasicType|) T) ((|Asp24| . |Type|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |SetCategory|) T) ((|SequentialDifferentialVariable| . |RetractableTo|) 111115) ((|Symbol| . |ConvertibleTo|) 111009) ((|XPolynomial| . |RetractableTo|) 110965) ((|Asp42| . |Type|) T) ((|UnivariateLaurentSeries| . |Rng|) T) ((|UnivariateLaurentSeries| . |UniqueFactorizationDomain|) 110941) ((|d02ejfAnnaType| . |CoercibleTo|) 110915) ((|IndexedOneDimensionalArray| . |SetCategory|) 110852) ((|HexadecimalExpansion| . |Eltable|) NIL) ((|SparseUnivariateLaurentSeries| . |FullyEvalableOver|) 110776) ((|NeitherSparseOrDensePowerSeries| . |AbelianSemiGroup|) T) ((|InnerFiniteField| . |Rng|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |AbelianMonoid|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |CharacteristicNonZero|) 110667) ((|AlgebraicNumber| . |EuclideanDomain|) T) ((|OrdinaryWeightedPolynomials| . |AbelianMonoid|) T) ((|SegmentBinding| . |Type|) T) ((|DirectProduct| . |OrderedAbelianMonoid|) 110591) ((|UnivariateLaurentSeries| . |FullyEvalableOver|) 110521) ((|ListMultiDictionary| . |SetCategory|) 110491) ((|XPolynomial| . |RightModule|) 110475) ((|ModMonic| . |BiModule|) 110177) ((|XPolynomial| . |Rng|) T) ((|GeneralDistributedMultivariatePolynomial| . |CoercibleTo|) 110151) ((|HexadecimalExpansion| . |InnerEvalable|) NIL) ((|U16Matrix| . |Type|) T) ((|OrderedDirectProduct| . |AbelianMonoid|) 109954) ((|ModularField| . |AbelianSemiGroup|) T) ((|LiePolynomial| . |CoercibleTo|) 109928) ((|ExponentialExpansion| . |PartialDifferentialRing|) NIL) ((|BalancedPAdicRational| . |LinearlyExplicitRingOver|) 109887) ((|PermutationGroup| . |BasicType|) T) ((|UnivariatePuiseuxSeriesConstructor| . |BiModule|) 109637) ((|PartialFraction| . |LeftModule|) 109578) ((|Expression| . |FullyLinearlyExplicitRingOver|) 109546) ((|SingleInteger| . |OrderedSet|) T) ((|UnivariateLaurentSeries| . |TrigonometricFunctionCategory|) 109495) ((|KeyedAccessFile| . |ConvertibleTo|) NIL) ((|LieSquareMatrix| . |Aggregate|) T) ((|PolynomialRing| . |RightModule|) 109328) ((|WeightedPolynomials| . |LeftModule|) 109275) ((|MultivariatePolynomial| . |Evalable|) 109262) ((|DrawOption| . |BasicType|) T) ((|GeneralModulePolynomial| . |AbelianMonoid|) T) ((|UnivariateLaurentSeriesConstructor| . |OrderedAbelianSemiGroup|) 109193) ((|Library| . |TableAggregate|) 109163) ((|FreeNilpotentLie| . |NonAssociativeRng|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |EuclideanDomain|) T) ((|WeightedPolynomials| . |Algebra|) 109120) ((|StringTable| . |Aggregate|) T) ((|InnerAlgebraicNumber| . |RightModule|) 109074) ((|UnivariateTaylorSeries| . |TranscendentalFunctionCategory|) 109023) ((|Localize| . |Module|) 109007) ((|DoubleFloatVector| . |Collection|) 108980) ((|List| . |FiniteLinearAggregate|) 108964) ((|RadixExpansion| . |Algebra|) 108898) ((|DirectProduct| . |RightModule|) 108768) ((|IndexedBits| . |CoercibleTo|) 108742) ((|OrderedDirectProduct| . |LeftModule|) 108556) ((|DoubleFloat| . |FloatingPointSystem|) T) ((|HomogeneousDirectProduct| . |IndexedAggregate|) 108528) ((|PseudoAlgebraicClosureOfFiniteField| . |AbelianMonoid|) T) ((|GeneralSparseTable| . |IndexedAggregate|) 108507) ((|ComplexDoubleFloatVector| . |Evalable|) NIL) ((|Polynomial| . |CommutativeRing|) 108360) ((|Complex| . |ArcHyperbolicFunctionCategory|) 108311) ((|QuadraticForm| . |AbelianSemiGroup|) T) ((|GeneralUnivariatePowerSeries| . |Algebra|) 108099) ((|KeyedAccessFile| . |Dictionary|) 108035) ((|OrdinaryDifferentialRing| . |PrincipalIdealDomain|) 108011) ((|XPolynomialRing| . |BasicType|) T) ((|SimpleAlgebraicExtension| . |FullyRetractableTo|) 107995) ((|SparseUnivariateSkewPolynomial| . |Ring|) T) ((|SimpleAlgebraicExtension| . |RetractableTo|) 107839) ((|Asp41| . |Type|) T) ((|UnivariateLaurentSeriesConstructor| . |EuclideanDomain|) 107815) ((|NewSparseUnivariatePolynomial| . |Evalable|) 107802) ((|FiniteFieldExtensionByPolynomial| . |VectorSpace|) 107786) ((|SparseUnivariatePuiseuxSeries| . |PowerSeriesCategory|) 107719) ((|AntiSymm| . |LeftModule|) 107693) ((|UnivariateTaylorSeries| . |CancellationAbelianMonoid|) T) ((|Product| . |CoercibleTo|) 107667) ((|SquareMatrix| . |CoercibleTo|) 107617) ((|UnivariateTaylorSeries| . |ElementaryFunctionCategory|) 107566) ((|ExponentialOfUnivariatePuiseuxSeries| . |CoercibleTo|) 107540) ((|DirectProductModule| . |Rng|) 107450) ((|Ruleset| . |CoercibleTo|) 107424) ((|SingleInteger| . |SetCategory|) T) ((|d01anfAnnaType| . |CoercibleTo|) 107398) ((|PrimeField| . |IntegralDomain|) T) ((|Complex| . |FullyLinearlyExplicitRingOver|) 107382) ((|ListMultiDictionary| . |Evalable|) 107306) ((|NewSparseMultivariatePolynomial| . |AbelianGroup|) T) ((|MultivariatePolynomial| . |IntegralDomain|) 107192) ((|Dequeue| . |BasicType|) 107162) ((|ExponentialExpansion| . |ConvertibleTo|) NIL) ((|Asp1| . |Type|) T) ((|ModularRing| . |AbelianMonoid|) T) ((|FortranExpression| . |OrderedSet|) T) ((|DirectProduct| . |FullyRetractableTo|) 107123) ((|AntiSymm| . |Ring|) T) ((|FreeMonoid| . |SemiGroup|) T) ((|FreeAbelianMonoid| . |AbelianSemiGroup|) T) ((|LinearOrdinaryDifferentialOperator| . |Ring|) T) ((|Vector| . |BasicType|) 107060) ((|BalancedBinaryTree| . |CoercibleTo|) 107011) ((|PAdicInteger| . |Monoid|) T) ((|U8Vector| . |IndexedAggregate|) 106976) ((|LinearOrdinaryDifferentialOperator1| . |LinearOrdinaryDifferentialOperatorCategory|) 106960) ((|RomanNumeral| . |IntegerNumberSystem|) T) ((|Fraction| . |FullyPatternMatchable|) 106944) ((|Factored| . |PartialDifferentialRing|) 106876) ((|ResidueRing| . |CommutativeRing|) T) ((|InnerFiniteField| . |FiniteAlgebraicExtensionField|) 106840) ((|RomanNumeral| . |RealConstant|) T) ((|OrderlyDifferentialPolynomial| . |ConvertibleTo|) NIL) ((|IndexedDirectProductAbelianGroup| . |AbelianMonoid|) T) ((|Pi| . |RealConstant|) T) ((|DistributedMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 106790) ((|Divisor| . |AbelianMonoid|) T) ((|RadixExpansion| . |DifferentialExtension|) 106767) ((|PolynomialRing| . |FullyRetractableTo|) 106751) ((|Float| . |RealNumberSystem|) T) ((|DoubleFloat| . |PatternMatchable|) 106730) ((|HexadecimalExpansion| . |Module|) 106664) ((|MyUnivariatePolynomial| . |AbelianGroup|) T) ((|TaylorSeries| . |Evalable|) 106651) ((|Factored| . |CancellationAbelianMonoid|) T) ((|SparseUnivariatePolynomial| . |FiniteAbelianMonoidRing|) 106612) ((|UnivariateTaylorSeriesCZero| . |CommutativeRing|) 106541) ((|UnivariateLaurentSeries| . |CommutativeRing|) 106447) ((|UnivariateTaylorSeriesCZero| . |RadicalCategory|) 106396) ((|UnivariatePuiseuxSeriesConstructor| . |CancellationAbelianMonoid|) T) ((|OrderedCompletion| . |BasicType|) T) ((|PrimeField| . |GcdDomain|) T) ((|AffineSpace| . |SetCategoryWithDegree|) T) ((|HexadecimalExpansion| . |UniqueFactorizationDomain|) T) ((|RadixExpansion| . |SetCategory|) T) ((|Operator| . |Monoid|) T) ((|U32Vector| . |EltableAggregate|) 106361) ((|Pi| . |GcdDomain|) T) ((|ContinuedFraction| . |PrincipalIdealDomain|) T) ((|RadicalFunctionField| . |Field|) T) ((|SplitHomogeneousDirectProduct| . |CancellationAbelianMonoid|) 106164) ((|PendantTree| . |BasicType|) 106134) ((|DirectProductMatrixModule| . |LeftModule|) 105922) ((|SquareFreeRegularTriangularSet| . |RegularTriangularSetCategory|) 105891) ((|UnivariateLaurentSeriesConstructor| . |SemiGroup|) T) ((|TextFile| . |SetCategory|) T) ((|OrderedDirectProduct| . |BiModule|) 105754) ((|OrdSetInts| . |BasicType|) T) ((|Library| . |EltableAggregate|) 105724) ((|ModMonic| . |FullyLinearlyExplicitRingOver|) 105708) ((|SparseUnivariatePolynomial| . |PolynomialCategory|) 105643) ((|FreeModule1| . |CoercibleTo|) 105617) ((|LinearOrdinaryDifferentialOperator2| . |RetractableTo|) 105461) ((|FreeModule1| . |CancellationAbelianMonoid|) T) ((|NumericalODEProblem| . |BasicType|) T) ((|PAdicInteger| . |BiModule|) 105446) ((|SparseUnivariatePolynomialExpressions| . |TrigonometricFunctionCategory|) 105397) ((|OppositeMonogenicLinearOperator| . |Algebra|) 105354) ((|Asp10| . |Type|) T) ((|Pi| . |AbelianSemiGroup|) T) ((|BinarySearchTree| . |BasicType|) 105324) ((|Pi| . |Field|) T) ((|UnivariatePuiseuxSeriesConstructor| . |Algebra|) 105112) ((|U32Vector| . |Collection|) 105089) ((|Symbol| . |SetCategory|) T) ((|SparseUnivariateLaurentSeries| . |BasicType|) T) ((|PAdicInteger| . |Rng|) T) ((|RectangularMatrix| . |BiModule|) 105068) ((|BinaryExpansion| . |Evalable|) NIL) ((|MultivariatePolynomial| . |LeftOreRing|) 104986) ((|Pi| . |EuclideanDomain|) T) ((|MachineFloat| . |UniqueFactorizationDomain|) T) ((|UnivariateLaurentSeriesConstructor| . |AbelianGroup|) T) ((|PAdicInteger| . |SemiGroup|) T) ((|InnerPrimeField| . |StepThrough|) T) ((|DoubleFloatVector| . |HomogeneousAggregate|) 104959) ((|Color| . |BasicType|) T) ((|BalancedPAdicInteger| . |EntireRing|) T) ((|Polynomial| . |AbelianGroup|) T) ((|MyExpression| . |CombinatorialOpsCategory|) T) ((|EqTable| . |Eltable|) 104938) ((|LieSquareMatrix| . |PartialDifferentialRing|) 104870) ((|BalancedPAdicInteger| . |SemiGroup|) T) ((|TwoDimensionalArray| . |CoercibleTo|) 104821) ((|QuadraticForm| . |AbelianGroup|) T) ((|RealClosure| . |OrderedSet|) T) ((|HomogeneousDirectProduct| . |VectorSpace|) 104788) ((|Complex| . |InnerEvalable|) 104677) ((|OnePointCompletion| . |BasicType|) T) ((|PartialFraction| . |EntireRing|) T) ((|InnerPAdicInteger| . |Ring|) T) ((|NeitherSparseOrDensePowerSeries| . |PrincipalIdealDomain|) T) ((|OrderlyDifferentialVariable| . |RetractableTo|) 104661) ((|UnivariateLaurentSeries| . |ArcHyperbolicFunctionCategory|) 104610) ((|OutputForm| . |SetCategory|) T) ((|Complex| . |ArcTrigonometricFunctionCategory|) 104561) ((|Library| . |Evalable|) 104367) ((|SparseUnivariateSkewPolynomial| . |CoercibleTo|) 104341) ((|MultivariatePolynomial| . |Algebra|) 104104) ((|DirectProductMatrixModule| . |FullyLinearlyExplicitRingOver|) 104072) ((|BalancedPAdicRational| . |OrderedSet|) NIL) ((|PolynomialRing| . |IntegralDomain|) 104039) ((|Float| . |FloatingPointSystem|) T) ((|AffineSpace| . |CoercibleTo|) 104013) ((|OrderedCompletion| . |AbelianSemiGroup|) 103948) ((|UnivariatePuiseuxSeries| . |Algebra|) 103736) ((|Set| . |Type|) T) ((|AntiSymm| . |Monoid|) T) ((|OpenMathErrorKind| . |BasicType|) T) ((|FortranExpression| . |Module|) 103720) ((|HexadecimalExpansion| . |CharacteristicZero|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |EntireRing|) 103659) ((|MachineComplex| . |AbelianSemiGroup|) T) ((|OrderedDirectProduct| . |Algebra|) 103616) ((|MachineComplex| . |AbelianMonoid|) T) ((|FiniteField| . |StepThrough|) T) ((|DecimalExpansion| . |Field|) T) ((|NewSparseUnivariatePolynomial| . |AbelianMonoidRing|) 103577) ((|Integer| . |SemiGroup|) T) ((|Point| . |EltableAggregate|) 103549) ((|HexadecimalExpansion| . |Algebra|) 103483) ((|ExponentialOfUnivariatePuiseuxSeries| . |CharacteristicNonZero|) 103443) ((|AlgebraicNumber| . |LeftOreRing|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |IntegralDomain|) T) ((|XPolynomialRing| . |AbelianMonoid|) T) ((|MyUnivariatePolynomial| . |InnerEvalable|) 103353) ((|InnerSparseUnivariatePowerSeries| . |Monoid|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |AbelianMonoid|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |Evalable|) 103340) ((|PrimitiveArray| . |Collection|) 103324) ((|KeyedAccessFile| . |Eltable|) 103297) ((|BinaryExpansion| . |OrderedIntegralDomain|) T) ((|InnerFiniteField| . |SemiGroup|) T) ((|UnivariateTaylorSeriesCZero| . |PartialDifferentialRing|) 103161) ((|OnePointCompletion| . |OrderedAbelianGroup|) 103131) ((|RoutinesTable| . |Collection|) 103064) ((|U16Vector| . |FiniteLinearAggregate|) 103041) ((|PoincareBirkhoffWittLyndonBasis| . |SetCategory|) T) ((|DoubleFloatVector| . |OneDimensionalArrayAggregate|) 103014) ((|Complex| . |DifferentialExtension|) 102998) ((|ModMonic| . |PolynomialCategory|) 102933) ((|U8Vector| . |InnerEvalable|) NIL) ((|GeneralUnivariatePowerSeries| . |HyperbolicFunctionCategory|) 102882) ((|SparseUnivariatePolynomial| . |OrderedSet|) 102853) ((|UnivariateTaylorSeries| . |CharacteristicZero|) 102816) ((|SplittingTree| . |InnerEvalable|) 102678) ((|IndexedList| . |CoercibleTo|) 102596) ((|Table| . |DictionaryOperations|) 102538) ((|DoubleFloat| . |TrigonometricFunctionCategory|) T) ((|MyExpression| . |CharacteristicNonZero|) 102498) ((|MachineInteger| . |OrderedIntegralDomain|) T) ((|OrdinaryDifferentialRing| . |SetCategory|) T) ((|Asp31| . |FortranProgramCategory|) T) ((|LaurentPolynomial| . |EntireRing|) T) ((|InnerAlgebraicNumber| . |EuclideanDomain|) T) ((|LinearOrdinaryDifferentialOperator1| . |CancellationAbelianMonoid|) T) ((|InnerAlgebraicNumber| . |RetractableTo|) 102421) ((|UnivariateTaylorSeries| . |CoercibleTo|) 102395) ((|String| . |Evalable|) NIL) ((|DirectProduct| . |Rng|) 102305) ((|ModuleOperator| . |Ring|) T) ((|NewSparseMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 102263) ((|LyndonWord| . |SetCategory|) T) ((|DirectProductMatrixModule| . |OrderedRing|) 102233) ((|Factored| . |CommutativeRing|) T) ((|OrderedDirectProduct| . |CommutativeRing|) 102199) ((|Equation| . |CoercibleTo|) 101834) ((|UnivariatePuiseuxSeries| . |HyperbolicFunctionCategory|) 101783) ((|PatternMatchResult| . |SetCategory|) T) ((|Asp77| . |FortranMatrixFunctionCategory|) T) ((|IndexedBits| . |LinearAggregate|) 101760) ((|Complex| . |MonogenicAlgebra|) 101708) ((|RadicalFunctionField| . |FullyRetractableTo|) 101679) ((|DirectProduct| . |PartialDifferentialRing|) 101583) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |AbelianMonoid|) T) ((|Dequeue| . |Evalable|) 101507) ((|OnePointCompletion| . |AbelianSemiGroup|) 101442) ((|HashTable| . |Aggregate|) T) ((|IndexedFlexibleArray| . |LinearAggregate|) 101426) ((|MonoidRing| . |AbelianGroup|) T) ((|RadicalFunctionField| . |CharacteristicZero|) 101376) ((|DecimalExpansion| . |AbelianSemiGroup|) T) ((|PAdicRational| . |Algebra|) 101300) ((|ThreeSpace| . |CoercibleTo|) 101274) ((|MyUnivariatePolynomial| . |BasicType|) T) ((|IndexedMatrix| . |Type|) T) ((|MachineFloat| . |Monoid|) T) ((|InnerPAdicInteger| . |GcdDomain|) T) ((|Integer| . |Ring|) T) ((|FiniteFieldNormalBasis| . |StepThrough|) T) ((|MachineInteger| . |EntireRing|) T) ((|UnivariateTaylorSeriesCZero| . |RightModule|) 101107) ((|XPolynomialRing| . |FreeModuleCat|) 101086) ((|SingleInteger| . |UniqueFactorizationDomain|) T) ((|Complex| . |FullyPatternMatchable|) 101070) ((|FiniteFieldExtension| . |DivisionRing|) T) ((|UnivariatePuiseuxSeries| . |TranscendentalFunctionCategory|) 101019) ((|DecimalExpansion| . |CharacteristicNonZero|) NIL) ((|FiniteFieldExtensionByPolynomial| . |FiniteAlgebraicExtensionField|) 101003) ((|List| . |ExtensibleLinearAggregate|) 100987) ((|StochasticDifferential| . |AbelianMonoid|) T) ((|DoubleFloat| . |Module|) 100941) ((|ModularField| . |Algebra|) 100895) ((|BasicOperator| . |BasicType|) T) ((|MachineInteger| . |Module|) 100882) ((|TaylorSeries| . |AbelianMonoid|) T) ((|UnivariateFormalPowerSeries| . |IntegralDomain|) 100849) ((|MachineInteger| . |CombinatorialFunctionCategory|) T) ((|HashTable| . |EltableAggregate|) 100828) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |ExtensionField|) 100741) ((|Partition| . |OrderedAbelianSemiGroup|) T) ((|IndexedDirectProductObject| . |CoercibleTo|) 100715) ((|Octonion| . |Algebra|) 100699) ((|U16Vector| . |OneDimensionalArrayAggregate|) 100676) ((|MoebiusTransform| . |CoercibleTo|) 100650) ((|SparseMultivariatePolynomial| . |EntireRing|) 100536) ((|DistributedMultivariatePolynomial| . |Ring|) T) ((|Vector| . |Evalable|) 100460) ((|PseudoAlgebraicClosureOfFiniteField| . |BasicType|) T) ((|Divisor| . |AbelianGroup|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Monoid|) T) ((|SimpleAlgebraicExtension| . |SetCategory|) T) ((|FunctionCalled| . |BasicType|) T) ((|MachineComplex| . |SetCategory|) T) ((|Integer| . |DifferentialRing|) T) ((|IndexedVector| . |FiniteLinearAggregate|) 100444) ((|RectangularMatrix| . |VectorSpace|) 100411) ((|XRecursivePolynomial| . |RetractableTo|) 100373) ((|Plcs| . |CoercibleTo|) 100347) ((|UnivariateLaurentSeriesConstructor| . |UnivariatePowerSeriesCategory|) 100319) ((|Interval| . |ArcHyperbolicFunctionCategory|) T) ((|XPolynomial| . |Module|) 100276) ((|ThreeDimensionalMatrix| . |BasicType|) 100246) ((|MachineFloat| . |Ring|) T) ((|Magma| . |CoercibleTo|) 100220) ((|BinaryExpansion| . |CoercibleTo|) 100194) ((|SplitHomogeneousDirectProduct| . |OrderedAbelianSemiGroup|) 100118) ((|String| . |InnerEvalable|) NIL) ((|DifferentialSparseMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 100102) ((|TextFile| . |FileCategory|) 100067) ((|IndexedString| . |ConvertibleTo|) NIL) ((|BinaryTree| . |BasicType|) 100037) ((|UnivariatePuiseuxSeries| . |PrincipalIdealDomain|) 100013) ((|PartialFraction| . |UniqueFactorizationDomain|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |OrderedAbelianMonoid|) T) ((|MachineComplex| . |CharacteristicZero|) T) ((|SparseUnivariatePuiseuxSeries| . |RetractableTo|) 99897) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |FieldOfPrimeCharacteristic|) 99788) ((|XRecursivePolynomial| . |LeftModule|) 99762) ((|SparseUnivariatePuiseuxSeries| . |CoercibleTo|) 99736) ((|UnivariateTaylorSeries| . |TrigonometricFunctionCategory|) 99685) ((|DecimalExpansion| . |OrderedCancellationAbelianMonoid|) T) ((|PAdicRational| . |QuotientFieldCategory|) 99652) ((|AffineSpace| . |BasicType|) T) ((|SequentialDifferentialPolynomial| . |PartialDifferentialRing|) 99530) ((|LieSquareMatrix| . |FiniteRankNonAssociativeAlgebra|) 99514) ((|KeyedAccessFile| . |HomogeneousAggregate|) 99437) ((|GeneralUnivariatePowerSeries| . |CommutativeRing|) 99343) ((|MachineComplex| . |EntireRing|) T) ((|IndexedBits| . |SetCategory|) T) ((|IndexedFlexibleArray| . |OneDimensionalArrayAggregate|) 99327) ((|BinaryExpansion| . |OrderedCancellationAbelianMonoid|) T) ((|SingleInteger| . |Ring|) T) ((|MyUnivariatePolynomial| . |PrincipalIdealDomain|) 99303) ((|DecimalExpansion| . |LinearlyExplicitRingOver|) 99280) ((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| . |SetCategory|) T) ((|FiniteField| . |CommutativeRing|) T) ((|PAdicInteger| . |BasicType|) T) ((|LaurentPolynomial| . |CharacteristicNonZero|) 99240) ((|DifferentialSparseMultivariatePolynomial| . |SemiGroup|) T) ((|FiniteFieldCyclicGroup| . |EntireRing|) T) ((|RadixExpansion| . |ConvertibleTo|) 99141) ((|OrdinaryDifferentialRing| . |EntireRing|) 99117) ((|RadicalFunctionField| . |AbelianSemiGroup|) T) ((|EuclideanModularRing| . |BasicType|) T) ((|DecimalExpansion| . |PolynomialFactorizationExplicit|) NIL) ((|Stack| . |HomogeneousAggregate|) 99101) ((|MachineFloat| . |Field|) T) ((|TaylorSeries| . |IntegralDomain|) 99068) ((|SparseUnivariatePolynomial| . |IntegralDomain|) 98931) ((|MachineComplex| . |PatternMatchable|) 98910) ((|RectangularMatrix| . |InnerEvalable|) 98829) ((|ArrayStack| . |HomogeneousAggregate|) 98813) ((|PseudoAlgebraicClosureOfRationalNumber| . |AbelianMonoid|) T) ((|Union| . |SetCategory|) T) ((|SingleInteger| . |BasicType|) T) ((|Bits| . |Eltable|) 98778) ((|FiniteDivisor| . |BasicType|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |ExtensionField|) 98762) ((|DirectProductMatrixModule| . |Finite|) 98737) ((|FiniteFieldExtension| . |VectorSpace|) 98721) ((|Asp30| . |FortranProgramCategory|) T) ((|XPolynomial| . |AbelianSemiGroup|) T) ((|AlgebraicFunctionField| . |AbelianGroup|) T) ((|SparseUnivariateLaurentSeries| . |DifferentialRing|) 98558) ((|Fraction| . |Evalable|) 98517) ((|IndexedDirectProductOrderedAbelianMonoid| . |BasicType|) T) ((|OrdinaryDifferentialRing| . |RightModule|) 98454) ((|NewSparseUnivariatePolynomial| . |IntegralDomain|) 98317) ((|UnivariateLaurentSeriesConstructor| . |PatternMatchable|) 98140) ((|OppositeMonogenicLinearOperator| . |Monoid|) T) ((|AlgebraGivenByStructuralConstants| . |BiModule|) 98119) ((|OrderedVariableList| . |BasicType|) T) ((|UnivariatePuiseuxSeriesConstructor| . |Field|) 98095) ((|RadicalFunctionField| . |CoercibleTo|) 98069) ((|Interval| . |GcdDomain|) T) ((|ContinuedFraction| . |LeftOreRing|) T) ((|LinearOrdinaryDifferentialOperator2| . |CancellationAbelianMonoid|) T) ((|SparseTable| . |Dictionary|) 98011) ((|UnivariatePuiseuxSeriesConstructor| . |TrigonometricFunctionCategory|) 97960) ((|FiniteFieldNormalBasis| . |Algebra|) 97914) ((|Expression| . |GcdDomain|) 97881) ((|DecimalExpansion| . |GcdDomain|) T) ((|DifferentialSparseMultivariatePolynomial| . |CharacteristicZero|) 97844) ((|Library| . |KeyedDictionary|) 97814) ((|DirectProduct| . |VectorSpace|) 97781) ((|IntegerMod| . |BiModule|) 97766) ((|FreeModule1| . |BasicType|) T) ((|GeneralModulePolynomial| . |BasicType|) T) ((|SymmetricPolynomial| . |CommutativeRing|) 97695) ((|Union| . |CoercibleTo|) 97669) ((|SparseUnivariateTaylorSeries| . |RadicalCategory|) 97618) ((|Asp7| . |CoercibleTo|) 97592) ((|NeitherSparseOrDensePowerSeries| . |UniqueFactorizationDomain|) T) ((|Quaternion| . |Ring|) T) ((|Equation| . |Monoid|) 97465) ((|DirectProductMatrixModule| . |OrderedAbelianMonoidSup|) 97423) ((|RegularChain| . |PolynomialSetCategory|) 97258) ((|OrdSetInts| . |OrderedSet|) T) ((|InnerIndexedTwoDimensionalArray| . |HomogeneousAggregate|) 97242) ((|BinarySearchTree| . |SetCategory|) 97212) ((|UnivariateLaurentSeries| . |CharacteristicNonZero|) 97062) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |GcdDomain|) T) ((|DirectProduct| . |RetractableTo|) 96813) ((|ArrayStack| . |BasicType|) 96783) ((|ListMultiDictionary| . |Collection|) 96767) ((|SparseUnivariatePolynomial| . |CharacteristicZero|) 96730) ((|FiniteFieldExtension| . |BasicType|) T) ((|MachineComplex| . |CancellationAbelianMonoid|) T) ((|SparseUnivariateTaylorSeries| . |CoercibleTo|) 96704) ((|PAdicRationalConstructor| . |EuclideanDomain|) T) ((|Asp50| . |CoercibleTo|) 96678) ((|None| . |SetCategory|) T) ((|OrderedFreeMonoid| . |BasicType|) T) ((|DirectProductModule| . |CommutativeRing|) 96644) ((|Fraction| . |RetractableTo|) 96446) ((|ModMonic| . |AbelianGroup|) T) ((|OrdinaryWeightedPolynomials| . |SemiGroup|) T) ((|PAdicRational| . |EntireRing|) T) ((|FiniteFieldNormalBasisExtension| . |CharacteristicZero|) 96409) ((|EqTable| . |Collection|) 96351) ((|File| . |CoercibleTo|) 96325) ((|Asp49| . |Type|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |Ring|) T) ((|OnePointCompletion| . |CancellationAbelianMonoid|) 96260) ((|Library| . |Type|) T) ((|SegmentBinding| . |CoercibleTo|) 96211) ((|SymmetricPolynomial| . |SetCategory|) T) ((|GraphImage| . |BasicType|) T) ((|PartialFraction| . |SetCategory|) T) ((|RomanNumeral| . |IntegralDomain|) T) ((|XRecursivePolynomial| . |AbelianMonoid|) T) ((|InnerTable| . |KeyedDictionary|) 96190) ((|GuessOptionFunctions0| . |CoercibleTo|) 96164) ((|PrimeField| . |Algebra|) 96118) ((|DoubleFloat| . |RadicalCategory|) T) ((|InnerSparseUnivariatePowerSeries| . |CharacteristicNonZero|) 96078) ((|UnivariateLaurentSeries| . |OrderedAbelianMonoid|) NIL) ((|Factored| . |AbelianGroup|) T) ((|Float| . |BasicType|) T) ((|DesingTree| . |Type|) T) ((|IndexedOneDimensionalArray| . |HomogeneousAggregate|) 96062) ((|UnivariateTaylorSeries| . |PartialDifferentialRing|) 95926) ((|SquareMatrix| . |DifferentialExtension|) 95910) ((|InnerTaylorSeries| . |RightModule|) 95871) ((|Float| . |OrderedAbelianGroup|) T) ((|ExponentialExpansion| . |OrderedSet|) NIL) ((|HomogeneousDistributedMultivariatePolynomial| . |GcdDomain|) 95789) ((|SparseMultivariateTaylorSeries| . |SetCategory|) T) ((|Asp4| . |FortranFunctionCategory|) T) ((|MachineComplex| . |LinearlyExplicitRingOver|) 95761) ((|DirectProduct| . |LinearlyExplicitRingOver|) 95633) ((|DirectProductMatrixModule| . |Monoid|) 95519) ((|InnerTable| . |Evalable|) 95279) ((|Table| . |InnerEvalable|) 94987) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |AbelianGroup|) T) ((|Expression| . |ArcTrigonometricFunctionCategory|) 94954) ((|PatternMatchResult| . |CoercibleTo|) 94928) ((|OrderedVariableList| . |OrderedSet|) T) ((|FreeModule| . |AbelianGroup|) T) ((|FreeAbelianGroup| . |Module|) 94905) ((|FlexibleArray| . |Collection|) 94889) ((|SparseUnivariatePolynomial| . |BiModule|) 94591) ((|HomogeneousDirectProduct| . |CommutativeRing|) 94557) ((|UnivariatePolynomial| . |FullyRetractableTo|) 94541) ((|InnerPAdicInteger| . |AbelianGroup|) T) ((|Asp12| . |FortranProgramCategory|) T) ((|String| . |BasicType|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |EuclideanDomain|) 94517) ((|MonoidRing| . |CancellationAbelianMonoid|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |IntegralDomain|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |CoercibleTo|) 94491) ((|Float| . |OrderedAbelianMonoid|) T) ((|PositiveInteger| . |SemiGroup|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |AbelianGroup|) T) ((|PAdicRational| . |LinearlyExplicitRingOver|) 94458) ((|FreeModule| . |CancellationAbelianMonoid|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 94379) ((|List| . |CoercibleTo|) 94297) ((|DifferentialSparseMultivariatePolynomial| . |AbelianGroup|) T) ((|MakeCachableSet| . |CoercibleTo|) 94258) ((|Product| . |AbelianMonoid|) 93938) ((|UnivariatePuiseuxSeriesConstructor| . |Ring|) T) ((|FramedModule| . |Monoid|) T) ((|ArrayStack| . |Evalable|) 93862) ((|PseudoAlgebraicClosureOfRationalNumber| . |CommutativeRing|) T) ((|DirectProduct| . |DifferentialExtension|) 93830) ((|PendantTree| . |SetCategory|) 93800) ((|SymmetricPolynomial| . |Monoid|) T) ((|InnerTaylorSeries| . |CancellationAbelianMonoid|) T) ((|NonNegativeInteger| . |OrderedAbelianMonoid|) T) ((|SparseUnivariateLaurentSeries| . |ConvertibleTo|) NIL) ((|Equation| . |InnerEvalable|) 93732) ((|DenavitHartenbergMatrix| . |BasicType|) 93702) ((|HexadecimalExpansion| . |StepThrough|) T) ((|Octonion| . |Eltable|) 93655) ((|CharacterClass| . |DictionaryOperations|) 93630) ((|OneDimensionalArray| . |CoercibleTo|) 93548) ((|TwoDimensionalArray| . |Type|) T) ((|BalancedPAdicInteger| . |LeftModule|) 93535) ((|String| . |Type|) T) ((|PAdicRational| . |Monoid|) T) ((|UnivariateLaurentSeries| . |Patternable|) 93465) ((|CharacterClass| . |FiniteSetAggregate|) 93440) ((|ModMonic| . |SetCategory|) T) ((|e04fdfAnnaType| . |NumericalOptimizationCategory|) T) ((|UnivariatePolynomial| . |PatternMatchable|) NIL) ((|NewSparseMultivariatePolynomial| . |CommutativeRing|) 93293) ((|PrimeField| . |AbelianGroup|) T) ((|SquareMatrix| . |Type|) T) ((|SimpleAlgebraicExtension| . |DifferentialRing|) 93187) ((|RectangularMatrix| . |AbelianSemiGroup|) T) ((|DirectProductModule| . |OrderedAbelianSemiGroup|) 93111) ((|CliffordAlgebra| . |VectorSpace|) 93095) ((|RadicalFunctionField| . |PartialDifferentialRing|) 93014) ((|InnerPAdicInteger| . |IntegralDomain|) T) ((|DirectProduct| . |SetCategory|) 92706) ((|SequentialDifferentialPolynomial| . |AbelianMonoid|) T) ((|LinearOrdinaryDifferentialOperator| . |RightModule|) 92690) ((|FiniteFieldNormalBasisExtension| . |EuclideanDomain|) T) ((|UnivariateLaurentSeries| . |OrderedCancellationAbelianMonoid|) NIL) ((|HomogeneousDirectProduct| . |AbelianMonoid|) 92493) ((|FiniteFieldExtension| . |DifferentialRing|) 92468) ((|InnerFiniteField| . |LeftOreRing|) T) ((|d01aqfAnnaType| . |NumericalIntegrationCategory|) T) ((|IntegrationResult| . |CoercibleTo|) 92442) ((|ExponentialOfUnivariatePuiseuxSeries| . |Field|) 92418) ((|AssociationList| . |EltableAggregate|) 92330) ((|MachineComplex| . |FiniteRankAlgebra|) 92254) ((|AlgebraGivenByStructuralConstants| . |Monad|) T) ((|IndexedDirectProductAbelianGroup| . |AbelianGroup|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |OrderedAbelianMonoidSup|) T) ((|Localize| . |OrderedAbelianSemiGroup|) 92216) ((|IndexedDirectProductAbelianMonoid| . |AbelianMonoid|) T) ((|IndexedDirectProductOrderedAbelianMonoid| . |OrderedAbelianMonoid|) T) ((|AntiSymm| . |Rng|) T) ((|DecimalExpansion| . |Patternable|) 92193) ((|Library| . |BagAggregate|) 92126) ((|UnivariateFormalPowerSeries| . |EntireRing|) 92093) ((|FiniteFieldExtension| . |RightModule|) 92034) ((|UnivariateSkewPolynomial| . |AbelianSemiGroup|) T) ((|BinaryExpansion| . |ConvertibleTo|) 91935) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |SetCategory|) T) ((|FiniteField| . |AbelianGroup|) T) ((|DirectProductModule| . |EltableAggregate|) 91907) ((|Vector| . |Type|) T) ((|Heap| . |Aggregate|) T) ((|OrderlyDifferentialPolynomial| . |PatternMatchable|) NIL) ((|OrderedVariableList| . |SetCategory|) T) ((|SequentialDifferentialVariable| . |SetCategory|) T) ((|OppositeMonogenicLinearOperator| . |SemiGroup|) T) ((|DifferentialSparseMultivariatePolynomial| . |RetractableTo|) 91674) ((|DesingTree| . |Evalable|) 91598) ((|Fraction| . |StepThrough|) 91568) ((|PAdicRationalConstructor| . |PartialDifferentialRing|) 91500) ((|LaurentPolynomial| . |Module|) 91487) ((|WeightedPolynomials| . |Module|) 91444) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |LeftModule|) 91347) ((|InnerTable| . |Eltable|) 91326) ((|DirectProductModule| . |VectorSpace|) 91293) ((|WuWenTsunTriangularSet| . |CoercibleTo|) 91245) ((|PolynomialIdeals| . |SetCategory|) T) ((|UnivariateFormalPowerSeries| . |Algebra|) 91089) ((|LaurentPolynomial| . |IntegralDomain|) T) ((|MachineComplex| . |FiniteFieldCategory|) NIL) ((|OrdinaryDifferentialRing| . |BasicType|) T) ((|UnivariateTaylorSeries| . |Monoid|) T) ((|PAdicRationalConstructor| . |PatternMatchable|) 90970) ((|UnivariateTaylorSeries| . |ArcTrigonometricFunctionCategory|) 90919) ((|DoubleFloat| . |SemiGroup|) T) ((|RoutinesTable| . |Aggregate|) T) ((|Exit| . |BasicType|) T) ((|U32Vector| . |OneDimensionalArrayAggregate|) 90896) ((|HomogeneousDistributedMultivariatePolynomial| . |PartialDifferentialRing|) 90856) ((|Expression| . |Algebra|) 90718) ((|Result| . |Eltable|) 90688) ((|InnerTable| . |IndexedAggregate|) 90667) ((|MachineComplex| . |Eltable|) NIL) ((|d02bhfAnnaType| . |SetCategory|) T) ((|FiniteFieldNormalBasisExtension| . |Rng|) T) ((|CartesianTensor| . |RetractableTo|) 90651) ((|FiniteFieldNormalBasis| . |IntegralDomain|) T) ((|DoubleFloatMatrix| . |Evalable|) NIL) ((|GeneralUnivariatePowerSeries| . |UnivariatePuiseuxSeriesCategory|) 90635) ((|DistributedMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|PAdicRational| . |OrderedAbelianMonoid|) NIL) ((|InnerSparseUnivariatePowerSeries| . |CoercibleTo|) 90609) ((|FiniteField| . |FieldOfPrimeCharacteristic|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |CommutativeRing|) 90462) ((|SparseUnivariatePolynomialExpressions| . |Evalable|) 90449) ((|RadicalFunctionField| . |EntireRing|) T) ((|TwoDimensionalArray| . |BasicType|) 90419) ((|Product| . |BasicType|) T) ((|DirectProduct| . |OrderedAbelianMonoidSup|) 90377) ((|BinaryTree| . |Evalable|) 90301) ((|DoubleFloat| . |CharacteristicZero|) T) ((|UnivariateTaylorSeriesCZero| . |AbelianGroup|) T) ((|XPolynomialRing| . |CancellationAbelianMonoid|) T) ((|PolynomialRing| . |AbelianGroup|) T) ((|UnivariateTaylorSeries| . |Rng|) T) ((|LaurentPolynomial| . |AbelianMonoid|) T) ((|IndexedDirectProductAbelianGroup| . |SetCategory|) T) ((|AssociationList| . |HomogeneousAggregate|) 90230) ((|UnivariatePuiseuxSeriesConstructor| . |BasicType|) T) ((|AlgebraicFunctionField| . |FieldOfPrimeCharacteristic|) NIL) ((|U8Vector| . |ConvertibleTo|) 90205) ((|GeneralUnivariatePowerSeries| . |EntireRing|) 90144) ((|SimpleAlgebraicExtension| . |GcdDomain|) 90078) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |DivisionRing|) T) ((|IndexedFlexibleArray| . |SetCategory|) 90015) ((|Pi| . |BiModule|) 89942) ((|TwoDimensionalArray| . |HomogeneousAggregate|) 89926) ((|FreeModule1| . |AbelianSemiGroup|) T) ((|LinearOrdinaryDifferentialOperator2| . |LinearOrdinaryDifferentialOperatorCategory|) 89910) ((|GenericNonAssociativeAlgebra| . |AbelianSemiGroup|) T) ((|U32Matrix| . |Type|) T) ((|IndexedMatrix| . |TwoDimensionalArrayCategory|) 89838) ((|FlexibleArray| . |Type|) T) ((|MachineFloat| . |OrderedCancellationAbelianMonoid|) T) ((|UnivariatePuiseuxSeriesConstructor| . |PartialDifferentialRing|) 89700) ((|ModuleOperator| . |SemiGroup|) T) ((|OrderlyDifferentialVariable| . |DifferentialVariableCategory|) 89684) ((|OrderlyDifferentialPolynomial| . |DifferentialPolynomialCategory|) 89550) ((|SparseUnivariatePolynomialExpressions| . |Module|) 89290) ((|LocalAlgebra| . |OrderedRing|) 89260) ((|UnivariateTaylorSeries| . |SemiGroup|) T) ((|GeneralUnivariatePowerSeries| . |CoercibleTo|) 89234) ((|FiniteFieldCyclicGroup| . |DifferentialRing|) T) ((|NumericalPDEProblem| . |SetCategory|) T) ((|UnivariateLaurentSeriesConstructor| . |CancellationAbelianMonoid|) T) ((|NumericalOptimizationProblem| . |BasicType|) T) ((|LieSquareMatrix| . |BiModule|) 89213) ((|Point| . |OneDimensionalArrayAggregate|) 89197) ((|FreeModule1| . |RightModule|) 89181) ((|Quaternion| . |AbelianSemiGroup|) T) ((|BlowUpWithHamburgerNoether| . |BlowUpMethodCategory|) T) ((|OppositeMonogenicLinearOperator| . |RightModule|) 89165) ((|OrdinaryDifferentialRing| . |CoercibleTo|) 89139) ((|ListMultiDictionary| . |Aggregate|) T) ((|MoebiusTransform| . |SetCategory|) T) ((|Interval| . |HyperbolicFunctionCategory|) T) ((|FunctionCalled| . |CoercibleTo|) 89113) ((|e04gcfAnnaType| . |NumericalOptimizationCategory|) T) ((|SplitHomogeneousDirectProduct| . |PartialDifferentialRing|) 89017) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Monoid|) T) ((|RewriteRule| . |Eltable|) 88996) ((|Complex| . |CancellationAbelianMonoid|) T) ((|PAdicRational| . |PrincipalIdealDomain|) T) ((|DirectProduct| . |DifferentialRing|) 88933) ((|XDistributedPolynomial| . |Monoid|) T) ((|RuleCalled| . |SetCategory|) T) ((|HomogeneousDirectProduct| . |BasicType|) 88625) ((|TaylorSeries| . |CharacteristicZero|) 88588) ((|TaylorSeries| . |RightModule|) 88421) ((|InnerPrimeField| . |UniqueFactorizationDomain|) T) ((|Fraction| . |OpenMath|) 88351) ((|SplitHomogeneousDirectProduct| . |Module|) 88280) ((|GeneralPolynomialSet| . |ConvertibleTo|) 88216) ((|IndexedDirectProductAbelianMonoid| . |IndexedDirectProductCategory|) 88195) ((|Polynomial| . |PatternMatchable|) 88076) ((|d01amfAnnaType| . |BasicType|) T) ((|MyExpression| . |BiModule|) 87932) ((|AntiSymm| . |LeftAlgebra|) 87916) ((|PseudoAlgebraicClosureOfFiniteField| . |AbelianSemiGroup|) T) ((|DirectProductMatrixModule| . |EltableAggregate|) 87888) ((|MyUnivariatePolynomial| . |OrderedSet|) 87859) ((|IndexedDirectProductAbelianGroup| . |IndexedDirectProductCategory|) 87838) ((|UnivariatePuiseuxSeriesConstructor| . |Module|) 87626) ((|Complex| . |LeftModule|) 87508) ((|FiniteFieldNormalBasis| . |EuclideanDomain|) T) ((|Heap| . |PriorityQueueAggregate|) 87492) ((|ContinuedFraction| . |GcdDomain|) T) ((|CardinalNumber| . |AbelianMonoid|) T) ((|GeneralSparseTable| . |BasicType|) T) ((|SquareMatrix| . |AbelianMonoid|) T) ((|HomogeneousDirectProduct| . |OrderedCancellationAbelianMonoid|) 87416) ((|Integer| . |OrderedCancellationAbelianMonoid|) T) ((|SingleInteger| . |Algebra|) 87403) ((|SparseUnivariateTaylorSeries| . |CommutativeRing|) 87332) ((|BalancedPAdicInteger| . |PrincipalIdealDomain|) T) ((|MyUnivariatePolynomial| . |FiniteAbelianMonoidRing|) 87293) ((|FiniteFieldExtension| . |CommutativeRing|) T) ((|UnivariateTaylorSeriesCZero| . |DifferentialRing|) 87230) ((|Polynomial| . |InnerEvalable|) 87170) ((|MyExpression| . |GcdDomain|) 87137) ((|HomogeneousDistributedMultivariatePolynomial| . |OrderedSet|) 87108) ((|ListMultiDictionary| . |ConvertibleTo|) 87044) ((|Expression| . |ConvertibleTo|) 86822) ((|FullPartialFractionExpansion| . |CoercibleTo|) 86796) ((|SparseMultivariatePolynomial| . |Rng|) T) ((|NewSparseUnivariatePolynomial| . |LeftOreRing|) 86691) ((|GenericNonAssociativeAlgebra| . |NonAssociativeRng|) T) ((|SparseUnivariatePolynomial| . |DifferentialExtension|) 86675) ((|DirectProductMatrixModule| . |OrderedAbelianMonoid|) 86599) ((|Expression| . |Group|) 86575) ((|HashTable| . |Type|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |OrderedAbelianSemiGroup|) T) ((|InnerFiniteField| . |AbelianMonoid|) T) ((|FreeModule1| . |BiModule|) 86554) ((|IndexedVector| . |Evalable|) 86478) ((|AssociationList| . |Aggregate|) T) ((|SingleInteger| . |RealConstant|) T) ((|Factored| . |FullyEvalableOver|) 86462) ((|SparseUnivariateLaurentSeries| . |CommutativeRing|) 86368) ((|Polynomial| . |SetCategory|) T) ((|MonoidRing| . |AbelianSemiGroup|) T) ((|Expression| . |AbelianGroup|) 86170) ((|Float| . |LeftOreRing|) T) ((|U8Vector| . |CoercibleTo|) 86144) ((|PrimeField| . |StepThrough|) T) ((|FreeAbelianGroup| . |BasicType|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |LeftOreRing|) T) ((|ModularField| . |EntireRing|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |BiModule|) 85895) ((|FileName| . |BasicType|) T) ((|MachineComplex| . |FramedAlgebra|) 85819) ((|SparseUnivariateSkewPolynomial| . |AbelianMonoid|) T) ((|SplitHomogeneousDirectProduct| . |HomogeneousAggregate|) 85803) ((|PAdicRationalConstructor| . |UniqueFactorizationDomain|) T) ((|DirectProduct| . |AbelianMonoid|) 85606) ((|InnerPAdicInteger| . |SetCategory|) T) ((|GeneralUnivariatePowerSeries| . |CancellationAbelianMonoid|) T) ((|DataList| . |InnerEvalable|) 85525) ((|OrderedDirectProduct| . |OrderedAbelianMonoid|) 85449) ((|Float| . |ArcTrigonometricFunctionCategory|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |GcdDomain|) T) ((|FreeNilpotentLie| . |Monad|) T) ((|DecimalExpansion| . |PrincipalIdealDomain|) T) ((|FiniteFieldNormalBasisExtension| . |FieldOfPrimeCharacteristic|) 85380) ((|SparseUnivariatePuiseuxSeries| . |CharacteristicNonZero|) 85340) ((|GeneralTriangularSet| . |BasicType|) T) ((|HexadecimalExpansion| . |Field|) T) ((|UnivariateLaurentSeries| . |AbelianSemiGroup|) T) ((|MachineFloat| . |CancellationAbelianMonoid|) T) ((|UnivariateLaurentSeries| . |StepThrough|) NIL) ((|InnerAlgebraicNumber| . |AbelianGroup|) T) ((|BalancedPAdicRational| . |BasicType|) T) ((|UnivariateLaurentSeriesConstructor| . |PrincipalIdealDomain|) 85316) ((|AssociatedJordanAlgebra| . |AbelianGroup|) T) ((|PartialFraction| . |Field|) T) ((|RadicalFunctionField| . |FiniteRankAlgebra|) 85282) ((|Stack| . |Evalable|) 85206) ((|ScriptFormulaFormat| . |SetCategory|) T) ((|BalancedPAdicInteger| . |Algebra|) 85193) ((|RadicalFunctionField| . |FullyLinearlyExplicitRingOver|) 85164) ((|EuclideanModularRing| . |LeftOreRing|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|SparseMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 85122) ((|EqTable| . |BasicType|) T) ((|SparseMultivariateTaylorSeries| . |RadicalCategory|) 85071) ((|SparseUnivariatePolynomialExpressions| . |Algebra|) 84811) ((|FiniteFieldNormalBasisExtension| . |FiniteAlgebraicExtensionField|) 84795) ((|Expression| . |CancellationAbelianMonoid|) 84597) ((|AssociationList| . |KeyedDictionary|) 84576) ((|LinearOrdinaryDifferentialOperator1| . |SemiGroup|) T) ((|UnivariateTaylorSeries| . |RadicalCategory|) 84525) ((|RegularTriangularSet| . |Aggregate|) T) ((|EuclideanModularRing| . |EuclideanDomain|) T) ((|BinaryExpansion| . |DivisionRing|) T) ((|RectangularMatrix| . |Type|) T) ((|XRecursivePolynomial| . |Rng|) T) ((|GenericNonAssociativeAlgebra| . |AbelianMonoid|) T) ((|InnerSparseUnivariatePowerSeries| . |AbelianMonoidRing|) 84497) ((|FreeAbelianMonoid| . |RetractableTo|) 84481) ((|SparseUnivariatePolynomialExpressions| . |UnivariatePolynomialCategory|) 84465) ((|Polynomial| . |Rng|) T) ((|Table| . |BagAggregate|) 84407) ((|Result| . |InnerEvalable|) 84157) ((|Asp31| . |CoercibleTo|) 84131) ((|InnerFiniteField| . |SetCategory|) T) ((|BinaryExpansion| . |OrderedSet|) T) ((|ModularRing| . |SemiGroup|) T) ((|EuclideanModularRing| . |PrincipalIdealDomain|) T) ((|Pi| . |CharacteristicZero|) T) ((|AssociationList| . |LinearAggregate|) 84073) ((|FiniteField| . |LeftOreRing|) T) ((|KeyedAccessFile| . |Aggregate|) T) ((|Character| . |CoercibleTo|) 84047) ((|SequentialDifferentialPolynomial| . |EntireRing|) 83933) ((|LocalAlgebra| . |SemiGroup|) T) ((|UnivariateFormalPowerSeries| . |CommutativeRing|) 83862) ((|PartialFraction| . |LeftOreRing|) T) ((|Expression| . |BiModule|) 83692) ((|MonoidRing| . |LeftModule|) 83639) ((|UnivariateTaylorSeries| . |AbelianMonoidRing|) 83600) ((|ModuleMonomial| . |SetCategory|) T) ((|MachineComplex| . |SemiGroup|) T) ((|SparseMultivariatePolynomial| . |UniqueFactorizationDomain|) 83550) ((|Variable| . |SetCategory|) T) ((|FortranExpression| . |Evalable|) 83537) ((|BalancedPAdicRational| . |PolynomialFactorizationExplicit|) NIL) ((|ModularRing| . |AbelianSemiGroup|) T) ((|UnivariateLaurentSeriesConstructor| . |OrderedCancellationAbelianMonoid|) 83468) ((|Set| . |HomogeneousAggregate|) 83452) ((|BinaryTournament| . |Aggregate|) T) ((|Heap| . |Evalable|) 83376) ((|SparseUnivariatePolynomial| . |EuclideanDomain|) 83352) ((|RightOpenIntervalRootCharacterization| . |RealRootCharacterizationCategory|) 83331) ((|DataList| . |RecursiveAggregate|) 83315) ((|FractionalIdeal| . |SemiGroup|) T) ((|PAdicRationalConstructor| . |RetractableTo|) 83117) ((|IndexedMatrix| . |Evalable|) 83041) ((|OrderlyDifferentialPolynomial| . |CharacteristicNonZero|) 83001) ((|FractionalIdeal| . |Monoid|) T) ((|Fraction| . |CoercibleTo|) 82975) ((|Divisor| . |FreeAbelianMonoidCategory|) 82947) ((|Any| . |CoercibleTo|) 82921) ((|ComplexDoubleFloatVector| . |SetCategory|) T) ((|OrdinaryDifferentialRing| . |AbelianMonoid|) T) ((|MultivariatePolynomial| . |Rng|) T) ((|UnivariateLaurentSeries| . |LinearlyExplicitRingOver|) 82851) ((|FourierSeries| . |Module|) 82835) ((|SparseUnivariatePolynomialExpressions| . |UniqueFactorizationDomain|) 82785) ((|GeneralSparseTable| . |CoercibleTo|) 82759) ((|SequentialDifferentialPolynomial| . |PolynomialCategory|) 82630) ((|UnivariateFormalPowerSeries| . |CharacteristicZero|) 82593) ((|RoutinesTable| . |DictionaryOperations|) 82526) ((|InputForm| . |SetCategory|) T) ((|FiniteFieldNormalBasis| . |Ring|) T) ((|NonNegativeInteger| . |Monoid|) T) ((|SparseUnivariatePolynomialExpressions| . |LeftModule|) 82423) ((|U16Vector| . |Type|) T) ((|StochasticDifferential| . |CoercibleTo|) 82397) ((|ExponentialOfUnivariatePuiseuxSeries| . |TranscendentalFunctionCategory|) 82346) ((|MachineInteger| . |CancellationAbelianMonoid|) T) ((|DirectProductMatrixModule| . |OrderedSet|) 82270) ((|DirichletRing| . |EntireRing|) 82236) ((|FiniteFieldNormalBasisExtension| . |VectorSpace|) 82220) ((|DistributedMultivariatePolynomial| . |PolynomialCategory|) 82123) ((|ModularField| . |Rng|) T) ((|OrderlyDifferentialPolynomial| . |Module|) 81886) ((|NewSparseUnivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 81870) ((|UnivariatePolynomial| . |DifferentialExtension|) 81854) ((|OnePointCompletion| . |OrderedAbelianMonoid|) 81824) ((|FullPartialFractionExpansion| . |BasicType|) T) ((|UnivariateTaylorSeries| . |HyperbolicFunctionCategory|) 81773) ((|MonoidRing| . |RightModule|) 81730) ((|BalancedPAdicRational| . |Algebra|) 81646) ((|SquareMatrix| . |HomogeneousAggregate|) 81630) ((|SymmetricPolynomial| . |EntireRing|) 81597) ((|UnivariateLaurentSeries| . |RightModule|) 81312) ((|RealClosure| . |Field|) T) ((|InnerFiniteField| . |CancellationAbelianMonoid|) T) ((|PrimeField| . |BiModule|) 81239) ((|StringTable| . |ConvertibleTo|) NIL) ((|XPolynomialRing| . |XAlgebra|) 81223) ((|PolynomialRing| . |Algebra|) 81067) ((|Library| . |SetCategory|) T) ((|Ruleset| . |BasicType|) T) ((|SparseUnivariatePolynomial| . |CoercibleTo|) 81041) ((|XPBWPolynomial| . |RetractableTo|) 80954) ((|PatternMatchListResult| . |SetCategory|) T) ((|Asp7| . |Type|) T) ((|XPBWPolynomial| . |XPolynomialsCat|) 80933) ((|DirectProduct| . |OrderedSet|) 80857) ((|LinearOrdinaryDifferentialOperator1| . |Rng|) T) ((|Expression| . |Rng|) 80689) ((|d02bhfAnnaType| . |BasicType|) T) ((|ResidueRing| . |AbelianGroup|) T) ((|Variable| . |BasicType|) T) ((|ModularField| . |UniqueFactorizationDomain|) T) ((|UnivariatePuiseuxSeriesConstructor| . |CharacteristicZero|) 80652) ((|Asp29| . |CoercibleTo|) 80626) ((|LieSquareMatrix| . |InnerEvalable|) 80545) ((|StringTable| . |DictionaryOperations|) 80481) ((|PAdicRationalConstructor| . |CharacteristicNonZero|) 80441) ((|MachineComplex| . |BasicType|) T) ((|IntegerMod| . |AbelianSemiGroup|) T) ((|Asp7| . |FortranVectorFunctionCategory|) T) ((|LocalAlgebra| . |OrderedAbelianGroup|) 80411) ((|BalancedPAdicInteger| . |CoercibleTo|) 80385) ((|DirectProductMatrixModule| . |BiModule|) 80248) ((|d01ajfAnnaType| . |SetCategory|) T) ((|HexadecimalExpansion| . |PatternMatchable|) 80225) ((|EqTable| . |IndexedAggregate|) 80204) ((|DecimalExpansion| . |InnerEvalable|) NIL) ((|InnerPrimeField| . |SemiGroup|) T) ((|U8Vector| . |BasicType|) T) ((|GeneralSparseTable| . |HomogeneousAggregate|) 80133) ((|MyExpression| . |Ring|) T) ((|SparseUnivariateLaurentSeries| . |FullyPatternMatchable|) 80057) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |RightModule|) 79998) ((|DifferentialSparseMultivariatePolynomial| . |LinearlyExplicitRingOver|) 79914) ((|Operator| . |CharacteristicZero|) 79877) ((|SparseUnivariatePuiseuxSeries| . |SemiGroup|) T) ((|LocalAlgebra| . |BiModule|) 79856) ((|DecimalExpansion| . |OrderedAbelianGroup|) T) ((|MachineFloat| . |FortranMachineTypeCategory|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |EntireRing|) T) ((|CliffordAlgebra| . |BiModule|) 79835) ((|OrderedDirectProduct| . |DirectProductCategory|) 79814) ((|BinaryExpansion| . |OrderedAbelianGroup|) T) ((|SplitHomogeneousDirectProduct| . |VectorSpace|) 79781) ((|UnivariateSkewPolynomial| . |AbelianMonoid|) T) ((|DirichletRing| . |Monoid|) T) ((|UnivariatePuiseuxSeries| . |UnivariatePowerSeriesCategory|) 79740) ((|MachineFloat| . |OrderedSet|) T) ((|BinaryExpansion| . |Monoid|) T) ((|Multiset| . |Evalable|) 79664) ((|d01fcfAnnaType| . |SetCategory|) T) ((|BalancedPAdicRational| . |CommutativeRing|) T) ((|SquareMatrix| . |RetractableTo|) 79508) ((|SparseMultivariateTaylorSeries| . |AbelianGroup|) T) ((|InnerFiniteField| . |UniqueFactorizationDomain|) T) ((|Asp73| . |FortranVectorFunctionCategory|) T) ((|e04ucfAnnaType| . |NumericalOptimizationCategory|) T) ((|SingleInteger| . |ConvertibleTo|) 79389) ((|SparseUnivariatePolynomial| . |Algebra|) 79129) ((|FiniteFieldCyclicGroupExtension| . |Rng|) T) ((|Complex| . |UniqueFactorizationDomain|) 78975) ((|InfinitlyClosePoint| . |SetCategoryWithDegree|) T) ((|OrderedCompletion| . |OrderedCancellationAbelianMonoid|) 78945) ((|SparseUnivariatePolynomial| . |AbelianMonoidRing|) 78906) ((|UnivariateTaylorSeriesCZero| . |CancellationAbelianMonoid|) T) ((|HexadecimalExpansion| . |SemiGroup|) T) ((|NumericalOptimizationProblem| . |CoercibleTo|) 78880) ((|BalancedPAdicInteger| . |Rng|) T) ((|Character| . |SetCategory|) T) ((|FiniteField| . |SetCategory|) T) ((|ProjectivePlane| . |ProjectiveSpaceCategory|) 78864) ((|AffinePlane| . |AffineSpaceCategory|) 78848) ((|IndexedDirectProductObject| . |IndexedDirectProductCategory|) 78827) ((|SparseUnivariateTaylorSeries| . |PowerSeriesCategory|) 78762) ((|FlexibleArray| . |IndexedAggregate|) 78734) ((|IndexedFlexibleArray| . |Aggregate|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |CharacteristicNonZero|) 78665) ((|PlacesOverPseudoAlgebraicClosureOfFiniteField| . |CoercibleTo|) 78639) ((|DirichletRing| . |CommutativeRing|) 78605) ((|HexadecimalExpansion| . |BasicType|) T) ((|Complex| . |Ring|) T) ((|MultivariatePolynomial| . |FullyRetractableTo|) 78589) ((|IndexedDirectProductObject| . |BasicType|) T) ((|BalancedPAdicRational| . |FullyPatternMatchable|) 78548) ((|Integer| . |OrderedIntegralDomain|) T) ((|StringTable| . |CoercibleTo|) 78522) ((|SymmetricPolynomial| . |CancellationAbelianMonoid|) T) ((|WeightedPolynomials| . |BasicType|) T) ((|FiniteFieldCyclicGroupExtension| . |Finite|) 78497) ((|SequentialDifferentialVariable| . |CoercibleTo|) 78471) ((|DenavitHartenbergMatrix| . |CoercibleTo|) 78422) ((|PseudoAlgebraicClosureOfFiniteField| . |DivisionRing|) T) ((|WuWenTsunTriangularSet| . |Evalable|) 78346) ((|Float| . |CancellationAbelianMonoid|) T) ((|EqTable| . |Type|) T) ((|MachineComplex| . |RadicalCategory|) NIL) ((|SingleInteger| . |CancellationAbelianMonoid|) T) ((|SubSpaceComponentProperty| . |SetCategory|) T) ((|FiniteFieldExtensionByPolynomial| . |Field|) T) ((|MachineComplex| . |Finite|) NIL) ((|FreeAbelianMonoid| . |SetCategory|) T) ((|PAdicRational| . |DifferentialRing|) NIL) ((|WuWenTsunTriangularSet| . |ConvertibleTo|) 78282) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |BasicType|) T) ((|OnePointCompletion| . |RetractableTo|) 78126) ((|Fraction| . |Monoid|) T) ((|Asp77| . |FortranProgramCategory|) T) ((|Asp55| . |FortranProgramCategory|) T) ((|Asp33| . |FortranProgramCategory|) T) ((|Fraction| . |OrderedRing|) 78086) ((|PAdicRationalConstructor| . |OrderedAbelianGroup|) 78046) ((|Fraction| . |CommutativeRing|) T) ((|BinaryFile| . |SetCategory|) T) ((|UnivariateFormalPowerSeries| . |AbelianMonoid|) T) ((|InnerFiniteField| . |VectorSpace|) 78010) ((|FourierSeries| . |AbelianMonoid|) T) ((|StochasticDifferential| . |SetCategory|) T) ((|EuclideanModularRing| . |Monoid|) T) ((|Complex| . |Algebra|) 77768) ((|RealClosure| . |OrderedAbelianMonoid|) T) ((|ContinuedFraction| . |CancellationAbelianMonoid|) T) ((|Symbol| . |BasicType|) T) ((|Asp10| . |FortranVectorFunctionCategory|) T) ((|BinaryExpansion| . |PatternMatchable|) 77745) ((|RomanNumeral| . |OrderedIntegralDomain|) T) ((|HashTable| . |Evalable|) 77505) ((|DistributedMultivariatePolynomial| . |Algebra|) 77268) ((|AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| . |SetCategory|) T) ((|Fraction| . |RightModule|) 77209) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |CoercibleTo|) 77183) ((|IndexedBits| . |EltableAggregate|) 77148) ((|DirectProductModule| . |OrderedAbelianMonoid|) 77072) ((|FramedModule| . |SetCategory|) T) ((|ModMonic| . |AbelianMonoid|) T) ((|InnerFreeAbelianMonoid| . |BasicType|) T) ((|SymmetricPolynomial| . |BiModule|) 76873) ((|SplittingNode| . |SetCategory|) T) ((|ModMonic| . |Evalable|) 76860) ((|U8Vector| . |HomogeneousAggregate|) 76837) ((|Bits| . |FiniteLinearAggregate|) 76814) ((|InnerAlgebraicNumber| . |CoercibleTo|) 76788) ((|UnivariateLaurentSeriesConstructor| . |PowerSeriesCategory|) 76734) ((|Quaternion| . |SetCategory|) T) ((|FiniteFieldCyclicGroup| . |CancellationAbelianMonoid|) T) ((|UnivariatePuiseuxSeriesConstructor| . |Rng|) T) ((|Interval| . |TranscendentalFunctionCategory|) T) ((|OrderlyDifferentialPolynomial| . |DifferentialRing|) 76699) ((|UnivariatePolynomial| . |LeftOreRing|) 76594) ((|SingleInteger| . |OrderedRing|) T) ((|SingleInteger| . |LeftModule|) 76581) ((|SparseMultivariatePolynomial| . |CharacteristicNonZero|) 76541) ((|UnivariatePolynomial| . |RetractableTo|) 76351) ((|SparseUnivariateTaylorSeries| . |ArcTrigonometricFunctionCategory|) 76300) ((|SquareFreeRegularTriangularSet| . |Aggregate|) T) ((|OutputForm| . |CoercibleTo|) 76274) ((|NewSparseMultivariatePolynomial| . |GcdDomain|) 76192) ((|e04jafAnnaType| . |NumericalOptimizationCategory|) T) ((|MonoidRing| . |AbelianMonoid|) T) ((|DifferentialSparseMultivariatePolynomial| . |BiModule|) 75917) ((|FiniteFieldNormalBasisExtension| . |AbelianMonoid|) T) ((|FiniteFieldExtensionByPolynomial| . |LeftOreRing|) T) ((|UnivariatePuiseuxSeriesConstructor| . |AbelianGroup|) T) ((|UnivariateLaurentSeriesConstructor| . |CommutativeRing|) 75823) ((|Stream| . |ConvertibleTo|) 75759) ((|MyExpression| . |Evalable|) 75746) ((|ContinuedFraction| . |Ring|) T) ((|GeneralUnivariatePowerSeries| . |Monoid|) T) ((|SingleInteger| . |Logic|) T) ((|d01amfAnnaType| . |NumericalIntegrationCategory|) T) ((|CardinalNumber| . |AbelianSemiGroup|) T) ((|e04ucfAnnaType| . |BasicType|) T) ((|SequentialDifferentialPolynomial| . |Module|) 75509) ((|MultivariatePolynomial| . |FiniteAbelianMonoidRing|) 75443) ((|LieExponentials| . |BasicType|) T) ((|PrimitiveArray| . |Type|) T) ((|RadixExpansion| . |LeftModule|) 75377) ((|FreeNilpotentLie| . |Module|) 75361) ((|d01akfAnnaType| . |BasicType|) T) ((|Expression| . |CombinatorialFunctionCategory|) 75328) ((|U16Matrix| . |HomogeneousAggregate|) 75305) ((|SparseUnivariatePolynomial| . |LeftOreRing|) 75200) ((|WuWenTsunTriangularSet| . |HomogeneousAggregate|) 75184) ((|SparseUnivariateLaurentSeries| . |FullyLinearlyExplicitRingOver|) 75108) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Module|) 75049) ((|d01aqfAnnaType| . |CoercibleTo|) 75023) ((|Integer| . |CombinatorialFunctionCategory|) T) ((|HashTable| . |TableAggregate|) 75002) ((|SparseUnivariatePolynomialExpressions| . |EuclideanDomain|) 74978) ((|ModularField| . |BasicType|) T) ((|PseudoAlgebraicClosureOfFiniteField| . |PrincipalIdealDomain|) T) ((|FiniteFieldCyclicGroup| . |DivisionRing|) T) ((|IndexedDirectProductAbelianGroup| . |BasicType|) T) ((|EuclideanModularRing| . |EntireRing|) T) ((|GeneralSparseTable| . |BagAggregate|) 74920) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |CharacteristicZero|) T) ((|Stack| . |CoercibleTo|) 74871) ((|SparseUnivariateTaylorSeries| . |SetCategory|) T) ((|MyExpression| . |BasicType|) T) ((|InnerPrimeField| . |FiniteAlgebraicExtensionField|) 74858) ((|PAdicInteger| . |LeftModule|) 74845) ((|FiniteFieldCyclicGroup| . |Field|) T) ((|FiniteFieldCyclicGroupExtension| . |ExtensionField|) 74829) ((|PseudoAlgebraicClosureOfRationalNumber| . |Algebra|) 74783) ((|DirectProductMatrixModule| . |DifferentialRing|) 74720) ((|IntegerMod| . |CoercibleTo|) 74694) ((|MachineComplex| . |Evalable|) NIL) ((|BalancedBinaryTree| . |Aggregate|) T) ((|FullPartialFractionExpansion| . |SetCategory|) T) ((|LaurentPolynomial| . |RetractableTo|) 74525) ((|OrderedCompletion| . |AbelianMonoid|) 74460) ((|LieSquareMatrix| . |Monoid|) T) ((|InputForm| . |ConvertibleTo|) 74433) ((|LinearOrdinaryDifferentialOperator| . |Algebra|) 74390) ((|IntegrationResult| . |RightModule|) 74354) ((|Fraction| . |LinearlyExplicitRingOver|) 74270) ((|UnivariateLaurentSeries| . |OrderedSet|) NIL) ((|ModularRing| . |SetCategory|) T) ((|FiniteFieldCyclicGroupExtension| . |Algebra|) 74224) ((|ContinuedFraction| . |UniqueFactorizationDomain|) T) ((|PAdicRationalConstructor| . |Type|) T) ((|UnivariateLaurentSeriesConstructor| . |ArcTrigonometricFunctionCategory|) 74173) ((|Product| . |OrderedSet|) 74017) ((|AssociatedLieAlgebra| . |NonAssociativeRng|) T) ((|BinaryTournament| . |CoercibleTo|) 73968) ((|BinaryExpansion| . |AbelianGroup|) T) ((|CliffordAlgebra| . |CancellationAbelianMonoid|) T) ((|PatternMatchListResult| . |BasicType|) T) ((|ModMonic| . |Monoid|) T) ((|Factored| . |DifferentialRing|) 73933) ((|RomanNumeral| . |Module|) 73920) ((|MonoidRing| . |Monoid|) T) ((|UnivariateFormalPowerSeries| . |PartialDifferentialRing|) 73784) ((|OrderedCompletion| . |Ring|) 73754) ((|FiniteFieldCyclicGroupExtension| . |FiniteAlgebraicExtensionField|) 73738) ((|MultivariatePolynomial| . |Monoid|) T) ((|HashTable| . |IndexedAggregate|) 73717) ((|AlgebraicFunctionField| . |GcdDomain|) T) ((|Pi| . |Rng|) T) ((|d01asfAnnaType| . |SetCategory|) T) ((|UnivariateLaurentSeries| . |RadicalCategory|) 73666) ((|UnivariateLaurentSeries| . |ArcTrigonometricFunctionCategory|) 73615) ((|InnerAlgebraicNumber| . |GcdDomain|) T) ((|MyUnivariatePolynomial| . |CommutativeRing|) 73445) ((|U32Vector| . |OrderedSet|) T) ((|d01apfAnnaType| . |CoercibleTo|) 73419) ((|DifferentialSparseMultivariatePolynomial| . |EntireRing|) 73305) ((|MultivariatePolynomial| . |AbelianMonoidRing|) 73239) ((|Point| . |SetCategory|) 73176) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Rng|) T) ((|AlgebraicFunctionField| . |Rng|) T) ((|FiniteFieldCyclicGroupExtension| . |CharacteristicNonZero|) 73107) ((|SparseMultivariatePolynomial| . |BiModule|) 72832) ((|ExponentialOfUnivariatePuiseuxSeries| . |CommutativeRing|) 72738) ((|InnerTaylorSeries| . |SetCategory|) T) ((|XPolynomial| . |SetCategory|) T) ((|SparseUnivariatePolynomial| . |PartialDifferentialRing|) 72636) ((|NonNegativeInteger| . |AbelianMonoid|) T) ((|GeneralDistributedMultivariatePolynomial| . |Module|) 72399) ((|FiniteField| . |DivisionRing|) T) ((|HexadecimalExpansion| . |FullyEvalableOver|) 72376) ((|XDistributedPolynomial| . |RetractableTo|) 72338) ((|GeneralDistributedMultivariatePolynomial| . |UniqueFactorizationDomain|) 72288) ((|Asp77| . |Type|) T) ((|Asp55| . |Type|) T) ((|IntegerMod| . |Finite|) T) ((|Asp33| . |Type|) T) ((|RoutinesTable| . |CoercibleTo|) 72262) ((|UnivariateLaurentSeries| . |CharacteristicZero|) 72118) ((|IndexedOneDimensionalArray| . |ConvertibleTo|) 72054) ((|NonNegativeInteger| . |SetCategory|) T) ((|MachineInteger| . |SetCategory|) T) ((|Interval| . |EntireRing|) T) ((|Expression| . |EntireRing|) 72021) ((|ComplexDoubleFloatMatrix| . |TwoDimensionalArrayCategory|) 71924) ((|DenavitHartenbergMatrix| . |Aggregate|) T) ((|DirectProduct| . |Monoid|) 71810) ((|InnerPrimeField| . |ExtensionField|) 71797) ((|ExponentialOfUnivariatePuiseuxSeries| . |BiModule|) 71547) ((|ThreeDimensionalViewport| . |SetCategory|) T) ((|SequentialDifferentialPolynomial| . |FiniteAbelianMonoidRing|) 71464) ((|IntegerMod| . |Monoid|) T) ((|InputForm| . |BasicType|) T) ((|RectangularMatrix| . |BasicType|) T) ((|BalancedBinaryTree| . |SetCategory|) 71434) ((|MyExpression| . |Type|) T) ((|RadixExpansion| . |OrderedRing|) T) ((|UnivariateSkewPolynomial| . |AbelianGroup|) T) ((|PAdicRational| . |StepThrough|) NIL) ((|PartialFraction| . |Ring|) T) ((|BalancedPAdicRational| . |PartialDifferentialRing|) NIL) ((|Quaternion| . |CharacteristicNonZero|) 71394) ((|MachineInteger| . |RetractableTo|) 71371) ((|AlgebraicNumber| . |OrderedSet|) T) ((|UnivariateFormalPowerSeries| . |UnivariatePowerSeriesCategory|) 71332) ((|MachineFloat| . |AbelianGroup|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |DifferentialRing|) 71307) ((|OrderedDirectProduct| . |Evalable|) 71231) ((|DoubleFloat| . |Algebra|) 71185) ((|RegularChain| . |TriangularSetCategory|) 71020) ((|InnerFiniteField| . |IntegralDomain|) T) ((|UnivariateLaurentSeriesConstructor| . |ArcHyperbolicFunctionCategory|) 70969) ((|Asp31| . |FortranVectorFunctionCategory|) T) ((|DataList| . |FiniteLinearAggregate|) 70953) ((|AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| . |SetCategoryWithDegree|) T) ((|RealClosure| . |IntegralDomain|) T) ((|XRecursivePolynomial| . |XAlgebra|) 70937) ((|PAdicInteger| . |Ring|) T) ((|BalancedPAdicRational| . |ConvertibleTo|) NIL) ((|DataList| . |ConvertibleTo|) 70873) ((|UnivariatePuiseuxSeriesConstructor| . |AbelianMonoidRing|) 70832) ((|OrdinaryWeightedPolynomials| . |Rng|) T) ((|Asp74| . |Type|) T) ((|Dequeue| . |StackAggregate|) 70816) ((|InnerFreeAbelianMonoid| . |CancellationAbelianMonoid|) T) ((|ContinuedFraction| . |DivisionRing|) T) ((|InnerPrimeField| . |Ring|) T) ((|DeRhamComplex| . |CoercibleTo|) 70790) ((|ExponentialOfUnivariatePuiseuxSeries| . |LeftOreRing|) 70766) ((|FourierSeries| . |CancellationAbelianMonoid|) T) ((|IndexedList| . |Eltable|) 70738) ((|Pi| . |SemiGroup|) T) ((|BalancedPAdicInteger| . |SetCategory|) T) ((|BinaryTournament| . |BinaryTreeCategory|) 70722) ((|DirectProductMatrixModule| . |SetCategory|) T) ((|Point| . |CoercibleTo|) 70640) ((|HashTable| . |ConvertibleTo|) NIL) ((|PAdicRational| . |CancellationAbelianMonoid|) T) ((|DecimalExpansion| . |Rng|) T) ((|MathMLFormat| . |BasicType|) T) ((|GeneralPolynomialSet| . |Collection|) 70624) ((|NewSparseUnivariatePolynomial| . |PartialDifferentialRing|) 70522) ((|SequentialDifferentialPolynomial| . |CoercibleTo|) 70496) ((|IndexedTwoDimensionalArray| . |BasicType|) 70466) ((|CliffordAlgebra| . |BasicType|) T) ((|IndexedOneDimensionalArray| . |OrderedSet|) 70437) ((|ExponentialOfUnivariatePuiseuxSeries| . |BasicType|) T) ((|InnerFiniteField| . |BasicType|) T) ((|DoubleFloat| . |Ring|) T) ((|ModMonic| . |LeftModule|) 70334) ((|MyExpression| . |FullyPatternMatchable|) 70318) ((|BlowUpWithQuadTrans| . |BasicType|) T) ((|d01apfAnnaType| . |SetCategory|) T) ((|RectangularMatrix| . |AbelianGroup|) T) ((|PAdicRationalConstructor| . |OrderedAbelianMonoid|) 70278) ((|Integer| . |OrderedRing|) T) ((|HomogeneousDirectProduct| . |Type|) T) ((|TaylorSeries| . |CharacteristicNonZero|) 70238) ((|BalancedPAdicInteger| . |IntegralDomain|) T) ((|DistributedMultivariatePolynomial| . |LinearlyExplicitRingOver|) 70154) ((|Integer| . |CommutativeRing|) T) ((|FreeNilpotentLie| . |SetCategory|) T) ((|SingletonAsOrderedSet| . |OrderedSet|) T) ((|GeneralDistributedMultivariatePolynomial| . |ConvertibleTo|) 69932) ((|MyUnivariatePolynomial| . |DifferentialExtension|) 69916) ((|FreeAbelianGroup| . |SetCategory|) T) ((|Pi| . |EntireRing|) T) ((|FreeModule| . |BasicType|) T) ((|UnivariatePuiseuxSeriesConstructor| . |LeftModule|) 69785) ((|SparseUnivariateLaurentSeries| . |EntireRing|) 69724) ((|SparseUnivariatePolynomial| . |PolynomialFactorizationExplicit|) 69674) ((|MyUnivariatePolynomial| . |UniqueFactorizationDomain|) 69624) ((|MyExpression| . |LinearlyExplicitRingOver|) 69496) ((|Automorphism| . |Monoid|) T) ((|SparseUnivariateLaurentSeries| . |StepThrough|) NIL) ((|MachineInteger| . |PatternMatchable|) 69473) ((|MyUnivariatePolynomial| . |CharacteristicNonZero|) 69433) ((|InnerTable| . |TableAggregate|) 69412) ((|NeitherSparseOrDensePowerSeries| . |AbelianMonoidRing|) 69384) ((|IndexedFlexibleArray| . |BasicType|) 69321) ((|d01gbfAnnaType| . |CoercibleTo|) 69295) ((|U8Vector| . |Collection|) 69272) ((|NewSparseMultivariatePolynomial| . |Monoid|) T) ((|SuchThat| . |CoercibleTo|) 69246) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |DifferentialRing|) 69221) ((|FiniteFieldNormalBasis| . |FiniteAlgebraicExtensionField|) 69190) ((|RegularChain| . |Evalable|) 68954) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |SemiGroup|) T) ((|NeitherSparseOrDensePowerSeries| . |Type|) T) ((|Localize| . |RightModule|) 68938) ((|DoubleFloat| . |Rng|) T) ((|SparseUnivariatePolynomial| . |SemiGroup|) T) ((|MachineInteger| . |IntegralDomain|) T) ((|InnerSparseUnivariatePowerSeries| . |AbelianSemiGroup|) T) ((|ListMultiDictionary| . |DictionaryOperations|) 68922) ((|RealClosure| . |LeftOreRing|) T) ((|Matrix| . |Aggregate|) T) ((|FiniteFieldNormalBasisExtension| . |CoercibleTo|) 68896) ((|SparseUnivariatePolynomialExpressions| . |CommutativeRing|) 68726) ((|Queue| . |Evalable|) 68650) ((|AlgebraicFunctionField| . |Field|) T) ((|SparseTable| . |DictionaryOperations|) 68592) ((|FortranExpression| . |AbelianMonoid|) T) ((|Asp10| . |CoercibleTo|) 68566) ((|PrimeField| . |CoercibleTo|) 68540) ((|U16Vector| . |BasicType|) T) ((|AlgebraicNumber| . |AlgebraicallyClosedField|) T) ((|Float| . |RadicalCategory|) T) ((|SparseMultivariatePolynomial| . |LinearlyExplicitRingOver|) 68456) ((|TaylorSeries| . |Ring|) T) ((|PAdicRationalConstructor| . |InnerEvalable|) 68345) ((|FreeNilpotentLie| . |AbelianMonoid|) T) ((|UnivariateLaurentSeriesConstructor| . |PolynomialFactorizationExplicit|) 68266) ((|FlexibleArray| . |Evalable|) 68190) ((|MachineFloat| . |SetCategory|) T) ((|ThreeDimensionalMatrix| . |CoercibleTo|) 68141) ((|ResidueRing| . |SemiGroup|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |ArcTrigonometricFunctionCategory|) 68090) ((|ExponentialOfUnivariatePuiseuxSeries| . |AbelianSemiGroup|) T) ((|ComplexDoubleFloatMatrix| . |SetCategory|) T) ((|RealClosure| . |EntireRing|) T) ((|Localize| . |SetCategory|) T) ((|OrderedDirectProduct| . |BasicType|) 67782) ((|PAdicRational| . |AbelianGroup|) T) ((|IndexedVector| . |SetCategory|) 67719) ((|BalancedBinaryTree| . |Type|) T) ((|LieExponentials| . |Monoid|) T) ((|SparseUnivariatePuiseuxSeries| . |Field|) 67695) ((|Equation| . |SemiGroup|) 67541) ((|PAdicRationalConstructor| . |Evalable|) 67500) ((|AntiSymm| . |CoercibleTo|) 67474) ((|InnerAlgebraicNumber| . |ExpressionSpace|) T) ((|FiniteFieldCyclicGroup| . |AbelianMonoid|) T) ((|Operator| . |Algebra|) 67431) ((|AlgebraicFunctionField| . |AbelianMonoid|) T) ((|Expression| . |ElementaryFunctionCategory|) 67398) ((|GeneralSparseTable| . |Aggregate|) T) ((|GeneralDistributedMultivariatePolynomial| . |InnerEvalable|) 67302) ((|U16Matrix| . |Evalable|) NIL) ((|XPBWPolynomial| . |XAlgebra|) 67286) ((|AlgebraicFunctionField| . |Algebra|) 67214) ((|BinarySearchTree| . |Type|) T) ((|LiePolynomial| . |BasicType|) T) ((|None| . |CoercibleTo|) 67188) ((|HomogeneousDirectProduct| . |OrderedAbelianGroup|) 67158) ((|DirectProductMatrixModule| . |FullyRetractableTo|) 67119) ((|PartialFraction| . |BiModule|) 67028) ((|OrdinaryDifferentialRing| . |SemiGroup|) T) ((|SparseUnivariatePolynomialExpressions| . |EntireRing|) 66891) ((|MachineComplex| . |MonogenicAlgebra|) 66815) ((|MyExpression| . |RetractableTo|) 66414) ((|NewSparseUnivariatePolynomial| . |Rng|) T) ((|SparseUnivariatePolynomialExpressions| . |Rng|) T) ((|FiniteField| . |CancellationAbelianMonoid|) T) ((|SimpleCell| . |CoercibleTo|) 66388) ((|SparseMultivariateTaylorSeries| . |SemiGroup|) T) ((|LocalAlgebra| . |AbelianMonoid|) T) ((|GeneralUnivariatePowerSeries| . |LeftModule|) 66257) ((|Float| . |PatternMatchable|) 66236) ((|OrderedVariableList| . |Finite|) T) ((|e04ucfAnnaType| . |CoercibleTo|) 66210) ((|DecimalExpansion| . |RetractableTo|) 66154) ((|FreeGroup| . |Monoid|) T) ((|OppositeMonogenicLinearOperator| . |CoercibleTo|) 66128) ((|FreeAbelianGroup| . |AbelianMonoid|) T) ((|AssociationList| . |Collection|) 66070) ((|DifferentialSparseMultivariatePolynomial| . |UniqueFactorizationDomain|) 66020) ((|Fraction| . |LeftModule|) 65961) ((|GeneralPolynomialSet| . |BasicType|) T) ((|InnerPAdicInteger| . |BasicType|) T) ((|SparseUnivariatePolynomial| . |AbelianMonoid|) T) ((|Point| . |LinearAggregate|) 65945) ((|PseudoAlgebraicClosureOfFiniteField| . |CoercibleTo|) 65919) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Monoid|) T) ((|EuclideanModularRing| . |Ring|) T) ((|LieSquareMatrix| . |RightModule|) 65903) ((|DecimalExpansion| . |LeftOreRing|) T) ((|LocalAlgebra| . |Ring|) T) ((|InnerTaylorSeries| . |Ring|) T) ((|DirectProductModule| . |BasicType|) T) ((|GeneralSparseTable| . |ConvertibleTo|) NIL) ((|AlgebraicNumber| . |BiModule|) 65830) ((|IndexedDirectProductOrderedAbelianMonoid| . |AbelianSemiGroup|) T) ((|Reference| . |SetCategory|) 65800) ((|DirectProduct| . |Eltable|) 65772) ((|UnivariateLaurentSeriesConstructor| . |RetractableTo|) 65487) ((|ExponentialExpansion| . |BiModule|) 65258) ((|e04nafAnnaType| . |SetCategory|) T) ((|DistributedMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 65242) ((|Stack| . |Aggregate|) T) ((|DataList| . |UnaryRecursiveAggregate|) 65226) ((|PolynomialRing| . |EntireRing|) 65193) ((|MachineFloat| . |AbelianMonoid|) T) ((|IndexedMatrix| . |HomogeneousAggregate|) 65177) ((|BinaryExpansion| . |SemiGroup|) T) ((|RadicalFunctionField| . |FramedAlgebra|) 65143) ((|InnerTaylorSeries| . |Module|) 65104) ((|EuclideanModularRing| . |Algebra|) 65091) ((|RuleCalled| . |BasicType|) T) ((|DistributedMultivariatePolynomial| . |PartialDifferentialRing|) 65051) ((|RadixExpansion| . |StepThrough|) T) ((|IndexedList| . |Type|) T) ((|PrimeField| . |Finite|) T) ((|FreeAbelianGroup| . |FreeAbelianMonoidCategory|) 65023) ((|SingleInteger| . |Rng|) T) ((|SparseUnivariatePolynomial| . |StepThrough|) 64993) ((|SparseUnivariatePolynomialExpressions| . |RetractableTo|) 64803) ((|PAdicInteger| . |Module|) 64790) ((|UnivariateLaurentSeries| . |AbelianMonoid|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |FullyRetractableTo|) 64774) ((|Complex| . |DifferentialRing|) 64697) ((|ModMonic| . |LinearlyExplicitRingOver|) 64613) ((|UnivariateLaurentSeriesConstructor| . |DifferentialExtension|) 64580) ((|SparseUnivariateLaurentSeries| . |CharacteristicZero|) 64430) ((|Expression| . |Patternable|) 64414) ((|ExponentialOfUnivariatePuiseuxSeries| . |DifferentialRing|) 64349) ((|DecimalExpansion| . |Module|) 64283) ((|SplittingTree| . |CoercibleTo|) 64257) ((|MachineFloat| . |RealConstant|) T) ((|MultivariatePolynomial| . |BasicType|) T) ((|NeitherSparseOrDensePowerSeries| . |GcdDomain|) T) ((|ComplexDoubleFloatMatrix| . |Evalable|) NIL) ((|UnivariatePolynomial| . |SetCategory|) T) ((|RomanNumeral| . |OrderedCancellationAbelianMonoid|) T) ((|DifferentialSparseMultivariatePolynomial| . |SetCategory|) T) ((|SequentialDifferentialPolynomial| . |LeftModule|) 64154) ((|CliffordAlgebra| . |RightModule|) 64138) ((|FiniteFieldCyclicGroupExtension| . |GcdDomain|) T) ((|InnerAlgebraicNumber| . |LeftModule|) 64092) ((|AlgebraicNumber| . |RealConstant|) T) ((|GeneralDistributedMultivariatePolynomial| . |AbelianMonoid|) T) ((|IndexedExponents| . |SetCategory|) T) ((|PAdicRational| . |SetCategory|) T) ((|ModularField| . |LeftOreRing|) T) ((|Interval| . |AbelianSemiGroup|) T) ((|MachineComplex| . |DivisionRing|) T) ((|FreeNilpotentLie| . |CancellationAbelianMonoid|) T) ((|ExponentialExpansion| . |FullyPatternMatchable|) 64007) ((|AlgebraicFunctionField| . |FiniteFieldCategory|) NIL) ((|PoincareBirkhoffWittLyndonBasis| . |CoercibleTo|) 63981) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |SetCategory|) T) ((|AssociationList| . |OrderedSet|) NIL) ((|FiniteField| . |Module|) 63907) ((|UnivariateLaurentSeries| . |ConvertibleTo|) NIL) ((|FiniteField| . |RetractableTo|) 63876) ((|MachineComplex| . |UniqueFactorizationDomain|) T) ((|Octonion| . |Rng|) T) ((|Fraction| . |OrderedAbelianSemiGroup|) 63836) ((|BalancedPAdicRational| . |Rng|) T) ((|UnivariatePuiseuxSeriesConstructor| . |UniqueFactorizationDomain|) 63812) ((|SimpleAlgebraicExtension| . |LinearlyExplicitRingOver|) 63728) ((|Complex| . |CharacteristicNonZero|) 63646) ((|Float| . |RealConstant|) T) ((|LinearOrdinaryDifferentialOperator1| . |BiModule|) 63625) ((|MultivariatePolynomial| . |SemiGroup|) T) ((|XPBWPolynomial| . |AbelianMonoid|) T) ((|UnivariateLaurentSeriesConstructor| . |ConvertibleTo|) 63168) ((|DenavitHartenbergMatrix| . |MatrixCategory|) 63120) ((|SparseUnivariateTaylorSeries| . |Rng|) T) ((|Float| . |CommutativeRing|) T) ((|ModMonic| . |PrincipalIdealDomain|) 63096) ((|RomanNumeral| . |DifferentialRing|) T) ((|ThreeDimensionalMatrix| . |SetCategory|) 63066) ((|DirectProduct| . |OrderedAbelianGroup|) 63036) ((|InnerFiniteField| . |AbelianSemiGroup|) T) ((|Polynomial| . |RightModule|) 62793) ((|NonNegativeInteger| . |OrderedAbelianSemiGroup|) T) ((|OrderedDirectProduct| . |AbelianGroup|) 62680) ((|SequentialDifferentialPolynomial| . |LeftOreRing|) 62598) ((|UnivariateFormalPowerSeries| . |Eltable|) 62583) ((|InnerPAdicInteger| . |LeftModule|) 62570) ((|SparseUnivariateLaurentSeries| . |ArcTrigonometricFunctionCategory|) 62519) ((|DirectProductMatrixModule| . |AbelianGroup|) T) ((|BinarySearchTree| . |Aggregate|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |StepThrough|) 62494) ((|ExponentialExpansion| . |Eltable|) 62171) ((|UniversalSegment| . |SegmentExpansionCategory|) 62116) ((|BalancedBinaryTree| . |HomogeneousAggregate|) 62100) ((|AssociationList| . |Type|) T) ((|LocalAlgebra| . |OrderedCancellationAbelianMonoid|) 62070) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Finite|) 62045) ((|AffinePlane| . |BasicType|) T) ((|ModMonic| . |Algebra|) 61785) ((|OrderedCompletion| . |SetCategory|) T) ((|Quaternion| . |FullyEvalableOver|) 61769) ((|SparseUnivariatePolynomialExpressions| . |PolynomialCategory|) 61704) ((|FourierSeries| . |Monoid|) T) ((|InnerAlgebraicNumber| . |SemiGroup|) T) ((|Vector| . |OneDimensionalArrayAggregate|) 61688) ((|UnivariatePuiseuxSeries| . |ElementaryFunctionCategory|) 61637) ((|InnerPrimeField| . |ConvertibleTo|) 61614) ((|UnivariatePuiseuxSeries| . |IntegralDomain|) 61553) ((|Factored| . |LeftOreRing|) 61477) ((|Asp41| . |FortranProgramCategory|) T) ((|Integer| . |LeftOreRing|) T) ((|MachineComplex| . |HyperbolicFunctionCategory|) NIL) ((|EuclideanModularRing| . |RightModule|) 61464) ((|DecimalExpansion| . |EuclideanDomain|) T) ((|FiniteFieldNormalBasisExtension| . |Ring|) T) ((|SingleInteger| . |EntireRing|) T) ((|Polynomial| . |BiModule|) 61189) ((|SparseUnivariateLaurentSeries| . |OrderedSet|) NIL) ((|XPolynomialRing| . |Monoid|) T) ((|NewSparseUnivariatePolynomial| . |UniqueFactorizationDomain|) 61139) ((|InnerAlgebraicNumber| . |CancellationAbelianMonoid|) T) ((|IndexedBits| . |ConvertibleTo|) 61114) ((|HomogeneousDirectProduct| . |LeftModule|) 60928) ((|Localize| . |LeftModule|) 60912) ((|FiniteFieldExtensionByPolynomial| . |IntegralDomain|) T) ((|Asp73| . |FortranProgramCategory|) T) ((|SymmetricPolynomial| . |Algebra|) 60756) ((|BinarySearchTree| . |Evalable|) 60680) ((|DifferentialSparseMultivariatePolynomial| . |Module|) 60443) ((|List| . |InnerEvalable|) 60362) ((|KeyedAccessFile| . |Evalable|) 60104) ((|DecimalExpansion| . |CoercibleTo|) 60078) ((|XPolynomialRing| . |RightModule|) 60062) ((|Magma| . |RetractableTo|) 60046) ((|FreeMonoid| . |OrderedSet|) 60017) ((|CliffordAlgebra| . |AbelianSemiGroup|) T) ((|MachineComplex| . |FullyEvalableOver|) 59989) ((|Octonion| . |SetCategory|) T) ((|PrimeField| . |SemiGroup|) T) ((|FiniteFieldNormalBasisExtension| . |LeftOreRing|) T) ((|DataList| . |Collection|) 59973) ((|UnivariatePolynomial| . |LinearlyExplicitRingOver|) 59889) ((|GenericNonAssociativeAlgebra| . |BiModule|) 59812) ((|IndexedMatrix| . |Aggregate|) T) ((|MachineInteger| . |IntegerNumberSystem|) T) ((|InnerPrimeField| . |DifferentialRing|) T) ((|BinaryExpansion| . |Type|) T) ((|RomanNumeral| . |EuclideanDomain|) T) ((|Expression| . |CharacteristicNonZero|) 59772) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |OrderedAbelianSemiGroup|) T) ((|NewSparseMultivariatePolynomial| . |Algebra|) 59535) ((|InnerSparseUnivariatePowerSeries| . |Rng|) T) ((|RadixExpansion| . |EuclideanDomain|) T) ((|AlgebraicNumber| . |UniqueFactorizationDomain|) T) ((|RealClosure| . |CoercibleTo|) 59509) ((|InnerSparseUnivariatePowerSeries| . |AbelianMonoid|) T) ((|SparseUnivariatePuiseuxSeries| . |ArcHyperbolicFunctionCategory|) 59458) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |Rng|) T) ((|DoubleFloat| . |BiModule|) 59385) ((|DecimalExpansion| . |CharacteristicZero|) T) ((|Complex| . |Patternable|) 59369) ((|StochasticDifferential| . |AbelianSemiGroup|) T) ((|FiniteFieldCyclicGroup| . |CommutativeRing|) T) ((|Factored| . |SemiGroup|) T) ((|ComplexDoubleFloatVector| . |HomogeneousAggregate|) 59330) ((|U16Vector| . |IndexedAggregate|) 59295) ((|UnivariateSkewPolynomial| . |BiModule|) 59274) ((|FractionalIdeal| . |Group|) T) ((|NeitherSparseOrDensePowerSeries| . |CoercibleTo|) 59248) ((|XPolynomial| . |AbelianMonoid|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |FieldOfPrimeCharacteristic|) 59188) ((|DirectProduct| . |LeftModule|) 59002) ((|FractionalIdeal| . |SetCategory|) T) ((|LinearOrdinaryDifferentialOperator1| . |AbelianSemiGroup|) T) ((|PAdicInteger| . |Algebra|) 58989) ((|Complex| . |StepThrough|) 58951) ((|OrderlyDifferentialPolynomial| . |InnerEvalable|) 58726) ((|OrderedFreeMonoid| . |SetCategory|) T) ((|HashTable| . |BasicType|) T) ((|InnerIndexedTwoDimensionalArray| . |BasicType|) 58696) ((|XPolynomialRing| . |BiModule|) 58675) ((|HexadecimalExpansion| . |LeftOreRing|) T) ((|DirectProductModule| . |HomogeneousAggregate|) 58659) ((|ListMultiDictionary| . |InnerEvalable|) 58578) ((|MultivariatePolynomial| . |RetractableTo|) 58385) ((|OpenMathError| . |BasicType|) T) ((|Interval| . |Algebra|) 58372) ((|OrderedDirectProduct| . |Eltable|) 58344) ((|UnivariateLaurentSeriesConstructor| . |HyperbolicFunctionCategory|) 58293) ((|HomogeneousDirectProduct| . |CoercibleTo|) 57942) ((|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| . |SetCategoryWithDegree|) T) ((|NeitherSparseOrDensePowerSeries| . |DifferentialRing|) 57890) ((|Fraction| . |FullyLinearlyExplicitRingOver|) 57874) ((|Mapping| . |CoercibleTo|) 57848) ((|d01TransformFunctionType| . |NumericalIntegrationCategory|) T) ((|UnivariateFormalPowerSeries| . |CancellationAbelianMonoid|) T) ((|SequentialDifferentialPolynomial| . |SetCategory|) T) ((|Pattern| . |SetCategory|) T) ((|RealClosure| . |CancellationAbelianMonoid|) T) ((|DoubleFloat| . |TranscendentalFunctionCategory|) T) ((|NewSparseMultivariatePolynomial| . |Ring|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |VectorSpace|) 57761) ((|ModMonic| . |DifferentialRing|) T) ((|ElementaryFunctionsUnivariateLaurentSeries| . |PartialTranscendentalFunctions|) 57745) ((|SparseUnivariateLaurentSeries| . |DivisionRing|) 57721) ((|SparseUnivariateSkewPolynomial| . |Module|) 57678) ((|OppositeMonogenicLinearOperator| . |BiModule|) 57657) ((|Tree| . |InnerEvalable|) 57576) ((|DifferentialSparseMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 57526) ((|WeightedPolynomials| . |AbelianGroup|) T) ((|Integer| . |GcdDomain|) T) ((|XPBWPolynomial| . |LeftModule|) 57500) ((|KeyedAccessFile| . |EltableAggregate|) 57473) ((|SimpleAlgebraicExtension| . |CommutativeRing|) T) ((|InnerTable| . |Dictionary|) 57415) ((|SparseUnivariatePuiseuxSeries| . |AbelianGroup|) T) ((|Pi| . |Module|) 57369) ((|MachineComplex| . |Patternable|) 57341) ((|GeneralTriangularSet| . |ConvertibleTo|) 57277) ((|UnivariateLaurentSeries| . |HyperbolicFunctionCategory|) 57226) ((|SparseMultivariateTaylorSeries| . |InnerEvalable|) 57196) ((|Polynomial| . |ConvertibleTo|) 56974) ((|Octonion| . |RightModule|) 56958) ((|RegularChain| . |CoercibleTo|) 56845) ((|Interval| . |Ring|) T) ((|NewSparseUnivariatePolynomial| . |ConvertibleTo|) NIL) ((|PAdicRationalConstructor| . |QuotientFieldCategory|) 56829) ((|UnivariatePuiseuxSeries| . |EntireRing|) 56768) ((|LyndonWord| . |RetractableTo|) 56752) ((|FiniteFieldExtension| . |AbelianSemiGroup|) T) ((|OneDimensionalArray| . |FiniteLinearAggregate|) 56736) ((|PolynomialRing| . |AbelianSemiGroup|) T) ((|NewSparseUnivariatePolynomial| . |PolynomialCategory|) 56671) ((|XPolynomialRing| . |Ring|) T) ((|ExponentialExpansion| . |OrderedIntegralDomain|) NIL) ((|Operator| . |AbelianGroup|) T) ((|ListMultiDictionary| . |HomogeneousAggregate|) 56655) ((|MyUnivariatePolynomial| . |Algebra|) 56395) ((|e04mbfAnnaType| . |NumericalOptimizationCategory|) T) ((|RealClosure| . |RetractableTo|) 56221) ((|IndexedExponents| . |CoercibleTo|) 56195) ((|InnerFreeAbelianMonoid| . |AbelianSemiGroup|) T) ((|BalancedBinaryTree| . |InnerEvalable|) 56114) ((|FiniteFieldExtension| . |StepThrough|) 56089) ((|UnivariateTaylorSeries| . |Module|) 55933) ((|Permutation| . |Monoid|) T) ((|OrderlyDifferentialPolynomial| . |LeftOreRing|) 55851) ((|SimpleAlgebraicExtension| . |BasicType|) T) ((|UnivariatePuiseuxSeriesConstructor| . |TranscendentalFunctionCategory|) 55800) ((|PseudoAlgebraicClosureOfRationalNumber| . |DivisionRing|) T) ((|AlgebraicFunctionField| . |CancellationAbelianMonoid|) T) ((|TaylorSeries| . |CancellationAbelianMonoid|) T) ((|ModMonic| . |Ring|) T) ((|Asp27| . |Type|) T) ((|UnivariateLaurentSeries| . |RetractableTo|) 55747) ((|NewSparseUnivariatePolynomial| . |LinearlyExplicitRingOver|) 55663) ((|FractionalIdeal| . |BasicType|) T) ((|InnerAlgebraicNumber| . |OrderedSet|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |UniqueFactorizationDomain|) T) ((|BalancedPAdicRational| . |OrderedRing|) NIL) ((|SequentialDifferentialVariable| . |OrderedSet|) T) ((|InnerSparseUnivariatePowerSeries| . |PowerSeriesCategory|) 55609) ((|NeitherSparseOrDensePowerSeries| . |AbelianMonoid|) T) ((|ListMultiDictionary| . |MultiDictionary|) 55593) ((|Database| . |BasicType|) T) ((|InnerFiniteField| . |RetractableTo|) 55557) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |PrincipalIdealDomain|) T) ((|PAdicRational| . |AbelianMonoid|) T) ((|Partition| . |OrderedCancellationAbelianMonoid|) T) ((|PAdicRationalConstructor| . |FullyLinearlyExplicitRingOver|) 55541) ((|GeneralSparseTable| . |Evalable|) 55301) ((|MonoidRing| . |CharacteristicNonZero|) 55261) ((|UnivariateLaurentSeriesConstructor| . |RightModule|) 55013) ((|SparseUnivariateTaylorSeries| . |CharacteristicZero|) 54976) ((|ContinuedFraction| . |AbelianMonoid|) T) ((|StringTable| . |InnerEvalable|) 54660) ((|OrderedDirectProduct| . |DifferentialExtension|) 54628) ((|XPolynomial| . |BasicType|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |ExtensionField|) 54612) ((|Bits| . |OrderedSet|) T) ((|DirectProductMatrixModule| . |RightModule|) 54482) ((|Polynomial| . |CharacteristicZero|) 54445) ((|SparseUnivariateLaurentSeries| . |PolynomialFactorizationExplicit|) NIL) ((|FortranExpression| . |AbelianGroup|) T) ((|NewSparseMultivariatePolynomial| . |PatternMatchable|) 54224) ((|AlgebraicNumber| . |Monoid|) T) ((|OrdinaryWeightedPolynomials| . |AbelianSemiGroup|) T) ((|IndexedBits| . |Logic|) T) ((|Complex| . |TranscendentalFunctionCategory|) 54175) ((|GeneralDistributedMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 54125) ((|MachineInteger| . |OrderedCancellationAbelianMonoid|) T) ((|BalancedPAdicInteger| . |PAdicIntegerCategory|) 54109) ((|BalancedBinaryTree| . |BinaryTreeCategory|) 54093) ((|GeneralTriangularSet| . |HomogeneousAggregate|) 54077) ((|MachineInteger| . |OrderedAbelianGroup|) T) ((|PrimeField| . |Field|) T) ((|MachineInteger| . |FortranMachineTypeCategory|) T) ((|DesingTree| . |HomogeneousAggregate|) 54061) ((|BinaryTree| . |Aggregate|) T) ((|LinearOrdinaryDifferentialOperator2| . |Ring|) T) ((|LinearOrdinaryDifferentialOperator| . |AbelianMonoid|) T) ((|FiniteFieldNormalBasis| . |RetractableTo|) 54030) ((|Pi| . |UniqueFactorizationDomain|) T) ((|ModMonic| . |RightModule|) 53764) ((|GeneralUnivariatePowerSeries| . |CharacteristicNonZero|) 53724) ((|RadixExpansion| . |RealConstant|) T) ((|InnerPAdicInteger| . |Rng|) T) ((|Vector| . |EltableAggregate|) 53696) ((|DirectProductModule| . |InnerEvalable|) 53615) ((|Octonion| . |Finite|) 53590) ((|DistributedMultivariatePolynomial| . |Rng|) T) ((|RadixExpansion| . |Eltable|) NIL) ((|InnerPAdicInteger| . |CommutativeRing|) T) ((|BasicFunctions| . |CoercibleTo|) 53564) ((|ExponentialExpansion| . |Ring|) T) ((|Localize| . |OrderedCancellationAbelianMonoid|) 53526) ((|SparseUnivariateLaurentSeries| . |AbelianMonoid|) T) ((|Pi| . |LeftModule|) 53480) ((|WeightedPolynomials| . |AbelianSemiGroup|) T) ((|ModMonic| . |UnivariatePolynomialCategory|) 53464) ((|SequentialDifferentialPolynomial| . |Evalable|) 53451) ((|SequentialDifferentialPolynomial| . |Rng|) T) ((|GeneralDistributedMultivariatePolynomial| . |RetractableTo|) 53258) ((|RomanNumeral| . |AbelianMonoid|) T) ((|BinaryExpansion| . |RealConstant|) T) ((|IndexedDirectProductOrderedAbelianMonoidSup| . |AbelianSemiGroup|) T) ((|IndexedTwoDimensionalArray| . |CoercibleTo|) 53209) ((|UnivariatePuiseuxSeriesConstructor| . |CommutativeRing|) 53115) ((|OrdinaryWeightedPolynomials| . |Monoid|) T) ((|SequentialDifferentialPolynomial| . |CommutativeRing|) 52968) ((|DoubleFloatVector| . |Type|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |CharacteristicNonZero|) 52908) ((|MyUnivariatePolynomial| . |CharacteristicZero|) 52871) ((|DirectProductModule| . |RetractableTo|) 52622) ((|Polynomial| . |CoercibleTo|) 52596) ((|HexadecimalExpansion| . |DivisionRing|) T) ((|MultivariatePolynomial| . |CharacteristicZero|) 52559) ((|SparseUnivariateLaurentSeries| . |UnivariatePowerSeriesCategory|) 52531) ((|FiniteFieldExtension| . |CharacteristicZero|) 52494) ((|MachineInteger| . |LeftModule|) 52481) ((|GeneralTriangularSet| . |CoercibleTo|) 52433) ((|UnivariatePolynomial| . |Eltable|) 52336) ((|IndexedVector| . |HomogeneousAggregate|) 52320) ((|AlgebraicNumber| . |SemiGroup|) T) ((|FreeAbelianGroup| . |BiModule|) 52285) ((|SingleInteger| . |GcdDomain|) T) ((|UnivariateLaurentSeriesConstructor| . |OrderedIntegralDomain|) 52216) ((|Factored| . |RightModule|) 52190) ((|InnerAlgebraicNumber| . |BiModule|) 52117) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Module|) 51873) ((|LocalAlgebra| . |Module|) 51857) ((|ModuleOperator| . |CharacteristicNonZero|) 51817) ((|SymmetricPolynomial| . |FiniteAbelianMonoidRing|) 51787) ((|U32Matrix| . |InnerEvalable|) NIL) ((|BalancedPAdicRational| . |DifferentialRing|) NIL) ((|SparseUnivariateTaylorSeries| . |RightModule|) 51620) ((|Symbol| . |CoercibleTo|) 51594) ((|BinaryFile| . |BasicType|) T) ((|ArrayStack| . |CoercibleTo|) 51545) ((|KeyedAccessFile| . |SetCategory|) T) ((|RoutinesTable| . |Eltable|) 51515) ((|RoutinesTable| . |SetCategory|) T) ((|RegularTriangularSet| . |Evalable|) 51439) ((|ResidueRing| . |Module|) 51423) ((|SparseMultivariatePolynomial| . |PartialDifferentialRing|) 51407) ((|MachineComplex| . |CommutativeRing|) T) ((|CliffordAlgebra| . |LeftModule|) 51381) ((|NottinghamGroup| . |SetCategory|) T) ((|SimpleAlgebraicExtension| . |AbelianMonoid|) T) ((|UnivariateLaurentSeries| . |BiModule|) 51022) ((|UnivariateLaurentSeries| . |SetCategory|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |GcdDomain|) T) ((|PAdicInteger| . |CancellationAbelianMonoid|) T) ((|ExponentialExpansion| . |SemiGroup|) T) ((|Queue| . |InnerEvalable|) 50941) ((|FunctionCalled| . |SetCategory|) T) ((|SparseUnivariatePolynomial| . |SetCategory|) T) ((|InfClsPt| . |BasicType|) T) ((|OrderedDirectProduct| . |DifferentialRing|) 50878) ((|LinearOrdinaryDifferentialOperator1| . |Module|) 50835) ((|DecimalExpansion| . |FullyLinearlyExplicitRingOver|) 50812) ((|DataList| . |IndexedAggregate|) 50784) ((|e04dgfAnnaType| . |BasicType|) T) ((|HTMLFormat| . |CoercibleTo|) 50758) ((|SingleInteger| . |OpenMath|) T) ((|Plot| . |CoercibleTo|) 50732) ((|RegularTriangularSet| . |ConvertibleTo|) 50668) ((|OppositeMonogenicLinearOperator| . |SetCategory|) T) ((|Asp78| . |FortranVectorFunctionCategory|) T) ((|SplitHomogeneousDirectProduct| . |CoercibleTo|) 50317) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |PrincipalIdealDomain|) T) ((|DistributedMultivariatePolynomial| . |InnerEvalable|) 50221) ((|UnivariateLaurentSeriesConstructor| . |Ring|) T) ((|SparseUnivariatePolynomialExpressions| . |FiniteAbelianMonoidRing|) 50182) ((|DirectProductModule| . |RightModule|) 50052) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |Ring|) T) ((|DirichletRing| . |LeftModule|) 49999) ((|InnerPAdicInteger| . |LeftOreRing|) T) ((|HyperellipticFiniteDivisor| . |FiniteDivisorCategory|) 49968) ((|Asp80| . |Type|) T) ((|IndexedString| . |OneDimensionalArrayAggregate|) 49943) ((|MachineFloat| . |PrincipalIdealDomain|) T) ((|Polynomial| . |LeftOreRing|) 49861) ((|Multiset| . |ConvertibleTo|) 49797) ((|Result| . |BasicType|) T) ((|InnerTable| . |CoercibleTo|) 49771) ((|IndexedFlexibleArray| . |FiniteLinearAggregate|) 49755) ((|Asp4| . |Type|) T) ((|LieSquareMatrix| . |BasicType|) T) ((|OrderedDirectProduct| . |FullyRetractableTo|) 49716) ((|MachineComplex| . |Ring|) T) ((|BalancedPAdicRational| . |EuclideanDomain|) T) ((|DecimalExpansion| . |PartialDifferentialRing|) NIL) ((|RadicalFunctionField| . |BiModule|) 49599) ((|SquareMatrix| . |DifferentialRing|) 49564) ((|NewSparseMultivariatePolynomial| . |Rng|) T) ((|SparseMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|d02bhfAnnaType| . |CoercibleTo|) 49538) ((|RadixExpansion| . |BiModule|) 49433) ((|FourierComponent| . |SetCategory|) T) ((|e04ucfAnnaType| . |SetCategory|) T) ((|SequentialDifferentialPolynomial| . |RightModule|) 49190) ((|InnerFiniteField| . |DifferentialRing|) T) ((|MoebiusTransform| . |Monoid|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |Monoid|) T) ((|Library| . |CoercibleTo|) 49164) ((|DifferentialSparseMultivariatePolynomial| . |RightModule|) 48921) ((|AttributeButtons| . |CoercibleTo|) 48895) ((|UnivariateFormalPowerSeries| . |DifferentialRing|) 48832) ((|UnivariateFormalPowerSeries| . |TrigonometricFunctionCategory|) 48781) ((|MultivariatePolynomial| . |UniqueFactorizationDomain|) 48731) ((|GeneralDistributedMultivariatePolynomial| . |Ring|) T) ((|NonNegativeInteger| . |SemiGroup|) T) ((|Asp35| . |Type|) T) ((|SplitHomogeneousDirectProduct| . |DifferentialRing|) 48668) ((|OrderedDirectProduct| . |RightModule|) 48538) ((|d01anfAnnaType| . |SetCategory|) T) ((|RegularTriangularSet| . |Type|) T) ((|SimpleAlgebraicExtension| . |EntireRing|) 48472) ((|FileName| . |CoercibleTo|) 48446) ((|Complex| . |Finite|) 48379) ((|LieSquareMatrix| . |NonAssociativeRng|) T) ((|FiniteFieldCyclicGroup| . |SetCategory|) T) ((|IndexedString| . |HomogeneousAggregate|) 48354) ((|AssociatedJordanAlgebra| . |BiModule|) 48333) ((|KeyedAccessFile| . |TableAggregate|) 48306) ((|FiniteFieldCyclicGroup| . |LeftModule|) 48232) ((|Interval| . |SetCategory|) T) ((|AlgebraicFunctionField| . |CoercibleTo|) 48206) ((|IndexedMatrix| . |InnerEvalable|) 48125) ((|SparseUnivariatePolynomial| . |Ring|) T) ((|SetOfMIntegersInOneToN| . |CoercibleTo|) 48099) ((|FiniteFieldExtension| . |LeftOreRing|) T) ((|Equation| . |Module|) 48028) ((|RadicalFunctionField| . |Finite|) NIL) ((|Octonion| . |BiModule|) 48007) ((|PositiveInteger| . |BasicType|) T) ((|NewSparseUnivariatePolynomial| . |DifferentialRing|) T) ((|IndexedVector| . |EltableAggregate|) 47979) ((|ExponentialOfUnivariatePuiseuxSeries| . |PowerSeriesCategory|) 47912) ((|AntiSymm| . |BasicType|) T) ((|FreeAbelianMonoid| . |CoercibleTo|) 47886) ((|SparseUnivariatePolynomialExpressions| . |CharacteristicZero|) 47849) ((|ModularField| . |IntegralDomain|) T) ((|BalancedPAdicInteger| . |LeftOreRing|) T) ((|Factored| . |Monoid|) T) ((|FiniteFieldNormalBasisExtension| . |DifferentialRing|) 47824) ((|MyUnivariatePolynomial| . |AbelianSemiGroup|) T) ((|UnivariateTaylorSeriesCZero| . |TranscendentalFunctionCategory|) 47773) ((|DistributedMultivariatePolynomial| . |CharacteristicZero|) 47736) ((|InnerPrimeField| . |RetractableTo|) 47723) ((|Interval| . |RadicalCategory|) T) ((|Fraction| . |Rng|) T) ((|DoubleFloatMatrix| . |TwoDimensionalArrayCategory|) 47652) ((|IntegrationResult| . |SetCategory|) T) ((|LinearOrdinaryDifferentialOperator| . |FullyRetractableTo|) 47636) ((|FiniteField| . |FiniteAlgebraicExtensionField|) 47605) ((|Enumeration| . |CoercibleTo|) 47579) ((|LinearOrdinaryDifferentialOperator2| . |Monoid|) T) ((|Matrix| . |CoercibleTo|) 47530) ((|DecimalExpansion| . |IntegralDomain|) T) ((|DirectProduct| . |OrderedCancellationAbelianMonoid|) 47454) ((|DirectProduct| . |InnerEvalable|) 47373) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |CharacteristicNonZero|) 47295) ((|Divisor| . |LeftModule|) 47272) ((|BinaryExpansion| . |InnerEvalable|) NIL) ((|FlexibleArray| . |ConvertibleTo|) 47208) ((|LinearOrdinaryDifferentialOperator| . |Rng|) T) ((|DecimalExpansion| . |UniqueFactorizationDomain|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |EuclideanDomain|) T) ((|DifferentialSparseMultivariatePolynomial| . |Algebra|) 46971) ((|Expression| . |LiouvillianFunctionCategory|) 46938) ((|SparseUnivariatePolynomialExpressions| . |CoercibleTo|) 46912) ((|PrimeField| . |Ring|) T) ((|DoubleFloatVector| . |EltableAggregate|) 46873) ((|RadixExpansion| . |Monoid|) T) ((|StringTable| . |HomogeneousAggregate|) 46796) ((|PAdicRational| . |CharacteristicZero|) T) ((|HyperellipticFiniteDivisor| . |SetCategory|) T) ((|OrderedDirectProduct| . |CancellationAbelianMonoid|) 46599) ((|FourierSeries| . |Rng|) T) ((|UnivariateFormalPowerSeries| . |ArcTrigonometricFunctionCategory|) 46548) ((|NewSparseMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|DifferentialSparseMultivariatePolynomial| . |CoercibleTo|) 46522) ((|XPolynomialRing| . |RetractableTo|) 46506) ((|OrdinaryDifferentialRing| . |Ring|) T) ((|HomogeneousDirectProduct| . |FullyLinearlyExplicitRingOver|) 46474) ((|UnivariateLaurentSeriesConstructor| . |QuotientFieldCategory|) 46441) ((|OrderlyDifferentialPolynomial| . |SetCategory|) T) ((|e04gcfAnnaType| . |BasicType|) T) ((|ModMonic| . |BasicType|) T) ((|ModMonic| . |Module|) 46181) ((|DoubleFloat| . |ElementaryFunctionCategory|) T) ((|DataList| . |SetCategory|) 46118) ((|RealClosure| . |AbelianSemiGroup|) T) ((|BalancedPAdicRational| . |GcdDomain|) T) ((|Polynomial| . |CancellationAbelianMonoid|) T) ((|Fraction| . |Patternable|) 46102) ((|DoubleFloat| . |AbelianMonoid|) T) ((|InnerPrimeField| . |Module|) 46056) ((|U16Vector| . |ConvertibleTo|) 46031) ((|DecimalExpansion| . |BasicType|) T) ((|SingletonAsOrderedSet| . |CoercibleTo|) 46005) ((|SquareMatrix| . |Aggregate|) T) ((|RectangularMatrix| . |Aggregate|) T) ((|HexadecimalExpansion| . |LeftModule|) 45939) ((|d01fcfAnnaType| . |NumericalIntegrationCategory|) T) ((|UnivariatePuiseuxSeriesConstructor| . |AbelianMonoid|) T) ((|OrdinaryDifferentialRing| . |LeftModule|) 45876) ((|XPolynomialRing| . |Module|) 45833) ((|Complex| . |SemiGroup|) T) ((|PAdicRationalConstructor| . |EntireRing|) T) ((|PAdicRational| . |DivisionRing|) T) ((|InnerPAdicInteger| . |BiModule|) 45818) ((|SparseUnivariateLaurentSeries| . |DifferentialExtension|) 45742) ((|Matrix| . |MatrixCategory|) 45694) ((|MyUnivariatePolynomial| . |Module|) 45434) ((|DirectProduct| . |DirectProductCategory|) 45413) ((|DirectProductModule| . |FullyLinearlyExplicitRingOver|) 45381) ((|UnivariateLaurentSeries| . |UnivariateLaurentSeriesCategory|) 45365) ((|NeitherSparseOrDensePowerSeries| . |PowerSeriesCategory|) 45311) ((|ListMultiDictionary| . |BagAggregate|) 45295) ((|Factored| . |InnerEvalable|) 45091) ((|FreeMonoid| . |Monoid|) T) ((|SparseUnivariatePolynomialExpressions| . |TranscendentalFunctionCategory|) 45042) ((|FiniteField| . |BasicType|) T) ((|RadicalFunctionField| . |AbelianMonoid|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |PseudoAlgebraicClosureOfAlgExtOfRationalNumberCategory|) T) ((|OnePointCompletion| . |SemiGroup|) 45012) ((|ExponentialExpansion| . |UniqueFactorizationDomain|) T) ((|GeneralUnivariatePowerSeries| . |RightModule|) 44794) ((|LieSquareMatrix| . |NonAssociativeAlgebra|) 44778) ((|Integer| . |BasicType|) T) ((|DecimalExpansion| . |AbelianGroup|) T) ((|DirectProductMatrixModule| . |HomogeneousAggregate|) 44762) ((|DoubleFloat| . |SetCategory|) T) ((|LocalAlgebra| . |OrderedAbelianMonoid|) 44732) ((|RegularTriangularSet| . |RegularTriangularSetCategory|) 44701) ((|IndexedVector| . |OrderedSet|) 44672) ((|Polynomial| . |PolynomialCategory|) 44613) ((|SExpression| . |SExpressionCategory|) 44537) ((|OrderedFreeMonoid| . |OrderedMonoid|) T) ((|PrimitiveArray| . |Eltable|) 44509) ((|FreeGroup| . |Group|) T) ((|ProjectivePlane| . |BasicType|) T) ((|IntegerMod| . |AbelianMonoid|) T) ((|FiniteFieldCyclicGroupExtension| . |StepThrough|) 44484) ((|HexadecimalExpansion| . |QuotientFieldCategory|) 44461) ((|OrdinaryWeightedPolynomials| . |CoercibleTo|) 44435) ((|AlgebraicNumber| . |Evalable|) 44422) ((|InnerAlgebraicNumber| . |InnerEvalable|) 44384) ((|FortranExpression| . |BiModule|) 44363) ((|U32Vector| . |InnerEvalable|) NIL) ((|FiniteFieldCyclicGroup| . |StepThrough|) T) ((|Tree| . |BasicType|) 44333) ((|OrderlyDifferentialPolynomial| . |PartialDifferentialRing|) 44214) ((|ExponentialExpansion| . |OrderedAbelianGroup|) NIL) ((|Octonion| . |OctonionCategory|) 44198) ((|Interval| . |IntervalCategory|) 44182) ((|SplittingTree| . |RecursiveAggregate|) 44143) ((|DistributedMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 44075) ((|LiePolynomial| . |BiModule|) 44054) ((|ExponentialExpansion| . |Evalable|) 43806) ((|UnivariatePolynomial| . |BiModule|) 43508) ((|HexadecimalExpansion| . |SetCategory|) T) ((|FiniteFieldNormalBasis| . |Finite|) T) ((|FreeModule| . |Module|) 43465) ((|FreeAbelianMonoid| . |AbelianMonoid|) T) ((|FreeAbelianGroup| . |AbelianGroup|) T) ((|MachineInteger| . |SemiGroup|) T) ((|LaurentPolynomial| . |CharacteristicZero|) 43428) ((|UnivariateTaylorSeries| . |IntegralDomain|) 43395) ((|SparseUnivariatePuiseuxSeries| . |UniqueFactorizationDomain|) 43371) ((|UnivariatePuiseuxSeriesConstructor| . |RetractableTo|) 43355) ((|StringTable| . |Type|) T) ((|IndexedVector| . |CoercibleTo|) 43273) ((|FreeAbelianGroup| . |RightModule|) 43250) ((|Quaternion| . |Evalable|) 43209) ((|UnivariateFormalPowerSeries| . |CharacteristicNonZero|) 43169) ((|IndexedBits| . |HomogeneousAggregate|) 43146) ((|Stack| . |Type|) T) ((|BinaryTournament| . |RecursiveAggregate|) 43130) ((|SingleInteger| . |SemiGroup|) T) ((|U16Vector| . |HomogeneousAggregate|) 43107) ((|FiniteFieldNormalBasis| . |CommutativeRing|) T) ((|BalancedPAdicRational| . |LeftModule|) 43023) ((|DoubleFloat| . |RetractableTo|) 42967) ((|ModularField| . |PrincipalIdealDomain|) T) ((|Queue| . |Aggregate|) T) ((|PAdicRational| . |OrderedAbelianGroup|) NIL) ((|MakeCachableSet| . |SetCategory|) T) ((|InnerAlgebraicNumber| . |ConvertibleTo|) 42892) ((|GeneralUnivariatePowerSeries| . |ElementaryFunctionCategory|) 42841) ((|PendantTree| . |InnerEvalable|) 42760) ((|CharacterClass| . |Type|) T) ((|TexFormat| . |BasicType|) T) ((|Divisor| . |Module|) 42737) ((|Expression| . |AbelianMonoid|) 42505) ((|Point| . |Aggregate|) T) ((|HashTable| . |HomogeneousAggregate|) 42434) ((|BalancedPAdicInteger| . |Module|) 42421) ((|BinaryExpansion| . |Algebra|) 42355) ((|FiniteDivisor| . |FiniteDivisorCategory|) 42324) ((|RectangularMatrix| . |RectangularMatrixCategory|) 42242) ((|Set| . |SetCategory|) T) ((|TwoDimensionalArray| . |TwoDimensionalArrayCategory|) 42168) ((|LinearOrdinaryDifferentialOperator| . |LinearOrdinaryDifferentialOperatorCategory|) 42152) ((|PseudoAlgebraicClosureOfRationalNumber| . |PseudoAlgebraicClosureOfRationalNumberCategory|) T) ((|MathMLFormat| . |CoercibleTo|) 42126) ((|String| . |StringCategory|) T) ((|UnivariateLaurentSeriesConstructor| . |UnivariateLaurentSeriesConstructorCategory|) 42105) ((|SquareFreeRegularTriangularSet| . |SquareFreeRegularTriangularSetCategory|) 42074) ((|Point| . |PointCategory|) 42058) ((|UnivariateSkewPolynomial| . |UnivariateSkewPolynomialCategory|) 42042) ((|Complex| . |ComplexCategory|) 42026) ((|UnivariatePuiseuxSeriesConstructor| . |UnivariatePuiseuxSeriesConstructorCategory|) 42005) ((|UnivariatePuiseuxSeries| . |LeftOreRing|) 41981) ((|UnivariatePolynomial| . |UnivariatePolynomialCategory|) 41965) ((|UnivariateTaylorSeries| . |UnivariateTaylorSeriesCategory|) 41949) ((|ProjectiveSpace| . |ProjectiveSpaceCategory|) 41933) ((|BalancedPAdicRational| . |RealConstant|) NIL) ((|UnivariatePuiseuxSeries| . |UnivariatePuiseuxSeriesCategory|) 41917) ((|AlgebraGivenByStructuralConstants| . |LeftModule|) 41866) ((|FortranProgram| . |FortranProgramCategory|) T) ((|OppositeMonogenicLinearOperator| . |Module|) 41823) ((|Permutation| . |PermutationCategory|) 41807) ((|SparseUnivariatePuiseuxSeries| . |ArcTrigonometricFunctionCategory|) 41756) ((|BinaryTree| . |BinaryTreeCategory|) 41740) ((|DesingTree| . |DesingTreeCategory|) 41724) ((|Segment| . |SegmentCategory|) 41708) ((|Quaternion| . |QuaternionCategory|) 41692) ((|FiniteField| . |FiniteFieldCategory|) T) ((|FreeAbelianMonoid| . |FreeAbelianMonoidCategory|) 41653) ((|PAdicInteger| . |PAdicIntegerCategory|) 41637) ((|Vector| . |VectorCategory|) 41621) ((|FileName| . |FileNameCategory|) T) ((|Divisor| . |DivisorCategory|) 41605) ((|ThreeSpace| . |ThreeSpaceCategory|) 41589) ((|InfinitlyClosePoint| . |InfinitlyClosePointCategory|) 41533) ((|SquareMatrix| . |SquareMatrixCategory|) 41456) ((|Places| . |PlacesCategory|) 41399) ((|File| . |FileCategory|) 41370) ((|PseudoAlgebraicClosureOfFiniteField| . |PseudoAlgebraicClosureOfFiniteFieldCategory|) T) ((|AffineSpace| . |AffineSpaceCategory|) 41354) ((|Enumeration| . |EnumerationCategory|) T) ((|Record| . |RecordCategory|) T) ((|IndexedBits| . |BitAggregate|) T) ((|RomanNumeral| . |GcdDomain|) T) ((|FiniteFieldNormalBasisExtension| . |Monoid|) T) ((|XRecursivePolynomial| . |CancellationAbelianMonoid|) T) ((|ModularRing| . |CoercibleTo|) 41328) ((|MyUnivariatePolynomial| . |Rng|) T) ((|d01ajfAnnaType| . |BasicType|) T) ((|IndexedString| . |IndexedAggregate|) 41291) ((|ContinuedFraction| . |CommutativeRing|) T) ((|Table| . |EltableAggregate|) 41270) ((|String| . |Aggregate|) T) ((|StringTable| . |TableAggregate|) 41243) ((|IndexedExponents| . |AbelianMonoid|) T) ((|Operator| . |SemiGroup|) T) ((|AlgebraicFunctionField| . |CharacteristicZero|) 41193) ((|UnivariateFormalPowerSeries| . |BiModule|) 40994) ((|InnerIndexedTwoDimensionalArray| . |Aggregate|) T) ((|UnivariateLaurentSeriesConstructor| . |BasicType|) T) ((|RadicalFunctionField| . |LeftModule|) 40922) ((|OrdinaryDifferentialRing| . |CommutativeRing|) 40898) ((|PseudoAlgebraicClosureOfRationalNumber| . |UniqueFactorizationDomain|) T) ((|SparseMultivariateTaylorSeries| . |AbelianMonoidRing|) 40856) ((|Quaternion| . |CoercibleTo|) 40830) ((|Equation| . |CancellationAbelianMonoid|) 40664) ((|SequentialDifferentialPolynomial| . |Monoid|) T) ((|BinaryExpansion| . |Patternable|) 40641) ((|U32Vector| . |Eltable|) 40606) ((|DoubleFloat| . |CommutativeRing|) T) ((|FiniteFieldCyclicGroup| . |ExtensionField|) 40575) ((|FiniteFieldCyclicGroup| . |AbelianGroup|) T) ((|FiniteFieldCyclicGroupExtension| . |Field|) T) ((|d01alfAnnaType| . |CoercibleTo|) 40549) ((|Asp27| . |FortranMatrixCategory|) T) ((|UnivariateLaurentSeries| . |BasicType|) T) ((|ResidueRing| . |AbelianMonoid|) T) ((|CharacterClass| . |HomogeneousAggregate|) 40524) ((|MyExpression| . |ExpressionSpace|) T) ((|IndexedTwoDimensionalArray| . |TwoDimensionalArrayCategory|) 40426) ((|IndexedVector| . |VectorCategory|) 40410) ((|IndexedMatrix| . |MatrixCategory|) 40338) ((|SparseUnivariatePolynomial| . |InnerEvalable|) 40248) ((|PseudoAlgebraicClosureOfRationalNumber| . |LeftOreRing|) T) ((|IndexedList| . |UnaryRecursiveAggregate|) 40232) ((|UnivariateTaylorSeries| . |LeftModule|) 40129) ((|Asp30| . |Type|) T) ((|IntegrationResult| . |CancellationAbelianMonoid|) T) ((|MachineFloat| . |EuclideanDomain|) T) ((|LinearOrdinaryDifferentialOperator2| . |LeftModule|) 40103) ((|EuclideanModularRing| . |Rng|) T) ((|Asp77| . |CoercibleTo|) 40077) ((|TaylorSeries| . |TrigonometricFunctionCategory|) 40026) ((|AssociationList| . |SetCategory|) T) ((|Asp55| . |CoercibleTo|) 40000) ((|Asp33| . |CoercibleTo|) 39974) ((|MyExpression| . |Group|) 39950) ((|RadicalFunctionField| . |LeftOreRing|) T) ((|Integer| . |OpenMath|) T) ((|Pi| . |PrincipalIdealDomain|) T) ((|LocalAlgebra| . |OrderedAbelianSemiGroup|) 39920) ((|OrdinaryDifferentialRing| . |DifferentialRing|) T) ((|DirectProduct| . |OrderedAbelianSemiGroup|) 39844) ((|CharacterClass| . |Collection|) 39819) ((|OrderedDirectProduct| . |AbelianSemiGroup|) 39588) ((|Localize| . |OrderedAbelianGroup|) 39550) ((|DirichletRing| . |RightModule|) 39470) ((|ModuleOperator| . |RetractableTo|) 39428) ((|U16Matrix| . |Aggregate|) T) ((|SingleInteger| . |BiModule|) 39413) ((|SplitHomogeneousDirectProduct| . |AbelianGroup|) 39300) ((|SparseMultivariateTaylorSeries| . |Monoid|) T) ((|IndexedBits| . |OrderedSet|) T) ((|Float| . |Ring|) T) ((|SparseUnivariateLaurentSeries| . |QuotientFieldCategory|) 39224) ((|FiniteFieldExtensionByPolynomial| . |Algebra|) 39178) ((|Octonion| . |RetractableTo|) 38855) ((|LyndonWord| . |BasicType|) T) ((|ModularField| . |Ring|) T) ((|SparseMultivariateTaylorSeries| . |AbelianSemiGroup|) T) ((|MachineComplex| . |Module|) 38784) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Algebra|) 38738) ((|CartesianTensor| . |CoercibleTo|) 38712) ((|SparseUnivariatePuiseuxSeries| . |Eltable|) 38697) ((|MyUnivariatePolynomial| . |IntegralDomain|) 38560) ((|NeitherSparseOrDensePowerSeries| . |Algebra|) 38474) ((|Asp34| . |Type|) T) ((|SparseUnivariatePuiseuxSeries| . |IntegralDomain|) 38413) ((|KeyedAccessFile| . |BagAggregate|) 38349) ((|GeneralDistributedMultivariatePolynomial| . |PolynomialCategory|) 38299) ((|LaurentPolynomial| . |CommutativeRing|) T) ((|U8Matrix| . |HomogeneousAggregate|) 38276) ((|IndexedBits| . |Type|) T) ((|KeyedAccessFile| . |KeyedDictionary|) 38249) ((|HomogeneousDirectProduct| . |BiModule|) 38112) ((|BlowUpWithHamburgerNoether| . |SetCategory|) T) ((|InnerPrimeField| . |Monoid|) T) ((|DirectProductMatrixModule| . |DifferentialExtension|) 38080) ((|MyUnivariatePolynomial| . |Eltable|) 37983) ((|MyUnivariatePolynomial| . |DifferentialRing|) T) ((|FiniteFieldExtension| . |UniqueFactorizationDomain|) T) ((|SparseUnivariatePuiseuxSeries| . |TranscendentalFunctionCategory|) 37932) ((|MachineInteger| . |OrderedAbelianSemiGroup|) T) ((|InnerAlgebraicNumber| . |Module|) 37886) ((|ExponentialOfUnivariatePuiseuxSeries| . |IntegralDomain|) 37825) ((|InnerPAdicInteger| . |RightModule|) 37812) ((|LinearOrdinaryDifferentialOperator2| . |SetCategory|) T) ((|InnerSparseUnivariatePowerSeries| . |CommutativeRing|) 37741) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |AbelianSemiGroup|) T) ((|StochasticDifferential| . |BiModule|) 37690) ((|Matrix| . |InnerEvalable|) 37609) ((|SequentialDifferentialPolynomial| . |FullyRetractableTo|) 37593) ((|MoebiusTransform| . |SemiGroup|) T) ((|LieSquareMatrix| . |Module|) 37577) ((|FreeNilpotentLie| . |NonAssociativeAlgebra|) 37561) ((|MyExpression| . |FunctionSpace|) 37545) ((|OrderedFreeMonoid| . |OrderedSet|) T) ((|DoubleFloatVector| . |LinearAggregate|) 37518) ((|Stack| . |InnerEvalable|) 37437) ((|SparseUnivariateLaurentSeries| . |CoercibleTo|) 37411) ((|FiniteFieldExtensionByPolynomial| . |SemiGroup|) T) ((|UnivariateSkewPolynomial| . |Rng|) T) ((|Quaternion| . |CharacteristicZero|) 37374) ((|SplitHomogeneousDirectProduct| . |SetCategory|) 37066) ((|SingleInteger| . |CharacteristicZero|) T) ((|CharacterClass| . |ConvertibleTo|) 37013) ((|MultivariatePolynomial| . |CharacteristicNonZero|) 36973) ((|XPolynomialRing| . |AbelianGroup|) T) ((|GenericNonAssociativeAlgebra| . |RightModule|) 36929) ((|NewSparseMultivariatePolynomial| . |AbelianMonoid|) T) ((|RomanNumeral| . |Monoid|) T) ((|LaurentPolynomial| . |DifferentialExtension|) 36913) ((|ExtAlgBasis| . |OrderedSet|) T) ((|LinearOrdinaryDifferentialOperator2| . |AbelianSemiGroup|) T) ((|Result| . |ConvertibleTo|) NIL) ((|Dequeue| . |Aggregate|) T) ((|GeneralDistributedMultivariatePolynomial| . |BasicType|) T) ((|Pi| . |AbelianMonoid|) T) ((|LocalAlgebra| . |SetCategory|) T) ((|OrdinaryDifferentialRing| . |Monoid|) T) ((|Result| . |HomogeneousAggregate|) 36830) ((|UnivariatePuiseuxSeries| . |SemiGroup|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |AbelianGroup|) T) ((|FortranTemplate| . |FileCategory|) 36795) ((|MyUnivariatePolynomial| . |PartialDifferentialRing|) 36693) ((|IndexedString| . |BasicType|) T) ((|SplitHomogeneousDirectProduct| . |DifferentialExtension|) 36661) ((|SplittingTree| . |Evalable|) 36551) ((|InnerSparseUnivariatePowerSeries| . |AbelianGroup|) T) ((|Float| . |Module|) 36505) ((|AffinePlane| . |SetCategory|) T) ((|DoubleFloatVector| . |Aggregate|) T) ((|OrderedFreeMonoid| . |CoercibleTo|) 36479) ((|UnivariateTaylorSeries| . |BasicType|) T) ((|ExponentialExpansion| . |RetractableTo|) 36343) ((|EuclideanModularRing| . |GcdDomain|) T) ((|RealClosure| . |OrderedCancellationAbelianMonoid|) T) ((|NewSparseMultivariatePolynomial| . |OrderedSet|) 36314) ((|FiniteFieldNormalBasisExtension| . |Module|) 36255) ((|OrderlyDifferentialVariable| . |BasicType|) T) ((|U8Vector| . |EltableAggregate|) 36220) ((|FiniteFieldExtension| . |PrincipalIdealDomain|) T) ((|AnonymousFunction| . |SetCategory|) T) ((|DecimalExpansion| . |ConvertibleTo|) 36121) ((|FourierSeries| . |AbelianGroup|) T) ((|WeightedPolynomials| . |Rng|) T) ((|OrderlyDifferentialPolynomial| . |RetractableTo|) 35838) ((|Expression| . |BasicType|) T) ((|SparseUnivariatePolynomialExpressions| . |StepThrough|) 35808) ((|StochasticDifferential| . |BasicType|) T) ((|Localize| . |BiModule|) 35787) ((|Quaternion| . |LeftModule|) 35711) ((|InnerAlgebraicNumber| . |BasicType|) T) ((|OneDimensionalArray| . |EltableAggregate|) 35683) ((|FiniteFieldNormalBasis| . |FieldOfPrimeCharacteristic|) T) ((|Asp35| . |FortranVectorFunctionCategory|) T) ((|PartialFraction| . |RightModule|) 35624) ((|SymmetricPolynomial| . |CoercibleTo|) 35598) ((|SymmetricPolynomial| . |CharacteristicZero|) 35561) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |LeftModule|) 35382) ((|FiniteFieldCyclicGroup| . |Module|) 35308) ((|Asp55| . |FortranVectorFunctionCategory|) T) ((|Plcs| . |PlacesCategory|) 35287) ((|XRecursivePolynomial| . |XPolynomialsCat|) 35266) ((|GenericNonAssociativeAlgebra| . |Monad|) T) ((|UnivariateLaurentSeries| . |LeftModule|) 35068) ((|SparseUnivariateLaurentSeries| . |SetCategory|) T) ((|InnerFreeAbelianMonoid| . |RetractableTo|) 35052) ((|IndexedBits| . |BasicType|) T) ((|UnivariatePolynomial| . |CharacteristicZero|) 35015) ((|RadicalFunctionField| . |CharacteristicNonZero|) 34962) ((|MachineComplex| . |Rng|) T) ((|SparseUnivariatePolynomialExpressions| . |FullyLinearlyExplicitRingOver|) 34946) ((|Asp28| . |CoercibleTo|) 34920) ((|ExponentialExpansion| . |BasicType|) T) ((|SparseUnivariateSkewPolynomial| . |SetCategory|) T) ((|String| . |Collection|) 34895) ((|Float| . |SemiGroup|) T) ((|UnivariateLaurentSeriesConstructor| . |BiModule|) 34610) ((|SparseUnivariatePolynomialExpressions| . |ArcHyperbolicFunctionCategory|) 34561) ((|SequentialDifferentialPolynomial| . |AbelianSemiGroup|) T) ((|GeneralUnivariatePowerSeries| . |Rng|) T) ((|UnivariatePuiseuxSeries| . |ArcTrigonometricFunctionCategory|) 34510) ((|AlgebraicNumber| . |ConvertibleTo|) 34435) ((|IndexedFlexibleArray| . |InnerEvalable|) 34354) ((|PAdicInteger| . |EntireRing|) T) ((|GeneralDistributedMultivariatePolynomial| . |AbelianGroup|) T) ((|MachineFloat| . |OrderedAbelianSemiGroup|) T) ((|InnerPrimeField| . |Rng|) T) ((|GuessOption| . |CoercibleTo|) 34328) ((|GeneralDistributedMultivariatePolynomial| . |Algebra|) 34091) ((|IndexedString| . |SetCategory|) T) ((|Asp6| . |FortranProgramCategory|) T) ((|Library| . |DictionaryOperations|) 34024) ((|ModularRing| . |CancellationAbelianMonoid|) T) ((|GeneralDistributedMultivariatePolynomial| . |RightModule|) 33781) ((|Float| . |ArcHyperbolicFunctionCategory|) T) ((|Magma| . |OrderedSet|) T) ((|AlgebraGivenByStructuralConstants| . |NonAssociativeAlgebra|) 33765) ((|UnivariateTaylorSeriesCZero| . |ArcHyperbolicFunctionCategory|) 33714) ((|StringTable| . |SetCategory|) T) ((|OrdinaryDifferentialRing| . |AbelianGroup|) T) ((|OrderlyDifferentialPolynomial| . |Rng|) T) ((|RealClosure| . |EuclideanDomain|) T) ((|DataList| . |EltableAggregate|) 33686) ((|Table| . |Dictionary|) 33628) ((|ModularRing| . |LeftModule|) 33615) ((|Octonion| . |CharacteristicNonZero|) 33575) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Ring|) T) ((|IntegrationResult| . |AbelianSemiGroup|) T) ((|PrimeField| . |CommutativeRing|) T) ((|NeitherSparseOrDensePowerSeries| . |SetCategory|) T) ((|Complex| . |ConvertibleTo|) 33195) ((|CharacterClass| . |Aggregate|) T) ((|BinaryTournament| . |InnerEvalable|) 33114) ((|LinearOrdinaryDifferentialOperator1| . |RightModule|) 33098) ((|MonoidRing| . |CoercibleTo|) 33072) ((|UnivariateLaurentSeries| . |EntireRing|) 33011) ((|RealClosure| . |SemiGroup|) T) ((|BalancedPAdicRational| . |LeftOreRing|) T) ((|SparseUnivariateTaylorSeries| . |TranscendentalFunctionCategory|) 32960) ((|LieExponentials| . |SemiGroup|) T) ((|ExponentialExpansion| . |AbelianSemiGroup|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |EntireRing|) T) ((|Kernel| . |Patternable|) 32944) ((|DirectProductMatrixModule| . |Module|) 32873) ((|IndexedString| . |EltableAggregate|) 32836) ((|OrderedDirectProduct| . |SemiGroup|) 32722) ((|PAdicRational| . |EuclideanDomain|) T) ((|Kernel| . |CoercibleTo|) 32696) ((|DeRhamComplex| . |LeftAlgebra|) 32665) ((|LinearOrdinaryDifferentialOperator2| . |Module|) 32622) ((|SplittingTree| . |Aggregate|) T) ((|Integer| . |EuclideanDomain|) T) ((|MyUnivariatePolynomial| . |GcdDomain|) 32517) ((|LinearOrdinaryDifferentialOperator2| . |Eltable|) 32478) ((|DirectProductModule| . |LinearlyExplicitRingOver|) 32350) ((|DistributedMultivariatePolynomial| . |Monoid|) T) ((|OrderedCompletion| . |OrderedAbelianGroup|) 32320) ((|Localize| . |BasicType|) T) ((|DecimalExpansion| . |Monoid|) T) ((|SparseUnivariatePolynomial| . |PatternMatchable|) NIL) ((|MachineInteger| . |StepThrough|) T) ((|ModularRing| . |Rng|) T) ((|RealClosure| . |Rng|) T) ((|UnivariateTaylorSeries| . |Algebra|) 32164) ((|PartialFraction| . |CommutativeRing|) T) ((|OrderlyDifferentialPolynomial| . |LeftModule|) 32061) ((|SymmetricPolynomial| . |Ring|) T) ((|FiniteFieldExtension| . |GcdDomain|) T) ((|NewSparseUnivariatePolynomial| . |RightModule|) 31795) ((|GeneralDistributedMultivariatePolynomial| . |BiModule|) 31520) ((|SymmetricPolynomial| . |RetractableTo|) 31364) ((|SplitHomogeneousDirectProduct| . |Algebra|) 31321) ((|FreeAbelianMonoid| . |BasicType|) T) ((|DenavitHartenbergMatrix| . |Evalable|) 31245) ((|MachineComplex| . |Algebra|) 31174) ((|PAdicRationalConstructor| . |Algebra|) 31115) ((|HexadecimalExpansion| . |EntireRing|) T) ((|UnivariateLaurentSeries| . |ElementaryFunctionCategory|) 31064) ((|Complex| . |Module|) 30822) ((|U8Vector| . |SetCategory|) T) ((|Point| . |HomogeneousAggregate|) 30806) ((|HomogeneousDirectProduct| . |AbelianGroup|) 30693) ((|SplitHomogeneousDirectProduct| . |AbelianMonoid|) 30496) ((|NewSparseMultivariatePolynomial| . |PolynomialFactorizationExplicit|) 30446) ((|UnivariateSkewPolynomial| . |RightModule|) 30430) ((|NewSparseMultivariatePolynomial| . |RecursivePolynomialCategory|) 30383) ((|SquareMatrix| . |RectangularMatrixCategory|) 30301) ((|DifferentialSparseMultivariatePolynomial| . |LeftModule|) 30198) ((|XPBWPolynomial| . |CancellationAbelianMonoid|) T) ((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| . |CoercibleTo|) 30172) ((|ExponentialOfUnivariatePuiseuxSeries| . |UniqueFactorizationDomain|) 30148) ((|Factored| . |UniqueFactorizationDomain|) 30104) ((|HomogeneousDirectProduct| . |OrderedSet|) 30028) ((|SparseUnivariatePolynomialExpressions| . |GcdDomain|) 29923) ((|RewriteRule| . |RetractableTo|) 29894) ((|FiniteFieldCyclicGroup| . |FieldOfPrimeCharacteristic|) T) ((|SparseMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|RadixExpansion| . |CommutativeRing|) T) ((|XPBWPolynomial| . |RightModule|) 29878) ((|SparseUnivariatePolynomialExpressions| . |LinearlyExplicitRingOver|) 29794) ((|FortranExpression| . |BasicType|) T) ((|BalancedPAdicRational| . |StepThrough|) NIL) ((|LieSquareMatrix| . |FramedNonAssociativeAlgebra|) 29778) ((|CharacterClass| . |Dictionary|) 29753) ((|LieExponentials| . |CoercibleTo|) 29727) ((|Places| . |CoercibleTo|) 29701) ((|UnivariatePolynomial| . |AbelianMonoid|) T) ((|SparseUnivariatePolynomial| . |BasicType|) T) ((|Factored| . |IntegralDomain|) T) ((|FiniteFieldCyclicGroup| . |LeftOreRing|) T) ((|EqTable| . |CoercibleTo|) 29675) ((|InnerAlgebraicNumber| . |RadicalCategory|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |Algebra|) 29431) ((|UnivariateLaurentSeriesConstructor| . |IntegralDomain|) 29370) ((|SparseTable| . |CoercibleTo|) 29344) ((|GeneralPolynomialSet| . |Evalable|) 29268) ((|EqTable| . |HomogeneousAggregate|) 29197) ((|AlgebraGivenByStructuralConstants| . |SetCategory|) T) ((|RomanNumeral| . |ConvertibleTo|) 29078) ((|BinaryExpansion| . |IntegralDomain|) T) ((|BalancedPAdicInteger| . |RightModule|) 29065) ((|OrderedCompletion| . |CoercibleTo|) 29039) ((|ExponentialOfUnivariatePuiseuxSeries| . |AbelianMonoidRing|) 28998) ((|Factored| . |GcdDomain|) 28922) ((|SparseUnivariatePolynomial| . |UniqueFactorizationDomain|) 28872) ((|LocalAlgebra| . |LeftModule|) 28846) ((|BinaryExpansion| . |SetCategory|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |SemiGroup|) T) ((|d02bbfAnnaType| . |OrdinaryDifferentialEquationsSolverCategory|) T) ((|MachineComplex| . |CharacteristicNonZero|) NIL) ((|HexadecimalExpansion| . |CancellationAbelianMonoid|) T) ((|AssociatedLieAlgebra| . |CancellationAbelianMonoid|) T) ((|Table| . |Collection|) 28788) ((|DifferentialSparseMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|BalancedPAdicRational| . |DifferentialExtension|) 28747) ((|U8Vector| . |LinearAggregate|) 28724) ((|RadicalFunctionField| . |LinearlyExplicitRingOver|) 28614) ((|OrderedDirectProduct| . |Type|) T) ((|LieSquareMatrix| . |SquareMatrixCategory|) 28537) ((|Operator| . |RetractableTo|) 28495) ((|Asp9| . |FortranFunctionCategory|) T) ((|ResidueRing| . |LeftModule|) 28469) ((|SquareMatrix| . |Monoid|) T) ((|RadicalFunctionField| . |GcdDomain|) T) ((|PolynomialRing| . |CharacteristicNonZero|) 28429) ((|CliffordAlgebra| . |CoercibleTo|) 28403) ((|DirectProduct| . |Aggregate|) T) ((|ModMonic| . |DifferentialExtension|) 28387) ((|PAdicRationalConstructor| . |Patternable|) 28371) ((|StringTable| . |Evalable|) 28113) ((|UnivariateSkewPolynomial| . |BasicType|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |FiniteFieldCategory|) 28088) ((|HomogeneousDirectProduct| . |HomogeneousAggregate|) 28072) ((|FiniteFieldExtension| . |Algebra|) 28026) ((|HomogeneousDirectProduct| . |RightModule|) 27896) ((|Interval| . |Monoid|) T) ((|PAdicRationalConstructor| . |RealConstant|) 27865) ((|PolynomialRing| . |CancellationAbelianMonoid|) T) ((|OrdinaryWeightedPolynomials| . |Ring|) T) ((|UnivariatePuiseuxSeries| . |CharacteristicZero|) 27828) ((|PAdicRationalConstructor| . |Rng|) T) ((|IndexedList| . |EltableAggregate|) 27800) ((|LinearOrdinaryDifferentialOperator1| . |SetCategory|) T) ((|DecimalExpansion| . |PatternMatchable|) 27777) ((|DirectProductMatrixModule| . |PartialDifferentialRing|) 27681) ((|Result| . |IndexedAggregate|) 27651) ((|SplittingTree| . |HomogeneousAggregate|) 27612) ((|OrderedDirectProduct| . |RetractableTo|) 27363) ((|RoutinesTable| . |HomogeneousAggregate|) 27280) ((|InnerFiniteField| . |AbelianGroup|) T) ((|FourierSeries| . |BasicType|) T) ((|BalancedPAdicRational| . |Patternable|) 27239) ((|d01aqfAnnaType| . |BasicType|) T) ((|PAdicRationalConstructor| . |SemiGroup|) T) ((|RadicalFunctionField| . |DivisionRing|) T) ((|NewSparseUnivariatePolynomial| . |CharacteristicNonZero|) 27199) ((|MachineFloat| . |RetractableTo|) 27125) ((|LaurentPolynomial| . |BasicType|) T) ((|XRecursivePolynomial| . |Monoid|) T) ((|SparseUnivariateLaurentSeries| . |OrderedCancellationAbelianMonoid|) NIL) ((|LinearOrdinaryDifferentialOperator2| . |AbelianMonoid|) T) ((|Stream| . |Type|) T) ((|GeneralUnivariatePowerSeries| . |SetCategory|) T) ((|MyExpression| . |Field|) 27092) ((|Expression| . |Evalable|) 27079) ((|PseudoAlgebraicClosureOfFiniteField| . |FiniteFieldCategory|) T) ((|MachineFloat| . |GcdDomain|) T) ((|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| . |CoercibleTo|) 27053) ((|Palette| . |SetCategory|) T) ((|UnivariateTaylorSeriesCZero| . |ArcTrigonometricFunctionCategory|) 27002) ((|IndexedFlexibleArray| . |Eltable|) 26974) ((|TaylorSeries| . |InnerEvalable|) 26938) ((|TaylorSeries| . |ArcHyperbolicFunctionCategory|) 26887) ((|Character| . |BasicType|) T) ((|GeneralUnivariatePowerSeries| . |AbelianMonoidRing|) 26846) ((|FiniteField| . |RightModule|) 26772) ((|SquareFreeRegularTriangularSet| . |InnerEvalable|) 26691) ((|PrimitiveArray| . |BasicType|) 26628) ((|OrderlyDifferentialPolynomial| . |IntegralDomain|) 26514) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |CommutativeRing|) T) ((|UnivariatePolynomial| . |PrincipalIdealDomain|) 26490) ((|Quaternion| . |DifferentialRing|) 26455) ((|GeneralDistributedMultivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|AlgebraicNumber| . |RadicalCategory|) T) ((|Partition| . |OrderedSet|) T) ((|MachineFloat| . |OrderedRing|) T) ((|SparseUnivariatePolynomial| . |DifferentialRing|) T) ((|DirectProduct| . |HomogeneousAggregate|) 26439) ((|FiniteFieldExtensionByPolynomial| . |SetCategory|) T) ((|DirectProductModule| . |Type|) T) ((|InnerPrimeField| . |LeftOreRing|) T) ((|SparseUnivariateSkewPolynomial| . |RetractableTo|) 26283) ((|HomogeneousDirectProduct| . |Aggregate|) T) ((|UnivariatePolynomial| . |AbelianGroup|) T) ((|IndexedTwoDimensionalArray| . |Type|) T) ((|AlgebraGivenByStructuralConstants| . |Module|) 26267) ((|InfClsPt| . |SetCategoryWithDegree|) T) ((|FullPartialFractionExpansion| . |ConvertibleTo|) 26238) ((|TwoDimensionalViewport| . |SetCategory|) T) ((|BinaryTournament| . |BinaryRecursiveAggregate|) 26222) ((|InnerPrimeField| . |BiModule|) 26149) ((|PrimeField| . |EuclideanDomain|) T) ((|Float| . |AbelianMonoid|) T) ((|Heap| . |InnerEvalable|) 26068) ((|ExponentialOfUnivariatePuiseuxSeries| . |LeftModule|) 25937) ((|RealClosure| . |OrderedAbelianGroup|) T) ((|PrimeField| . |Monoid|) T) ((|Reference| . |CoercibleTo|) 25888) ((|PAdicRationalConstructor| . |AbelianGroup|) T) ((|Integer| . |OrderedAbelianGroup|) T) ((|PAdicRational| . |AbelianSemiGroup|) T) ((|SparseUnivariatePuiseuxSeries| . |Module|) 25676) ((|Tree| . |RecursiveAggregate|) 25660) ((|GeneralUnivariatePowerSeries| . |EuclideanDomain|) 25636) ((|PseudoAlgebraicClosureOfFiniteField| . |UniqueFactorizationDomain|) T) ((|MachineInteger| . |UniqueFactorizationDomain|) T) ((|XRecursivePolynomial| . |Ring|) T) ((|BinaryTree| . |BinaryRecursiveAggregate|) 25620) ((|PAdicRational| . |RetractableTo|) 25587) ((|SparseTable| . |Evalable|) 25347) ((|OrderlyDifferentialPolynomial| . |AbelianMonoid|) T) ((|Automorphism| . |SemiGroup|) T) ((|PAdicRationalConstructor| . |OrderedAbelianSemiGroup|) 25307) ((|e04fdfAnnaType| . |BasicType|) T) ((|GeneralSparseTable| . |Collection|) 25249) ((|SparseUnivariatePolynomialExpressions| . |SemiGroup|) T) ((|BalancedPAdicInteger| . |Monoid|) T) ((|UnivariateLaurentSeriesConstructor| . |ElementaryFunctionCategory|) 25198) ((|PseudoAlgebraicClosureOfFiniteField| . |SetCategory|) T) ((|UnivariateLaurentSeries| . |TranscendentalFunctionCategory|) 25147) ((|AlgebraicFunctionField| . |LeftOreRing|) T) ((|SparseUnivariateLaurentSeries| . |OrderedIntegralDomain|) NIL) ((|LieSquareMatrix| . |LinearlyExplicitRingOver|) 25063) ((|OrderlyDifferentialPolynomial| . |Algebra|) 24826) ((|Polynomial| . |OrderedSet|) 24797) ((|SparseUnivariatePuiseuxSeries| . |CommutativeRing|) 24703) ((|GeneralUnivariatePowerSeries| . |ArcTrigonometricFunctionCategory|) 24652) ((|FiniteFieldNormalBasis| . |Monoid|) T) ((|AlgebraicFunctionField| . |FiniteRankAlgebra|) 24618) ((|UnivariateLaurentSeries| . |OrderedAbelianSemiGroup|) NIL) ((|Vector| . |Collection|) 24602) ((|ModMonic| . |OrderedSet|) 24573) ((|PAdicRationalConstructor| . |PolynomialFactorizationExplicit|) 24523) ((|Expression| . |DivisionRing|) 24490) ((|AssociatedJordanAlgebra| . |RightModule|) 24474) ((|Divisor| . |SetCategory|) T) ((|FiniteFieldNormalBasisExtension| . |Field|) T) ((|SparseUnivariatePolynomialExpressions| . |FullyRetractableTo|) 24458) ((|FiniteFieldNormalBasis| . |ExtensionField|) 24427) ((|ExponentialExpansion| . |Algebra|) 24299) ((|XRecursivePolynomial| . |Module|) 24256) ((|PAdicInteger| . |AbelianGroup|) T) ((|DesingTree| . |CoercibleTo|) 24207) ((|TaylorSeries| . |CommutativeRing|) 24136) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |CancellationAbelianMonoid|) T) ((|InputForm| . |CoercibleTo|) 24110) ((|Partition| . |AbelianSemiGroup|) T) ((|U16Vector| . |Eltable|) 24075) ((|PseudoAlgebraicClosureOfRationalNumber| . |PrincipalIdealDomain|) T) ((|DoubleFloatVector| . |OrderedSet|) T) ((|FiniteFieldExtensionByPolynomial| . |CancellationAbelianMonoid|) T) ((|PrimeField| . |Rng|) T) ((|SparseUnivariatePolynomialExpressions| . |ElementaryFunctionCategory|) 24026) ((|InnerSparseUnivariatePowerSeries| . |UnivariatePowerSeriesCategory|) 23998) ((|e04gcfAnnaType| . |SetCategory|) T) ((|AlgebraicFunctionField| . |BiModule|) 23881) ((|ContinuedFraction| . |EntireRing|) T) ((|ModularField| . |GcdDomain|) T) ((|RectangularMatrix| . |ConvertibleTo|) 23817) ((|PseudoAlgebraicClosureOfRationalNumber| . |ExtensionField|) 23781) ((|Asp1| . |CoercibleTo|) 23755) ((|FileName| . |SetCategory|) T) ((|FiniteFieldNormalBasis| . |PrincipalIdealDomain|) T) ((|PendantTree| . |CoercibleTo|) 23706) ((|UniversalSegment| . |SegmentCategory|) 23690) ((|RealClosure| . |SetCategory|) T) ((|LieSquareMatrix| . |SetCategory|) T) ((|DoubleFloatVector| . |InnerEvalable|) NIL) ((|HashTable| . |Eltable|) 23669) ((|FourierSeries| . |AbelianSemiGroup|) T) ((|GeneralUnivariatePowerSeries| . |IntegralDomain|) 23608) ((|SparseUnivariateTaylorSeries| . |Eltable|) 23593) ((|File| . |BasicType|) T) ((|PAdicRationalConstructor| . |PrincipalIdealDomain|) T) ((|RomanNumeral| . |EntireRing|) T) ((|Expression| . |SpecialFunctionCategory|) 23560) ((|d01asfAnnaType| . |BasicType|) T) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |Ring|) T) ((|NewSparseMultivariatePolynomial| . |Evalable|) 23547) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |AbelianSemiGroup|) T) ((|FiniteDivisor| . |AbelianGroup|) T) ((|SparseMultivariateTaylorSeries| . |CharacteristicNonZero|) 23507) ((|SparseUnivariatePuiseuxSeries| . |Rng|) T) ((|RadixExpansion| . |Module|) 23441) ((|DirectProductModule| . |AbelianMonoid|) T) ((|DeRhamComplex| . |BasicType|) T) ((|DoubleFloat| . |ArcHyperbolicFunctionCategory|) T) ((|RadixExpansion| . |OrderedCancellationAbelianMonoid|) T) ((|InnerPrimeField| . |GcdDomain|) T) ((|StringTable| . |BasicType|) T) ((|SingleInteger| . |CombinatorialFunctionCategory|) T) ((|PrimeField| . |ConvertibleTo|) 23418) ((|Character| . |Finite|) T) ((|e04fdfAnnaType| . |SetCategory|) T) ((|EqTable| . |KeyedDictionary|) 23397) ((|U8Vector| . |Aggregate|) T) ((|GeneralDistributedMultivariatePolynomial| . |CommutativeRing|) 23250) ((|LocalAlgebra| . |OrderedSet|) 23220) ((|TaylorSeries| . |ElementaryFunctionCategory|) 23169) ((|IndexedDirectProductOrderedAbelianMonoid| . |OrderedSet|) T) ((|NeitherSparseOrDensePowerSeries| . |Collection|) 23110) ((|DoubleFloat| . |OpenMath|) T) ((|OrderedDirectProduct| . |HomogeneousAggregate|) 23094) ((|FourierSeries| . |LeftModule|) 23068) ((|Expression| . |CoercibleTo|) 23042) ((|SparseUnivariateLaurentSeries| . |PrincipalIdealDomain|) 23018) ((|AlgebraicNumber| . |DifferentialRing|) T) ((|InnerAlgebraicNumber| . |LinearlyExplicitRingOver|) 22962) ((|Expression| . |OrderedSet|) T) ((|FourierComponent| . |BasicType|) T) ((|OrderedDirectProduct| . |InnerEvalable|) 22881) ((|MachineComplex| . |ComplexCategory|) 22853) ((|Asp80| . |FortranMatrixFunctionCategory|) T) ((|UnivariatePolynomial| . |BasicType|) T) ((|HomogeneousDirectProduct| . |Rng|) 22763) ((|AlgebraicNumber| . |CoercibleTo|) 22737) ((|RadicalFunctionField| . |Monoid|) T) ((|DistributedMultivariatePolynomial| . |FullyRetractableTo|) 22721) ((|QuasiAlgebraicSet| . |SetCategory|) T) ((|MyUnivariatePolynomial| . |FullyRetractableTo|) 22705) ((|Places| . |SetCategoryWithDegree|) T) ((|UnivariatePolynomial| . |AbelianMonoidRing|) 22666) ((|Reference| . |Type|) T) ((|SparseMultivariateTaylorSeries| . |BiModule|) 22467) ((|HomogeneousDirectProduct| . |Ring|) 22377) ((|Asp30| . |FortranMatrixCategory|) T) ((|AlgebraicNumber| . |Module|) 22331) ((|NewSparseMultivariatePolynomial| . |FullyRetractableTo|) 22315) ((|d02ejfAnnaType| . |OrdinaryDifferentialEquationsSolverCategory|) T) ((|GeneralDistributedMultivariatePolynomial| . |FullyRetractableTo|) 22299) ((|FiniteFieldCyclicGroupExtension| . |LeftModule|) 22240) ((|FortranExpression| . |PartialDifferentialRing|) 22218) ((|Operator| . |Module|) 22175) ((|HomogeneousDirectProduct| . |OrderedRing|) 22145) ((|U16Matrix| . |CoercibleTo|) 22119) ((|RadixExpansion| . |DifferentialRing|) T) ((|UnivariateLaurentSeriesConstructor| . |Rng|) T) ((|d01TransformFunctionType| . |CoercibleTo|) 22093) ((|DenavitHartenbergMatrix| . |InnerEvalable|) 22012) ((|RectangularMatrix| . |AbelianMonoid|) T) ((|IndexedFlexibleArray| . |Evalable|) 21936) ((|FreeAbelianGroup| . |CancellationAbelianMonoid|) T) ((|Float| . |ElementaryFunctionCategory|) T) ((|MachineComplex| . |PrincipalIdealDomain|) T) ((|RoutinesTable| . |TableAggregate|) 21906) ((|BalancedPAdicRational| . |Evalable|) 21790) ((|Octonion| . |Module|) 21774) ((|SimpleAlgebraicExtension| . |RightModule|) 21656) ((|UnivariateFormalPowerSeries| . |RightModule|) 21489) ((|FiniteField| . |EuclideanDomain|) T) ((|MachineComplex| . |IntegralDomain|) T) ((|Interval| . |CancellationAbelianMonoid|) T) ((|DistributedMultivariatePolynomial| . |PatternMatchable|) NIL) ((|FortranTemplate| . |BasicType|) T) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |SemiGroup|) T) ((|SquareMatrix| . |Ring|) T) ((|LieExponentials| . |Group|) T) ((|OrdinaryDifferentialRing| . |GcdDomain|) 21465) ((|FiniteFieldCyclicGroupExtension| . |DivisionRing|) T) ((|SquareFreeRegularTriangularSet| . |CoercibleTo|) 21417) ((|OrderedCompletion| . |RetractableTo|) 21261) ((|FreeAbelianGroup| . |OrderedSet|) 21232) ((|IndexedList| . |FiniteLinearAggregate|) 21216) ((|IndexedList| . |HomogeneousAggregate|) 21200) ((|FiniteFieldCyclicGroup| . |UniqueFactorizationDomain|) T) ((|Pattern| . |RetractableTo|) 21165) ((|FiniteFieldNormalBasisExtension| . |BiModule|) 21074) ((|BinaryTree| . |HomogeneousAggregate|) 21058) ((|GeneralUnivariatePowerSeries| . |PrincipalIdealDomain|) 21034) ((|MultivariatePolynomial| . |InnerEvalable|) 20938) ((|TaylorSeries| . |BiModule|) 20739) ((|ModularField| . |RightModule|) 20693) ((|OppositeMonogenicLinearOperator| . |AbelianMonoid|) T) ((|MachineInteger| . |DifferentialRing|) T) ((|Product| . |Monoid|) 20581) ((|SquareFreeRegularTriangularSet| . |ConvertibleTo|) 20517) ((|Asp49| . |FortranFunctionCategory|) T) ((|AlgebraicNumber| . |LinearlyExplicitRingOver|) 20461) ((|RadicalFunctionField| . |CommutativeRing|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |UniqueFactorizationDomain|) 20411) ((|Expression| . |FunctionSpace|) 20395) ((|PolynomialRing| . |LeftModule|) 20292) ((|FiniteFieldExtension| . |RetractableTo|) 20276) ((|CartesianTensor| . |BasicType|) T) ((|SparseUnivariatePolynomial| . |Rng|) T) ((|TaylorSeries| . |SetCategory|) T) ((|UnivariatePolynomial| . |Rng|) T) ((|UnivariateLaurentSeriesConstructor| . |UniqueFactorizationDomain|) 20252) ((|Fraction| . |DivisionRing|) T) ((|d01akfAnnaType| . |CoercibleTo|) 20226) ((|DoubleFloat| . |EuclideanDomain|) T) ((|RadixExpansion| . |FullyLinearlyExplicitRingOver|) 20203) ((|SparseTable| . |Eltable|) 20182) ((|FreeGroup| . |SetCategory|) T) ((|Integer| . |CharacteristicZero|) T) ((|FiniteFieldNormalBasisExtension| . |AbelianSemiGroup|) T) ((|DirectProduct| . |Evalable|) 20106) ((|SquareMatrix| . |AbelianGroup|) T) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |FieldOfPrimeCharacteristic|) 20037) ((|Table| . |BasicType|) T) ((|UnivariatePuiseuxSeriesConstructor| . |CoercibleTo|) 20011) ((|ExponentialExpansion| . |LinearlyExplicitRingOver|) 19926) ((|XDistributedPolynomial| . |CoercibleTo|) 19900) ((|DirectProductModule| . |Ring|) 19810) ((|BasicStochasticDifferential| . |BasicType|) T) ((|SparseUnivariateSkewPolynomial| . |Rng|) T) ((|MachineFloat| . |EntireRing|) T) ((|MyExpression| . |CommutativeRing|) T) ((|DirectProductModule| . |DirectProductCategory|) 19789) ((|UnivariateTaylorSeriesCZero| . |CharacteristicNonZero|) 19749) ((|TaylorSeries| . |HyperbolicFunctionCategory|) 19698) ((|SquareFreeRegularTriangularSet| . |PolynomialSetCategory|) 19667) ((|XRecursivePolynomial| . |BiModule|) 19646) ((|HomogeneousDistributedMultivariatePolynomial| . |BiModule|) 19371) ((|Fraction| . |FullyEvalableOver|) 19355) ((|FlexibleArray| . |Eltable|) 19327) ((|FiniteFieldNormalBasis| . |SemiGroup|) T) ((|DistributedMultivariatePolynomial| . |AbelianSemiGroup|) T) ((|SparseUnivariatePolynomial| . |Monoid|) T) ((|Multiset| . |SetAggregate|) 19311) ((|DistributedMultivariatePolynomial| . |Module|) 19074) ((|FreeAbelianMonoid| . |CancellationAbelianMonoid|) T) ((|SparseMultivariateTaylorSeries| . |Module|) 18918) ((|NewSparseMultivariatePolynomial| . |AbelianMonoidRing|) 18876) ((|HomogeneousDistributedMultivariatePolynomial| . |Module|) 18639) ((|String| . |OrderedSet|) T) ((|ProjectivePlane| . |SetCategory|) T) ((|EqTable| . |EltableAggregate|) 18618) ((|HomogeneousDistributedMultivariatePolynomial| . |IntegralDomain|) 18504) ((|IndexedBits| . |Collection|) 18481) ((|UnivariateSkewPolynomial| . |Ring|) T) ((|HashTable| . |SetCategory|) T) ((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| . |SetCategoryWithDegree|) T) ((|SquareMatrix| . |SemiGroup|) T) ((|UnivariateLaurentSeries| . |DivisionRing|) 18457) ((|InnerTable| . |HomogeneousAggregate|) 18386) ((|UnivariateLaurentSeriesConstructor| . |EntireRing|) 18325) ((|FortranExpression| . |CoercibleTo|) 18299) ((|BinaryExpansion| . |DifferentialRing|) T) ((|LinearOrdinaryDifferentialOperator1| . |LeftModule|) 18273) ((|GeneralDistributedMultivariatePolynomial| . |GcdDomain|) 18191) ((|CliffordAlgebra| . |Monoid|) T) ((|ThreeDimensionalMatrix| . |Evalable|) 18115) ((|NonNegativeInteger| . |CancellationAbelianMonoid|) T) ((|PermutationGroup| . |CoercibleTo|) 18089) ((|Fraction| . |OrderedAbelianMonoid|) 18049) ((|MachineInteger| . |AbelianMonoid|) T) ((|GeneralTriangularSet| . |PolynomialSetCategory|) 18018) ((|MultivariatePolynomial| . |AbelianMonoid|) T) ((|UnivariatePuiseuxSeriesConstructor| . |ArcTrigonometricFunctionCategory|) 17967) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |RightModule|) 17870) ((|U8Matrix| . |Evalable|) NIL) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |CommutativeRing|) T) ((|RewriteRule| . |BasicType|) T) ((|ComplexDoubleFloatVector| . |IndexedAggregate|) 17819) ((|UnivariateLaurentSeriesConstructor| . |OrderedRing|) 17750) ((|DistributedMultivariatePolynomial| . |GcdDomain|) 17668) ((|Record| . |SetCategory|) T) ((|RealClosure| . |DivisionRing|) T) ((|Interval| . |IntegralDomain|) T) ((|Expression| . |LeftOreRing|) 17635) ((|NewSparseUnivariatePolynomial| . |CancellationAbelianMonoid|) T) ((|Fraction| . |DifferentialRing|) 17600) ((|PolynomialRing| . |Ring|) T) ((|Quaternion| . |Module|) 17534) ((|PAdicInteger| . |AbelianSemiGroup|) T) ((|RomanNumeral| . |BiModule|) 17519) ((|BalancedPAdicRational| . |Eltable|) 17372) ((|UnivariateLaurentSeriesConstructor| . |InnerEvalable|) 17203) ((|SimpleAlgebraicExtension| . |MonogenicAlgebra|) 17182) ((|CharacterClass| . |SetAggregate|) 17157) ((|SparseUnivariateLaurentSeries| . |Monoid|) T) ((|Interval| . |RetractableTo|) 17134) ((|GeneralSparseTable| . |TableAggregate|) 17113) ((|AssociatedLieAlgebra| . |FramedNonAssociativeAlgebra|) 17053) ((|FiniteFieldExtensionByPolynomial| . |EntireRing|) T) ((|MultivariatePolynomial| . |EntireRing|) 16939) ((|RectangularMatrix| . |LeftModule|) 16923) ((|XPBWPolynomial| . |FreeModuleCat|) 16866) ((|RadicalFunctionField| . |BasicType|) T) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |Field|) T) ((|XPBWPolynomial| . |Rng|) T) ((|SingleInteger| . |PatternMatchable|) 16843) ((|SparseMultivariateTaylorSeries| . |Ring|) T) ((|MultivariatePolynomial| . |PartialDifferentialRing|) 16803) ((|HexadecimalExpansion| . |FullyLinearlyExplicitRingOver|) 16780) ((|OrderedDirectProduct| . |EltableAggregate|) 16752) ((|MachineInteger| . |LeftOreRing|) T) ((|SparseTable| . |EltableAggregate|) 16731) ((|RomanNumeral| . |CombinatorialFunctionCategory|) T) ((|FiniteFieldExtension| . |Rng|) T) ((|EqTable| . |InnerEvalable|) 16439) ((|Interval| . |BasicType|) T) ((|Interval| . |CoercibleTo|) 16413) ((|RomanNumeral| . |OrderedAbelianSemiGroup|) T) ((|XPBWPolynomial| . |AbelianSemiGroup|) T) ((|IndexedVector| . |BasicType|) 16350) ((|SequentialDifferentialPolynomial| . |GcdDomain|) 16268) ((|SimpleAlgebraicExtension| . |ConvertibleTo|) 16252) ((|FiniteFieldNormalBasis| . |Module|) 16178) ((|RadixExpansion| . |CharacteristicZero|) T) ((|PrimeField| . |SetCategory|) T) ((|LaurentPolynomial| . |CoercibleTo|) 16152) ((|DirectProductModule| . |Algebra|) 16109) ((|Polynomial| . |EntireRing|) 15995) ((|UnivariateTaylorSeriesCZero| . |CharacteristicZero|) 15958) ((|ExponentialOfUnivariatePuiseuxSeries| . |CancellationAbelianMonoid|) T) ((|HyperellipticFiniteDivisor| . |BasicType|) T) ((|DirectProductMatrixModule| . |Algebra|) 15915) ((|GeneralDistributedMultivariatePolynomial| . |LeftOreRing|) 15833) ((|ArrayStack| . |Type|) T) ((|Result| . |SetCategory|) T) ((|RomanNumeral| . |Algebra|) 15820) ((|HomogeneousDistributedMultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 15804) ((|Fraction| . |PartialDifferentialRing|) 15736) ((|NeitherSparseOrDensePowerSeries| . |CommutativeRing|) T) ((|SequentialDifferentialPolynomial| . |CharacteristicNonZero|) 15696) ((|FiniteFieldExtension| . |FiniteAlgebraicExtensionField|) 15680) ((|UnivariateLaurentSeriesConstructor| . |LeftOreRing|) 15656) ((|Point| . |ConvertibleTo|) 15592) ((|InnerTaylorSeries| . |AbelianSemiGroup|) T) ((|FiniteFieldNormalBasisExtension| . |RightModule|) 15533) ((|Symbol| . |OrderedSet|) T) ((|Matrix| . |SetCategory|) 15503) ((|NumericalIntegrationProblem| . |BasicType|) T) ((|Vector| . |FiniteLinearAggregate|) 15487) ((|RadicalFunctionField| . |ConvertibleTo|) 15471) ((|Kernel| . |ConvertibleTo|) 15249) ((|DoubleFloat| . |BasicType|) T) ((|FiniteFieldCyclicGroup| . |Ring|) T) ((|IndexedList| . |OrderedSet|) 15220) ((|SquareMatrix| . |Algebra|) 15165) ((|Octonion| . |OrderedSet|) 15136) ((|SparseUnivariateTaylorSeries| . |SemiGroup|) T) ((|IntegerMod| . |LeftModule|) 15123) ((|IntegerMod| . |SetCategory|) T) ((|SparseUnivariateLaurentSeries| . |UniqueFactorizationDomain|) 15099) ((|UnivariatePuiseuxSeries| . |Field|) 15075) ((|DoubleFloat| . |GcdDomain|) T) ((|U16Matrix| . |InnerEvalable|) NIL) ((|UnivariateLaurentSeries| . |Ring|) T) ((|MyUnivariatePolynomial| . |StepThrough|) 15045) ((|SparseUnivariatePolynomialExpressions| . |InnerEvalable|) 14955) ((|OpenMathError| . |CoercibleTo|) 14929) ((|Bits| . |LinearAggregate|) 14906) ((|OrdinaryDifferentialRing| . |BiModule|) 14816) ((|FourierSeries| . |Ring|) T) ((|Vector| . |LinearAggregate|) 14800) ((|HexadecimalExpansion| . |OrderedSet|) T) ((|Operator| . |CancellationAbelianMonoid|) T) ((|GeneralUnivariatePowerSeries| . |PowerSeriesCategory|) 14733) ((|AssociatedJordanAlgebra| . |CoercibleTo|) 14694) ((|SparseUnivariateLaurentSeries| . |OrderedAbelianGroup|) NIL) ((|TexFormat| . |SetCategory|) T) ((|XRecursivePolynomial| . |AbelianSemiGroup|) T) ((|SquareMatrix| . |SetCategory|) T) ((|SingleInteger| . |OrderedAbelianMonoid|) T) ((|IntegerMod| . |Rng|) T) ((|FiniteFieldExtensionByPolynomial| . |UniqueFactorizationDomain|) T) ((|DoubleFloat| . |RealConstant|) T) ((|FiniteFieldExtension| . |FiniteFieldCategory|) 14669) ((|DirectProductModule| . |FullyRetractableTo|) 14630) ((|PolynomialIdeals| . |BasicType|) T) ((|OneDimensionalArray| . |OrderedSet|) 14601) ((|OrderedDirectProduct| . |SetCategory|) 14293) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |Rng|) T) ((|FourierComponent| . |CoercibleTo|) 14267) ((|ExponentialOfUnivariatePuiseuxSeries| . |Rng|) T) ((|DistributedMultivariatePolynomial| . |CharacteristicNonZero|) 14227) ((|FiniteFieldNormalBasis| . |DifferentialRing|) T) ((|FiniteFieldExtensionByPolynomial| . |LeftModule|) 14168) ((|OrderedDirectProduct| . |IndexedAggregate|) 14140) ((|RadicalFunctionField| . |StepThrough|) NIL) ((|RomanNumeral| . |OrderedSet|) T) ((|Multiset| . |MultiDictionary|) 14124) ((|UnivariateFormalPowerSeries| . |BasicType|) T) ((|InfClsPt| . |InfinitlyClosePointCategory|) 13888) ((|PatternMatchListResult| . |CoercibleTo|) 13862) ((|Plot3D| . |CoercibleTo|) 13836) ((|OrderlyDifferentialPolynomial| . |FullyRetractableTo|) 13820) ((|PAdicRationalConstructor| . |AbelianMonoid|) T) ((|PartialFraction| . |EuclideanDomain|) T) ((|NeitherSparseOrDensePowerSeries| . |Aggregate|) T) ((|BalancedPAdicInteger| . |AbelianSemiGroup|) T) ((|OrderlyDifferentialPolynomial| . |RightModule|) 13577) ((|FreeGroup| . |RetractableTo|) 13561) ((|FiniteField| . |BiModule|) 13440) ((|LaurentPolynomial| . |ConvertibleTo|) 13411) ((|EuclideanModularRing| . |AbelianMonoid|) T) ((|FiniteFieldCyclicGroupExtension| . |FiniteFieldCategory|) 13386) ((|Stream| . |SetCategory|) 13356) ((|EuclideanModularRing| . |IntegralDomain|) T) ((|MachineComplex| . |AbelianGroup|) T) ((|SparseUnivariateSkewPolynomial| . |CancellationAbelianMonoid|) T) ((|KeyedAccessFile| . |FileCategory|) 13279) ((|RadicalFunctionField| . |Ring|) T) ((|RomanNumeral| . |CommutativeRing|) T) ((|ThreeDimensionalMatrix| . |InnerEvalable|) 13198) ((|U16Vector| . |OrderedSet|) T) ((|ModMonic| . |RetractableTo|) 13008) ((|PrimeField| . |DivisionRing|) T) ((|XPBWPolynomial| . |AbelianGroup|) T) ((|IndexedVector| . |Collection|) 12992) ((|Quaternion| . |DifferentialExtension|) 12976) ((|MyExpression| . |OrderedSet|) T) ((|OrderlyDifferentialPolynomial| . |AbelianMonoidRing|) 12896) ((|IndexedList| . |StreamAggregate|) 12880) ((|RealClosure| . |OrderedAbelianSemiGroup|) T) ((|U32Matrix| . |BasicType|) T) ((|TaylorSeries| . |TranscendentalFunctionCategory|) 12829) ((|Fraction| . |RealConstant|) 12798) ((|Table| . |IndexedAggregate|) 12777) ((|SparseUnivariateLaurentSeries| . |PatternMatchable|) NIL) ((|U8Vector| . |FiniteLinearAggregate|) 12754) ((|ModuleOperator| . |Monoid|) T) ((|XPolynomial| . |CoercibleTo|) 12728) ((|Asp73| . |CoercibleTo|) 12702) ((|XPBWPolynomial| . |SetCategory|) T) ((|SparseUnivariateTaylorSeries| . |BiModule|) 12503) ((|ComplexDoubleFloatVector| . |OneDimensionalArrayAggregate|) 12464) ((|IndexedList| . |Evalable|) 12388) ((|PAdicRational| . |Ring|) T) ((|PAdicRational| . |OrderedRing|) NIL) ((|RadixExpansion| . |BasicType|) T) ((|Asp19| . |FortranVectorFunctionCategory|) T) ((|Asp50| . |Type|) T) ((|Automorphism| . |Eltable|) 12367) ((|BinaryTree| . |SetCategory|) 12337) ((|Operator| . |BasicType|) T) ((|MyExpression| . |UniqueFactorizationDomain|) 12304) ((|OrderedDirectProduct| . |OrderedSet|) 12228) ((|RightOpenIntervalRootCharacterization| . |CoercibleTo|) 12202) ((|SquareMatrix| . |ConvertibleTo|) 12138) ((|UnivariateTaylorSeriesCZero| . |BasicType|) T) ((|AssociatedJordanAlgebra| . |BasicType|) T) ((|GeneralUnivariatePowerSeries| . |Ring|) T) ((|SparseUnivariatePolynomialExpressions| . |OrderedSet|) 12109) ((|Asp9| . |Type|) T) ((|MyUnivariatePolynomial| . |Evalable|) 12096) ((|DirectProductModule| . |OrderedRing|) 12066) ((|U32Vector| . |Aggregate|) T) ((|Mapping| . |SetCategory|) T) ((|SparseUnivariatePolynomial| . |LeftModule|) 11963) ((|Pi| . |BasicType|) T) ((|MachineInteger| . |LinearlyExplicitRingOver|) 11940) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |CoercibleTo|) 11914) ((|FiniteFieldCyclicGroupExtension| . |SemiGroup|) T) ((|U32Vector| . |FiniteLinearAggregate|) 11891) ((|FiniteFieldNormalBasisExtensionByPolynomial| . |BasicType|) T) ((|SymmetricPolynomial| . |Rng|) T) ((|AssociationList| . |ListAggregate|) 11833) ((|MachineFloat| . |PatternMatchable|) 11812) ((|SparseUnivariateLaurentSeries| . |Field|) 11788) ((|SparseUnivariateLaurentSeries| . |Type|) 11764) ((|HyperellipticFiniteDivisor| . |AbelianSemiGroup|) T) ((|DoubleFloatMatrix| . |BasicType|) T) ((|PrimeField| . |LeftModule|) 11718) ((|AlgebraicNumber| . |Rng|) T) ((|Fraction| . |EntireRing|) T) ((|InnerTaylorSeries| . |CoercibleTo|) 11692) ((|HomogeneousDirectProduct| . |DifferentialExtension|) 11660) ((|SparseUnivariatePuiseuxSeries| . |LeftModule|) 11529) ((|AssociationList| . |TableAggregate|) 11508) ((|SparseUnivariateLaurentSeries| . |Patternable|) 11432) ((|UnivariateFormalPowerSeries| . |SetCategory|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |AbelianMonoidRing|) 11353) ((|FreeAbelianGroup| . |RetractableTo|) 11337) ((|Asp41| . |FortranVectorFunctionCategory|) T) ((|DirectProduct| . |Module|) 11266) ((|InnerFiniteField| . |CharacteristicNonZero|) T) ((|SparseTable| . |SetCategory|) T) ((|MachineComplex| . |ElementaryFunctionCategory|) NIL) ((|Interval| . |Module|) 11253) ((|LieSquareMatrix| . |Rng|) T) ((|Fraction| . |Eltable|) 11206) ((|PAdicRational| . |PolynomialFactorizationExplicit|) NIL) ((|d02bbfAnnaType| . |BasicType|) T) ((|PAdicRationalConstructor| . |BiModule|) 11115) ((|InnerPrimeField| . |RightModule|) 11069) ((|PAdicRationalConstructor| . |Module|) 11010) ((|IndexedBits| . |OneDimensionalArrayAggregate|) 10987) ((|OrdinaryWeightedPolynomials| . |SetCategory|) T) ((|Float| . |TranscendentalFunctionCategory|) T) ((|ModMonic| . |CharacteristicNonZero|) 10947) ((|SingleInteger| . |PrincipalIdealDomain|) T) ((|SparseMultivariateTaylorSeries| . |ArcTrigonometricFunctionCategory|) 10896) ((|Set| . |BagAggregate|) 10880) ((|U16Vector| . |LinearAggregate|) 10857) ((|MyExpression| . |FullyLinearlyExplicitRingOver|) 10825) ((|PAdicRational| . |Module|) 10749) ((|FreeAbelianGroup| . |LeftModule|) 10726) ((|PAdicInteger| . |IntegralDomain|) T) ((|Equation| . |SetCategory|) 10423) ((|InnerFiniteField| . |DivisionRing|) T) ((|GeneralUnivariatePowerSeries| . |AbelianSemiGroup|) T) ((|PAdicRational| . |OrderedIntegralDomain|) NIL) ((|RadicalFunctionField| . |RightModule|) 10351) ((|Partition| . |CoercibleTo|) 10325) ((|SparseUnivariateTaylorSeries| . |CancellationAbelianMonoid|) T) ((|NeitherSparseOrDensePowerSeries| . |CharacteristicZero|) 10288) ((|MyExpression| . |SemiGroup|) T) ((|DistributedMultivariatePolynomial| . |AbelianGroup|) T) ((|MachineInteger| . |RightModule|) 10275) ((|d02ejfAnnaType| . |SetCategory|) T) ((|SimpleAlgebraicExtension| . |CharacteristicNonZero|) 10193) ((|IndexedList| . |SetCategory|) 10130) ((|OrderlyDifferentialPolynomial| . |EntireRing|) 10016) ((|AssociatedLieAlgebra| . |SetCategory|) T) ((|GeneralDistributedMultivariatePolynomial| . |FiniteAbelianMonoidRing|) 9995) ((|FiniteFieldNormalBasisExtension| . |LeftModule|) 9936) ((|UnivariatePuiseuxSeriesWithExponentialSingularity| . |CommutativeRing|) T) ((|AssociatedJordanAlgebra| . |CancellationAbelianMonoid|) T) ((|InnerTable| . |ConvertibleTo|) NIL) ((|AlgebraicFunctionField| . |LeftModule|) 9864) ((|SparseUnivariatePuiseuxSeries| . |DifferentialRing|) 9799) ((|InnerPAdicInteger| . |AbelianMonoid|) T) ((|OrdSetInts| . |CoercibleTo|) 9773) ((|SparseUnivariateLaurentSeries| . |EuclideanDomain|) 9749) ((|FiniteFieldCyclicGroup| . |PrincipalIdealDomain|) T) ((|UnivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 9733) ((|NewSparseUnivariatePolynomial| . |CharacteristicZero|) 9696) ((|RealClosure| . |GcdDomain|) T) ((|RadixExpansion| . |RetractableTo|) 9640) ((|MachineFloat| . |Algebra|) 9594) ((|ContinuedFraction| . |BiModule|) 9459) ((|MyExpression| . |PartialDifferentialRing|) 9437) ((|OneDimensionalArray| . |HomogeneousAggregate|) 9421) ((|FiniteFieldNormalBasisExtension| . |BasicType|) T) ((|Asp73| . |Type|) T) ((|HomogeneousDistributedMultivariatePolynomial| . |Monoid|) T) ((|PolynomialRing| . |SemiGroup|) T) ((|Pi| . |CommutativeRing|) T) ((|BalancedPAdicRational| . |UniqueFactorizationDomain|) T) ((|MultivariatePolynomial| . |CommutativeRing|) 9274) ((|AlgebraicNumber| . |AbelianMonoid|) T) ((|Operator| . |AbelianMonoid|) T) ((|PoincareBirkhoffWittLyndonBasis| . |BasicType|) T) ((|DrawOption| . |CoercibleTo|) 9248) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |SemiGroup|) T) ((|Divisor| . |CancellationAbelianMonoid|) T) ((|OrderedDirectProduct| . |CoercibleTo|) 8897) ((|RadixExpansion| . |SemiGroup|) T) ((|Expression| . |AlgebraicallyClosedFunctionSpace|) 8855) ((|IndexedTwoDimensionalArray| . |InnerEvalable|) 8774) ((|InnerIndexedTwoDimensionalArray| . |Evalable|) 8698) ((|ExponentialExpansion| . |OrderedRing|) NIL) ((|DirectProductModule| . |DifferentialExtension|) 8666) ((|Pi| . |ConvertibleTo|) 8535) ((|UnivariateTaylorSeries| . |SetCategory|) T) ((|GeneralUnivariatePowerSeries| . |DifferentialRing|) 8470) ((|LinearOrdinaryDifferentialOperator2| . |BasicType|) T) ((|InnerFiniteField| . |PrincipalIdealDomain|) T) ((|DistributedMultivariatePolynomial| . |AbelianMonoid|) T) ((|ModularField| . |CommutativeRing|) T) ((|MachineComplex| . |OrderedSet|) T) ((|Localize| . |CoercibleTo|) 8444) ((|LieSquareMatrix| . |DifferentialExtension|) 8428) ((|ExponentialOfUnivariatePuiseuxSeries| . |RightModule|) 8210) ((|Result| . |Dictionary|) 8143) ((|ModMonic| . |PatternMatchable|) NIL) ((|NewSparseUnivariatePolynomial| . |PatternMatchable|) NIL) ((|IndexedDirectProductOrderedAbelianMonoid| . |SetCategory|) T) ((|ArrayStack| . |SetCategory|) 8113) ((|d01akfAnnaType| . |NumericalIntegrationCategory|) T) ((|HomogeneousDirectProduct| . |OrderedAbelianMonoid|) 8037) ((|Float| . |Rng|) T) ((|SquareFreeRegularTriangularSet| . |HomogeneousAggregate|) 8021) ((|LaurentPolynomial| . |Algebra|) 8008) ((|Fraction| . |SemiGroup|) T) ((|SparseMultivariatePolynomial| . |AbelianGroup|) T) ((|RomanNumeral| . |OrderedAbelianMonoid|) T) ((|FiniteDivisor| . |SetCategory|) T) ((|PAdicRationalConstructor| . |RightModule|) 7949) ((|SparseUnivariatePolynomialExpressions| . |AbelianSemiGroup|) T) ((|BinaryTree| . |InnerEvalable|) 7868) ((|DirectProductMatrixModule| . |VectorSpace|) 7835) ((|Point| . |VectorCategory|) 7819) ((|ExponentialExpansion| . |DifferentialRing|) NIL) ((|RomanNumeral| . |RightModule|) 7806) ((|Set| . |Evalable|) 7730) ((|List| . |UnaryRecursiveAggregate|) 7714) ((|PolynomialRing| . |Monoid|) T) ((|RegularChain| . |RegularTriangularSetCategory|) 7549) ((|SparseUnivariateSkewPolynomial| . |AbelianSemiGroup|) T) ((|PseudoAlgebraicClosureOfRationalNumber| . |Rng|) T) ((|Expression| . |InnerEvalable|) 7511) ((|BalancedPAdicRational| . |CoercibleTo|) 7485) ((|UnivariatePuiseuxSeries| . |PowerSeriesCategory|) 7418) ((|d01ajfAnnaType| . |CoercibleTo|) 7392) ((|FreeGroup| . |CoercibleTo|) 7366) ((|RadicalFunctionField| . |UniqueFactorizationDomain|) T) ((|UnivariateLaurentSeriesConstructor| . |RadicalCategory|) 7315) ((|FortranExpression| . |InnerEvalable|) 7277) ((|InnerPrimeField| . |BasicType|) T) ((|EuclideanModularRing| . |CommutativeRing|) T) ((|Complex| . |FullyRetractableTo|) 7261) ((|ExponentialOfUnivariatePuiseuxSeries| . |AbelianGroup|) T) ((|AlgebraicNumber| . |Field|) T) ((|BalancedPAdicRational| . |AbelianMonoid|) T) ((|FreeModule| . |CoercibleTo|) 7235) ((|Product| . |OrderedAbelianMonoid|) 7146) ((|OrdinaryDifferentialRing| . |Module|) 7066) ((|NewSparseUnivariatePolynomial| . |StepThrough|) 7036) ((|InnerSparseUnivariatePowerSeries| . |IntegralDomain|) 7003) ((|NewSparseUnivariatePolynomial| . |Eltable|) 6906) ((|GeneralUnivariatePowerSeries| . |AbelianMonoid|) T) ((|ModMonic| . |PolynomialFactorizationExplicit|) 6856) ((|UnivariateLaurentSeriesConstructor| . |Monoid|) T) ((|RadixExpansion| . |PartialDifferentialRing|) NIL) ((|PrimitiveArray| . |HomogeneousAggregate|) 6840) ((|HomogeneousDirectProduct| . |Module|) 6769) ((|UnivariateFormalPowerSeries| . |ElementaryFunctionCategory|) 6718) ((|Asp34| . |FortranMatrixCategory|) T) ((|ModularField| . |Field|) T) ((|MultivariatePolynomial| . |BiModule|) 6443) ((|ModularRing| . |Ring|) T) ((|NeitherSparseOrDensePowerSeries| . |LeftModule|) 6384) ((|Stream| . |HomogeneousAggregate|) 6368) ((|MultivariatePolynomial| . |FullyLinearlyExplicitRingOver|) 6352) ((|PAdicRationalConstructor| . |Ring|) T) ((|OrderlyDifferentialPolynomial| . |FullyLinearlyExplicitRingOver|) 6336) ((|Pattern| . |BasicType|) T) ((|XPolynomial| . |XPolynomialsCat|) 6309) ((|FreeMonoid| . |BasicType|) T) ((|RadixExpansion| . |AbelianMonoid|) T) ((|LinearOrdinaryDifferentialOperator| . |CancellationAbelianMonoid|) T) ((|d01TransformFunctionType| . |BasicType|) T) ((|Complex| . |DivisionRing|) 6243) ((|FortranType| . |BasicType|) T) ((|IntegerMod| . |StepThrough|) T) ((|LyndonWord| . |OrderedSet|) T) ((|PlaneAlgebraicCurvePlot| . |PlottablePlaneCurveCategory|) T) ((|MachineInteger| . |BiModule|) 6228) ((|ExponentialExpansion| . |SetCategory|) T) ((|OrderlyDifferentialPolynomial| . |AbelianGroup|) T) ((|IndexedOneDimensionalArray| . |Type|) T) ((|DirectProductModule| . |OrderedCancellationAbelianMonoid|) 6152) ((|FreeMonoid| . |RetractableTo|) 6136) ((|InnerTable| . |Aggregate|) T) ((|TheSymbolTable| . |CoercibleTo|) 6110) ((|IndexedBits| . |Evalable|) NIL) ((|Quaternion| . |RightModule|) 5984) ((|AlgebraicFunctionField| . |CharacteristicNonZero|) 5931) ((|InnerPrimeField| . |AbelianMonoid|) T) ((|Plcs| . |BasicType|) T) ((|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| . |SetCategory|) T) ((|GenericNonAssociativeAlgebra| . |FiniteRankNonAssociativeAlgebra|) 5887) ((|OrderedDirectProduct| . |LinearlyExplicitRingOver|) 5759) ((|FreeModule| . |AbelianMonoid|) T) ((|GenericNonAssociativeAlgebra| . |AbelianGroup|) T) ((|RadixExpansion| . |OrderedSet|) T) ((|LaurentPolynomial| . |SemiGroup|) T) ((|XPolynomialRing| . |Algebra|) 5716) ((|AlgebraicNumber| . |CancellationAbelianMonoid|) T) ((|PartialFraction| . |Module|) 5657) ((|PseudoAlgebraicClosureOfAlgExtOfRationalNumber| . |PseudoAlgebraicClosureOfRationalNumberCategory|) T) ((|PAdicRationalConstructor| . |DifferentialExtension|) 5641) ((|SparseUnivariateTaylorSeries| . |Module|) 5485) ((|Asp1| . |FortranFunctionCategory|) T) ((|SparseMultivariateTaylorSeries| . |IntegralDomain|) 5452) ((|Asp28| . |FortranProgramCategory|) T) ((|SparseUnivariatePolynomialExpressions| . |AbelianGroup|) T) ((|DirichletRing| . |Rng|) T) ((|BinarySearchTree| . |InnerEvalable|) 5371) ((|NewSparseMultivariatePolynomial| . |PolynomialCategory|) 5324) ((|AlgebraGivenByStructuralConstants| . |NonAssociativeRng|) T) ((|SparseUnivariateLaurentSeries| . |TrigonometricFunctionCategory|) 5273) ((|DirectProductModule| . |BiModule|) 5136) ((|Complex| . |EntireRing|) 5005) ((|Octonion| . |CancellationAbelianMonoid|) T) ((|Quaternion| . |Eltable|) 4958) ((|OrderlyDifferentialPolynomial| . |Evalable|) 4945) ((|LieSquareMatrix| . |LeftModule|) 4919) ((|BinaryExpansion| . |BasicType|) T) ((|LaurentPolynomial| . |AbelianSemiGroup|) T) ((|FiniteFieldExtension| . |CancellationAbelianMonoid|) T) ((|FiniteFieldExtension| . |BiModule|) 4828) ((|PAdicRational| . |LeftModule|) 4752) ((|NumericalPDEProblem| . |BasicType|) T) ((|QuadraticForm| . |AbelianMonoid|) T) ((|LieExponentials| . |SetCategory|) T) ((|DesingTree| . |RecursiveAggregate|) 4736) ((|ModMonic| . |CommutativeRing|) 4566) ((|ContinuedFraction| . |SetCategory|) T) ((|PAdicRational| . |FullyEvalableOver|) 4533) ((|TaylorSeries| . |EntireRing|) 4500) ((|Complex| . |RightModule|) 4382) ((|EqTable| . |Evalable|) 4142) ((|PseudoAlgebraicClosureOfRationalNumber| . |Field|) T) ((|ListMultiDictionary| . |CoercibleTo|) 4093) ((|SparseUnivariateTaylorSeries| . |ElementaryFunctionCategory|) 4042) ((|BalancedPAdicRational| . |Monoid|) T) ((|InnerAlgebraicNumber| . |CharacteristicZero|) T) ((|DirectProductModule| . |IndexedAggregate|) 4014) ((|BinaryExpansion| . |FullyPatternMatchable|) 3991) ((|DeRhamComplex| . |SemiGroup|) T) ((|PositiveInteger| . |CoercibleTo|) 3965) ((|GeneralModulePolynomial| . |LeftModule|) 3936) ((|PrimeField| . |PrincipalIdealDomain|) T) ((|String| . |OpenMath|) T) ((|LinearOrdinaryDifferentialOperator| . |BiModule|) 3915) ((|MultivariatePolynomial| . |LeftModule|) 3812) ((|BalancedPAdicRational| . |Field|) T) ((|AssociatedLieAlgebra| . |Monad|) T) ((|UnivariateLaurentSeries| . |AbelianMonoidRing|) 3784) ((|SparseUnivariatePuiseuxSeries| . |Algebra|) 3572) ((|RegularTriangularSet| . |PolynomialSetCategory|) 3541) ((|PseudoAlgebraicClosureOfRationalNumber| . |VectorSpace|) 3505) ((|UnivariateTaylorSeriesCZero| . |LeftModule|) 3402) ((|Float| . |OrderedRing|) T) ((|PAdicRational| . |GcdDomain|) T) ((|PolynomialRing| . |FiniteAbelianMonoidRing|) 3381) ((|InnerPAdicInteger| . |PrincipalIdealDomain|) T) ((|LinearOrdinaryDifferentialOperator1| . |AbelianMonoid|) T) ((|SimpleAlgebraicExtension| . |Field|) 3315) ((|OrderedDirectProduct| . |Monoid|) 3201) ((|DoubleFloat| . |IntegralDomain|) T) ((|GeneralDistributedMultivariatePolynomial| . |OrderedSet|) 3172) ((|SparseTable| . |KeyedDictionary|) 3151) ((|UnivariatePuiseuxSeries| . |RightModule|) 2933) ((|PseudoAlgebraicClosureOfFiniteField| . |CharacteristicZero|) 2896) ((|WeightedPolynomials| . |BiModule|) 2848) ((|Float| . |AbelianSemiGroup|) T) ((|MachineFloat| . |RealNumberSystem|) T) ((|SetOfMIntegersInOneToN| . |SetCategory|) T) ((|GeneralModulePolynomial| . |CoercibleTo|) 2822) ((|Point| . |OrderedSet|) 2793) ((|Asp35| . |CoercibleTo|) 2767) ((|FiniteField| . |AbelianSemiGroup|) T) ((|GeneralUnivariatePowerSeries| . |TranscendentalFunctionCategory|) 2716) ((|IntegrationResult| . |AbelianGroup|) T) ((|LinearOrdinaryDifferentialOperator| . |SemiGroup|) T) ((|DataList| . |Aggregate|) T) ((|MachineComplex| . |EuclideanDomain|) T) ((|InnerFiniteField| . |Field|) T) ((|MultivariatePolynomial| . |CoercibleTo|) 2690) ((|PrimeField| . |FiniteAlgebraicExtensionField|) 2677) ((|ResidueRing| . |CoercibleTo|) 2651) ((|ThreeSpace| . |BasicType|) T) ((|HomogeneousDirectProduct| . |RetractableTo|) 2402) ((|BinaryTree| . |Type|) T) ((|PAdicRationalConstructor| . |Field|) T) ((|RadixExpansion| . |Patternable|) 2379) ((|ModuleOperator| . |RightModule|) 2336) ((|AlgebraGivenByStructuralConstants| . |AbelianMonoid|) T) ((|UnivariateTaylorSeriesCZero| . |AbelianMonoidRing|) 2297) ((|NewSparseUnivariatePolynomial| . |BasicType|) T) ((|OrderlyDifferentialPolynomial| . |CharacteristicZero|) 2260) ((|FiniteFieldNormalBasisExtension| . |SemiGroup|) T) ((|DoubleFloat| . |CoercibleTo|) 2234) ((|Result| . |CoercibleTo|) 2208) ((|SubSpace| . |CoercibleTo|) 2182) ((|SplitHomogeneousDirectProduct| . |RetractableTo|) 1933) ((|UnivariateTaylorSeries| . |AbelianMonoid|) T) ((|ComplexDoubleFloatVector| . |ConvertibleTo|) 1846) ((|AlgebraicFunctionField| . |UniqueFactorizationDomain|) T) ((|Variable| . |CoercibleTo|) 1801) ((|UnivariatePolynomial| . |PolynomialFactorizationExplicit|) 1751) ((|FiniteFieldCyclicGroupExtensionByPolynomial| . |LeftOreRing|) T) ((|UnivariateTaylorSeriesCZero| . |UnivariatePowerSeriesCategory|) 1712) ((|DecimalExpansion| . |AbelianMonoid|) T) ((|BalancedBinaryTree| . |Evalable|) 1636) ((|MachineComplex| . |FieldOfPrimeCharacteristic|) NIL) ((|Expression| . |EuclideanDomain|) 1603) ((|DirichletRing| . |CancellationAbelianMonoid|) T) ((|RomanNumeral| . |LeftOreRing|) T) ((|Complex| . |FullyEvalableOver|) 1587) ((|RegularTriangularSet| . |TriangularSetCategory|) 1556) ((|ModuleOperator| . |CancellationAbelianMonoid|) T) ((|UnivariateTaylorSeriesCZero| . |CoercibleTo|) 1530) ((|FiniteField| . |CoercibleTo|) 1504) ((|Integer| . |RightModule|) 1491) ((|OneDimensionalArray| . |Collection|) 1475) ((|DistributedMultivariatePolynomial| . |UniqueFactorizationDomain|) 1425) ((|FiniteFieldCyclicGroupExtension| . |AbelianGroup|) T) ((|Dequeue| . |QueueAggregate|) 1409) ((|DeRhamComplex| . |AbelianMonoid|) T) ((|OrderedCompletion| . |OrderedAbelianMonoid|) 1379) ((|OrderlyDifferentialPolynomial| . |BiModule|) 1104) ((|ModularField| . |Monoid|) T) ((|AlgebraicFunctionField| . |PartialDifferentialRing|) 1023) ((|NewSparseUnivariatePolynomial| . |SemiGroup|) T) ((|Float| . |HyperbolicFunctionCategory|) T) ((|DirectProductMatrixModule| . |Ring|) 933) ((|HomogeneousDistributedMultivariatePolynomial| . |InnerEvalable|) 837) ((|FiniteDivisor| . |CoercibleTo|) 811) ((|Asp19| . |Type|) T) ((|Expression| . |RadicalCategory|) 778) ((|SparseUnivariateLaurentSeries| . |AbelianSemiGroup|) T) ((|UnivariatePolynomial| . |UniqueFactorizationDomain|) 728) ((|AlgebraicNumber| . |CharacteristicZero|) T) ((|AssociationList| . |DictionaryOperations|) 670) ((|U8Matrix| . |BasicType|) T) ((|Expression| . |Type|) T) ((|UnivariateTaylorSeries| . |EntireRing|) 637) ((|SparseUnivariateLaurentSeries| . |ArcHyperbolicFunctionCategory|) 586) ((|IndexedBits| . |InnerEvalable|) NIL) ((|PAdicInteger| . |CommutativeRing|) T) ((|XDistributedPolynomial| . |AbelianMonoid|) T) ((|XPolynomial| . |LeftModule|) 560) ((|Integer| . |PrincipalIdealDomain|) T) ((|OpenMathEncoding| . |SetCategory|) T) ((|IndexedVector| . |InnerEvalable|) 479) ((|SparseUnivariateTaylorSeries| . |AbelianGroup|) T) ((|UnivariateLaurentSeries| . |GcdDomain|) 455) ((|Tree| . |Aggregate|) T) ((|U8Matrix| . |MatrixCategory|) 406) ((|FiniteFieldExtension| . |Monoid|) T) ((|MachineInteger| . |GcdDomain|) T) ((|AssociatedLieAlgebra| . |NonAssociativeAlgebra|) 390) ((|UniversalSegment| . |BasicType|) 360) ((|DenavitHartenbergMatrix| . |SetCategory|) 330) ((|MachineComplex| . |TrigonometricFunctionCategory|) NIL) ((|SplittingTree| . |Type|) T) ((|AlgebraicFunctionField| . |Ring|) T) ((|BalancedPAdicRational| . |PrincipalIdealDomain|) T) ((|ExponentialOfUnivariatePuiseuxSeries| . |CharacteristicZero|) 293) ((|FlexibleArray| . |BasicType|) 230) ((|GeneralModulePolynomial| . |Module|) 201) ((|ModMonic| . |AbelianMonoidRing|) 162) ((|BinaryTournament| . |Type|) T) ((|XPolynomialRing| . |LeftModule|) 136) ((|InnerPrimeField| . |EuclideanDomain|) T) ((|IndexedExponents| . |CancellationAbelianMonoid|) T) ((|Interval| . |AbelianGroup|) T) ((|d01fcfAnnaType| . |CoercibleTo|) 110) ((|DoubleFloat| . |UniqueFactorizationDomain|) T) ((|DoubleFloat| . |OrderedAbelianMonoid|) T) ((|TaylorSeries| . |Monoid|) T) ((|U32Vector| . |ConvertibleTo|) 85) ((|IndexedList| . |RecursiveAggregate|) 69) ((|InnerPrimeField| . |VectorSpace|) 56) ((|Asp74| . |CoercibleTo|) 30)) │ │ ├── ./usr/share/axiom-20210105dp1/algebra/interp.daase │ │ │ @@ -1,5397 +1,5397 @@ │ │ │ │ │ │ -(5966021 . 3955370496) │ │ │ -((|atanh| (($ $) 11)) (|asinh| (($ $) 10)) (|asech| (($ $) 9)) (|acsch| (($ $) 8)) (|acoth| (($ $) 7)) (|acosh| (($ $) 6))) │ │ │ -(((|ArcHyperbolicFunctionCategory|) (|Category|)) (T |ArcHyperbolicFunctionCategory|)) │ │ │ -((|atanh| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|))) (|asinh| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|))) (|asech| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|))) (|acsch| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|))) (|acoth| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|))) (|acosh| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|)))) │ │ │ -(|Join| (CATEGORY |domain| (SIGNATURE |acosh| ($ $)) (SIGNATURE |acoth| ($ $)) (SIGNATURE |acsch| ($ $)) (SIGNATURE |asech| ($ $)) (SIGNATURE |asinh| ($ $)) (SIGNATURE |atanh| ($ $)))) │ │ │ +(5966021 . 3962170406) │ │ │ +((|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) 29))) │ │ │ +(((|PatternMatchFunctionSpace| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)))) (|SetCategory|) (|Join| (|IntegralDomain|) (|OrderedSet|) (|PatternMatchable| |#1|)) (|Join| (|FunctionSpace| |#2|) (|ConvertibleTo| (|Pattern| |#1|)) (|PatternMatchable| |#1|) (|RetractableTo| (|Kernel| $)))) (T |PatternMatchFunctionSpace|)) │ │ │ +((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchResult| *5 *3)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *3 (|Join| (|FunctionSpace| *6) (|ConvertibleTo| *4) (|PatternMatchable| *5) (|RetractableTo| (|Kernel| $)))) (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *6 (|Join| (|IntegralDomain|) (|OrderedSet|) (|PatternMatchable| *5))) (|isDomain| *1 (|PatternMatchFunctionSpace| *5 *6 *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|variables| (((|List| |#3|) $) 109)) (|univariate| (((|SparseUnivariatePolynomial| $) $ |#3|) 124) (((|SparseUnivariatePolynomial| |#1|) $) 123)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 85 (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) 86 (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) 88 (|has| |#1| (|IntegralDomain|)))) (|totalDegree| (((|NonNegativeInteger|) $) 111) (((|NonNegativeInteger|) $ (|List| |#3|)) 110)) (|tail| (($ $) 251)) (|supRittWu?| (((|Boolean|) $ $) 237)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|subResultantGcd| (($ $ $) 196 (|has| |#1| (|IntegralDomain|)))) (|subResultantChain| (((|List| $) $ $) 191 (|has| |#1| (|IntegralDomain|)))) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 99 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|squareFreePart| (($ $) 97 (|has| |#1| (|GcdDomain|)))) (|squareFree| (((|Factored| $) $) 96 (|has| |#1| (|GcdDomain|)))) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 102 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) 163) (((|Union| (|Fraction| (|Integer|)) "failed") $) 161 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| (|Integer|) "failed") $) 159 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| |#3| "failed") $) 135) (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) 211 (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|))))) (((|Union| $ "failed") (|Polynomial| (|Integer|))) 208 (OR (AND (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|has| |#1| (|Algebra| (|Integer|))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))))) (((|Union| $ "failed") (|Polynomial| |#1|)) 205 (OR (AND (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|not| (|has| |#1| (|Algebra| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) (AND (|not| (|has| |#1| (|IntegerNumberSystem|))) (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|has| |#1| (|Algebra| (|Integer|))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) (AND (|not| (|has| |#1| (|QuotientFieldCategory| (|Integer|)))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|))))))) (|retract| ((|#1| $) 164) (((|Fraction| (|Integer|)) $) 160 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Integer|) $) 158 (|has| |#1| (|RetractableTo| (|Integer|)))) ((|#3| $) 134) (($ (|Polynomial| (|Fraction| (|Integer|)))) 210 (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|))))) (($ (|Polynomial| (|Integer|))) 207 (OR (AND (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|has| |#1| (|Algebra| (|Integer|))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))))) (($ (|Polynomial| |#1|)) 204 (OR (AND (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|not| (|has| |#1| (|Algebra| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) (AND (|not| (|has| |#1| (|IntegerNumberSystem|))) (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|has| |#1| (|Algebra| (|Integer|))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) (AND (|not| (|has| |#1| (|QuotientFieldCategory| (|Integer|)))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|))))))) (|resultant| (($ $ $ |#3|) 107 (|has| |#1| (|CommutativeRing|))) (($ $ $) 192 (|has| |#1| (|IntegralDomain|)))) (|reductum| (($ $) 153) (($ $ |#3|) 246)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) 133 (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) 132 (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) 131) (((|Matrix| |#1|) (|Matrix| $)) 130)) (|reduced?| (((|Boolean|) $ $) 236) (((|Boolean|) $ (|List| $)) 235)) (|recip| (((|Union| $ "failed") $) 33)) (|quasiMonic?| (((|Boolean|) $) 244)) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 216)) (|primitivePart!| (($ $) 185 (|has| |#1| (|GcdDomain|)))) (|primitivePart| (($ $) 175 (|has| |#1| (|GcdDomain|))) (($ $ |#3|) 104 (|has| |#1| (|GcdDomain|)))) (|primitiveMonomials| (((|List| $) $) 108)) (|prime?| (((|Boolean|) $) 95 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|primPartElseUnitCanonical!| (($ $) 201 (|has| |#1| (|IntegralDomain|)))) (|primPartElseUnitCanonical| (($ $) 202 (|has| |#1| (|IntegralDomain|)))) (|prem| (($ $ $) 228) (($ $ $ |#3|) 226)) (|pquo| (($ $ $) 227) (($ $ $ |#3|) 225)) (|pomopo!| (($ $ |#1| |#2| $) 171)) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) 82 (AND (|has| |#3| (|PatternMatchable| (|Float|))) (|has| |#1| (|PatternMatchable| (|Float|))))) (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) 81 (AND (|has| |#3| (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Integer|)))))) (|one?| (((|Boolean|) $) 30)) (|numberOfMonomials| (((|NonNegativeInteger|) $) 168)) (|normalized?| (((|Boolean|) $ $) 230) (((|Boolean|) $ (|List| $)) 229)) (|nextsubResultant2| (($ $ $ $ $) 187 (|has| |#1| (|IntegralDomain|)))) (|mvar| ((|#3| $) 255)) (|multivariate| (($ (|SparseUnivariatePolynomial| |#1|) |#3|) 116) (($ (|SparseUnivariatePolynomial| $) |#3|) 115)) (|monomials| (((|List| $) $) 125)) (|monomial?| (((|Boolean|) $) 151)) (|monomial| (($ |#1| |#2|) 152) (($ $ |#3| (|NonNegativeInteger|)) 118) (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) 117)) (|monicModulo| (($ $ $) 215)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) 119)) (|monic?| (((|Boolean|) $) 245)) (|minimumDegree| ((|#2| $) 169) (((|NonNegativeInteger|) $ |#3|) 121) (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) 120)) (|min| (($ $ $) 77 (|has| |#1| (|OrderedSet|)))) (|mdeg| (((|NonNegativeInteger|) $) 254)) (|max| (($ $ $) 76 (|has| |#1| (|OrderedSet|)))) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) 170)) (|map| (($ (|Mapping| |#1| |#1|) $) 150)) (|mainVariable| (((|Union| |#3| "failed") $) 122)) (|mainSquareFreePart| (($ $) 182 (|has| |#1| (|GcdDomain|)))) (|mainPrimitivePart| (($ $) 183 (|has| |#1| (|GcdDomain|)))) (|mainMonomials| (((|List| $) $) 240)) (|mainMonomial| (($ $) 243)) (|mainContent| (($ $) 184 (|has| |#1| (|GcdDomain|)))) (|mainCoefficients| (((|List| $) $) 241)) (|leastMonomial| (($ $) 242)) (|leadingMonomial| (($ $) 148)) (|leadingCoefficient| ((|#1| $) 147) (($ $ |#3|) 247)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 89 (|has| |#1| (|GcdDomain|)))) (|lcm| (($ (|List| $)) 93 (|has| |#1| (|GcdDomain|))) (($ $ $) 92 (|has| |#1| (|GcdDomain|)))) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) 214)) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) 218) (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) 217)) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) 220) (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) 219)) (|lazyPrem| (($ $ $) 224) (($ $ $ |#3|) 222)) (|lazyPquo| (($ $ $) 223) (($ $ $ |#3|) 221)) (|latex| (((|String|) $) 9)) (|lastSubResultant| (($ $ $) 190 (|has| |#1| (|IntegralDomain|)))) (|iteratedInitials| (((|List| $) $) 249)) (|isTimes| (((|Union| (|List| $) "failed") $) 113)) (|isPlus| (((|Union| (|List| $) "failed") $) 114)) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) 112)) (|initiallyReduced?| (((|Boolean|) $ $) 232) (((|Boolean|) $ (|List| $)) 231)) (|initiallyReduce| (($ $ $) 212)) (|init| (($ $) 253)) (|infRittWu?| (((|Boolean|) $ $) 238)) (|headReduced?| (((|Boolean|) $ $) 234) (((|Boolean|) $ (|List| $)) 233)) (|headReduce| (($ $ $) 213)) (|head| (($ $) 252)) (|hash| (((|SingleInteger|) $) 10)) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) 193 (|has| |#1| (|IntegralDomain|)))) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) 194 (|has| |#1| (|IntegralDomain|)))) (|ground?| (((|Boolean|) $) 165)) (|ground| ((|#1| $) 166)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 94 (|has| |#1| (|GcdDomain|)))) (|gcd| ((|#1| |#1| $) 186 (|has| |#1| (|GcdDomain|))) (($ (|List| $)) 91 (|has| |#1| (|GcdDomain|))) (($ $ $) 90 (|has| |#1| (|GcdDomain|)))) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 101 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 100 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factor| (((|Factored| $) $) 98 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 195 (|has| |#1| (|IntegralDomain|)))) (|exquo| (((|Union| $ "failed") $ |#1|) 173 (|has| |#1| (|IntegralDomain|))) (((|Union| $ "failed") $ $) 84 (|has| |#1| (|IntegralDomain|)))) (|exactQuotient!| (($ $ |#1|) 199 (|has| |#1| (|IntegralDomain|))) (($ $ $) 197 (|has| |#1| (|IntegralDomain|)))) (|exactQuotient| (($ $ |#1|) 200 (|has| |#1| (|IntegralDomain|))) (($ $ $) 198 (|has| |#1| (|IntegralDomain|)))) (|eval| (($ $ (|List| (|Equation| $))) 144) (($ $ (|Equation| $)) 143) (($ $ $ $) 142) (($ $ (|List| $) (|List| $)) 141) (($ $ |#3| |#1|) 140) (($ $ (|List| |#3|) (|List| |#1|)) 139) (($ $ |#3| $) 138) (($ $ (|List| |#3|) (|List| $)) 137)) (|discriminant| (($ $ |#3|) 106 (|has| |#1| (|CommutativeRing|)))) (|differentiate| (($ $ |#3|) 41) (($ $ (|List| |#3|)) 40) (($ $ |#3| (|NonNegativeInteger|)) 39) (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) 38)) (|degree| ((|#2| $) 149) (((|NonNegativeInteger|) $ |#3|) 129) (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) 128)) (|deepestTail| (($ $) 250)) (|deepestInitial| (($ $) 248)) (|convert| (((|Pattern| (|Float|)) $) 80 (AND (|has| |#3| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))))) (((|Pattern| (|Integer|)) $) 79 (AND (|has| |#3| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))))) (((|InputForm|) $) 78 (AND (|has| |#3| (|ConvertibleTo| (|InputForm|))) (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (($ (|Polynomial| (|Fraction| (|Integer|)))) 209 (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|))))) (($ (|Polynomial| (|Integer|))) 206 (OR (AND (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|has| |#1| (|Algebra| (|Integer|))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))))) (($ (|Polynomial| |#1|)) 203 (|has| |#3| (|ConvertibleTo| (|Symbol|)))) (((|String|) $) 181 (AND (|has| |#1| (|RetractableTo| (|Integer|))) (|has| |#3| (|ConvertibleTo| (|Symbol|))))) (((|Polynomial| |#1|) $) 180 (|has| |#3| (|ConvertibleTo| (|Symbol|))))) (|content| ((|#1| $) 174 (|has| |#1| (|GcdDomain|))) (($ $ |#3|) 105 (|has| |#1| (|GcdDomain|)))) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) 103 (|and| (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ |#1|) 162) (($ |#3|) 136) (((|Polynomial| |#1|) $) 179 (|has| |#3| (|ConvertibleTo| (|Symbol|)))) (($ (|Fraction| (|Integer|))) 70 (OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (($ $) 83 (|has| |#1| (|IntegralDomain|)))) (|coefficients| (((|List| |#1|) $) 167)) (|coefficient| ((|#1| $ |#2|) 154) (($ $ |#3| (|NonNegativeInteger|)) 127) (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) 126)) (|charthRoot| (((|Union| $ "failed") $) 71 (OR (|and| (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) (|has| |#1| (|CharacteristicNonZero|))))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) 172 (|has| |#1| (|CommutativeRing|)))) (|associates?| (((|Boolean|) $ $) 87 (|has| |#1| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) 239)) (|One| (($) 29 T CONST)) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) 188 (|has| |#1| (|IntegralDomain|)))) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) 189 (|has| |#1| (|IntegralDomain|)))) (D (($ $ |#3|) 37) (($ $ (|List| |#3|)) 36) (($ $ |#3| (|NonNegativeInteger|)) 35) (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) 34)) (>= (((|Boolean|) $ $) 74 (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) 73 (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 75 (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) 72 (|has| |#1| (|OrderedSet|)))) (/ (($ $ |#1|) 155 (|has| |#1| (|Field|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 157 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ (|Fraction| (|Integer|)) $) 156 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ |#1| $) 146) (($ $ |#1|) 145))) │ │ │ +(((|RecursivePolynomialCategory| |#1| |#2| |#3|) (|Category|) (|Ring|) (|OrderedAbelianMonoidSup|) (|OrderedSet|)) (T |RecursivePolynomialCategory|)) │ │ │ +((|mvar| (*1 *2 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)))) (|mdeg| (*1 *2 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|init| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|head| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|tail| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|deepestTail| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|iteratedInitials| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|deepestInitial| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|leadingCoefficient| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)))) (|reductum| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)))) (|monic?| (*1 *2 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|quasiMonic?| (*1 *2 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|mainMonomial| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|leastMonomial| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|mainCoefficients| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|mainMonomials| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|RittWuCompare| (*1 *2 *1 *1) (|partial| AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|infRittWu?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|supRittWu?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|reduced?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|reduced?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|headReduced?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|headReduced?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|initiallyReduced?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|initiallyReduced?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|normalized?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|normalized?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|prem| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|pquo| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|prem| (*1 *1 *1 *1 *2) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)))) (|pquo| (*1 *1 *1 *1 *2) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)))) (|lazyPrem| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|lazyPquo| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|lazyPrem| (*1 *1 *1 *1 *2) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)))) (|lazyPquo| (*1 *1 *1 *1 *2) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)))) (|lazyPremWithDefault| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |coef| *1) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| *1))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|lazyPremWithDefault| (*1 *2 *1 *1 *3) (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |coef| *1) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| *1))) (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *3)))) (|lazyPseudoDivide| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |coef| *1) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|lazyPseudoDivide| (*1 *2 *1 *1 *3) (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |coef| *1) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|RecursivePolynomialCategory| *4 *5 *3)))) (|pseudoDivide| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|monicModulo| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|lazyResidueClass| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |polnum| *1) (|:| |polden| *1) (|:| |power| (|NonNegativeInteger|)))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|headReduce| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|initiallyReduce| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Polynomial| (|Fraction| (|Integer|)))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| (|Fraction| (|Integer|)))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)))) (|convert| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| (|Fraction| (|Integer|)))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)))) (|retractIfCan| (*1 *1 *2) (|partial| OR (AND (|isDomain| *2 (|Polynomial| (|Integer|))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (AND (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))) (|ofCategory| *3 (|Algebra| (|Integer|))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|))) (AND (|isDomain| *2 (|Polynomial| (|Integer|))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|))))) (|retract| (*1 *1 *2) (OR (AND (|isDomain| *2 (|Polynomial| (|Integer|))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (AND (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))) (|ofCategory| *3 (|Algebra| (|Integer|))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|))) (AND (|isDomain| *2 (|Polynomial| (|Integer|))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|))))) (|convert| (*1 *1 *2) (OR (AND (|isDomain| *2 (|Polynomial| (|Integer|))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (AND (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))) (|ofCategory| *3 (|Algebra| (|Integer|))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|))) (AND (|isDomain| *2 (|Polynomial| (|Integer|))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|))))) (|retractIfCan| (*1 *1 *2) (|partial| OR (AND (|isDomain| *2 (|Polynomial| *3)) (AND (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))) (|not| (|ofCategory| *3 (|Algebra| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|))) (AND (|isDomain| *2 (|Polynomial| *3)) (AND (|not| (|ofCategory| *3 (|IntegerNumberSystem|))) (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))) (|ofCategory| *3 (|Algebra| (|Integer|))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|))) (AND (|isDomain| *2 (|Polynomial| *3)) (AND (|not| (|ofCategory| *3 (|QuotientFieldCategory| (|Integer|)))) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|))))) (|retract| (*1 *1 *2) (OR (AND (|isDomain| *2 (|Polynomial| *3)) (AND (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))) (|not| (|ofCategory| *3 (|Algebra| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|))) (AND (|isDomain| *2 (|Polynomial| *3)) (AND (|not| (|ofCategory| *3 (|IntegerNumberSystem|))) (|not| (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))) (|ofCategory| *3 (|Algebra| (|Integer|))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|))) (AND (|isDomain| *2 (|Polynomial| *3)) (AND (|not| (|ofCategory| *3 (|QuotientFieldCategory| (|Integer|)))) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|))))) (|convert| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *5 (|ConvertibleTo| (|Symbol|))) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)))) (|primPartElseUnitCanonical| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|primPartElseUnitCanonical!| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|exactQuotient| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|exactQuotient!| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|exactQuotient| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|exactQuotient!| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|subResultantGcd| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|extendedSubResultantGcd| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |gcd| *1) (|:| |coef1| *1) (|:| |coef2| *1))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|halfExtendedSubResultantGcd1| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |gcd| *1) (|:| |coef1| *1))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|halfExtendedSubResultantGcd2| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |gcd| *1) (|:| |coef2| *1))) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|resultant| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|subResultantChain| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)))) (|lastSubResultant| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|LazardQuotient| (*1 *1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *3 (|IntegralDomain|)))) (|LazardQuotient2| (*1 *1 *1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *3 (|IntegralDomain|)))) (|nextsubResultant2| (*1 *1 *1 *1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (|gcd| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|)))) (|primitivePart!| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|)))) (|mainContent| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|)))) (|mainPrimitivePart| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|)))) (|mainSquareFreePart| (*1 *1 *1) (AND (|ofCategory| *1 (|RecursivePolynomialCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|GcdDomain|))))) │ │ │ +(|Join| (|PolynomialCategory| |t#1| |t#2| |t#3|) (CATEGORY |domain| (SIGNATURE |mvar| (|t#3| $)) (SIGNATURE |mdeg| ((|NonNegativeInteger|) $)) (SIGNATURE |init| ($ $)) (SIGNATURE |head| ($ $)) (SIGNATURE |tail| ($ $)) (SIGNATURE |deepestTail| ($ $)) (SIGNATURE |iteratedInitials| ((|List| $) $)) (SIGNATURE |deepestInitial| ($ $)) (SIGNATURE |leadingCoefficient| ($ $ |t#3|)) (SIGNATURE |reductum| ($ $ |t#3|)) (SIGNATURE |monic?| ((|Boolean|) $)) (SIGNATURE |quasiMonic?| ((|Boolean|) $)) (SIGNATURE |mainMonomial| ($ $)) (SIGNATURE |leastMonomial| ($ $)) (SIGNATURE |mainCoefficients| ((|List| $) $)) (SIGNATURE |mainMonomials| ((|List| $) $)) (SIGNATURE |RittWuCompare| ((|Union| (|Boolean|) "failed") $ $)) (SIGNATURE |infRittWu?| ((|Boolean|) $ $)) (SIGNATURE |supRittWu?| ((|Boolean|) $ $)) (SIGNATURE |reduced?| ((|Boolean|) $ $)) (SIGNATURE |reduced?| ((|Boolean|) $ (|List| $))) (SIGNATURE |headReduced?| ((|Boolean|) $ $)) (SIGNATURE |headReduced?| ((|Boolean|) $ (|List| $))) (SIGNATURE |initiallyReduced?| ((|Boolean|) $ $)) (SIGNATURE |initiallyReduced?| ((|Boolean|) $ (|List| $))) (SIGNATURE |normalized?| ((|Boolean|) $ $)) (SIGNATURE |normalized?| ((|Boolean|) $ (|List| $))) (SIGNATURE |prem| ($ $ $)) (SIGNATURE |pquo| ($ $ $)) (SIGNATURE |prem| ($ $ $ |t#3|)) (SIGNATURE |pquo| ($ $ $ |t#3|)) (SIGNATURE |lazyPrem| ($ $ $)) (SIGNATURE |lazyPquo| ($ $ $)) (SIGNATURE |lazyPrem| ($ $ $ |t#3|)) (SIGNATURE |lazyPquo| ($ $ $ |t#3|)) (SIGNATURE |lazyPremWithDefault| ((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $)) (SIGNATURE |lazyPremWithDefault| ((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |t#3|)) (SIGNATURE |lazyPseudoDivide| ((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $)) (SIGNATURE |lazyPseudoDivide| ((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |t#3|)) (SIGNATURE |pseudoDivide| ((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $)) (SIGNATURE |monicModulo| ($ $ $)) (SIGNATURE |lazyResidueClass| ((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $)) (SIGNATURE |headReduce| ($ $ $)) (SIGNATURE |initiallyReduce| ($ $ $)) (IF (|has| |t#3| (|ConvertibleTo| (|Symbol|))) (PROGN (ATTRIBUTE (|CoercibleTo| (|Polynomial| |t#1|))) (ATTRIBUTE (|ConvertibleTo| (|Polynomial| |t#1|))) (IF (|has| |t#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|))))) (SIGNATURE |retract| ($ (|Polynomial| (|Fraction| (|Integer|))))) (SIGNATURE |convert| ($ (|Polynomial| (|Fraction| (|Integer|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| (|Integer|)))) (SIGNATURE |retract| ($ (|Polynomial| (|Integer|)))) (SIGNATURE |convert| ($ (|Polynomial| (|Integer|)))) (IF (|has| |t#1| (|QuotientFieldCategory| (|Integer|))) |noBranch| (PROGN (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| |t#1|))) (SIGNATURE |retract| ($ (|Polynomial| |t#1|)))))) |noBranch|) (IF (|has| |t#1| (|Algebra| (|Integer|))) (IF (|has| |t#1| (|Algebra| (|Fraction| (|Integer|)))) |noBranch| (PROGN (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| (|Integer|)))) (SIGNATURE |retract| ($ (|Polynomial| (|Integer|)))) (SIGNATURE |convert| ($ (|Polynomial| (|Integer|)))) (IF (|has| |t#1| (|IntegerNumberSystem|)) |noBranch| (PROGN (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| |t#1|))) (SIGNATURE |retract| ($ (|Polynomial| |t#1|))))))) |noBranch|) (IF (|has| |t#1| (|Algebra| (|Integer|))) |noBranch| (IF (|has| |t#1| (|Algebra| (|Fraction| (|Integer|)))) |noBranch| (PROGN (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| |t#1|))) (SIGNATURE |retract| ($ (|Polynomial| |t#1|)))))) (SIGNATURE |convert| ($ (|Polynomial| |t#1|))) (IF (|has| |t#1| (|RetractableTo| (|Integer|))) (ATTRIBUTE (|ConvertibleTo| (|String|))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (|IntegralDomain|)) (PROGN (SIGNATURE |primPartElseUnitCanonical| ($ $)) (SIGNATURE |primPartElseUnitCanonical!| ($ $)) (SIGNATURE |exactQuotient| ($ $ |t#1|)) (SIGNATURE |exactQuotient!| ($ $ |t#1|)) (SIGNATURE |exactQuotient| ($ $ $)) (SIGNATURE |exactQuotient!| ($ $ $)) (SIGNATURE |subResultantGcd| ($ $ $)) (SIGNATURE |extendedSubResultantGcd| ((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (SIGNATURE |halfExtendedSubResultantGcd1| ((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $)) (SIGNATURE |halfExtendedSubResultantGcd2| ((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $)) (SIGNATURE |resultant| ($ $ $)) (SIGNATURE |subResultantChain| ((|List| $) $ $)) (SIGNATURE |lastSubResultant| ($ $ $)) (SIGNATURE |LazardQuotient| ($ $ $ (|NonNegativeInteger|))) (SIGNATURE |LazardQuotient2| ($ $ $ $ (|NonNegativeInteger|))) (SIGNATURE |nextsubResultant2| ($ $ $ $ $))) |noBranch|) (IF (|has| |t#1| (|GcdDomain|)) (PROGN (SIGNATURE |gcd| (|t#1| |t#1| $)) (SIGNATURE |primitivePart!| ($ $)) (SIGNATURE |mainContent| ($ $)) (SIGNATURE |mainPrimitivePart| ($ $)) (SIGNATURE |mainSquareFreePart| ($ $))) |noBranch|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| |#2|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CoercibleTo| (|Polynomial| |#1|)) |has| |#3| (|ConvertibleTo| (|Symbol|))) ((|CommutativeRing|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|ConvertibleTo| (|InputForm|)) AND (|has| |#1| (|ConvertibleTo| (|InputForm|))) (|has| |#3| (|ConvertibleTo| (|InputForm|)))) ((|ConvertibleTo| (|Pattern| (|Float|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#3| (|ConvertibleTo| (|Pattern| (|Float|))))) ((|ConvertibleTo| (|Pattern| (|Integer|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Pattern| (|Integer|))))) ((|ConvertibleTo| (|Polynomial| |#1|)) |has| |#3| (|ConvertibleTo| (|Symbol|))) ((|ConvertibleTo| (|String|)) AND (|has| |#1| (|RetractableTo| (|Integer|))) (|has| |#3| (|ConvertibleTo| (|Symbol|)))) ((|EntireRing|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|Evalable| $) . T) ((|FiniteAbelianMonoidRing| |#1| |#2|) . T) ((|FullyLinearlyExplicitRingOver| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|GcdDomain|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|GcdDomain|))) ((|InnerEvalable| |#3| |#1|) . T) ((|InnerEvalable| |#3| $) . T) ((|InnerEvalable| $ $) . T) ((|IntegralDomain|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|LeftModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|GcdDomain|))) ((|LinearlyExplicitRingOver| (|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LinearlyExplicitRingOver| |#1|) . T) ((|Module| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|Monoid|) . T) ((|OrderedSet|) |has| |#1| (|OrderedSet|)) ((|PartialDifferentialRing| |#3|) . T) ((|PatternMatchable| (|Float|)) AND (|has| |#1| (|PatternMatchable| (|Float|))) (|has| |#3| (|PatternMatchable| (|Float|)))) ((|PatternMatchable| (|Integer|)) AND (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#3| (|PatternMatchable| (|Integer|)))) ((|PolynomialCategory| |#1| |#2| |#3|) . T) ((|PolynomialFactorizationExplicit|) |has| |#1| (|PolynomialFactorizationExplicit|)) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RetractableTo| |#3|) . T) ((|RightModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|UniqueFactorizationDomain|) |has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ +((~= (((|Boolean|) $ $) 18)) (|union| (($ |#1| $) 72) (($ $ |#1|) 71) (($ $ $) 70)) (|symmetricDifference| (($ $ $) 68)) (|subset?| (((|Boolean|) $ $) 69)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|set| (($ (|List| |#1|)) 64) (($) 63)) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) 42 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) 52 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) 7 T CONST)) (|removeDuplicates!| (($ $) 58)) (|removeDuplicates| (($ $) 55 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|remove!| (($ |#1| $) 44 (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Mapping| (|Boolean|) |#1|) $) 43 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|remove| (($ |#1| $) 54 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (($ (|Mapping| (|Boolean|) |#1|) $) 51 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 53 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) 49 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|min| ((|#1| $) 74)) (|merge!| (($ $ $) 77)) (|merge| (($ $ $) 76)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|max| ((|#1| $) 75)) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|latex| (((|String|) $) 22)) (|intersect| (($ $ $) 65)) (|inspect| ((|#1| $) 36)) (|insert!| (($ |#1| $) 37) (($ |#1| $ (|NonNegativeInteger|)) 59)) (|hash| (((|SingleInteger|) $) 21)) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) 48)) (|extract!| ((|#1| $) 38)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) 57)) (|difference| (($ $ |#1|) 67) (($ $ $) 66)) (|dictionary| (($) 46) (($ (|List| |#1|)) 45)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|convert| (((|InputForm|) $) 56 (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) 47)) (|coerce| (((|OutputForm|) $) 20)) (|brace| (($ (|List| |#1|)) 62) (($) 61)) (|bag| (($ (|List| |#1|)) 39)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19)) (< (((|Boolean|) $ $) 60)) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|OrderedMultisetAggregate| |#1|) (|Category|) (|OrderedSet|)) (T |OrderedMultisetAggregate|)) │ │ │ +((|min| (*1 *2 *1) (AND (|ofCategory| *1 (|OrderedMultisetAggregate| *2)) (|ofCategory| *2 (|OrderedSet|))))) │ │ │ +(|Join| (|MultisetAggregate| |t#1|) (|PriorityQueueAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |min| (|t#1| $)))) │ │ │ +(((|Aggregate|) . T) ((|BagAggregate| |#1|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|DictionaryOperations| |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|MultiDictionary| |#1|) . T) ((|MultisetAggregate| |#1|) . T) ((|PriorityQueueAggregate| |#1|) . T) ((|SetAggregate| |#1|) . T) ((|SetCategory|) . T) ((|Type|) . T)) │ │ │ +((|retractIfCan| (((|Union| |#2| "failed") $) NIL) (((|Union| (|Symbol|) "failed") $) 65) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL) (((|Union| (|Integer|) "failed") $) 95)) (|retract| ((|#2| $) NIL) (((|Symbol|) $) 60) (((|Fraction| (|Integer|)) $) NIL) (((|Integer|) $) 92)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL) (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| $) (|Vector| $)) 112) (((|Matrix| |#2|) (|Matrix| $)) 28)) (|random| (($) 98)) (|patternMatch| (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) 74) (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) 83)) (|numerator| (($ $) 10)) (|nextItem| (((|Union| $ "failed") $) 20)) (|map| (($ (|Mapping| |#2| |#2|) $) 22)) (|init| (($) 16)) (|fractionPart| (($ $) 54)) (|differentiate| (($ $) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Symbol|)) NIL) (($ $ (|List| (|Symbol|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL) (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#2| |#2|)) 36)) (|denominator| (($ $) 12)) (|convert| (((|Pattern| (|Integer|)) $) 69) (((|Pattern| (|Float|)) $) 78) (((|InputForm|) $) 40) (((|Float|) $) 44) (((|DoubleFloat|) $) 47)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL) (($ (|Fraction| (|Integer|))) 90) (($ |#2|) NIL) (($ (|Symbol|)) 57)) (|characteristic| (((|NonNegativeInteger|)) 31)) (< (((|Boolean|) $ $) 50))) │ │ │ +(((|QuotientFieldCategory&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |init| (|#1|)) (SIGNATURE |nextItem| ((|Union| |#1| "failed") |#1|)) (SIGNATURE |retract| ((|Integer|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |retract| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |convert| ((|DoubleFloat|) |#1|)) (SIGNATURE |convert| ((|Float|) |#1|)) (SIGNATURE |convert| ((|InputForm|) |#1|)) (SIGNATURE |retract| ((|Symbol|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Symbol|) "failed") |#1|)) (SIGNATURE |coerce| (|#1| (|Symbol|))) (SIGNATURE |random| (|#1|)) (SIGNATURE |fractionPart| (|#1| |#1|)) (SIGNATURE |denominator| (|#1| |#1|)) (SIGNATURE |numerator| (|#1| |#1|)) (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Float|) |#1|) |#1| (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) |#1|))) (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|))) (SIGNATURE |convert| ((|Pattern| (|Float|)) |#1|)) (SIGNATURE |convert| ((|Pattern| (|Integer|)) |#1|)) (SIGNATURE |reducedSystem| ((|Matrix| |#2|) (|Matrix| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Matrix| (|Integer|)) (|Matrix| |#1|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|))) (SIGNATURE |differentiate| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |retract| (|#2| |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |coerce| (|#1| |#1|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |characteristic| ((|NonNegativeInteger|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|QuotientFieldCategory| |#2|) (|IntegralDomain|)) (T |QuotientFieldCategory&|)) │ │ │ +((|characteristic| (*1 *2) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|QuotientFieldCategory&| *3 *4)) (|ofCategory| *3 (|QuotientFieldCategory| *4))))) │ │ │ +(CATEGORY |domain| (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |init| (|#1|)) (SIGNATURE |nextItem| ((|Union| |#1| "failed") |#1|)) (SIGNATURE |retract| ((|Integer|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |retract| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |convert| ((|DoubleFloat|) |#1|)) (SIGNATURE |convert| ((|Float|) |#1|)) (SIGNATURE |convert| ((|InputForm|) |#1|)) (SIGNATURE |retract| ((|Symbol|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Symbol|) "failed") |#1|)) (SIGNATURE |coerce| (|#1| (|Symbol|))) (SIGNATURE |random| (|#1|)) (SIGNATURE |fractionPart| (|#1| |#1|)) (SIGNATURE |denominator| (|#1| |#1|)) (SIGNATURE |numerator| (|#1| |#1|)) (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Float|) |#1|) |#1| (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) |#1|))) (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|))) (SIGNATURE |convert| ((|Pattern| (|Float|)) |#1|)) (SIGNATURE |convert| ((|Pattern| (|Integer|)) |#1|)) (SIGNATURE |reducedSystem| ((|Matrix| |#2|) (|Matrix| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Matrix| (|Integer|)) (|Matrix| |#1|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|))) (SIGNATURE |differentiate| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |retract| (|#2| |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |coerce| (|#1| |#1|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |characteristic| ((|NonNegativeInteger|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|setelt| ((|#2| $ (|Integer|) |#2|) NIL)) (|removeConjugate| (((|List| $) (|List| $) (|NonNegativeInteger|)) 39) (((|List| $) (|List| $)) 40)) (|rational?| (((|Boolean|) $ (|NonNegativeInteger|)) 36) (((|Boolean|) $) 38)) (|pointValue| (((|List| |#2|) $) 31)) (|origin| (($) 12)) (|orbit| (((|List| $) $) 48) (((|List| $) $ (|NonNegativeInteger|)) 45)) (|list| (((|List| |#2|) $) 30)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|elt| ((|#2| $ (|Integer|)) NIL)) (|degree| (((|PositiveInteger|) $) 20)) (|definingField| ((|#2| $) 26)) (|conjugate| (($ $ (|NonNegativeInteger|)) 33) (($ $) 47)) (|coerce| (((|OutputForm|) $) 23) (((|List| |#2|) $) 28) (($ (|List| |#2|)) 51)) (|affinePoint| (($ (|List| |#2|)) 29)) (= (((|Boolean|) $ $) 35))) │ │ │ +(((|AffineSpace| |#1| |#2|) (|AffineSpaceCategory| |#2|) (|NonNegativeInteger|) (|Field|)) (T |AffineSpace|)) │ │ │ NIL │ │ │ -(((|AdditiveValuationAttribute|) (|Category|)) (T |AdditiveValuationAttribute|)) │ │ │ +(|AffineSpaceCategory| |#2|) │ │ │ +((|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) 84)) (|subResultantGcd| ((|#2| |#2| |#2|) 82)) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) 86)) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) 88)) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) 106 (|has| |#1| (|GcdDomain|)))) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) 45)) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) 63)) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) 65)) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) 70)) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) 96)) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) 73)) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) 81)) (|resultantnaif| ((|#1| |#2| |#2|) 41)) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) 104 (|has| |#1| (|GcdDomain|)))) (|resultantReduit| ((|#1| |#2| |#2|) 102 (|has| |#1| (|GcdDomain|)))) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) 43)) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) 62)) (|resultant| ((|#1| |#2| |#2|) 60)) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) 35)) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) 52)) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (|lastSubResultant| ((|#2| |#2| |#2|) 74)) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) 68)) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) 66)) (|gcd| ((|#2| |#2| |#2|) 110 (|has| |#1| (|GcdDomain|)))) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) 21)) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) 38)) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) 94)) (|discriminant| ((|#1| |#2|) 91)) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) 72)) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) 71)) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) 79)) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) 49)) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) 48)) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) 16))) │ │ │ +(((|PseudoRemainderSequence| |#1| |#2|) (CATEGORY |package| (SIGNATURE |resultant| (|#1| |#2| |#2|)) (SIGNATURE |resultantEuclidean| ((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|)) (SIGNATURE |semiResultantEuclidean2| ((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|)) (SIGNATURE |semiResultantEuclidean1| ((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|)) (SIGNATURE |indiceSubResultant| (|#2| |#2| |#2| (|NonNegativeInteger|))) (SIGNATURE |indiceSubResultantEuclidean| ((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|))) (SIGNATURE |semiIndiceSubResultantEuclidean| ((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|))) (SIGNATURE |degreeSubResultant| (|#2| |#2| |#2| (|NonNegativeInteger|))) (SIGNATURE |degreeSubResultantEuclidean| ((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|))) (SIGNATURE |semiDegreeSubResultantEuclidean| ((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|))) (SIGNATURE |lastSubResultant| (|#2| |#2| |#2|)) (SIGNATURE |lastSubResultantEuclidean| ((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (SIGNATURE |semiLastSubResultantEuclidean| ((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (SIGNATURE |subResultantGcd| (|#2| |#2| |#2|)) (SIGNATURE |subResultantGcdEuclidean| ((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|)) (SIGNATURE |semiSubResultantGcdEuclidean2| ((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|)) (SIGNATURE |semiSubResultantGcdEuclidean1| ((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|)) (SIGNATURE |discriminant| (|#1| |#2|)) (SIGNATURE |discriminantEuclidean| ((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|)) (SIGNATURE |semiDiscriminantEuclidean| ((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|)) (SIGNATURE |chainSubResultants| ((|List| |#2|) |#2| |#2|)) (SIGNATURE |schema| ((|List| (|NonNegativeInteger|)) |#2| |#2|)) (IF (|has| |#1| (|GcdDomain|)) (PROGN (SIGNATURE |resultantReduit| (|#1| |#2| |#2|)) (SIGNATURE |resultantReduitEuclidean| ((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|)) (SIGNATURE |semiResultantReduitEuclidean| ((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|)) (SIGNATURE |gcd| (|#2| |#2| |#2|))) |noBranch|) (SIGNATURE * ((|Vector| |#2|) |#1| (|Vector| |#2|))) (SIGNATURE |exquo| ((|Vector| |#2|) (|Vector| |#2|) |#1|)) (SIGNATURE |pseudoDivide| ((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|)) (SIGNATURE |divide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|)) (SIGNATURE |Lazard| (|#1| |#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |Lazard2| (|#2| |#2| |#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |nextsousResultant2| (|#2| |#2| |#2| |#2| |#1|)) (SIGNATURE |resultantnaif| (|#1| |#2| |#2|)) (SIGNATURE |resultantEuclideannaif| ((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|)) (SIGNATURE |semiResultantEuclideannaif| ((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|))) (|IntegralDomain|) (|UnivariatePolynomialCategory| |#1|)) (T |PseudoRemainderSequence|)) │ │ │ +((|semiResultantEuclideannaif| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef2| *3) (|:| |resultant| *4))) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|resultantEuclideannaif| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef1| *3) (|:| |coef2| *3) (|:| |resultant| *4))) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|resultantnaif| (*1 *2 *3 *3) (AND (|ofCategory| *2 (|IntegralDomain|)) (|isDomain| *1 (|PseudoRemainderSequence| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|nextsousResultant2| (*1 *2 *2 *2 *2 *3) (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *1 (|PseudoRemainderSequence| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|Lazard2| (*1 *2 *2 *3 *3 *4) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *1 (|PseudoRemainderSequence| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|Lazard| (*1 *2 *2 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *2 (|IntegralDomain|)) (|isDomain| *1 (|PseudoRemainderSequence| *2 *4)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *2)))) (|divide| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3))) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|pseudoDivide| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef| *4) (|:| |quotient| *3) (|:| |remainder| *3))) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|exquo| (*1 *2 *2 *3) (AND (|isDomain| *2 (|Vector| *4)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *1 (|PseudoRemainderSequence| *3 *4)))) (* (*1 *2 *3 *2) (AND (|isDomain| *2 (|Vector| *4)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *1 (|PseudoRemainderSequence| *3 *4)))) (|gcd| (*1 *2 *2 *2) (AND (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *1 (|PseudoRemainderSequence| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|semiResultantReduitEuclidean| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef2| *3) (|:| |resultantReduit| *4))) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|resultantReduitEuclidean| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef1| *3) (|:| |coef2| *3) (|:| |resultantReduit| *4))) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|resultantReduit| (*1 *2 *3 *3) (AND (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|GcdDomain|)) (|isDomain| *1 (|PseudoRemainderSequence| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|schema| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| (|NonNegativeInteger|))) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|chainSubResultants| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|semiDiscriminantEuclidean| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef2| *3) (|:| |discriminant| *4))) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|discriminantEuclidean| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef1| *3) (|:| |coef2| *3) (|:| |discriminant| *4))) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|discriminant| (*1 *2 *3) (AND (|ofCategory| *2 (|IntegralDomain|)) (|isDomain| *1 (|PseudoRemainderSequence| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|semiSubResultantGcdEuclidean1| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef1| *3) (|:| |gcd| *3))) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|semiSubResultantGcdEuclidean2| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef2| *3) (|:| |gcd| *3))) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|subResultantGcdEuclidean| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef1| *3) (|:| |coef2| *3) (|:| |gcd| *3))) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|subResultantGcd| (*1 *2 *2 *2) (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *1 (|PseudoRemainderSequence| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|semiLastSubResultantEuclidean| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef2| *3) (|:| |subResultant| *3))) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|lastSubResultantEuclidean| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|lastSubResultant| (*1 *2 *2 *2) (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *1 (|PseudoRemainderSequence| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|semiDegreeSubResultantEuclidean| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef2| *3) (|:| |subResultant| *3))) (|isDomain| *1 (|PseudoRemainderSequence| *5 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))) (|degreeSubResultantEuclidean| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (|isDomain| *1 (|PseudoRemainderSequence| *5 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))) (|degreeSubResultant| (*1 *2 *2 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *1 (|PseudoRemainderSequence| *4 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))) (|semiIndiceSubResultantEuclidean| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef2| *3) (|:| |subResultant| *3))) (|isDomain| *1 (|PseudoRemainderSequence| *5 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))) (|indiceSubResultantEuclidean| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (|isDomain| *1 (|PseudoRemainderSequence| *5 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))) (|indiceSubResultant| (*1 *2 *2 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *1 (|PseudoRemainderSequence| *4 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))) (|semiResultantEuclidean1| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef1| *3) (|:| |resultant| *4))) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|semiResultantEuclidean2| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef2| *3) (|:| |resultant| *4))) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|resultantEuclidean| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |coef1| *3) (|:| |coef2| *3) (|:| |resultant| *4))) (|isDomain| *1 (|PseudoRemainderSequence| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|resultant| (*1 *2 *3 *3) (AND (|ofCategory| *2 (|IntegralDomain|)) (|isDomain| *1 (|PseudoRemainderSequence| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2))))) │ │ │ +(CATEGORY |package| (SIGNATURE |resultant| (|#1| |#2| |#2|)) (SIGNATURE |resultantEuclidean| ((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|)) (SIGNATURE |semiResultantEuclidean2| ((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|)) (SIGNATURE |semiResultantEuclidean1| ((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|)) (SIGNATURE |indiceSubResultant| (|#2| |#2| |#2| (|NonNegativeInteger|))) (SIGNATURE |indiceSubResultantEuclidean| ((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|))) (SIGNATURE |semiIndiceSubResultantEuclidean| ((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|))) (SIGNATURE |degreeSubResultant| (|#2| |#2| |#2| (|NonNegativeInteger|))) (SIGNATURE |degreeSubResultantEuclidean| ((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|))) (SIGNATURE |semiDegreeSubResultantEuclidean| ((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|))) (SIGNATURE |lastSubResultant| (|#2| |#2| |#2|)) (SIGNATURE |lastSubResultantEuclidean| ((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (SIGNATURE |semiLastSubResultantEuclidean| ((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (SIGNATURE |subResultantGcd| (|#2| |#2| |#2|)) (SIGNATURE |subResultantGcdEuclidean| ((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|)) (SIGNATURE |semiSubResultantGcdEuclidean2| ((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|)) (SIGNATURE |semiSubResultantGcdEuclidean1| ((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|)) (SIGNATURE |discriminant| (|#1| |#2|)) (SIGNATURE |discriminantEuclidean| ((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|)) (SIGNATURE |semiDiscriminantEuclidean| ((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|)) (SIGNATURE |chainSubResultants| ((|List| |#2|) |#2| |#2|)) (SIGNATURE |schema| ((|List| (|NonNegativeInteger|)) |#2| |#2|)) (IF (|has| |#1| (|GcdDomain|)) (PROGN (SIGNATURE |resultantReduit| (|#1| |#2| |#2|)) (SIGNATURE |resultantReduitEuclidean| ((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|)) (SIGNATURE |semiResultantReduitEuclidean| ((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|)) (SIGNATURE |gcd| (|#2| |#2| |#2|))) |noBranch|) (SIGNATURE * ((|Vector| |#2|) |#1| (|Vector| |#2|))) (SIGNATURE |exquo| ((|Vector| |#2|) (|Vector| |#2|) |#1|)) (SIGNATURE |pseudoDivide| ((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|)) (SIGNATURE |divide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|)) (SIGNATURE |Lazard| (|#1| |#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |Lazard2| (|#2| |#2| |#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |nextsousResultant2| (|#2| |#2| |#2| |#2| |#1|)) (SIGNATURE |resultantnaif| (|#1| |#2| |#2|)) (SIGNATURE |resultantEuclideannaif| ((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|)) (SIGNATURE |semiResultantEuclideannaif| ((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|transcendent?| (((|Boolean|) $) NIL)) (|transcendenceDegree| (((|NonNegativeInteger|)) NIL)) (|trace| (((|PrimeField| |#1|) $) NIL) (($ $ (|PositiveInteger|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|sizeMultiplication| (((|NonNegativeInteger|)) NIL)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|size| (((|NonNegativeInteger|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|PrimeField| |#1|) "failed") $) NIL)) (|retract| (((|PrimeField| |#1|) $) NIL)) (|represents| (($ (|Vector| (|PrimeField| |#1|))) NIL)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|rem| (($ $ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|random| (($) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|primitiveElement| (($) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|primitive?| (((|Boolean|) $) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) NIL (OR (|has| (|PrimeField| |#1|) (|CharacteristicNonZero|)) (|has| (|PrimeField| |#1|) (|Finite|)))) (($ $) NIL (OR (|has| (|PrimeField| |#1|) (|CharacteristicNonZero|)) (|has| (|PrimeField| |#1|) (|Finite|))))) (|prime?| (((|Boolean|) $) NIL)) (|order| (((|PositiveInteger|) $) NIL (|has| (|PrimeField| |#1|) (|Finite|))) (((|OnePointCompletion| (|PositiveInteger|)) $) NIL (OR (|has| (|PrimeField| |#1|) (|CharacteristicNonZero|)) (|has| (|PrimeField| |#1|) (|Finite|))))) (|one?| (((|Boolean|) $) NIL)) (|normalElement| (($) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|normal?| (((|Boolean|) $) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|norm| (((|PrimeField| |#1|) $) NIL) (($ $ (|PositiveInteger|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|nextItem| (((|Union| $ "failed") $) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|minimalPolynomial| (((|SparseUnivariatePolynomial| (|PrimeField| |#1|)) $) NIL) (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|lookup| (((|PositiveInteger|) $) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| (|PrimeField| |#1|)) $) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|linearAssociatedLog| (((|SparseUnivariatePolynomial| (|PrimeField| |#1|)) $) NIL (|has| (|PrimeField| |#1|) (|Finite|))) (((|Union| (|SparseUnivariatePolynomial| (|PrimeField| |#1|)) "failed") $ $) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| (|PrimeField| |#1|))) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) NIL)) (|init| (($) NIL (|has| (|PrimeField| |#1|) (|Finite|)) CONST)) (|index| (($ (|PositiveInteger|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|inGroundField?| (((|Boolean|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) NIL)) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) NIL)) (|generator| (($) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|factor| (((|Factored| $) $) NIL)) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) NIL) (((|PositiveInteger|)) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|enumerate| (((|List| $)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|discreteLog| (((|NonNegativeInteger|) $) NIL (|has| (|PrimeField| |#1|) (|Finite|))) (((|Union| (|NonNegativeInteger|) "failed") $ $) NIL (OR (|has| (|PrimeField| |#1|) (|CharacteristicNonZero|)) (|has| (|PrimeField| |#1|) (|Finite|))))) (|dimension| (((|CardinalNumber|)) NIL)) (|differentiate| (($ $) NIL (|has| (|PrimeField| |#1|) (|Finite|))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) NIL) (((|PositiveInteger|) $) NIL)) (|definingPolynomial| (((|SparseUnivariatePolynomial| (|PrimeField| |#1|))) NIL)) (|createPrimitiveElement| (($) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|createNormalElement| (($) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|coordinates| (((|Vector| (|PrimeField| |#1|)) $) NIL) (((|Matrix| (|PrimeField| |#1|)) (|Vector| $)) NIL)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL) (($ (|Fraction| (|Integer|))) NIL) (($ (|PrimeField| |#1|)) NIL)) (|charthRoot| (($ $) NIL (|has| (|PrimeField| |#1|) (|Finite|))) (((|Union| $ "failed") $) NIL (OR (|has| (|PrimeField| |#1|) (|CharacteristicNonZero|)) (|has| (|PrimeField| |#1|) (|Finite|))))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|basis| (((|Vector| $)) NIL) (((|Vector| $) (|PositiveInteger|)) NIL)) (|associates?| (((|Boolean|) $ $) NIL)) (|algebraic?| (((|Boolean|) $) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (|Frobenius| (($ $) NIL (|has| (|PrimeField| |#1|) (|Finite|))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (D (($ $) NIL (|has| (|PrimeField| |#1|) (|Finite|))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (= (((|Boolean|) $ $) NIL)) (/ (($ $ $) NIL) (($ $ (|PrimeField| |#1|)) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|Fraction| (|Integer|))) NIL) (($ (|Fraction| (|Integer|)) $) NIL) (($ $ (|PrimeField| |#1|)) NIL) (($ (|PrimeField| |#1|) $) NIL))) │ │ │ +(((|FiniteFieldNormalBasis| |#1| |#2|) (|Join| (|FiniteAlgebraicExtensionField| (|PrimeField| |#1|)) (CATEGORY |package| (SIGNATURE |getMultiplicationTable| ((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|))))))) (SIGNATURE |getMultiplicationMatrix| ((|Matrix| (|PrimeField| |#1|)))) (SIGNATURE |sizeMultiplication| ((|NonNegativeInteger|))))) (|PositiveInteger|) (|PositiveInteger|)) (T |FiniteFieldNormalBasis|)) │ │ │ +((|getMultiplicationTable| (*1 *2) (AND (|isDomain| *2 (|Vector| (|List| (|Record| (|:| |value| (|PrimeField| *3)) (|:| |index| (|SingleInteger|)))))) (|isDomain| *1 (|FiniteFieldNormalBasis| *3 *4)) (|ofType| *3 (|PositiveInteger|)) (|ofType| *4 (|PositiveInteger|)))) (|getMultiplicationMatrix| (*1 *2) (AND (|isDomain| *2 (|Matrix| (|PrimeField| *3))) (|isDomain| *1 (|FiniteFieldNormalBasis| *3 *4)) (|ofType| *3 (|PositiveInteger|)) (|ofType| *4 (|PositiveInteger|)))) (|sizeMultiplication| (*1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|FiniteFieldNormalBasis| *3 *4)) (|ofType| *3 (|PositiveInteger|)) (|ofType| *4 (|PositiveInteger|))))) │ │ │ +(|Join| (|FiniteAlgebraicExtensionField| (|PrimeField| |#1|)) (CATEGORY |package| (SIGNATURE |getMultiplicationTable| ((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|))))))) (SIGNATURE |getMultiplicationMatrix| ((|Matrix| (|PrimeField| |#1|)))) (SIGNATURE |sizeMultiplication| ((|NonNegativeInteger|))))) │ │ │ +((|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) 14))) │ │ │ +(((|ParametricPlaneCurveFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)))) (|Type|) (|Type|)) (T |ParametricPlaneCurveFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|ParametricPlaneCurve| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|ParametricPlaneCurve| *6)) (|isDomain| *1 (|ParametricPlaneCurveFunctions2| *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| ((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|varList| (((|List| |#1|) $) 84)) (|trunc| (($ $ (|NonNegativeInteger|)) 87)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sh| (($ $ $) NIL (|has| |#2| (|CommutativeRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#2| (|CommutativeRing|)))) (|sample| (($) NIL T CONST)) (|rquo| (($ $ |#1|) NIL) (($ $ (|OrderedFreeMonoid| |#1|)) NIL) (($ $ $) NIL)) (|retractIfCan| (((|Union| (|OrderedFreeMonoid| |#1|) "failed") $) NIL) (((|Union| (|PoincareBirkhoffWittLyndonBasis| |#1|) "failed") $) NIL)) (|retract| (((|OrderedFreeMonoid| |#1|) $) NIL) (((|PoincareBirkhoffWittLyndonBasis| |#1|) $) NIL)) (|reductum| (($ $) 86)) (|recip| (((|Union| $ "failed") $) NIL)) (|quasiRegular?| (((|Boolean|) $) 75)) (|quasiRegular| (($ $) 79)) (|product| (($ $ $ (|NonNegativeInteger|)) 88)) (|one?| (((|Boolean|) $) NIL)) (|numberOfMonomials| (((|NonNegativeInteger|) $) NIL)) (|monomials| (((|List| $) $) NIL)) (|monomial?| (((|Boolean|) $) NIL)) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) NIL) (($ (|PoincareBirkhoffWittLyndonBasis| |#1|) |#2|) 25)) (|mirror| (($ $) 101)) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) NIL)) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) NIL)) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) NIL)) (|map| (($ (|Mapping| |#2| |#2|) $) NIL)) (|lquo| (($ $ |#1|) NIL) (($ $ (|OrderedFreeMonoid| |#1|)) NIL) (($ $ $) NIL)) (|log| (($ $ (|NonNegativeInteger|)) 95 (|has| |#2| (|Module| (|Fraction| (|Integer|)))))) (|listOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) NIL)) (|leadingTerm| (((|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|)) $) NIL)) (|leadingMonomial| (((|PoincareBirkhoffWittLyndonBasis| |#1|) $) 69)) (|leadingCoefficient| ((|#2| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|exp| (($ $ (|NonNegativeInteger|)) 92 (|has| |#2| (|Module| (|Fraction| (|Integer|)))))) (|degree| (((|NonNegativeInteger|) $) 85)) (|constant?| (((|Boolean|) $) 70)) (|constant| ((|#2| $) 74)) (|coerce| (((|OutputForm|) $) 56) (($ (|Integer|)) NIL) (($ |#2|) 50) (($ (|OrderedFreeMonoid| |#1|)) NIL) (($ |#1|) 58) (($ (|PoincareBirkhoffWittLyndonBasis| |#1|)) NIL) (($ (|LiePolynomial| |#1| |#2|)) 42) (((|XDistributedPolynomial| |#1| |#2|) $) 63) (((|XRecursivePolynomial| |#1| |#2|) $) 68)) (|coefficients| (((|List| |#2|) $) NIL)) (|coefficient| ((|#2| $ (|PoincareBirkhoffWittLyndonBasis| |#1|)) NIL)) (|coef| ((|#2| $ (|OrderedFreeMonoid| |#1|)) NIL) ((|#2| $ $) NIL)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 21 T CONST)) (|One| (($) 24 T CONST)) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) 100)) (= (((|Boolean|) $ $) 64)) (- (($ $) 94) (($ $ $) 93)) (+ (($ $ $) 20)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (|PoincareBirkhoffWittLyndonBasis| |#1|)) NIL))) │ │ │ +(((|XPBWPolynomial| |#1| |#2|) (|Join| (|XPolynomialsCat| |#1| |#2|) (|FreeModuleCat| |#2| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|LiePolynomial| |#1| |#2|))) (SIGNATURE |coerce| ((|XDistributedPolynomial| |#1| |#2|) $)) (SIGNATURE |coerce| ((|XRecursivePolynomial| |#1| |#2|) $)) (SIGNATURE |LiePolyIfCan| ((|Union| (|LiePolynomial| |#1| |#2|) "failed") $)) (SIGNATURE |product| ($ $ $ (|NonNegativeInteger|))) (IF (|has| |#2| (|Module| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |exp| ($ $ (|NonNegativeInteger|))) (SIGNATURE |log| ($ $ (|NonNegativeInteger|)))) |noBranch|))) (|OrderedSet|) (|CommutativeRing|)) (T |XPBWPolynomial|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|LiePolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *1 (|XPBWPolynomial| *3 *4)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|XDistributedPolynomial| *3 *4)) (|isDomain| *1 (|XPBWPolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|XRecursivePolynomial| *3 *4)) (|isDomain| *1 (|XPBWPolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|LiePolyIfCan| (*1 *2 *1) (|partial| AND (|isDomain| *2 (|LiePolynomial| *3 *4)) (|isDomain| *1 (|XPBWPolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|product| (*1 *1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|XPBWPolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|exp| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|XPBWPolynomial| *3 *4)) (|ofCategory| *4 (|Module| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|log| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|XPBWPolynomial| *3 *4)) (|ofCategory| *4 (|Module| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|))))) │ │ │ +(|Join| (|XPolynomialsCat| |#1| |#2|) (|FreeModuleCat| |#2| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|LiePolynomial| |#1| |#2|))) (SIGNATURE |coerce| ((|XDistributedPolynomial| |#1| |#2|) $)) (SIGNATURE |coerce| ((|XRecursivePolynomial| |#1| |#2|) $)) (SIGNATURE |LiePolyIfCan| ((|Union| (|LiePolynomial| |#1| |#2|) "failed") $)) (SIGNATURE |product| ($ $ $ (|NonNegativeInteger|))) (IF (|has| |#2| (|Module| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |exp| ($ $ (|NonNegativeInteger|))) (SIGNATURE |log| ($ $ (|NonNegativeInteger|)))) |noBranch|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) 106)) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) 128)) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) 129)) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) 96)) (|random| (((|Permutation| |#1|) $ (|Integer|)) 101) (((|Permutation| |#1|) $) 102)) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) 108)) (|order| (((|NonNegativeInteger|) $) 103)) (|orbits| (((|Set| (|Set| |#1|)) $) 126)) (|orbit| (((|Set| |#1|) $ |#1|) 119) (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) 137) (((|Set| (|List| |#1|)) $ (|List| |#1|)) 140)) (|movedPoints| (((|Set| |#1|) $) 99)) (|member?| (((|Boolean|) (|Permutation| |#1|) $) 90)) (|latex| (((|String|) $) NIL)) (|initializeGroupForWordProblem| (((|Void|) $) 93) (((|Void|) $ (|Integer|) (|Integer|)) 141)) (|hash| (((|SingleInteger|) $) NIL)) (|generators| (((|List| (|Permutation| |#1|)) $) 94)) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) 97)) (|degree| (((|NonNegativeInteger|) $) 104)) (|coerce| (((|OutputForm|) $) 117) (((|List| (|Permutation| |#1|)) $) 22) (($ (|List| (|Permutation| |#1|))) 107)) (|base| (((|List| |#1|) $) 105)) (= (((|Boolean|) $ $) 134)) (<= (((|Boolean|) $ $) 132)) (< (((|Boolean|) $ $) 131))) │ │ │ +(((|PermutationGroup| |#1|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ((|List| (|Permutation| |#1|)) $)) (SIGNATURE |coerce| ($ (|List| (|Permutation| |#1|)))) (SIGNATURE |generators| ((|List| (|Permutation| |#1|)) $)) (SIGNATURE |elt| ((|Permutation| |#1|) $ (|NonNegativeInteger|))) (SIGNATURE |random| ((|Permutation| |#1|) $ (|Integer|))) (SIGNATURE |random| ((|Permutation| |#1|) $)) (SIGNATURE |order| ((|NonNegativeInteger|) $)) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |base| ((|List| |#1|) $)) (SIGNATURE |strongGenerators| ((|List| (|Permutation| |#1|)) $)) (SIGNATURE |wordsForStrongGenerators| ((|List| (|List| (|NonNegativeInteger|))) $)) (SIGNATURE |permutationGroup| ($ (|List| (|Permutation| |#1|)))) (SIGNATURE |orbit| ((|Set| |#1|) $ |#1|)) (SIGNATURE |orbit| ((|Set| (|Set| |#1|)) $ (|Set| |#1|))) (SIGNATURE |orbit| ((|Set| (|List| |#1|)) $ (|List| |#1|))) (SIGNATURE |orbits| ((|Set| (|Set| |#1|)) $)) (SIGNATURE |member?| ((|Boolean|) (|Permutation| |#1|) $)) (SIGNATURE |wordInStrongGenerators| ((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $)) (SIGNATURE |wordInGenerators| ((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $)) (SIGNATURE |movedPoints| ((|Set| |#1|) $)) (SIGNATURE < ((|Boolean|) $ $)) (SIGNATURE <= ((|Boolean|) $ $)) (SIGNATURE |initializeGroupForWordProblem| ((|Void|) $)) (SIGNATURE |initializeGroupForWordProblem| ((|Void|) $ (|Integer|) (|Integer|))))) (|SetCategory|)) (T |PermutationGroup|)) │ │ │ +((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Permutation| *3))) (|isDomain| *1 (|PermutationGroup| *3)) (|ofCategory| *3 (|SetCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Permutation| *3))) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|PermutationGroup| *3)))) (|generators| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Permutation| *3))) (|isDomain| *1 (|PermutationGroup| *3)) (|ofCategory| *3 (|SetCategory|)))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Permutation| *4)) (|isDomain| *1 (|PermutationGroup| *4)) (|ofCategory| *4 (|SetCategory|)))) (|random| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Permutation| *4)) (|isDomain| *1 (|PermutationGroup| *4)) (|ofCategory| *4 (|SetCategory|)))) (|random| (*1 *2 *1) (AND (|isDomain| *2 (|Permutation| *3)) (|isDomain| *1 (|PermutationGroup| *3)) (|ofCategory| *3 (|SetCategory|)))) (|order| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|PermutationGroup| *3)) (|ofCategory| *3 (|SetCategory|)))) (|degree| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|PermutationGroup| *3)) (|ofCategory| *3 (|SetCategory|)))) (|base| (*1 *2 *1) (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|PermutationGroup| *3)) (|ofCategory| *3 (|SetCategory|)))) (|strongGenerators| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Permutation| *3))) (|isDomain| *1 (|PermutationGroup| *3)) (|ofCategory| *3 (|SetCategory|)))) (|wordsForStrongGenerators| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|List| (|NonNegativeInteger|)))) (|isDomain| *1 (|PermutationGroup| *3)) (|ofCategory| *3 (|SetCategory|)))) (|permutationGroup| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Permutation| *3))) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|PermutationGroup| *3)))) (|orbit| (*1 *2 *1 *3) (AND (|isDomain| *2 (|Set| *3)) (|isDomain| *1 (|PermutationGroup| *3)) (|ofCategory| *3 (|SetCategory|)))) (|orbit| (*1 *2 *1 *3) (AND (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Set| (|Set| *4))) (|isDomain| *1 (|PermutationGroup| *4)) (|isDomain| *3 (|Set| *4)))) (|orbit| (*1 *2 *1 *3) (AND (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Set| (|List| *4))) (|isDomain| *1 (|PermutationGroup| *4)) (|isDomain| *3 (|List| *4)))) (|orbits| (*1 *2 *1) (AND (|isDomain| *2 (|Set| (|Set| *3))) (|isDomain| *1 (|PermutationGroup| *3)) (|ofCategory| *3 (|SetCategory|)))) (|member?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Permutation| *4)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PermutationGroup| *4)))) (|wordInStrongGenerators| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Permutation| *4)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|List| (|NonNegativeInteger|))) (|isDomain| *1 (|PermutationGroup| *4)))) (|wordInGenerators| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Permutation| *4)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|List| (|NonNegativeInteger|))) (|isDomain| *1 (|PermutationGroup| *4)))) (|movedPoints| (*1 *2 *1) (AND (|isDomain| *2 (|Set| *3)) (|isDomain| *1 (|PermutationGroup| *3)) (|ofCategory| *3 (|SetCategory|)))) (< (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PermutationGroup| *3)) (|ofCategory| *3 (|SetCategory|)))) (<= (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PermutationGroup| *3)) (|ofCategory| *3 (|SetCategory|)))) (|initializeGroupForWordProblem| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|PermutationGroup| *3)) (|ofCategory| *3 (|SetCategory|)))) (|initializeGroupForWordProblem| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|PermutationGroup| *4)) (|ofCategory| *4 (|SetCategory|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ((|List| (|Permutation| |#1|)) $)) (SIGNATURE |coerce| ($ (|List| (|Permutation| |#1|)))) (SIGNATURE |generators| ((|List| (|Permutation| |#1|)) $)) (SIGNATURE |elt| ((|Permutation| |#1|) $ (|NonNegativeInteger|))) (SIGNATURE |random| ((|Permutation| |#1|) $ (|Integer|))) (SIGNATURE |random| ((|Permutation| |#1|) $)) (SIGNATURE |order| ((|NonNegativeInteger|) $)) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |base| ((|List| |#1|) $)) (SIGNATURE |strongGenerators| ((|List| (|Permutation| |#1|)) $)) (SIGNATURE |wordsForStrongGenerators| ((|List| (|List| (|NonNegativeInteger|))) $)) (SIGNATURE |permutationGroup| ($ (|List| (|Permutation| |#1|)))) (SIGNATURE |orbit| ((|Set| |#1|) $ |#1|)) (SIGNATURE |orbit| ((|Set| (|Set| |#1|)) $ (|Set| |#1|))) (SIGNATURE |orbit| ((|Set| (|List| |#1|)) $ (|List| |#1|))) (SIGNATURE |orbits| ((|Set| (|Set| |#1|)) $)) (SIGNATURE |member?| ((|Boolean|) (|Permutation| |#1|) $)) (SIGNATURE |wordInStrongGenerators| ((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $)) (SIGNATURE |wordInGenerators| ((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $)) (SIGNATURE |movedPoints| ((|Set| |#1|) $)) (SIGNATURE < ((|Boolean|) $ $)) (SIGNATURE <= ((|Boolean|) $ $)) (SIGNATURE |initializeGroupForWordProblem| ((|Void|) $)) (SIGNATURE |initializeGroupForWordProblem| ((|Void|) $ (|Integer|) (|Integer|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|rightRemainder| (($ $ $) NIL (|has| |#1| (|Field|)))) (|rightQuotient| (($ $ $) NIL (|has| |#1| (|Field|)))) (|rightLcm| (($ $ $) NIL (|has| |#1| (|Field|)))) (|rightGcd| (($ $ $) NIL (|has| |#1| (|Field|)))) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| |#1| (|Field|)))) (|rightExactQuotient| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|Field|)))) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 25 (|has| |#1| (|Field|)))) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#1| "failed") $) NIL)) (|retract| (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1| $) NIL)) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|primitivePart| (($ $) NIL (|has| |#1| (|GcdDomain|)))) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) NIL)) (|one?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| (|NonNegativeInteger|)) NIL)) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 21 (|has| |#1| (|IntegralDomain|)))) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 19 (|has| |#1| (|IntegralDomain|)))) (|minimumDegree| (((|NonNegativeInteger|) $) NIL)) (|leftRemainder| (($ $ $) NIL (|has| |#1| (|Field|)))) (|leftQuotient| (($ $ $) NIL (|has| |#1| (|Field|)))) (|leftLcm| (($ $ $) NIL (|has| |#1| (|Field|)))) (|leftGcd| (($ $ $) NIL (|has| |#1| (|Field|)))) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| |#1| (|Field|)))) (|leftExactQuotient| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|Field|)))) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 23 (|has| |#1| (|Field|)))) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|exquo| (((|Union| $ "failed") $ |#1|) NIL (|has| |#1| (|IntegralDomain|)))) (|degree| (((|NonNegativeInteger|) $) NIL)) (|content| ((|#1| $) NIL (|has| |#1| (|GcdDomain|)))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ (|Fraction| (|Integer|))) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (($ |#1|) NIL)) (|coefficients| (((|List| |#1|) $) NIL)) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) NIL)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|apply| ((|#1| $ |#1| |#1|) 15)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) │ │ │ +(((|SparseUnivariateSkewPolynomial| |#1| |#2| |#3|) (|Join| (|UnivariateSkewPolynomialCategory| |#1|) (CATEGORY |domain| (SIGNATURE |outputForm| ((|OutputForm|) $ (|OutputForm|))))) (|Ring|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) (T |SparseUnivariateSkewPolynomial|)) │ │ │ +((|outputForm| (*1 *2 *1 *2) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|SparseUnivariateSkewPolynomial| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Automorphism| *3)) (|ofType| *5 (|Mapping| *3 *3))))) │ │ │ +(|Join| (|UnivariateSkewPolynomialCategory| |#1|) (CATEGORY |domain| (SIGNATURE |outputForm| ((|OutputForm|) $ (|OutputForm|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 29)) (|vectorise| (((|Vector| $) $ $) 48)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 39)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|transcendent?| (((|Boolean|) $) NIL)) (|transcendenceDegree| (((|NonNegativeInteger|)) NIL)) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|size| (((|NonNegativeInteger|)) 52)) (|setTower!| (((|Void|) $) 56)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) 126)) (|retract| ((|#1| $) 85)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) 139)) (|rem| (($ $ $) NIL)) (|reduce| (($ (|SparseUnivariatePolynomial| $)) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|random| (($) 82)) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|primitiveElement| (($) NIL)) (|primitive?| (((|Boolean|) $) NIL)) (|primeFrobenius| (($ $) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|prime?| (((|Boolean|) $) NIL)) (|previousTower| (($ $) 41)) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) NIL) (((|PositiveInteger|) $) NIL)) (|one?| (((|Boolean|) $) 123)) (|nextItem| (((|Union| $ "failed") $) NIL)) (|newElement| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) 79) (($ (|SparseUnivariatePolynomial| $) $ (|Symbol|)) 99)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|maxTower| (($ (|List| $)) 104)) (|lookup| (((|PositiveInteger|) $) 134)) (|lift| (((|SparseUnivariatePolynomial| $) $ $) NIL) (((|SparseUnivariatePolynomial| $) $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) 27)) (|init| (($) NIL T CONST)) (|index| (($ (|PositiveInteger|)) 136)) (|inGroundField?| (((|Boolean|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|ground?| (((|Boolean|) $) 40)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|fullOutput| (((|OutputForm|) $) 132)) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) NIL)) (|factor| (((|Factored| $) $) NIL)) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|extDegree| (((|PositiveInteger|) $) 14)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|enumerate| (((|List| $)) NIL)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|distinguishedRootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) $) 81)) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) NIL) (((|NonNegativeInteger|) $) NIL)) (|dimension| (((|CardinalNumber|)) NIL)) (|differentiate| (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL)) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) 17)) (|definingPolynomial| (((|SparseUnivariatePolynomial| $) $) 20) (((|SparseUnivariatePolynomial| $)) NIL)) (|createPrimitiveElement| (($) NIL)) (|conjugate| (($ $) 90)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL)) (|coerce| (((|OutputForm|) $) 131) (($ (|Integer|)) NIL) (($ $) NIL) (($ (|Fraction| (|Integer|))) NIL) (($ |#1|) 124)) (|charthRoot| (((|Union| $ "failed") $) NIL) (($ $) 89)) (|characteristic| (((|NonNegativeInteger|)) 140)) (|associates?| (((|Boolean|) $ $) NIL)) (|algebraic?| (((|Boolean|) $) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|Zero| (($) 30 T CONST)) (|One| (($) 21 T CONST)) (|Frobenius| (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|Finite|))) (($ $) NIL (|has| |#1| (|Finite|)))) (D (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL)) (= (((|Boolean|) $ $) 120)) (/ (($ $ $) 96) (($ $ |#1|) NIL)) (- (($ $) 97) (($ $ $) 107)) (+ (($ $ $) 63)) (** (($ $ (|PositiveInteger|)) 33) (($ $ (|NonNegativeInteger|)) 34) (($ $ (|Integer|)) 37)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 111) (($ $ $) 65) (($ $ (|Fraction| (|Integer|))) 112) (($ (|Fraction| (|Integer|)) $) NIL) (($ |#1| $) 105) (($ $ |#1|) 106))) │ │ │ +(((|PseudoAlgebraicClosureOfFiniteField| |#1|) (|Join| (|PseudoAlgebraicClosureOfFiniteFieldCategory|) (|ExtensionField| |#1|) (CATEGORY |domain| (SIGNATURE |fullOutput| ((|OutputForm|) $)))) (|FiniteFieldCategory|)) (T |PseudoAlgebraicClosureOfFiniteField|)) │ │ │ +((|fullOutput| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|PseudoAlgebraicClosureOfFiniteField| *3)) (|ofCategory| *3 (|FiniteFieldCategory|))))) │ │ │ +(|Join| (|PseudoAlgebraicClosureOfFiniteFieldCategory|) (|ExtensionField| |#1|) (CATEGORY |domain| (SIGNATURE |fullOutput| ((|OutputForm|) $)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|variables| (((|List| (|SingletonAsOrderedSet|)) $) 70)) (|variable| (((|Symbol|) $) 98)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 50 (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) 51 (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) 53 (|has| |#1| (|IntegralDomain|)))) (|truncate| (($ $ |#2|) 93) (($ $ |#2| |#2|) 92)) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) 100)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|reductum| (($ $) 59)) (|recip| (((|Union| $ "failed") $) 33)) (|pole?| (((|Boolean|) $) 69)) (|order| ((|#2| $) 95) ((|#2| $ |#2|) 94)) (|one?| (((|Boolean|) $) 30)) (|multiplyExponents| (($ $ (|PositiveInteger|)) 96)) (|monomial?| (((|Boolean|) $) 61)) (|monomial| (($ |#1| |#2|) 60) (($ $ (|SingletonAsOrderedSet|) |#2|) 72) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| |#2|)) 71)) (|map| (($ (|Mapping| |#1| |#1|) $) 62)) (|leadingMonomial| (($ $) 64)) (|leadingCoefficient| ((|#1| $) 65)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|extend| (($ $ |#2|) 90)) (|exquo| (((|Union| $ "failed") $ $) 49 (|has| |#1| (|IntegralDomain|)))) (|eval| (((|Stream| |#1|) $ |#1|) 89 (|has| |#1| (SIGNATURE ** (|#1| |#1| |#2|))))) (|elt| ((|#1| $ |#2|) 99) (($ $ $) 76 (|has| |#2| (|SemiGroup|)))) (|differentiate| (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 84 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 83 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (($ $ (|List| (|Symbol|))) 82 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (($ $ (|Symbol|)) 81 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (($ $ (|NonNegativeInteger|)) 79 (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|)))) (($ $) 77 (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (|degree| ((|#2| $) 63)) (|complete| (($ $) 68)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ (|Fraction| (|Integer|))) 56 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $) 48 (|has| |#1| (|IntegralDomain|))) (($ |#1|) 46 (|has| |#1| (|CommutativeRing|)))) (|coefficient| ((|#1| $ |#2|) 58)) (|charthRoot| (((|Union| $ "failed") $) 47 (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|center| ((|#1| $) 97)) (|associates?| (((|Boolean|) $ $) 52 (|has| |#1| (|IntegralDomain|)))) (|approximate| ((|#1| $ |#2|) 91 (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| |#2|))) (|has| |#1| (SIGNATURE |coerce| (|#1| (|Symbol|))))))) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 88 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 87 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (($ $ (|List| (|Symbol|))) 86 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (($ $ (|Symbol|)) 85 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (($ $ (|NonNegativeInteger|)) 80 (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|)))) (($ $) 78 (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (= (((|Boolean|) $ $) 6)) (/ (($ $ |#1|) 57 (|has| |#1| (|Field|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (|Fraction| (|Integer|)) $) 55 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) 54 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ +(((|UnivariatePowerSeriesCategory| |#1| |#2|) (|Category|) (|Ring|) (|OrderedAbelianMonoid|)) (T |UnivariatePowerSeriesCategory|)) │ │ │ +((|terms| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|Stream| (|Record| (|:| |k| *4) (|:| |c| *3)))))) (|elt| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *2 *3)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|)))) (|variable| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|Symbol|)))) (|center| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *2 *3)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|)))) (|multiplyExponents| (*1 *1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)))) (|order| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|order| (*1 *2 *1 *2) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|truncate| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|truncate| (*1 *1 *1 *2 *2) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|approximate| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *2 *3)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|has| *2 (SIGNATURE ** (*2 *2 *3))) (|has| *2 (SIGNATURE |coerce| (*2 (|Symbol|)))) (|ofCategory| *2 (|Ring|)))) (|extend| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|eval| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|has| *3 (SIGNATURE ** (*3 *3 *4))) (|isDomain| *2 (|Stream| *3))))) │ │ │ +(|Join| (|PowerSeriesCategory| |t#1| |t#2| (|SingletonAsOrderedSet|)) (CATEGORY |domain| (SIGNATURE |terms| ((|Stream| (|Record| (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (SIGNATURE |elt| (|t#1| $ |t#2|)) (SIGNATURE |variable| ((|Symbol|) $)) (SIGNATURE |center| (|t#1| $)) (SIGNATURE |multiplyExponents| ($ $ (|PositiveInteger|))) (SIGNATURE |order| (|t#2| $)) (SIGNATURE |order| (|t#2| $ |t#2|)) (SIGNATURE |truncate| ($ $ |t#2|)) (SIGNATURE |truncate| ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (SIGNATURE |coerce| (|t#1| (|Symbol|)))) (IF (|has| |t#1| (SIGNATURE ** (|t#1| |t#1| |t#2|))) (SIGNATURE |approximate| (|t#1| $ |t#2|)) |noBranch|) |noBranch|) (SIGNATURE |extend| ($ $ |t#2|)) (IF (|has| |t#2| (|SemiGroup|)) (ATTRIBUTE (|Eltable| $ $)) |noBranch|) (IF (|has| |t#1| (SIGNATURE * (|t#1| |t#2| |t#1|))) (PROGN (ATTRIBUTE (|DifferentialRing|)) (IF (|has| |t#1| (|PartialDifferentialRing| (|Symbol|))) (ATTRIBUTE (|PartialDifferentialRing| (|Symbol|))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (SIGNATURE ** (|t#1| |t#1| |t#2|))) (SIGNATURE |eval| ((|Stream| |t#1|) $ |t#1|)) |noBranch|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| |#2|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) |has| |#1| (|IntegralDomain|)) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|DifferentialRing|) |has| |#1| (SIGNATURE * (|#1| |#2| |#1|))) ((|Eltable| $ $) |has| |#2| (|SemiGroup|)) ((|EntireRing|) |has| |#1| (|IntegralDomain|)) ((|IntegralDomain|) |has| |#1| (|IntegralDomain|)) ((|LeftModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Module| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) |has| |#1| (|IntegralDomain|)) ((|Monoid|) . T) ((|PartialDifferentialRing| (|Symbol|)) AND (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|PowerSeriesCategory| |#1| |#2| (|SingletonAsOrderedSet|)) . T) ((|RightModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|subspace| (((|SubSpace| 3 |#1|) $) 12)) (|polygon?| (((|Boolean|) $) 28)) (|polygon| (($ $ (|List| (|Point| |#1|))) 32) (($ $ (|List| (|List| |#1|))) 31) (($ (|List| (|Point| |#1|))) 30) (((|List| (|Point| |#1|)) $) 29)) (|point?| (((|Boolean|) $) 43)) (|point| (($ $ (|Point| |#1|)) 48) (($ $ (|List| |#1|)) 47) (($ $ (|NonNegativeInteger|)) 46) (($ (|Point| |#1|)) 45) (((|Point| |#1|) $) 44)) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) 14)) (|numberOfComposites| (((|NonNegativeInteger|) $) 57)) (|numberOfComponents| (((|NonNegativeInteger|) $) 58)) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) 49)) (|mesh?| (((|Boolean|) $) 20)) (|mesh| (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) 27) (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) 26) (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) 25) (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) 24) (($ (|List| (|List| (|Point| |#1|)))) 23) (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) 22) (((|List| (|List| (|Point| |#1|))) $) 21)) (|merge| (($ (|List| $)) 56) (($ $ $) 55)) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) 15)) (|lp| (((|List| (|Point| |#1|)) $) 19)) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) 16)) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) 17)) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) 18)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) 50)) (|curve?| (((|Boolean|) $) 38)) (|curve| (($ $ (|List| (|Point| |#1|))) 42) (($ $ (|List| (|List| |#1|))) 41) (($ (|List| (|Point| |#1|))) 40) (((|List| (|Point| |#1|)) $) 39)) (|create3Space| (($) 60) (($ (|SubSpace| 3 |#1|)) 59)) (|copy| (($ $) 51)) (|composites| (((|List| $) $) 52)) (|composite| (($ (|List| $)) 54)) (|components| (((|List| $) $) 53)) (|coerce| (((|OutputForm|) $) 11)) (|closedCurve?| (((|Boolean|) $) 33)) (|closedCurve| (($ $ (|List| (|Point| |#1|))) 37) (($ $ (|List| (|List| |#1|))) 36) (($ (|List| (|Point| |#1|))) 35) (((|List| (|Point| |#1|)) $) 34)) (|check| (($ $) 13)) (= (((|Boolean|) $ $) 6))) │ │ │ +(((|ThreeSpaceCategory| |#1|) (|Category|) (|Ring|)) (T |ThreeSpaceCategory|)) │ │ │ +((|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|OutputForm|)))) (|create3Space| (*1 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|create3Space| (*1 *1 *2) (AND (|isDomain| *2 (|SubSpace| 3 *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|numberOfComponents| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|numberOfComposites| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|merge| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|merge| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|composite| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|components| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|composites| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|copy| (*1 *1 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|enterPointData| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| (|Point| *4))) (|ofCategory| *1 (|ThreeSpaceCategory| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|modifyPointData| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *3 (|Point| *4)) (|ofCategory| *1 (|ThreeSpaceCategory| *4)) (|ofCategory| *4 (|Ring|)))) (|point| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Point| *3)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|point| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|point| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|point| (*1 *1 *2) (AND (|isDomain| *2 (|Point| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|point| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Point| *3)))) (|point?| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|curve| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|curve| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|curve| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|curve| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|Point| *3))))) (|curve?| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|closedCurve| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|closedCurve| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|closedCurve| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|closedCurve| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|Point| *3))))) (|closedCurve?| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|polygon| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|polygon| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|polygon| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|polygon| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|Point| *3))))) (|polygon?| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|mesh| (*1 *1 *1 *2 *3 *4) (AND (|isDomain| *2 (|List| (|List| (|Point| *5)))) (|isDomain| *3 (|List| (|SubSpaceComponentProperty|))) (|isDomain| *4 (|SubSpaceComponentProperty|)) (|ofCategory| *1 (|ThreeSpaceCategory| *5)) (|ofCategory| *5 (|Ring|)))) (|mesh| (*1 *1 *1 *2 *3 *4) (AND (|isDomain| *2 (|List| (|List| (|List| *5)))) (|isDomain| *3 (|List| (|SubSpaceComponentProperty|))) (|isDomain| *4 (|SubSpaceComponentProperty|)) (|ofCategory| *1 (|ThreeSpaceCategory| *5)) (|ofCategory| *5 (|Ring|)))) (|mesh| (*1 *1 *1 *2 *3 *3) (AND (|isDomain| *2 (|List| (|List| (|Point| *4)))) (|isDomain| *3 (|Boolean|)) (|ofCategory| *1 (|ThreeSpaceCategory| *4)) (|ofCategory| *4 (|Ring|)))) (|mesh| (*1 *1 *1 *2 *3 *3) (AND (|isDomain| *2 (|List| (|List| (|List| *4)))) (|isDomain| *3 (|Boolean|)) (|ofCategory| *1 (|ThreeSpaceCategory| *4)) (|ofCategory| *4 (|Ring|)))) (|mesh| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|List| (|Point| *3)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|mesh| (*1 *1 *2 *3 *3) (AND (|isDomain| *2 (|List| (|List| (|Point| *4)))) (|isDomain| *3 (|Boolean|)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *4)))) (|mesh| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|List| (|Point| *3)))))) (|mesh?| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|lp| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|Point| *3))))) (|lllip| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|List| (|List| (|NonNegativeInteger|))))))) (|lllp| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|List| (|List| (|Point| *3))))))) (|llprop| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|List| (|SubSpaceComponentProperty|)))))) (|lprop| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|SubSpaceComponentProperty|))))) (|objects| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|)))))) (|check| (*1 *1 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|subspace| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|SubSpace| 3 *3))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |create3Space| ($)) (SIGNATURE |create3Space| ($ (|SubSpace| 3 |t#1|))) (SIGNATURE |numberOfComponents| ((|NonNegativeInteger|) $)) (SIGNATURE |numberOfComposites| ((|NonNegativeInteger|) $)) (SIGNATURE |merge| ($ (|List| $))) (SIGNATURE |merge| ($ $ $)) (SIGNATURE |composite| ($ (|List| $))) (SIGNATURE |components| ((|List| $) $)) (SIGNATURE |composites| ((|List| $) $)) (SIGNATURE |copy| ($ $)) (SIGNATURE |enterPointData| ((|NonNegativeInteger|) $ (|List| (|Point| |t#1|)))) (SIGNATURE |modifyPointData| ($ $ (|NonNegativeInteger|) (|Point| |t#1|))) (SIGNATURE |point| ($ $ (|Point| |t#1|))) (SIGNATURE |point| ($ $ (|List| |t#1|))) (SIGNATURE |point| ($ $ (|NonNegativeInteger|))) (SIGNATURE |point| ($ (|Point| |t#1|))) (SIGNATURE |point| ((|Point| |t#1|) $)) (SIGNATURE |point?| ((|Boolean|) $)) (SIGNATURE |curve| ($ $ (|List| (|Point| |t#1|)))) (SIGNATURE |curve| ($ $ (|List| (|List| |t#1|)))) (SIGNATURE |curve| ($ (|List| (|Point| |t#1|)))) (SIGNATURE |curve| ((|List| (|Point| |t#1|)) $)) (SIGNATURE |curve?| ((|Boolean|) $)) (SIGNATURE |closedCurve| ($ $ (|List| (|Point| |t#1|)))) (SIGNATURE |closedCurve| ($ $ (|List| (|List| |t#1|)))) (SIGNATURE |closedCurve| ($ (|List| (|Point| |t#1|)))) (SIGNATURE |closedCurve| ((|List| (|Point| |t#1|)) $)) (SIGNATURE |closedCurve?| ((|Boolean|) $)) (SIGNATURE |polygon| ($ $ (|List| (|Point| |t#1|)))) (SIGNATURE |polygon| ($ $ (|List| (|List| |t#1|)))) (SIGNATURE |polygon| ($ (|List| (|Point| |t#1|)))) (SIGNATURE |polygon| ((|List| (|Point| |t#1|)) $)) (SIGNATURE |polygon?| ((|Boolean|) $)) (SIGNATURE |mesh| ($ $ (|List| (|List| (|Point| |t#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|))) (SIGNATURE |mesh| ($ $ (|List| (|List| (|List| |t#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|))) (SIGNATURE |mesh| ($ $ (|List| (|List| (|Point| |t#1|))) (|Boolean|) (|Boolean|))) (SIGNATURE |mesh| ($ $ (|List| (|List| (|List| |t#1|))) (|Boolean|) (|Boolean|))) (SIGNATURE |mesh| ($ (|List| (|List| (|Point| |t#1|))))) (SIGNATURE |mesh| ($ (|List| (|List| (|Point| |t#1|))) (|Boolean|) (|Boolean|))) (SIGNATURE |mesh| ((|List| (|List| (|Point| |t#1|))) $)) (SIGNATURE |mesh?| ((|Boolean|) $)) (SIGNATURE |lp| ((|List| (|Point| |t#1|)) $)) (SIGNATURE |lllip| ((|List| (|List| (|List| (|NonNegativeInteger|)))) $)) (SIGNATURE |lllp| ((|List| (|List| (|List| (|Point| |t#1|)))) $)) (SIGNATURE |llprop| ((|List| (|List| (|SubSpaceComponentProperty|))) $)) (SIGNATURE |lprop| ((|List| (|SubSpaceComponentProperty|)) $)) (SIGNATURE |objects| ((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $)) (SIGNATURE |check| ($ $)) (SIGNATURE |subspace| ((|SubSpace| 3 |t#1|) $)) (SIGNATURE |coerce| ((|OutputForm|) $)))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|write!| ((|#1| $ |#1|) 29)) (|reopen!| (($ $ (|String|)) 22)) (|readIfCan!| (((|Union| |#1| "failed") $) 28)) (|read!| ((|#1| $) 26)) (|open| (($ (|FileName|)) 21) (($ (|FileName|) (|String|)) 20)) (|name| (((|FileName|) $) 24)) (|latex| (((|String|) $) NIL)) (|iomode| (((|String|) $) 25)) (|hash| (((|SingleInteger|) $) NIL)) (|flush| (((|Void|) $) 31)) (|coerce| (((|OutputForm|) $) 19)) (|close!| (($ $) 23)) (= (((|Boolean|) $ $) 18))) │ │ │ +(((|File| |#1|) (|Join| (|FileCategory| (|FileName|) |#1|) (CATEGORY |domain| (SIGNATURE |readIfCan!| ((|Union| |#1| "failed") $)))) (|SetCategory|)) (T |File|)) │ │ │ +((|readIfCan!| (*1 *2 *1) (|partial| AND (|isDomain| *1 (|File| *2)) (|ofCategory| *2 (|SetCategory|))))) │ │ │ +(|Join| (|FileCategory| (|FileName|) |#1|) (CATEGORY |domain| (SIGNATURE |readIfCan!| ((|Union| |#1| "failed") $)))) │ │ │ +((|virtualDegree| (((|NonNegativeInteger|) |#4|) 12)) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) 31)) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (|redPol| ((|#4| |#4| (|List| |#4|)) 39)) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) 68)) (|prinshINFO| (((|Void|) |#4|) 41)) (|prinpolINFO| (((|Void|) (|List| |#4|)) 50)) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) 47)) (|prinb| (((|Void|) (|Integer|)) 75)) (|minGbasis| (((|List| |#4|) (|List| |#4|)) 73)) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) 25)) (|lepol| (((|Integer|) |#4|) 74)) (|hMonic| ((|#4| |#4|) 29)) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) 54)) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 85)) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 57)) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 56)) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (|critM| (((|Boolean|) |#2| |#2|) 55)) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) 58)) (|credPol| ((|#4| |#4| (|List| |#4|)) 69))) │ │ │ +(((|GroebnerInternalPackage| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |credPol| (|#4| |#4| (|List| |#4|))) (SIGNATURE |redPol| (|#4| |#4| (|List| |#4|))) (SIGNATURE |gbasis| ((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|))) (SIGNATURE |critT| ((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (SIGNATURE |critM| ((|Boolean|) |#2| |#2|)) (SIGNATURE |critB| ((|Boolean|) |#2| |#2| |#2| |#2|)) (SIGNATURE |critBonD| ((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (SIGNATURE |critMTonD1| ((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (SIGNATURE |critMonD1| ((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (SIGNATURE |redPo| ((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|))) (SIGNATURE |hMonic| (|#4| |#4|)) (SIGNATURE |updatF| ((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))))) (SIGNATURE |sPol| (|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (SIGNATURE |updatD| ((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (SIGNATURE |minGbasis| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |lepol| ((|Integer|) |#4|)) (SIGNATURE |prinshINFO| ((|Void|) |#4|)) (SIGNATURE |prindINFO| ((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |fprindINFO| ((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |prinpolINFO| ((|Void|) (|List| |#4|))) (SIGNATURE |prinb| ((|Void|) (|Integer|))) (SIGNATURE |critpOrder| ((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (SIGNATURE |makeCrit| ((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|))) (SIGNATURE |virtualDegree| ((|NonNegativeInteger|) |#4|))) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|PolynomialCategory| |#1| |#2| |#3|)) (T |GroebnerInternalPackage|)) │ │ │ +((|virtualDegree| (*1 *2 *3) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| *4 *5 *6)))) (|makeCrit| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| *4))) (|isDomain| *5 (|NonNegativeInteger|)) (|ofCategory| *4 (|PolynomialCategory| *6 *7 *8)) (|ofCategory| *6 (|GcdDomain|)) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|ofCategory| *8 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (|isDomain| *1 (|GroebnerInternalPackage| *6 *7 *8 *4)))) (|critpOrder| (*1 *2 *3 *3) (AND (|isDomain| *3 (|Record| (|:| |lcmfij| *5) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| *7) (|:| |polj| *7))) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *7)))) (|prinb| (*1 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *7)) (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6)))) (|prinpolINFO| (*1 *2 *3) (AND (|isDomain| *3 (|List| *7)) (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *7)))) (|fprindINFO| (*1 *2 *3 *4 *4 *2 *2 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|Record| (|:| |lcmfij| *6) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| *4) (|:| |polj| *4))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|PolynomialCategory| *5 *6 *7)) (|ofCategory| *5 (|GcdDomain|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *1 (|GroebnerInternalPackage| *5 *6 *7 *4)))) (|prindINFO| (*1 *2 *3 *4 *4 *2 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|Record| (|:| |lcmfij| *6) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| *4) (|:| |polj| *4))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|PolynomialCategory| *5 *6 *7)) (|ofCategory| *5 (|GcdDomain|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *1 (|GroebnerInternalPackage| *5 *6 *7 *4)))) (|prinshINFO| (*1 *2 *3) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| *4 *5 *6)))) (|lepol| (*1 *2 *3) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| *4 *5 *6)))) (|minGbasis| (*1 *2 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|GroebnerInternalPackage| *3 *4 *5 *6)))) (|updatD| (*1 *2 *2 *2) (AND (|isDomain| *2 (|List| (|Record| (|:| |lcmfij| *4) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| *6) (|:| |polj| *6)))) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|GroebnerInternalPackage| *3 *4 *5 *6)))) (|sPol| (*1 *2 *3) (AND (|isDomain| *3 (|Record| (|:| |lcmfij| *5) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| *2) (|:| |polj| *2))) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|PolynomialCategory| *4 *5 *6)) (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *2)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *6 (|OrderedSet|)))) (|updatF| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| *3)))) (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *3 (|PolynomialCategory| *5 *6 *7)) (|ofCategory| *5 (|GcdDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *1 (|GroebnerInternalPackage| *5 *6 *7 *3)))) (|hMonic| (*1 *2 *2) (AND (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|GroebnerInternalPackage| *3 *4 *5 *2)) (|ofCategory| *2 (|PolynomialCategory| *3 *4 *5)))) (|redPo| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| *3)) (|ofCategory| *3 (|PolynomialCategory| *5 *6 *7)) (|ofCategory| *5 (|GcdDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |poly| *3) (|:| |mult| *5))) (|isDomain| *1 (|GroebnerInternalPackage| *5 *6 *7 *3)))) (|critMonD1| (*1 *2 *3 *2) (AND (|isDomain| *2 (|List| (|Record| (|:| |lcmfij| *3) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| *6) (|:| |polj| *6)))) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|PolynomialCategory| *4 *3 *5)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|GroebnerInternalPackage| *4 *3 *5 *6)))) (|critMTonD1| (*1 *2 *2) (AND (|isDomain| *2 (|List| (|Record| (|:| |lcmfij| *4) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| *6) (|:| |polj| *6)))) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|GroebnerInternalPackage| *3 *4 *5 *6)))) (|critBonD| (*1 *2 *3 *2) (AND (|isDomain| *2 (|List| (|Record| (|:| |lcmfij| *5) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| *3) (|:| |polj| *3)))) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|PolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *3)))) (|critB| (*1 *2 *3 *3 *3 *3) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GroebnerInternalPackage| *4 *3 *5 *6)) (|ofCategory| *6 (|PolynomialCategory| *4 *3 *5)))) (|critM| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GroebnerInternalPackage| *4 *3 *5 *6)) (|ofCategory| *6 (|PolynomialCategory| *4 *3 *5)))) (|critT| (*1 *2 *3) (AND (|isDomain| *3 (|Record| (|:| |lcmfij| *5) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| *7) (|:| |polj| *7))) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *7)))) (|gbasis| (*1 *2 *2 *3 *3) (AND (|isDomain| *2 (|List| *7)) (|isDomain| *3 (|Integer|)) (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *7)))) (|redPol| (*1 *2 *2 *3) (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|PolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *2)))) (|credPol| (*1 *2 *2 *3) (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|PolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *1 (|GroebnerInternalPackage| *4 *5 *6 *2))))) │ │ │ +(CATEGORY |package| (SIGNATURE |credPol| (|#4| |#4| (|List| |#4|))) (SIGNATURE |redPol| (|#4| |#4| (|List| |#4|))) (SIGNATURE |gbasis| ((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|))) (SIGNATURE |critT| ((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (SIGNATURE |critM| ((|Boolean|) |#2| |#2|)) (SIGNATURE |critB| ((|Boolean|) |#2| |#2| |#2| |#2|)) (SIGNATURE |critBonD| ((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (SIGNATURE |critMTonD1| ((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (SIGNATURE |critMonD1| ((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (SIGNATURE |redPo| ((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|))) (SIGNATURE |hMonic| (|#4| |#4|)) (SIGNATURE |updatF| ((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))))) (SIGNATURE |sPol| (|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (SIGNATURE |updatD| ((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (SIGNATURE |minGbasis| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |lepol| ((|Integer|) |#4|)) (SIGNATURE |prinshINFO| ((|Void|) |#4|)) (SIGNATURE |prindINFO| ((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |fprindINFO| ((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |prinpolINFO| ((|Void|) (|List| |#4|))) (SIGNATURE |prinb| ((|Void|) (|Integer|))) (SIGNATURE |critpOrder| ((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (SIGNATURE |makeCrit| ((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|))) (SIGNATURE |virtualDegree| ((|NonNegativeInteger|) |#4|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|tex| (((|List| (|String|)) $) 33)) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) 36)) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) 35)) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) 37)) (|prologue| (((|List| (|String|)) $) 32)) (|new| (($) 22)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|epilogue| (((|List| (|String|)) $) 34)) (|display| (((|Void|) $ (|Integer|)) 29) (((|Void|) $) 30)) (|convert| (($ (|OutputForm|) (|Integer|)) 26) (($ (|OutputForm|) (|Integer|) (|OutputForm|)) NIL)) (|coerce| (((|OutputForm|) $) 39) (($ (|OutputForm|)) 24)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|TexFormat|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|OutputForm|))) (SIGNATURE |convert| ($ (|OutputForm|) (|Integer|))) (SIGNATURE |convert| ($ (|OutputForm|) (|Integer|) (|OutputForm|))) (SIGNATURE |display| ((|Void|) $ (|Integer|))) (SIGNATURE |display| ((|Void|) $)) (SIGNATURE |epilogue| ((|List| (|String|)) $)) (SIGNATURE |tex| ((|List| (|String|)) $)) (SIGNATURE |new| ($)) (SIGNATURE |prologue| ((|List| (|String|)) $)) (SIGNATURE |setEpilogue!| ((|List| (|String|)) $ (|List| (|String|)))) (SIGNATURE |setTex!| ((|List| (|String|)) $ (|List| (|String|)))) (SIGNATURE |setPrologue!| ((|List| (|String|)) $ (|List| (|String|))))))) (T |TexFormat|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|TexFormat|)))) (|convert| (*1 *1 *2 *3) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|TexFormat|)))) (|convert| (*1 *1 *2 *3 *2) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|TexFormat|)))) (|display| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TexFormat|)))) (|display| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TexFormat|)))) (|epilogue| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|TexFormat|)))) (|tex| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|TexFormat|)))) (|new| (*1 *1) (|isDomain| *1 (|TexFormat|))) (|prologue| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|TexFormat|)))) (|setEpilogue!| (*1 *2 *1 *2) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|TexFormat|)))) (|setTex!| (*1 *2 *1 *2) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|TexFormat|)))) (|setPrologue!| (*1 *2 *1 *2) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|TexFormat|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|OutputForm|))) (SIGNATURE |convert| ($ (|OutputForm|) (|Integer|))) (SIGNATURE |convert| ($ (|OutputForm|) (|Integer|) (|OutputForm|))) (SIGNATURE |display| ((|Void|) $ (|Integer|))) (SIGNATURE |display| ((|Void|) $)) (SIGNATURE |epilogue| ((|List| (|String|)) $)) (SIGNATURE |tex| ((|List| (|String|)) $)) (SIGNATURE |new| ($)) (SIGNATURE |prologue| ((|List| (|String|)) $)) (SIGNATURE |setEpilogue!| ((|List| (|String|)) $ (|List| (|String|)))) (SIGNATURE |setTex!| ((|List| (|String|)) $ (|List| (|String|)))) (SIGNATURE |setPrologue!| ((|List| (|String|)) $ (|List| (|String|)))))) │ │ │ +((|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) 20) (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) 19) (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) 18))) │ │ │ +(((|InfiniteTupleFunctions3| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |map| ((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|))) (SIGNATURE |map| ((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|))) (SIGNATURE |map| ((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)))) (|Type|) (|Type|) (|Type|)) (T |InfiniteTupleFunctions3|)) │ │ │ +((|map| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *8 *6 *7)) (|isDomain| *4 (|InfiniteTuple| *6)) (|isDomain| *5 (|Stream| *7)) (|ofCategory| *6 (|Type|)) (|ofCategory| *7 (|Type|)) (|ofCategory| *8 (|Type|)) (|isDomain| *2 (|Stream| *8)) (|isDomain| *1 (|InfiniteTupleFunctions3| *6 *7 *8)))) (|map| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *8 *6 *7)) (|isDomain| *4 (|Stream| *6)) (|isDomain| *5 (|InfiniteTuple| *7)) (|ofCategory| *6 (|Type|)) (|ofCategory| *7 (|Type|)) (|ofCategory| *8 (|Type|)) (|isDomain| *2 (|Stream| *8)) (|isDomain| *1 (|InfiniteTupleFunctions3| *6 *7 *8)))) (|map| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *8 *6 *7)) (|isDomain| *4 (|InfiniteTuple| *6)) (|isDomain| *5 (|InfiniteTuple| *7)) (|ofCategory| *6 (|Type|)) (|ofCategory| *7 (|Type|)) (|ofCategory| *8 (|Type|)) (|isDomain| *2 (|InfiniteTuple| *8)) (|isDomain| *1 (|InfiniteTupleFunctions3| *6 *7 *8))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| ((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|))) (SIGNATURE |map| ((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|))) (SIGNATURE |map| ((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)))) │ │ │ +((|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#2|) 10))) │ │ │ +(((|Algebra&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|Algebra| |#2|) (|CommutativeRing|)) (T |Algebra&|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +(CATEGORY |domain| (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|series| (($ (|Stream| |#1|)) 9)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) 42)) (|pole?| (((|Boolean|) $) 52)) (|order| (((|NonNegativeInteger|) $) 55) (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) 54)) (|one?| (((|Boolean|) $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|exquo| (((|Union| $ "failed") $ $) 44 (|has| |#1| (|IntegralDomain|)))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|coefficients| (((|Stream| |#1|) $) 23)) (|characteristic| (((|NonNegativeInteger|)) 51)) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 10 T CONST)) (|One| (($) 14 T CONST)) (= (((|Boolean|) $ $) 22)) (- (($ $) 30) (($ $ $) 16)) (+ (($ $ $) 25)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) 49)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (|Integer|)) 36))) │ │ │ +(((|InnerTaylorSeries| |#1|) (|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |coefficients| ((|Stream| |#1|) $)) (SIGNATURE |series| ($ (|Stream| |#1|))) (SIGNATURE |pole?| ((|Boolean|) $)) (SIGNATURE |order| ((|NonNegativeInteger|) $)) (SIGNATURE |order| ((|NonNegativeInteger|) $ (|NonNegativeInteger|))) (SIGNATURE * ($ |#1| $)) (SIGNATURE * ($ $ |#1|)) (SIGNATURE * ($ $ (|Integer|))) (IF (|has| |#1| (|IntegralDomain|)) (ATTRIBUTE (|IntegralDomain|)) |noBranch|))) (|Ring|)) (T |InnerTaylorSeries|)) │ │ │ +((|coefficients| (*1 *2 *1) (AND (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|InnerTaylorSeries| *3)) (|ofCategory| *3 (|Ring|)))) (|series| (*1 *1 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|InnerTaylorSeries| *3)))) (|pole?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|InnerTaylorSeries| *3)) (|ofCategory| *3 (|Ring|)))) (|order| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|InnerTaylorSeries| *3)) (|ofCategory| *3 (|Ring|)))) (|order| (*1 *2 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|InnerTaylorSeries| *3)) (|ofCategory| *3 (|Ring|)))) (* (*1 *1 *2 *1) (AND (|isDomain| *1 (|InnerTaylorSeries| *2)) (|ofCategory| *2 (|Ring|)))) (* (*1 *1 *1 *2) (AND (|isDomain| *1 (|InnerTaylorSeries| *2)) (|ofCategory| *2 (|Ring|)))) (* (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|InnerTaylorSeries| *3)) (|ofCategory| *3 (|Ring|))))) │ │ │ +(|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |coefficients| ((|Stream| |#1|) $)) (SIGNATURE |series| ($ (|Stream| |#1|))) (SIGNATURE |pole?| ((|Boolean|) $)) (SIGNATURE |order| ((|NonNegativeInteger|) $)) (SIGNATURE |order| ((|NonNegativeInteger|) $ (|NonNegativeInteger|))) (SIGNATURE * ($ |#1| $)) (SIGNATURE * ($ $ |#1|)) (SIGNATURE * ($ $ (|Integer|))) (IF (|has| |#1| (|IntegralDomain|)) (ATTRIBUTE (|IntegralDomain|)) |noBranch|))) │ │ │ +((|useSingleFactorBound?| (((|Boolean|)) 17)) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) 18)) (|useEisensteinCriterion?| (((|Boolean|)) 13)) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) 14)) (|tryFunctionalDecomposition?| (((|Boolean|)) 15)) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) 16)) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) 21) (((|PositiveInteger|)) 20)) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) 41)) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) 23) (((|PositiveInteger|)) 22)) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) 61)) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) 125)) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) 151)) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) 164) (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) 161) (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) 163) (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) 162) (((|Factored| |#1|) |#1|) 160)) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) 166) (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) 167) (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) 169) (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) 168) (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) 170)) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) 159) (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) 155) (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) 157) (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) 156) (((|Factored| |#1|) |#1|) 154)) (|eisensteinIrreducible?| (((|Boolean|) |#1|) 36)) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) 66)) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) 153))) │ │ │ +(((|GaloisGroupFactorizer| |#1|) (CATEGORY |package| (SIGNATURE |makeFR| ((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))))) (SIGNATURE |degreePartition| ((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))))) (SIGNATURE |musserTrials| ((|PositiveInteger|))) (SIGNATURE |musserTrials| ((|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |stopMusserTrials| ((|PositiveInteger|))) (SIGNATURE |stopMusserTrials| ((|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |numberOfFactors| ((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))))) (SIGNATURE |modularFactor| ((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|)) (SIGNATURE |useSingleFactorBound?| ((|Boolean|))) (SIGNATURE |useSingleFactorBound| ((|Boolean|) (|Boolean|))) (SIGNATURE |useEisensteinCriterion?| ((|Boolean|))) (SIGNATURE |useEisensteinCriterion| ((|Boolean|) (|Boolean|))) (SIGNATURE |eisensteinIrreducible?| ((|Boolean|) |#1|)) (SIGNATURE |tryFunctionalDecomposition?| ((|Boolean|))) (SIGNATURE |tryFunctionalDecomposition| ((|Boolean|) (|Boolean|))) (SIGNATURE |factor| ((|Factored| |#1|) |#1|)) (SIGNATURE |factor| ((|Factored| |#1|) |#1| (|NonNegativeInteger|))) (SIGNATURE |factor| ((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)))) (SIGNATURE |factor| ((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|))) (SIGNATURE |factor| ((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |factorSquareFree| ((|Factored| |#1|) |#1|)) (SIGNATURE |factorSquareFree| ((|Factored| |#1|) |#1| (|NonNegativeInteger|))) (SIGNATURE |factorSquareFree| ((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)))) (SIGNATURE |factorSquareFree| ((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|))) (SIGNATURE |factorSquareFree| ((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |factorOfDegree| ((|Union| |#1| "failed") (|PositiveInteger|) |#1|)) (SIGNATURE |factorOfDegree| ((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|))) (SIGNATURE |factorOfDegree| ((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)))) (SIGNATURE |factorOfDegree| ((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|))) (SIGNATURE |factorOfDegree| ((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|))) (SIGNATURE |henselFact| ((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|))) (SIGNATURE |btwFact| ((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)))) (|UnivariatePolynomialCategory| (|Integer|))) (T |GaloisGroupFactorizer|)) │ │ │ +((|btwFact| (*1 *2 *3 *4 *5 *6) (AND (|isDomain| *4 (|Boolean|)) (|isDomain| *5 (|Set| (|NonNegativeInteger|))) (|isDomain| *6 (|NonNegativeInteger|)) (|isDomain| *2 (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| *3) (|:| |pow| (|Integer|))))))) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|henselFact| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Boolean|)) (|isDomain| *2 (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| *3) (|:| |pow| (|Integer|))))))) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|factorOfDegree| (*1 *2 *3 *2 *4 *5 *6) (|partial| AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|List| (|NonNegativeInteger|))) (|isDomain| *5 (|NonNegativeInteger|)) (|isDomain| *6 (|Boolean|)) (|isDomain| *1 (|GaloisGroupFactorizer| *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Integer|))))) (|factorOfDegree| (*1 *2 *3 *2 *4 *5) (|partial| AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|List| (|NonNegativeInteger|))) (|isDomain| *5 (|NonNegativeInteger|)) (|isDomain| *1 (|GaloisGroupFactorizer| *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Integer|))))) (|factorOfDegree| (*1 *2 *3 *2 *4) (|partial| AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|List| (|NonNegativeInteger|))) (|isDomain| *1 (|GaloisGroupFactorizer| *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Integer|))))) (|factorOfDegree| (*1 *2 *3 *2 *4) (|partial| AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *1 (|GaloisGroupFactorizer| *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Integer|))))) (|factorOfDegree| (*1 *2 *3 *2) (|partial| AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *1 (|GaloisGroupFactorizer| *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Integer|))))) (|factorSquareFree| (*1 *2 *3 *4 *4) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|factorSquareFree| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|List| (|NonNegativeInteger|))) (|isDomain| *5 (|NonNegativeInteger|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|factorSquareFree| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| (|NonNegativeInteger|))) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|factorSquareFree| (*1 *2 *3 *4) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|factorSquareFree| (*1 *2 *3) (AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|factor| (*1 *2 *3 *4 *4) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|factor| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|List| (|NonNegativeInteger|))) (|isDomain| *5 (|NonNegativeInteger|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|factor| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| (|NonNegativeInteger|))) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|factor| (*1 *2 *3 *4) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|factor| (*1 *2 *3) (AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|tryFunctionalDecomposition| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|tryFunctionalDecomposition?| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|eisensteinIrreducible?| (*1 *2 *3) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|useEisensteinCriterion| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|useEisensteinCriterion?| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|useSingleFactorBound| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|useSingleFactorBound?| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|modularFactor| (*1 *2 *3) (AND (|isDomain| *2 (|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| *3)))) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|numberOfFactors| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Record| (|:| |factor| *4) (|:| |degree| (|Integer|))))) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Integer|))) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|GaloisGroupFactorizer| *4)))) (|stopMusserTrials| (*1 *2 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|stopMusserTrials| (*1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|musserTrials| (*1 *2 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|musserTrials| (*1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|GaloisGroupFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|degreePartition| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Record| (|:| |factor| *4) (|:| |degree| (|Integer|))))) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Integer|))) (|isDomain| *2 (|Multiset| (|NonNegativeInteger|))) (|isDomain| *1 (|GaloisGroupFactorizer| *4)))) (|makeFR| (*1 *2 *3) (AND (|isDomain| *3 (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| *4) (|:| |pow| (|Integer|))))))) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Integer|))) (|isDomain| *2 (|Factored| *4)) (|isDomain| *1 (|GaloisGroupFactorizer| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |makeFR| ((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))))) (SIGNATURE |degreePartition| ((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))))) (SIGNATURE |musserTrials| ((|PositiveInteger|))) (SIGNATURE |musserTrials| ((|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |stopMusserTrials| ((|PositiveInteger|))) (SIGNATURE |stopMusserTrials| ((|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |numberOfFactors| ((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))))) (SIGNATURE |modularFactor| ((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|)) (SIGNATURE |useSingleFactorBound?| ((|Boolean|))) (SIGNATURE |useSingleFactorBound| ((|Boolean|) (|Boolean|))) (SIGNATURE |useEisensteinCriterion?| ((|Boolean|))) (SIGNATURE |useEisensteinCriterion| ((|Boolean|) (|Boolean|))) (SIGNATURE |eisensteinIrreducible?| ((|Boolean|) |#1|)) (SIGNATURE |tryFunctionalDecomposition?| ((|Boolean|))) (SIGNATURE |tryFunctionalDecomposition| ((|Boolean|) (|Boolean|))) (SIGNATURE |factor| ((|Factored| |#1|) |#1|)) (SIGNATURE |factor| ((|Factored| |#1|) |#1| (|NonNegativeInteger|))) (SIGNATURE |factor| ((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)))) (SIGNATURE |factor| ((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|))) (SIGNATURE |factor| ((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |factorSquareFree| ((|Factored| |#1|) |#1|)) (SIGNATURE |factorSquareFree| ((|Factored| |#1|) |#1| (|NonNegativeInteger|))) (SIGNATURE |factorSquareFree| ((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)))) (SIGNATURE |factorSquareFree| ((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|))) (SIGNATURE |factorSquareFree| ((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |factorOfDegree| ((|Union| |#1| "failed") (|PositiveInteger|) |#1|)) (SIGNATURE |factorOfDegree| ((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|))) (SIGNATURE |factorOfDegree| ((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)))) (SIGNATURE |factorOfDegree| ((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|))) (SIGNATURE |factorOfDegree| ((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|))) (SIGNATURE |henselFact| ((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|))) (SIGNATURE |btwFact| ((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)))) │ │ │ +((|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) 78) (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) 100)) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) 105))) │ │ │ +(((|PowerSeriesLimitPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |limit| ((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|)))) (SIGNATURE |complexLimit| ((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|)))) (SIGNATURE |limit| ((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)))) (|Join| (|GcdDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|))) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|))) (T |PowerSeriesLimitPackage|)) │ │ │ +((|limit| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *4 (|Equation| *3)) (|isDomain| *5 (|String|)) (|ofCategory| *3 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *6))) (|ofCategory| *6 (|Join| (|GcdDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|OrderedCompletion| *3)) (|isDomain| *1 (|PowerSeriesLimitPackage| *6 *3)))) (|complexLimit| (*1 *2 *3 *4) (|partial| AND (|isDomain| *4 (|Equation| (|OnePointCompletion| *3))) (|ofCategory| *5 (|Join| (|GcdDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|OnePointCompletion| *3)) (|isDomain| *1 (|PowerSeriesLimitPackage| *5 *3)) (|ofCategory| *3 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *5))))) (|limit| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Equation| (|OrderedCompletion| *3))) (|ofCategory| *3 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *5))) (|ofCategory| *5 (|Join| (|GcdDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Union| (|OrderedCompletion| *3) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| *3) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| *3) "failed"))) "failed")) (|isDomain| *1 (|PowerSeriesLimitPackage| *5 *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |limit| ((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|)))) (SIGNATURE |complexLimit| ((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|)))) (SIGNATURE |limit| ((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)))) │ │ │ NIL │ │ │ -(((|CentralAttribute|) (|Category|)) (T |CentralAttribute|)) │ │ │ +(((|Type|) (|Category|)) (T |Type|)) │ │ │ NIL │ │ │ (|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +((|convert| (((|Pattern| |#1|) |#3|) 22))) │ │ │ +(((|ComplexPattern| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |convert| ((|Pattern| |#1|) |#3|))) (|SetCategory|) (|Join| (|ConvertibleTo| (|Pattern| |#1|)) (|CommutativeRing|)) (|ComplexCategory| |#2|)) (T |ComplexPattern|)) │ │ │ +((|convert| (*1 *2 *3) (AND (|ofCategory| *5 (|Join| (|ConvertibleTo| *2) (|CommutativeRing|))) (|isDomain| *2 (|Pattern| *4)) (|isDomain| *1 (|ComplexPattern| *4 *5 *3)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *3 (|ComplexCategory| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |convert| ((|Pattern| |#1|) |#3|))) │ │ │ +((|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) 22) (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 19)) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 46) (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) 47)) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) 23)) (|mathieu24| (((|PermutationGroup| (|Integer|))) 36) (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 35)) (|mathieu23| (((|PermutationGroup| (|Integer|))) 34) (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 33)) (|mathieu22| (((|PermutationGroup| (|Integer|))) 32) (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 31)) (|mathieu12| (((|PermutationGroup| (|Integer|))) 30) (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 29)) (|mathieu11| (((|PermutationGroup| (|Integer|))) 28) (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 27)) (|janko2| (((|PermutationGroup| (|Integer|))) 38) (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 37)) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 50) (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) 51)) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 48) (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) 49)) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 43) (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) 45)) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) 40))) │ │ │ +(((|PermutationGroupExamples|) (CATEGORY |package| (SIGNATURE |symmetricGroup| ((|PermutationGroup| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |symmetricGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |alternatingGroup| ((|PermutationGroup| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |alternatingGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |abelianGroup| ((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|)))) (SIGNATURE |cyclicGroup| ((|PermutationGroup| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |cyclicGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |dihedralGroup| ((|PermutationGroup| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |dihedralGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu11| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu11| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |mathieu12| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu12| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |mathieu22| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu22| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |mathieu23| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu23| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |mathieu24| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu24| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |janko2| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |janko2| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |rubiksGroup| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |youngGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |youngGroup| ((|PermutationGroup| (|Integer|)) (|Partition|))))) (T |PermutationGroupExamples|)) │ │ │ +((|youngGroup| (*1 *2 *3) (AND (|isDomain| *3 (|Partition|)) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|youngGroup| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|rubiksGroup| (*1 *2) (AND (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|janko2| (*1 *2) (AND (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|janko2| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu24| (*1 *2) (AND (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu24| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu23| (*1 *2) (AND (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu23| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu22| (*1 *2) (AND (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu22| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu12| (*1 *2) (AND (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu12| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu11| (*1 *2) (AND (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu11| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|dihedralGroup| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|dihedralGroup| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|cyclicGroup| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|cyclicGroup| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|abelianGroup| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|PositiveInteger|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|alternatingGroup| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|alternatingGroup| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|symmetricGroup| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|symmetricGroup| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |symmetricGroup| ((|PermutationGroup| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |symmetricGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |alternatingGroup| ((|PermutationGroup| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |alternatingGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |abelianGroup| ((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|)))) (SIGNATURE |cyclicGroup| ((|PermutationGroup| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |cyclicGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |dihedralGroup| ((|PermutationGroup| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |dihedralGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu11| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu11| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |mathieu12| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu12| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |mathieu22| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu22| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |mathieu23| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu23| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |mathieu24| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu24| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |janko2| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |janko2| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |rubiksGroup| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |youngGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |youngGroup| ((|PermutationGroup| (|Integer|)) (|Partition|)))) │ │ │ +((|convert| ((|#1| $) 6))) │ │ │ +(((|ConvertibleTo| |#1|) (|Category|) (|Type|)) (T |ConvertibleTo|)) │ │ │ +((|convert| (*1 *2 *1) (AND (|ofCategory| *1 (|ConvertibleTo| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ +(|Join| (CATEGORY |domain| (SIGNATURE |convert| (|t#1| $)))) │ │ │ +((|upperCase| (($ $) 19)) (|trim| (($ $ (|Character|)) 10) (($ $ (|CharacterClass|)) 14)) (|prefix?| (((|Boolean|) $ $) 24)) (|lowerCase| (($ $) 17)) (|elt| (((|Character|) $ (|Integer|) (|Character|)) NIL) (((|Character|) $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL) (($ $ $) 29)) (|coerce| (($ (|Character|)) 27) (((|OutputForm|) $) NIL))) │ │ │ +(((|StringAggregate&| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |elt| (|#1| |#1| |#1|)) (SIGNATURE |trim| (|#1| |#1| (|CharacterClass|))) (SIGNATURE |trim| (|#1| |#1| (|Character|))) (SIGNATURE |coerce| (|#1| (|Character|))) (SIGNATURE |prefix?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |upperCase| (|#1| |#1|)) (SIGNATURE |lowerCase| (|#1| |#1|)) (SIGNATURE |elt| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |elt| ((|Character|) |#1| (|Integer|))) (SIGNATURE |elt| ((|Character|) |#1| (|Integer|) (|Character|)))) (|StringAggregate|)) (T |StringAggregate&|)) │ │ │ NIL │ │ │ -(((|CommutativeStarAttribute|) (|Category|)) (T |CommutativeStarAttribute|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |elt| (|#1| |#1| |#1|)) (SIGNATURE |trim| (|#1| |#1| (|CharacterClass|))) (SIGNATURE |trim| (|#1| |#1| (|Character|))) (SIGNATURE |coerce| (|#1| (|Character|))) (SIGNATURE |prefix?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |upperCase| (|#1| |#1|)) (SIGNATURE |lowerCase| (|#1| |#1|)) (SIGNATURE |elt| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |elt| ((|Character|) |#1| (|Integer|))) (SIGNATURE |elt| ((|Character|) |#1| (|Integer|) (|Character|)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ +(((|Ring|) (|Category|)) (T |Ring|)) │ │ │ +((|characteristic| (*1 *2) (AND (|ofCategory| *1 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|Ring|))))) │ │ │ +(|Join| (|Rng|) (|Monoid|) (|LeftModule| $) (CATEGORY |domain| (SIGNATURE |characteristic| ((|NonNegativeInteger|))) (SIGNATURE |coerce| ($ (|Integer|))) (ATTRIBUTE |unitsKnown|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +((|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) 21) (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) 16))) │ │ │ +(((|PolynomialAN2Expression|) (CATEGORY |package| (SIGNATURE |coerce| ((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|)))) (SIGNATURE |coerce| ((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|))))))) (T |PolynomialAN2Expression|)) │ │ │ +((|coerce| (*1 *2 *3) (AND (|isDomain| *3 (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|PolynomialAN2Expression|)))) (|coerce| (*1 *2 *3) (AND (|isDomain| *3 (|Polynomial| (|AlgebraicNumber|))) (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|PolynomialAN2Expression|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |coerce| ((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|)))) (SIGNATURE |coerce| ((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 37)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 60)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|d02bbfAnnaType|) (|OrdinaryDifferentialEquationsSolverCategory|)) (T |d02bbfAnnaType|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +(|OrdinaryDifferentialEquationsSolverCategory|) │ │ │ +((|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) 137)) (|sqfree| ((|#4| |#4|) 153)) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) 116)) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) 73)) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) 57)) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) 53)) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) 149)) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) 130) (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) 129) (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) 128) (((|Integer|) (|Matrix| |#4|) (|String|)) 125) (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) 124) (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) 123) (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) 122) (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) 121) (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) 120) (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) 118) (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) 117) (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) 114)) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) 66)) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) 150)) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) 127)) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) 85)) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) 83)) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) 82)) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) 17) (((|Boolean|) (|List| |#4|)) 13)) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) 69)) (|factorset| (((|List| |#4|) |#4|) 47)) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) 112) (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) 54) (((|Fraction| (|Polynomial| |#1|)) |#4|) 109)) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) 89)) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) 81)) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) 98)) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) 46))) │ │ │ +(((|ParametricLinearEquations| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |psolve| ((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|))) (SIGNATURE |psolve| ((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)))) (SIGNATURE |psolve| ((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|))) (SIGNATURE |psolve| ((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|))) (SIGNATURE |psolve| ((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|))) (SIGNATURE |psolve| ((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|))) (SIGNATURE |psolve| ((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|))) (SIGNATURE |psolve| ((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|))) (SIGNATURE |psolve| ((|Integer|) (|Matrix| |#4|) (|String|))) (SIGNATURE |psolve| ((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|))) (SIGNATURE |psolve| ((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|))) (SIGNATURE |psolve| ((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|))) (SIGNATURE |wrregime| ((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|))) (SIGNATURE |rdregime| ((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|))) (SIGNATURE |bsolve| ((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|))) (SIGNATURE |dmp2rfi| ((|Fraction| (|Polynomial| |#1|)) |#4|)) (SIGNATURE |dmp2rfi| ((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|))) (SIGNATURE |dmp2rfi| ((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|))) (SIGNATURE |se2rfi| ((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|)))) (SIGNATURE |pr2dmp| (|#4| (|Polynomial| |#1|))) (SIGNATURE |hasoln| ((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|))) (SIGNATURE |ParCondList| ((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|))) (SIGNATURE |redpps| ((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|))) (SIGNATURE |B1solve| ((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (SIGNATURE |factorset| ((|List| |#4|) |#4|)) (SIGNATURE |maxrank| ((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))))) (SIGNATURE |minrank| ((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))))) (SIGNATURE |minset| ((|List| (|List| |#4|)) (|List| (|List| |#4|)))) (SIGNATURE |nextSublist| ((|List| (|List| (|Integer|))) (|Integer|) (|Integer|))) (SIGNATURE |overset?| ((|Boolean|) (|List| |#4|) (|List| (|List| |#4|)))) (SIGNATURE |ParCond| ((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|))) (SIGNATURE |redmat| ((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|))) (SIGNATURE |regime| ((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|))) (SIGNATURE |sqfree| (|#4| |#4|)) (SIGNATURE |inconsistent?| ((|Boolean|) (|List| |#4|))) (SIGNATURE |inconsistent?| ((|Boolean|) (|List| (|Polynomial| |#1|))))) (|Join| (|EuclideanDomain|) (|CharacteristicZero|)) (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|))) (|OrderedAbelianMonoidSup|) (|PolynomialCategory| |#1| |#3| |#2|)) (T |ParametricLinearEquations|)) │ │ │ +((|inconsistent?| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Polynomial| *4))) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)) (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)))) (|inconsistent?| (*1 *2 *3) (AND (|isDomain| *3 (|List| *7)) (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)))) (|sqfree| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *4 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|isDomain| *1 (|ParametricLinearEquations| *3 *4 *5 *2)) (|ofCategory| *2 (|PolynomialCategory| *3 *5 *4)))) (|regime| (*1 *2 *3 *4 *5 *6 *7 *7 *8) (AND (|isDomain| *3 (|Record| (|:| |det| *12) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|isDomain| *4 (|Matrix| *12)) (|isDomain| *5 (|List| (|Fraction| (|Polynomial| *9)))) (|isDomain| *6 (|List| (|List| *12))) (|isDomain| *7 (|NonNegativeInteger|)) (|isDomain| *8 (|Integer|)) (|ofCategory| *9 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *12 (|PolynomialCategory| *9 *11 *10)) (|ofCategory| *10 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *11 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Record| (|:| |eqzro| (|List| *12)) (|:| |neqzro| (|List| *12)) (|:| |wcond| (|List| (|Polynomial| *9))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| *9)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| *9))))))))) (|isDomain| *1 (|ParametricLinearEquations| *9 *10 *11 *12)))) (|redmat| (*1 *2 *2 *3) (AND (|isDomain| *2 (|Matrix| *7)) (|isDomain| *3 (|List| *7)) (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)))) (|ParCond| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Matrix| *8)) (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *8 (|PolynomialCategory| *5 *7 *6)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *6 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| (|Record| (|:| |det| *8) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|isDomain| *1 (|ParametricLinearEquations| *5 *6 *7 *8)))) (|overset?| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| (|List| *8))) (|isDomain| *3 (|List| *8)) (|ofCategory| *8 (|PolynomialCategory| *5 *7 *6)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *6 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ParametricLinearEquations| *5 *6 *7 *8)))) (|nextSublist| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| (|List| (|Integer|)))) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)) (|isDomain| *3 (|Integer|)) (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)))) (|minset| (*1 *2 *2) (AND (|isDomain| *2 (|List| (|List| *6))) (|ofCategory| *6 (|PolynomialCategory| *3 *5 *4)) (|ofCategory| *3 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *4 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|isDomain| *1 (|ParametricLinearEquations| *3 *4 *5 *6)))) (|minrank| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| *7) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| *7))))) (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)))) (|maxrank| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| *7) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| *7))))) (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)))) (|factorset| (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| *4 *6 *5)))) (|B1solve| (*1 *2 *3) (AND (|isDomain| *3 (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| *4)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| *4)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| *4)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| *4))))))) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)) (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)))) (|redpps| (*1 *2 *2 *3) (AND (|isDomain| *2 (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| *4)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| *4))))))) (|isDomain| *3 (|List| *7)) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)) (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)))) (|ParCondList| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Matrix| *8)) (|ofCategory| *8 (|PolynomialCategory| *5 *7 *6)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *6 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| *8) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| *8))))) (|isDomain| *1 (|ParametricLinearEquations| *5 *6 *7 *8)) (|isDomain| *4 (|NonNegativeInteger|)))) (|hasoln| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)) (|isDomain| *2 (|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| *7)) (|:| |n0| (|List| *7)))) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)) (|isDomain| *3 (|List| *7)))) (|pr2dmp| (*1 *2 *3) (AND (|isDomain| *3 (|Polynomial| *4)) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *2 (|PolynomialCategory| *4 *6 *5)) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *2)) (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)))) (|se2rfi| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| (|Fraction| (|Polynomial| *4)))) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)) (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)))) (|dmp2rfi| (*1 *2 *3) (AND (|isDomain| *3 (|List| *7)) (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| (|Fraction| (|Polynomial| *4)))) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)))) (|dmp2rfi| (*1 *2 *3) (AND (|isDomain| *3 (|Matrix| *7)) (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Matrix| (|Fraction| (|Polynomial| *4)))) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)))) (|dmp2rfi| (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Fraction| (|Polynomial| *4))) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| *4 *6 *5)))) (|bsolve| (*1 *2 *3 *4 *5 *6 *7) (AND (|isDomain| *3 (|Matrix| *11)) (|isDomain| *4 (|List| (|Fraction| (|Polynomial| *8)))) (|isDomain| *5 (|NonNegativeInteger|)) (|isDomain| *6 (|String|)) (|ofCategory| *8 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *11 (|PolynomialCategory| *8 *10 *9)) (|ofCategory| *9 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *10 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| *11)) (|:| |neqzro| (|List| *11)) (|:| |wcond| (|List| (|Polynomial| *8))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| *8)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| *8)))))))))) (|:| |rgsz| (|Integer|)))) (|isDomain| *1 (|ParametricLinearEquations| *8 *9 *10 *11)) (|isDomain| *7 (|Integer|)))) (|rdregime| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| (|Record| (|:| |eqzro| (|List| *7)) (|:| |neqzro| (|List| *7)) (|:| |wcond| (|List| (|Polynomial| *4))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| *4)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| *4)))))))))) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)) (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)))) (|wrregime| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Record| (|:| |eqzro| (|List| *8)) (|:| |neqzro| (|List| *8)) (|:| |wcond| (|List| (|Polynomial| *5))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| *5)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| *5)))))))))) (|isDomain| *4 (|String|)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *8 (|PolynomialCategory| *5 *7 *6)) (|ofCategory| *6 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ParametricLinearEquations| *5 *6 *7 *8)))) (|psolve| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Matrix| *9)) (|isDomain| *4 (|PositiveInteger|)) (|isDomain| *5 (|String|)) (|ofCategory| *9 (|PolynomialCategory| *6 *8 *7)) (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *7 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *8 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ParametricLinearEquations| *6 *7 *8 *9)))) (|psolve| (*1 *2 *3 *4 *5 *6) (AND (|isDomain| *3 (|Matrix| *10)) (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *5 (|PositiveInteger|)) (|isDomain| *6 (|String|)) (|ofCategory| *10 (|PolynomialCategory| *7 *9 *8)) (|ofCategory| *7 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *8 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *9 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ParametricLinearEquations| *7 *8 *9 *10)))) (|psolve| (*1 *2 *3 *4 *5 *6) (AND (|isDomain| *3 (|Matrix| *10)) (|isDomain| *4 (|List| *10)) (|isDomain| *5 (|PositiveInteger|)) (|isDomain| *6 (|String|)) (|ofCategory| *10 (|PolynomialCategory| *7 *9 *8)) (|ofCategory| *7 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *8 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *9 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ParametricLinearEquations| *7 *8 *9 *10)))) (|psolve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Matrix| *8)) (|isDomain| *4 (|String|)) (|ofCategory| *8 (|PolynomialCategory| *5 *7 *6)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *6 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ParametricLinearEquations| *5 *6 *7 *8)))) (|psolve| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Matrix| *9)) (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *5 (|String|)) (|ofCategory| *9 (|PolynomialCategory| *6 *8 *7)) (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *7 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *8 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ParametricLinearEquations| *6 *7 *8 *9)))) (|psolve| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Matrix| *9)) (|isDomain| *4 (|List| *9)) (|isDomain| *5 (|String|)) (|ofCategory| *9 (|PolynomialCategory| *6 *8 *7)) (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *7 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *8 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ParametricLinearEquations| *6 *7 *8 *9)))) (|psolve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Matrix| *8)) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *8 (|PolynomialCategory| *5 *7 *6)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *6 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| (|Record| (|:| |eqzro| (|List| *8)) (|:| |neqzro| (|List| *8)) (|:| |wcond| (|List| (|Polynomial| *5))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| *5)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| *5)))))))))) (|isDomain| *1 (|ParametricLinearEquations| *5 *6 *7 *8)))) (|psolve| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Matrix| *9)) (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *5 (|PositiveInteger|)) (|ofCategory| *9 (|PolynomialCategory| *6 *8 *7)) (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *7 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *8 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| (|Record| (|:| |eqzro| (|List| *9)) (|:| |neqzro| (|List| *9)) (|:| |wcond| (|List| (|Polynomial| *6))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| *6)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| *6)))))))))) (|isDomain| *1 (|ParametricLinearEquations| *6 *7 *8 *9)))) (|psolve| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Matrix| *9)) (|isDomain| *5 (|PositiveInteger|)) (|ofCategory| *9 (|PolynomialCategory| *6 *8 *7)) (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *7 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *8 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| (|Record| (|:| |eqzro| (|List| *9)) (|:| |neqzro| (|List| *9)) (|:| |wcond| (|List| (|Polynomial| *6))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| *6)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| *6)))))))))) (|isDomain| *1 (|ParametricLinearEquations| *6 *7 *8 *9)) (|isDomain| *4 (|List| *9)))) (|psolve| (*1 *2 *3) (AND (|isDomain| *3 (|Matrix| *7)) (|ofCategory| *7 (|PolynomialCategory| *4 *6 *5)) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| (|Record| (|:| |eqzro| (|List| *7)) (|:| |neqzro| (|List| *7)) (|:| |wcond| (|List| (|Polynomial| *4))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| *4)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| *4)))))))))) (|isDomain| *1 (|ParametricLinearEquations| *4 *5 *6 *7)))) (|psolve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Matrix| *8)) (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *8 (|PolynomialCategory| *5 *7 *6)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *6 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| (|Record| (|:| |eqzro| (|List| *8)) (|:| |neqzro| (|List| *8)) (|:| |wcond| (|List| (|Polynomial| *5))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| *5)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| *5)))))))))) (|isDomain| *1 (|ParametricLinearEquations| *5 *6 *7 *8)))) (|psolve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Matrix| *8)) (|ofCategory| *8 (|PolynomialCategory| *5 *7 *6)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|ofCategory| *6 (|Join| (|OrderedSet|) (|ConvertibleTo| (|Symbol|)))) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| (|Record| (|:| |eqzro| (|List| *8)) (|:| |neqzro| (|List| *8)) (|:| |wcond| (|List| (|Polynomial| *5))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| *5)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| *5)))))))))) (|isDomain| *1 (|ParametricLinearEquations| *5 *6 *7 *8)) (|isDomain| *4 (|List| *8))))) │ │ │ +(CATEGORY |package| (SIGNATURE |psolve| ((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|))) (SIGNATURE |psolve| ((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)))) (SIGNATURE |psolve| ((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|))) (SIGNATURE |psolve| ((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|))) (SIGNATURE |psolve| ((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|))) (SIGNATURE |psolve| ((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|))) (SIGNATURE |psolve| ((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|))) (SIGNATURE |psolve| ((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|))) (SIGNATURE |psolve| ((|Integer|) (|Matrix| |#4|) (|String|))) (SIGNATURE |psolve| ((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|))) (SIGNATURE |psolve| ((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|))) (SIGNATURE |psolve| ((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|))) (SIGNATURE |wrregime| ((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|))) (SIGNATURE |rdregime| ((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|))) (SIGNATURE |bsolve| ((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|))) (SIGNATURE |dmp2rfi| ((|Fraction| (|Polynomial| |#1|)) |#4|)) (SIGNATURE |dmp2rfi| ((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|))) (SIGNATURE |dmp2rfi| ((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|))) (SIGNATURE |se2rfi| ((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|)))) (SIGNATURE |pr2dmp| (|#4| (|Polynomial| |#1|))) (SIGNATURE |hasoln| ((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|))) (SIGNATURE |ParCondList| ((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|))) (SIGNATURE |redpps| ((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|))) (SIGNATURE |B1solve| ((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (SIGNATURE |factorset| ((|List| |#4|) |#4|)) (SIGNATURE |maxrank| ((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))))) (SIGNATURE |minrank| ((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))))) (SIGNATURE |minset| ((|List| (|List| |#4|)) (|List| (|List| |#4|)))) (SIGNATURE |nextSublist| ((|List| (|List| (|Integer|))) (|Integer|) (|Integer|))) (SIGNATURE |overset?| ((|Boolean|) (|List| |#4|) (|List| (|List| |#4|)))) (SIGNATURE |ParCond| ((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|))) (SIGNATURE |redmat| ((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|))) (SIGNATURE |regime| ((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|))) (SIGNATURE |sqfree| (|#4| |#4|)) (SIGNATURE |inconsistent?| ((|Boolean|) (|List| |#4|))) (SIGNATURE |inconsistent?| ((|Boolean|) (|List| (|Polynomial| |#1|))))) │ │ │ +((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 45)) (|tree| (($ |#1| (|List| $)) 51) (($ |#1|) 50) (($ (|List| |#1|)) 49)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setvalue!| ((|#1| $ |#1|) 36 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) 7 T CONST)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) 47)) (|node?| (((|Boolean|) $ $) 39 (|has| |#1| (|SetCategory|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|leaves| (((|List| |#1|) $) 42)) (|leaf?| (((|Boolean|) $) 46)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ "value") 44)) (|distance| (((|Integer|) $ $) 41)) (|cyclic?| (((|Boolean|) $) 43)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) 48)) (|child?| (((|Boolean|) $ $) 40 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|DesingTreeCategory| |#1|) (|Category|) (|SetCategory|)) (T |DesingTreeCategory|)) │ │ │ +((|tree| (*1 *1 *2 *3) (AND (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|DesingTreeCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (|tree| (*1 *1 *2) (AND (|ofCategory| *1 (|DesingTreeCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (|tree| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *1 (|DesingTreeCategory| *3))))) │ │ │ +(|Join| (|RecursiveAggregate| |t#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (ATTRIBUTE |finiteAggregate|) (SIGNATURE |tree| ($ |t#1| (|List| $))) (SIGNATURE |tree| ($ |t#1|)) (SIGNATURE |tree| ($ (|List| |t#1|))))) │ │ │ +(((|Aggregate|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|RecursiveAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|vectorise| (((|Vector| $) $ $) 116)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) 90)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 73)) (|squareFree| (((|Factored| $) $) 72)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|size| (((|NonNegativeInteger|)) 100)) (|setTower!| (((|Void|) $) 120)) (|sample| (($) 16 T CONST)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) 84)) (|rem| (($ $ $) 54)) (|reduce| (($ (|SparseUnivariatePolynomial| $)) 110)) (|recip| (((|Union| $ "failed") $) 33)) (|random| (($) 103)) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|primitiveElement| (($) 88)) (|primitive?| (((|Boolean|) $) 87)) (|primeFrobenius| (($ $) 77) (($ $ (|NonNegativeInteger|)) 76)) (|prime?| (((|Boolean|) $) 71)) (|previousTower| (($ $) 115)) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) 79) (((|PositiveInteger|) $) 85)) (|one?| (((|Boolean|) $) 30)) (|nextItem| (((|Union| $ "failed") $) 99)) (|newElement| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) 119) (($ (|SparseUnivariatePolynomial| $) $ (|Symbol|)) 118)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|maxTower| (($ (|List| $)) 113)) (|lookup| (((|PositiveInteger|) $) 102)) (|lift| (((|SparseUnivariatePolynomial| $) $ $) 109) (((|SparseUnivariatePolynomial| $) $) 108)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 70)) (|init| (($) 98 T CONST)) (|index| (($ (|PositiveInteger|)) 101)) (|hash| (((|SingleInteger|) $) 10)) (|ground?| (((|Boolean|) $) 112)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|fullOutput| (((|OutputForm|) $) 121)) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) 91)) (|factor| (((|Factored| $) $) 74)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|extDegree| (((|PositiveInteger|) $) 114)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|enumerate| (((|List| $)) 104)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|distinguishedRootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) $) 111)) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) 78) (((|NonNegativeInteger|) $) 86)) (|differentiate| (($ $ (|NonNegativeInteger|)) 96) (($ $) 94)) (|definingPolynomial| (((|SparseUnivariatePolynomial| $) $) 107) (((|SparseUnivariatePolynomial| $)) 106)) (|createPrimitiveElement| (($) 89)) (|conjugate| (($ $) 117)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) 92)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Fraction| (|Integer|))) 65)) (|charthRoot| (((|Union| $ "failed") $) 80) (($ $) 93)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 38)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 69)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $ (|NonNegativeInteger|)) 97) (($ $) 95)) (= (((|Boolean|) $ $) 6)) (/ (($ $ $) 64)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 68)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 67) (($ (|Fraction| (|Integer|)) $) 66))) │ │ │ +(((|PseudoAlgebraicClosureOfFiniteFieldCategory|) (|Category|)) (T |PseudoAlgebraicClosureOfFiniteFieldCategory|)) │ │ │ NIL │ │ │ -(((|ArbitraryExponentAttribute|) (|Category|)) (T |ArbitraryExponentAttribute|)) │ │ │ +(|Join| (|FiniteFieldCategory|) (|PseudoAlgebraicClosureOfPerfectFieldCategory|)) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DifferentialRing|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|FieldOfPrimeCharacteristic|) . T) ((|Finite|) . T) ((|FiniteFieldCategory|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|PseudoAlgebraicClosureOfPerfectFieldCategory|) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|StepThrough|) . T) ((|UniqueFactorizationDomain|) . T)) │ │ │ +((|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) 9) (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) 12) (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) 11) (((|Symbol|) |#1| (|Symbol|)) 10))) │ │ │ +(((|MakeFunction| |#1|) (CATEGORY |package| (SIGNATURE |function| ((|Symbol|) |#1| (|Symbol|))) (SIGNATURE |function| ((|Symbol|) |#1| (|Symbol|) (|Symbol|))) (SIGNATURE |function| ((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|))) (SIGNATURE |function| ((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))))) (|ConvertibleTo| (|InputForm|))) (T |MakeFunction|)) │ │ │ +((|function| (*1 *2 *3 *2 *4) (AND (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|MakeFunction| *3)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))) (|function| (*1 *2 *3 *2 *2 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|MakeFunction| *3)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))) (|function| (*1 *2 *3 *2 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|MakeFunction| *3)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))) (|function| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|MakeFunction| *3)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |function| ((|Symbol|) |#1| (|Symbol|))) (SIGNATURE |function| ((|Symbol|) |#1| (|Symbol|) (|Symbol|))) (SIGNATURE |function| ((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|))) (SIGNATURE |function| ((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))))) │ │ │ +((|tan| (($ $) 15)) (|sec| (($ $) 12)) (|csc| (($ $) 10)) (|cot| (($ $) 17))) │ │ │ +(((|TrigonometricFunctionCategory&| |#1|) (CATEGORY |domain| (SIGNATURE |cot| (|#1| |#1|)) (SIGNATURE |csc| (|#1| |#1|)) (SIGNATURE |sec| (|#1| |#1|)) (SIGNATURE |tan| (|#1| |#1|))) (|TrigonometricFunctionCategory|)) (T |TrigonometricFunctionCategory&|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +(CATEGORY |domain| (SIGNATURE |cot| (|#1| |#1|)) (SIGNATURE |csc| (|#1| |#1|)) (SIGNATURE |sec| (|#1| |#1|)) (SIGNATURE |tan| (|#1| |#1|))) │ │ │ +((|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) 52))) │ │ │ +(((|PatternMatchKernel| |#1| |#2|) (CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)))) (|SetCategory|) (|Join| (|OrderedSet|) (|RetractableTo| (|Kernel| $)) (|ConvertibleTo| (|Pattern| |#1|)) (|PatternMatchable| |#1|))) (T |PatternMatchKernel|)) │ │ │ +((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchResult| *5 *6)) (|isDomain| *3 (|Kernel| *6)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|Join| (|OrderedSet|) (|RetractableTo| (|Kernel| $)) (|ConvertibleTo| *4) (|PatternMatchable| *5))) (|isDomain| *4 (|Pattern| *5)) (|isDomain| *1 (|PatternMatchKernel| *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)))) │ │ │ +((~= (((|Boolean|) $ $) 18 (OR (|has| |#2| (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (|table| (($) 66) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 65)) (|swap!| (((|Void|) $ |#1| |#1|) 93 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setelt| ((|#2| $ |#1| |#2|) 67)) (|select!| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 42 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|select| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 52 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|search| (((|Union| |#2| "failed") |#1| $) 57)) (|sample| (($) 7 T CONST)) (|removeDuplicates| (($ $) 55 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|remove!| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 44 (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 43 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Union| |#2| "failed") |#1| $) 58)) (|remove| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 54 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 51 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 53 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 50 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#2| $ |#1| |#2|) 81 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#2| $ |#1|) 82)) (|parts| (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| |#2|) $) 73 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|minIndex| ((|#1| $) 90 (|has| |#1| (|OrderedSet|)))) (|members| (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| |#2|) $) 74 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 27 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|Boolean|) |#2| $) 76 (AND (|has| |#2| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxIndex| ((|#1| $) 89 (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ (|Mapping| |#2| |#2|) $) 69 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 35) (($ (|Mapping| |#2| |#2|) $) 68) (($ (|Mapping| |#2| |#2| |#2|) $ $) 64)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|latex| (((|String|) $) 22 (OR (|has| |#2| (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (|keys| (((|List| |#1|) $) 59)) (|key?| (((|Boolean|) |#1| $) 60)) (|inspect| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 36)) (|insert!| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 37)) (|indices| (((|List| |#1|) $) 87)) (|index?| (((|Boolean|) |#1| $) 86)) (|hash| (((|SingleInteger|) $) 21 (OR (|has| |#2| (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (|first| ((|#2| $) 91 (|has| |#1| (|OrderedSet|)))) (|find| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 48)) (|fill!| (($ $ |#2|) 92 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|extract!| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 38)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 71 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) 26 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 25 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 24 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 23 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|List| |#2|) (|List| |#2|)) 80 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ |#2| |#2|) 79 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|Equation| |#2|)) 78 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|List| (|Equation| |#2|))) 77 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|entry?| (((|Boolean|) |#2| $) 88 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|))))) (|entries| (((|List| |#2|) $) 85)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#2| $ |#1|) 84) ((|#2| $ |#1| |#2|) 83)) (|dictionary| (($) 46) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 45)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 28 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|NonNegativeInteger|) |#2| $) 75 (AND (|has| |#2| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) 72 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|copy| (($ $) 13)) (|convert| (((|InputForm|) $) 56 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 47)) (|coerce| (((|OutputForm|) $) 20 (OR (|has| |#2| (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (|bag| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 39)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 70 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (OR (|has| |#2| (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|TableAggregate| |#1| |#2|) (|Category|) (|SetCategory|) (|SetCategory|)) (T |TableAggregate|)) │ │ │ +((|setelt| (*1 *2 *1 *3 *2) (AND (|ofCategory| *1 (|TableAggregate| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|table| (*1 *1) (AND (|ofCategory| *1 (|TableAggregate| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|table| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Record| (|:| |key| *3) (|:| |entry| *4)))) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *1 (|TableAggregate| *3 *4)))) (|map| (*1 *1 *2 *1 *1) (AND (|isDomain| *2 (|Mapping| *4 *4 *4)) (|ofCategory| *1 (|TableAggregate| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))))) │ │ │ +(|Join| (|KeyedDictionary| |t#1| |t#2|) (|IndexedAggregate| |t#1| |t#2|) (CATEGORY |domain| (SIGNATURE |setelt| (|t#2| $ |t#1| |t#2|)) (SIGNATURE |table| ($)) (SIGNATURE |table| ($ (|List| (|Record| (|:| |key| |t#1|) (|:| |entry| |t#2|))))) (SIGNATURE |map| ($ (|Mapping| |t#2| |t#2| |t#2|) $ $)))) │ │ │ +(((|Aggregate|) . T) ((|BagAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|BasicType|) OR (|has| |#2| (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#2| (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))) ((|Collection| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|ConvertibleTo| (|InputForm|)) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|ConvertibleTo| (|InputForm|))) ((|Dictionary| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|DictionaryOperations| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|Eltable| |#1| |#2|) . T) ((|EltableAggregate| |#1| |#2|) . T) ((|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))) ((|Evalable| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|HomogeneousAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|HomogeneousAggregate| |#2|) . T) ((|IndexedAggregate| |#1| |#2|) . T) ((|InnerEvalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))) ((|InnerEvalable| |#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|KeyedDictionary| |#1| |#2|) . T) ((|SetCategory|) OR (|has| |#2| (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))) ((|Type|) . T)) │ │ │ NIL │ │ │ -(((|ApproximateAttribute|) (|Category|)) (T |ApproximateAttribute|)) │ │ │ +(((|PartiallyOrderedSetAttribute|) (|Category|)) (T |PartiallyOrderedSetAttribute|)) │ │ │ NIL │ │ │ (|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +((|tensorMap| (((|Stream| |#1|) (|Stream| |#1|) (|Mapping| (|List| |#1|) |#1|)) 16))) │ │ │ +(((|StreamTensor| |#1|) (CATEGORY |package| (SIGNATURE |tensorMap| ((|Stream| |#1|) (|Stream| |#1|) (|Mapping| (|List| |#1|) |#1|)))) (|Type|)) (T |StreamTensor|)) │ │ │ +((|tensorMap| (*1 *2 *2 *3) (AND (|isDomain| *2 (|Stream| *4)) (|isDomain| *3 (|Mapping| (|List| *4) *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *1 (|StreamTensor| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |tensorMap| ((|Stream| |#1|) (|Stream| |#1|) (|Mapping| (|List| |#1|) |#1|)))) │ │ │ +((|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) 52)) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) 67)) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) 69) (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) 68)) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) 105)) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) 82)) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) 116)) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) 57)) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) 39)) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) 49)) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) 89))) │ │ │ +(((|LinGroebnerPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |linGenPos| ((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)))) (SIGNATURE |groebgen| ((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)))) (SIGNATURE |totolex| ((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)))) (SIGNATURE |minPol| ((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|))) (SIGNATURE |minPol| ((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|))) (SIGNATURE |computeBasis| ((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)))) (SIGNATURE |coord| ((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)))) (SIGNATURE |anticoord| ((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)))) (SIGNATURE |intcompBasis| ((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)))) (SIGNATURE |choosemon| ((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)))) (SIGNATURE |transform| ((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)))) (|List| (|Symbol|)) (|GcdDomain|)) (T |LinGroebnerPackage|)) │ │ │ +((|transform| (*1 *2 *3) (AND (|isDomain| *3 (|DistributedMultivariatePolynomial| *4 *5)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|GcdDomain|)) (|isDomain| *2 (|HomogeneousDistributedMultivariatePolynomial| *4 *5)) (|isDomain| *1 (|LinGroebnerPackage| *4 *5)))) (|choosemon| (*1 *2 *2 *3) (AND (|isDomain| *3 (|List| (|DistributedMultivariatePolynomial| *4 *5))) (|isDomain| *2 (|DistributedMultivariatePolynomial| *4 *5)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|GcdDomain|)) (|isDomain| *1 (|LinGroebnerPackage| *4 *5)))) (|intcompBasis| (*1 *2 *3 *2 *2) (AND (|isDomain| *2 (|List| (|HomogeneousDistributedMultivariatePolynomial| *4 *5))) (|isDomain| *3 (|OrderedVariableList| *4)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|GcdDomain|)) (|isDomain| *1 (|LinGroebnerPackage| *4 *5)))) (|anticoord| (*1 *2 *3 *2 *4) (AND (|isDomain| *3 (|List| *6)) (|isDomain| *4 (|List| (|DistributedMultivariatePolynomial| *5 *6))) (|ofCategory| *6 (|GcdDomain|)) (|isDomain| *2 (|DistributedMultivariatePolynomial| *5 *6)) (|ofType| *5 (|List| (|Symbol|))) (|isDomain| *1 (|LinGroebnerPackage| *5 *6)))) (|coord| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| (|HomogeneousDistributedMultivariatePolynomial| *5 *6))) (|isDomain| *3 (|HomogeneousDistributedMultivariatePolynomial| *5 *6)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|GcdDomain|)) (|isDomain| *2 (|Vector| *6)) (|isDomain| *1 (|LinGroebnerPackage| *5 *6)))) (|computeBasis| (*1 *2 *2) (AND (|isDomain| *2 (|List| (|HomogeneousDistributedMultivariatePolynomial| *3 *4))) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|GcdDomain|)) (|isDomain| *1 (|LinGroebnerPackage| *3 *4)))) (|minPol| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|HomogeneousDistributedMultivariatePolynomial| *5 *6))) (|isDomain| *4 (|OrderedVariableList| *5)) (|ofType| *5 (|List| (|Symbol|))) (|isDomain| *2 (|HomogeneousDistributedMultivariatePolynomial| *5 *6)) (|isDomain| *1 (|LinGroebnerPackage| *5 *6)) (|ofCategory| *6 (|GcdDomain|)))) (|minPol| (*1 *2 *3 *3 *4) (AND (|isDomain| *3 (|List| (|HomogeneousDistributedMultivariatePolynomial| *5 *6))) (|isDomain| *4 (|OrderedVariableList| *5)) (|ofType| *5 (|List| (|Symbol|))) (|isDomain| *2 (|HomogeneousDistributedMultivariatePolynomial| *5 *6)) (|isDomain| *1 (|LinGroebnerPackage| *5 *6)) (|ofCategory| *6 (|GcdDomain|)))) (|totolex| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|HomogeneousDistributedMultivariatePolynomial| *4 *5))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|GcdDomain|)) (|isDomain| *2 (|List| (|DistributedMultivariatePolynomial| *4 *5))) (|isDomain| *1 (|LinGroebnerPackage| *4 *5)))) (|groebgen| (*1 *2 *3) (AND (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|GcdDomain|)) (|isDomain| *2 (|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| *4 *5))) (|:| |glval| (|List| (|Integer|))))) (|isDomain| *1 (|LinGroebnerPackage| *4 *5)) (|isDomain| *3 (|List| (|DistributedMultivariatePolynomial| *4 *5))))) (|linGenPos| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|HomogeneousDistributedMultivariatePolynomial| *4 *5))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|GcdDomain|)) (|isDomain| *2 (|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| *4 *5))) (|:| |gvlist| (|List| (|Integer|))))) (|isDomain| *1 (|LinGroebnerPackage| *4 *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |linGenPos| ((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)))) (SIGNATURE |groebgen| ((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)))) (SIGNATURE |totolex| ((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)))) (SIGNATURE |minPol| ((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|))) (SIGNATURE |minPol| ((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|))) (SIGNATURE |computeBasis| ((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)))) (SIGNATURE |coord| ((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)))) (SIGNATURE |anticoord| ((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)))) (SIGNATURE |intcompBasis| ((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)))) (SIGNATURE |choosemon| ((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)))) (SIGNATURE |transform| ((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL (OR (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|SetCategory|)) (|has| |#1| (|SetCategory|))))) (|table| (($) NIL) (($ (|List| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)))) NIL)) (|swap!| (((|Void|) $ (|String|) (|String|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| ((|#1| $ (|String|) |#1|) NIL)) (|select!| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|select| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|search| (((|Union| |#1| "failed") (|String|) $) NIL)) (|sample| (($) NIL T CONST)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|SetCategory|))))) (|remove!| (($ (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Union| |#1| "failed") (|String|) $) NIL)) (|remove| (($ (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|SetCategory|)))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| (((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Mapping| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) $ (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|SetCategory|)))) (((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Mapping| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) $ (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Mapping| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#1| $ (|String|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|String|)) NIL)) (|parts| (((|List| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|String|) $) NIL (|has| (|String|) (|OrderedSet|)))) (|members| (((|List| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|SetCategory|)))) (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxIndex| (((|String|) $) NIL (|has| (|String|) (|OrderedSet|)))) (|map!| (($ (|Mapping| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) $) NIL) (($ (|Mapping| |#1| |#1|) $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (OR (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|SetCategory|)) (|has| |#1| (|SetCategory|))))) (|keys| (((|List| (|String|)) $) NIL)) (|key?| (((|Boolean|) (|String|) $) NIL)) (|inspect| (((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) $) NIL)) (|insert!| (($ (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) $) NIL)) (|indices| (((|List| (|String|)) $) NIL)) (|index?| (((|Boolean|) (|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (OR (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|SetCategory|)) (|has| |#1| (|SetCategory|))))) (|first| ((|#1| $) NIL (|has| (|String|) (|OrderedSet|)))) (|find| (((|Union| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) "failed") (|Mapping| (|Boolean|) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) $) NIL)) (|fill!| (($ $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|extract!| (((|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) $) NIL)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))))) NIL (AND (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Evalable| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)))) (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|SetCategory|)))) (($ $ (|Equation| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)))) NIL (AND (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Evalable| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)))) (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|SetCategory|)))) (($ $ (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) NIL (AND (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Evalable| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)))) (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|SetCategory|)))) (($ $ (|List| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) (|List| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)))) NIL (AND (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|Evalable| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)))) (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#1| $ (|String|)) NIL) ((|#1| $ (|String|) |#1|) NIL)) (|dictionary| (($) NIL) (($ (|List| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)))) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|SetCategory|)))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)))) NIL)) (|coerce| (((|OutputForm|) $) NIL (OR (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|SetCategory|)) (|has| |#1| (|SetCategory|))))) (|bag| (($ (|List| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)))) NIL)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) NIL (OR (|has| (|Record| (|:| |key| (|String|)) (|:| |entry| |#1|)) (|SetCategory|)) (|has| |#1| (|SetCategory|))))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|StringTable| |#1|) (|Join| (|TableAggregate| (|String|) |#1|) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|))) (|SetCategory|)) (T |StringTable|)) │ │ │ NIL │ │ │ -(((|ArbitraryPrecisionAttribute|) (|Category|)) (T |ArbitraryPrecisionAttribute|)) │ │ │ +(|Join| (|TableAggregate| (|String|) |#1|) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6)) (+ (($ $ $) 13)) (* (($ (|PositiveInteger|) $) 12))) │ │ │ +(((|AbelianSemiGroup|) (|Category|)) (T |AbelianSemiGroup|)) │ │ │ +((+ (*1 *1 *1 *1) (|ofCategory| *1 (|AbelianSemiGroup|))) (* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|AbelianSemiGroup|)) (|isDomain| *2 (|PositiveInteger|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE + ($ $ $)) (SIGNATURE * ($ (|PositiveInteger|) $)))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (((|Boolean|) $) NIL (|has| |#1| (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| |#1| (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| ((|#1| $ (|Integer|) |#1|) 11 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|remove| (($ |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) NIL)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) NIL) (((|Integer|) |#1| $) NIL (|has| |#1| (|SetCategory|))) (((|Integer|) |#1| $ (|Integer|)) NIL (|has| |#1| (|SetCategory|)))) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|oneDimensionalArray| (($ (|List| |#1|)) 13) (($ (|NonNegativeInteger|) |#1|) 14)) (|new| (($ (|NonNegativeInteger|) |#1|) 9)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|insert| (($ |#1| $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|first| ((|#1| $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) NIL)) (|fill!| (($ $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) 7)) (|elt| ((|#1| $ (|Integer|) |#1|) NIL) ((|#1| $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) NIL)) (|concat| (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (|List| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|OneDimensionalArray| |#1|) (|Join| (|OneDimensionalArrayAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |oneDimensionalArray| ($ (|List| |#1|))) (SIGNATURE |oneDimensionalArray| ($ (|NonNegativeInteger|) |#1|)))) (|Type|)) (T |OneDimensionalArray|)) │ │ │ +((|oneDimensionalArray| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|OneDimensionalArray| *3)))) (|oneDimensionalArray| (*1 *1 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|OneDimensionalArray| *3)) (|ofCategory| *3 (|Type|))))) │ │ │ +(|Join| (|OneDimensionalArrayAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |oneDimensionalArray| ($ (|List| |#1|))) (SIGNATURE |oneDimensionalArray| ($ (|NonNegativeInteger|) |#1|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|setParam!| (((|Void|) $ (|List| (|NeitherSparseOrDensePowerSeries| |#1|))) NIL)) (|setFoundPlacesToEmpty| (((|List| $)) NIL)) (|setDegree!| (((|Void|) $ (|PositiveInteger|)) NIL)) (|reduce| (((|Divisor| $) (|List| $)) NIL)) (|localParam| (((|List| (|NeitherSparseOrDensePowerSeries| |#1|)) $) NIL)) (|leaf?| (((|Boolean|) $) NIL)) (|latex| (((|String|) $) NIL)) (|itsALeaf!| (((|Void|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|foundPlaces| (((|List| $)) NIL)) (|elt| ((|#1| $ (|Integer|)) NIL)) (|degree| (((|PositiveInteger|) $) NIL)) (|create| (($ (|List| |#1|)) NIL) (($ (|Symbol|)) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (= (((|Boolean|) $ $) NIL)) (- (((|Divisor| $) $ $) NIL) (((|Divisor| $) (|Divisor| $) $) NIL) (((|Divisor| $) $ (|Divisor| $)) NIL) (((|Divisor| $) $) NIL)) (+ (((|Divisor| $) $ $) NIL) (((|Divisor| $) (|Divisor| $) $) NIL) (((|Divisor| $) $ (|Divisor| $)) NIL)) (* (((|Divisor| $) (|Integer|) $) NIL))) │ │ │ +(((|Places| |#1|) (|PlacesCategory| |#1| (|NeitherSparseOrDensePowerSeries| |#1|)) (|Field|)) (T |Places|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +(|PlacesCategory| |#1| (|NeitherSparseOrDensePowerSeries| |#1|)) │ │ │ +((|log| ((|#3| |#3| (|NonNegativeInteger|)) 23)) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) 28)) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) 29))) │ │ │ +(((|XExponentialPackage| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |exp| (|#3| |#3| (|NonNegativeInteger|))) (SIGNATURE |log| (|#3| |#3| (|NonNegativeInteger|))) (SIGNATURE |Hausdorff| (|#3| |#3| |#3| (|NonNegativeInteger|)))) (|Join| (|Ring|) (|Module| (|Fraction| (|Integer|)))) (|OrderedSet|) (|XPolynomialsCat| |#2| |#1|)) (T |XExponentialPackage|)) │ │ │ +((|Hausdorff| (*1 *2 *2 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Join| (|Ring|) (|Module| (|Fraction| (|Integer|))))) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|XExponentialPackage| *4 *5 *2)) (|ofCategory| *2 (|XPolynomialsCat| *5 *4)))) (|log| (*1 *2 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Join| (|Ring|) (|Module| (|Fraction| (|Integer|))))) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|XExponentialPackage| *4 *5 *2)) (|ofCategory| *2 (|XPolynomialsCat| *5 *4)))) (|exp| (*1 *2 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Join| (|Ring|) (|Module| (|Fraction| (|Integer|))))) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|XExponentialPackage| *4 *5 *2)) (|ofCategory| *2 (|XPolynomialsCat| *5 *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |exp| (|#3| |#3| (|NonNegativeInteger|))) (SIGNATURE |log| (|#3| |#3| (|NonNegativeInteger|))) (SIGNATURE |Hausdorff| (|#3| |#3| |#3| (|NonNegativeInteger|)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|wholePart| (((|Integer|) $) 87)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|truncate| (($ $) 85)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 73)) (|squareFree| (((|Factored| $) $) 72)) (|sqrt| (($ $) 95)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|sign| (((|Integer|) $) 112)) (|sample| (($) 16 T CONST)) (|round| (($ $) 84)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 100) (((|Union| (|Fraction| (|Integer|)) "failed") $) 97)) (|retract| (((|Integer|) $) 99) (((|Fraction| (|Integer|)) $) 96)) (|rem| (($ $ $) 54)) (|recip| (((|Union| $ "failed") $) 33)) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|prime?| (((|Boolean|) $) 71)) (|precision| (((|PositiveInteger|)) 121) (((|PositiveInteger|) (|PositiveInteger|)) 118 (|has| $ (ATTRIBUTE |arbitraryPrecision|)))) (|positive?| (((|Boolean|) $) 110)) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) 91)) (|order| (((|Integer|) $) 127)) (|one?| (((|Boolean|) $) 30)) (|nthRoot| (($ $ (|Integer|)) 94)) (|norm| (($ $) 90)) (|negative?| (((|Boolean|) $) 111)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|min| (($ $ $) 109) (($) 115 (AND (|not| (|has| $ (ATTRIBUTE |arbitraryPrecision|))) (|not| (|has| $ (ATTRIBUTE |arbitraryExponent|)))))) (|max| (($ $ $) 108) (($) 114 (AND (|not| (|has| $ (ATTRIBUTE |arbitraryPrecision|))) (|not| (|has| $ (ATTRIBUTE |arbitraryExponent|)))))) (|mantissa| (((|Integer|) $) 124)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 70)) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) 117 (|has| $ (ATTRIBUTE |arbitraryPrecision|)))) (|hash| (((|SingleInteger|) $) 10)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|fractionPart| (($ $) 86)) (|floor| (($ $) 88)) (|float| (($ (|Integer|) (|Integer|)) 129) (($ (|Integer|) (|Integer|) (|PositiveInteger|)) 128)) (|factor| (((|Factored| $) $) 74)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|exponent| (((|Integer|) $) 125)) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|digits| (((|PositiveInteger|)) 122) (((|PositiveInteger|) (|PositiveInteger|)) 119 (|has| $ (ATTRIBUTE |arbitraryPrecision|)))) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) 116 (|has| $ (ATTRIBUTE |arbitraryPrecision|)))) (|convert| (((|Float|) $) 103) (((|DoubleFloat|) $) 102) (((|Pattern| (|Float|)) $) 92)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Fraction| (|Integer|))) 65) (($ (|Integer|)) 101) (($ (|Fraction| (|Integer|))) 98)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|ceiling| (($ $) 89)) (|bits| (((|PositiveInteger|)) 123) (((|PositiveInteger|) (|PositiveInteger|)) 120 (|has| $ (ATTRIBUTE |arbitraryPrecision|)))) (|base| (((|PositiveInteger|)) 126)) (|associates?| (((|Boolean|) $ $) 38)) (|abs| (($ $) 113)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 69)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (>= (((|Boolean|) $ $) 106)) (> (((|Boolean|) $ $) 105)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 107)) (< (((|Boolean|) $ $) 104)) (/ (($ $ $) 64)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 68) (($ $ (|Fraction| (|Integer|))) 93)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 67) (($ (|Fraction| (|Integer|)) $) 66))) │ │ │ +(((|FloatingPointSystem|) (|Category|)) (T |FloatingPointSystem|)) │ │ │ +((|float| (*1 *1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|FloatingPointSystem|)))) (|float| (*1 *1 *2 *2 *3) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *1 (|FloatingPointSystem|)))) (|order| (*1 *2 *1) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|Integer|)))) (|base| (*1 *2) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|PositiveInteger|)))) (|exponent| (*1 *2 *1) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|Integer|)))) (|mantissa| (*1 *2 *1) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|Integer|)))) (|bits| (*1 *2) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|PositiveInteger|)))) (|digits| (*1 *2) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|PositiveInteger|)))) (|precision| (*1 *2) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|PositiveInteger|)))) (|bits| (*1 *2 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|has| *1 (ATTRIBUTE |arbitraryPrecision|)) (|ofCategory| *1 (|FloatingPointSystem|)))) (|digits| (*1 *2 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|has| *1 (ATTRIBUTE |arbitraryPrecision|)) (|ofCategory| *1 (|FloatingPointSystem|)))) (|precision| (*1 *2 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|has| *1 (ATTRIBUTE |arbitraryPrecision|)) (|ofCategory| *1 (|FloatingPointSystem|)))) (|increasePrecision| (*1 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|has| *1 (ATTRIBUTE |arbitraryPrecision|)) (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|PositiveInteger|)))) (|decreasePrecision| (*1 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|has| *1 (ATTRIBUTE |arbitraryPrecision|)) (|ofCategory| *1 (|FloatingPointSystem|)) (|isDomain| *2 (|PositiveInteger|)))) (|min| (*1 *1) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|not| (|has| *1 (ATTRIBUTE |arbitraryPrecision|))) (|not| (|has| *1 (ATTRIBUTE |arbitraryExponent|))))) (|max| (*1 *1) (AND (|ofCategory| *1 (|FloatingPointSystem|)) (|not| (|has| *1 (ATTRIBUTE |arbitraryPrecision|))) (|not| (|has| *1 (ATTRIBUTE |arbitraryExponent|)))))) │ │ │ +(|Join| (|RealNumberSystem|) (CATEGORY |domain| (ATTRIBUTE |approximate|) (SIGNATURE |float| ($ (|Integer|) (|Integer|))) (SIGNATURE |float| ($ (|Integer|) (|Integer|) (|PositiveInteger|))) (SIGNATURE |order| ((|Integer|) $)) (SIGNATURE |base| ((|PositiveInteger|))) (SIGNATURE |exponent| ((|Integer|) $)) (SIGNATURE |mantissa| ((|Integer|) $)) (SIGNATURE |bits| ((|PositiveInteger|))) (SIGNATURE |digits| ((|PositiveInteger|))) (SIGNATURE |precision| ((|PositiveInteger|))) (IF (|has| $ (ATTRIBUTE |arbitraryPrecision|)) (PROGN (SIGNATURE |bits| ((|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |digits| ((|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |precision| ((|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |increasePrecision| ((|PositiveInteger|) (|Integer|))) (SIGNATURE |decreasePrecision| ((|PositiveInteger|) (|Integer|)))) |noBranch|) (IF (|has| $ (ATTRIBUTE |arbitraryExponent|)) |noBranch| (IF (|has| $ (ATTRIBUTE |arbitraryPrecision|)) |noBranch| (PROGN (SIGNATURE |min| ($)) (SIGNATURE |max| ($))))))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicZero|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|ConvertibleTo| (|DoubleFloat|)) . T) ((|ConvertibleTo| (|Float|)) . T) ((|ConvertibleTo| (|Pattern| (|Float|))) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|OrderedAbelianGroup|) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedCancellationAbelianMonoid|) . T) ((|OrderedRing|) . T) ((|OrderedSet|) . T) ((|PatternMatchable| (|Float|)) . T) ((|PrincipalIdealDomain|) . T) ((|RadicalCategory|) . T) ((|RealConstant|) . T) ((|RealNumberSystem|) . T) ((|RetractableTo| (|Fraction| (|Integer|))) . T) ((|RetractableTo| (|Integer|)) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|UniqueFactorizationDomain|) . T)) │ │ │ +((|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) 62)) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) 159 (AND (|has| |#2| (|SpecialFunctionCategory|)) (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#1| (|PatternMatchable| (|Integer|))))) (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) 133 (AND (|has| |#2| (|LiouvillianFunctionCategory|)) (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#1| (|PatternMatchable| (|Integer|)))))) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) 142 (AND (|has| |#2| (|LiouvillianFunctionCategory|)) (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#1| (|PatternMatchable| (|Integer|))))))) │ │ │ +(((|PatternMatchIntegration| |#1| |#2|) (CATEGORY |package| (SIGNATURE |splitConstant| ((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|))) (IF (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (IF (|has| |#1| (|PatternMatchable| (|Integer|))) (PROGN (IF (|has| |#2| (|LiouvillianFunctionCategory|)) (PROGN (SIGNATURE |pmComplexintegrate| ((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) (SIGNATURE |pmintegrate| ((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)))) |noBranch|) (IF (|has| |#2| (|SpecialFunctionCategory|)) (SIGNATURE |pmintegrate| ((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|))) |noBranch|)) |noBranch|) |noBranch|)) (|Join| (|OrderedSet|) (|RetractableTo| (|Integer|)) (|GcdDomain|) (|LinearlyExplicitRingOver| (|Integer|))) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|))) (T |PatternMatchIntegration|)) │ │ │ +((|pmintegrate| (*1 *2 *2 *3 *4 *4) (|partial| AND (|isDomain| *3 (|Symbol|)) (|isDomain| *4 (|OrderedCompletion| *2)) (|ofCategory| *2 (|SpecialFunctionCategory|)) (|ofCategory| *2 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *5))) (|ofCategory| *5 (|ConvertibleTo| (|Pattern| (|Integer|)))) (|ofCategory| *5 (|PatternMatchable| (|Integer|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|RetractableTo| (|Integer|)) (|GcdDomain|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *1 (|PatternMatchIntegration| *5 *2)))) (|pmintegrate| (*1 *2 *3 *4) (|partial| AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|ConvertibleTo| (|Pattern| (|Integer|)))) (|ofCategory| *5 (|PatternMatchable| (|Integer|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|RetractableTo| (|Integer|)) (|GcdDomain|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |special| *3) (|:| |integrand| *3))) (|isDomain| *1 (|PatternMatchIntegration| *5 *3)) (|ofCategory| *3 (|LiouvillianFunctionCategory|)) (|ofCategory| *3 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *5))))) (|pmComplexintegrate| (*1 *2 *3 *4) (|partial| AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|ConvertibleTo| (|Pattern| (|Integer|)))) (|ofCategory| *5 (|PatternMatchable| (|Integer|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|RetractableTo| (|Integer|)) (|GcdDomain|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |special| *3) (|:| |integrand| *3))) (|isDomain| *1 (|PatternMatchIntegration| *5 *3)) (|ofCategory| *3 (|LiouvillianFunctionCategory|)) (|ofCategory| *3 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *5))))) (|splitConstant| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|OrderedSet|) (|RetractableTo| (|Integer|)) (|GcdDomain|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |const| *3) (|:| |nconst| *3))) (|isDomain| *1 (|PatternMatchIntegration| *5 *3)) (|ofCategory| *3 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *5)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |splitConstant| ((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|))) (IF (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (IF (|has| |#1| (|PatternMatchable| (|Integer|))) (PROGN (IF (|has| |#2| (|LiouvillianFunctionCategory|)) (PROGN (SIGNATURE |pmComplexintegrate| ((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) (SIGNATURE |pmintegrate| ((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)))) |noBranch|) (IF (|has| |#2| (|SpecialFunctionCategory|)) (SIGNATURE |pmintegrate| ((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|))) |noBranch|)) |noBranch|) |noBranch|)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|yellow| (($) 15)) (|red| (($) 14)) (|numberOfHues| (((|PositiveInteger|)) 22)) (|latex| (((|String|) $) NIL)) (|hue| (((|Integer|) $) 19)) (|hash| (((|SingleInteger|) $) NIL)) (|green| (($) 16)) (|color| (($ (|Integer|)) 23)) (|coerce| (((|OutputForm|) $) 29)) (|blue| (($) 17)) (= (((|Boolean|) $ $) 13)) (+ (($ $ $) 11)) (* (($ (|PositiveInteger|) $) 21) (($ (|DoubleFloat|) $) 8))) │ │ │ +(((|Color|) (|Join| (|AbelianSemiGroup|) (CATEGORY |domain| (SIGNATURE * ($ (|PositiveInteger|) $)) (SIGNATURE * ($ (|DoubleFloat|) $)) (SIGNATURE + ($ $ $)) (SIGNATURE |red| ($)) (SIGNATURE |yellow| ($)) (SIGNATURE |green| ($)) (SIGNATURE |blue| ($)) (SIGNATURE |hue| ((|Integer|) $)) (SIGNATURE |numberOfHues| ((|PositiveInteger|))) (SIGNATURE |color| ($ (|Integer|)))))) (T |Color|)) │ │ │ +((+ (*1 *1 *1 *1) (|isDomain| *1 (|Color|))) (* (*1 *1 *2 *1) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|Color|)))) (* (*1 *1 *2 *1) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|Color|)))) (|red| (*1 *1) (|isDomain| *1 (|Color|))) (|yellow| (*1 *1) (|isDomain| *1 (|Color|))) (|green| (*1 *1) (|isDomain| *1 (|Color|))) (|blue| (*1 *1) (|isDomain| *1 (|Color|))) (|hue| (*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Color|)))) (|numberOfHues| (*1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|Color|)))) (|color| (*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Color|))))) │ │ │ +(|Join| (|AbelianSemiGroup|) (CATEGORY |domain| (SIGNATURE * ($ (|PositiveInteger|) $)) (SIGNATURE * ($ (|DoubleFloat|) $)) (SIGNATURE + ($ $ $)) (SIGNATURE |red| ($)) (SIGNATURE |yellow| ($)) (SIGNATURE |green| ($)) (SIGNATURE |blue| ($)) (SIGNATURE |hue| ((|Integer|) $)) (SIGNATURE |numberOfHues| ((|PositiveInteger|))) (SIGNATURE |color| ($ (|Integer|))))) │ │ │ +((|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) 9) (((|Void|) (|OpenMathDevice|) $) 8) (((|String|) $ (|Boolean|)) 7) (((|String|) $) 6))) │ │ │ +(((|OpenMath|) (|Category|)) (T |OpenMath|)) │ │ │ +((|OMwrite| (*1 *2 *3 *1 *4) (AND (|ofCategory| *1 (|OpenMath|)) (|isDomain| *3 (|OpenMathDevice|)) (|isDomain| *4 (|Boolean|)) (|isDomain| *2 (|Void|)))) (|OMwrite| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|OpenMath|)) (|isDomain| *3 (|OpenMathDevice|)) (|isDomain| *2 (|Void|)))) (|OMwrite| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|OpenMath|)) (|isDomain| *3 (|Boolean|)) (|isDomain| *2 (|String|)))) (|OMwrite| (*1 *2 *1) (AND (|ofCategory| *1 (|OpenMath|)) (|isDomain| *2 (|String|))))) │ │ │ +(|Join| (CATEGORY |domain| (SIGNATURE |OMwrite| ((|String|) $)) (SIGNATURE |OMwrite| ((|String|) $ (|Boolean|))) (SIGNATURE |OMwrite| ((|Void|) (|OpenMathDevice|) $)) (SIGNATURE |OMwrite| ((|Void|) (|OpenMathDevice|) $ (|Boolean|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) NIL)) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) NIL) (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) NIL) (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) NIL)) (|variables| (((|List| (|OrderedVariableList| |#2|)) $) NIL)) (|trivialIdeal?| (((|Boolean|) $) NIL)) (|triangular?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|stronglyReduced?| (((|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL) (((|Boolean|) $) NIL)) (|stronglyReduce| (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL)) (|squareFreePart| (((|List| (|Record| (|:| |val| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|:| |tower| $))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ (|OrderedVariableList| |#2|)) NIL)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|select| (($ (|Mapping| (|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Union| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) "failed") $ (|OrderedVariableList| |#2|)) NIL)) (|sample| (($) NIL T CONST)) (|roughUnitIdeal?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|roughSubIdeal?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|roughEqualIdeals?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|roughBase?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|rewriteSetWithReduction| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $ (|Mapping| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Mapping| (|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) NIL)) (|rewriteIdealWithRemainder| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL (|has| |#1| (|IntegralDomain|)))) (|rewriteIdealWithHeadRemainder| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL (|has| |#1| (|IntegralDomain|)))) (|retractIfCan| (((|Union| $ "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) NIL)) (|retract| (($ (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) NIL)) (|rest| (((|Union| $ "failed") $) NIL)) (|removeZero| (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|SetCategory|))))) (|remove| (($ (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|SetCategory|)))) (($ (|Mapping| (|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|:| |den| |#1|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|reduced?| (((|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $ (|Mapping| (|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) NIL)) (|reduceByQuasiMonic| (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL)) (|reduce| (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|Mapping| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $ (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|SetCategory|)))) (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|Mapping| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $ (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|Mapping| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $ (|Mapping| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Mapping| (|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) NIL)) (|quasiComponent| (((|Record| (|:| |close| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|:| |open| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))))) $) NIL)) (|purelyTranscendental?| (((|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL)) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL)) (|purelyAlgebraic?| (((|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL) (((|Boolean|) $) NIL)) (|parts| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|normalized?| (((|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL) (((|Boolean|) $) NIL)) (|mvar| (((|OrderedVariableList| |#2|) $) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|members| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|SetCategory|))))) (|map!| (($ (|Mapping| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL)) (|mainVariables| (((|List| (|OrderedVariableList| |#2|)) $) NIL)) (|mainVariable?| (((|Boolean|) (|OrderedVariableList| |#2|) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL)) (|lastSubResultantElseSplit| (((|Union| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|List| $)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL)) (|lastSubResultant| (((|List| (|Record| (|:| |val| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|:| |tower| $))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL)) (|last| (((|Union| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) "failed") $) NIL)) (|invertibleSet| (((|List| $) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL)) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL)) (|invertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL) (((|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL)) (|intersect| (((|List| $) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL) (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL) (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| $)) NIL) (((|List| $) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|List| $)) NIL)) (|internalAugment| (($ (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL) (($ (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL)) (|initials| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL)) (|initiallyReduced?| (((|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL) (((|Boolean|) $) NIL)) (|initiallyReduce| (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL)) (|infRittWu?| (((|Boolean|) $ $) NIL)) (|headRemainder| (((|Record| (|:| |num| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|:| |den| |#1|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|headReduced?| (((|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL) (((|Boolean|) $) NIL)) (|headReduce| (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|first| (((|Union| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) "failed") $) NIL)) (|find| (((|Union| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) "failed") (|Mapping| (|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL)) (|extendIfCan| (((|Union| $ "failed") $ (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) NIL)) (|extend| (($ $ (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) NIL) (((|List| $) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL) (((|List| $) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|List| $)) NIL) (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL) (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| $)) NIL)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) NIL (AND (|has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|Evalable| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|SetCategory|)))) (($ $ (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) NIL (AND (|has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|Evalable| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|SetCategory|)))) (($ $ (|Equation| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) NIL (AND (|has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|Evalable| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|SetCategory|)))) (($ $ (|List| (|Equation| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))))) NIL (AND (|has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|Evalable| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|degree| (((|NonNegativeInteger|) $) NIL)) (|count| (((|NonNegativeInteger|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|SetCategory|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) NIL)) (|collectUpper| (($ $ (|OrderedVariableList| |#2|)) NIL)) (|collectUnder| (($ $ (|OrderedVariableList| |#2|)) NIL)) (|collectQuasiMonic| (($ $) NIL)) (|collect| (($ $ (|OrderedVariableList| |#2|)) NIL)) (|coerce| (((|OutputForm|) $) NIL) (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL)) (|coHeight| (((|NonNegativeInteger|) $) NIL (|has| (|OrderedVariableList| |#2|) (|Finite|)))) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Mapping| (|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) NIL) (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Mapping| (|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Mapping| (|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) NIL)) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))))) NIL)) (|augment| (((|List| $) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL) (((|List| $) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) (|List| $)) NIL) (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL) (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| $)) NIL)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|algebraicVariables| (((|List| (|OrderedVariableList| |#2|)) $) NIL)) (|algebraicCoefficients?| (((|Boolean|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)) $) NIL)) (|algebraic?| (((|Boolean|) (|OrderedVariableList| |#2|) $) NIL)) (= (((|Boolean|) $ $) NIL)) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|RegularChain| |#1| |#2|) (|Join| (|RegularTriangularSetCategory| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (CATEGORY |domain| (SIGNATURE |zeroSetSplit| ((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|))))) (|GcdDomain|) (|List| (|Symbol|))) (T |RegularChain|)) │ │ │ +((|zeroSetSplit| (*1 *2 *3 *4 *4) (AND (|isDomain| *3 (|List| (|NewSparseMultivariatePolynomial| *5 (|OrderedVariableList| *6)))) (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|GcdDomain|)) (|ofType| *6 (|List| (|Symbol|))) (|isDomain| *2 (|List| (|RegularChain| *5 *6))) (|isDomain| *1 (|RegularChain| *5 *6))))) │ │ │ +(|Join| (|RegularTriangularSetCategory| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (CATEGORY |domain| (SIGNATURE |zeroSetSplit| ((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|))))) │ │ │ +((|dictionary| (($) 12) (($ (|List| |#2|)) NIL)) (|copy| (($ $) 14)) (|construct| (($ (|List| |#2|)) 10)) (|coerce| (((|OutputForm|) $) 21))) │ │ │ +(((|DictionaryOperations&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |dictionary| (|#1| (|List| |#2|))) (SIGNATURE |dictionary| (|#1|)) (SIGNATURE |construct| (|#1| (|List| |#2|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |copy| (|#1| |#1|))) (|DictionaryOperations| |#2|) (|SetCategory|)) (T |DictionaryOperations&|)) │ │ │ NIL │ │ │ -(((|CanonicalClosedAttribute|) (|Category|)) (T |CanonicalClosedAttribute|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |dictionary| (|#1| (|List| |#2|))) (SIGNATURE |dictionary| (|#1|)) (SIGNATURE |construct| (|#1| (|List| |#2|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |copy| (|#1| |#1|))) │ │ │ +((|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) 24)) (|showTheSymbolTable| (($) 28)) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) 21)) (|returnType!| (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) 40) (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) 41) (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) 42)) (|printTypes| (((|Void|) (|Symbol|)) 57)) (|printHeader| (((|Void|) (|Symbol|) $) 54) (((|Void|) (|Symbol|)) 55) (((|Void|)) 56)) (|newSubProgram| (((|Void|) (|Symbol|)) 36)) (|endSubProgram| (((|Symbol|)) 35)) (|empty| (($) 33)) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) 44) (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) 48) (((|FortranType|) (|Symbol|) (|FortranType|)) 45) (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) 49)) (|currentSubProgram| (((|Symbol|)) 34)) (|coerce| (((|OutputForm|) $) 27)) (|clearTheSymbolTable| (((|Void|)) 29) (((|Void|) (|Symbol|)) 32)) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) 23)) (|argumentList!| (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) 37) (((|Void|) (|Symbol|) (|List| (|Symbol|))) 38) (((|Void|) (|List| (|Symbol|))) 39))) │ │ │ +(((|TheSymbolTable|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |showTheSymbolTable| ($)) (SIGNATURE |clearTheSymbolTable| ((|Void|))) (SIGNATURE |clearTheSymbolTable| ((|Void|) (|Symbol|))) (SIGNATURE |declare!| ((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $)) (SIGNATURE |declare!| ((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $)) (SIGNATURE |declare!| ((|FortranType|) (|Symbol|) (|FortranType|))) (SIGNATURE |declare!| ((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|))) (SIGNATURE |newSubProgram| ((|Void|) (|Symbol|))) (SIGNATURE |currentSubProgram| ((|Symbol|))) (SIGNATURE |endSubProgram| ((|Symbol|))) (SIGNATURE |argumentList!| ((|Void|) (|Symbol|) (|List| (|Symbol|)) $)) (SIGNATURE |argumentList!| ((|Void|) (|Symbol|) (|List| (|Symbol|)))) (SIGNATURE |argumentList!| ((|Void|) (|List| (|Symbol|)))) (SIGNATURE |returnType!| ((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $)) (SIGNATURE |returnType!| ((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")))) (SIGNATURE |returnType!| ((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")))) (SIGNATURE |printHeader| ((|Void|) (|Symbol|) $)) (SIGNATURE |printHeader| ((|Void|) (|Symbol|))) (SIGNATURE |printHeader| ((|Void|))) (SIGNATURE |printTypes| ((|Void|) (|Symbol|))) (SIGNATURE |empty| ($)) (SIGNATURE |returnTypeOf| ((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $)) (SIGNATURE |argumentListOf| ((|List| (|Symbol|)) (|Symbol|) $)) (SIGNATURE |symbolTableOf| ((|SymbolTable|) (|Symbol|) $))))) (T |TheSymbolTable|)) │ │ │ +((|showTheSymbolTable| (*1 *1) (|isDomain| *1 (|TheSymbolTable|))) (|clearTheSymbolTable| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|)))) (|clearTheSymbolTable| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|)))) (|declare!| (*1 *2 *3 *2 *3 *1) (AND (|isDomain| *2 (|FortranType|)) (|isDomain| *3 (|Symbol|)) (|isDomain| *1 (|TheSymbolTable|)))) (|declare!| (*1 *2 *3 *2 *4 *1) (AND (|isDomain| *2 (|FortranType|)) (|isDomain| *3 (|List| (|Symbol|))) (|isDomain| *4 (|Symbol|)) (|isDomain| *1 (|TheSymbolTable|)))) (|declare!| (*1 *2 *3 *2) (AND (|isDomain| *2 (|FortranType|)) (|isDomain| *3 (|Symbol|)) (|isDomain| *1 (|TheSymbolTable|)))) (|declare!| (*1 *2 *3 *2 *3) (AND (|isDomain| *2 (|FortranType|)) (|isDomain| *3 (|Symbol|)) (|isDomain| *1 (|TheSymbolTable|)))) (|newSubProgram| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|)))) (|currentSubProgram| (*1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|TheSymbolTable|)))) (|endSubProgram| (*1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|TheSymbolTable|)))) (|argumentList!| (*1 *2 *3 *4 *1) (AND (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|)))) (|argumentList!| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|)))) (|argumentList!| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Symbol|))) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|)))) (|returnType!| (*1 *2 *3 *4 *1) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *4 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|)))) (|returnType!| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *4 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|)))) (|returnType!| (*1 *2 *3) (AND (|isDomain| *3 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|)))) (|printHeader| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|)))) (|printHeader| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|)))) (|printHeader| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|)))) (|printTypes| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TheSymbolTable|)))) (|empty| (*1 *1) (|isDomain| *1 (|TheSymbolTable|))) (|returnTypeOf| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|isDomain| *1 (|TheSymbolTable|)))) (|argumentListOf| (*1 *2 *3 *1) (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *1 (|TheSymbolTable|)) (|isDomain| *3 (|Symbol|)))) (|symbolTableOf| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|SymbolTable|)) (|isDomain| *1 (|TheSymbolTable|))))) │ │ │ +(|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |showTheSymbolTable| ($)) (SIGNATURE |clearTheSymbolTable| ((|Void|))) (SIGNATURE |clearTheSymbolTable| ((|Void|) (|Symbol|))) (SIGNATURE |declare!| ((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $)) (SIGNATURE |declare!| ((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $)) (SIGNATURE |declare!| ((|FortranType|) (|Symbol|) (|FortranType|))) (SIGNATURE |declare!| ((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|))) (SIGNATURE |newSubProgram| ((|Void|) (|Symbol|))) (SIGNATURE |currentSubProgram| ((|Symbol|))) (SIGNATURE |endSubProgram| ((|Symbol|))) (SIGNATURE |argumentList!| ((|Void|) (|Symbol|) (|List| (|Symbol|)) $)) (SIGNATURE |argumentList!| ((|Void|) (|Symbol|) (|List| (|Symbol|)))) (SIGNATURE |argumentList!| ((|Void|) (|List| (|Symbol|)))) (SIGNATURE |returnType!| ((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $)) (SIGNATURE |returnType!| ((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")))) (SIGNATURE |returnType!| ((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")))) (SIGNATURE |printHeader| ((|Void|) (|Symbol|) $)) (SIGNATURE |printHeader| ((|Void|) (|Symbol|))) (SIGNATURE |printHeader| ((|Void|))) (SIGNATURE |printTypes| ((|Void|) (|Symbol|))) (SIGNATURE |empty| ($)) (SIGNATURE |returnTypeOf| ((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $)) (SIGNATURE |argumentListOf| ((|List| (|Symbol|)) (|Symbol|) $)) (SIGNATURE |symbolTableOf| ((|SymbolTable|) (|Symbol|) $)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|transpose| (($ $) NIL)) (|trace| ((|#2| $) NIL)) (|symmetric?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareMatrix| (($ (|Matrix| |#2|)) 45)) (|square?| (((|Boolean|) $) NIL)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|scalarMatrix| (($ |#2|) 9)) (|sample| (($) NIL T CONST)) (|rowEchelon| (($ $) 58 (|has| |#2| (|EuclideanDomain|)))) (|row| (((|DirectProduct| |#1| |#2|) $ (|Integer|)) 31)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (|has| |#2| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#2| "failed") $) NIL)) (|retract| (((|Integer|) $) NIL (|has| |#2| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) NIL (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#2| $) NIL)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| |#2|) (|Matrix| $)) NIL)) (|recip| (((|Union| $ "failed") $) 72)) (|rank| (((|NonNegativeInteger|) $) 60 (|has| |#2| (|IntegralDomain|)))) (|qelt| ((|#2| $ (|Integer|) (|Integer|)) NIL)) (|parts| (((|List| |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|one?| (((|Boolean|) $) NIL)) (|nullity| (((|NonNegativeInteger|) $) 62 (|has| |#2| (|IntegralDomain|)))) (|nullSpace| (((|List| (|DirectProduct| |#1| |#2|)) $) 66 (|has| |#2| (|IntegralDomain|)))) (|nrows| (((|NonNegativeInteger|) $) NIL)) (|ncols| (((|NonNegativeInteger|) $) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minordet| ((|#2| $) 56 (|has| |#2| (ATTRIBUTE (|commutative| "*"))))) (|minRowIndex| (((|Integer|) $) NIL)) (|minColIndex| (((|Integer|) $) NIL)) (|members| (((|List| |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#2| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|))))) (|maxRowIndex| (((|Integer|) $) NIL)) (|maxColIndex| (((|Integer|) $) NIL)) (|matrix| (($ (|List| (|List| |#2|))) 26)) (|map!| (($ (|Mapping| |#2| |#2|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) NIL) (($ (|Mapping| |#2| |#2|) $) NIL)) (|listOfLists| (((|List| (|List| |#2|)) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL)) (|inverse| (((|Union| $ "failed") $) 69 (|has| |#2| (|Field|)))) (|hash| (((|SingleInteger|) $) NIL)) (|exquo| (((|Union| $ "failed") $ |#2|) NIL (|has| |#2| (|IntegralDomain|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#2|))) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|Equation| |#2|)) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ |#2| |#2|) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|List| |#2|) (|List| |#2|)) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#2| $ (|Integer|) (|Integer|) |#2|) NIL) ((|#2| $ (|Integer|) (|Integer|)) NIL)) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) NIL) (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| |#2| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| |#2| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| |#2| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|)) NIL (|has| |#2| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#2| (|DifferentialRing|))) (($ $) NIL (|has| |#2| (|DifferentialRing|)))) (|diagonalProduct| ((|#2| $) NIL)) (|diagonalMatrix| (($ (|List| |#2|)) 40)) (|diagonal?| (((|Boolean|) $) NIL)) (|diagonal| (((|DirectProduct| |#1| |#2|) $) NIL)) (|determinant| ((|#2| $) 54 (|has| |#2| (ATTRIBUTE (|commutative| "*"))))) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#2| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|))))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) 81 (|has| |#2| (|ConvertibleTo| (|InputForm|))))) (|column| (((|DirectProduct| |#1| |#2|) $ (|Integer|)) 33)) (|coerce| (((|OutputForm|) $) 36) (($ (|Integer|)) NIL) (($ (|Fraction| (|Integer|))) NIL (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) (($ |#2|) NIL) (((|Matrix| |#2|) $) 42)) (|characteristic| (((|NonNegativeInteger|)) 17)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|antisymmetric?| (((|Boolean|) $) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 11 T CONST)) (|One| (($) 14 T CONST)) (D (($ $ (|Mapping| |#2| |#2|)) NIL) (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| |#2| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| |#2| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| |#2| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|)) NIL (|has| |#2| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#2| (|DifferentialRing|))) (($ $) NIL (|has| |#2| (|DifferentialRing|)))) (= (((|Boolean|) $ $) NIL)) (/ (($ $ |#2|) NIL (|has| |#2| (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) 52) (($ $ (|Integer|)) 71 (|has| |#2| (|Field|)))) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((|DirectProduct| |#1| |#2|) $ (|DirectProduct| |#1| |#2|)) 48) (((|DirectProduct| |#1| |#2|) (|DirectProduct| |#1| |#2|) $) 50)) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|SquareMatrix| |#1| |#2|) (|Join| (|SquareMatrixCategory| |#1| |#2| (|DirectProduct| |#1| |#2|) (|DirectProduct| |#1| |#2|)) (|CoercibleTo| (|Matrix| |#2|)) (CATEGORY |domain| (SIGNATURE |transpose| ($ $)) (SIGNATURE |squareMatrix| ($ (|Matrix| |#2|))) (SIGNATURE |coerce| ((|Matrix| |#2|) $)) (IF (|has| |#2| (ATTRIBUTE (|commutative| "*"))) (ATTRIBUTE |central|) |noBranch|) (IF (|has| |#2| (ATTRIBUTE (|commutative| "*"))) (IF (|has| |#2| (ATTRIBUTE |unitsKnown|)) (ATTRIBUTE |unitsKnown|) |noBranch|) |noBranch|) (IF (|has| |#2| (|ConvertibleTo| (|InputForm|))) (ATTRIBUTE (|ConvertibleTo| (|InputForm|))) |noBranch|))) (|NonNegativeInteger|) (|Ring|)) (T |SquareMatrix|)) │ │ │ +((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Matrix| *4)) (|isDomain| *1 (|SquareMatrix| *3 *4)) (|ofType| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Ring|)))) (|transpose| (*1 *1 *1) (AND (|isDomain| *1 (|SquareMatrix| *2 *3)) (|ofType| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Ring|)))) (|squareMatrix| (*1 *1 *2) (AND (|isDomain| *2 (|Matrix| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|SquareMatrix| *3 *4)) (|ofType| *3 (|NonNegativeInteger|))))) │ │ │ +(|Join| (|SquareMatrixCategory| |#1| |#2| (|DirectProduct| |#1| |#2|) (|DirectProduct| |#1| |#2|)) (|CoercibleTo| (|Matrix| |#2|)) (CATEGORY |domain| (SIGNATURE |transpose| ($ $)) (SIGNATURE |squareMatrix| ($ (|Matrix| |#2|))) (SIGNATURE |coerce| ((|Matrix| |#2|) $)) (IF (|has| |#2| (ATTRIBUTE (|commutative| "*"))) (ATTRIBUTE |central|) |noBranch|) (IF (|has| |#2| (ATTRIBUTE (|commutative| "*"))) (IF (|has| |#2| (ATTRIBUTE |unitsKnown|)) (ATTRIBUTE |unitsKnown|) |noBranch|) |noBranch|) (IF (|has| |#2| (|ConvertibleTo| (|InputForm|))) (ATTRIBUTE (|ConvertibleTo| (|InputForm|))) |noBranch|))) │ │ │ +((|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) 26)) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) 32 (|has| |#1| (|CharacteristicZero|)))) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) 18)) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) 30 (|has| |#1| (|CharacteristicZero|)))) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) 20))) │ │ │ +(((|IntegrationResultRFToFunction| |#1|) (CATEGORY |package| (SIGNATURE |split| ((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |expand| ((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |complexExpand| ((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|))))) (IF (|has| |#1| (|CharacteristicZero|)) (PROGN (SIGNATURE |integrate| ((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|))) (SIGNATURE |complexIntegrate| ((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)))) |noBranch|)) (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|LinearlyExplicitRingOver| (|Integer|)))) (T |IntegrationResultRFToFunction|)) │ │ │ +((|complexIntegrate| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5))) (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|CharacteristicZero|)) (|ofCategory| *5 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Expression| *5)) (|isDomain| *1 (|IntegrationResultRFToFunction| *5)))) (|integrate| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5))) (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|CharacteristicZero|)) (|ofCategory| *5 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Union| (|Expression| *5) (|List| (|Expression| *5)))) (|isDomain| *1 (|IntegrationResultRFToFunction| *5)))) (|complexExpand| (*1 *2 *3) (AND (|isDomain| *3 (|IntegrationResult| (|Fraction| (|Polynomial| *4)))) (|ofCategory| *4 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Expression| *4)) (|isDomain| *1 (|IntegrationResultRFToFunction| *4)))) (|expand| (*1 *2 *3) (AND (|isDomain| *3 (|IntegrationResult| (|Fraction| (|Polynomial| *4)))) (|ofCategory| *4 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|List| (|Expression| *4))) (|isDomain| *1 (|IntegrationResultRFToFunction| *4)))) (|split| (*1 *2 *2) (AND (|isDomain| *2 (|IntegrationResult| (|Fraction| (|Polynomial| *3)))) (|ofCategory| *3 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *1 (|IntegrationResultRFToFunction| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |split| ((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |expand| ((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |complexExpand| ((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|))))) (IF (|has| |#1| (|CharacteristicZero|)) (PROGN (SIGNATURE |integrate| ((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|))) (SIGNATURE |complexIntegrate| ((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)))) |noBranch|)) │ │ │ +((|userOrdered?| (((|Boolean|)) 14)) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) 18) (((|Void|) (|List| |#1|)) 19)) (|more?| (((|Boolean|) |#1| |#1|) 30 (|has| |#1| (|OrderedSet|)))) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) 26) (((|Union| (|Boolean|) "failed") |#1| |#1|) 24)) (|largest| ((|#1| (|List| |#1|)) 31 (|has| |#1| (|OrderedSet|))) ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) 27)) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) 16))) │ │ │ +(((|UserDefinedPartialOrdering| |#1|) (CATEGORY |package| (SIGNATURE |setOrder| ((|Void|) (|List| |#1|))) (SIGNATURE |setOrder| ((|Void|) (|List| |#1|) (|List| |#1|))) (SIGNATURE |getOrder| ((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|))))) (SIGNATURE |less?| ((|Union| (|Boolean|) "failed") |#1| |#1|)) (SIGNATURE |less?| ((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|))) (SIGNATURE |largest| (|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|))) (SIGNATURE |userOrdered?| ((|Boolean|))) (IF (|has| |#1| (|OrderedSet|)) (PROGN (SIGNATURE |largest| (|#1| (|List| |#1|))) (SIGNATURE |more?| ((|Boolean|) |#1| |#1|))) |noBranch|)) (|SetCategory|)) (T |UserDefinedPartialOrdering|)) │ │ │ +((|more?| (*1 *2 *3 *3) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|UserDefinedPartialOrdering| *3)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *3 (|SetCategory|)))) (|largest| (*1 *2 *3) (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|OrderedSet|)) (|isDomain| *1 (|UserDefinedPartialOrdering| *2)))) (|userOrdered?| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|UserDefinedPartialOrdering| *3)) (|ofCategory| *3 (|SetCategory|)))) (|largest| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *2)) (|isDomain| *4 (|Mapping| (|Boolean|) *2 *2)) (|isDomain| *1 (|UserDefinedPartialOrdering| *2)) (|ofCategory| *2 (|SetCategory|)))) (|less?| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|Mapping| (|Boolean|) *3 *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|UserDefinedPartialOrdering| *3)))) (|less?| (*1 *2 *3 *3) (|partial| AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|UserDefinedPartialOrdering| *3)) (|ofCategory| *3 (|SetCategory|)))) (|getOrder| (*1 *2) (AND (|isDomain| *2 (|Record| (|:| |low| (|List| *3)) (|:| |high| (|List| *3)))) (|isDomain| *1 (|UserDefinedPartialOrdering| *3)) (|ofCategory| *3 (|SetCategory|)))) (|setOrder| (*1 *2 *3 *3) (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|UserDefinedPartialOrdering| *4)))) (|setOrder| (*1 *2 *3) (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|UserDefinedPartialOrdering| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |setOrder| ((|Void|) (|List| |#1|))) (SIGNATURE |setOrder| ((|Void|) (|List| |#1|) (|List| |#1|))) (SIGNATURE |getOrder| ((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|))))) (SIGNATURE |less?| ((|Union| (|Boolean|) "failed") |#1| |#1|)) (SIGNATURE |less?| ((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|))) (SIGNATURE |largest| (|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|))) (SIGNATURE |userOrdered?| ((|Boolean|))) (IF (|has| |#1| (|OrderedSet|)) (PROGN (SIGNATURE |largest| (|#1| (|List| |#1|))) (SIGNATURE |more?| ((|Boolean|) |#1| |#1|))) |noBranch|)) │ │ │ +((|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) 159) (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) 43))) │ │ │ +(((|ElementaryFunctionLODESolver| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |solve| ((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|))) (SIGNATURE |solve| ((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)))) (|Join| (|OrderedSet|) (|EuclideanDomain|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|CharacteristicZero|)) (|Join| (|AlgebraicallyClosedFunctionSpace| |#1|) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|)) (|LinearOrdinaryDifferentialOperatorCategory| |#2|)) (T |ElementaryFunctionLODESolver|)) │ │ │ +((|solve| (*1 *2 *3 *2 *4 *2 *5) (|partial| AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|List| *2)) (|ofCategory| *2 (|Join| (|AlgebraicallyClosedFunctionSpace| *6) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|))) (|ofCategory| *6 (|Join| (|OrderedSet|) (|EuclideanDomain|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|CharacteristicZero|))) (|isDomain| *1 (|ElementaryFunctionLODESolver| *6 *2 *3)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *2)))) (|solve| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *5 (|Symbol|)) (|ofCategory| *6 (|Join| (|OrderedSet|) (|EuclideanDomain|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|CharacteristicZero|))) (|ofCategory| *4 (|Join| (|AlgebraicallyClosedFunctionSpace| *6) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|))) (|isDomain| *2 (|Record| (|:| |particular| *4) (|:| |basis| (|List| *4)))) (|isDomain| *1 (|ElementaryFunctionLODESolver| *6 *4 *3)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |solve| ((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|))) (SIGNATURE |solve| ((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)))) │ │ │ +((|factor| (((|Factored| |#5|) |#5|) 24))) │ │ │ +(((|GeneralizedMultivariateFactorize| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#5|) |#5|))) (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $)) (SIGNATURE |variable| ((|Union| $ "failed") (|Symbol|))))) (|OrderedAbelianMonoidSup|) (|IntegralDomain|) (|IntegralDomain|) (|PolynomialCategory| |#4| |#2| |#1|)) (T |GeneralizedMultivariateFactorize|)) │ │ │ +((|factor| (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $)) (SIGNATURE |variable| ((|Union| $ "failed") (|Symbol|)))))) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|IntegralDomain|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|GeneralizedMultivariateFactorize| *4 *5 *6 *7 *3)) (|ofCategory| *6 (|IntegralDomain|)) (|ofCategory| *3 (|PolynomialCategory| *7 *5 *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#5|) |#5|))) │ │ │ +((|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) 25))) │ │ │ +(((|PatternMatchQuotientFieldCategory| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)))) (|SetCategory|) (|Join| (|IntegralDomain|) (|PatternMatchable| |#1|) (|ConvertibleTo| (|Pattern| |#1|))) (|QuotientFieldCategory| |#2|)) (T |PatternMatchQuotientFieldCategory|)) │ │ │ +((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchResult| *5 *3)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *3 (|QuotientFieldCategory| *6)) (|ofCategory| *6 (|Join| (|IntegralDomain|) (|PatternMatchable| *5) (|ConvertibleTo| *4))) (|isDomain| *4 (|Pattern| *5)) (|isDomain| *1 (|PatternMatchQuotientFieldCategory| *5 *6 *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|varList| (((|List| |#1|) $) 82)) (|trunc| (($ $ (|NonNegativeInteger|)) 90)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) 48)) (|retractIfCan| (((|Union| (|LyndonWord| |#1|) "failed") $) NIL)) (|retract| (((|LyndonWord| |#1|) $) NIL)) (|reductum| (($ $) 89)) (|numberOfMonomials| (((|NonNegativeInteger|) $) NIL)) (|monomials| (((|List| $) $) NIL)) (|monomial?| (((|Boolean|) $) NIL)) (|monom| (($ (|LyndonWord| |#1|) |#2|) 68)) (|mirror| (($ $) 86)) (|map| (($ (|Mapping| |#2| |#2|) $) NIL)) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) 47)) (|listOfTerms| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) NIL)) (|leadingTerm| (((|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|)) $) NIL)) (|leadingMonomial| (((|LyndonWord| |#1|) $) NIL)) (|leadingCoefficient| ((|#2| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|eval| (($ $ |#1| $) 30) (($ $ (|List| |#1|) (|List| $)) 32)) (|degree| (((|NonNegativeInteger|) $) 88)) (|construct| (($ $ $) 20) (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) 77) (($ (|LyndonWord| |#1|) $) 75) (($ $ (|LyndonWord| |#1|)) 76)) (|coerce| (((|OutputForm|) $) NIL) (($ |#1|) 74) (((|XDistributedPolynomial| |#1| |#2|) $) 58) (((|XRecursivePolynomial| |#1| |#2|) $) 41) (($ (|LyndonWord| |#1|)) 25)) (|coefficients| (((|List| |#2|) $) NIL)) (|coefficient| ((|#2| $ (|LyndonWord| |#1|)) NIL)) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) 43)) (|Zero| (($) 23 T CONST)) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) 60)) (|LiePoly| (($ (|LyndonWord| |#1|)) 14)) (= (((|Boolean|) $ $) 44)) (/ (($ $ |#2|) NIL (|has| |#2| (|Field|)))) (- (($ $) 66) (($ $ $) NIL)) (+ (($ $ $) 29)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (|LyndonWord| |#1|)) NIL))) │ │ │ +(((|LiePolynomial| |#1| |#2|) (|Join| (|FreeLieAlgebra| |#1| |#2|) (|FreeModuleCat| |#2| (|LyndonWord| |#1|)) (CATEGORY |domain| (SIGNATURE |LiePolyIfCan| ((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|))) (SIGNATURE |construct| ($ (|LyndonWord| |#1|) (|LyndonWord| |#1|))) (SIGNATURE |construct| ($ (|LyndonWord| |#1|) $)) (SIGNATURE |construct| ($ $ (|LyndonWord| |#1|))))) (|OrderedSet|) (|CommutativeRing|)) (T |LiePolynomial|)) │ │ │ +((|LiePolyIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|XDistributedPolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *1 (|LiePolynomial| *3 *4)))) (|construct| (*1 *1 *2 *2) (AND (|isDomain| *2 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|LiePolynomial| *3 *4)) (|ofCategory| *4 (|CommutativeRing|)))) (|construct| (*1 *1 *2 *1) (AND (|isDomain| *2 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|LiePolynomial| *3 *4)) (|ofCategory| *4 (|CommutativeRing|)))) (|construct| (*1 *1 *1 *2) (AND (|isDomain| *2 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|LiePolynomial| *3 *4)) (|ofCategory| *4 (|CommutativeRing|))))) │ │ │ +(|Join| (|FreeLieAlgebra| |#1| |#2|) (|FreeModuleCat| |#2| (|LyndonWord| |#1|)) (CATEGORY |domain| (SIGNATURE |LiePolyIfCan| ((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|))) (SIGNATURE |construct| ($ (|LyndonWord| |#1|) (|LyndonWord| |#1|))) (SIGNATURE |construct| ($ (|LyndonWord| |#1|) $)) (SIGNATURE |construct| ($ $ (|LyndonWord| |#1|))))) │ │ │ +((|upDateBranches| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| |#4|) (|List| |#5|) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) (|NonNegativeInteger|)) 93)) (|transcendentalDecompose| (((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5|) 54) (((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5| (|NonNegativeInteger|)) 53)) (|printInfo| (((|Void|) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|NonNegativeInteger|)) 85)) (|numberOfVariables| (((|NonNegativeInteger|) (|List| |#4|) (|List| |#5|)) 27)) (|internalDecompose| (((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5|) 56) (((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5| (|NonNegativeInteger|)) 55) (((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5| (|NonNegativeInteger|) (|Boolean|)) 57)) (|decompose| (((|List| |#5|) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) 76) (((|List| |#5|) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) 77)) (|convert| (((|String|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) 80)) (|algebraicDecompose| (((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5|) 52)) (|KrullNumber| (((|NonNegativeInteger|) (|List| |#4|) (|List| |#5|)) 19))) │ │ │ +(((|SquareFreeRegularSetDecompositionPackage| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |KrullNumber| ((|NonNegativeInteger|) (|List| |#4|) (|List| |#5|))) (SIGNATURE |numberOfVariables| ((|NonNegativeInteger|) (|List| |#4|) (|List| |#5|))) (SIGNATURE |algebraicDecompose| ((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5|)) (SIGNATURE |transcendentalDecompose| ((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5| (|NonNegativeInteger|))) (SIGNATURE |transcendentalDecompose| ((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5|)) (SIGNATURE |internalDecompose| ((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5| (|NonNegativeInteger|) (|Boolean|))) (SIGNATURE |internalDecompose| ((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5| (|NonNegativeInteger|))) (SIGNATURE |internalDecompose| ((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5|)) (SIGNATURE |decompose| ((|List| |#5|) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|))) (SIGNATURE |decompose| ((|List| |#5|) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|))) (SIGNATURE |upDateBranches| ((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| |#4|) (|List| |#5|) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) (|NonNegativeInteger|))) (SIGNATURE |convert| ((|String|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) (SIGNATURE |printInfo| ((|Void|) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|NonNegativeInteger|)))) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|) (|SquareFreeRegularTriangularSetCategory| |#1| |#2| |#3| |#4|)) (T |SquareFreeRegularSetDecompositionPackage|)) │ │ │ +((|printInfo| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Record| (|:| |val| (|List| *8)) (|:| |tower| *9)))) (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *9 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *8)) (|ofCategory| *5 (|GcdDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *8 *9)))) (|convert| (*1 *2 *3) (AND (|isDomain| *3 (|Record| (|:| |val| (|List| *7)) (|:| |tower| *8))) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *8 (|SquareFreeRegularTriangularSetCategory| *4 *5 *6 *7)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|String|)) (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *4 *5 *6 *7 *8)))) (|upDateBranches| (*1 *2 *3 *4 *2 *5 *6) (AND (|isDomain| *5 (|Record| (|:| |done| (|List| *11)) (|:| |todo| (|List| (|Record| (|:| |val| *3) (|:| |tower| *11)))))) (|isDomain| *6 (|NonNegativeInteger|)) (|isDomain| *2 (|List| (|Record| (|:| |val| (|List| *10)) (|:| |tower| *11)))) (|isDomain| *3 (|List| *10)) (|isDomain| *4 (|List| *11)) (|ofCategory| *10 (|RecursivePolynomialCategory| *7 *8 *9)) (|ofCategory| *11 (|SquareFreeRegularTriangularSetCategory| *7 *8 *9 *10)) (|ofCategory| *7 (|GcdDomain|)) (|ofCategory| *8 (|OrderedAbelianMonoidSup|)) (|ofCategory| *9 (|OrderedSet|)) (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *7 *8 *9 *10 *11)))) (|decompose| (*1 *2 *3 *2 *4 *4 *4 *4 *4) (AND (|isDomain| *2 (|List| *9)) (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|Boolean|)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *9 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *8)) (|ofCategory| *5 (|GcdDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *8 *9)))) (|decompose| (*1 *2 *3 *2 *4 *4) (AND (|isDomain| *2 (|List| *9)) (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|Boolean|)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *9 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *8)) (|ofCategory| *5 (|GcdDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *8 *9)))) (|internalDecompose| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|GcdDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7)) (|isDomain| *2 (|Record| (|:| |done| (|List| *4)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4)))))) (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *3 *4)) (|ofCategory| *4 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *3)))) (|internalDecompose| (*1 *2 *3 *4 *5) (AND (|isDomain| *5 (|NonNegativeInteger|)) (|ofCategory| *6 (|GcdDomain|)) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|ofCategory| *8 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *6 *7 *8)) (|isDomain| *2 (|Record| (|:| |done| (|List| *4)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4)))))) (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *6 *7 *8 *3 *4)) (|ofCategory| *4 (|SquareFreeRegularTriangularSetCategory| *6 *7 *8 *3)))) (|internalDecompose| (*1 *2 *3 *4 *5 *6) (AND (|isDomain| *5 (|NonNegativeInteger|)) (|isDomain| *6 (|Boolean|)) (|ofCategory| *7 (|GcdDomain|)) (|ofCategory| *8 (|OrderedAbelianMonoidSup|)) (|ofCategory| *9 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *7 *8 *9)) (|isDomain| *2 (|Record| (|:| |done| (|List| *4)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4)))))) (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *7 *8 *9 *3 *4)) (|ofCategory| *4 (|SquareFreeRegularTriangularSetCategory| *7 *8 *9 *3)))) (|transcendentalDecompose| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|GcdDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7)) (|isDomain| *2 (|Record| (|:| |done| (|List| *4)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4)))))) (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *3 *4)) (|ofCategory| *4 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *3)))) (|transcendentalDecompose| (*1 *2 *3 *4 *5) (AND (|isDomain| *5 (|NonNegativeInteger|)) (|ofCategory| *6 (|GcdDomain|)) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|ofCategory| *8 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *6 *7 *8)) (|isDomain| *2 (|Record| (|:| |done| (|List| *4)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4)))))) (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *6 *7 *8 *3 *4)) (|ofCategory| *4 (|SquareFreeRegularTriangularSetCategory| *6 *7 *8 *3)))) (|algebraicDecompose| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|GcdDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7)) (|isDomain| *2 (|Record| (|:| |done| (|List| *4)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| *3)) (|:| |tower| *4)))))) (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *3 *4)) (|ofCategory| *4 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *3)))) (|numberOfVariables| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|List| *9)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *9 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *8)) (|ofCategory| *5 (|GcdDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *8 *9)))) (|KrullNumber| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|List| *9)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *9 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *8)) (|ofCategory| *5 (|GcdDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|SquareFreeRegularSetDecompositionPackage| *5 *6 *7 *8 *9))))) │ │ │ +(CATEGORY |package| (SIGNATURE |KrullNumber| ((|NonNegativeInteger|) (|List| |#4|) (|List| |#5|))) (SIGNATURE |numberOfVariables| ((|NonNegativeInteger|) (|List| |#4|) (|List| |#5|))) (SIGNATURE |algebraicDecompose| ((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5|)) (SIGNATURE |transcendentalDecompose| ((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5| (|NonNegativeInteger|))) (SIGNATURE |transcendentalDecompose| ((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5|)) (SIGNATURE |internalDecompose| ((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5| (|NonNegativeInteger|) (|Boolean|))) (SIGNATURE |internalDecompose| ((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5| (|NonNegativeInteger|))) (SIGNATURE |internalDecompose| ((|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) |#4| |#5|)) (SIGNATURE |decompose| ((|List| |#5|) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|))) (SIGNATURE |decompose| ((|List| |#5|) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|))) (SIGNATURE |upDateBranches| ((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| |#4|) (|List| |#5|) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|Record| (|:| |done| (|List| |#5|)) (|:| |todo| (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))))) (|NonNegativeInteger|))) (SIGNATURE |convert| ((|String|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) (SIGNATURE |printInfo| ((|Void|) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|NonNegativeInteger|)))) │ │ │ +((|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) 47) (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) 45)) (|rank| (((|NonNegativeInteger|) |#4| |#3|) 17)) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) 20)) (|hasSolution?| (((|Boolean|) |#4| |#3|) 13))) │ │ │ +(((|LinearSystemMatrixPackage| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |solve| ((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|)) (SIGNATURE |solve| ((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|))) (SIGNATURE |particularSolution| ((|Union| |#3| "failed") |#4| |#3|)) (SIGNATURE |hasSolution?| ((|Boolean|) |#4| |#3|)) (SIGNATURE |rank| ((|NonNegativeInteger|) |#4| |#3|))) (|Field|) (|Join| (|FiniteLinearAggregate| |#1|) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|))) (|Join| (|FiniteLinearAggregate| |#1|) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|))) (|MatrixCategory| |#1| |#2| |#3|)) (T |LinearSystemMatrixPackage|)) │ │ │ +((|rank| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|Join| (|FiniteLinearAggregate| *5) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|)))) (|ofCategory| *4 (|Join| (|FiniteLinearAggregate| *5) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|)))) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|LinearSystemMatrixPackage| *5 *6 *4 *3)) (|ofCategory| *3 (|MatrixCategory| *5 *6 *4)))) (|hasSolution?| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|Join| (|FiniteLinearAggregate| *5) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|)))) (|ofCategory| *4 (|Join| (|FiniteLinearAggregate| *5) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|)))) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|LinearSystemMatrixPackage| *5 *6 *4 *3)) (|ofCategory| *3 (|MatrixCategory| *5 *6 *4)))) (|particularSolution| (*1 *2 *3 *2) (|partial| AND (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|Join| (|FiniteLinearAggregate| *4) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|)))) (|ofCategory| *2 (|Join| (|FiniteLinearAggregate| *4) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|)))) (|isDomain| *1 (|LinearSystemMatrixPackage| *4 *5 *2 *3)) (|ofCategory| *3 (|MatrixCategory| *4 *5 *2)))) (|solve| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|Join| (|FiniteLinearAggregate| *5) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|)))) (|ofCategory| *7 (|Join| (|FiniteLinearAggregate| *5) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|)))) (|isDomain| *2 (|List| (|Record| (|:| |particular| (|Union| *7 "failed")) (|:| |basis| (|List| *7))))) (|isDomain| *1 (|LinearSystemMatrixPackage| *5 *6 *7 *3)) (|isDomain| *4 (|List| *7)) (|ofCategory| *3 (|MatrixCategory| *5 *6 *7)))) (|solve| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|Join| (|FiniteLinearAggregate| *5) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|)))) (|ofCategory| *4 (|Join| (|FiniteLinearAggregate| *5) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|)))) (|isDomain| *2 (|Record| (|:| |particular| (|Union| *4 "failed")) (|:| |basis| (|List| *4)))) (|isDomain| *1 (|LinearSystemMatrixPackage| *5 *6 *4 *3)) (|ofCategory| *3 (|MatrixCategory| *5 *6 *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |solve| ((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|)) (SIGNATURE |solve| ((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|))) (SIGNATURE |particularSolution| ((|Union| |#3| "failed") |#4| |#3|)) (SIGNATURE |hasSolution?| ((|Boolean|) |#4| |#3|)) (SIGNATURE |rank| ((|NonNegativeInteger|) |#4| |#3|))) │ │ │ +((|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) 26))) │ │ │ +(((|DiscreteLogarithmPackage| |#1|) (CATEGORY |package| (SIGNATURE |shanksDiscLogAlgorithm| ((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)))) (|Join| (|Monoid|) (|Finite|) (CATEGORY |package| (SIGNATURE ** (|#1| |#1| (|Integer|)))))) (T |DiscreteLogarithmPackage|)) │ │ │ +((|shanksDiscLogAlgorithm| (*1 *2 *3 *3 *2) (|partial| AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Join| (|Monoid|) (|Finite|) (CATEGORY |package| (SIGNATURE ** (*3 *3 (|Integer|)))))) (|isDomain| *1 (|DiscreteLogarithmPackage| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |shanksDiscLogAlgorithm| ((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)))) │ │ │ +((|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) 11) (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) 26))) │ │ │ +(((|IntegrationResultFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|))) (SIGNATURE |map| ((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed"))) (SIGNATURE |map| ((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed"))) (SIGNATURE |map| ((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (|Field|) (|Field|)) (T |IntegrationResultFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Union| (|Record| (|:| |mainpart| *5) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|Field|)) (|isDomain| *2 (|Record| (|:| |mainpart| *6) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| *6) (|:| |logand| *6)))))) (|isDomain| *1 (|IntegrationResultFunctions2| *5 *6)))) (|map| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Mapping| *2 *5)) (|isDomain| *4 (|Union| *5 "failed")) (|ofCategory| *5 (|Field|)) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|IntegrationResultFunctions2| *5 *2)))) (|map| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Union| (|Record| (|:| |ratpart| *5) (|:| |coeff| *5)) "failed")) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|Field|)) (|isDomain| *2 (|Record| (|:| |ratpart| *6) (|:| |coeff| *6))) (|isDomain| *1 (|IntegrationResultFunctions2| *5 *6)))) (|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|IntegrationResult| *5)) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|Field|)) (|isDomain| *2 (|IntegrationResult| *6)) (|isDomain| *1 (|IntegrationResultFunctions2| *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| ((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|))) (SIGNATURE |map| ((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed"))) (SIGNATURE |map| ((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed"))) (SIGNATURE |map| ((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) │ │ │ +((|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) 35)) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) 19)) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) 24))) │ │ │ +(((|FunctionSpaceComplexIntegration| |#1| |#2|) (CATEGORY |package| (SIGNATURE |internalIntegrate| ((|IntegrationResult| |#2|) |#2| (|Symbol|))) (SIGNATURE |internalIntegrate0| ((|IntegrationResult| |#2|) |#2| (|Symbol|))) (SIGNATURE |complexIntegrate| (|#2| |#2| (|Symbol|)))) (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|))) (|Join| (|TranscendentalFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| |#1|))) (T |FunctionSpaceComplexIntegration|)) │ │ │ +((|complexIntegrate| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *1 (|FunctionSpaceComplexIntegration| *4 *2)) (|ofCategory| *2 (|Join| (|TranscendentalFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *4))))) (|internalIntegrate0| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|IntegrationResult| *3)) (|isDomain| *1 (|FunctionSpaceComplexIntegration| *5 *3)) (|ofCategory| *3 (|Join| (|TranscendentalFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *5))))) (|internalIntegrate| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|IntegrationResult| *3)) (|isDomain| *1 (|FunctionSpaceComplexIntegration| *5 *3)) (|ofCategory| *3 (|Join| (|TranscendentalFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *5)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |internalIntegrate| ((|IntegrationResult| |#2|) |#2| (|Symbol|))) (SIGNATURE |internalIntegrate0| ((|IntegrationResult| |#2|) |#2| (|Symbol|))) (SIGNATURE |complexIntegrate| (|#2| |#2| (|Symbol|)))) │ │ │ +((|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) 17 (|has| |#3| (|PatternMatchable| |#1|))) (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) 16))) │ │ │ +(((|PatternMatchPolynomialCategory| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)))) (IF (|has| |#3| (|PatternMatchable| |#1|)) (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) |noBranch|)) (|SetCategory|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|Join| (|Ring|) (|OrderedSet|) (|PatternMatchable| |#1|)) (|Join| (|PolynomialCategory| |#4| |#2| |#3|) (|ConvertibleTo| (|Pattern| |#1|)))) (T |PatternMatchPolynomialCategory|)) │ │ │ +((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchResult| *5 *3)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *3 (|Join| (|PolynomialCategory| *8 *6 *7) (|ConvertibleTo| *4))) (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *7 (|PatternMatchable| *5)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *8 (|Join| (|Ring|) (|OrderedSet|) (|PatternMatchable| *5))) (|isDomain| *1 (|PatternMatchPolynomialCategory| *5 *6 *7 *8 *3)))) (|patternMatch| (*1 *2 *3 *4 *2 *5) (AND (|isDomain| *5 (|Mapping| (|PatternMatchResult| *6 *3) *8 (|Pattern| *6) (|PatternMatchResult| *6 *3))) (|ofCategory| *8 (|OrderedSet|)) (|isDomain| *2 (|PatternMatchResult| *6 *3)) (|isDomain| *4 (|Pattern| *6)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *3 (|Join| (|PolynomialCategory| *9 *7 *8) (|ConvertibleTo| *4))) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|ofCategory| *9 (|Join| (|Ring|) (|OrderedSet|) (|PatternMatchable| *6))) (|isDomain| *1 (|PatternMatchPolynomialCategory| *6 *7 *8 *9 *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)))) (IF (|has| |#3| (|PatternMatchable| |#1|)) (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) |noBranch|)) │ │ │ +((|theCurve| ((|#3|) 43)) (|singularPoints| (((|List| |#5|)) 47)) (|setSingularPoints| (((|List| |#5|) (|List| |#5|)) 129)) (|setCurve| ((|#3| |#3|) 107)) (|reset| (((|Void|)) 106)) (|rationalPoints| (((|List| |#5|)) 150 (|has| |#1| (|Finite|)))) (|rationalPlaces| (((|List| |#7|)) 153 (|has| |#1| (|Finite|)))) (|printInfo| (((|Void|) (|List| (|Boolean|))) 120)) (|pointDominateBy| ((|#5| |#7|) 94)) (|placesOfDegree| (((|List| |#7|) (|PositiveInteger|)) 149 (|has| |#1| (|Finite|)))) (|placesAbove| (((|List| |#7|) |#5|) 92)) (|parametrize| ((|#6| |#3| |#7|) 97)) (|numberRatPlacesExtDeg| (((|Integer|) (|PositiveInteger|)) 194 (|has| |#1| (|Finite|)))) (|numberPlacesDegExtDeg| (((|Integer|) (|PositiveInteger|) (|PositiveInteger|)) 193 (|has| |#1| (|Finite|)))) (|numberOfPlacesOfDegree| (((|Integer|) (|PositiveInteger|)) 176 (|has| |#1| (|Finite|)))) (|lBasis| (((|Record| (|:| |num| (|List| |#3|)) (|:| |den| |#3|)) |#8|) 69)) (|intersectionDivisor| ((|#8| |#3|) 50)) (|interpolateFormsForFact| (((|List| |#3|) |#8| (|List| |#3|)) 136)) (|interpolateForms| (((|List| |#3|) |#8| (|NonNegativeInteger|)) 65)) (|homogenize| ((|#3| |#3| (|Integer|)) 40)) (|genusNeg| (((|Integer|)) 74)) (|genus| (((|NonNegativeInteger|)) 73)) (|findOrderOfDivisor| (((|Record| (|:| |ord| (|Integer|)) (|:| |num| |#3|) (|:| |den| |#3|) (|:| |upTo| (|Integer|))) |#8| (|Integer|) (|Integer|)) 114)) (|evalIfCan| (((|Union| |#1| "failed") (|Fraction| |#3|) |#7|) 144) (((|Union| |#1| "failed") |#3| |#3| |#7|) 139) (((|Union| |#1| "failed") |#3| |#7|) 104)) (|eval| ((|#1| (|Fraction| |#3|) |#7|) 145) ((|#1| |#3| |#3| |#7|) 140) ((|#1| |#3| |#7|) 105)) (|desingTreeWoFullParam| (((|List| |#10|)) 70)) (|desingTree| (((|List| |#10|)) 45)) (|classNumber| (((|Integer|)) 204 (|has| |#1| (|Finite|)))) (|adjunctionDivisor| ((|#8|) 54)) (|ZetaFunction| (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|) (|PositiveInteger|)) 155 (|has| |#1| (|Finite|))) (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|)) 156 (|has| |#1| (|Finite|)))) (|LPolynomial| (((|SparseUnivariatePolynomial| (|Integer|)) (|PositiveInteger|)) 158 (|has| |#1| (|Finite|))) (((|SparseUnivariatePolynomial| (|Integer|))) 196 (|has| |#1| (|Finite|))))) │ │ │ +(((|GeneralPackageForAlgebraicFunctionField| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10| |#11|) (CATEGORY |package| (SIGNATURE |reset| ((|Void|))) (SIGNATURE |setCurve| (|#3| |#3|)) (SIGNATURE |homogenize| (|#3| |#3| (|Integer|))) (SIGNATURE |printInfo| ((|Void|) (|List| (|Boolean|)))) (SIGNATURE |theCurve| (|#3|)) (SIGNATURE |genus| ((|NonNegativeInteger|))) (SIGNATURE |genusNeg| ((|Integer|))) (SIGNATURE |desingTree| ((|List| |#10|))) (SIGNATURE |desingTreeWoFullParam| ((|List| |#10|))) (SIGNATURE |setSingularPoints| ((|List| |#5|) (|List| |#5|))) (SIGNATURE |singularPoints| ((|List| |#5|))) (SIGNATURE |parametrize| (|#6| |#3| |#7|)) (SIGNATURE |lBasis| ((|Record| (|:| |num| (|List| |#3|)) (|:| |den| |#3|)) |#8|)) (SIGNATURE |findOrderOfDivisor| ((|Record| (|:| |ord| (|Integer|)) (|:| |num| |#3|) (|:| |den| |#3|) (|:| |upTo| (|Integer|))) |#8| (|Integer|) (|Integer|))) (SIGNATURE |interpolateForms| ((|List| |#3|) |#8| (|NonNegativeInteger|))) (SIGNATURE |interpolateFormsForFact| ((|List| |#3|) |#8| (|List| |#3|))) (SIGNATURE |eval| (|#1| |#3| |#7|)) (SIGNATURE |eval| (|#1| |#3| |#3| |#7|)) (SIGNATURE |eval| (|#1| (|Fraction| |#3|) |#7|)) (SIGNATURE |evalIfCan| ((|Union| |#1| "failed") |#3| |#7|)) (SIGNATURE |evalIfCan| ((|Union| |#1| "failed") |#3| |#3| |#7|)) (SIGNATURE |evalIfCan| ((|Union| |#1| "failed") (|Fraction| |#3|) |#7|)) (SIGNATURE |intersectionDivisor| (|#8| |#3|)) (SIGNATURE |adjunctionDivisor| (|#8|)) (SIGNATURE |placesAbove| ((|List| |#7|) |#5|)) (SIGNATURE |pointDominateBy| (|#5| |#7|)) (IF (|has| |#1| (|Finite|)) (PROGN (SIGNATURE |rationalPlaces| ((|List| |#7|))) (SIGNATURE |rationalPoints| ((|List| |#5|))) (SIGNATURE |LPolynomial| ((|SparseUnivariatePolynomial| (|Integer|)))) (SIGNATURE |LPolynomial| ((|SparseUnivariatePolynomial| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |classNumber| ((|Integer|))) (SIGNATURE |placesOfDegree| ((|List| |#7|) (|PositiveInteger|))) (SIGNATURE |numberOfPlacesOfDegree| ((|Integer|) (|PositiveInteger|))) (SIGNATURE |numberRatPlacesExtDeg| ((|Integer|) (|PositiveInteger|))) (SIGNATURE |numberPlacesDegExtDeg| ((|Integer|) (|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |ZetaFunction| ((|UnivariateTaylorSeriesCZero| (|Integer|) |t|))) (SIGNATURE |ZetaFunction| ((|UnivariateTaylorSeriesCZero| (|Integer|) |t|) (|PositiveInteger|)))) |noBranch|)) (|Field|) (|List| (|Symbol|)) (|PolynomialCategory| |#1| |#4| (|OrderedVariableList| |#2|)) (|DirectProductCategory| (|#| |#2|) (|NonNegativeInteger|)) (|ProjectiveSpaceCategory| |#1|) (|LocalPowerSeriesCategory| |#1|) (|PlacesCategory| |#1| |#6|) (|DivisorCategory| |#7|) (|InfinitlyClosePointCategory| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#11|) (|DesingTreeCategory| |#9|) (|BlowUpMethodCategory|)) (T |GeneralPackageForAlgebraicFunctionField|)) │ │ │ +((|ZetaFunction| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Finite|)) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|PolynomialCategory| *4 *7 (|OrderedVariableList| *5))) (|ofCategory| *7 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *8 (|ProjectiveSpaceCategory| *4)) (|ofCategory| *9 (|LocalPowerSeriesCategory| *4)) (|ofCategory| *10 (|PlacesCategory| *4 *9)) (|ofCategory| *11 (|DivisorCategory| *10)) (|ofCategory| *12 (|InfinitlyClosePointCategory| *4 *5 *6 *7 *8 *9 *10 *11 *14)) (|ofCategory| *14 (|BlowUpMethodCategory|)) (|isDomain| *2 (|UnivariateTaylorSeriesCZero| (|Integer|) |t|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (|ofCategory| *13 (|DesingTreeCategory| *12)))) (|ZetaFunction| (*1 *2) (AND (|ofCategory| *3 (|Finite|)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *10 (|DivisorCategory| *9)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|isDomain| *2 (|UnivariateTaylorSeriesCZero| (|Integer|) |t|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11)))) (|numberPlacesDegExtDeg| (*1 *2 *3 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Finite|)) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|PolynomialCategory| *4 *7 (|OrderedVariableList| *5))) (|ofCategory| *7 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *8 (|ProjectiveSpaceCategory| *4)) (|ofCategory| *9 (|LocalPowerSeriesCategory| *4)) (|ofCategory| *10 (|PlacesCategory| *4 *9)) (|ofCategory| *11 (|DivisorCategory| *10)) (|ofCategory| *12 (|InfinitlyClosePointCategory| *4 *5 *6 *7 *8 *9 *10 *11 *14)) (|ofCategory| *14 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (|ofCategory| *13 (|DesingTreeCategory| *12)))) (|numberRatPlacesExtDeg| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Finite|)) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|PolynomialCategory| *4 *7 (|OrderedVariableList| *5))) (|ofCategory| *7 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *8 (|ProjectiveSpaceCategory| *4)) (|ofCategory| *9 (|LocalPowerSeriesCategory| *4)) (|ofCategory| *10 (|PlacesCategory| *4 *9)) (|ofCategory| *11 (|DivisorCategory| *10)) (|ofCategory| *12 (|InfinitlyClosePointCategory| *4 *5 *6 *7 *8 *9 *10 *11 *14)) (|ofCategory| *14 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (|ofCategory| *13 (|DesingTreeCategory| *12)))) (|numberOfPlacesOfDegree| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Finite|)) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|PolynomialCategory| *4 *7 (|OrderedVariableList| *5))) (|ofCategory| *7 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *8 (|ProjectiveSpaceCategory| *4)) (|ofCategory| *9 (|LocalPowerSeriesCategory| *4)) (|ofCategory| *10 (|PlacesCategory| *4 *9)) (|ofCategory| *11 (|DivisorCategory| *10)) (|ofCategory| *12 (|InfinitlyClosePointCategory| *4 *5 *6 *7 *8 *9 *10 *11 *14)) (|ofCategory| *14 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (|ofCategory| *13 (|DesingTreeCategory| *12)))) (|placesOfDegree| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Finite|)) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|PolynomialCategory| *4 *7 (|OrderedVariableList| *5))) (|ofCategory| *7 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *8 (|ProjectiveSpaceCategory| *4)) (|ofCategory| *9 (|LocalPowerSeriesCategory| *4)) (|ofCategory| *10 (|PlacesCategory| *4 *9)) (|ofCategory| *11 (|DivisorCategory| *10)) (|ofCategory| *12 (|InfinitlyClosePointCategory| *4 *5 *6 *7 *8 *9 *10 *11 *14)) (|ofCategory| *14 (|BlowUpMethodCategory|)) (|isDomain| *2 (|List| *10)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (|ofCategory| *13 (|DesingTreeCategory| *12)))) (|classNumber| (*1 *2) (AND (|ofCategory| *3 (|Finite|)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *10 (|DivisorCategory| *9)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11)))) (|LPolynomial| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Finite|)) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|PolynomialCategory| *4 *7 (|OrderedVariableList| *5))) (|ofCategory| *7 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *8 (|ProjectiveSpaceCategory| *4)) (|ofCategory| *9 (|LocalPowerSeriesCategory| *4)) (|ofCategory| *10 (|PlacesCategory| *4 *9)) (|ofCategory| *11 (|DivisorCategory| *10)) (|ofCategory| *12 (|InfinitlyClosePointCategory| *4 *5 *6 *7 *8 *9 *10 *11 *14)) (|ofCategory| *14 (|BlowUpMethodCategory|)) (|isDomain| *2 (|SparseUnivariatePolynomial| (|Integer|))) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (|ofCategory| *13 (|DesingTreeCategory| *12)))) (|LPolynomial| (*1 *2) (AND (|ofCategory| *3 (|Finite|)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *10 (|DivisorCategory| *9)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|isDomain| *2 (|SparseUnivariatePolynomial| (|Integer|))) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11)))) (|rationalPoints| (*1 *2) (AND (|ofCategory| *3 (|Finite|)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *10 (|DivisorCategory| *9)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|isDomain| *2 (|List| *7)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11)))) (|rationalPlaces| (*1 *2) (AND (|ofCategory| *3 (|Finite|)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *10 (|DivisorCategory| *9)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|isDomain| *2 (|List| *9)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11)))) (|pointDominateBy| (*1 *2 *3) (AND (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|PolynomialCategory| *4 *7 (|OrderedVariableList| *5))) (|ofCategory| *7 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *8 (|LocalPowerSeriesCategory| *4)) (|ofCategory| *3 (|PlacesCategory| *4 *8)) (|ofCategory| *9 (|DivisorCategory| *3)) (|ofCategory| *10 (|InfinitlyClosePointCategory| *4 *5 *6 *7 *2 *8 *3 *9 *12)) (|ofCategory| *12 (|BlowUpMethodCategory|)) (|ofCategory| *2 (|ProjectiveSpaceCategory| *4)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *4 *5 *6 *7 *2 *8 *3 *9 *10 *11 *12)) (|ofCategory| *11 (|DesingTreeCategory| *10)))) (|placesAbove| (*1 *2 *3) (AND (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|PolynomialCategory| *4 *7 (|OrderedVariableList| *5))) (|ofCategory| *7 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *3 (|ProjectiveSpaceCategory| *4)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *4)) (|ofCategory| *9 (|PlacesCategory| *4 *8)) (|ofCategory| *10 (|DivisorCategory| *9)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *4 *5 *6 *7 *3 *8 *9 *10 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|isDomain| *2 (|List| *9)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *4 *5 *6 *7 *3 *8 *9 *10 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11)))) (|adjunctionDivisor| (*1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *10 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *2 *12)) (|ofCategory| *12 (|BlowUpMethodCategory|)) (|ofCategory| *2 (|DivisorCategory| *9)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *3 *4 *5 *6 *7 *8 *9 *2 *10 *11 *12)) (|ofCategory| *11 (|DesingTreeCategory| *10)))) (|intersectionDivisor| (*1 *2 *3) (AND (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *3 (|PolynomialCategory| *4 *6 (|OrderedVariableList| *5))) (|ofCategory| *6 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *4)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *4)) (|ofCategory| *9 (|PlacesCategory| *4 *8)) (|ofCategory| *10 (|InfinitlyClosePointCategory| *4 *5 *3 *6 *7 *8 *9 *2 *12)) (|ofCategory| *12 (|BlowUpMethodCategory|)) (|ofCategory| *2 (|DivisorCategory| *9)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *4 *5 *3 *6 *7 *8 *9 *2 *10 *11 *12)) (|ofCategory| *11 (|DesingTreeCategory| *10)))) (|evalIfCan| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Fraction| *6)) (|ofCategory| *6 (|PolynomialCategory| *2 *7 (|OrderedVariableList| *5))) (|ofCategory| *7 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *8 (|ProjectiveSpaceCategory| *2)) (|ofCategory| *9 (|LocalPowerSeriesCategory| *2)) (|ofCategory| *4 (|PlacesCategory| *2 *9)) (|ofCategory| *10 (|DivisorCategory| *4)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *2 *5 *6 *7 *8 *9 *4 *10 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *2 *5 *6 *7 *8 *9 *4 *10 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11)))) (|evalIfCan| (*1 *2 *3 *3 *4) (|partial| AND (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *3 (|PolynomialCategory| *2 *6 (|OrderedVariableList| *5))) (|ofCategory| *6 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *2)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *2)) (|ofCategory| *4 (|PlacesCategory| *2 *8)) (|ofCategory| *9 (|DivisorCategory| *4)) (|ofCategory| *10 (|InfinitlyClosePointCategory| *2 *5 *3 *6 *7 *8 *4 *9 *12)) (|ofCategory| *12 (|BlowUpMethodCategory|)) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (|ofCategory| *11 (|DesingTreeCategory| *10)))) (|evalIfCan| (*1 *2 *3 *4) (|partial| AND (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *3 (|PolynomialCategory| *2 *6 (|OrderedVariableList| *5))) (|ofCategory| *6 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *2)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *2)) (|ofCategory| *4 (|PlacesCategory| *2 *8)) (|ofCategory| *9 (|DivisorCategory| *4)) (|ofCategory| *10 (|InfinitlyClosePointCategory| *2 *5 *3 *6 *7 *8 *4 *9 *12)) (|ofCategory| *12 (|BlowUpMethodCategory|)) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (|ofCategory| *11 (|DesingTreeCategory| *10)))) (|eval| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| *6)) (|ofCategory| *6 (|PolynomialCategory| *2 *7 (|OrderedVariableList| *5))) (|ofCategory| *7 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *8 (|ProjectiveSpaceCategory| *2)) (|ofCategory| *9 (|LocalPowerSeriesCategory| *2)) (|ofCategory| *4 (|PlacesCategory| *2 *9)) (|ofCategory| *10 (|DivisorCategory| *4)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *2 *5 *6 *7 *8 *9 *4 *10 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *2 *5 *6 *7 *8 *9 *4 *10 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11)))) (|eval| (*1 *2 *3 *3 *4) (AND (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *3 (|PolynomialCategory| *2 *6 (|OrderedVariableList| *5))) (|ofCategory| *6 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *2)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *2)) (|ofCategory| *4 (|PlacesCategory| *2 *8)) (|ofCategory| *9 (|DivisorCategory| *4)) (|ofCategory| *10 (|InfinitlyClosePointCategory| *2 *5 *3 *6 *7 *8 *4 *9 *12)) (|ofCategory| *12 (|BlowUpMethodCategory|)) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (|ofCategory| *11 (|DesingTreeCategory| *10)))) (|eval| (*1 *2 *3 *4) (AND (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *3 (|PolynomialCategory| *2 *6 (|OrderedVariableList| *5))) (|ofCategory| *6 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *2)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *2)) (|ofCategory| *4 (|PlacesCategory| *2 *8)) (|ofCategory| *9 (|DivisorCategory| *4)) (|ofCategory| *10 (|InfinitlyClosePointCategory| *2 *5 *3 *6 *7 *8 *4 *9 *12)) (|ofCategory| *12 (|BlowUpMethodCategory|)) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (|ofCategory| *11 (|DesingTreeCategory| *10)))) (|interpolateFormsForFact| (*1 *2 *3 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|PolynomialCategory| *4 *7 (|OrderedVariableList| *5))) (|ofCategory| *7 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *8 (|ProjectiveSpaceCategory| *4)) (|ofCategory| *9 (|LocalPowerSeriesCategory| *4)) (|ofCategory| *10 (|PlacesCategory| *4 *9)) (|ofCategory| *3 (|DivisorCategory| *10)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *4 *5 *6 *7 *8 *9 *10 *3 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *4 *5 *6 *7 *8 *9 *10 *3 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11)))) (|interpolateForms| (*1 *2 *3 *4) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|Field|)) (|ofType| *6 (|List| (|Symbol|))) (|ofCategory| *7 (|PolynomialCategory| *5 *8 (|OrderedVariableList| *6))) (|ofCategory| *8 (|DirectProductCategory| (|#| *6) *4)) (|ofCategory| *9 (|ProjectiveSpaceCategory| *5)) (|ofCategory| *10 (|LocalPowerSeriesCategory| *5)) (|ofCategory| *11 (|PlacesCategory| *5 *10)) (|ofCategory| *3 (|DivisorCategory| *11)) (|ofCategory| *12 (|InfinitlyClosePointCategory| *5 *6 *7 *8 *9 *10 *11 *3 *14)) (|ofCategory| *14 (|BlowUpMethodCategory|)) (|isDomain| *2 (|List| *7)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *5 *6 *7 *8 *9 *10 *11 *3 *12 *13 *14)) (|ofCategory| *13 (|DesingTreeCategory| *12)))) (|findOrderOfDivisor| (*1 *2 *3 *4 *4) (AND (|ofCategory| *5 (|Field|)) (|ofType| *6 (|List| (|Symbol|))) (|ofCategory| *7 (|PolynomialCategory| *5 *8 (|OrderedVariableList| *6))) (|ofCategory| *8 (|DirectProductCategory| (|#| *6) (|NonNegativeInteger|))) (|ofCategory| *9 (|ProjectiveSpaceCategory| *5)) (|ofCategory| *10 (|LocalPowerSeriesCategory| *5)) (|ofCategory| *11 (|PlacesCategory| *5 *10)) (|ofCategory| *3 (|DivisorCategory| *11)) (|ofCategory| *12 (|InfinitlyClosePointCategory| *5 *6 *7 *8 *9 *10 *11 *3 *14)) (|ofCategory| *14 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Record| (|:| |ord| (|Integer|)) (|:| |num| *7) (|:| |den| *7) (|:| |upTo| (|Integer|)))) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *5 *6 *7 *8 *9 *10 *11 *3 *12 *13 *14)) (|isDomain| *4 (|Integer|)) (|ofCategory| *13 (|DesingTreeCategory| *12)))) (|lBasis| (*1 *2 *3) (AND (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|PolynomialCategory| *4 *7 (|OrderedVariableList| *5))) (|ofCategory| *7 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *8 (|ProjectiveSpaceCategory| *4)) (|ofCategory| *9 (|LocalPowerSeriesCategory| *4)) (|ofCategory| *10 (|PlacesCategory| *4 *9)) (|ofCategory| *3 (|DivisorCategory| *10)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *4 *5 *6 *7 *8 *9 *10 *3 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Record| (|:| |num| (|List| *6)) (|:| |den| *6))) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *4 *5 *6 *7 *8 *9 *10 *3 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11)))) (|parametrize| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|Field|)) (|ofType| *6 (|List| (|Symbol|))) (|ofCategory| *3 (|PolynomialCategory| *5 *7 (|OrderedVariableList| *6))) (|ofCategory| *7 (|DirectProductCategory| (|#| *6) (|NonNegativeInteger|))) (|ofCategory| *8 (|ProjectiveSpaceCategory| *5)) (|ofCategory| *4 (|PlacesCategory| *5 *2)) (|ofCategory| *9 (|DivisorCategory| *4)) (|ofCategory| *10 (|InfinitlyClosePointCategory| *5 *6 *3 *7 *8 *2 *4 *9 *12)) (|ofCategory| *12 (|BlowUpMethodCategory|)) (|ofCategory| *2 (|LocalPowerSeriesCategory| *5)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *5 *6 *3 *7 *8 *2 *4 *9 *10 *11 *12)) (|ofCategory| *11 (|DesingTreeCategory| *10)))) (|singularPoints| (*1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *10 (|DivisorCategory| *9)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|isDomain| *2 (|List| *7)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11)))) (|setSingularPoints| (*1 *2 *2) (AND (|isDomain| *2 (|List| *7)) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *10 (|DivisorCategory| *9)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11)))) (|desingTreeWoFullParam| (*1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *10 (|DivisorCategory| *9)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|isDomain| *2 (|List| *12)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11)))) (|desingTree| (*1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *10 (|DivisorCategory| *9)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|isDomain| *2 (|List| *12)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11)))) (|genusNeg| (*1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *10 (|DivisorCategory| *9)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11)))) (|genus| (*1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) *2)) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *10 (|DivisorCategory| *9)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11)))) (|theCurve| (*1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *6 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *7 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *8 (|PlacesCategory| *3 *7)) (|ofCategory| *9 (|DivisorCategory| *8)) (|ofCategory| *10 (|InfinitlyClosePointCategory| *3 *4 *2 *5 *6 *7 *8 *9 *12)) (|ofCategory| *12 (|BlowUpMethodCategory|)) (|ofCategory| *2 (|PolynomialCategory| *3 *5 (|OrderedVariableList| *4))) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *3 *4 *2 *5 *6 *7 *8 *9 *10 *11 *12)) (|ofCategory| *11 (|DesingTreeCategory| *10)))) (|printInfo| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Boolean|))) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|PolynomialCategory| *4 *7 (|OrderedVariableList| *5))) (|ofCategory| *7 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *8 (|ProjectiveSpaceCategory| *4)) (|ofCategory| *9 (|LocalPowerSeriesCategory| *4)) (|ofCategory| *10 (|PlacesCategory| *4 *9)) (|ofCategory| *11 (|DivisorCategory| *10)) (|ofCategory| *12 (|InfinitlyClosePointCategory| *4 *5 *6 *7 *8 *9 *10 *11 *14)) (|ofCategory| *14 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (|ofCategory| *13 (|DesingTreeCategory| *12)))) (|homogenize| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *2 (|PolynomialCategory| *4 *6 (|OrderedVariableList| *5))) (|ofCategory| *6 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *4)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *4)) (|ofCategory| *9 (|PlacesCategory| *4 *8)) (|ofCategory| *10 (|DivisorCategory| *9)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *4 *5 *2 *6 *7 *8 *9 *10 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *4 *5 *2 *6 *7 *8 *9 *10 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11)))) (|setCurve| (*1 *2 *2) (AND (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *2 (|PolynomialCategory| *3 *5 (|OrderedVariableList| *4))) (|ofCategory| *5 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *6 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *7 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *8 (|PlacesCategory| *3 *7)) (|ofCategory| *9 (|DivisorCategory| *8)) (|ofCategory| *10 (|InfinitlyClosePointCategory| *3 *4 *2 *5 *6 *7 *8 *9 *12)) (|ofCategory| *12 (|BlowUpMethodCategory|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *3 *4 *2 *5 *6 *7 *8 *9 *10 *11 *12)) (|ofCategory| *11 (|DesingTreeCategory| *10)))) (|reset| (*1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *10 (|DivisorCategory| *9)) (|ofCategory| *11 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *13)) (|ofCategory| *13 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|GeneralPackageForAlgebraicFunctionField| *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (|ofCategory| *12 (|DesingTreeCategory| *11))))) │ │ │ +(CATEGORY |package| (SIGNATURE |reset| ((|Void|))) (SIGNATURE |setCurve| (|#3| |#3|)) (SIGNATURE |homogenize| (|#3| |#3| (|Integer|))) (SIGNATURE |printInfo| ((|Void|) (|List| (|Boolean|)))) (SIGNATURE |theCurve| (|#3|)) (SIGNATURE |genus| ((|NonNegativeInteger|))) (SIGNATURE |genusNeg| ((|Integer|))) (SIGNATURE |desingTree| ((|List| |#10|))) (SIGNATURE |desingTreeWoFullParam| ((|List| |#10|))) (SIGNATURE |setSingularPoints| ((|List| |#5|) (|List| |#5|))) (SIGNATURE |singularPoints| ((|List| |#5|))) (SIGNATURE |parametrize| (|#6| |#3| |#7|)) (SIGNATURE |lBasis| ((|Record| (|:| |num| (|List| |#3|)) (|:| |den| |#3|)) |#8|)) (SIGNATURE |findOrderOfDivisor| ((|Record| (|:| |ord| (|Integer|)) (|:| |num| |#3|) (|:| |den| |#3|) (|:| |upTo| (|Integer|))) |#8| (|Integer|) (|Integer|))) (SIGNATURE |interpolateForms| ((|List| |#3|) |#8| (|NonNegativeInteger|))) (SIGNATURE |interpolateFormsForFact| ((|List| |#3|) |#8| (|List| |#3|))) (SIGNATURE |eval| (|#1| |#3| |#7|)) (SIGNATURE |eval| (|#1| |#3| |#3| |#7|)) (SIGNATURE |eval| (|#1| (|Fraction| |#3|) |#7|)) (SIGNATURE |evalIfCan| ((|Union| |#1| "failed") |#3| |#7|)) (SIGNATURE |evalIfCan| ((|Union| |#1| "failed") |#3| |#3| |#7|)) (SIGNATURE |evalIfCan| ((|Union| |#1| "failed") (|Fraction| |#3|) |#7|)) (SIGNATURE |intersectionDivisor| (|#8| |#3|)) (SIGNATURE |adjunctionDivisor| (|#8|)) (SIGNATURE |placesAbove| ((|List| |#7|) |#5|)) (SIGNATURE |pointDominateBy| (|#5| |#7|)) (IF (|has| |#1| (|Finite|)) (PROGN (SIGNATURE |rationalPlaces| ((|List| |#7|))) (SIGNATURE |rationalPoints| ((|List| |#5|))) (SIGNATURE |LPolynomial| ((|SparseUnivariatePolynomial| (|Integer|)))) (SIGNATURE |LPolynomial| ((|SparseUnivariatePolynomial| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |classNumber| ((|Integer|))) (SIGNATURE |placesOfDegree| ((|List| |#7|) (|PositiveInteger|))) (SIGNATURE |numberOfPlacesOfDegree| ((|Integer|) (|PositiveInteger|))) (SIGNATURE |numberRatPlacesExtDeg| ((|Integer|) (|PositiveInteger|))) (SIGNATURE |numberPlacesDegExtDeg| ((|Integer|) (|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |ZetaFunction| ((|UnivariateTaylorSeriesCZero| (|Integer|) |t|))) (SIGNATURE |ZetaFunction| ((|UnivariateTaylorSeriesCZero| (|Integer|) |t|) (|PositiveInteger|)))) |noBranch|)) │ │ │ +((|table| (($) 10) (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) 14)) (|remove!| (($ (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) $) 60) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) $) NIL) (((|Union| |#3| "failed") |#2| $) NIL)) (|parts| (((|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) $) 39) (((|List| |#3|) $) 41)) (|map!| (($ (|Mapping| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) $) 52) (($ (|Mapping| |#3| |#3|) $) 33)) (|map| (($ (|Mapping| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) $) 50) (($ (|Mapping| |#3| |#3|) $) NIL) (($ (|Mapping| |#3| |#3| |#3|) $ $) 38)) (|inspect| (((|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) $) 53)) (|insert!| (($ (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) $) 16)) (|indices| (((|List| |#2|) $) 19)) (|index?| (((|Boolean|) |#2| $) 58)) (|find| (((|Union| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) "failed") (|Mapping| (|Boolean|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) $) 57)) (|extract!| (((|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) $) 62)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) $) NIL) (((|Boolean|) (|Mapping| (|Boolean|) |#3|) $) 65)) (|entries| (((|List| |#3|) $) 43)) (|elt| ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) $) NIL) (((|NonNegativeInteger|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) $) NIL) (((|NonNegativeInteger|) |#3| $) NIL) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#3|) $) 66)) (|coerce| (((|OutputForm|) $) 27)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) $) NIL) (((|Boolean|) (|Mapping| (|Boolean|) |#3|) $) 64)) (= (((|Boolean|) $ $) 48))) │ │ │ +(((|TableAggregate&| |#1| |#2| |#3|) (CATEGORY |domain| (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#3| |#3| |#3|) |#1| |#1|)) (SIGNATURE |table| (|#1| (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))))) (SIGNATURE |table| (|#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#3| |#3|) |#1|)) (SIGNATURE |map!| (|#1| (|Mapping| |#3| |#3|) |#1|)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#3|) |#1|)) (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#3|) |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#3|) |#1|)) (SIGNATURE |parts| ((|List| |#3|) |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) |#3| |#1|)) (SIGNATURE |elt| (|#3| |#1| |#2| |#3|)) (SIGNATURE |elt| (|#3| |#1| |#2|)) (SIGNATURE |entries| ((|List| |#3|) |#1|)) (SIGNATURE |index?| ((|Boolean|) |#2| |#1|)) (SIGNATURE |indices| ((|List| |#2|) |#1|)) (SIGNATURE |remove!| ((|Union| |#3| "failed") |#2| |#1|)) (SIGNATURE |remove!| (|#1| (|Mapping| (|Boolean|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) |#1|)) (SIGNATURE |remove!| (|#1| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) |#1|)) (SIGNATURE |find| ((|Union| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) "failed") (|Mapping| (|Boolean|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) |#1|)) (SIGNATURE |inspect| ((|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) |#1|)) (SIGNATURE |insert!| (|#1| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) |#1|)) (SIGNATURE |extract!| ((|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) |#1|)) (SIGNATURE |parts| ((|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) |#1|)) (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) |#1|)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) |#1|)) (SIGNATURE |map!| (|#1| (|Mapping| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) |#1|))) (|TableAggregate| |#2| |#3|) (|SetCategory|) (|SetCategory|)) (T |TableAggregate&|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +(CATEGORY |domain| (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#3| |#3| |#3|) |#1| |#1|)) (SIGNATURE |table| (|#1| (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))))) (SIGNATURE |table| (|#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#3| |#3|) |#1|)) (SIGNATURE |map!| (|#1| (|Mapping| |#3| |#3|) |#1|)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#3|) |#1|)) (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#3|) |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#3|) |#1|)) (SIGNATURE |parts| ((|List| |#3|) |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) |#3| |#1|)) (SIGNATURE |elt| (|#3| |#1| |#2| |#3|)) (SIGNATURE |elt| (|#3| |#1| |#2|)) (SIGNATURE |entries| ((|List| |#3|) |#1|)) (SIGNATURE |index?| ((|Boolean|) |#2| |#1|)) (SIGNATURE |indices| ((|List| |#2|) |#1|)) (SIGNATURE |remove!| ((|Union| |#3| "failed") |#2| |#1|)) (SIGNATURE |remove!| (|#1| (|Mapping| (|Boolean|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) |#1|)) (SIGNATURE |remove!| (|#1| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) |#1|)) (SIGNATURE |find| ((|Union| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) "failed") (|Mapping| (|Boolean|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) |#1|)) (SIGNATURE |inspect| ((|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) |#1|)) (SIGNATURE |insert!| (|#1| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) |#1|)) (SIGNATURE |extract!| ((|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) |#1|)) (SIGNATURE |parts| ((|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) |#1|)) (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) |#1|)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) |#1|)) (SIGNATURE |map!| (|#1| (|Mapping| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)) (|Record| (|:| |key| |#2|) (|:| |entry| |#3|))) |#1|))) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|SetCategory|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $) NIL) (((|Boolean|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| (|Integer|) (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $) NIL) (($ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| (((|Integer|) $ (|Integer|) (|Integer|)) 15 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Integer|) $ (|UniversalSegment| (|Integer|)) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|remove| (($ (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|)))) (($ (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| (((|Integer|) (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ (|Integer|) (|Integer|)) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|)))) (((|Integer|) (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Integer|) (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| (((|Integer|) $ (|Integer|) (|Integer|)) 14 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| (((|Integer|) $ (|Integer|)) 12)) (|position| (((|Integer|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL) (((|Integer|) (|Integer|) $) NIL (|has| (|Integer|) (|SetCategory|))) (((|Integer|) (|Integer|) $ (|Integer|)) NIL (|has| (|Integer|) (|SetCategory|)))) (|parts| (((|List| (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|new| (($ (|NonNegativeInteger|) (|Integer|)) 11)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) 9 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $ $) NIL) (($ $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|members| (((|List| (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|map!| (($ (|Mapping| (|Integer|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Integer|) (|Integer|)) $) NIL) (($ (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|insert| (($ (|Integer|) $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|first| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| (|Integer|) "failed") (|Mapping| (|Boolean|) (|Integer|)) $) NIL)) (|fill!| (($ $ (|Integer|)) 16 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|Integer|)))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|Equation| (|Integer|))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|Integer|) (|Integer|)) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|List| (|Integer|)) (|List| (|Integer|))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|entries| (((|List| (|Integer|)) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) 10)) (|elt| (((|Integer|) $ (|Integer|) (|Integer|)) NIL) (((|Integer|) $ (|Integer|)) 13) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| (|Integer|) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|Integer|))) NIL)) (|concat| (($ $ (|Integer|)) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ (|List| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) 7 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|U16Vector|) (|OneDimensionalArrayAggregate| (|Integer|))) (T |U16Vector|)) │ │ │ NIL │ │ │ -(((|CanonicalAttribute|) (|Category|)) (T |CanonicalAttribute|)) │ │ │ +(|OneDimensionalArrayAggregate| (|Integer|)) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|SetCategory|)))) (|zero?| (((|Boolean|) $) NIL)) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) NIL)) (|vertConcat| (($ $ $) NIL)) (|transpose| (($ (|U8Vector|)) NIL) (($ $) NIL)) (|symmetric?| (((|Boolean|) $) NIL)) (|swapRows!| (($ $ (|Integer|) (|Integer|)) NIL)) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) NIL)) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) NIL)) (|squareTop| (($ $) NIL)) (|square?| (((|Boolean|) $) NIL)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) NIL)) (|setelt| (((|Integer|) $ (|Integer|) (|Integer|) (|Integer|)) 17) (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) NIL)) (|setRow!| (($ $ (|Integer|) (|U8Vector|)) NIL)) (|setColumn!| (($ $ (|Integer|) (|U8Vector|)) NIL)) (|scalarMatrix| (($ (|NonNegativeInteger|) (|Integer|)) NIL)) (|sample| (($) NIL T CONST)) (|rowEchelon| (($ $) NIL (|has| (|Integer|) (|EuclideanDomain|)))) (|row| (((|U8Vector|) $ (|Integer|)) NIL)) (|rank| (((|NonNegativeInteger|) $) NIL (|has| (|Integer|) (|IntegralDomain|)))) (|qsetelt!| (((|Integer|) $ (|Integer|) (|Integer|) (|Integer|)) 16)) (|qnew| (($ (|Integer|) (|Integer|)) 19)) (|qelt| (((|Integer|) $ (|Integer|) (|Integer|)) 14)) (|pfaffian| (((|Integer|) $) NIL (|has| (|Integer|) (|CommutativeRing|)))) (|parts| (((|List| (|Integer|)) $) NIL)) (|nullity| (((|NonNegativeInteger|) $) NIL (|has| (|Integer|) (|IntegralDomain|)))) (|nullSpace| (((|List| (|U8Vector|)) $) NIL (|has| (|Integer|) (|IntegralDomain|)))) (|nrows| (((|NonNegativeInteger|) $) 10)) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) 20)) (|ncols| (((|NonNegativeInteger|) $) 11)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minordet| (((|Integer|) $) NIL (|has| (|Integer|) (ATTRIBUTE (|commutative| "*"))))) (|minRowIndex| (((|Integer|) $) 7)) (|minColIndex| (((|Integer|) $) 8)) (|members| (((|List| (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|maxRowIndex| (((|Integer|) $) 12)) (|maxColIndex| (((|Integer|) $) 13)) (|matrix| (($ (|List| (|List| (|Integer|)))) NIL) (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| (|Integer|) (|Integer|) (|Integer|))) NIL)) (|map!| (($ (|Mapping| (|Integer|) (|Integer|)) $) NIL)) (|map| (($ (|Mapping| (|Integer|) (|Integer|)) $) NIL) (($ (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ $) NIL) (($ (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ $ (|Integer|)) NIL)) (|listOfLists| (((|List| (|List| (|Integer|))) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|inverse| (((|Union| $ "failed") $) NIL (|has| (|Integer|) (|Field|)))) (|horizConcat| (($ $ $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|fill!| (($ $ (|Integer|)) NIL)) (|exquo| (((|Union| $ "failed") $ (|Integer|)) NIL (|has| (|Integer|) (|IntegralDomain|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|Integer|)))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|Equation| (|Integer|))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|Integer|) (|Integer|)) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|List| (|Integer|)) (|List| (|Integer|))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) 18)) (|elt| (((|Integer|) $ (|Integer|) (|Integer|)) 15) (((|Integer|) $ (|Integer|) (|Integer|) (|Integer|)) NIL) (($ $ (|List| (|Integer|)) (|List| (|Integer|))) NIL)) (|diagonalMatrix| (($ (|List| (|Integer|))) NIL) (($ (|List| $)) NIL)) (|diagonal?| (((|Boolean|) $) NIL)) (|determinant| (((|Integer|) $) NIL (|has| (|Integer|) (ATTRIBUTE (|commutative| "*"))))) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|copy| (($ $) NIL)) (|columnSpace| (((|List| (|U8Vector|)) $) NIL (|has| (|Integer|) (|EuclideanDomain|)))) (|column| (((|U8Vector|) $ (|Integer|)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| (|Integer|) (|SetCategory|))) (($ (|U8Vector|)) NIL)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|antisymmetric?| (((|Boolean|) $) NIL)) (= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|SetCategory|)))) (/ (($ $ (|Integer|)) NIL (|has| (|Integer|) (|Field|)))) (- (($ $ $) NIL) (($ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL (|has| (|Integer|) (|Field|)))) (* (($ $ $) NIL) (($ (|Integer|) $) NIL) (($ $ (|Integer|)) NIL) (($ (|Integer|) $) NIL) (((|U8Vector|) $ (|U8Vector|)) NIL) (((|U8Vector|) (|U8Vector|) $) NIL)) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|U8Matrix|) (|Join| (|MatrixCategory| (|Integer|) (|U8Vector|) (|U8Vector|)) (CATEGORY |domain| (SIGNATURE |qnew| ($ (|Integer|) (|Integer|)))))) (T |U8Matrix|)) │ │ │ +((|qnew| (*1 *1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|U8Matrix|))))) │ │ │ +(|Join| (|MatrixCategory| (|Integer|) (|U8Vector|) (|U8Vector|)) (CATEGORY |domain| (SIGNATURE |qnew| ($ (|Integer|) (|Integer|))))) │ │ │ +((|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) 35)) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) 58)) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) 147)) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) 149)) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) 38))) │ │ │ +(((|ElementaryIntegration| |#1| |#2|) (CATEGORY |package| (SIGNATURE |lfextendedint| ((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|)) (SIGNATURE |lflimitedint| ((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|))) (SIGNATURE |lfinfieldint| ((|Union| |#2| "failed") |#2| (|Symbol|))) (SIGNATURE |lfintegrate| ((|IntegrationResult| |#2|) |#2| (|Symbol|))) (SIGNATURE |lfextlimint| ((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))))) (|Join| (|GcdDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|))) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|))) (T |ElementaryIntegration|)) │ │ │ +((|lfextlimint| (*1 *2 *3 *4 *5 *6) (|partial| AND (|isDomain| *4 (|Symbol|)) (|isDomain| *6 (|List| (|Kernel| *3))) (|isDomain| *5 (|Kernel| *3)) (|ofCategory| *3 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *7))) (|ofCategory| *7 (|Join| (|GcdDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |ratpart| *3) (|:| |coeff| *3))) (|isDomain| *1 (|ElementaryIntegration| *7 *3)))) (|lfintegrate| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|GcdDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|IntegrationResult| *3)) (|isDomain| *1 (|ElementaryIntegration| *5 *3)) (|ofCategory| *3 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *5))))) (|lfinfieldint| (*1 *2 *2 *3) (|partial| AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|Join| (|GcdDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *1 (|ElementaryIntegration| *4 *2)) (|ofCategory| *2 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *4))))) (|lflimitedint| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|List| *3)) (|ofCategory| *3 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *6))) (|ofCategory| *6 (|Join| (|GcdDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |mainpart| *3) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| *3) (|:| |logand| *3)))))) (|isDomain| *1 (|ElementaryIntegration| *6 *3)))) (|lfextendedint| (*1 *2 *3 *4 *3) (|partial| AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|GcdDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |ratpart| *3) (|:| |coeff| *3))) (|isDomain| *1 (|ElementaryIntegration| *5 *3)) (|ofCategory| *3 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *5)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |lfextendedint| ((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|)) (SIGNATURE |lflimitedint| ((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|))) (SIGNATURE |lfinfieldint| ((|Union| |#2| "failed") |#2| (|Symbol|))) (SIGNATURE |lfintegrate| ((|IntegrationResult| |#2|) |#2| (|Symbol|))) (SIGNATURE |lfextlimint| ((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))))) │ │ │ +((|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) 45)) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) 41)) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) 23))) │ │ │ +(((|NagPartialDifferentialEquationsPackage|) (CATEGORY |package| (SIGNATURE |d03edf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |d03eef| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY))))) (SIGNATURE |d03faf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|))))) (T |NagPartialDifferentialEquationsPackage|)) │ │ │ +((|d03faf| (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (AND (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *6 (|ThreeDimensionalMatrix| (|DoubleFloat|))) (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagPartialDifferentialEquationsPackage|)))) (|d03eef| (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|String|)) (|isDomain| *6 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF)))) (|isDomain| *7 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagPartialDifferentialEquationsPackage|)))) (|d03edf| (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagPartialDifferentialEquationsPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |d03edf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |d03eef| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY))))) (SIGNATURE |d03faf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|varList| (((|List| |#1|) $) NIL)) (|right| (($ $) 50)) (|retractable?| (((|Boolean|) $) NIL)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL)) (|retract| ((|#1| $) NIL)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) 22)) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) 14)) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) 23)) (|lexico| (((|Boolean|) $ $) 28)) (|length| (((|PositiveInteger|) $) 35)) (|left| (($ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) 16)) (|coerce| (((|OutputForm|) $) 41) (($ |#1|) 32) (((|OrderedFreeMonoid| |#1|) $) 37) (((|Magma| |#1|) $) 42)) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) 55)) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) 57)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 51)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 36))) │ │ │ +(((|LyndonWord| |#1|) (|Join| (|OrderedSet|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |retractable?| ((|Boolean|) $)) (SIGNATURE |left| ($ $)) (SIGNATURE |right| ($ $)) (SIGNATURE |length| ((|PositiveInteger|) $)) (SIGNATURE |lexico| ((|Boolean|) $ $)) (SIGNATURE |coerce| ((|OrderedFreeMonoid| |#1|) $)) (SIGNATURE |coerce| ((|Magma| |#1|) $)) (SIGNATURE |factor| ((|List| $) (|OrderedFreeMonoid| |#1|))) (SIGNATURE |lyndon?| ((|Boolean|) (|OrderedFreeMonoid| |#1|))) (SIGNATURE |lyndon| ($ (|OrderedFreeMonoid| |#1|))) (SIGNATURE |lyndonIfCan| ((|Union| $ "failed") (|OrderedFreeMonoid| |#1|))) (SIGNATURE |varList| ((|List| |#1|) $)) (SIGNATURE |LyndonWordsList1| ((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|))) (SIGNATURE |LyndonWordsList| ((|List| $) (|List| |#1|) (|PositiveInteger|))))) (|OrderedSet|)) (T |LyndonWord|)) │ │ │ +((|retractable?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|left| (*1 *1 *1) (AND (|isDomain| *1 (|LyndonWord| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|right| (*1 *1 *1) (AND (|isDomain| *1 (|LyndonWord| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|length| (*1 *2 *1) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|lexico| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OrderedFreeMonoid| *3)) (|isDomain| *1 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Magma| *3)) (|isDomain| *1 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|factor| (*1 *2 *3) (AND (|isDomain| *3 (|OrderedFreeMonoid| *4)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|List| (|LyndonWord| *4))) (|isDomain| *1 (|LyndonWord| *4)))) (|lyndon?| (*1 *2 *3) (AND (|isDomain| *3 (|OrderedFreeMonoid| *4)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|LyndonWord| *4)))) (|lyndon| (*1 *1 *2) (AND (|isDomain| *2 (|OrderedFreeMonoid| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|LyndonWord| *3)))) (|lyndonIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|OrderedFreeMonoid| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|LyndonWord| *3)))) (|varList| (*1 *2 *1) (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|LyndonWordsList1| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|OneDimensionalArray| (|List| (|LyndonWord| *5)))) (|isDomain| *1 (|LyndonWord| *5)))) (|LyndonWordsList| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| (|LyndonWord| *5))) (|isDomain| *1 (|LyndonWord| *5))))) │ │ │ +(|Join| (|OrderedSet|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |retractable?| ((|Boolean|) $)) (SIGNATURE |left| ($ $)) (SIGNATURE |right| ($ $)) (SIGNATURE |length| ((|PositiveInteger|) $)) (SIGNATURE |lexico| ((|Boolean|) $ $)) (SIGNATURE |coerce| ((|OrderedFreeMonoid| |#1|) $)) (SIGNATURE |coerce| ((|Magma| |#1|) $)) (SIGNATURE |factor| ((|List| $) (|OrderedFreeMonoid| |#1|))) (SIGNATURE |lyndon?| ((|Boolean|) (|OrderedFreeMonoid| |#1|))) (SIGNATURE |lyndon| ($ (|OrderedFreeMonoid| |#1|))) (SIGNATURE |lyndonIfCan| ((|Union| $ "failed") (|OrderedFreeMonoid| |#1|))) (SIGNATURE |varList| ((|List| |#1|) $)) (SIGNATURE |LyndonWordsList1| ((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|))) (SIGNATURE |LyndonWordsList| ((|List| $) (|List| |#1|) (|PositiveInteger|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|numericalIntegration| (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) NIL) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) 62)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) NIL) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 29)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|d01fcfAnnaType|) (|NumericalIntegrationCategory|)) (T |d01fcfAnnaType|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +(|NumericalIntegrationCategory|) │ │ │ +((|retractIfCan| (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) 119) (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) 108) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) 141) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) 130) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 98) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 87)) (|retract| (($ (|Vector| (|Expression| (|Float|)))) 115) (($ (|Vector| (|Expression| (|Integer|)))) 104) (($ (|Vector| (|Polynomial| (|Float|)))) 137) (($ (|Vector| (|Polynomial| (|Integer|)))) 126) (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 94) (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 80)) (|outputAsFortran| (((|Void|) $) 73)) (|coerce| (((|OutputForm|) $) 27) (($ (|List| (|FortranCode|))) 63) (($ (|FortranCode|)) 59) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 66) (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) 60))) │ │ │ +(((|Asp35| |#1|) (|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))))))) (|Symbol|)) (T |Asp35|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) (|isDomain| *1 (|Asp35| *3)) (|ofType| *3 (|Symbol|))))) │ │ │ +(|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))))))) │ │ │ NIL │ │ │ -(((|FiniteAggregateAttribute|) (|Category|)) (T |FiniteAggregateAttribute|)) │ │ │ +(((|NoZeroDivisorsAttribute|) (|Category|)) (T |NoZeroDivisorsAttribute|)) │ │ │ NIL │ │ │ (|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) 11)) (|matrix| (((|SquareMatrix| |#1| |#2|) $) 12)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) 16)) (|coerce| (((|OutputForm|) $) NIL)) (|Zero| (($) NIL T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL))) │ │ │ +(((|QuadraticForm| |#1| |#2|) (|Join| (|AbelianGroup|) (CATEGORY |domain| (SIGNATURE |quadraticForm| ($ (|SquareMatrix| |#1| |#2|))) (SIGNATURE |matrix| ((|SquareMatrix| |#1| |#2|) $)) (SIGNATURE |elt| (|#2| $ (|DirectProduct| |#1| |#2|))))) (|PositiveInteger|) (|Field|)) (T |QuadraticForm|)) │ │ │ +((|quadraticForm| (*1 *1 *2) (AND (|isDomain| *2 (|SquareMatrix| *3 *4)) (|ofType| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Field|)) (|isDomain| *1 (|QuadraticForm| *3 *4)))) (|matrix| (*1 *2 *1) (AND (|isDomain| *2 (|SquareMatrix| *3 *4)) (|isDomain| *1 (|QuadraticForm| *3 *4)) (|ofType| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Field|)))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 (|DirectProduct| *4 *2)) (|ofType| *4 (|PositiveInteger|)) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|QuadraticForm| *4 *2))))) │ │ │ +(|Join| (|AbelianGroup|) (CATEGORY |domain| (SIGNATURE |quadraticForm| ($ (|SquareMatrix| |#1| |#2|))) (SIGNATURE |matrix| ((|SquareMatrix| |#1| |#2|) $)) (SIGNATURE |elt| (|#2| $ (|DirectProduct| |#1| |#2|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|superscript| (($ $ (|List| (|OutputForm|))) 58)) (|subscript| (($ $ (|List| (|OutputForm|))) 56)) (|string| (((|String|) $) 82)) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) 85)) (|scripted?| (((|Boolean|) $) 21)) (|script| (($ $ (|List| (|List| (|OutputForm|)))) 54) (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) 80)) (|sample| (($) 122 T CONST)) (|resetNew| (((|Void|)) 103)) (|patternMatch| (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) 65) (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) 71)) (|new| (($) 92) (($ $) 98)) (|name| (($ $) 81)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|list| (((|List| $) $) 104)) (|latex| (((|String|) $) 87)) (|hash| (((|SingleInteger|) $) NIL)) (|elt| (($ $ (|List| (|OutputForm|))) 57)) (|convert| (((|InputForm|) $) 45) (((|Symbol|) $) 46) (((|Pattern| (|Integer|)) $) 75) (((|Pattern| (|Float|)) $) 73)) (|coerce| (((|OutputForm|) $) 52) (($ (|String|)) 47)) (|argscript| (($ $ (|List| (|OutputForm|))) 59)) (|OMwrite| (((|String|) $) 33) (((|String|) $ (|Boolean|)) 34) (((|Void|) (|OpenMathDevice|) $) 35) (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) 36)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 48)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 49))) │ │ │ +(((|Symbol|) (|Join| (|OrderedSet|) (|ConvertibleTo| (|InputForm|)) (|OpenMath|) (|ConvertibleTo| (|Symbol|)) (|ConvertibleTo| (|Pattern| (|Integer|))) (|ConvertibleTo| (|Pattern| (|Float|))) (|PatternMatchable| (|Integer|)) (|PatternMatchable| (|Float|)) (CATEGORY |domain| (SIGNATURE |new| ($)) (SIGNATURE |new| ($ $)) (SIGNATURE |resetNew| ((|Void|))) (SIGNATURE |coerce| ($ (|String|))) (SIGNATURE |name| ($ $)) (SIGNATURE |scripted?| ((|Boolean|) $)) (SIGNATURE |scripts| ((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $)) (SIGNATURE |script| ($ $ (|List| (|List| (|OutputForm|))))) (SIGNATURE |script| ($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))))) (SIGNATURE |subscript| ($ $ (|List| (|OutputForm|)))) (SIGNATURE |superscript| ($ $ (|List| (|OutputForm|)))) (SIGNATURE |argscript| ($ $ (|List| (|OutputForm|)))) (SIGNATURE |elt| ($ $ (|List| (|OutputForm|)))) (SIGNATURE |string| ((|String|) $)) (SIGNATURE |list| ((|List| $) $)) (SIGNATURE |sample| ($) |constant|)))) (T |Symbol|)) │ │ │ +((|new| (*1 *1) (|isDomain| *1 (|Symbol|))) (|new| (*1 *1 *1) (|isDomain| *1 (|Symbol|))) (|resetNew| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Symbol|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|Symbol|)))) (|name| (*1 *1 *1) (|isDomain| *1 (|Symbol|))) (|scripted?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Symbol|)))) (|scripts| (*1 *2 *1) (AND (|isDomain| *2 (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) (|isDomain| *1 (|Symbol|)))) (|script| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|List| (|OutputForm|)))) (|isDomain| *1 (|Symbol|)))) (|script| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) (|isDomain| *1 (|Symbol|)))) (|subscript| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|Symbol|)))) (|superscript| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|Symbol|)))) (|argscript| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|Symbol|)))) (|elt| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|Symbol|)))) (|string| (*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|Symbol|)))) (|list| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *1 (|Symbol|)))) (|sample| (*1 *1) (|isDomain| *1 (|Symbol|)))) │ │ │ +(|Join| (|OrderedSet|) (|ConvertibleTo| (|InputForm|)) (|OpenMath|) (|ConvertibleTo| (|Symbol|)) (|ConvertibleTo| (|Pattern| (|Integer|))) (|ConvertibleTo| (|Pattern| (|Float|))) (|PatternMatchable| (|Integer|)) (|PatternMatchable| (|Float|)) (CATEGORY |domain| (SIGNATURE |new| ($)) (SIGNATURE |new| ($ $)) (SIGNATURE |resetNew| ((|Void|))) (SIGNATURE |coerce| ($ (|String|))) (SIGNATURE |name| ($ $)) (SIGNATURE |scripted?| ((|Boolean|) $)) (SIGNATURE |scripts| ((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $)) (SIGNATURE |script| ($ $ (|List| (|List| (|OutputForm|))))) (SIGNATURE |script| ($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))))) (SIGNATURE |subscript| ($ $ (|List| (|OutputForm|)))) (SIGNATURE |superscript| ($ $ (|List| (|OutputForm|)))) (SIGNATURE |argscript| ($ $ (|List| (|OutputForm|)))) (SIGNATURE |elt| ($ $ (|List| (|OutputForm|)))) (SIGNATURE |string| ((|String|) $)) (SIGNATURE |list| ((|List| $) $)) (SIGNATURE |sample| ($) |constant|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 12)) (|OMencodingXML| (($) 15)) (|OMencodingUnknown| (($) 13)) (|OMencodingSGML| (($) 16)) (|OMencodingBinary| (($) 14)) (= (((|Boolean|) $ $) 8))) │ │ │ +(((|OpenMathEncoding|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |OMencodingUnknown| ($)) (SIGNATURE |OMencodingXML| ($)) (SIGNATURE |OMencodingSGML| ($)) (SIGNATURE |OMencodingBinary| ($))))) (T |OpenMathEncoding|)) │ │ │ +((|OMencodingUnknown| (*1 *1) (|isDomain| *1 (|OpenMathEncoding|))) (|OMencodingXML| (*1 *1) (|isDomain| *1 (|OpenMathEncoding|))) (|OMencodingSGML| (*1 *1) (|isDomain| *1 (|OpenMathEncoding|))) (|OMencodingBinary| (*1 *1) (|isDomain| *1 (|OpenMathEncoding|)))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |OMencodingUnknown| ($)) (SIGNATURE |OMencodingXML| ($)) (SIGNATURE |OMencodingSGML| ($)) (SIGNATURE |OMencodingBinary| ($)))) │ │ │ +((|zero?| (((|Boolean|) $) 12)) (|retractIfCan| (((|Union| |#3| "failed") $) 17)) (|retract| ((|#3| $) 14))) │ │ │ +(((|UnivariatePuiseuxSeriesConstructorCategory&| |#1| |#2| |#3|) (CATEGORY |domain| (SIGNATURE |retract| (|#3| |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#3| "failed") |#1|)) (SIGNATURE |zero?| ((|Boolean|) |#1|))) (|UnivariatePuiseuxSeriesConstructorCategory| |#2| |#3|) (|Ring|) (|UnivariateLaurentSeriesCategory| |#2|)) (T |UnivariatePuiseuxSeriesConstructorCategory&|)) │ │ │ NIL │ │ │ -(((|CanonicalUnitNormalAttribute|) (|Category|)) (T |CanonicalUnitNormalAttribute|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |retract| (|#3| |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#3| "failed") |#1|)) (SIGNATURE |zero?| ((|Boolean|) |#1|))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|rightRecip| (((|Union| $ "failed") $) 16)) (|rightPower| (($ $ (|PositiveInteger|)) 14) (($ $ (|NonNegativeInteger|)) 21)) (|recip| (((|Union| $ "failed") $) 18)) (|one?| (((|Boolean|) $) 22)) (|leftRecip| (((|Union| $ "failed") $) 17)) (|leftPower| (($ $ (|PositiveInteger|)) 13) (($ $ (|NonNegativeInteger|)) 20)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|One| (($) 23 T CONST)) (= (((|Boolean|) $ $) 6)) (** (($ $ (|PositiveInteger|)) 12) (($ $ (|NonNegativeInteger|)) 19)) (* (($ $ $) 15))) │ │ │ +(((|MonadWithUnit|) (|Category|)) (T |MonadWithUnit|)) │ │ │ +((|One| (*1 *1) (|ofCategory| *1 (|MonadWithUnit|))) (|one?| (*1 *2 *1) (AND (|ofCategory| *1 (|MonadWithUnit|)) (|isDomain| *2 (|Boolean|)))) (|rightPower| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|MonadWithUnit|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|leftPower| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|MonadWithUnit|)) (|isDomain| *2 (|NonNegativeInteger|)))) (** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|MonadWithUnit|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|recip| (*1 *1 *1) (|partial| |ofCategory| *1 (|MonadWithUnit|))) (|leftRecip| (*1 *1 *1) (|partial| |ofCategory| *1 (|MonadWithUnit|))) (|rightRecip| (*1 *1 *1) (|partial| |ofCategory| *1 (|MonadWithUnit|)))) │ │ │ +(|Join| (|Monad|) (CATEGORY |domain| (SIGNATURE (|One|) ($) |constant|) (SIGNATURE |one?| ((|Boolean|) $)) (SIGNATURE |rightPower| ($ $ (|NonNegativeInteger|))) (SIGNATURE |leftPower| ($ $ (|NonNegativeInteger|))) (SIGNATURE ** ($ $ (|NonNegativeInteger|))) (SIGNATURE |recip| ((|Union| $ "failed") $)) (SIGNATURE |leftRecip| ((|Union| $ "failed") $)) (SIGNATURE |rightRecip| ((|Union| $ "failed") $)))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Monad|) . T) ((|SetCategory|) . T)) │ │ │ +((|primeFrobenius| (($ $) 10) (($ $ (|NonNegativeInteger|)) 11))) │ │ │ +(((|FieldOfPrimeCharacteristic&| |#1|) (CATEGORY |domain| (SIGNATURE |primeFrobenius| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |primeFrobenius| (|#1| |#1|))) (|FieldOfPrimeCharacteristic|)) (T |FieldOfPrimeCharacteristic&|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +(CATEGORY |domain| (SIGNATURE |primeFrobenius| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |primeFrobenius| (|#1| |#1|))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|wholePart| (((|Integer|) $) 87)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|truncate| (($ $) 85)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 73)) (|squareFree| (((|Factored| $) $) 72)) (|sqrt| (($ $) 95)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|sign| (((|Integer|) $) 112)) (|sample| (($) 16 T CONST)) (|round| (($ $) 84)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 100) (((|Union| (|Fraction| (|Integer|)) "failed") $) 97)) (|retract| (((|Integer|) $) 99) (((|Fraction| (|Integer|)) $) 96)) (|rem| (($ $ $) 54)) (|recip| (((|Union| $ "failed") $) 33)) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|prime?| (((|Boolean|) $) 71)) (|positive?| (((|Boolean|) $) 110)) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) 91)) (|one?| (((|Boolean|) $) 30)) (|nthRoot| (($ $ (|Integer|)) 94)) (|norm| (($ $) 90)) (|negative?| (((|Boolean|) $) 111)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|min| (($ $ $) 109)) (|max| (($ $ $) 108)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 70)) (|hash| (((|SingleInteger|) $) 10)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|fractionPart| (($ $) 86)) (|floor| (($ $) 88)) (|factor| (((|Factored| $) $) 74)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|convert| (((|Float|) $) 103) (((|DoubleFloat|) $) 102) (((|Pattern| (|Float|)) $) 92)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Fraction| (|Integer|))) 65) (($ (|Integer|)) 101) (($ (|Fraction| (|Integer|))) 98)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|ceiling| (($ $) 89)) (|associates?| (((|Boolean|) $ $) 38)) (|abs| (($ $) 113)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 69)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (>= (((|Boolean|) $ $) 106)) (> (((|Boolean|) $ $) 105)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 107)) (< (((|Boolean|) $ $) 104)) (/ (($ $ $) 64)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 68) (($ $ (|Fraction| (|Integer|))) 93)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 67) (($ (|Fraction| (|Integer|)) $) 66))) │ │ │ +(((|RealNumberSystem|) (|Category|)) (T |RealNumberSystem|)) │ │ │ +((|abs| (*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|))) (|norm| (*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|))) (|ceiling| (*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|))) (|floor| (*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|))) (|wholePart| (*1 *2 *1) (AND (|ofCategory| *1 (|RealNumberSystem|)) (|isDomain| *2 (|Integer|)))) (|fractionPart| (*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|))) (|truncate| (*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|))) (|round| (*1 *1 *1) (|ofCategory| *1 (|RealNumberSystem|)))) │ │ │ +(|Join| (|Field|) (|OrderedRing|) (|RealConstant|) (|RetractableTo| (|Integer|)) (|RetractableTo| (|Fraction| (|Integer|))) (|RadicalCategory|) (|ConvertibleTo| (|Pattern| (|Float|))) (|PatternMatchable| (|Float|)) (|CharacteristicZero|) (CATEGORY |domain| (SIGNATURE |norm| ($ $)) (SIGNATURE |ceiling| ($ $)) (SIGNATURE |floor| ($ $)) (SIGNATURE |wholePart| ((|Integer|) $)) (SIGNATURE |fractionPart| ($ $)) (SIGNATURE |truncate| ($ $)) (SIGNATURE |round| ($ $)) (SIGNATURE |abs| ($ $)))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicZero|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|ConvertibleTo| (|DoubleFloat|)) . T) ((|ConvertibleTo| (|Float|)) . T) ((|ConvertibleTo| (|Pattern| (|Float|))) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|OrderedAbelianGroup|) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedCancellationAbelianMonoid|) . T) ((|OrderedRing|) . T) ((|OrderedSet|) . T) ((|PatternMatchable| (|Float|)) . T) ((|PrincipalIdealDomain|) . T) ((|RadicalCategory|) . T) ((|RealConstant|) . T) ((|RetractableTo| (|Fraction| (|Integer|))) . T) ((|RetractableTo| (|Integer|)) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|UniqueFactorizationDomain|) . T)) │ │ │ +((|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) 20))) │ │ │ +(((|OctonionCategoryFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |map| (|#3| (|Mapping| |#4| |#2|) |#1|))) (|OctonionCategory| |#2|) (|CommutativeRing|) (|OctonionCategory| |#4|) (|CommutativeRing|)) (T |OctonionCategoryFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|CommutativeRing|)) (|ofCategory| *6 (|CommutativeRing|)) (|ofCategory| *2 (|OctonionCategory| *6)) (|isDomain| *1 (|OctonionCategoryFunctions2| *4 *5 *2 *6)) (|ofCategory| *4 (|OctonionCategory| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| (|#3| (|Mapping| |#4| |#2|) |#1|))) │ │ │ +((|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) 46)) (|linears| ((|#1| |#1| (|Integer|)) 45)) (|gcd| ((|#1| |#1| |#1| (|Integer|)) 35)) (|factor| (((|List| |#1|) |#1| (|Integer|)) 38)) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) 32)) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) 44))) │ │ │ +(((|ModularDistinctDegreeFactorizer| |#1|) (CATEGORY |package| (SIGNATURE |gcd| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |linears| (|#1| |#1| (|Integer|))) (SIGNATURE |factor| ((|List| |#1|) |#1| (|Integer|))) (SIGNATURE |ddFact| ((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|))) (SIGNATURE |separateFactors| ((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|))) (SIGNATURE |exptMod| (|#1| |#1| (|Integer|) |#1| (|Integer|)))) (|UnivariatePolynomialCategory| (|Integer|))) (T |ModularDistinctDegreeFactorizer|)) │ │ │ +((|exptMod| (*1 *2 *2 *3 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|ModularDistinctDegreeFactorizer| *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|separateFactors| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Record| (|:| |factor| *5) (|:| |degree| (|Integer|))))) (|isDomain| *4 (|Integer|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|List| *5)) (|isDomain| *1 (|ModularDistinctDegreeFactorizer| *5)))) (|ddFact| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|List| (|Record| (|:| |factor| *3) (|:| |degree| *4)))) (|isDomain| *1 (|ModularDistinctDegreeFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|factor| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|ModularDistinctDegreeFactorizer| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|linears| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|ModularDistinctDegreeFactorizer| *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|gcd| (*1 *2 *2 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|ModularDistinctDegreeFactorizer| *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |gcd| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |linears| (|#1| |#1| (|Integer|))) (SIGNATURE |factor| ((|List| |#1|) |#1| (|Integer|))) (SIGNATURE |ddFact| ((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|))) (SIGNATURE |separateFactors| ((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|))) (SIGNATURE |exptMod| (|#1| |#1| (|Integer|) |#1| (|Integer|)))) │ │ │ +((|pi| (($) 11)) (|atanh| (($ $) 35)) (|asinh| (($ $) 33)) (|asin| (($ $) 25)) (|asech| (($ $) 17)) (|acsch| (($ $) 15)) (|acoth| (($ $) 19)) (|acot| (($ $) 30)) (|acosh| (($ $) 34)) (|acos| (($ $) 29))) │ │ │ +(((|TranscendentalFunctionCategory&| |#1|) (CATEGORY |domain| (SIGNATURE |pi| (|#1|)) (SIGNATURE |atanh| (|#1| |#1|)) (SIGNATURE |asinh| (|#1| |#1|)) (SIGNATURE |asech| (|#1| |#1|)) (SIGNATURE |acsch| (|#1| |#1|)) (SIGNATURE |acoth| (|#1| |#1|)) (SIGNATURE |acosh| (|#1| |#1|)) (SIGNATURE |asin| (|#1| |#1|)) (SIGNATURE |acot| (|#1| |#1|)) (SIGNATURE |acos| (|#1| |#1|))) (|TranscendentalFunctionCategory|)) (T |TranscendentalFunctionCategory&|)) │ │ │ NIL │ │ │ -(((|JacobiIdentityAttribute|) (|Category|)) (T |JacobiIdentityAttribute|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |pi| (|#1|)) (SIGNATURE |atanh| (|#1| |#1|)) (SIGNATURE |asinh| (|#1| |#1|)) (SIGNATURE |asech| (|#1| |#1|)) (SIGNATURE |acsch| (|#1| |#1|)) (SIGNATURE |acoth| (|#1| |#1|)) (SIGNATURE |acosh| (|#1| |#1|)) (SIGNATURE |asin| (|#1| |#1|)) (SIGNATURE |acot| (|#1| |#1|)) (SIGNATURE |acos| (|#1| |#1|))) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +(((|AttributeRegistry|) (|Category|)) (T |AttributeRegistry|)) │ │ │ NIL │ │ │ -(((|LazyRepresentationAttribute|) (|Category|)) (T |LazyRepresentationAttribute|)) │ │ │ +(|Join| (CATEGORY |package| (ATTRIBUTE |finiteAggregate|) (ATTRIBUTE (|commutative| "*")) (ATTRIBUTE |shallowlyMutable|) (ATTRIBUTE |unitsKnown|) (ATTRIBUTE |leftUnitary|) (ATTRIBUTE |rightUnitary|) (ATTRIBUTE |noZeroDivisors|) (ATTRIBUTE |canonicalUnitNormal|) (ATTRIBUTE |canonicalsClosed|) (ATTRIBUTE |arbitraryPrecision|) (ATTRIBUTE |partiallyOrderedSet|) (ATTRIBUTE |central|) (ATTRIBUTE |noetherian|) (ATTRIBUTE |additiveValuation|) (ATTRIBUTE |multiplicativeValuation|) (ATTRIBUTE |NullSquare|) (ATTRIBUTE |JacobiIdentity|) (ATTRIBUTE |canonical|) (ATTRIBUTE |approximate|))) │ │ │ +((|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) 55)) (|explogs2trigs| (((|Complex| |#2|) |#3|) 116)) (GF2FG ((|#3| (|Complex| |#2|)) 43)) (FG2F ((|#2| |#3|) 19)) (F2FG ((|#3| |#2|) 32))) │ │ │ +(((|InnerTrigonometricManipulations| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE GF2FG (|#3| (|Complex| |#2|))) (SIGNATURE FG2F (|#2| |#3|)) (SIGNATURE F2FG (|#3| |#2|)) (SIGNATURE |explogs2trigs| ((|Complex| |#2|) |#3|)) (SIGNATURE |trigs2explogs| (|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))))) (|Join| (|IntegralDomain|) (|OrderedSet|)) (|Join| (|FunctionSpace| |#1|) (|RadicalCategory|) (|TranscendentalFunctionCategory|)) (|Join| (|FunctionSpace| (|Complex| |#1|)) (|RadicalCategory|) (|TranscendentalFunctionCategory|))) (T |InnerTrigonometricManipulations|)) │ │ │ +((|trigs2explogs| (*1 *2 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Kernel| *2))) (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *2 (|Join| (|FunctionSpace| (|Complex| *5)) (|RadicalCategory|) (|TranscendentalFunctionCategory|))) (|ofCategory| *5 (|Join| (|IntegralDomain|) (|OrderedSet|))) (|isDomain| *1 (|InnerTrigonometricManipulations| *5 *6 *2)) (|ofCategory| *6 (|Join| (|FunctionSpace| *5) (|RadicalCategory|) (|TranscendentalFunctionCategory|))))) (|explogs2trigs| (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|IntegralDomain|) (|OrderedSet|))) (|isDomain| *2 (|Complex| *5)) (|isDomain| *1 (|InnerTrigonometricManipulations| *4 *5 *3)) (|ofCategory| *5 (|Join| (|FunctionSpace| *4) (|RadicalCategory|) (|TranscendentalFunctionCategory|))) (|ofCategory| *3 (|Join| (|FunctionSpace| (|Complex| *4)) (|RadicalCategory|) (|TranscendentalFunctionCategory|))))) (F2FG (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|IntegralDomain|) (|OrderedSet|))) (|ofCategory| *2 (|Join| (|FunctionSpace| (|Complex| *4)) (|RadicalCategory|) (|TranscendentalFunctionCategory|))) (|isDomain| *1 (|InnerTrigonometricManipulations| *4 *3 *2)) (|ofCategory| *3 (|Join| (|FunctionSpace| *4) (|RadicalCategory|) (|TranscendentalFunctionCategory|))))) (FG2F (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|IntegralDomain|) (|OrderedSet|))) (|ofCategory| *2 (|Join| (|FunctionSpace| *4) (|RadicalCategory|) (|TranscendentalFunctionCategory|))) (|isDomain| *1 (|InnerTrigonometricManipulations| *4 *2 *3)) (|ofCategory| *3 (|Join| (|FunctionSpace| (|Complex| *4)) (|RadicalCategory|) (|TranscendentalFunctionCategory|))))) (GF2FG (*1 *2 *3) (AND (|isDomain| *3 (|Complex| *5)) (|ofCategory| *5 (|Join| (|FunctionSpace| *4) (|RadicalCategory|) (|TranscendentalFunctionCategory|))) (|ofCategory| *4 (|Join| (|IntegralDomain|) (|OrderedSet|))) (|ofCategory| *2 (|Join| (|FunctionSpace| (|Complex| *4)) (|RadicalCategory|) (|TranscendentalFunctionCategory|))) (|isDomain| *1 (|InnerTrigonometricManipulations| *4 *5 *2))))) │ │ │ +(CATEGORY |package| (SIGNATURE GF2FG (|#3| (|Complex| |#2|))) (SIGNATURE FG2F (|#2| |#3|)) (SIGNATURE F2FG (|#3| |#2|)) (SIGNATURE |explogs2trigs| ((|Complex| |#2|) |#3|)) (SIGNATURE |trigs2explogs| (|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))))) │ │ │ +((|plusInfinity| (((|OrderedCompletion| (|Integer|))) 11)) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) 13)) (|infinity| (((|OnePointCompletion| (|Integer|))) 8))) │ │ │ +(((|Infinity|) (CATEGORY |package| (SIGNATURE |infinity| ((|OnePointCompletion| (|Integer|)))) (SIGNATURE |plusInfinity| ((|OrderedCompletion| (|Integer|)))) (SIGNATURE |minusInfinity| ((|OrderedCompletion| (|Integer|)))))) (T |Infinity|)) │ │ │ +((|minusInfinity| (*1 *2) (AND (|isDomain| *2 (|OrderedCompletion| (|Integer|))) (|isDomain| *1 (|Infinity|)))) (|plusInfinity| (*1 *2) (AND (|isDomain| *2 (|OrderedCompletion| (|Integer|))) (|isDomain| *1 (|Infinity|)))) (|infinity| (*1 *2) (AND (|isDomain| *2 (|OnePointCompletion| (|Integer|))) (|isDomain| *1 (|Infinity|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |infinity| ((|OnePointCompletion| (|Integer|)))) (SIGNATURE |plusInfinity| ((|OrderedCompletion| (|Integer|)))) (SIGNATURE |minusInfinity| ((|OrderedCompletion| (|Integer|))))) │ │ │ +((|systemCommand| (((|Void|) (|String|)) 8))) │ │ │ +(((|MoreSystemCommands|) (CATEGORY |package| (SIGNATURE |systemCommand| ((|Void|) (|String|))))) (T |MoreSystemCommands|)) │ │ │ +((|systemCommand| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|MoreSystemCommands|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |systemCommand| ((|Void|) (|String|)))) │ │ │ +((|factor| (((|Factored| |#4|) |#4|) 51))) │ │ │ +(((|MRationalFactorize| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#4|) |#4|))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|Join| (|EuclideanDomain|) (|CharacteristicZero|)) (|PolynomialCategory| (|Fraction| |#3|) |#1| |#2|)) (T |MRationalFactorize|)) │ │ │ +((|factor| (*1 *2 *3) (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|MRationalFactorize| *4 *5 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| (|Fraction| *6) *4 *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#4|) |#4|))) │ │ │ +((|variables| (((|List| (|SingletonAsOrderedSet|)) $) 28)) (|reductum| (($ $) 25)) (|monomial| (($ |#2| |#3|) NIL) (($ $ (|SingletonAsOrderedSet|) |#3|) 22) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| |#3|)) 20)) (|leadingMonomial| (($ $) 14)) (|leadingCoefficient| ((|#2| $) 12)) (|degree| ((|#3| $) 10))) │ │ │ +(((|UnivariatePowerSeriesCategory&| |#1| |#2| |#3|) (CATEGORY |domain| (SIGNATURE |variables| ((|List| (|SingletonAsOrderedSet|)) |#1|)) (SIGNATURE |monomial| (|#1| |#1| (|List| (|SingletonAsOrderedSet|)) (|List| |#3|))) (SIGNATURE |monomial| (|#1| |#1| (|SingletonAsOrderedSet|) |#3|)) (SIGNATURE |reductum| (|#1| |#1|)) (SIGNATURE |monomial| (|#1| |#2| |#3|)) (SIGNATURE |degree| (|#3| |#1|)) (SIGNATURE |leadingMonomial| (|#1| |#1|)) (SIGNATURE |leadingCoefficient| (|#2| |#1|))) (|UnivariatePowerSeriesCategory| |#2| |#3|) (|Ring|) (|OrderedAbelianMonoid|)) (T |UnivariatePowerSeriesCategory&|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +(CATEGORY |domain| (SIGNATURE |variables| ((|List| (|SingletonAsOrderedSet|)) |#1|)) (SIGNATURE |monomial| (|#1| |#1| (|List| (|SingletonAsOrderedSet|)) (|List| |#3|))) (SIGNATURE |monomial| (|#1| |#1| (|SingletonAsOrderedSet|) |#3|)) (SIGNATURE |reductum| (|#1| |#1|)) (SIGNATURE |monomial| (|#1| |#2| |#3|)) (SIGNATURE |degree| (|#3| |#1|)) (SIGNATURE |leadingMonomial| (|#1| |#1|)) (SIGNATURE |leadingCoefficient| (|#2| |#1|))) │ │ │ +((|rightRemainder| (($ $ $) 45)) (|rightQuotient| (($ $ $) 44)) (|rightLcm| (($ $ $) 42)) (|rightGcd| (($ $ $) 51)) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 46)) (|rightExactQuotient| (((|Union| $ "failed") $ $) 49)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL) (((|Union| |#2| "failed") $) 25)) (|primitivePart| (($ $) 35)) (|leftRemainder| (($ $ $) 39)) (|leftQuotient| (($ $ $) 38)) (|leftLcm| (($ $ $) 47)) (|leftGcd| (($ $ $) 53)) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 41)) (|leftExactQuotient| (((|Union| $ "failed") $ $) 48)) (|exquo| (((|Union| $ "failed") $ |#2|) 28)) (|content| ((|#2| $) 32)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ (|Fraction| (|Integer|))) NIL) (($ |#2|) 12)) (|coefficients| (((|List| |#2|) $) 18)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) │ │ │ +(((|UnivariateSkewPolynomialCategory&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |leftLcm| (|#1| |#1| |#1|)) (SIGNATURE |rightExtendedGcd| ((|Record| (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| |generator| |#1|)) |#1| |#1|)) (SIGNATURE |rightGcd| (|#1| |#1| |#1|)) (SIGNATURE |rightExactQuotient| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |rightRemainder| (|#1| |#1| |#1|)) (SIGNATURE |rightQuotient| (|#1| |#1| |#1|)) (SIGNATURE |rightLcm| (|#1| |#1| |#1|)) (SIGNATURE |leftExtendedGcd| ((|Record| (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| |generator| |#1|)) |#1| |#1|)) (SIGNATURE |leftGcd| (|#1| |#1| |#1|)) (SIGNATURE |leftExactQuotient| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |leftRemainder| (|#1| |#1| |#1|)) (SIGNATURE |leftQuotient| (|#1| |#1| |#1|)) (SIGNATURE |primitivePart| (|#1| |#1|)) (SIGNATURE |content| (|#2| |#1|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#2|)) (SIGNATURE |coefficients| ((|List| |#2|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|UnivariateSkewPolynomialCategory| |#2|) (|Ring|)) (T |UnivariateSkewPolynomialCategory&|)) │ │ │ NIL │ │ │ -(((|LeftUnitaryAttribute|) (|Category|)) (T |LeftUnitaryAttribute|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |leftLcm| (|#1| |#1| |#1|)) (SIGNATURE |rightExtendedGcd| ((|Record| (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| |generator| |#1|)) |#1| |#1|)) (SIGNATURE |rightGcd| (|#1| |#1| |#1|)) (SIGNATURE |rightExactQuotient| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |rightRemainder| (|#1| |#1| |#1|)) (SIGNATURE |rightQuotient| (|#1| |#1| |#1|)) (SIGNATURE |rightLcm| (|#1| |#1| |#1|)) (SIGNATURE |leftExtendedGcd| ((|Record| (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| |generator| |#1|)) |#1| |#1|)) (SIGNATURE |leftGcd| (|#1| |#1| |#1|)) (SIGNATURE |leftExactQuotient| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |leftRemainder| (|#1| |#1| |#1|)) (SIGNATURE |leftQuotient| (|#1| |#1| |#1|)) (SIGNATURE |primitivePart| (|#1| |#1|)) (SIGNATURE |content| (|#2| |#1|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#2|)) (SIGNATURE |coefficients| ((|List| |#2|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) │ │ │ +((|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) 35))) │ │ │ +(((|NonLinearFirstOrderODESolver| |#1| |#2|) (CATEGORY |package| (SIGNATURE |solve| ((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)))) (|Join| (|OrderedSet|) (|EuclideanDomain|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|CharacteristicZero|)) (|Join| (|AlgebraicallyClosedFunctionSpace| |#1|) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|))) (T |NonLinearFirstOrderODESolver|)) │ │ │ +((|solve| (*1 *2 *2 *2 *3 *4) (|partial| AND (|isDomain| *3 (|BasicOperator|)) (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|OrderedSet|) (|EuclideanDomain|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|CharacteristicZero|))) (|isDomain| *1 (|NonLinearFirstOrderODESolver| *5 *2)) (|ofCategory| *2 (|Join| (|AlgebraicallyClosedFunctionSpace| *5) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |solve| ((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|variables| (((|List| |#2|) $) 134)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 127 (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) 126 (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) 124 (|has| |#1| (|IntegralDomain|)))) (|tanh| (($ $) 83 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|tan| (($ $) 66 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sqrt| (($ $) 65 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sinh| (($ $) 82 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sin| (($ $) 67 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sech| (($ $) 81 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sec| (($ $) 68 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sample| (($) 16 T CONST)) (|reductum| (($ $) 118)) (|recip| (((|Union| $ "failed") $) 33)) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) 96) (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) 95)) (|pole?| (((|Boolean|) $) 135)) (|pi| (($) 93 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|order| (((|NonNegativeInteger|) $ |#2|) 98) (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) 97)) (|one?| (((|Boolean|) $) 30)) (|nthRoot| (($ $ (|Integer|)) 64 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|monomial?| (((|Boolean|) $) 116)) (|monomial| (($ $ (|List| |#2|) (|List| (|IndexedExponents| |#2|))) 133) (($ $ |#2| (|IndexedExponents| |#2|)) 132) (($ |#1| (|IndexedExponents| |#2|)) 117) (($ $ |#2| (|NonNegativeInteger|)) 100) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) 99)) (|map| (($ (|Mapping| |#1| |#1|) $) 115)) (|log| (($ $) 90 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|leadingMonomial| (($ $) 113)) (|leadingCoefficient| ((|#1| $) 112)) (|latex| (((|String|) $) 9)) (|integrate| (($ $ |#2|) 94 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|hash| (((|SingleInteger|) $) 10)) (|extend| (($ $ (|NonNegativeInteger|)) 101)) (|exquo| (((|Union| $ "failed") $ $) 128 (|has| |#1| (|IntegralDomain|)))) (|exp| (($ $) 91 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|eval| (($ $ |#2| $) 109) (($ $ (|List| |#2|) (|List| $)) 108) (($ $ (|List| (|Equation| $))) 107) (($ $ (|Equation| $)) 106) (($ $ $ $) 105) (($ $ (|List| $) (|List| $)) 104)) (|differentiate| (($ $ |#2|) 41) (($ $ (|List| |#2|)) 40) (($ $ |#2| (|NonNegativeInteger|)) 39) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) 38)) (|degree| (((|IndexedExponents| |#2|) $) 114)) (|csch| (($ $) 80 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|csc| (($ $) 69 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|coth| (($ $) 79 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cot| (($ $) 70 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cosh| (($ $) 78 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cos| (($ $) 71 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|complete| (($ $) 136)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ |#1|) 131 (|has| |#1| (|CommutativeRing|))) (($ $) 129 (|has| |#1| (|IntegralDomain|))) (($ (|Fraction| (|Integer|))) 121 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|coefficient| ((|#1| $ (|IndexedExponents| |#2|)) 119) (($ $ |#2| (|NonNegativeInteger|)) 103) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) 102)) (|charthRoot| (((|Union| $ "failed") $) 130 (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|atanh| (($ $) 89 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|atan| (($ $) 77 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|associates?| (((|Boolean|) $ $) 125 (|has| |#1| (|IntegralDomain|)))) (|asinh| (($ $) 88 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asin| (($ $) 76 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asech| (($ $) 87 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asec| (($ $) 75 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acsch| (($ $) 86 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acsc| (($ $) 74 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acoth| (($ $) 85 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acot| (($ $) 73 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acosh| (($ $) 84 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acos| (($ $) 72 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $ |#2|) 37) (($ $ (|List| |#2|)) 36) (($ $ |#2| (|NonNegativeInteger|)) 35) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) 34)) (= (((|Boolean|) $ $) 6)) (/ (($ $ |#1|) 120 (|has| |#1| (|Field|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ $) 92 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) 63 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 123 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ (|Fraction| (|Integer|)) $) 122 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ |#1| $) 111) (($ $ |#1|) 110))) │ │ │ +(((|MultivariateTaylorSeriesCategory| |#1| |#2|) (|Category|) (|Ring|) (|OrderedSet|)) (T |MultivariateTaylorSeriesCategory|)) │ │ │ +((|coefficient| (*1 *1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *2)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *2 (|OrderedSet|)))) (|coefficient| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *5)) (|isDomain| *3 (|List| (|NonNegativeInteger|))) (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *5)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedSet|)))) (|extend| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)))) (|monomial| (*1 *1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *2)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *2 (|OrderedSet|)))) (|monomial| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *5)) (|isDomain| *3 (|List| (|NonNegativeInteger|))) (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *5)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedSet|)))) (|order| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *3)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|order| (*1 *2 *1 *3 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *3)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)))) (|polynomial| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *5)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Polynomial| *4)))) (|polynomial| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *4 *5)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Polynomial| *4)))) (|integrate| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|MultivariateTaylorSeriesCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ +(|Join| (|PartialDifferentialRing| |t#2|) (|PowerSeriesCategory| |t#1| (|IndexedExponents| |t#2|) |t#2|) (|InnerEvalable| |t#2| $) (|Evalable| $) (CATEGORY |domain| (SIGNATURE |coefficient| ($ $ |t#2| (|NonNegativeInteger|))) (SIGNATURE |coefficient| ($ $ (|List| |t#2|) (|List| (|NonNegativeInteger|)))) (SIGNATURE |extend| ($ $ (|NonNegativeInteger|))) (SIGNATURE |monomial| ($ $ |t#2| (|NonNegativeInteger|))) (SIGNATURE |monomial| ($ $ (|List| |t#2|) (|List| (|NonNegativeInteger|)))) (SIGNATURE |order| ((|NonNegativeInteger|) $ |t#2|)) (SIGNATURE |order| ((|NonNegativeInteger|) $ |t#2| (|NonNegativeInteger|))) (SIGNATURE |polynomial| ((|Polynomial| |t#1|) $ (|NonNegativeInteger|))) (SIGNATURE |polynomial| ((|Polynomial| |t#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|))) (IF (|has| |t#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ($ $ |t#2|)) (ATTRIBUTE (|RadicalCategory|)) (ATTRIBUTE (|TranscendentalFunctionCategory|))) |noBranch|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| (|IndexedExponents| |#2|)) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) |has| |#1| (|IntegralDomain|)) ((|ArcHyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|ArcTrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|ElementaryFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|EntireRing|) |has| |#1| (|IntegralDomain|)) ((|Evalable| $) . T) ((|HyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|InnerEvalable| |#2| $) . T) ((|InnerEvalable| $ $) . T) ((|IntegralDomain|) |has| |#1| (|IntegralDomain|)) ((|LeftModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Module| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) |has| |#1| (|IntegralDomain|)) ((|Monoid|) . T) ((|PartialDifferentialRing| |#2|) . T) ((|PowerSeriesCategory| |#1| (|IndexedExponents| |#2|) |#2|) . T) ((|RadicalCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|TranscendentalFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|TrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|variable| (((|Symbol|) $) 11)) (|segment| (((|Segment| |#1|) $) 12)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|equation| (($ (|Symbol|) (|Segment| |#1|)) 10)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (= (((|Boolean|) $ $) 15 (|has| |#1| (|SetCategory|))))) │ │ │ +(((|SegmentBinding| |#1|) (|Join| (|Type|) (CATEGORY |domain| (SIGNATURE |equation| ($ (|Symbol|) (|Segment| |#1|))) (SIGNATURE |variable| ((|Symbol|) $)) (SIGNATURE |segment| ((|Segment| |#1|) $)) (IF (|has| |#1| (|SetCategory|)) (ATTRIBUTE (|SetCategory|)) |noBranch|))) (|Type|)) (T |SegmentBinding|)) │ │ │ +((|equation| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Segment| *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *1 (|SegmentBinding| *4)))) (|variable| (*1 *2 *1) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|SegmentBinding| *3)) (|ofCategory| *3 (|Type|)))) (|segment| (*1 *2 *1) (AND (|isDomain| *2 (|Segment| *3)) (|isDomain| *1 (|SegmentBinding| *3)) (|ofCategory| *3 (|Type|))))) │ │ │ +(|Join| (|Type|) (CATEGORY |domain| (SIGNATURE |equation| ($ (|Symbol|) (|Segment| |#1|))) (SIGNATURE |variable| ((|Symbol|) $)) (SIGNATURE |segment| ((|Segment| |#1|) $)) (IF (|has| |#1| (|SetCategory|)) (ATTRIBUTE (|SetCategory|)) |noBranch|))) │ │ │ +((|cycleElt| (((|Union| |#2| "failed") |#2|) 14)) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) 16)) (|computeCycleEntry| ((|#2| |#2| |#2|) 18))) │ │ │ +(((|CyclicStreamTools| |#1| |#2|) (CATEGORY |package| (SIGNATURE |cycleElt| ((|Union| |#2| "failed") |#2|)) (SIGNATURE |computeCycleLength| ((|NonNegativeInteger|) |#2|)) (SIGNATURE |computeCycleEntry| (|#2| |#2| |#2|))) (|Type|) (|LazyStreamAggregate| |#1|)) (T |CyclicStreamTools|)) │ │ │ +((|computeCycleEntry| (*1 *2 *2 *2) (AND (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|CyclicStreamTools| *3 *2)) (|ofCategory| *2 (|LazyStreamAggregate| *3)))) (|computeCycleLength| (*1 *2 *3) (AND (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|CyclicStreamTools| *4 *3)) (|ofCategory| *3 (|LazyStreamAggregate| *4)))) (|cycleElt| (*1 *2 *2) (|partial| AND (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|CyclicStreamTools| *3 *2)) (|ofCategory| *2 (|LazyStreamAggregate| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |cycleElt| ((|Union| |#2| "failed") |#2|)) (SIGNATURE |computeCycleLength| ((|NonNegativeInteger|) |#2|)) (SIGNATURE |computeCycleEntry| (|#2| |#2| |#2|))) │ │ │ +((|retractIfCan| (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) 98) (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) 87) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) 119) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) 108) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 76) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 65)) (|retract| (($ (|Vector| (|Expression| (|Float|)))) 94) (($ (|Vector| (|Expression| (|Integer|)))) 83) (($ (|Vector| (|Polynomial| (|Float|)))) 115) (($ (|Vector| (|Polynomial| (|Integer|)))) 104) (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 72) (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 58)) (|outputAsFortran| (((|Void|) $) 133)) (|coerce| (((|OutputForm|) $) 127) (($ (|List| (|FortranCode|))) 122) (($ (|FortranCode|)) 125) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 50) (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) 51))) │ │ │ +(((|Asp31| |#1|) (|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))))))) (|Symbol|)) (T |Asp31|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) (|isDomain| *1 (|Asp31| *3)) (|ofType| *3 (|Symbol|))))) │ │ │ +(|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|variables| (((|List| (|SingletonAsOrderedSet|)) $) NIL)) (|variable| (((|Symbol|) $) NIL)) (|univariatePolynomial| (((|UnivariatePolynomial| (QUOTE |x|) |#1|) $ (|NonNegativeInteger|)) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|truncate| (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|NonNegativeInteger|) (|NonNegativeInteger|)) NIL)) (|terms| (((|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|))) $) NIL)) (|tanh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|tan| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sqrt| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sinh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sin| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|series| (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) NIL) (($ (|Stream| |#1|)) NIL)) (|sech| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sec| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sample| (($) NIL T CONST)) (|revert| (($ $) NIL)) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|quoByVar| (($ $) NIL)) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) NIL) (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) NIL)) (|pole?| (((|Boolean|) $) NIL)) (|pi| (($) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|order| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) NIL)) (|one?| (((|Boolean|) $) NIL)) (|oddlambert| (($ $) NIL)) (|nthRoot| (($ $ (|Integer|)) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|multisect| (($ (|Integer|) (|Integer|) $) NIL)) (|multiplyExponents| (($ $ (|PositiveInteger|)) NIL)) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) NIL)) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| (|NonNegativeInteger|)) NIL) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|log| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|lambert| (($ $) NIL)) (|lagrange| (($ $) NIL)) (|invmultisect| (($ (|Integer|) (|Integer|) $) NIL)) (|integrate| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Symbol|)) NIL (OR (AND (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| (|Symbol|)))) (|has| |#1| (SIGNATURE |variables| ((|List| (|Symbol|)) |#1|))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (AND (|has| |#1| (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|))))) (($ $ (|Variable| (QUOTE |x|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|hash| (((|SingleInteger|) $) NIL)) (|generalLambert| (($ $ (|Integer|) (|Integer|)) NIL)) (|extend| (($ $ (|NonNegativeInteger|)) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|exp| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|evenlambert| (($ $) NIL)) (|eval| (((|Stream| |#1|) $ |#1|) NIL (|has| |#1| (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|)))))) (|elt| ((|#1| $ (|NonNegativeInteger|)) NIL) (($ $ $) NIL (|has| (|NonNegativeInteger|) (|SemiGroup|)))) (|differentiate| (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))) (($ $) NIL (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))) (($ $ (|Variable| (QUOTE |x|))) NIL)) (|degree| (((|NonNegativeInteger|) $) NIL)) (|csch| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|csc| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|coth| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cot| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cosh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cos| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|complete| (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $) NIL (|has| |#1| (|IntegralDomain|))) (($ |#1|) NIL (|has| |#1| (|CommutativeRing|))) (($ (|UnivariatePolynomial| (QUOTE |x|) |#1|)) NIL) (($ (|Variable| (QUOTE |x|))) NIL)) (|coefficients| (((|Stream| |#1|) $) NIL)) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) NIL)) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|center| ((|#1| $) NIL)) (|atanh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|atan| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|asinh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asin| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asech| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asec| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|approximate| ((|#1| $ (|NonNegativeInteger|)) NIL (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|)))) (|has| |#1| (SIGNATURE |coerce| (|#1| (|Symbol|))))))) (|acsch| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acsc| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acoth| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acot| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acosh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acos| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (D (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))) (($ $) NIL (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))))) (= (((|Boolean|) $ $) NIL)) (/ (($ $ |#1|) NIL (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ |#1|) NIL (|has| |#1| (|Field|))) (($ $ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ +(((|UnivariateFormalPowerSeries| |#1|) (|Join| (|UnivariateTaylorSeriesCategory| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|UnivariatePolynomial| (QUOTE |x|) |#1|))) (SIGNATURE |univariatePolynomial| ((|UnivariatePolynomial| (QUOTE |x|) |#1|) $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ (|Variable| (QUOTE |x|)))) (SIGNATURE |differentiate| ($ $ (|Variable| (QUOTE |x|)))) (SIGNATURE |lagrange| ($ $)) (SIGNATURE |lambert| ($ $)) (SIGNATURE |oddlambert| ($ $)) (SIGNATURE |evenlambert| ($ $)) (SIGNATURE |generalLambert| ($ $ (|Integer|) (|Integer|))) (SIGNATURE |revert| ($ $)) (SIGNATURE |multisect| ($ (|Integer|) (|Integer|) $)) (SIGNATURE |invmultisect| ($ (|Integer|) (|Integer|) $)) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ (|Variable| (QUOTE |x|)))) |noBranch|))) (|Ring|)) (T |UnivariateFormalPowerSeries|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|UnivariatePolynomial| (QUOTE |x|) *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|UnivariateFormalPowerSeries| *3)))) (|univariatePolynomial| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|UnivariatePolynomial| (QUOTE |x|) *4)) (|isDomain| *1 (|UnivariateFormalPowerSeries| *4)) (|ofCategory| *4 (|Ring|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Variable| (QUOTE |x|))) (|isDomain| *1 (|UnivariateFormalPowerSeries| *3)) (|ofCategory| *3 (|Ring|)))) (|differentiate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Variable| (QUOTE |x|))) (|isDomain| *1 (|UnivariateFormalPowerSeries| *3)) (|ofCategory| *3 (|Ring|)))) (|lagrange| (*1 *1 *1) (AND (|isDomain| *1 (|UnivariateFormalPowerSeries| *2)) (|ofCategory| *2 (|Ring|)))) (|lambert| (*1 *1 *1) (AND (|isDomain| *1 (|UnivariateFormalPowerSeries| *2)) (|ofCategory| *2 (|Ring|)))) (|oddlambert| (*1 *1 *1) (AND (|isDomain| *1 (|UnivariateFormalPowerSeries| *2)) (|ofCategory| *2 (|Ring|)))) (|evenlambert| (*1 *1 *1) (AND (|isDomain| *1 (|UnivariateFormalPowerSeries| *2)) (|ofCategory| *2 (|Ring|)))) (|generalLambert| (*1 *1 *1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|UnivariateFormalPowerSeries| *3)) (|ofCategory| *3 (|Ring|)))) (|revert| (*1 *1 *1) (AND (|isDomain| *1 (|UnivariateFormalPowerSeries| *2)) (|ofCategory| *2 (|Ring|)))) (|multisect| (*1 *1 *2 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|UnivariateFormalPowerSeries| *3)) (|ofCategory| *3 (|Ring|)))) (|invmultisect| (*1 *1 *2 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|UnivariateFormalPowerSeries| *3)) (|ofCategory| *3 (|Ring|)))) (|integrate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Variable| (QUOTE |x|))) (|isDomain| *1 (|UnivariateFormalPowerSeries| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|Ring|))))) │ │ │ +(|Join| (|UnivariateTaylorSeriesCategory| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|UnivariatePolynomial| (QUOTE |x|) |#1|))) (SIGNATURE |univariatePolynomial| ((|UnivariatePolynomial| (QUOTE |x|) |#1|) $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ (|Variable| (QUOTE |x|)))) (SIGNATURE |differentiate| ($ $ (|Variable| (QUOTE |x|)))) (SIGNATURE |lagrange| ($ $)) (SIGNATURE |lambert| ($ $)) (SIGNATURE |oddlambert| ($ $)) (SIGNATURE |evenlambert| ($ $)) (SIGNATURE |generalLambert| ($ $ (|Integer|) (|Integer|))) (SIGNATURE |revert| ($ $)) (SIGNATURE |multisect| ($ (|Integer|) (|Integer|) $)) (SIGNATURE |invmultisect| ($ (|Integer|) (|Integer|) $)) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ (|Variable| (QUOTE |x|)))) |noBranch|))) │ │ │ +((|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) 27)) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) 34)) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) 83))) │ │ │ +(((|ChineseRemainderToolsForIntegralBases| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |factorList| ((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |listConjugateBases| ((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |chineseRemainder| ((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)))) (|FiniteFieldCategory|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| |#2|)) (T |ChineseRemainderToolsForIntegralBases|)) │ │ │ +((|chineseRemainder| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|List| (|Record| (|:| |basis| (|Matrix| *7)) (|:| |basisDen| *7) (|:| |basisInv| (|Matrix| *7))))) (|isDomain| *5 (|NonNegativeInteger|)) (|ofCategory| *8 (|UnivariatePolynomialCategory| *7)) (|ofCategory| *7 (|UnivariatePolynomialCategory| *6)) (|ofCategory| *6 (|FiniteFieldCategory|)) (|isDomain| *2 (|Record| (|:| |basis| (|Matrix| *7)) (|:| |basisDen| *7) (|:| |basisInv| (|Matrix| *7)))) (|isDomain| *1 (|ChineseRemainderToolsForIntegralBases| *6 *7 *8)))) (|listConjugateBases| (*1 *2 *3 *4 *4) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|FiniteFieldCategory|)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|isDomain| *2 (|List| (|Record| (|:| |basis| (|Matrix| *6)) (|:| |basisDen| *6) (|:| |basisInv| (|Matrix| *6))))) (|isDomain| *1 (|ChineseRemainderToolsForIntegralBases| *5 *6 *7)) (|isDomain| *3 (|Record| (|:| |basis| (|Matrix| *6)) (|:| |basisDen| *6) (|:| |basisInv| (|Matrix| *6)))) (|ofCategory| *7 (|UnivariatePolynomialCategory| *6)))) (|factorList| (*1 *2 *3 *4 *4 *4) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *3 (|FiniteFieldCategory|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *3)) (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *3))) (|isDomain| *1 (|ChineseRemainderToolsForIntegralBases| *3 *5 *6)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |factorList| ((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |listConjugateBases| ((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |chineseRemainder| ((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)))) │ │ │ +((|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) 47 (|has| (|Polynomial| |#2|) (|PatternMatchable| |#1|))))) │ │ │ +(((|ComplexPatternMatch| |#1| |#2| |#3|) (CATEGORY |package| (IF (|has| (|Polynomial| |#2|) (|PatternMatchable| |#1|)) (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) |noBranch|)) (|SetCategory|) (|Join| (|PatternMatchable| |#1|) (|CommutativeRing|)) (|ComplexCategory| |#2|)) (T |ComplexPatternMatch|)) │ │ │ +((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchResult| *5 *3)) (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *3 (|ComplexCategory| *6)) (|ofCategory| (|Polynomial| *6) (|PatternMatchable| *5)) (|ofCategory| *6 (|Join| (|PatternMatchable| *5) (|CommutativeRing|))) (|isDomain| *1 (|ComplexPatternMatch| *5 *6 *3))))) │ │ │ +(CATEGORY |package| (IF (|has| (|Polynomial| |#2|) (|PatternMatchable| |#1|)) (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) |noBranch|)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|size| (((|NonNegativeInteger|)) 19)) (|random| (($) 22)) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|lookup| (((|PositiveInteger|) $) 21)) (|latex| (((|String|) $) 9)) (|index| (($ (|PositiveInteger|)) 20)) (|hash| (((|SingleInteger|) $) 10)) (|enumerate| (((|List| $)) 23)) (|coerce| (((|OutputForm|) $) 11)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17))) │ │ │ +(((|OrderedFinite|) (|Category|)) (T |OrderedFinite|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +(|Join| (|OrderedSet|) (|Finite|)) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Finite|) . T) ((|OrderedSet|) . T) ((|SetCategory|) . T)) │ │ │ +((|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) 22))) │ │ │ +(((|PolynomialInterpolationAlgorithms| |#1| |#2|) (CATEGORY |package| (SIGNATURE |LagrangeInterpolation| (|#2| (|List| |#1|) (|List| |#1|)))) (|Field|) (|UnivariatePolynomialCategory| |#1|)) (T |PolynomialInterpolationAlgorithms|)) │ │ │ +((|LagrangeInterpolation| (*1 *2 *3 *3) (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|Field|)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)) (|isDomain| *1 (|PolynomialInterpolationAlgorithms| *4 *2))))) │ │ │ +(CATEGORY |package| (SIGNATURE |LagrangeInterpolation| (|#2| (|List| |#1|) (|List| |#1|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|totalDifferential| (($ (|Expression| |#1|)) 23)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|retractable?| (((|Boolean|) $) NIL)) (|retractIfCan| (((|Union| (|Expression| |#1|) "failed") $) NIL)) (|retract| (((|Expression| |#1|) $) NIL)) (|reductum| (($ $) 31)) (|recip| (((|Union| $ "failed") $) NIL)) (|proj| (($ $ (|NonNegativeInteger|)) 92)) (|one?| (((|Boolean|) $) NIL)) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) NIL)) (|lieDerivative| (($ (|Vector| (|Expression| |#1|)) $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|))) 103)) (|leadingCoefficient| (((|Expression| |#1|) $) 90)) (|leadingBasisTerm| (($ $) 30)) (|latex| (((|String|) $) NIL)) (|interiorProduct| (($ (|Vector| (|Expression| |#1|)) $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|))) 102)) (|homogeneous?| (((|Boolean|) $) NIL)) (|hodgeStar| (($ $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|))) 91)) (|hash| (((|SingleInteger|) $) NIL)) (|generator| (($ (|NonNegativeInteger|)) 94)) (|exteriorDifferential| (($ $) 32)) (|dot| (((|Expression| |#1|) $ $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|))) 86)) (|dim| (((|NonNegativeInteger|) $) 58)) (|degree| (((|NonNegativeInteger|) $) 98)) (|coerce| (((|OutputForm|) $) 107) (($ (|Integer|)) NIL) (($ (|Expression| |#1|)) NIL)) (|coefficient| (((|Expression| |#1|) $ $) NIL)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 25 T CONST)) (|One| (($) 50 T CONST)) (= (((|Boolean|) $ $) 28)) (- (($ $) 97) (($ $ $) NIL)) (+ (($ $ $) 19)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 24) (($ (|Expression| |#1|) $) 18))) │ │ │ +(((|DeRhamComplex| |#1| |#2|) (|Join| (|LeftAlgebra| (|Expression| |#1|)) (|RetractableTo| (|Expression| |#1|)) (CATEGORY |domain| (SIGNATURE |leadingCoefficient| ((|Expression| |#1|) $)) (SIGNATURE |leadingBasisTerm| ($ $)) (SIGNATURE |reductum| ($ $)) (SIGNATURE |coefficient| ((|Expression| |#1|) $ $)) (SIGNATURE |generator| ($ (|NonNegativeInteger|))) (SIGNATURE |homogeneous?| ((|Boolean|) $)) (SIGNATURE |retractable?| ((|Boolean|) $)) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |map| ($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $)) (SIGNATURE |totalDifferential| ($ (|Expression| |#1|))) (SIGNATURE |exteriorDifferential| ($ $)) (SIGNATURE |dim| ((|NonNegativeInteger|) $)) (SIGNATURE |hodgeStar| ($ $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|)))) (SIGNATURE |dot| ((|Expression| |#1|) $ $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|)))) (SIGNATURE |proj| ($ $ (|NonNegativeInteger|))) (SIGNATURE |interiorProduct| ($ (|Vector| (|Expression| |#1|)) $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|)))) (SIGNATURE |lieDerivative| ($ (|Vector| (|Expression| |#1|)) $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|)))))) (|Join| (|Ring|) (|OrderedSet|)) (|List| (|Symbol|))) (T |DeRhamComplex|)) │ │ │ +((|leadingCoefficient| (*1 *2 *1) (AND (|isDomain| *2 (|Expression| *3)) (|isDomain| *1 (|DeRhamComplex| *3 *4)) (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|))) (|ofType| *4 (|List| (|Symbol|))))) (|leadingBasisTerm| (*1 *1 *1) (AND (|isDomain| *1 (|DeRhamComplex| *2 *3)) (|ofCategory| *2 (|Join| (|Ring|) (|OrderedSet|))) (|ofType| *3 (|List| (|Symbol|))))) (|reductum| (*1 *1 *1) (AND (|isDomain| *1 (|DeRhamComplex| *2 *3)) (|ofCategory| *2 (|Join| (|Ring|) (|OrderedSet|))) (|ofType| *3 (|List| (|Symbol|))))) (|coefficient| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Expression| *3)) (|isDomain| *1 (|DeRhamComplex| *3 *4)) (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|))) (|ofType| *4 (|List| (|Symbol|))))) (|generator| (*1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|DeRhamComplex| *3 *4)) (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|))) (|ofType| *4 (|List| (|Symbol|))))) (|homogeneous?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DeRhamComplex| *3 *4)) (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|))) (|ofType| *4 (|List| (|Symbol|))))) (|retractable?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DeRhamComplex| *3 *4)) (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|))) (|ofType| *4 (|List| (|Symbol|))))) (|degree| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|DeRhamComplex| *3 *4)) (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|))) (|ofType| *4 (|List| (|Symbol|))))) (|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Expression| *3) (|Expression| *3))) (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|))) (|isDomain| *1 (|DeRhamComplex| *3 *4)) (|ofType| *4 (|List| (|Symbol|))))) (|totalDifferential| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| *3)) (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|))) (|isDomain| *1 (|DeRhamComplex| *3 *4)) (|ofType| *4 (|List| (|Symbol|))))) (|exteriorDifferential| (*1 *1 *1) (AND (|isDomain| *1 (|DeRhamComplex| *2 *3)) (|ofCategory| *2 (|Join| (|Ring|) (|OrderedSet|))) (|ofType| *3 (|List| (|Symbol|))))) (|dim| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|DeRhamComplex| *3 *4)) (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|))) (|ofType| *4 (|List| (|Symbol|))))) (|hodgeStar| (*1 *1 *1 *2) (AND (|isDomain| *2 (|SquareMatrix| (|#| *4) (|Expression| *3))) (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|))) (|ofType| *4 (|List| (|Symbol|))) (|isDomain| *1 (|DeRhamComplex| *3 *4)))) (|dot| (*1 *2 *1 *1 *3) (AND (|isDomain| *3 (|SquareMatrix| (|#| *5) (|Expression| *4))) (|ofType| *5 (|List| (|Symbol|))) (|isDomain| *2 (|Expression| *4)) (|isDomain| *1 (|DeRhamComplex| *4 *5)) (|ofCategory| *4 (|Join| (|Ring|) (|OrderedSet|))))) (|proj| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|DeRhamComplex| *3 *4)) (|ofCategory| *3 (|Join| (|Ring|) (|OrderedSet|))) (|ofType| *4 (|List| (|Symbol|))))) (|interiorProduct| (*1 *1 *2 *1 *3) (AND (|isDomain| *2 (|Vector| (|Expression| *4))) (|isDomain| *3 (|SquareMatrix| (|#| *5) (|Expression| *4))) (|ofCategory| *4 (|Join| (|Ring|) (|OrderedSet|))) (|ofType| *5 (|List| (|Symbol|))) (|isDomain| *1 (|DeRhamComplex| *4 *5)))) (|lieDerivative| (*1 *1 *2 *1 *3) (AND (|isDomain| *2 (|Vector| (|Expression| *4))) (|isDomain| *3 (|SquareMatrix| (|#| *5) (|Expression| *4))) (|ofCategory| *4 (|Join| (|Ring|) (|OrderedSet|))) (|ofType| *5 (|List| (|Symbol|))) (|isDomain| *1 (|DeRhamComplex| *4 *5))))) │ │ │ +(|Join| (|LeftAlgebra| (|Expression| |#1|)) (|RetractableTo| (|Expression| |#1|)) (CATEGORY |domain| (SIGNATURE |leadingCoefficient| ((|Expression| |#1|) $)) (SIGNATURE |leadingBasisTerm| ($ $)) (SIGNATURE |reductum| ($ $)) (SIGNATURE |coefficient| ((|Expression| |#1|) $ $)) (SIGNATURE |generator| ($ (|NonNegativeInteger|))) (SIGNATURE |homogeneous?| ((|Boolean|) $)) (SIGNATURE |retractable?| ((|Boolean|) $)) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |map| ($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $)) (SIGNATURE |totalDifferential| ($ (|Expression| |#1|))) (SIGNATURE |exteriorDifferential| ($ $)) (SIGNATURE |dim| ((|NonNegativeInteger|) $)) (SIGNATURE |hodgeStar| ($ $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|)))) (SIGNATURE |dot| ((|Expression| |#1|) $ $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|)))) (SIGNATURE |proj| ($ $ (|NonNegativeInteger|))) (SIGNATURE |interiorProduct| ($ (|Vector| (|Expression| |#1|)) $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|)))) (SIGNATURE |lieDerivative| ($ (|Vector| (|Expression| |#1|)) $ (|SquareMatrix| (|#| |#2|) (|Expression| |#1|)))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|symbNameV| (((|Symbol|) $) 42)) (|subMultV| (((|NonNegativeInteger|) $) 48)) (|setsymbName!| (((|Symbol|) $ (|Symbol|)) 81)) (|setsubmult!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) 71)) (|setpoint!| ((|#5| $ |#5|) 74)) (|setmult!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) 77)) (|setlocalPoint!| (((|AffinePlane| |#1|) $ (|AffinePlane| |#1|)) 76)) (|setlocalParam!| (((|List| |#6|) $ (|List| |#6|)) 79)) (|setexcpDiv!| ((|#8| $ |#8|) 80)) (|setcurve!| (((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) $ (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|)) 75)) (|setchart!| ((|#9| $ |#9|) 78)) (|pointV| ((|#5| $) 40)) (|multV| (((|NonNegativeInteger|) $) 43)) (|localPointV| (((|AffinePlane| |#1|) $) 45)) (|localParamV| (((|List| |#6|) $) 73)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|fullOutput| (((|Boolean|) (|Boolean|)) 52) (((|Boolean|)) 53)) (|fullOut| (((|OutputForm|) $) 50)) (|excpDivV| ((|#8| $) 47)) (|degree| (((|PositiveInteger|) $) 58)) (|curveV| (((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) $) 44)) (|create| (($ |#5| (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|AffinePlane| |#1|) (|NonNegativeInteger|) |#9| (|NonNegativeInteger|) |#8| |#1| (|Symbol|)) 59) (($ |#5| |#3|) 70)) (|coerce| (((|OutputForm|) $) 54)) (|chartV| ((|#9| $) 46)) (|actualExtensionV| ((|#1| $) 55)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|InfinitlyClosePoint| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9|) (|Join| (|InfinitlyClosePointCategory| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9|) (CATEGORY |domain| (SIGNATURE |fullOut| ((|OutputForm|) $)) (SIGNATURE |fullOutput| ((|Boolean|) (|Boolean|))) (SIGNATURE |fullOutput| ((|Boolean|))))) (|Field|) (|List| (|Symbol|)) (|PolynomialCategory| |#1| |#4| (|OrderedVariableList| |#2|)) (|DirectProductCategory| (|#| |#2|) (|NonNegativeInteger|)) (|ProjectiveSpaceCategory| |#1|) (|LocalPowerSeriesCategory| |#1|) (|PlacesCategory| |#1| |#6|) (|DivisorCategory| |#7|) (|BlowUpMethodCategory|)) (T |InfinitlyClosePoint|)) │ │ │ +((|fullOut| (*1 *2 *1) (AND (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|InfinitlyClosePoint| *3 *4 *5 *6 *7 *8 *9 *10 *11)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *10 (|DivisorCategory| *9)) (|ofCategory| *11 (|BlowUpMethodCategory|)))) (|fullOutput| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|isDomain| *1 (|InfinitlyClosePoint| *3 *4 *5 *6 *7 *8 *9 *10 *11)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *10 (|DivisorCategory| *9)) (|ofCategory| *11 (|BlowUpMethodCategory|)))) (|fullOutput| (*1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|InfinitlyClosePoint| *3 *4 *5 *6 *7 *8 *9 *10 *11)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *10 (|DivisorCategory| *9)) (|ofCategory| *11 (|BlowUpMethodCategory|))))) │ │ │ +(|Join| (|InfinitlyClosePointCategory| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9|) (CATEGORY |domain| (SIGNATURE |fullOut| ((|OutputForm|) $)) (SIGNATURE |fullOutput| ((|Boolean|) (|Boolean|))) (SIGNATURE |fullOutput| ((|Boolean|))))) │ │ │ +((|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) 104))) │ │ │ +(((|FunctionSpaceIntegration| |#1| |#2|) (CATEGORY |package| (SIGNATURE |integrate| ((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)))) (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|))) (|Join| (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| |#1|))) (T |FunctionSpaceIntegration|)) │ │ │ +((|integrate| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Union| *3 (|List| *3))) (|isDomain| *1 (|FunctionSpaceIntegration| *5 *3)) (|ofCategory| *3 (|Join| (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *5)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |integrate| ((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)))) │ │ │ +((|swap| ((|#3| |#3|) 19))) │ │ │ +(((|CommuteUnivariatePolynomialCategory| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |swap| (|#3| |#3|))) (|Ring|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| |#2|)) (T |CommuteUnivariatePolynomialCategory|)) │ │ │ +((|swap| (*1 *2 *2) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|isDomain| *1 (|CommuteUnivariatePolynomialCategory| *3 *4 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |swap| (|#3| |#3|))) │ │ │ +((|retractIfCan| (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) 84) (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) 73) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) 106) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) 95) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 62) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 51)) (|retract| (($ (|Vector| (|Expression| (|Float|)))) 80) (($ (|Vector| (|Expression| (|Integer|)))) 69) (($ (|Vector| (|Polynomial| (|Float|)))) 102) (($ (|Vector| (|Polynomial| (|Integer|)))) 91) (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 58) (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 44)) (|outputAsFortran| (((|Void|) $) 122)) (|coerce| (((|OutputForm|) $) 116) (($ (|List| (|FortranCode|))) 109) (($ (|FortranCode|)) 36) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 112) (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) 37))) │ │ │ +(((|Asp50| |#1|) (|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))))))) (|Symbol|)) (T |Asp50|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) (|isDomain| *1 (|Asp50| *3)) (|ofType| *3 (|Symbol|))))) │ │ │ +(|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) 29)) (|rule| (($ |#3| |#3|) 21) (($ |#3| |#3| (|List| (|Symbol|))) 19)) (|rhs| ((|#3| $) 13)) (|retractIfCan| (((|Union| (|Equation| |#3|) "failed") $) 56)) (|retract| (((|Equation| |#3|) $) NIL)) (|quotedOperators| (((|List| (|Symbol|)) $) 15)) (|pattern| (((|Pattern| |#1|) $) 11)) (|lhs| ((|#3| $) 12)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|elt| ((|#3| $ |#3|) 25) ((|#3| $ |#3| (|PositiveInteger|)) 36)) (|coerce| (((|OutputForm|) $) 84) (($ (|Equation| |#3|)) 20)) (= (((|Boolean|) $ $) 33))) │ │ │ +(((|RewriteRule| |#1| |#2| |#3|) (|Join| (|SetCategory|) (|Eltable| |#3| |#3|) (|RetractableTo| (|Equation| |#3|)) (CATEGORY |domain| (SIGNATURE |rule| ($ |#3| |#3|)) (SIGNATURE |rule| ($ |#3| |#3| (|List| (|Symbol|)))) (SIGNATURE |suchThat| ($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|)))) (SIGNATURE |pattern| ((|Pattern| |#1|) $)) (SIGNATURE |lhs| (|#3| $)) (SIGNATURE |rhs| (|#3| $)) (SIGNATURE |elt| (|#3| $ |#3| (|PositiveInteger|))) (SIGNATURE |quotedOperators| ((|List| (|Symbol|)) $)))) (|SetCategory|) (|Join| (|Ring|) (|PatternMatchable| |#1|) (|OrderedSet|) (|ConvertibleTo| (|Pattern| |#1|))) (|Join| (|FunctionSpace| |#2|) (|PatternMatchable| |#1|) (|ConvertibleTo| (|Pattern| |#1|)))) (T |RewriteRule|)) │ │ │ +((|rule| (*1 *1 *2 *2) (AND (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|Join| (|Ring|) (|PatternMatchable| *3) (|OrderedSet|) (|ConvertibleTo| (|Pattern| *3)))) (|isDomain| *1 (|RewriteRule| *3 *4 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *4) (|PatternMatchable| *3) (|ConvertibleTo| (|Pattern| *3)))))) (|rule| (*1 *1 *2 *2 *3) (AND (|isDomain| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|Join| (|Ring|) (|PatternMatchable| *4) (|OrderedSet|) (|ConvertibleTo| (|Pattern| *4)))) (|isDomain| *1 (|RewriteRule| *4 *5 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *5) (|PatternMatchable| *4) (|ConvertibleTo| (|Pattern| *4)))))) (|suchThat| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *3 (|Mapping| (|Boolean|) (|List| *6))) (|ofCategory| *6 (|Join| (|FunctionSpace| *5) (|PatternMatchable| *4) (|ConvertibleTo| (|Pattern| *4)))) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|Join| (|Ring|) (|PatternMatchable| *4) (|OrderedSet|) (|ConvertibleTo| (|Pattern| *4)))) (|isDomain| *1 (|RewriteRule| *4 *5 *6)))) (|pattern| (*1 *2 *1) (AND (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|Join| (|Ring|) (|PatternMatchable| *3) (|OrderedSet|) (|ConvertibleTo| *2))) (|isDomain| *2 (|Pattern| *3)) (|isDomain| *1 (|RewriteRule| *3 *4 *5)) (|ofCategory| *5 (|Join| (|FunctionSpace| *4) (|PatternMatchable| *3) (|ConvertibleTo| *2))))) (|lhs| (*1 *2 *1) (AND (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Join| (|FunctionSpace| *4) (|PatternMatchable| *3) (|ConvertibleTo| (|Pattern| *3)))) (|isDomain| *1 (|RewriteRule| *3 *4 *2)) (|ofCategory| *4 (|Join| (|Ring|) (|PatternMatchable| *3) (|OrderedSet|) (|ConvertibleTo| (|Pattern| *3)))))) (|rhs| (*1 *2 *1) (AND (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Join| (|FunctionSpace| *4) (|PatternMatchable| *3) (|ConvertibleTo| (|Pattern| *3)))) (|isDomain| *1 (|RewriteRule| *3 *4 *2)) (|ofCategory| *4 (|Join| (|Ring|) (|PatternMatchable| *3) (|OrderedSet|) (|ConvertibleTo| (|Pattern| *3)))))) (|elt| (*1 *2 *1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|Join| (|Ring|) (|PatternMatchable| *4) (|OrderedSet|) (|ConvertibleTo| (|Pattern| *4)))) (|isDomain| *1 (|RewriteRule| *4 *5 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *5) (|PatternMatchable| *4) (|ConvertibleTo| (|Pattern| *4)))))) (|quotedOperators| (*1 *2 *1) (AND (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|Join| (|Ring|) (|PatternMatchable| *3) (|OrderedSet|) (|ConvertibleTo| (|Pattern| *3)))) (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *1 (|RewriteRule| *3 *4 *5)) (|ofCategory| *5 (|Join| (|FunctionSpace| *4) (|PatternMatchable| *3) (|ConvertibleTo| (|Pattern| *3))))))) │ │ │ +(|Join| (|SetCategory|) (|Eltable| |#3| |#3|) (|RetractableTo| (|Equation| |#3|)) (CATEGORY |domain| (SIGNATURE |rule| ($ |#3| |#3|)) (SIGNATURE |rule| ($ |#3| |#3| (|List| (|Symbol|)))) (SIGNATURE |suchThat| ($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|)))) (SIGNATURE |pattern| ((|Pattern| |#1|) $)) (SIGNATURE |lhs| (|#3| $)) (SIGNATURE |rhs| (|#3| $)) (SIGNATURE |elt| (|#3| $ |#3| (|PositiveInteger|))) (SIGNATURE |quotedOperators| ((|List| (|Symbol|)) $)))) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) 33)) (|setRow!| (($ $ (|Integer|) |#4|) NIL)) (|setColumn!| (($ $ (|Integer|) |#5|) NIL)) (|sample| (($) NIL T CONST)) (|row| ((|#4| $ (|Integer|)) NIL)) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) 32)) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) 30)) (|parts| (((|List| |#1|) $) NIL)) (|nrows| (((|NonNegativeInteger|) $) 26)) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) 23)) (|ncols| (((|NonNegativeInteger|) $) 28)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minRowIndex| (((|Integer|) $) 24)) (|minColIndex| (((|Integer|) $) 25)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxRowIndex| (((|Integer|) $) 27)) (|maxColIndex| (((|Integer|) $) 29)) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) 36 (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|fill!| (($ $ |#1|) NIL)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) 14)) (|empty| (($) 15)) (|elt| ((|#1| $ (|Integer|) (|Integer|)) 31) ((|#1| $ (|Integer|) (|Integer|) |#1|) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) NIL)) (|column| ((|#5| $ (|Integer|)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|InnerIndexedTwoDimensionalArray| |#1| |#2| |#3| |#4| |#5|) (|TwoDimensionalArrayCategory| |#1| |#4| |#5|) (|Type|) (|Integer|) (|Integer|) (|FiniteLinearAggregate| |#1|) (|FiniteLinearAggregate| |#1|)) (T |InnerIndexedTwoDimensionalArray|)) │ │ │ NIL │ │ │ -(((|MultiplicativeValuationAttribute|) (|Category|)) (T |MultiplicativeValuationAttribute|)) │ │ │ +(|TwoDimensionalArrayCategory| |#1| |#4| |#5|) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|wholePart| ((|#1| $) 80)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|sample| (($) NIL T CONST)) (|rem| (($ $ $) NIL)) (|recip| (((|Union| $ "failed") $) 74)) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|prime?| (((|Boolean|) $) NIL)) (|partialFraction| (($ |#1| (|Factored| |#1|)) 72)) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) 40)) (|padicFraction| (($ $) 48)) (|one?| (((|Boolean|) $) NIL)) (|numberOfFractionalTerms| (((|Integer|) $) 77)) (|nthFractionalTerm| (($ $ (|Integer|)) 79)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|firstNumer| ((|#1| $) 76)) (|firstDenom| (((|Factored| |#1|) $) 75)) (|factor| (((|Factored| $) $) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|exquo| (((|Union| $ "failed") $ $) 73)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|compactFraction| (($ $) 38)) (|coerce| (((|OutputForm|) $) 98) (($ (|Integer|)) 53) (($ $) NIL) (($ (|Fraction| (|Integer|))) NIL) (($ |#1|) 30) (((|Fraction| |#1|) $) 58) (($ (|Fraction| (|Factored| |#1|))) 66)) (|characteristic| (((|NonNegativeInteger|)) 51)) (|associates?| (((|Boolean|) $ $) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|Zero| (($) 23 T CONST)) (|One| (($) 11 T CONST)) (= (((|Boolean|) $ $) 67)) (/ (($ $ $) NIL)) (- (($ $) 87) (($ $ $) NIL)) (+ (($ $ $) 37)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 89) (($ $ $) 36) (($ $ (|Fraction| (|Integer|))) NIL) (($ (|Fraction| (|Integer|)) $) NIL) (($ |#1| $) 88) (($ $ |#1|) NIL))) │ │ │ +(((|PartialFraction| |#1|) (|Join| (|Field|) (|Algebra| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ((|Fraction| |#1|) $)) (SIGNATURE |coerce| ($ (|Fraction| (|Factored| |#1|)))) (SIGNATURE |compactFraction| ($ $)) (SIGNATURE |firstDenom| ((|Factored| |#1|) $)) (SIGNATURE |firstNumer| (|#1| $)) (SIGNATURE |nthFractionalTerm| ($ $ (|Integer|))) (SIGNATURE |numberOfFractionalTerms| ((|Integer|) $)) (SIGNATURE |padicallyExpand| ((|SparseUnivariatePolynomial| |#1|) |#1| |#1|)) (SIGNATURE |padicFraction| ($ $)) (SIGNATURE |partialFraction| ($ |#1| (|Factored| |#1|))) (SIGNATURE |wholePart| (|#1| $)))) (|EuclideanDomain|)) (T |PartialFraction|)) │ │ │ +((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Fraction| *3)) (|isDomain| *1 (|PartialFraction| *3)) (|ofCategory| *3 (|EuclideanDomain|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| (|Factored| *3))) (|ofCategory| *3 (|EuclideanDomain|)) (|isDomain| *1 (|PartialFraction| *3)))) (|compactFraction| (*1 *1 *1) (AND (|isDomain| *1 (|PartialFraction| *2)) (|ofCategory| *2 (|EuclideanDomain|)))) (|firstDenom| (*1 *2 *1) (AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|PartialFraction| *3)) (|ofCategory| *3 (|EuclideanDomain|)))) (|firstNumer| (*1 *2 *1) (AND (|isDomain| *1 (|PartialFraction| *2)) (|ofCategory| *2 (|EuclideanDomain|)))) (|nthFractionalTerm| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|PartialFraction| *3)) (|ofCategory| *3 (|EuclideanDomain|)))) (|numberOfFractionalTerms| (*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|PartialFraction| *3)) (|ofCategory| *3 (|EuclideanDomain|)))) (|padicallyExpand| (*1 *2 *3 *3) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3)) (|isDomain| *1 (|PartialFraction| *3)) (|ofCategory| *3 (|EuclideanDomain|)))) (|padicFraction| (*1 *1 *1) (AND (|isDomain| *1 (|PartialFraction| *2)) (|ofCategory| *2 (|EuclideanDomain|)))) (|partialFraction| (*1 *1 *2 *3) (AND (|isDomain| *3 (|Factored| *2)) (|ofCategory| *2 (|EuclideanDomain|)) (|isDomain| *1 (|PartialFraction| *2)))) (|wholePart| (*1 *2 *1) (AND (|isDomain| *1 (|PartialFraction| *2)) (|ofCategory| *2 (|EuclideanDomain|))))) │ │ │ +(|Join| (|Field|) (|Algebra| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ((|Fraction| |#1|) $)) (SIGNATURE |coerce| ($ (|Fraction| (|Factored| |#1|)))) (SIGNATURE |compactFraction| ($ $)) (SIGNATURE |firstDenom| ((|Factored| |#1|) $)) (SIGNATURE |firstNumer| (|#1| $)) (SIGNATURE |nthFractionalTerm| ($ $ (|Integer|))) (SIGNATURE |numberOfFractionalTerms| ((|Integer|) $)) (SIGNATURE |padicallyExpand| ((|SparseUnivariatePolynomial| |#1|) |#1| |#1|)) (SIGNATURE |padicFraction| ($ $)) (SIGNATURE |partialFraction| ($ |#1| (|Factored| |#1|))) (SIGNATURE |wholePart| (|#1| $)))) │ │ │ +((|outputAsFortran| (((|Void|) $) 7)) (|coerce| (((|OutputForm|) $) 8) (($ (|Matrix| (|MachineFloat|))) 12) (($ (|List| (|FortranCode|))) 11) (($ (|FortranCode|)) 10) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 9))) │ │ │ +(((|FortranMatrixCategory|) (|Category|)) (T |FortranMatrixCategory|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Matrix| (|MachineFloat|))) (|ofCategory| *1 (|FortranMatrixCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|FortranCode|))) (|ofCategory| *1 (|FortranMatrixCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|FortranCode|)) (|ofCategory| *1 (|FortranMatrixCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) (|ofCategory| *1 (|FortranMatrixCategory|))))) │ │ │ +(|Join| (|FortranProgramCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Matrix| (|MachineFloat|)))) (SIGNATURE |coerce| ($ (|List| (|FortranCode|)))) (SIGNATURE |coerce| ($ (|FortranCode|))) (SIGNATURE |coerce| ($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|)))))))) │ │ │ +(((|CoercibleTo| (|OutputForm|)) . T) ((|FortranProgramCategory|) . T) ((|Type|) . T)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|numericalOptimization| (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) 13) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 12)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 15) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) 14)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6))) │ │ │ +(((|NumericalOptimizationCategory|) (|Category|)) (T |NumericalOptimizationCategory|)) │ │ │ +((|measure| (*1 *2 *3 *4) (AND (|ofCategory| *1 (|NumericalOptimizationCategory|)) (|isDomain| *3 (|RoutinesTable|)) (|isDomain| *4 (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|isDomain| *2 (|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)))))) (|measure| (*1 *2 *3 *4) (AND (|ofCategory| *1 (|NumericalOptimizationCategory|)) (|isDomain| *3 (|RoutinesTable|)) (|isDomain| *4 (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) (|isDomain| *2 (|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)))))) (|numericalOptimization| (*1 *2 *3) (AND (|ofCategory| *1 (|NumericalOptimizationCategory|)) (|isDomain| *3 (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) (|isDomain| *2 (|Result|)))) (|numericalOptimization| (*1 *2 *3) (AND (|ofCategory| *1 (|NumericalOptimizationCategory|)) (|isDomain| *3 (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|isDomain| *2 (|Result|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |package| (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))))) (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) (SIGNATURE |numericalOptimization| ((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) (SIGNATURE |numericalOptimization| ((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))))))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) 12)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6))) │ │ │ +(((|PatternMatchable| |#1|) (|Category|) (|SetCategory|)) (T |PatternMatchable|)) │ │ │ +((|patternMatch| (*1 *2 *1 *3 *2) (AND (|isDomain| *2 (|PatternMatchResult| *4 *1)) (|isDomain| *3 (|Pattern| *4)) (|ofCategory| *1 (|PatternMatchable| *4)) (|ofCategory| *4 (|SetCategory|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |patternMatch| ((|PatternMatchResult| |t#1| $) $ (|Pattern| |t#1|) (|PatternMatchResult| |t#1| $))))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ +((|rowEchWoZeroLinesWOVectorise| (((|Matrix| |#1|) (|Matrix| |#1|)) 27)) (|rowEchWoZeroLines| (((|Matrix| |#1|) (|Matrix| |#1|)) 26)) (|reduceRowOnList| (((|List| (|List| |#1|)) (|List| |#1|) (|List| (|List| |#1|))) 44)) (|reduceRow| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) 29)) (|reduceLineOverLine| (((|List| |#1|) (|List| |#1|) (|List| |#1|) |#1|) 43)) (|quotVecSpaceBasis| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| |#1|))) 34))) │ │ │ +(((|LinesOpPack| |#1|) (CATEGORY |package| (SIGNATURE |rowEchWoZeroLinesWOVectorise| ((|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |rowEchWoZeroLines| ((|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |reduceRow| ((|List| (|List| |#1|)) (|List| (|List| |#1|)))) (SIGNATURE |quotVecSpaceBasis| ((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| |#1|)))) (SIGNATURE |reduceLineOverLine| ((|List| |#1|) (|List| |#1|) (|List| |#1|) |#1|)) (SIGNATURE |reduceRowOnList| ((|List| (|List| |#1|)) (|List| |#1|) (|List| (|List| |#1|))))) (|Field|)) (T |LinesOpPack|)) │ │ │ +((|reduceRowOnList| (*1 *2 *3 *2) (AND (|isDomain| *2 (|List| (|List| *4))) (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|Field|)) (|isDomain| *1 (|LinesOpPack| *4)))) (|reduceLineOverLine| (*1 *2 *2 *2 *3) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|LinesOpPack| *3)))) (|quotVecSpaceBasis| (*1 *2 *2 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|LinesOpPack| *3)))) (|reduceRow| (*1 *2 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|LinesOpPack| *3)))) (|rowEchWoZeroLines| (*1 *2 *2) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|LinesOpPack| *3)))) (|rowEchWoZeroLinesWOVectorise| (*1 *2 *2) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|LinesOpPack| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |rowEchWoZeroLinesWOVectorise| ((|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |rowEchWoZeroLines| ((|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |reduceRow| ((|List| (|List| |#1|)) (|List| (|List| |#1|)))) (SIGNATURE |quotVecSpaceBasis| ((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| |#1|)))) (SIGNATURE |reduceLineOverLine| ((|List| |#1|) (|List| |#1|) (|List| |#1|) |#1|)) (SIGNATURE |reduceRowOnList| ((|List| (|List| |#1|)) (|List| |#1|) (|List| (|List| |#1|))))) │ │ │ +NIL │ │ │ +(((|LeftUnitaryAttribute|) (|Category|)) (T |LeftUnitaryAttribute|)) │ │ │ NIL │ │ │ (|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +((|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) 36)) (|randomR| ((|#1|) 53)) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) 101)) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) 88)) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) 112))) │ │ │ +(((|PolynomialFactorizationByRecursionUnivariate| |#1| |#2|) (CATEGORY |package| (SIGNATURE |solveLinearPolynomialEquationByRecursion| ((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |factorByRecursion| ((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |factorSquareFreeByRecursion| ((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |randomR| (|#1|)) (SIGNATURE |factorSFBRlcUnit| ((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)))) (|PolynomialFactorizationExplicit|) (|UnivariatePolynomialCategory| |#1|)) (T |PolynomialFactorizationByRecursionUnivariate|)) │ │ │ +((|factorSFBRlcUnit| (*1 *2 *3) (AND (|ofCategory| *4 (|PolynomialFactorizationExplicit|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *5))) (|isDomain| *1 (|PolynomialFactorizationByRecursionUnivariate| *4 *5)) (|isDomain| *3 (|SparseUnivariatePolynomial| *5)))) (|randomR| (*1 *2) (AND (|ofCategory| *2 (|PolynomialFactorizationExplicit|)) (|isDomain| *1 (|PolynomialFactorizationByRecursionUnivariate| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|factorSquareFreeByRecursion| (*1 *2 *3) (AND (|ofCategory| *4 (|PolynomialFactorizationExplicit|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *5))) (|isDomain| *1 (|PolynomialFactorizationByRecursionUnivariate| *4 *5)) (|isDomain| *3 (|SparseUnivariatePolynomial| *5)))) (|factorByRecursion| (*1 *2 *3) (AND (|ofCategory| *4 (|PolynomialFactorizationExplicit|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *5))) (|isDomain| *1 (|PolynomialFactorizationByRecursionUnivariate| *4 *5)) (|isDomain| *3 (|SparseUnivariatePolynomial| *5)))) (|solveLinearPolynomialEquationByRecursion| (*1 *2 *2 *3) (|partial| AND (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *5))) (|isDomain| *3 (|SparseUnivariatePolynomial| *5)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *4 (|PolynomialFactorizationExplicit|)) (|isDomain| *1 (|PolynomialFactorizationByRecursionUnivariate| *4 *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |solveLinearPolynomialEquationByRecursion| ((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |factorByRecursion| ((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |factorSquareFreeByRecursion| ((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |randomR| (|#1|)) (SIGNATURE |factorSFBRlcUnit| ((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) NIL) (((|List| $) (|SparseUnivariatePolynomial| $)) NIL) (((|List| $) (|Polynomial| $)) NIL)) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) NIL) (($ (|SparseUnivariatePolynomial| $)) NIL) (($ (|Polynomial| $)) NIL)) (|zero?| (((|Boolean|) $) 36)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|trueEqual| (((|Boolean|) $ $) 62)) (|tower| (((|List| (|Kernel| $)) $) 46)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|subst| (($ $ (|Equation| $)) NIL) (($ $ (|List| (|Equation| $))) NIL) (($ $ (|List| (|Kernel| $)) (|List| $)) NIL)) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|sqrt| (($ $) NIL)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|sample| (($) NIL T CONST)) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) NIL) (((|List| $) (|SparseUnivariatePolynomial| $)) NIL) (((|List| $) (|Polynomial| $)) NIL)) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) NIL) (($ (|SparseUnivariatePolynomial| $)) NIL) (($ (|Polynomial| $)) NIL)) (|retractIfCan| (((|Union| (|Kernel| $) "failed") $) NIL) (((|Union| (|Integer|) "failed") $) NIL) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL)) (|retract| (((|Kernel| $) $) NIL) (((|Integer|) $) NIL) (((|Fraction| (|Integer|)) $) 48)) (|rem| (($ $ $) NIL)) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| (|Integer|)) (|Matrix| $)) NIL) (((|Record| (|:| |mat| (|Matrix| (|Fraction| (|Integer|)))) (|:| |vec| (|Vector| (|Fraction| (|Integer|))))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| (|Fraction| (|Integer|))) (|Matrix| $)) NIL)) (|reduce| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|prime?| (((|Boolean|) $) NIL)) (|paren| (($ $) NIL) (($ (|List| $)) NIL)) (|operators| (((|List| (|BasicOperator|)) $) NIL)) (|operator| (((|BasicOperator|) (|BasicOperator|)) NIL)) (|one?| (((|Boolean|) $) 39)) (|odd?| (((|Boolean|) $) NIL (|has| $ (|RetractableTo| (|Integer|))))) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) 34)) (|nthRoot| (($ $ (|Integer|)) NIL)) (|norm| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) 77) (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) 53) (($ $ (|Kernel| $)) 66) (($ $ (|List| (|Kernel| $))) 67)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) 64 (|has| $ (|Ring|)))) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|map| (($ (|Mapping| $ $) (|Kernel| $)) NIL)) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ (|List| $)) NIL) (($ $ $) NIL)) (|latex| (((|String|) $) NIL)) (|kernels| (((|List| (|Kernel| $)) $) NIL)) (|kernel| (($ (|BasicOperator|) $) NIL) (($ (|BasicOperator|) (|List| $)) NIL)) (|is?| (((|Boolean|) $ (|BasicOperator|)) NIL) (((|Boolean|) $ (|Symbol|)) NIL)) (|inv| (($ $) NIL)) (|height| (((|NonNegativeInteger|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ (|List| $)) NIL) (($ $ $) NIL)) (|freeOf?| (((|Boolean|) $ $) NIL) (((|Boolean|) $ (|Symbol|)) NIL)) (|factor| (((|Factored| $) $) NIL)) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|even?| (((|Boolean|) $) NIL (|has| $ (|RetractableTo| (|Integer|))))) (|eval| (($ $ (|Kernel| $) $) NIL) (($ $ (|List| (|Kernel| $)) (|List| $)) NIL) (($ $ (|List| (|Equation| $))) NIL) (($ $ (|Equation| $)) NIL) (($ $ $ $) NIL) (($ $ (|List| $) (|List| $)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) NIL) (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) NIL) (($ $ (|Symbol|) (|Mapping| $ (|List| $))) NIL) (($ $ (|Symbol|) (|Mapping| $ $)) NIL) (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) NIL) (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) NIL) (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) NIL) (($ $ (|BasicOperator|) (|Mapping| $ $)) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|elt| (($ (|BasicOperator|) $) NIL) (($ (|BasicOperator|) $ $) NIL) (($ (|BasicOperator|) $ $ $) NIL) (($ (|BasicOperator|) $ $ $ $) NIL) (($ (|BasicOperator|) (|List| $)) NIL)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|distribute| (($ $) NIL) (($ $ $) NIL)) (|differentiate| (($ $ (|NonNegativeInteger|)) NIL) (($ $) 33)) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) 17)) (|definingPolynomial| (($ $) NIL (|has| $ (|Ring|)))) (|convert| (((|Float|) $) 91) (((|DoubleFloat|) $) 99) (((|Complex| (|Float|)) $) 107)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Kernel| $)) NIL) (($ (|Fraction| (|Integer|))) NIL) (($ $) NIL) (($ (|Integer|)) NIL) (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) 18)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|box| (($ $) NIL) (($ (|List| $)) NIL)) (|belong?| (((|Boolean|) (|BasicOperator|)) 83)) (|associates?| (((|Boolean|) $ $) NIL)) (^ (($ $ (|Integer|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|PositiveInteger|)) NIL)) (|Zero| (($) 9 T CONST)) (|One| (($) 19 T CONST)) (D (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 21)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) NIL)) (/ (($ $ $) 41)) (- (($ $ $) NIL) (($ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|Fraction| (|Integer|))) NIL) (($ $ (|Integer|)) 44) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|PositiveInteger|)) NIL)) (* (($ (|Fraction| (|Integer|)) $) NIL) (($ $ (|Fraction| (|Integer|))) NIL) (($ $ $) 24) (($ (|Integer|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|PositiveInteger|) $) NIL))) │ │ │ +(((|InnerAlgebraicNumber|) (|Join| (|ExpressionSpace|) (|AlgebraicallyClosedField|) (|RetractableTo| (|Integer|)) (|RetractableTo| (|Fraction| (|Integer|))) (|LinearlyExplicitRingOver| (|Integer|)) (|RealConstant|) (|LinearlyExplicitRingOver| (|Fraction| (|Integer|))) (|CharacteristicZero|) (|ConvertibleTo| (|Complex| (|Float|))) (|DifferentialRing|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)))) (SIGNATURE |numer| ((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $)) (SIGNATURE |denom| ((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $)) (SIGNATURE |reduce| ($ $)) (SIGNATURE |trueEqual| ((|Boolean|) $ $)) (SIGNATURE |norm| ((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $))) (SIGNATURE |norm| ((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $)))) (SIGNATURE |norm| ($ $ (|Kernel| $))) (SIGNATURE |norm| ($ $ (|List| (|Kernel| $))))))) (T |InnerAlgebraicNumber|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| (|InnerAlgebraicNumber|)))) (|isDomain| *1 (|InnerAlgebraicNumber|)))) (|numer| (*1 *2 *1) (AND (|isDomain| *2 (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| (|InnerAlgebraicNumber|)))) (|isDomain| *1 (|InnerAlgebraicNumber|)))) (|denom| (*1 *2 *1) (AND (|isDomain| *2 (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| (|InnerAlgebraicNumber|)))) (|isDomain| *1 (|InnerAlgebraicNumber|)))) (|reduce| (*1 *1 *1) (|isDomain| *1 (|InnerAlgebraicNumber|))) (|trueEqual| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|InnerAlgebraicNumber|)))) (|norm| (*1 *2 *2 *3) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| (|InnerAlgebraicNumber|))) (|isDomain| *3 (|Kernel| (|InnerAlgebraicNumber|))) (|isDomain| *1 (|InnerAlgebraicNumber|)))) (|norm| (*1 *2 *2 *3) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| (|InnerAlgebraicNumber|))) (|isDomain| *3 (|List| (|Kernel| (|InnerAlgebraicNumber|)))) (|isDomain| *1 (|InnerAlgebraicNumber|)))) (|norm| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Kernel| (|InnerAlgebraicNumber|))) (|isDomain| *1 (|InnerAlgebraicNumber|)))) (|norm| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Kernel| (|InnerAlgebraicNumber|)))) (|isDomain| *1 (|InnerAlgebraicNumber|))))) │ │ │ +(|Join| (|ExpressionSpace|) (|AlgebraicallyClosedField|) (|RetractableTo| (|Integer|)) (|RetractableTo| (|Fraction| (|Integer|))) (|LinearlyExplicitRingOver| (|Integer|)) (|RealConstant|) (|LinearlyExplicitRingOver| (|Fraction| (|Integer|))) (|CharacteristicZero|) (|ConvertibleTo| (|Complex| (|Float|))) (|DifferentialRing|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)))) (SIGNATURE |numer| ((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $)) (SIGNATURE |denom| ((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $)) (SIGNATURE |reduce| ($ $)) (SIGNATURE |trueEqual| ((|Boolean|) $ $)) (SIGNATURE |norm| ((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $))) (SIGNATURE |norm| ((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $)))) (SIGNATURE |norm| ($ $ (|Kernel| $))) (SIGNATURE |norm| ($ $ (|List| (|Kernel| $)))))) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 15)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setvalue!| ((|#1| $ |#1|) 19 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setright!| (($ $ $) 20 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setleft!| (($ $ $) 18 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "left" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "right" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) NIL T CONST)) (|right| (($ $) 21)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) NIL)) (|node?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|node| (($ $ |#1| $) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|left| (($ $) NIL)) (|leaves| (((|List| |#1|) $) NIL)) (|leaf?| (((|Boolean|) $) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|insert!| (($ |#1| $) 10)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) 14)) (|empty| (($) 8)) (|elt| ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (|distance| (((|Integer|) $ $) NIL)) (|cyclic?| (((|Boolean|) $) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) 17)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) NIL)) (|child?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|binaryTournament| (($ (|List| |#1|)) 12)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|BinaryTournament| |#1|) (|Join| (|BinaryTreeCategory| |#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (SIGNATURE |binaryTournament| ($ (|List| |#1|))) (SIGNATURE |insert!| ($ |#1| $)))) (|OrderedSet|)) (T |BinaryTournament|)) │ │ │ +((|binaryTournament| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|BinaryTournament| *3)))) (|insert!| (*1 *1 *2 *1) (AND (|isDomain| *1 (|BinaryTournament| *2)) (|ofCategory| *2 (|OrderedSet|))))) │ │ │ +(|Join| (|BinaryTreeCategory| |#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (SIGNATURE |binaryTournament| ($ (|List| |#1|))) (SIGNATURE |insert!| ($ |#1| $)))) │ │ │ +((|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) 25)) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) 21)) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) 26)) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) 14)) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) 18) (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) 16)) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) 20)) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) 12)) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) 30))) │ │ │ +(((|StorageEfficientMatrixOperations| |#1|) (CATEGORY |package| (SIGNATURE |copy!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |plus!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |minus!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |minus!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |leftScalarTimes!| ((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|))) (SIGNATURE |rightScalarTimes!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|)) (SIGNATURE |times!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |power!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|))) (SIGNATURE ** ((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)))) (|Ring|)) (T |StorageEfficientMatrixOperations|)) │ │ │ +((** (*1 *2 *2 *3) (AND (|isDomain| *2 (|Matrix| *4)) (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *4)))) (|power!| (*1 *2 *2 *2 *2 *2 *3) (AND (|isDomain| *2 (|Matrix| *4)) (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *4)))) (|times!| (*1 *2 *2 *2 *2) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))) (|rightScalarTimes!| (*1 *2 *2 *2 *3) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))) (|leftScalarTimes!| (*1 *2 *2 *3 *2) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))) (|minus!| (*1 *2 *2 *2 *2) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))) (|minus!| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))) (|plus!| (*1 *2 *2 *2 *2) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))) (|copy!| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |copy!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |plus!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |minus!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |minus!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |leftScalarTimes!| ((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|))) (SIGNATURE |rightScalarTimes!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|)) (SIGNATURE |times!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |power!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|))) (SIGNATURE ** ((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)))) │ │ │ +((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 45)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setvalue!| ((|#1| $ |#1|) 36 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setright!| (($ $ $) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setleft!| (($ $ $) 51 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "left" $) 52 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "right" $) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) 7 T CONST)) (|right| (($ $) 54)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) 47)) (|node?| (((|Boolean|) $ $) 39 (|has| |#1| (|SetCategory|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|left| (($ $) 56)) (|leaves| (((|List| |#1|) $) 42)) (|leaf?| (((|Boolean|) $) 46)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ "value") 44) (($ $ "left") 55) (($ $ "right") 53)) (|distance| (((|Integer|) $ $) 41)) (|cyclic?| (((|Boolean|) $) 43)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) 48)) (|child?| (((|Boolean|) $ $) 40 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|BinaryRecursiveAggregate| |#1|) (|Category|) (|Type|)) (T |BinaryRecursiveAggregate|)) │ │ │ +((|left| (*1 *1 *1) (AND (|ofCategory| *1 (|BinaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|elt| (*1 *1 *1 *2) (AND (|isDomain| *2 "left") (|ofCategory| *1 (|BinaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|right| (*1 *1 *1) (AND (|ofCategory| *1 (|BinaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|elt| (*1 *1 *1 *2) (AND (|isDomain| *2 "right") (|ofCategory| *1 (|BinaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|setelt| (*1 *1 *1 *2 *1) (AND (|isDomain| *2 "left") (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|BinaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|setleft!| (*1 *1 *1 *1) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|BinaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setelt| (*1 *1 *1 *2 *1) (AND (|isDomain| *2 "right") (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|BinaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|setright!| (*1 *1 *1 *1) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|BinaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ +(|Join| (|RecursiveAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |left| ($ $)) (SIGNATURE |elt| ($ $ "left")) (SIGNATURE |right| ($ $)) (SIGNATURE |elt| ($ $ "right")) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (PROGN (SIGNATURE |setelt| ($ $ "left" $)) (SIGNATURE |setleft!| ($ $ $)) (SIGNATURE |setelt| ($ $ "right" $)) (SIGNATURE |setright!| ($ $ $))) |noBranch|))) │ │ │ +(((|Aggregate|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|RecursiveAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|subspace| (((|SubSpace| 3 |#1|) $) 105)) (|polygon?| (((|Boolean|) $) 72)) (|polygon| (($ $ (|List| (|Point| |#1|))) 20) (($ $ (|List| (|List| |#1|))) 75) (($ (|List| (|Point| |#1|))) 74) (((|List| (|Point| |#1|)) $) 73)) (|point?| (((|Boolean|) $) 41)) (|point| (($ $ (|Point| |#1|)) 46) (($ $ (|List| |#1|)) 51) (($ $ (|NonNegativeInteger|)) 53) (($ (|Point| |#1|)) 47) (((|Point| |#1|) $) 45)) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) 103)) (|numberOfComposites| (((|NonNegativeInteger|) $) 26)) (|numberOfComponents| (((|NonNegativeInteger|) $) 25)) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) 39)) (|mesh?| (((|Boolean|) $) 82)) (|mesh| (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) 89) (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) 91) (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) 85) (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) 93) (($ (|List| (|List| (|Point| |#1|)))) 86) (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) 87) (((|List| (|List| (|Point| |#1|))) $) 84)) (|merge| (($ (|List| $)) 28) (($ $ $) 29)) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) 101)) (|lp| (((|List| (|Point| |#1|)) $) 96)) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) 100)) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) NIL)) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) 98)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) 37)) (|curve?| (((|Boolean|) $) 54)) (|curve| (($ $ (|List| (|Point| |#1|))) 56) (($ $ (|List| (|List| |#1|))) 62) (($ (|List| (|Point| |#1|))) 57) (((|List| (|Point| |#1|)) $) 55)) (|create3Space| (($) 23) (($ (|SubSpace| 3 |#1|)) 24)) (|copy| (($ $) 35)) (|composites| (((|List| $) $) 34)) (|composite| (($ (|List| $)) 31)) (|components| (((|List| $) $) 33)) (|coerce| (((|OutputForm|) $) 109)) (|closedCurve?| (((|Boolean|) $) 64)) (|closedCurve| (($ $ (|List| (|Point| |#1|))) 66) (($ $ (|List| (|List| |#1|))) 69) (($ (|List| (|Point| |#1|))) 67) (((|List| (|Point| |#1|)) $) 65)) (|check| (($ $) 104)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|ThreeSpace| |#1|) (|ThreeSpaceCategory| |#1|) (|Ring|)) (T |ThreeSpace|)) │ │ │ NIL │ │ │ -(((|NotherianAttribute|) (|Category|)) (T |NotherianAttribute|)) │ │ │ +(|ThreeSpaceCategory| |#1|) │ │ │ +((|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) 13))) │ │ │ +(((|ListFunctions3| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |map| ((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)))) (|Type|) (|Type|) (|Type|)) (T |ListFunctions3|)) │ │ │ +((|map| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *8 *6 *7)) (|isDomain| *4 (|List| *6)) (|isDomain| *5 (|List| *7)) (|ofCategory| *6 (|Type|)) (|ofCategory| *7 (|Type|)) (|ofCategory| *8 (|Type|)) (|isDomain| *2 (|List| *8)) (|isDomain| *1 (|ListFunctions3| *6 *7 *8))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| ((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)))) │ │ │ +((|select!| (($ (|Mapping| (|Boolean|) |#2|) $) 17)) (|remove!| (($ |#2| $) NIL) (($ (|Mapping| (|Boolean|) |#2|) $) 25)) (|dictionary| (($) NIL) (($ (|List| |#2|)) 11)) (= (((|Boolean|) $ $) 23))) │ │ │ +(((|Dictionary&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |select!| (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |remove!| (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |remove!| (|#1| |#2| |#1|)) (SIGNATURE |dictionary| (|#1| (|List| |#2|))) (SIGNATURE |dictionary| (|#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|))) (|Dictionary| |#2|) (|SetCategory|)) (T |Dictionary&|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +(CATEGORY |domain| (SIGNATURE |select!| (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |remove!| (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |remove!| (|#1| |#2| |#1|)) (SIGNATURE |dictionary| (|#1| (|List| |#2|))) (SIGNATURE |dictionary| (|#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|numericalOptimization| (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) NIL) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 73)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 19) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|e04ucfAnnaType|) (|NumericalOptimizationCategory|)) (T |e04ucfAnnaType|)) │ │ │ NIL │ │ │ -(((|NullSquareAttribute|) (|Category|)) (T |NullSquareAttribute|)) │ │ │ +(|NumericalOptimizationCategory|) │ │ │ +((|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) 35)) (|primitivePart| ((|#2| |#2| |#1|) 19 (|has| |#1| (|EuclideanDomain|))))) │ │ │ +(((|SubResultantPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |subresultantVector| ((|PrimitiveArray| |#2|) |#2| |#2|)) (IF (|has| |#1| (|EuclideanDomain|)) (SIGNATURE |primitivePart| (|#2| |#2| |#1|)) |noBranch|)) (|IntegralDomain|) (|UnivariatePolynomialCategory| |#1|)) (T |SubResultantPackage|)) │ │ │ +((|primitivePart| (*1 *2 *2 *3) (AND (|ofCategory| *3 (|EuclideanDomain|)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *1 (|SubResultantPackage| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|subresultantVector| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|PrimitiveArray| *3)) (|isDomain| *1 (|SubResultantPackage| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |subresultantVector| ((|PrimitiveArray| |#2|) |#2| |#2|)) (IF (|has| |#1| (|EuclideanDomain|)) (SIGNATURE |primitivePart| (|#2| |#2| |#1|)) |noBranch|)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|weight| (((|NonNegativeInteger|) $) 21)) (|variable| ((|#1| $) 22)) (|retractIfCan| (((|Union| |#1| "failed") $) 26)) (|retract| ((|#1| $) 25)) (|order| (((|NonNegativeInteger|) $) 23)) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) 24)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|differentiate| (($ $) 20) (($ $ (|NonNegativeInteger|)) 19)) (|coerce| (((|OutputForm|) $) 11) (($ |#1|) 27)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17))) │ │ │ +(((|DifferentialVariableCategory| |#1|) (|Category|) (|OrderedSet|)) (T |DifferentialVariableCategory|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|ofCategory| *1 (|DifferentialVariableCategory| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|makeVariable| (*1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|DifferentialVariableCategory| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|order| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialVariableCategory| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|variable| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialVariableCategory| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|weight| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialVariableCategory| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|differentiate| (*1 *1 *1) (AND (|ofCategory| *1 (|DifferentialVariableCategory| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|differentiate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|DifferentialVariableCategory| *3)) (|ofCategory| *3 (|OrderedSet|))))) │ │ │ +(|Join| (|OrderedSet|) (|RetractableTo| |t#1|) (CATEGORY |domain| (SIGNATURE |makeVariable| ($ |t#1| (|NonNegativeInteger|))) (SIGNATURE |order| ((|NonNegativeInteger|) $)) (SIGNATURE |variable| (|t#1| $)) (SIGNATURE |weight| ((|NonNegativeInteger|) $)) (SIGNATURE |differentiate| ($ $)) (SIGNATURE |differentiate| ($ $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ |t#1|)))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|OrderedSet|) . T) ((|RetractableTo| |#1|) . T) ((|SetCategory|) . T)) │ │ │ +((|size| (((|NonNegativeInteger|)) 35)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL) (((|Union| |#2| "failed") $) 25)) (|retract| (((|Integer|) $) NIL) (((|Fraction| (|Integer|)) $) NIL) ((|#2| $) 22)) (|reduce| (($ |#3|) NIL) (((|Union| $ "failed") (|Fraction| |#3|)) 45)) (|recip| (((|Union| $ "failed") $) 65)) (|random| (($) 39)) (|norm| ((|#2| $) 20)) (|generator| (($) 17)) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#2| |#2|)) 53) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|))) NIL) (($ $ (|Symbol|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL)) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) 60)) (|convert| (((|Vector| |#2|) $) NIL) (($ (|Vector| |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (|characteristicPolynomial| ((|#3| $) 32)) (|basis| (((|Vector| $)) 29))) │ │ │ +(((|MonogenicAlgebra&| |#1| |#2| |#3|) (CATEGORY |domain| (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE |random| (|#1|)) (SIGNATURE |size| ((|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) (SIGNATURE |derivationCoordinates| ((|Matrix| |#2|) (|Vector| |#1|) (|Mapping| |#2| |#2|))) (SIGNATURE |reduce| ((|Union| |#1| "failed") (|Fraction| |#3|))) (SIGNATURE |convert| (|#1| |#3|)) (SIGNATURE |reduce| (|#1| |#3|)) (SIGNATURE |generator| (|#1|)) (SIGNATURE |retract| (|#2| |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |retract| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |retract| ((|Integer|) |#1|)) (SIGNATURE |convert| (|#3| |#1|)) (SIGNATURE |convert| (|#1| (|Vector| |#2|))) (SIGNATURE |convert| ((|Vector| |#2|) |#1|)) (SIGNATURE |basis| ((|Vector| |#1|))) (SIGNATURE |characteristicPolynomial| (|#3| |#1|)) (SIGNATURE |norm| (|#2| |#1|)) (SIGNATURE |recip| ((|Union| |#1| "failed") |#1|))) (|MonogenicAlgebra| |#2| |#3|) (|CommutativeRing|) (|UnivariatePolynomialCategory| |#2|)) (T |MonogenicAlgebra&|)) │ │ │ +((|size| (*1 *2) (AND (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|MonogenicAlgebra&| *3 *4 *5)) (|ofCategory| *3 (|MonogenicAlgebra| *4 *5))))) │ │ │ +(CATEGORY |domain| (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE |random| (|#1|)) (SIGNATURE |size| ((|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) (SIGNATURE |derivationCoordinates| ((|Matrix| |#2|) (|Vector| |#1|) (|Mapping| |#2| |#2|))) (SIGNATURE |reduce| ((|Union| |#1| "failed") (|Fraction| |#3|))) (SIGNATURE |convert| (|#1| |#3|)) (SIGNATURE |reduce| (|#1| |#3|)) (SIGNATURE |generator| (|#1|)) (SIGNATURE |retract| (|#2| |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |retract| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |retract| ((|Integer|) |#1|)) (SIGNATURE |convert| (|#3| |#1|)) (SIGNATURE |convert| (|#1| (|Vector| |#2|))) (SIGNATURE |convert| ((|Vector| |#2|) |#1|)) (SIGNATURE |basis| ((|Vector| |#1|))) (SIGNATURE |characteristicPolynomial| (|#3| |#1|)) (SIGNATURE |norm| (|#2| |#1|)) (SIGNATURE |recip| ((|Union| |#1| "failed") |#1|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|upperCase?| (((|Boolean|) $) 38)) (|upperCase| (($ $) 50)) (|space| (($) 25)) (|size| (((|NonNegativeInteger|)) 16)) (|random| (($) 24)) (|quote| (($) 26)) (|ord| (((|Integer|) $) 21)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|lowerCase?| (((|Boolean|) $) 40)) (|lowerCase| (($ $) 51)) (|lookup| (((|PositiveInteger|) $) 22)) (|latex| (((|String|) $) 46)) (|index| (($ (|PositiveInteger|)) 20)) (|hexDigit?| (((|Boolean|) $) 36)) (|hash| (((|SingleInteger|) $) NIL)) (|escape| (($) 27)) (|enumerate| (((|List| $)) NIL)) (|digit?| (((|Boolean|) $) 34)) (|coerce| (((|OutputForm|) $) 29)) (|char| (($ (|Integer|)) 18) (($ (|String|)) 49)) (|alphanumeric?| (((|Boolean|) $) 44)) (|alphabetic?| (((|Boolean|) $) 42)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 13)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 14))) │ │ │ +(((|Character|) (|Join| (|OrderedFinite|) (CATEGORY |domain| (SIGNATURE |ord| ((|Integer|) $)) (SIGNATURE |char| ($ (|Integer|))) (SIGNATURE |char| ($ (|String|))) (SIGNATURE |space| ($)) (SIGNATURE |quote| ($)) (SIGNATURE |escape| ($)) (SIGNATURE |upperCase| ($ $)) (SIGNATURE |lowerCase| ($ $)) (SIGNATURE |digit?| ((|Boolean|) $)) (SIGNATURE |hexDigit?| ((|Boolean|) $)) (SIGNATURE |alphabetic?| ((|Boolean|) $)) (SIGNATURE |upperCase?| ((|Boolean|) $)) (SIGNATURE |lowerCase?| ((|Boolean|) $)) (SIGNATURE |alphanumeric?| ((|Boolean|) $))))) (T |Character|)) │ │ │ +((|ord| (*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Character|)))) (|char| (*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Character|)))) (|char| (*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|Character|)))) (|space| (*1 *1) (|isDomain| *1 (|Character|))) (|quote| (*1 *1) (|isDomain| *1 (|Character|))) (|escape| (*1 *1) (|isDomain| *1 (|Character|))) (|upperCase| (*1 *1 *1) (|isDomain| *1 (|Character|))) (|lowerCase| (*1 *1 *1) (|isDomain| *1 (|Character|))) (|digit?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Character|)))) (|hexDigit?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Character|)))) (|alphabetic?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Character|)))) (|upperCase?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Character|)))) (|lowerCase?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Character|)))) (|alphanumeric?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Character|))))) │ │ │ +(|Join| (|OrderedFinite|) (CATEGORY |domain| (SIGNATURE |ord| ((|Integer|) $)) (SIGNATURE |char| ($ (|Integer|))) (SIGNATURE |char| ($ (|String|))) (SIGNATURE |space| ($)) (SIGNATURE |quote| ($)) (SIGNATURE |escape| ($)) (SIGNATURE |upperCase| ($ $)) (SIGNATURE |lowerCase| ($ $)) (SIGNATURE |digit?| ((|Boolean|) $)) (SIGNATURE |hexDigit?| ((|Boolean|) $)) (SIGNATURE |alphabetic?| ((|Boolean|) $)) (SIGNATURE |upperCase?| ((|Boolean|) $)) (SIGNATURE |lowerCase?| ((|Boolean|) $)) (SIGNATURE |alphanumeric?| ((|Boolean|) $)))) │ │ │ +((|writeDotGraph| (((|Void|) (|List| (|String|)) (|List| (|String|)) (|String|)) 19)) (|standardDotHeader| (((|List| (|String|))) 7)) (|sampleDotGraph| (((|List| (|String|))) 8)) (|dotview| (((|Void|) (|String|) (|String|)) 21)) (|dot2eps| (((|Void|) (|String|)) 20))) │ │ │ +(((|Graphviz|) (CATEGORY |package| (SIGNATURE |standardDotHeader| ((|List| (|String|)))) (SIGNATURE |sampleDotGraph| ((|List| (|String|)))) (SIGNATURE |writeDotGraph| ((|Void|) (|List| (|String|)) (|List| (|String|)) (|String|))) (SIGNATURE |dot2eps| ((|Void|) (|String|))) (SIGNATURE |dotview| ((|Void|) (|String|) (|String|))))) (T |Graphviz|)) │ │ │ +((|dotview| (*1 *2 *3 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Graphviz|)))) (|dot2eps| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Graphviz|)))) (|writeDotGraph| (*1 *2 *3 *3 *4) (AND (|isDomain| *3 (|List| (|String|))) (|isDomain| *4 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Graphviz|)))) (|sampleDotGraph| (*1 *2) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|Graphviz|)))) (|standardDotHeader| (*1 *2) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|Graphviz|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |standardDotHeader| ((|List| (|String|)))) (SIGNATURE |sampleDotGraph| ((|List| (|String|)))) (SIGNATURE |writeDotGraph| ((|Void|) (|List| (|String|)) (|List| (|String|)) (|String|))) (SIGNATURE |dot2eps| ((|Void|) (|String|))) (SIGNATURE |dotview| ((|Void|) (|String|) (|String|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zeta| (($) 34 T CONST)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|CommutativeRing|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|CommutativeRing|)))) (|unit?| (((|Boolean|) $) 54 (|has| |#1| (|CommutativeRing|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) 55)) (|one?| (((|Boolean|) $) NIL)) (|multiplicative?| (((|Boolean|) $ (|PositiveInteger|)) 71)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|CommutativeRing|)))) (|elt| ((|#1| $ (|PositiveInteger|)) 9)) (|coerce| (((|OutputForm|) $) 29) (($ (|Integer|)) NIL) (($ (|Mapping| |#1| (|PositiveInteger|))) 12) (((|Mapping| |#1| (|PositiveInteger|)) $) 11) (($ (|Stream| |#1|)) 26) (((|Stream| |#1|) $) 24) (($ |#1|) NIL (|has| |#1| (|CommutativeRing|))) (($ $) NIL (|has| |#1| (|CommutativeRing|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|CommutativeRing|)))) (|additive?| (((|Boolean|) $ (|PositiveInteger|)) 72)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 33 T CONST)) (|One| (($) 13 T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) 38) (($ $ $) NIL)) (+ (($ $ $) 36)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 40) (($ $ $) 51) (($ |#1| $) 42 (|has| |#1| (|CommutativeRing|))) (($ $ |#1|) NIL (|has| |#1| (|CommutativeRing|))))) │ │ │ +(((|DirichletRing| |#1|) (|Join| (|Ring|) (|Eltable| (|PositiveInteger|) |#1|) (CATEGORY |domain| (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|IntegralDomain|)) |noBranch|) (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |#1|)) |noBranch|) (SIGNATURE |coerce| ($ (|Mapping| |#1| (|PositiveInteger|)))) (SIGNATURE |coerce| ((|Mapping| |#1| (|PositiveInteger|)) $)) (SIGNATURE |coerce| ($ (|Stream| |#1|))) (SIGNATURE |coerce| ((|Stream| |#1|) $)) (SIGNATURE |zeta| ($) |constant|) (SIGNATURE |multiplicative?| ((|Boolean|) $ (|PositiveInteger|))) (SIGNATURE |additive?| ((|Boolean|) $ (|PositiveInteger|))))) (|Ring|)) (T |DirichletRing|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3 (|PositiveInteger|))) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|DirichletRing| *3)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 (|PositiveInteger|))) (|isDomain| *1 (|DirichletRing| *3)) (|ofCategory| *3 (|Ring|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|DirichletRing| *3)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|DirichletRing| *3)) (|ofCategory| *3 (|Ring|)))) (|zeta| (*1 *1) (AND (|isDomain| *1 (|DirichletRing| *2)) (|ofCategory| *2 (|Ring|)))) (|multiplicative?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DirichletRing| *4)) (|ofCategory| *4 (|Ring|)))) (|additive?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DirichletRing| *4)) (|ofCategory| *4 (|Ring|))))) │ │ │ +(|Join| (|Ring|) (|Eltable| (|PositiveInteger|) |#1|) (CATEGORY |domain| (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|IntegralDomain|)) |noBranch|) (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |#1|)) |noBranch|) (SIGNATURE |coerce| ($ (|Mapping| |#1| (|PositiveInteger|)))) (SIGNATURE |coerce| ((|Mapping| |#1| (|PositiveInteger|)) $)) (SIGNATURE |coerce| ($ (|Stream| |#1|))) (SIGNATURE |coerce| ((|Stream| |#1|) $)) (SIGNATURE |zeta| ($) |constant|) (SIGNATURE |multiplicative?| ((|Boolean|) $ (|PositiveInteger|))) (SIGNATURE |additive?| ((|Boolean|) $ (|PositiveInteger|))))) │ │ │ +((F2EXPRR (((|Expression| (|Integer|)) |#1|) 11))) │ │ │ +(((|GuessFiniteFunctions| |#1|) (CATEGORY |package| (SIGNATURE F2EXPRR ((|Expression| (|Integer|)) |#1|))) (|Join| (|FiniteFieldCategory|) (|ConvertibleTo| (|Integer|)))) (T |GuessFiniteFunctions|)) │ │ │ +((F2EXPRR (*1 *2 *3) (AND (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|GuessFiniteFunctions| *3)) (|ofCategory| *3 (|Join| (|FiniteFieldCategory|) (|ConvertibleTo| (|Integer|))))))) │ │ │ +(CATEGORY |package| (SIGNATURE F2EXPRR ((|Expression| (|Integer|)) |#1|))) │ │ │ +((|tower| (((|List| (|Kernel| $)) $) 28)) (|subst| (($ $ (|Equation| $)) 80) (($ $ (|List| (|Equation| $))) 120) (($ $ (|List| (|Kernel| $)) (|List| $)) NIL)) (|retractIfCan| (((|Union| (|Kernel| $) "failed") $) 110)) (|retract| (((|Kernel| $) $) 109)) (|paren| (($ $) 19) (($ (|List| $)) 54)) (|operators| (((|List| (|BasicOperator|)) $) 37)) (|operator| (((|BasicOperator|) (|BasicOperator|)) 90)) (|odd?| (((|Boolean|) $) 128)) (|map| (($ (|Mapping| $ $) (|Kernel| $)) 88)) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) 92)) (|kernel| (($ (|BasicOperator|) $) 60) (($ (|BasicOperator|) (|List| $)) 98)) (|is?| (((|Boolean|) $ (|BasicOperator|)) 114) (((|Boolean|) $ (|Symbol|)) 113)) (|height| (((|NonNegativeInteger|) $) 45)) (|freeOf?| (((|Boolean|) $ $) 58) (((|Boolean|) $ (|Symbol|)) 49)) (|even?| (((|Boolean|) $) 126)) (|eval| (($ $ (|Kernel| $) $) NIL) (($ $ (|List| (|Kernel| $)) (|List| $)) NIL) (($ $ (|List| (|Equation| $))) 118) (($ $ (|Equation| $)) NIL) (($ $ $ $) NIL) (($ $ (|List| $) (|List| $)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) 83) (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) NIL) (($ $ (|Symbol|) (|Mapping| $ (|List| $))) 68) (($ $ (|Symbol|) (|Mapping| $ $)) 74) (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) 82) (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) 84) (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) 70) (($ $ (|BasicOperator|) (|Mapping| $ $)) 76)) (|elt| (($ (|BasicOperator|) $) 61) (($ (|BasicOperator|) $ $) 62) (($ (|BasicOperator|) $ $ $) 63) (($ (|BasicOperator|) $ $ $ $) 64) (($ (|BasicOperator|) (|List| $)) 106)) (|distribute| (($ $) 51) (($ $ $) 116)) (|box| (($ $) 17) (($ (|List| $)) 53)) (|belong?| (((|Boolean|) (|BasicOperator|)) 22))) │ │ │ +(((|ExpressionSpace&| |#1|) (CATEGORY |domain| (SIGNATURE |odd?| ((|Boolean|) |#1|)) (SIGNATURE |even?| ((|Boolean|) |#1|)) (SIGNATURE |eval| (|#1| |#1| (|BasicOperator|) (|Mapping| |#1| |#1|))) (SIGNATURE |eval| (|#1| |#1| (|BasicOperator|) (|Mapping| |#1| (|List| |#1|)))) (SIGNATURE |eval| (|#1| |#1| (|List| (|BasicOperator|)) (|List| (|Mapping| |#1| (|List| |#1|))))) (SIGNATURE |eval| (|#1| |#1| (|List| (|BasicOperator|)) (|List| (|Mapping| |#1| |#1|)))) (SIGNATURE |eval| (|#1| |#1| (|Symbol|) (|Mapping| |#1| |#1|))) (SIGNATURE |eval| (|#1| |#1| (|Symbol|) (|Mapping| |#1| (|List| |#1|)))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Symbol|)) (|List| (|Mapping| |#1| (|List| |#1|))))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Symbol|)) (|List| (|Mapping| |#1| |#1|)))) (SIGNATURE |freeOf?| ((|Boolean|) |#1| (|Symbol|))) (SIGNATURE |freeOf?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#1| |#1|) (|Kernel| |#1|))) (SIGNATURE |kernel| (|#1| (|BasicOperator|) (|List| |#1|))) (SIGNATURE |kernel| (|#1| (|BasicOperator|) |#1|)) (SIGNATURE |is?| ((|Boolean|) |#1| (|Symbol|))) (SIGNATURE |is?| ((|Boolean|) |#1| (|BasicOperator|))) (SIGNATURE |belong?| ((|Boolean|) (|BasicOperator|))) (SIGNATURE |operator| ((|BasicOperator|) (|BasicOperator|))) (SIGNATURE |operators| ((|List| (|BasicOperator|)) |#1|)) (SIGNATURE |tower| ((|List| (|Kernel| |#1|)) |#1|)) (SIGNATURE |mainKernel| ((|Union| (|Kernel| |#1|) "failed") |#1|)) (SIGNATURE |height| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |distribute| (|#1| |#1| |#1|)) (SIGNATURE |distribute| (|#1| |#1|)) (SIGNATURE |paren| (|#1| (|List| |#1|))) (SIGNATURE |paren| (|#1| |#1|)) (SIGNATURE |box| (|#1| (|List| |#1|))) (SIGNATURE |box| (|#1| |#1|)) (SIGNATURE |subst| (|#1| |#1| (|List| (|Kernel| |#1|)) (|List| |#1|))) (SIGNATURE |subst| (|#1| |#1| (|List| (|Equation| |#1|)))) (SIGNATURE |subst| (|#1| |#1| (|Equation| |#1|))) (SIGNATURE |elt| (|#1| (|BasicOperator|) (|List| |#1|))) (SIGNATURE |elt| (|#1| (|BasicOperator|) |#1| |#1| |#1| |#1|)) (SIGNATURE |elt| (|#1| (|BasicOperator|) |#1| |#1| |#1|)) (SIGNATURE |elt| (|#1| (|BasicOperator|) |#1| |#1|)) (SIGNATURE |elt| (|#1| (|BasicOperator|) |#1|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#1|) (|List| |#1|))) (SIGNATURE |eval| (|#1| |#1| |#1| |#1|)) (SIGNATURE |eval| (|#1| |#1| (|Equation| |#1|))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Equation| |#1|)))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Kernel| |#1|)) (|List| |#1|))) (SIGNATURE |eval| (|#1| |#1| (|Kernel| |#1|) |#1|)) (SIGNATURE |retract| ((|Kernel| |#1|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Kernel| |#1|) "failed") |#1|))) (|ExpressionSpace|)) (T |ExpressionSpace&|)) │ │ │ +((|operator| (*1 *2 *2) (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *1 (|ExpressionSpace&| *3)) (|ofCategory| *3 (|ExpressionSpace|)))) (|belong?| (*1 *2 *3) (AND (|isDomain| *3 (|BasicOperator|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ExpressionSpace&| *4)) (|ofCategory| *4 (|ExpressionSpace|))))) │ │ │ +(CATEGORY |domain| (SIGNATURE |odd?| ((|Boolean|) |#1|)) (SIGNATURE |even?| ((|Boolean|) |#1|)) (SIGNATURE |eval| (|#1| |#1| (|BasicOperator|) (|Mapping| |#1| |#1|))) (SIGNATURE |eval| (|#1| |#1| (|BasicOperator|) (|Mapping| |#1| (|List| |#1|)))) (SIGNATURE |eval| (|#1| |#1| (|List| (|BasicOperator|)) (|List| (|Mapping| |#1| (|List| |#1|))))) (SIGNATURE |eval| (|#1| |#1| (|List| (|BasicOperator|)) (|List| (|Mapping| |#1| |#1|)))) (SIGNATURE |eval| (|#1| |#1| (|Symbol|) (|Mapping| |#1| |#1|))) (SIGNATURE |eval| (|#1| |#1| (|Symbol|) (|Mapping| |#1| (|List| |#1|)))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Symbol|)) (|List| (|Mapping| |#1| (|List| |#1|))))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Symbol|)) (|List| (|Mapping| |#1| |#1|)))) (SIGNATURE |freeOf?| ((|Boolean|) |#1| (|Symbol|))) (SIGNATURE |freeOf?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#1| |#1|) (|Kernel| |#1|))) (SIGNATURE |kernel| (|#1| (|BasicOperator|) (|List| |#1|))) (SIGNATURE |kernel| (|#1| (|BasicOperator|) |#1|)) (SIGNATURE |is?| ((|Boolean|) |#1| (|Symbol|))) (SIGNATURE |is?| ((|Boolean|) |#1| (|BasicOperator|))) (SIGNATURE |belong?| ((|Boolean|) (|BasicOperator|))) (SIGNATURE |operator| ((|BasicOperator|) (|BasicOperator|))) (SIGNATURE |operators| ((|List| (|BasicOperator|)) |#1|)) (SIGNATURE |tower| ((|List| (|Kernel| |#1|)) |#1|)) (SIGNATURE |mainKernel| ((|Union| (|Kernel| |#1|) "failed") |#1|)) (SIGNATURE |height| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |distribute| (|#1| |#1| |#1|)) (SIGNATURE |distribute| (|#1| |#1|)) (SIGNATURE |paren| (|#1| (|List| |#1|))) (SIGNATURE |paren| (|#1| |#1|)) (SIGNATURE |box| (|#1| (|List| |#1|))) (SIGNATURE |box| (|#1| |#1|)) (SIGNATURE |subst| (|#1| |#1| (|List| (|Kernel| |#1|)) (|List| |#1|))) (SIGNATURE |subst| (|#1| |#1| (|List| (|Equation| |#1|)))) (SIGNATURE |subst| (|#1| |#1| (|Equation| |#1|))) (SIGNATURE |elt| (|#1| (|BasicOperator|) (|List| |#1|))) (SIGNATURE |elt| (|#1| (|BasicOperator|) |#1| |#1| |#1| |#1|)) (SIGNATURE |elt| (|#1| (|BasicOperator|) |#1| |#1| |#1|)) (SIGNATURE |elt| (|#1| (|BasicOperator|) |#1| |#1|)) (SIGNATURE |elt| (|#1| (|BasicOperator|) |#1|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#1|) (|List| |#1|))) (SIGNATURE |eval| (|#1| |#1| |#1| |#1|)) (SIGNATURE |eval| (|#1| |#1| (|Equation| |#1|))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Equation| |#1|)))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Kernel| |#1|)) (|List| |#1|))) (SIGNATURE |eval| (|#1| |#1| (|Kernel| |#1|) |#1|)) (SIGNATURE |retract| ((|Kernel| |#1|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Kernel| |#1|) "failed") |#1|))) │ │ │ +((|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) 79) (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) 18) (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) 34)) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) 21) (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) 42))) │ │ │ +(((|RationalFunctionLimitPackage| |#1|) (CATEGORY |package| (SIGNATURE |limit| ((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|))))) (SIGNATURE |limit| ((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |complexLimit| ((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|))))) (SIGNATURE |complexLimit| ((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |limit| ((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)))) (|GcdDomain|)) (T |RationalFunctionLimitPackage|)) │ │ │ +((|limit| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *4 (|Equation| (|Fraction| (|Polynomial| *6)))) (|isDomain| *5 (|String|)) (|isDomain| *3 (|Fraction| (|Polynomial| *6))) (|ofCategory| *6 (|GcdDomain|)) (|isDomain| *2 (|OrderedCompletion| *3)) (|isDomain| *1 (|RationalFunctionLimitPackage| *6)))) (|complexLimit| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Equation| (|Fraction| (|Polynomial| *5)))) (|isDomain| *3 (|Fraction| (|Polynomial| *5))) (|ofCategory| *5 (|GcdDomain|)) (|isDomain| *2 (|OnePointCompletion| *3)) (|isDomain| *1 (|RationalFunctionLimitPackage| *5)))) (|complexLimit| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Equation| (|OnePointCompletion| (|Polynomial| *5)))) (|ofCategory| *5 (|GcdDomain|)) (|isDomain| *2 (|OnePointCompletion| (|Fraction| (|Polynomial| *5)))) (|isDomain| *1 (|RationalFunctionLimitPackage| *5)) (|isDomain| *3 (|Fraction| (|Polynomial| *5))))) (|limit| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Equation| (|Fraction| (|Polynomial| *5)))) (|isDomain| *3 (|Fraction| (|Polynomial| *5))) (|ofCategory| *5 (|GcdDomain|)) (|isDomain| *2 (|Union| (|OrderedCompletion| *3) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| *3) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| *3) "failed"))) "failed")) (|isDomain| *1 (|RationalFunctionLimitPackage| *5)))) (|limit| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Equation| (|OrderedCompletion| (|Polynomial| *5)))) (|ofCategory| *5 (|GcdDomain|)) (|isDomain| *2 (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| *5))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| *5))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| *5))) "failed"))) "failed")) (|isDomain| *1 (|RationalFunctionLimitPackage| *5)) (|isDomain| *3 (|Fraction| (|Polynomial| *5)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |limit| ((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|))))) (SIGNATURE |limit| ((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |complexLimit| ((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|))))) (SIGNATURE |complexLimit| ((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |limit| ((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)))) │ │ │ +((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 45)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setvalue!| ((|#1| $ |#1|) 36 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setright!| (($ $ $) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setleft!| (($ $ $) 51 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "left" $) 52 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "right" $) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) 7 T CONST)) (|right| (($ $) 54)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) 47)) (|node?| (((|Boolean|) $ $) 39 (|has| |#1| (|SetCategory|)))) (|node| (($ $ |#1| $) 57)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|left| (($ $) 56)) (|leaves| (((|List| |#1|) $) 42)) (|leaf?| (((|Boolean|) $) 46)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ "value") 44) (($ $ "left") 55) (($ $ "right") 53)) (|distance| (((|Integer|) $ $) 41)) (|cyclic?| (((|Boolean|) $) 43)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) 48)) (|child?| (((|Boolean|) $ $) 40 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|BinaryTreeCategory| |#1|) (|Category|) (|SetCategory|)) (T |BinaryTreeCategory|)) │ │ │ +((|node| (*1 *1 *1 *2 *1) (AND (|ofCategory| *1 (|BinaryTreeCategory| *2)) (|ofCategory| *2 (|SetCategory|))))) │ │ │ +(|Join| (|BinaryRecursiveAggregate| |t#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (ATTRIBUTE |finiteAggregate|) (SIGNATURE |node| ($ $ |t#1| $)))) │ │ │ +(((|Aggregate|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|BinaryRecursiveAggregate| |#1|) . T) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|RecursiveAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ +((|tanh| (((|Stream| |#1|) (|Stream| |#1|)) 100)) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) 64)) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) 96)) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) 97)) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) 53)) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) 54)) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) 102)) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) 71)) (|log| (((|Stream| |#1|) (|Stream| |#1|)) 39)) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) 36)) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) 103)) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) 72)) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) 101)) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) 67)) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) 98)) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) 55)) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) 111)) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) 86)) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) 105)) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) 82)) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) 115)) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) 90)) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) 117)) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) 92)) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) 113)) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) 88)) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) 107)) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) 84)) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) 40))) │ │ │ +(((|StreamTranscendentalFunctions| |#1|) (CATEGORY |package| (SIGNATURE |exp| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |log| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE ** ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |sincos| ((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|))) (SIGNATURE |sin| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |cos| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |tan| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |cot| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |sec| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |csc| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |asin| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acos| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |atan| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acot| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |asec| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acsc| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |sinhcosh| ((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|))) (SIGNATURE |sinh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |cosh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |tanh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |coth| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |sech| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |csch| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |asinh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acosh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |atanh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acoth| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |asech| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acsch| ((|Stream| |#1|) (|Stream| |#1|)))) (|Algebra| (|Fraction| (|Integer|)))) (T |StreamTranscendentalFunctions|)) │ │ │ +((|acsch| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|asech| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|acoth| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|atanh| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|acosh| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|asinh| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|csch| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|sech| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|coth| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|tanh| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|cosh| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|sinh| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|sinhcosh| (*1 *2 *3) (AND (|ofCategory| *4 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |sinh| (|Stream| *4)) (|:| |cosh| (|Stream| *4)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *4)) (|isDomain| *3 (|Stream| *4)))) (|acsc| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|asec| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|acot| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|atan| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|acos| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|asin| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|csc| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|sec| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|cot| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|tan| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|cos| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|sin| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|sincos| (*1 *2 *3) (AND (|ofCategory| *4 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |sin| (|Stream| *4)) (|:| |cos| (|Stream| *4)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *4)) (|isDomain| *3 (|Stream| *4)))) (** (*1 *2 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|log| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3)))) (|exp| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctions| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |exp| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |log| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE ** ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |sincos| ((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|))) (SIGNATURE |sin| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |cos| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |tan| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |cot| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |sec| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |csc| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |asin| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acos| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |atan| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acot| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |asec| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acsc| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |sinhcosh| ((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|))) (SIGNATURE |sinh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |cosh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |tanh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |coth| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |sech| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |csch| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |asinh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acosh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |atanh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acoth| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |asech| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acsch| ((|Stream| |#1|) (|Stream| |#1|)))) │ │ │ +((|purelyTranscendental?| (((|Boolean|) |#5| $) 20)) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) 23)) (|purelyAlgebraic?| (((|Boolean|) |#5| $) 16) (((|Boolean|) $) 44)) (|intersect| (((|List| $) |#5| $) NIL) (((|List| $) (|List| |#5|) $) 76) (((|List| $) (|List| |#5|) (|List| $)) 74) (((|List| $) |#5| (|List| $)) 77)) (|extend| (($ $ |#5|) NIL) (((|List| $) |#5| $) NIL) (((|List| $) |#5| (|List| $)) 59) (((|List| $) (|List| |#5|) $) 61) (((|List| $) (|List| |#5|) (|List| $)) 63)) (|augment| (((|List| $) |#5| $) NIL) (((|List| $) |#5| (|List| $)) 53) (((|List| $) (|List| |#5|) $) 55) (((|List| $) (|List| |#5|) (|List| $)) 57)) (|algebraicCoefficients?| (((|Boolean|) |#5| $) 26))) │ │ │ +(((|RegularTriangularSetCategory&| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |domain| (SIGNATURE |extend| ((|List| |#1|) (|List| |#5|) (|List| |#1|))) (SIGNATURE |extend| ((|List| |#1|) (|List| |#5|) |#1|)) (SIGNATURE |extend| ((|List| |#1|) |#5| (|List| |#1|))) (SIGNATURE |extend| ((|List| |#1|) |#5| |#1|)) (SIGNATURE |augment| ((|List| |#1|) (|List| |#5|) (|List| |#1|))) (SIGNATURE |augment| ((|List| |#1|) (|List| |#5|) |#1|)) (SIGNATURE |augment| ((|List| |#1|) |#5| (|List| |#1|))) (SIGNATURE |augment| ((|List| |#1|) |#5| |#1|)) (SIGNATURE |intersect| ((|List| |#1|) |#5| (|List| |#1|))) (SIGNATURE |intersect| ((|List| |#1|) (|List| |#5|) (|List| |#1|))) (SIGNATURE |intersect| ((|List| |#1|) (|List| |#5|) |#1|)) (SIGNATURE |intersect| ((|List| |#1|) |#5| |#1|)) (SIGNATURE |purelyAlgebraicLeadingMonomial?| ((|Boolean|) |#5| |#1|)) (SIGNATURE |purelyAlgebraic?| ((|Boolean|) |#1|)) (SIGNATURE |algebraicCoefficients?| ((|Boolean|) |#5| |#1|)) (SIGNATURE |purelyTranscendental?| ((|Boolean|) |#5| |#1|)) (SIGNATURE |purelyAlgebraic?| ((|Boolean|) |#5| |#1|)) (SIGNATURE |extend| (|#1| |#1| |#5|))) (|RegularTriangularSetCategory| |#2| |#3| |#4| |#5|) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#2| |#3| |#4|)) (T |RegularTriangularSetCategory&|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +(CATEGORY |domain| (SIGNATURE |extend| ((|List| |#1|) (|List| |#5|) (|List| |#1|))) (SIGNATURE |extend| ((|List| |#1|) (|List| |#5|) |#1|)) (SIGNATURE |extend| ((|List| |#1|) |#5| (|List| |#1|))) (SIGNATURE |extend| ((|List| |#1|) |#5| |#1|)) (SIGNATURE |augment| ((|List| |#1|) (|List| |#5|) (|List| |#1|))) (SIGNATURE |augment| ((|List| |#1|) (|List| |#5|) |#1|)) (SIGNATURE |augment| ((|List| |#1|) |#5| (|List| |#1|))) (SIGNATURE |augment| ((|List| |#1|) |#5| |#1|)) (SIGNATURE |intersect| ((|List| |#1|) |#5| (|List| |#1|))) (SIGNATURE |intersect| ((|List| |#1|) (|List| |#5|) (|List| |#1|))) (SIGNATURE |intersect| ((|List| |#1|) (|List| |#5|) |#1|)) (SIGNATURE |intersect| ((|List| |#1|) |#5| |#1|)) (SIGNATURE |purelyAlgebraicLeadingMonomial?| ((|Boolean|) |#5| |#1|)) (SIGNATURE |purelyAlgebraic?| ((|Boolean|) |#1|)) (SIGNATURE |algebraicCoefficients?| ((|Boolean|) |#5| |#1|)) (SIGNATURE |purelyTranscendental?| ((|Boolean|) |#5| |#1|)) (SIGNATURE |purelyAlgebraic?| ((|Boolean|) |#5| |#1|)) (SIGNATURE |extend| (|#1| |#1| |#5|))) │ │ │ +((|vertSplit| (((|List| |#4|) |#4| (|List| (|PositiveInteger|))) 72) (((|List| |#4|) |#4| (|PositiveInteger|)) 62)) (|vertConcat| ((|#4| (|List| |#4|)) 59)) (|subMatrix| ((|#4| |#4| (|Segment| (|PositiveInteger|)) (|Segment| (|PositiveInteger|))) 57) ((|#4| |#4| (|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) 54)) (|rows| ((|#4| |#4| (|Segment| (|PositiveInteger|))) 31) ((|#4| |#4| (|List| (|PositiveInteger|))) 30)) (|horizSplit| (((|List| |#4|) |#4| (|List| (|PositiveInteger|))) 74) (((|List| |#4|) |#4| (|PositiveInteger|)) 73)) (|horizConcat| ((|#4| (|List| |#4|)) 58)) (|element| ((|#4| |#4| (|PositiveInteger|) (|PositiveInteger|)) 20)) (|diagonalMatrix| ((|#4| |#4|) 45) ((|#4| |#4| (|Integer|)) 44)) (|columns| ((|#4| |#4| (|Segment| (|PositiveInteger|))) 37) ((|#4| |#4| (|List| (|PositiveInteger|))) 36)) (|blockSplit| (((|List| (|List| |#4|)) |#4| (|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) 78) (((|List| (|List| |#4|)) |#4| (|PositiveInteger|) (|List| (|PositiveInteger|))) 77) (((|List| (|List| |#4|)) |#4| (|List| (|PositiveInteger|)) (|PositiveInteger|)) 76) (((|List| (|List| |#4|)) |#4| (|PositiveInteger|) (|PositiveInteger|)) 75)) (|blockConcat| ((|#4| (|List| (|List| |#4|))) 53)) (|bandMatrix| ((|#4| |#4| (|Segment| (|Integer|))) 51) ((|#4| |#4| (|List| (|Integer|))) 48)) (|aRow| ((|#4| |#4| (|PositiveInteger|)) 24)) (|aColumn| ((|#4| |#4| (|PositiveInteger|)) 34))) │ │ │ +(((|MatrixManipulation| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |element| (|#4| |#4| (|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |aRow| (|#4| |#4| (|PositiveInteger|))) (SIGNATURE |rows| (|#4| |#4| (|List| (|PositiveInteger|)))) (SIGNATURE |rows| (|#4| |#4| (|Segment| (|PositiveInteger|)))) (SIGNATURE |aColumn| (|#4| |#4| (|PositiveInteger|))) (SIGNATURE |columns| (|#4| |#4| (|List| (|PositiveInteger|)))) (SIGNATURE |columns| (|#4| |#4| (|Segment| (|PositiveInteger|)))) (SIGNATURE |subMatrix| (|#4| |#4| (|List| (|PositiveInteger|)) (|List| (|PositiveInteger|)))) (SIGNATURE |subMatrix| (|#4| |#4| (|Segment| (|PositiveInteger|)) (|Segment| (|PositiveInteger|)))) (SIGNATURE |diagonalMatrix| (|#4| |#4| (|Integer|))) (SIGNATURE |diagonalMatrix| (|#4| |#4|)) (SIGNATURE |bandMatrix| (|#4| |#4| (|List| (|Integer|)))) (SIGNATURE |bandMatrix| (|#4| |#4| (|Segment| (|Integer|)))) (SIGNATURE |horizConcat| (|#4| (|List| |#4|))) (SIGNATURE |vertConcat| (|#4| (|List| |#4|))) (SIGNATURE |blockConcat| (|#4| (|List| (|List| |#4|)))) (SIGNATURE |vertSplit| ((|List| |#4|) |#4| (|PositiveInteger|))) (SIGNATURE |vertSplit| ((|List| |#4|) |#4| (|List| (|PositiveInteger|)))) (SIGNATURE |horizSplit| ((|List| |#4|) |#4| (|PositiveInteger|))) (SIGNATURE |horizSplit| ((|List| |#4|) |#4| (|List| (|PositiveInteger|)))) (SIGNATURE |blockSplit| ((|List| (|List| |#4|)) |#4| (|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |blockSplit| ((|List| (|List| |#4|)) |#4| (|List| (|PositiveInteger|)) (|PositiveInteger|))) (SIGNATURE |blockSplit| ((|List| (|List| |#4|)) |#4| (|PositiveInteger|) (|List| (|PositiveInteger|)))) (SIGNATURE |blockSplit| ((|List| (|List| |#4|)) |#4| (|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))))) (|Field|) (|FiniteLinearAggregate| |#1|) (|FiniteLinearAggregate| |#1|) (|MatrixCategory| |#1| |#2| |#3|)) (T |MatrixManipulation|)) │ │ │ +((|blockSplit| (*1 *2 *3 *4 *4) (AND (|isDomain| *4 (|List| (|PositiveInteger|))) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|FiniteLinearAggregate| *5)) (|ofCategory| *7 (|FiniteLinearAggregate| *5)) (|isDomain| *2 (|List| (|List| *3))) (|isDomain| *1 (|MatrixManipulation| *5 *6 *7 *3)) (|ofCategory| *3 (|MatrixCategory| *5 *6 *7)))) (|blockSplit| (*1 *2 *3 *4 *5) (AND (|isDomain| *5 (|List| (|PositiveInteger|))) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *6 (|Field|)) (|ofCategory| *7 (|FiniteLinearAggregate| *6)) (|ofCategory| *8 (|FiniteLinearAggregate| *6)) (|isDomain| *2 (|List| (|List| *3))) (|isDomain| *1 (|MatrixManipulation| *6 *7 *8 *3)) (|ofCategory| *3 (|MatrixCategory| *6 *7 *8)))) (|blockSplit| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|List| (|PositiveInteger|))) (|isDomain| *5 (|PositiveInteger|)) (|ofCategory| *6 (|Field|)) (|ofCategory| *7 (|FiniteLinearAggregate| *6)) (|ofCategory| *8 (|FiniteLinearAggregate| *6)) (|isDomain| *2 (|List| (|List| *3))) (|isDomain| *1 (|MatrixManipulation| *6 *7 *8 *3)) (|ofCategory| *3 (|MatrixCategory| *6 *7 *8)))) (|blockSplit| (*1 *2 *3 *4 *4) (AND (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|FiniteLinearAggregate| *5)) (|ofCategory| *7 (|FiniteLinearAggregate| *5)) (|isDomain| *2 (|List| (|List| *3))) (|isDomain| *1 (|MatrixManipulation| *5 *6 *7 *3)) (|ofCategory| *3 (|MatrixCategory| *5 *6 *7)))) (|horizSplit| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| (|PositiveInteger|))) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|FiniteLinearAggregate| *5)) (|ofCategory| *7 (|FiniteLinearAggregate| *5)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|MatrixManipulation| *5 *6 *7 *3)) (|ofCategory| *3 (|MatrixCategory| *5 *6 *7)))) (|horizSplit| (*1 *2 *3 *4) (AND (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|FiniteLinearAggregate| *5)) (|ofCategory| *7 (|FiniteLinearAggregate| *5)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|MatrixManipulation| *5 *6 *7 *3)) (|ofCategory| *3 (|MatrixCategory| *5 *6 *7)))) (|vertSplit| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| (|PositiveInteger|))) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|FiniteLinearAggregate| *5)) (|ofCategory| *7 (|FiniteLinearAggregate| *5)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|MatrixManipulation| *5 *6 *7 *3)) (|ofCategory| *3 (|MatrixCategory| *5 *6 *7)))) (|vertSplit| (*1 *2 *3 *4) (AND (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|FiniteLinearAggregate| *5)) (|ofCategory| *7 (|FiniteLinearAggregate| *5)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|MatrixManipulation| *5 *6 *7 *3)) (|ofCategory| *3 (|MatrixCategory| *5 *6 *7)))) (|blockConcat| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|List| *2))) (|ofCategory| *4 (|Field|)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)) (|isDomain| *1 (|MatrixManipulation| *4 *5 *6 *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)))) (|vertConcat| (*1 *2 *3) (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *4 (|Field|)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)) (|isDomain| *1 (|MatrixManipulation| *4 *5 *6 *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)))) (|horizConcat| (*1 *2 *3) (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *4 (|Field|)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)) (|isDomain| *1 (|MatrixManipulation| *4 *5 *6 *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)))) (|bandMatrix| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Segment| (|Integer|))) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|isDomain| *1 (|MatrixManipulation| *4 *5 *6 *2)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)))) (|bandMatrix| (*1 *2 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|isDomain| *1 (|MatrixManipulation| *4 *5 *6 *2)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)))) (|diagonalMatrix| (*1 *2 *2) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *1 (|MatrixManipulation| *3 *4 *5 *2)) (|ofCategory| *2 (|MatrixCategory| *3 *4 *5)))) (|diagonalMatrix| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|isDomain| *1 (|MatrixManipulation| *4 *5 *6 *2)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)))) (|subMatrix| (*1 *2 *2 *3 *3) (AND (|isDomain| *3 (|Segment| (|PositiveInteger|))) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|isDomain| *1 (|MatrixManipulation| *4 *5 *6 *2)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)))) (|subMatrix| (*1 *2 *2 *3 *3) (AND (|isDomain| *3 (|List| (|PositiveInteger|))) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|isDomain| *1 (|MatrixManipulation| *4 *5 *6 *2)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)))) (|columns| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Segment| (|PositiveInteger|))) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|isDomain| *1 (|MatrixManipulation| *4 *5 *6 *2)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)))) (|columns| (*1 *2 *2 *3) (AND (|isDomain| *3 (|List| (|PositiveInteger|))) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|isDomain| *1 (|MatrixManipulation| *4 *5 *6 *2)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)))) (|aColumn| (*1 *2 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|isDomain| *1 (|MatrixManipulation| *4 *5 *6 *2)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)))) (|rows| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Segment| (|PositiveInteger|))) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|isDomain| *1 (|MatrixManipulation| *4 *5 *6 *2)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)))) (|rows| (*1 *2 *2 *3) (AND (|isDomain| *3 (|List| (|PositiveInteger|))) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|isDomain| *1 (|MatrixManipulation| *4 *5 *6 *2)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)))) (|aRow| (*1 *2 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|isDomain| *1 (|MatrixManipulation| *4 *5 *6 *2)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)))) (|element| (*1 *2 *2 *3 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|isDomain| *1 (|MatrixManipulation| *4 *5 *6 *2)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |element| (|#4| |#4| (|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |aRow| (|#4| |#4| (|PositiveInteger|))) (SIGNATURE |rows| (|#4| |#4| (|List| (|PositiveInteger|)))) (SIGNATURE |rows| (|#4| |#4| (|Segment| (|PositiveInteger|)))) (SIGNATURE |aColumn| (|#4| |#4| (|PositiveInteger|))) (SIGNATURE |columns| (|#4| |#4| (|List| (|PositiveInteger|)))) (SIGNATURE |columns| (|#4| |#4| (|Segment| (|PositiveInteger|)))) (SIGNATURE |subMatrix| (|#4| |#4| (|List| (|PositiveInteger|)) (|List| (|PositiveInteger|)))) (SIGNATURE |subMatrix| (|#4| |#4| (|Segment| (|PositiveInteger|)) (|Segment| (|PositiveInteger|)))) (SIGNATURE |diagonalMatrix| (|#4| |#4| (|Integer|))) (SIGNATURE |diagonalMatrix| (|#4| |#4|)) (SIGNATURE |bandMatrix| (|#4| |#4| (|List| (|Integer|)))) (SIGNATURE |bandMatrix| (|#4| |#4| (|Segment| (|Integer|)))) (SIGNATURE |horizConcat| (|#4| (|List| |#4|))) (SIGNATURE |vertConcat| (|#4| (|List| |#4|))) (SIGNATURE |blockConcat| (|#4| (|List| (|List| |#4|)))) (SIGNATURE |vertSplit| ((|List| |#4|) |#4| (|PositiveInteger|))) (SIGNATURE |vertSplit| ((|List| |#4|) |#4| (|List| (|PositiveInteger|)))) (SIGNATURE |horizSplit| ((|List| |#4|) |#4| (|PositiveInteger|))) (SIGNATURE |horizSplit| ((|List| |#4|) |#4| (|List| (|PositiveInteger|)))) (SIGNATURE |blockSplit| ((|List| (|List| |#4|)) |#4| (|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |blockSplit| ((|List| (|List| |#4|)) |#4| (|List| (|PositiveInteger|)) (|PositiveInteger|))) (SIGNATURE |blockSplit| ((|List| (|List| |#4|)) |#4| (|PositiveInteger|) (|List| (|PositiveInteger|)))) (SIGNATURE |blockSplit| ((|List| (|List| |#4|)) |#4| (|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))))) │ │ │ +((|sample| (($) 14)) (|recip| (((|Union| $ "failed") $) 16)) (|one?| (((|Boolean|) $) 13)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) 9)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) 20))) │ │ │ +(((|Monoid&| |#1|) (CATEGORY |domain| (SIGNATURE |recip| ((|Union| |#1| "failed") |#1|)) (SIGNATURE ^ (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |one?| ((|Boolean|) |#1|)) (SIGNATURE |sample| (|#1|)) (SIGNATURE ^ (|#1| |#1| (|PositiveInteger|))) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|)))) (|Monoid|)) (T |Monoid&|)) │ │ │ NIL │ │ │ -(((|NoZeroDivisorsAttribute|) (|Category|)) (T |NoZeroDivisorsAttribute|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |recip| ((|Union| |#1| "failed") |#1|)) (SIGNATURE ^ (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |one?| ((|Boolean|) |#1|)) (SIGNATURE |sample| (|#1|)) (SIGNATURE ^ (|#1| |#1| (|PositiveInteger|))) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|)))) │ │ │ +((|zRange| (((|Segment| (|DoubleFloat|)) $) 7)) (|yRange| (((|Segment| (|DoubleFloat|)) $) 8)) (|xRange| (((|Segment| (|DoubleFloat|)) $) 9)) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) 10)) (|coerce| (((|OutputForm|) $) 6))) │ │ │ +(((|PlottableSpaceCurveCategory|) (|Category|)) (T |PlottableSpaceCurveCategory|)) │ │ │ +((|listBranches| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottableSpaceCurveCategory|)) (|isDomain| *2 (|List| (|List| (|Point| (|DoubleFloat|))))))) (|xRange| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottableSpaceCurveCategory|)) (|isDomain| *2 (|Segment| (|DoubleFloat|))))) (|yRange| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottableSpaceCurveCategory|)) (|isDomain| *2 (|Segment| (|DoubleFloat|))))) (|zRange| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottableSpaceCurveCategory|)) (|isDomain| *2 (|Segment| (|DoubleFloat|)))))) │ │ │ +(|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |listBranches| ((|List| (|List| (|Point| (|DoubleFloat|)))) $)) (SIGNATURE |xRange| ((|Segment| (|DoubleFloat|)) $)) (SIGNATURE |yRange| ((|Segment| (|DoubleFloat|)) $)) (SIGNATURE |zRange| ((|Segment| (|DoubleFloat|)) $)))) │ │ │ +(((|CoercibleTo| (|OutputForm|)) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|variable| (((|Union| $ "failed") (|Symbol|)) 32)) (|size| (((|NonNegativeInteger|)) 30)) (|random| (($) NIL)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|lookup| (((|PositiveInteger|) $) 28)) (|latex| (((|String|) $) 38)) (|index| (($ (|PositiveInteger|)) 27)) (|hash| (((|SingleInteger|) $) NIL)) (|enumerate| (((|List| $)) NIL)) (|convert| (((|Symbol|) $) 13) (((|InputForm|) $) 19) (((|Pattern| (|Float|)) $) 25) (((|Pattern| (|Integer|)) $) 22)) (|coerce| (((|OutputForm|) $) 16)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 35)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 34))) │ │ │ +(((|OrderedVariableList| |#1|) (|Join| (|OrderedFinite|) (|ConvertibleTo| (|Symbol|)) (|ConvertibleTo| (|InputForm|)) (|ConvertibleTo| (|Pattern| (|Float|))) (|ConvertibleTo| (|Pattern| (|Integer|))) (CATEGORY |domain| (SIGNATURE |variable| ((|Union| $ "failed") (|Symbol|))))) (|List| (|Symbol|))) (T |OrderedVariableList|)) │ │ │ +((|variable| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|OrderedVariableList| *3)) (|ofType| *3 (|List| *2))))) │ │ │ +(|Join| (|OrderedFinite|) (|ConvertibleTo| (|Symbol|)) (|ConvertibleTo| (|InputForm|)) (|ConvertibleTo| (|Pattern| (|Float|))) (|ConvertibleTo| (|Pattern| (|Integer|))) (CATEGORY |domain| (SIGNATURE |variable| ((|Union| $ "failed") (|Symbol|))))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (^ (($ $ (|PositiveInteger|)) 25)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ +(((|Rng|) (|Category|)) (T |Rng|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +(|Join| (|AbelianGroup|) (|SemiGroup|)) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +((|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) 14)) (|integer?| (((|Boolean|) |#1|) 13)) (|integer| (((|Integer|) |#1|) 9))) │ │ │ +(((|IntegerRetractions| |#1|) (CATEGORY |package| (SIGNATURE |integer| ((|Integer|) |#1|)) (SIGNATURE |integer?| ((|Boolean|) |#1|)) (SIGNATURE |integerIfCan| ((|Union| (|Integer|) "failed") |#1|))) (|RetractableTo| (|Integer|))) (T |IntegerRetractions|)) │ │ │ +((|integerIfCan| (*1 *2 *3) (|partial| AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerRetractions| *3)) (|ofCategory| *3 (|RetractableTo| *2)))) (|integer?| (*1 *2 *3) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IntegerRetractions| *3)) (|ofCategory| *3 (|RetractableTo| (|Integer|))))) (|integer| (*1 *2 *3) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerRetractions| *3)) (|ofCategory| *3 (|RetractableTo| *2))))) │ │ │ +(CATEGORY |package| (SIGNATURE |integer| ((|Integer|) |#1|)) (SIGNATURE |integer?| ((|Boolean|) |#1|)) (SIGNATURE |integerIfCan| ((|Union| (|Integer|) "failed") |#1|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|variables| (((|List| (|Symbol|)) $) NIL)) (|useNagFunctions| (((|Boolean|)) 87) (((|Boolean|) (|Boolean|)) 88)) (|tower| (((|List| (|Kernel| $)) $) NIL)) (|tanh| (($ $) NIL)) (|tan| (($ $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|subst| (($ $ (|Equation| $)) NIL) (($ $ (|List| (|Equation| $))) NIL) (($ $ (|List| (|Kernel| $)) (|List| $)) NIL)) (|sqrt| (($ $) NIL)) (|sinh| (($ $) NIL)) (|sin| (($ $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|Kernel| $) "failed") $) NIL) (((|Union| |#3| "failed") $) NIL) (((|Union| $ "failed") (|Expression| |#3|)) 69) (((|Union| $ "failed") (|Symbol|)) 93) (((|Union| $ "failed") (|Expression| (|Integer|))) 56 (|has| |#3| (|RetractableTo| (|Integer|)))) (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) 62 (|has| |#3| (|RetractableTo| (|Integer|)))) (((|Union| $ "failed") (|Polynomial| (|Integer|))) 57 (|has| |#3| (|RetractableTo| (|Integer|)))) (((|Union| $ "failed") (|Expression| (|Float|))) 74 (|has| |#3| (|RetractableTo| (|Float|)))) (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) 80 (|has| |#3| (|RetractableTo| (|Float|)))) (((|Union| $ "failed") (|Polynomial| (|Float|))) 75 (|has| |#3| (|RetractableTo| (|Float|))))) (|retract| (((|Kernel| $) $) NIL) ((|#3| $) NIL) (($ (|Expression| |#3|)) 70) (($ (|Symbol|)) 94) (($ (|Expression| (|Integer|))) 58 (|has| |#3| (|RetractableTo| (|Integer|)))) (($ (|Fraction| (|Polynomial| (|Integer|)))) 63 (|has| |#3| (|RetractableTo| (|Integer|)))) (($ (|Polynomial| (|Integer|))) 59 (|has| |#3| (|RetractableTo| (|Integer|)))) (($ (|Expression| (|Float|))) 76 (|has| |#3| (|RetractableTo| (|Float|)))) (($ (|Fraction| (|Polynomial| (|Float|)))) 81 (|has| |#3| (|RetractableTo| (|Float|)))) (($ (|Polynomial| (|Float|))) 77 (|has| |#3| (|RetractableTo| (|Float|))))) (|recip| (((|Union| $ "failed") $) NIL)) (|pi| (($) 10)) (|paren| (($ $) NIL) (($ (|List| $)) NIL)) (|operators| (((|List| (|BasicOperator|)) $) NIL)) (|operator| (((|BasicOperator|) (|BasicOperator|)) NIL)) (|one?| (((|Boolean|) $) NIL)) (|odd?| (((|Boolean|) $) NIL (|has| $ (|RetractableTo| (|Integer|))))) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) NIL (|has| $ (|Ring|)))) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|map| (($ (|Mapping| $ $) (|Kernel| $)) NIL)) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) NIL)) (|log10| (($ $) 90)) (|log| (($ $) NIL)) (|latex| (((|String|) $) NIL)) (|kernels| (((|List| (|Kernel| $)) $) NIL)) (|kernel| (($ (|BasicOperator|) $) 89) (($ (|BasicOperator|) (|List| $)) NIL)) (|is?| (((|Boolean|) $ (|BasicOperator|)) NIL) (((|Boolean|) $ (|Symbol|)) NIL)) (|height| (((|NonNegativeInteger|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|freeOf?| (((|Boolean|) $ $) NIL) (((|Boolean|) $ (|Symbol|)) NIL)) (|exp| (($ $) NIL)) (|even?| (((|Boolean|) $) NIL (|has| $ (|RetractableTo| (|Integer|))))) (|eval| (($ $ (|Kernel| $) $) NIL) (($ $ (|List| (|Kernel| $)) (|List| $)) NIL) (($ $ (|List| (|Equation| $))) NIL) (($ $ (|Equation| $)) NIL) (($ $ $ $) NIL) (($ $ (|List| $) (|List| $)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) NIL) (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) NIL) (($ $ (|Symbol|) (|Mapping| $ (|List| $))) NIL) (($ $ (|Symbol|) (|Mapping| $ $)) NIL) (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) NIL) (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) NIL) (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) NIL) (($ $ (|BasicOperator|) (|Mapping| $ $)) NIL)) (|elt| (($ (|BasicOperator|) $) NIL) (($ (|BasicOperator|) $ $) NIL) (($ (|BasicOperator|) $ $ $) NIL) (($ (|BasicOperator|) $ $ $ $) NIL) (($ (|BasicOperator|) (|List| $)) NIL)) (|distribute| (($ $) NIL) (($ $ $) NIL)) (|differentiate| (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|))) NIL) (($ $ (|Symbol|)) NIL)) (|definingPolynomial| (($ $) NIL (|has| $ (|Ring|)))) (|cosh| (($ $) NIL)) (|cos| (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Kernel| $)) NIL) (($ |#3|) NIL) (($ (|Integer|)) NIL) (((|Expression| |#3|) $) 92)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|box| (($ $) NIL) (($ (|List| $)) NIL)) (|belong?| (((|Boolean|) (|BasicOperator|)) NIL)) (|atan| (($ $) NIL)) (|asin| (($ $) NIL)) (|acos| (($ $) NIL)) (|abs| (($ $) NIL)) (^ (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|PositiveInteger|)) NIL)) (|Zero| (($) 91 T CONST)) (|One| (($) 22 T CONST)) (D (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|))) NIL) (($ $ (|Symbol|)) NIL)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) NIL)) (- (($ $ $) NIL) (($ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|PositiveInteger|)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (|Integer|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|PositiveInteger|) $) NIL))) │ │ │ +(((|FortranExpression| |#1| |#2| |#3|) (|Join| (|ExpressionSpace|) (|Algebra| |#3|) (|RetractableTo| |#3|) (|PartialDifferentialRing| (|Symbol|)) (CATEGORY |domain| (SIGNATURE |retract| ($ (|Expression| |#3|))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Expression| |#3|))) (SIGNATURE |retract| ($ (|Symbol|))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Symbol|))) (SIGNATURE |coerce| ((|Expression| |#3|) $)) (IF (|has| |#3| (|RetractableTo| (|Integer|))) (PROGN (SIGNATURE |retract| ($ (|Expression| (|Integer|)))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Expression| (|Integer|)))) (SIGNATURE |retract| ($ (|Fraction| (|Polynomial| (|Integer|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|))))) (SIGNATURE |retract| ($ (|Polynomial| (|Integer|)))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| (|Integer|))))) |noBranch|) (IF (|has| |#3| (|RetractableTo| (|Float|))) (PROGN (SIGNATURE |retract| ($ (|Expression| (|Float|)))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Expression| (|Float|)))) (SIGNATURE |retract| ($ (|Fraction| (|Polynomial| (|Float|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|))))) (SIGNATURE |retract| ($ (|Polynomial| (|Float|)))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| (|Float|))))) |noBranch|) (SIGNATURE |abs| ($ $)) (SIGNATURE |sqrt| ($ $)) (SIGNATURE |exp| ($ $)) (SIGNATURE |log| ($ $)) (SIGNATURE |log10| ($ $)) (SIGNATURE |sin| ($ $)) (SIGNATURE |cos| ($ $)) (SIGNATURE |tan| ($ $)) (SIGNATURE |asin| ($ $)) (SIGNATURE |acos| ($ $)) (SIGNATURE |atan| ($ $)) (SIGNATURE |sinh| ($ $)) (SIGNATURE |cosh| ($ $)) (SIGNATURE |tanh| ($ $)) (SIGNATURE |pi| ($)) (SIGNATURE |variables| ((|List| (|Symbol|)) $)) (SIGNATURE |useNagFunctions| ((|Boolean|))) (SIGNATURE |useNagFunctions| ((|Boolean|) (|Boolean|))))) (|List| (|Symbol|)) (|List| (|Symbol|)) (|FortranMachineTypeCategory|)) (T |FortranExpression|)) │ │ │ +((|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| *5)) (|ofCategory| *5 (|FortranMachineTypeCategory|)) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|Symbol|))))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Expression| *5)) (|ofCategory| *5 (|FortranMachineTypeCategory|)) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|Symbol|))))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofType| *3 (|List| *2)) (|ofType| *4 (|List| *2)) (|ofCategory| *5 (|FortranMachineTypeCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofType| *3 (|List| *2)) (|ofType| *4 (|List| *2)) (|ofCategory| *5 (|FortranMachineTypeCategory|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Expression| *5)) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|FortranMachineTypeCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofCategory| *5 (|RetractableTo| (|Integer|))) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|FortranMachineTypeCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofCategory| *5 (|RetractableTo| (|Integer|))) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|FortranMachineTypeCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| (|Polynomial| (|Integer|)))) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofCategory| *5 (|RetractableTo| (|Integer|))) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|FortranMachineTypeCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Fraction| (|Polynomial| (|Integer|)))) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofCategory| *5 (|RetractableTo| (|Integer|))) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|FortranMachineTypeCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| (|Integer|))) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofCategory| *5 (|RetractableTo| (|Integer|))) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|FortranMachineTypeCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Polynomial| (|Integer|))) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofCategory| *5 (|RetractableTo| (|Integer|))) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|FortranMachineTypeCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|Float|))) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofCategory| *5 (|RetractableTo| (|Float|))) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|FortranMachineTypeCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Expression| (|Float|))) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofCategory| *5 (|RetractableTo| (|Float|))) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|FortranMachineTypeCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| (|Polynomial| (|Float|)))) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofCategory| *5 (|RetractableTo| (|Float|))) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|FortranMachineTypeCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Fraction| (|Polynomial| (|Float|)))) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofCategory| *5 (|RetractableTo| (|Float|))) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|FortranMachineTypeCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| (|Float|))) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofCategory| *5 (|RetractableTo| (|Float|))) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|FortranMachineTypeCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Polynomial| (|Float|))) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofCategory| *5 (|RetractableTo| (|Float|))) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|FortranMachineTypeCategory|)))) (|abs| (*1 *1 *1) (AND (|isDomain| *1 (|FortranExpression| *2 *3 *4)) (|ofType| *2 (|List| (|Symbol|))) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|FortranMachineTypeCategory|)))) (|sqrt| (*1 *1 *1) (AND (|isDomain| *1 (|FortranExpression| *2 *3 *4)) (|ofType| *2 (|List| (|Symbol|))) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|FortranMachineTypeCategory|)))) (|exp| (*1 *1 *1) (AND (|isDomain| *1 (|FortranExpression| *2 *3 *4)) (|ofType| *2 (|List| (|Symbol|))) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|FortranMachineTypeCategory|)))) (|log| (*1 *1 *1) (AND (|isDomain| *1 (|FortranExpression| *2 *3 *4)) (|ofType| *2 (|List| (|Symbol|))) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|FortranMachineTypeCategory|)))) (|log10| (*1 *1 *1) (AND (|isDomain| *1 (|FortranExpression| *2 *3 *4)) (|ofType| *2 (|List| (|Symbol|))) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|FortranMachineTypeCategory|)))) (|sin| (*1 *1 *1) (AND (|isDomain| *1 (|FortranExpression| *2 *3 *4)) (|ofType| *2 (|List| (|Symbol|))) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|FortranMachineTypeCategory|)))) (|cos| (*1 *1 *1) (AND (|isDomain| *1 (|FortranExpression| *2 *3 *4)) (|ofType| *2 (|List| (|Symbol|))) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|FortranMachineTypeCategory|)))) (|tan| (*1 *1 *1) (AND (|isDomain| *1 (|FortranExpression| *2 *3 *4)) (|ofType| *2 (|List| (|Symbol|))) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|FortranMachineTypeCategory|)))) (|asin| (*1 *1 *1) (AND (|isDomain| *1 (|FortranExpression| *2 *3 *4)) (|ofType| *2 (|List| (|Symbol|))) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|FortranMachineTypeCategory|)))) (|acos| (*1 *1 *1) (AND (|isDomain| *1 (|FortranExpression| *2 *3 *4)) (|ofType| *2 (|List| (|Symbol|))) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|FortranMachineTypeCategory|)))) (|atan| (*1 *1 *1) (AND (|isDomain| *1 (|FortranExpression| *2 *3 *4)) (|ofType| *2 (|List| (|Symbol|))) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|FortranMachineTypeCategory|)))) (|sinh| (*1 *1 *1) (AND (|isDomain| *1 (|FortranExpression| *2 *3 *4)) (|ofType| *2 (|List| (|Symbol|))) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|FortranMachineTypeCategory|)))) (|cosh| (*1 *1 *1) (AND (|isDomain| *1 (|FortranExpression| *2 *3 *4)) (|ofType| *2 (|List| (|Symbol|))) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|FortranMachineTypeCategory|)))) (|tanh| (*1 *1 *1) (AND (|isDomain| *1 (|FortranExpression| *2 *3 *4)) (|ofType| *2 (|List| (|Symbol|))) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|FortranMachineTypeCategory|)))) (|pi| (*1 *1) (AND (|isDomain| *1 (|FortranExpression| *2 *3 *4)) (|ofType| *2 (|List| (|Symbol|))) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|FortranMachineTypeCategory|)))) (|variables| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofType| *3 *2) (|ofType| *4 *2) (|ofCategory| *5 (|FortranMachineTypeCategory|)))) (|useNagFunctions| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|FortranMachineTypeCategory|)))) (|useNagFunctions| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FortranExpression| *3 *4 *5)) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|FortranMachineTypeCategory|))))) │ │ │ +(|Join| (|ExpressionSpace|) (|Algebra| |#3|) (|RetractableTo| |#3|) (|PartialDifferentialRing| (|Symbol|)) (CATEGORY |domain| (SIGNATURE |retract| ($ (|Expression| |#3|))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Expression| |#3|))) (SIGNATURE |retract| ($ (|Symbol|))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Symbol|))) (SIGNATURE |coerce| ((|Expression| |#3|) $)) (IF (|has| |#3| (|RetractableTo| (|Integer|))) (PROGN (SIGNATURE |retract| ($ (|Expression| (|Integer|)))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Expression| (|Integer|)))) (SIGNATURE |retract| ($ (|Fraction| (|Polynomial| (|Integer|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|))))) (SIGNATURE |retract| ($ (|Polynomial| (|Integer|)))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| (|Integer|))))) |noBranch|) (IF (|has| |#3| (|RetractableTo| (|Float|))) (PROGN (SIGNATURE |retract| ($ (|Expression| (|Float|)))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Expression| (|Float|)))) (SIGNATURE |retract| ($ (|Fraction| (|Polynomial| (|Float|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|))))) (SIGNATURE |retract| ($ (|Polynomial| (|Float|)))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| (|Float|))))) |noBranch|) (SIGNATURE |abs| ($ $)) (SIGNATURE |sqrt| ($ $)) (SIGNATURE |exp| ($ $)) (SIGNATURE |log| ($ $)) (SIGNATURE |log10| ($ $)) (SIGNATURE |sin| ($ $)) (SIGNATURE |cos| ($ $)) (SIGNATURE |tan| ($ $)) (SIGNATURE |asin| ($ $)) (SIGNATURE |acos| ($ $)) (SIGNATURE |atan| ($ $)) (SIGNATURE |sinh| ($ $)) (SIGNATURE |cosh| ($ $)) (SIGNATURE |tanh| ($ $)) (SIGNATURE |pi| ($)) (SIGNATURE |variables| ((|List| (|Symbol|)) $)) (SIGNATURE |useNagFunctions| ((|Boolean|))) (SIGNATURE |useNagFunctions| ((|Boolean|) (|Boolean|))))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|sample| (($) 16 T CONST)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (+ (($ $ $) 13)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14))) │ │ │ +(((|AbelianMonoid|) (|Category|)) (T |AbelianMonoid|)) │ │ │ +((|Zero| (*1 *1) (|ofCategory| *1 (|AbelianMonoid|))) (|sample| (*1 *1) (|ofCategory| *1 (|AbelianMonoid|))) (|zero?| (*1 *2 *1) (AND (|ofCategory| *1 (|AbelianMonoid|)) (|isDomain| *2 (|Boolean|)))) (* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|AbelianMonoid|)) (|isDomain| *2 (|NonNegativeInteger|))))) │ │ │ +(|Join| (|AbelianSemiGroup|) (CATEGORY |domain| (SIGNATURE (|Zero|) ($) |constant|) (SIGNATURE |sample| ($) |constant|) (SIGNATURE |zero?| ((|Boolean|) $)) (SIGNATURE * ($ (|NonNegativeInteger|) $)))) │ │ │ +(((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|variableName| (($ (|Symbol|)) 49)) (|safety| (($ (|NonNegativeInteger|)) 28)) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) 61)) (|one| (($ (|Boolean|)) 40)) (|maxSubst| (($ (|Union| (|PositiveInteger|) "arbitrary")) 15)) (|maxShift| (($ (|Union| (|NonNegativeInteger|) "arbitrary")) 13)) (|maxPower| (($ (|Union| (|PositiveInteger|) "arbitrary")) 27)) (|maxMixedDegree| (($ (|NonNegativeInteger|)) 20)) (|maxLevel| (($ (|Union| (|NonNegativeInteger|) "arbitrary")) 11)) (|maxDerivative| (($ (|Union| (|NonNegativeInteger|) "arbitrary")) 12)) (|maxDegree| (($ (|Union| (|NonNegativeInteger|) "arbitrary")) 16)) (|latex| (((|String|) $) NIL)) (|indexName| (($ (|Symbol|)) 50)) (|homogeneous| (($ (|Union| (|PositiveInteger|) (|Boolean|))) 32)) (|hash| (((|SingleInteger|) $) NIL)) (|functionNames| (($ (|List| (|Symbol|))) 48)) (|functionName| (($ (|Symbol|)) 44)) (|displayKind| (($ (|Symbol|)) 51)) (|debug| (($ (|Boolean|)) 34)) (|coerce| (((|OutputForm|) $) 56)) (|checkExtraValues| (($ (|Boolean|)) 39)) (|check| (($ (|Union| "skip" "MonteCarlo" "deterministic")) 38)) (|allDegrees| (($ (|Boolean|)) 24)) (|Somos| (($ (|Union| (|PositiveInteger|) (|Boolean|))) 33)) (= (((|Boolean|) $ $) 58))) │ │ │ +(((|GuessOption|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |maxDerivative| ($ (|Union| (|NonNegativeInteger|) "arbitrary"))) (SIGNATURE |maxShift| ($ (|Union| (|NonNegativeInteger|) "arbitrary"))) (SIGNATURE |maxSubst| ($ (|Union| (|PositiveInteger|) "arbitrary"))) (SIGNATURE |maxPower| ($ (|Union| (|PositiveInteger|) "arbitrary"))) (SIGNATURE |homogeneous| ($ (|Union| (|PositiveInteger|) (|Boolean|)))) (SIGNATURE |Somos| ($ (|Union| (|PositiveInteger|) (|Boolean|)))) (SIGNATURE |maxLevel| ($ (|Union| (|NonNegativeInteger|) "arbitrary"))) (SIGNATURE |maxDegree| ($ (|Union| (|NonNegativeInteger|) "arbitrary"))) (SIGNATURE |maxMixedDegree| ($ (|NonNegativeInteger|))) (SIGNATURE |allDegrees| ($ (|Boolean|))) (SIGNATURE |safety| ($ (|NonNegativeInteger|))) (SIGNATURE |check| ($ (|Union| "skip" "MonteCarlo" "deterministic"))) (SIGNATURE |checkExtraValues| ($ (|Boolean|))) (SIGNATURE |one| ($ (|Boolean|))) (SIGNATURE |debug| ($ (|Boolean|))) (SIGNATURE |functionName| ($ (|Symbol|))) (SIGNATURE |functionNames| ($ (|List| (|Symbol|)))) (SIGNATURE |variableName| ($ (|Symbol|))) (SIGNATURE |indexName| ($ (|Symbol|))) (SIGNATURE |displayKind| ($ (|Symbol|))) (SIGNATURE |option| ((|Union| (|Any|) "failed") (|List| $) (|Symbol|)))))) (T |GuessOption|)) │ │ │ +((|maxDerivative| (*1 *1 *2) (AND (|isDomain| *2 (|Union| (|NonNegativeInteger|) "arbitrary")) (|isDomain| *1 (|GuessOption|)))) (|maxShift| (*1 *1 *2) (AND (|isDomain| *2 (|Union| (|NonNegativeInteger|) "arbitrary")) (|isDomain| *1 (|GuessOption|)))) (|maxSubst| (*1 *1 *2) (AND (|isDomain| *2 (|Union| (|PositiveInteger|) "arbitrary")) (|isDomain| *1 (|GuessOption|)))) (|maxPower| (*1 *1 *2) (AND (|isDomain| *2 (|Union| (|PositiveInteger|) "arbitrary")) (|isDomain| *1 (|GuessOption|)))) (|homogeneous| (*1 *1 *2) (AND (|isDomain| *2 (|Union| (|PositiveInteger|) (|Boolean|))) (|isDomain| *1 (|GuessOption|)))) (|Somos| (*1 *1 *2) (AND (|isDomain| *2 (|Union| (|PositiveInteger|) (|Boolean|))) (|isDomain| *1 (|GuessOption|)))) (|maxLevel| (*1 *1 *2) (AND (|isDomain| *2 (|Union| (|NonNegativeInteger|) "arbitrary")) (|isDomain| *1 (|GuessOption|)))) (|maxDegree| (*1 *1 *2) (AND (|isDomain| *2 (|Union| (|NonNegativeInteger|) "arbitrary")) (|isDomain| *1 (|GuessOption|)))) (|maxMixedDegree| (*1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|GuessOption|)))) (|allDegrees| (*1 *1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GuessOption|)))) (|safety| (*1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|GuessOption|)))) (|check| (*1 *1 *2) (AND (|isDomain| *2 (|Union| "skip" "MonteCarlo" "deterministic")) (|isDomain| *1 (|GuessOption|)))) (|checkExtraValues| (*1 *1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GuessOption|)))) (|one| (*1 *1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GuessOption|)))) (|debug| (*1 *1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GuessOption|)))) (|functionName| (*1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|GuessOption|)))) (|functionNames| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *1 (|GuessOption|)))) (|variableName| (*1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|GuessOption|)))) (|indexName| (*1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|GuessOption|)))) (|displayKind| (*1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|GuessOption|)))) (|option| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|List| (|GuessOption|))) (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|GuessOption|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |maxDerivative| ($ (|Union| (|NonNegativeInteger|) "arbitrary"))) (SIGNATURE |maxShift| ($ (|Union| (|NonNegativeInteger|) "arbitrary"))) (SIGNATURE |maxSubst| ($ (|Union| (|PositiveInteger|) "arbitrary"))) (SIGNATURE |maxPower| ($ (|Union| (|PositiveInteger|) "arbitrary"))) (SIGNATURE |homogeneous| ($ (|Union| (|PositiveInteger|) (|Boolean|)))) (SIGNATURE |Somos| ($ (|Union| (|PositiveInteger|) (|Boolean|)))) (SIGNATURE |maxLevel| ($ (|Union| (|NonNegativeInteger|) "arbitrary"))) (SIGNATURE |maxDegree| ($ (|Union| (|NonNegativeInteger|) "arbitrary"))) (SIGNATURE |maxMixedDegree| ($ (|NonNegativeInteger|))) (SIGNATURE |allDegrees| ($ (|Boolean|))) (SIGNATURE |safety| ($ (|NonNegativeInteger|))) (SIGNATURE |check| ($ (|Union| "skip" "MonteCarlo" "deterministic"))) (SIGNATURE |checkExtraValues| ($ (|Boolean|))) (SIGNATURE |one| ($ (|Boolean|))) (SIGNATURE |debug| ($ (|Boolean|))) (SIGNATURE |functionName| ($ (|Symbol|))) (SIGNATURE |functionNames| ($ (|List| (|Symbol|)))) (SIGNATURE |variableName| ($ (|Symbol|))) (SIGNATURE |indexName| ($ (|Symbol|))) (SIGNATURE |displayKind| ($ (|Symbol|))) (SIGNATURE |option| ((|Union| (|Any|) "failed") (|List| $) (|Symbol|))))) │ │ │ +((|eval| (($ $ (|List| |#2|) (|List| |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (|Equation| |#2|)) 11) (($ $ (|List| (|Equation| |#2|))) NIL))) │ │ │ +(((|Evalable&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |eval| (|#1| |#1| (|List| (|Equation| |#2|)))) (SIGNATURE |eval| (|#1| |#1| (|Equation| |#2|))) (SIGNATURE |eval| (|#1| |#1| |#2| |#2|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#2|) (|List| |#2|)))) (|Evalable| |#2|) (|SetCategory|)) (T |Evalable&|)) │ │ │ NIL │ │ │ -(((|PartiallyOrderedSetAttribute|) (|Category|)) (T |PartiallyOrderedSetAttribute|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |eval| (|#1| |#1| (|List| (|Equation| |#2|)))) (SIGNATURE |eval| (|#1| |#1| (|Equation| |#2|))) (SIGNATURE |eval| (|#1| |#1| |#2| |#2|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#2|) (|List| |#2|)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| |#2| "failed") $) 41)) (|retract| ((|#2| $) 40)) (|reductum| (($ $) 27)) (|numberOfMonomials| (((|NonNegativeInteger|) $) 31)) (|monomials| (((|List| $) $) 32)) (|monomial?| (((|Boolean|) $) 35)) (|monom| (($ |#2| |#1|) 36)) (|map| (($ (|Mapping| |#1| |#1|) $) 37)) (|listOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) 34)) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) 28)) (|leadingMonomial| ((|#2| $) 30)) (|leadingCoefficient| ((|#1| $) 29)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11) (($ |#2|) 42)) (|coefficients| (((|List| |#1|) $) 33)) (|coefficient| ((|#1| $ |#2|) 38)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ |#1| $) 22) (($ $ |#1|) 24) (($ |#1| |#2|) 39))) │ │ │ +(((|FreeModuleCat| |#1| |#2|) (|Category|) (|Ring|) (|SetCategory|)) (T |FreeModuleCat|)) │ │ │ +((* (*1 *1 *2 *3) (AND (|ofCategory| *1 (|FreeModuleCat| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|SetCategory|)))) (|coefficient| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|FreeModuleCat| *2 *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Ring|)))) (|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)))) (|monom| (*1 *1 *2 *3) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|SetCategory|)))) (|monomial?| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|listOfTerms| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|List| (|Record| (|:| |k| *4) (|:| |c| *3)))))) (|coefficients| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|List| *3)))) (|monomials| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|FreeModuleCat| *3 *4)))) (|numberOfMonomials| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|leadingMonomial| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|SetCategory|)))) (|leadingCoefficient| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *2 *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Ring|)))) (|leadingTerm| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Record| (|:| |k| *4) (|:| |c| *3))))) (|reductum| (*1 *1 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ +(|Join| (|BiModule| |t#1| |t#1|) (|RetractableTo| |t#2|) (CATEGORY |domain| (SIGNATURE * ($ |t#1| |t#2|)) (SIGNATURE |coefficient| (|t#1| $ |t#2|)) (SIGNATURE |map| ($ (|Mapping| |t#1| |t#1|) $)) (SIGNATURE |monom| ($ |t#2| |t#1|)) (SIGNATURE |monomial?| ((|Boolean|) $)) (SIGNATURE |listOfTerms| ((|List| (|Record| (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (SIGNATURE |coefficients| ((|List| |t#1|) $)) (SIGNATURE |monomials| ((|List| $) $)) (SIGNATURE |numberOfMonomials| ((|NonNegativeInteger|) $)) (SIGNATURE |leadingMonomial| (|t#2| $)) (SIGNATURE |leadingCoefficient| (|t#1| $)) (SIGNATURE |leadingTerm| ((|Record| (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (SIGNATURE |reductum| ($ $)) (IF (|has| |t#1| (|CommutativeRing|)) (ATTRIBUTE (|Module| |t#1|)) |noBranch|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#1|) . T) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|RetractableTo| |#2|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|setelt| ((|#1| $ (|Integer|) |#1|) 14)) (|removeConjugate| (((|List| $) (|List| $) (|NonNegativeInteger|)) 20) (((|List| $) (|List| $)) 19)) (|rational?| (((|Boolean|) $ (|NonNegativeInteger|)) 18) (((|Boolean|) $) 17)) (|pointValue| (((|List| |#1|) $) 13)) (|origin| (($) 29)) (|orbit| (((|List| $) $) 24) (((|List| $) $ (|NonNegativeInteger|)) 23)) (|list| (((|List| |#1|) $) 16)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|elt| ((|#1| $ (|Integer|)) 15)) (|degree| (((|PositiveInteger|) $) 12)) (|definingField| ((|#1| $) 27)) (|conjugate| (($ $ (|NonNegativeInteger|)) 22) (($ $) 21)) (|coerce| (((|OutputForm|) $) 11) (((|List| |#1|) $) 26) (($ (|List| |#1|)) 25)) (|affinePoint| (($ (|List| |#1|)) 28)) (= (((|Boolean|) $ $) 6))) │ │ │ +(((|AffineSpaceCategory| |#1|) (|Category|) (|Field|)) (T |AffineSpaceCategory|)) │ │ │ +((|origin| (*1 *1) (AND (|ofCategory| *1 (|AffineSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|affinePoint| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *1 (|AffineSpaceCategory| *3)))) (|definingField| (*1 *2 *1) (AND (|ofCategory| *1 (|AffineSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|AffineSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|List| *3)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *1 (|AffineSpaceCategory| *3)))) (|orbit| (*1 *2 *1) (AND (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|AffineSpaceCategory| *3)))) (|orbit| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|AffineSpaceCategory| *4)))) (|conjugate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|AffineSpaceCategory| *3)) (|ofCategory| *3 (|Field|)))) (|conjugate| (*1 *1 *1) (AND (|ofCategory| *1 (|AffineSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|removeConjugate| (*1 *2 *2 *3) (AND (|isDomain| *2 (|List| *1)) (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|AffineSpaceCategory| *4)) (|ofCategory| *4 (|Field|)))) (|removeConjugate| (*1 *2 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|AffineSpaceCategory| *3)) (|ofCategory| *3 (|Field|)))) (|rational?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|AffineSpaceCategory| *4)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|Boolean|)))) (|rational?| (*1 *2 *1) (AND (|ofCategory| *1 (|AffineSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Boolean|)))) (|list| (*1 *2 *1) (AND (|ofCategory| *1 (|AffineSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|List| *3)))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|AffineSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|setelt| (*1 *2 *1 *3 *2) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|AffineSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|pointValue| (*1 *2 *1) (AND (|ofCategory| *1 (|AffineSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|List| *3))))) │ │ │ +(|Join| (|SetCategoryWithDegree|) (CATEGORY |domain| (SIGNATURE |origin| ($)) (SIGNATURE |affinePoint| ($ (|List| |t#1|))) (SIGNATURE |definingField| (|t#1| $)) (SIGNATURE |coerce| ((|List| |t#1|) $)) (SIGNATURE |coerce| ($ (|List| |t#1|))) (SIGNATURE |orbit| ((|List| $) $)) (SIGNATURE |orbit| ((|List| $) $ (|NonNegativeInteger|))) (SIGNATURE |conjugate| ($ $ (|NonNegativeInteger|))) (SIGNATURE |conjugate| ($ $)) (SIGNATURE |removeConjugate| ((|List| $) (|List| $) (|NonNegativeInteger|))) (SIGNATURE |removeConjugate| ((|List| $) (|List| $))) (SIGNATURE |rational?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |rational?| ((|Boolean|) $)) (SIGNATURE |list| ((|List| |t#1|) $)) (SIGNATURE |elt| (|t#1| $ (|Integer|))) (SIGNATURE |setelt| (|t#1| $ (|Integer|) |t#1|)) (SIGNATURE |pointValue| ((|List| |t#1|) $)))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T) ((|SetCategoryWithDegree|) . T)) │ │ │ +((|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 215)) (|trace| ((|#2| $) 95)) (|tanh| (($ $) 242)) (|tan| (($ $) 236)) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 39)) (|sinh| (($ $) 240)) (|sin| (($ $) 234)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL) (((|Union| |#2| "failed") $) 139)) (|retract| (((|Integer|) $) NIL) (((|Fraction| (|Integer|)) $) NIL) ((|#2| $) 137)) (|rem| (($ $ $) 220)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL) (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| $) (|Vector| $)) 153) (((|Matrix| |#2|) (|Matrix| $)) 147)) (|reduce| (($ (|SparseUnivariatePolynomial| |#2|)) 118) (((|Union| $ "failed") (|Fraction| (|SparseUnivariatePolynomial| |#2|))) NIL)) (|recip| (((|Union| $ "failed") $) 207)) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) 197)) (|rational?| (((|Boolean|) $) 192)) (|rational| (((|Fraction| (|Integer|)) $) 195)) (|rank| (((|PositiveInteger|)) 88)) (|quo| (($ $ $) 222)) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) 258)) (|pi| (($) 231)) (|patternMatch| (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) 184) (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) 189)) (|norm| ((|#2| $) 93)) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) 120)) (|map| (($ (|Mapping| |#2| |#2|) $) 101)) (|log| (($ $) 233)) (|lift| (((|SparseUnivariatePolynomial| |#2|) $) 119)) (|inv| (($ $) 200)) (|imaginary| (($) 96)) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 87)) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 56)) (|exquo| (((|Union| $ "failed") $ |#2|) 202) (((|Union| $ "failed") $ $) 205)) (|exp| (($ $) 232)) (|euclideanSize| (((|NonNegativeInteger|) $) 217)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 226)) (|discriminant| ((|#2| (|Vector| $)) NIL) ((|#2|) 90)) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#2| |#2|)) 112) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|))) NIL) (($ $ (|Symbol|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL)) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) 113)) (|cosh| (($ $) 241)) (|cos| (($ $) 235)) (|coordinates| (((|Vector| |#2|) $ (|Vector| $)) 126) (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) NIL) (((|Vector| |#2|) $) 109) (((|Matrix| |#2|) (|Vector| $)) NIL)) (|convert| (((|Vector| |#2|) $) NIL) (($ (|Vector| |#2|)) NIL) (((|SparseUnivariatePolynomial| |#2|) $) NIL) (($ (|SparseUnivariatePolynomial| |#2|)) NIL) (((|Pattern| (|Integer|)) $) 175) (((|Pattern| (|Float|)) $) 179) (((|Complex| (|Float|)) $) 165) (((|Complex| (|DoubleFloat|)) $) 160) (((|InputForm|) $) 171)) (|conjugate| (($ $) 97)) (|coerce| (((|OutputForm|) $) 136) (($ (|Integer|)) NIL) (($ |#2|) NIL) (($ (|Fraction| (|Integer|))) NIL) (($ $) NIL)) (|characteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) 23)) (|characteristic| (((|NonNegativeInteger|)) 99)) (|atanh| (($ $) 245)) (|atan| (($ $) 239)) (|asinh| (($ $) 243)) (|asin| (($ $) 237)) (|argument| ((|#2| $) 230)) (|acosh| (($ $) 244)) (|acos| (($ $) 238)) (|abs| (($ $) 155)) (= (((|Boolean|) $ $) 103)) (< (((|Boolean|) $ $) 191)) (- (($ $) 105) (($ $ $) NIL)) (+ (($ $ $) 104)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Fraction| (|Integer|))) 264) (($ $ $) NIL) (($ $ (|Integer|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 111) (($ $ $) 140) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (|Fraction| (|Integer|)) $) NIL) (($ $ (|Fraction| (|Integer|))) NIL))) │ │ │ +(((|ComplexCategory&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |coerce| (|#1| |#1|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |unitNormal| ((|Record| (|:| |unit| |#1|) (|:| |canonical| |#1|) (|:| |associate| |#1|)) |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE |euclideanSize| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |divide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|)) (SIGNATURE |quo| (|#1| |#1| |#1|)) (SIGNATURE |rem| (|#1| |#1| |#1|)) (SIGNATURE |inv| (|#1| |#1|)) (SIGNATURE ** (|#1| |#1| (|Integer|))) (SIGNATURE * (|#1| |#1| (|Fraction| (|Integer|)))) (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |convert| ((|InputForm|) |#1|)) (SIGNATURE |convert| ((|Complex| (|DoubleFloat|)) |#1|)) (SIGNATURE |convert| ((|Complex| (|Float|)) |#1|)) (SIGNATURE |tan| (|#1| |#1|)) (SIGNATURE |sin| (|#1| |#1|)) (SIGNATURE |cos| (|#1| |#1|)) (SIGNATURE |acos| (|#1| |#1|)) (SIGNATURE |asin| (|#1| |#1|)) (SIGNATURE |atan| (|#1| |#1|)) (SIGNATURE |cosh| (|#1| |#1|)) (SIGNATURE |sinh| (|#1| |#1|)) (SIGNATURE |tanh| (|#1| |#1|)) (SIGNATURE |acosh| (|#1| |#1|)) (SIGNATURE |asinh| (|#1| |#1|)) (SIGNATURE |atanh| (|#1| |#1|)) (SIGNATURE |log| (|#1| |#1|)) (SIGNATURE |exp| (|#1| |#1|)) (SIGNATURE ** (|#1| |#1| |#1|)) (SIGNATURE |pi| (|#1|)) (SIGNATURE ** (|#1| |#1| (|Fraction| (|Integer|)))) (SIGNATURE |factorPolynomial| ((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |factorSquareFreePolynomial| ((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |solveLinearPolynomialEquation| ((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |rational| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |rational?| ((|Boolean|) |#1|)) (SIGNATURE |polarCoordinates| ((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (SIGNATURE |argument| (|#2| |#1|)) (SIGNATURE |abs| (|#1| |#1|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#2|)) (SIGNATURE |conjugate| (|#1| |#1|)) (SIGNATURE |imaginary| (|#1|)) (SIGNATURE |convert| ((|Pattern| (|Float|)) |#1|)) (SIGNATURE |convert| ((|Pattern| (|Integer|)) |#1|)) (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Float|) |#1|) |#1| (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) |#1|))) (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|))) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) (SIGNATURE |reduce| ((|Union| |#1| "failed") (|Fraction| (|SparseUnivariatePolynomial| |#2|)))) (SIGNATURE |lift| ((|SparseUnivariatePolynomial| |#2|) |#1|)) (SIGNATURE |convert| (|#1| (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |reduce| (|#1| (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |definingPolynomial| ((|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |reducedSystem| ((|Matrix| |#2|) (|Matrix| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Matrix| (|Integer|)) (|Matrix| |#1|))) (SIGNATURE |retract| (|#2| |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |retract| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |retract| ((|Integer|) |#1|)) (SIGNATURE |convert| ((|SparseUnivariatePolynomial| |#2|) |#1|)) (SIGNATURE |discriminant| (|#2|)) (SIGNATURE |convert| (|#1| (|Vector| |#2|))) (SIGNATURE |convert| ((|Vector| |#2|) |#1|)) (SIGNATURE |coordinates| ((|Matrix| |#2|) (|Vector| |#1|))) (SIGNATURE |coordinates| ((|Vector| |#2|) |#1|)) (SIGNATURE |minimalPolynomial| ((|SparseUnivariatePolynomial| |#2|) |#1|)) (SIGNATURE |characteristicPolynomial| ((|SparseUnivariatePolynomial| |#2|) |#1|)) (SIGNATURE |discriminant| (|#2| (|Vector| |#1|))) (SIGNATURE |coordinates| ((|Matrix| |#2|) (|Vector| |#1|) (|Vector| |#1|))) (SIGNATURE |coordinates| ((|Vector| |#2|) |#1| (|Vector| |#1|))) (SIGNATURE |norm| (|#2| |#1|)) (SIGNATURE |trace| (|#2| |#1|)) (SIGNATURE |rank| ((|PositiveInteger|))) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |characteristic| ((|NonNegativeInteger|))) (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |recip| ((|Union| |#1| "failed") |#1|)) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|))) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|)) (SIGNATURE + (|#1| |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|))) (|ComplexCategory| |#2|) (|CommutativeRing|)) (T |ComplexCategory&|)) │ │ │ +((|characteristic| (*1 *2) (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ComplexCategory&| *3 *4)) (|ofCategory| *3 (|ComplexCategory| *4)))) (|rank| (*1 *2) (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|ComplexCategory&| *3 *4)) (|ofCategory| *3 (|ComplexCategory| *4)))) (|discriminant| (*1 *2) (AND (|ofCategory| *2 (|CommutativeRing|)) (|isDomain| *1 (|ComplexCategory&| *3 *2)) (|ofCategory| *3 (|ComplexCategory| *2)))) (|definingPolynomial| (*1 *2) (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *4)) (|isDomain| *1 (|ComplexCategory&| *3 *4)) (|ofCategory| *3 (|ComplexCategory| *4))))) │ │ │ +(CATEGORY |domain| (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |coerce| (|#1| |#1|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |unitNormal| ((|Record| (|:| |unit| |#1|) (|:| |canonical| |#1|) (|:| |associate| |#1|)) |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE |euclideanSize| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |divide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|)) (SIGNATURE |quo| (|#1| |#1| |#1|)) (SIGNATURE |rem| (|#1| |#1| |#1|)) (SIGNATURE |inv| (|#1| |#1|)) (SIGNATURE ** (|#1| |#1| (|Integer|))) (SIGNATURE * (|#1| |#1| (|Fraction| (|Integer|)))) (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |convert| ((|InputForm|) |#1|)) (SIGNATURE |convert| ((|Complex| (|DoubleFloat|)) |#1|)) (SIGNATURE |convert| ((|Complex| (|Float|)) |#1|)) (SIGNATURE |tan| (|#1| |#1|)) (SIGNATURE |sin| (|#1| |#1|)) (SIGNATURE |cos| (|#1| |#1|)) (SIGNATURE |acos| (|#1| |#1|)) (SIGNATURE |asin| (|#1| |#1|)) (SIGNATURE |atan| (|#1| |#1|)) (SIGNATURE |cosh| (|#1| |#1|)) (SIGNATURE |sinh| (|#1| |#1|)) (SIGNATURE |tanh| (|#1| |#1|)) (SIGNATURE |acosh| (|#1| |#1|)) (SIGNATURE |asinh| (|#1| |#1|)) (SIGNATURE |atanh| (|#1| |#1|)) (SIGNATURE |log| (|#1| |#1|)) (SIGNATURE |exp| (|#1| |#1|)) (SIGNATURE ** (|#1| |#1| |#1|)) (SIGNATURE |pi| (|#1|)) (SIGNATURE ** (|#1| |#1| (|Fraction| (|Integer|)))) (SIGNATURE |factorPolynomial| ((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |factorSquareFreePolynomial| ((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |solveLinearPolynomialEquation| ((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |rational| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |rational?| ((|Boolean|) |#1|)) (SIGNATURE |polarCoordinates| ((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (SIGNATURE |argument| (|#2| |#1|)) (SIGNATURE |abs| (|#1| |#1|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#2|)) (SIGNATURE |conjugate| (|#1| |#1|)) (SIGNATURE |imaginary| (|#1|)) (SIGNATURE |convert| ((|Pattern| (|Float|)) |#1|)) (SIGNATURE |convert| ((|Pattern| (|Integer|)) |#1|)) (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Float|) |#1|) |#1| (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) |#1|))) (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|))) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) (SIGNATURE |reduce| ((|Union| |#1| "failed") (|Fraction| (|SparseUnivariatePolynomial| |#2|)))) (SIGNATURE |lift| ((|SparseUnivariatePolynomial| |#2|) |#1|)) (SIGNATURE |convert| (|#1| (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |reduce| (|#1| (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |definingPolynomial| ((|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |reducedSystem| ((|Matrix| |#2|) (|Matrix| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Matrix| (|Integer|)) (|Matrix| |#1|))) (SIGNATURE |retract| (|#2| |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |retract| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |retract| ((|Integer|) |#1|)) (SIGNATURE |convert| ((|SparseUnivariatePolynomial| |#2|) |#1|)) (SIGNATURE |discriminant| (|#2|)) (SIGNATURE |convert| (|#1| (|Vector| |#2|))) (SIGNATURE |convert| ((|Vector| |#2|) |#1|)) (SIGNATURE |coordinates| ((|Matrix| |#2|) (|Vector| |#1|))) (SIGNATURE |coordinates| ((|Vector| |#2|) |#1|)) (SIGNATURE |minimalPolynomial| ((|SparseUnivariatePolynomial| |#2|) |#1|)) (SIGNATURE |characteristicPolynomial| ((|SparseUnivariatePolynomial| |#2|) |#1|)) (SIGNATURE |discriminant| (|#2| (|Vector| |#1|))) (SIGNATURE |coordinates| ((|Matrix| |#2|) (|Vector| |#1|) (|Vector| |#1|))) (SIGNATURE |coordinates| ((|Vector| |#2|) |#1| (|Vector| |#1|))) (SIGNATURE |norm| (|#2| |#1|)) (SIGNATURE |trace| (|#2| |#1|)) (SIGNATURE |rank| ((|PositiveInteger|))) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |characteristic| ((|NonNegativeInteger|))) (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |recip| ((|Union| |#1| "failed") |#1|)) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|))) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|)) (SIGNATURE + (|#1| |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|rightPower| (($ $ (|PositiveInteger|)) 14)) (|leftPower| (($ $ (|PositiveInteger|)) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6)) (** (($ $ (|PositiveInteger|)) 12)) (* (($ $ $) 15))) │ │ │ +(((|Monad|) (|Category|)) (T |Monad|)) │ │ │ +((* (*1 *1 *1 *1) (|ofCategory| *1 (|Monad|))) (|rightPower| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|Monad|)) (|isDomain| *2 (|PositiveInteger|)))) (|leftPower| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|Monad|)) (|isDomain| *2 (|PositiveInteger|)))) (** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|Monad|)) (|isDomain| *2 (|PositiveInteger|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE * ($ $ $)) (SIGNATURE |rightPower| ($ $ (|PositiveInteger|))) (SIGNATURE |leftPower| ($ $ (|PositiveInteger|))) (SIGNATURE ** ($ $ (|PositiveInteger|))))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ +((|weakBiRank| (((|NonNegativeInteger|) |#2|) 65)) (|rightRank| (((|NonNegativeInteger|) |#2|) 68)) (|radicalOfLeftTraceForm| (((|List| |#2|)) 33)) (|leftRank| (((|NonNegativeInteger|) |#2|) 67)) (|doubleRank| (((|NonNegativeInteger|) |#2|) 64)) (|biRank| (((|NonNegativeInteger|) |#2|) 66)) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) 60)) (|basisOfRightNucleus| (((|List| |#2|)) 55)) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) 43)) (|basisOfNucleus| (((|List| |#2|)) 57)) (|basisOfMiddleNucleus| (((|List| |#2|)) 56)) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) 48)) (|basisOfLeftNucleus| (((|List| |#2|)) 54)) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) 42)) (|basisOfCommutingElements| (((|List| |#2|)) 50)) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) 61)) (|basisOfCenter| (((|List| |#2|)) 59)) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) 83 (|has| |#1| (|EuclideanDomain|))))) │ │ │ +(((|AlgebraPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |leftRank| ((|NonNegativeInteger|) |#2|)) (SIGNATURE |rightRank| ((|NonNegativeInteger|) |#2|)) (SIGNATURE |doubleRank| ((|NonNegativeInteger|) |#2|)) (SIGNATURE |weakBiRank| ((|NonNegativeInteger|) |#2|)) (SIGNATURE |biRank| ((|NonNegativeInteger|) |#2|)) (SIGNATURE |basisOfCommutingElements| ((|List| |#2|))) (SIGNATURE |basisOfLeftAnnihilator| ((|List| |#2|) |#2|)) (SIGNATURE |basisOfRightAnnihilator| ((|List| |#2|) |#2|)) (SIGNATURE |basisOfLeftNucleus| ((|List| |#2|))) (SIGNATURE |basisOfRightNucleus| ((|List| |#2|))) (SIGNATURE |basisOfMiddleNucleus| ((|List| |#2|))) (SIGNATURE |basisOfNucleus| ((|List| |#2|))) (SIGNATURE |basisOfCenter| ((|List| |#2|))) (SIGNATURE |basisOfLeftNucloid| ((|List| (|Matrix| |#1|)))) (SIGNATURE |basisOfRightNucloid| ((|List| (|Matrix| |#1|)))) (SIGNATURE |basisOfCentroid| ((|List| (|Matrix| |#1|)))) (SIGNATURE |radicalOfLeftTraceForm| ((|List| |#2|))) (IF (|has| |#1| (|EuclideanDomain|)) (SIGNATURE |basis| ((|Vector| |#2|) (|Vector| |#2|))) |noBranch|)) (|IntegralDomain|) (|FramedNonAssociativeAlgebra| |#1|)) (T |AlgebraPackage|)) │ │ │ +((|basis| (*1 *2 *2) (AND (|isDomain| *2 (|Vector| *4)) (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|EuclideanDomain|)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *1 (|AlgebraPackage| *3 *4)))) (|radicalOfLeftTraceForm| (*1 *2) (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *4)) (|isDomain| *1 (|AlgebraPackage| *3 *4)) (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))) (|basisOfCentroid| (*1 *2) (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| (|Matrix| *3))) (|isDomain| *1 (|AlgebraPackage| *3 *4)) (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))) (|basisOfRightNucloid| (*1 *2) (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| (|Matrix| *3))) (|isDomain| *1 (|AlgebraPackage| *3 *4)) (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))) (|basisOfLeftNucloid| (*1 *2) (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| (|Matrix| *3))) (|isDomain| *1 (|AlgebraPackage| *3 *4)) (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))) (|basisOfCenter| (*1 *2) (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *4)) (|isDomain| *1 (|AlgebraPackage| *3 *4)) (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))) (|basisOfNucleus| (*1 *2) (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *4)) (|isDomain| *1 (|AlgebraPackage| *3 *4)) (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))) (|basisOfMiddleNucleus| (*1 *2) (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *4)) (|isDomain| *1 (|AlgebraPackage| *3 *4)) (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))) (|basisOfRightNucleus| (*1 *2) (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *4)) (|isDomain| *1 (|AlgebraPackage| *3 *4)) (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))) (|basisOfLeftNucleus| (*1 *2) (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *4)) (|isDomain| *1 (|AlgebraPackage| *3 *4)) (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))) (|basisOfRightAnnihilator| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|AlgebraPackage| *4 *3)) (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4)))) (|basisOfLeftAnnihilator| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|AlgebraPackage| *4 *3)) (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4)))) (|basisOfCommutingElements| (*1 *2) (AND (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *4)) (|isDomain| *1 (|AlgebraPackage| *3 *4)) (|ofCategory| *4 (|FramedNonAssociativeAlgebra| *3)))) (|biRank| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|AlgebraPackage| *4 *3)) (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4)))) (|weakBiRank| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|AlgebraPackage| *4 *3)) (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4)))) (|doubleRank| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|AlgebraPackage| *4 *3)) (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4)))) (|rightRank| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|AlgebraPackage| *4 *3)) (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4)))) (|leftRank| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|AlgebraPackage| *4 *3)) (|ofCategory| *3 (|FramedNonAssociativeAlgebra| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |leftRank| ((|NonNegativeInteger|) |#2|)) (SIGNATURE |rightRank| ((|NonNegativeInteger|) |#2|)) (SIGNATURE |doubleRank| ((|NonNegativeInteger|) |#2|)) (SIGNATURE |weakBiRank| ((|NonNegativeInteger|) |#2|)) (SIGNATURE |biRank| ((|NonNegativeInteger|) |#2|)) (SIGNATURE |basisOfCommutingElements| ((|List| |#2|))) (SIGNATURE |basisOfLeftAnnihilator| ((|List| |#2|) |#2|)) (SIGNATURE |basisOfRightAnnihilator| ((|List| |#2|) |#2|)) (SIGNATURE |basisOfLeftNucleus| ((|List| |#2|))) (SIGNATURE |basisOfRightNucleus| ((|List| |#2|))) (SIGNATURE |basisOfMiddleNucleus| ((|List| |#2|))) (SIGNATURE |basisOfNucleus| ((|List| |#2|))) (SIGNATURE |basisOfCenter| ((|List| |#2|))) (SIGNATURE |basisOfLeftNucloid| ((|List| (|Matrix| |#1|)))) (SIGNATURE |basisOfRightNucloid| ((|List| (|Matrix| |#1|)))) (SIGNATURE |basisOfCentroid| ((|List| (|Matrix| |#1|)))) (SIGNATURE |radicalOfLeftTraceForm| ((|List| |#2|))) (IF (|has| |#1| (|EuclideanDomain|)) (SIGNATURE |basis| ((|Vector| |#2|) (|Vector| |#2|))) |noBranch|)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|variable| (((|Symbol|)) 12)) (|latex| (((|String|) $) 17)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 11) (((|Symbol|) $) 8)) (= (((|Boolean|) $ $) 14))) │ │ │ +(((|Variable| |#1|) (|Join| (|SetCategory|) (|CoercibleTo| (|Symbol|)) (CATEGORY |domain| (SIGNATURE |coerce| ((|Symbol|) $)) (SIGNATURE |variable| ((|Symbol|))))) (|Symbol|)) (T |Variable|)) │ │ │ +((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|Variable| *3)) (|ofType| *3 *2))) (|variable| (*1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|Variable| *3)) (|ofType| *3 *2)))) │ │ │ +(|Join| (|SetCategory|) (|CoercibleTo| (|Symbol|)) (CATEGORY |domain| (SIGNATURE |coerce| ((|Symbol|) $)) (SIGNATURE |variable| ((|Symbol|))))) │ │ │ +((|retractIfCan| (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) 99) (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) 88) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) 121) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) 110) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 77) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 66)) (|retract| (($ (|Vector| (|Expression| (|Float|)))) 95) (($ (|Vector| (|Expression| (|Integer|)))) 84) (($ (|Vector| (|Polynomial| (|Float|)))) 117) (($ (|Vector| (|Polynomial| (|Integer|)))) 106) (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 73) (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 59)) (|outputAsFortran| (((|Void|) $) 45)) (|coerce| (((|OutputForm|) $) 39) (($ (|List| (|FortranCode|))) 48) (($ (|FortranCode|)) 35) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 51) (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) 36))) │ │ │ +(((|Asp78| |#1|) (|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))))))) (|Symbol|)) (T |Asp78|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) (|isDomain| *1 (|Asp78| *3)) (|ofType| *3 (|Symbol|))))) │ │ │ +(|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))))))) │ │ │ +((|outputAsFortran| (((|Void|) $) 32) (((|Void|)) 31)) (|coerce| (((|OutputForm|) $) 35))) │ │ │ +(((|Asp33| |#1|) (|Join| (|FortranProgramCategory|) (CATEGORY |package| (SIGNATURE |outputAsFortran| ((|Void|))))) (|Symbol|)) (T |Asp33|)) │ │ │ +((|outputAsFortran| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Asp33| *3)) (|ofType| *3 (|Symbol|))))) │ │ │ +(|Join| (|FortranProgramCategory|) (CATEGORY |package| (SIGNATURE |outputAsFortran| ((|Void|))))) │ │ │ +((|convert| (((|Pattern| (|Float|)) $) 9 (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|))))) (((|Pattern| (|Integer|)) $) 8 (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|))))))) │ │ │ +(((|Patternable| |#1|) (|Category|) (|Type|)) (T |Patternable|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +(|Join| (CATEGORY |package| (IF (|has| |t#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (ATTRIBUTE (|ConvertibleTo| (|Pattern| (|Integer|)))) |noBranch|) (IF (|has| |t#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (ATTRIBUTE (|ConvertibleTo| (|Pattern| (|Float|)))) |noBranch|))) │ │ │ +(((|ConvertibleTo| (|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) ((|ConvertibleTo| (|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|unitCanonical| (($ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|unit?| (((|Boolean|) $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|traceMatrix| (((|Matrix| (|Fraction| |#2|)) (|Vector| $)) NIL) (((|Matrix| (|Fraction| |#2|))) NIL)) (|trace| (((|Fraction| |#2|) $) NIL)) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|squareFree| (((|Factored| $) $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|sizeLess?| (((|Boolean|) $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|size| (((|NonNegativeInteger|)) NIL (|has| (|Fraction| |#2|) (|Finite|)))) (|singularAtInfinity?| (((|Boolean|)) NIL)) (|singular?| (((|Boolean|) |#1|) 147) (((|Boolean|) |#2|) 152)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (|has| (|Fraction| |#2|) (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| (|Fraction| |#2|) (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| (|Fraction| |#2|) "failed") $) NIL)) (|retract| (((|Integer|) $) NIL (|has| (|Fraction| |#2|) (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) NIL (|has| (|Fraction| |#2|) (|RetractableTo| (|Fraction| (|Integer|))))) (((|Fraction| |#2|) $) NIL)) (|represents| (($ (|Vector| (|Fraction| |#2|)) (|Vector| $)) NIL) (($ (|Vector| (|Fraction| |#2|))) 70) (($ (|Vector| |#2|) |#2|) NIL)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|rem| (($ $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|regularRepresentation| (((|Matrix| (|Fraction| |#2|)) $ (|Vector| $)) NIL) (((|Matrix| (|Fraction| |#2|)) $) NIL)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (|has| (|Fraction| |#2|) (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (|has| (|Fraction| |#2|) (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Fraction| |#2|))) (|:| |vec| (|Vector| (|Fraction| |#2|)))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| (|Fraction| |#2|)) (|Matrix| $)) NIL)) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) NIL)) (|reduce| (($ |#3|) 65) (((|Union| $ "failed") (|Fraction| |#3|)) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|recip| (((|Union| $ "failed") $) NIL)) (|rationalPoints| (((|List| (|List| |#1|))) NIL (|has| |#1| (|Finite|)))) (|rationalPoint?| (((|Boolean|) |#1| |#1|) NIL)) (|rank| (((|PositiveInteger|)) NIL)) (|random| (($) NIL (|has| (|Fraction| |#2|) (|Finite|)))) (|ramifiedAtInfinity?| (((|Boolean|)) NIL)) (|ramified?| (((|Boolean|) |#1|) 56) (((|Boolean|) |#2|) 149)) (|quo| (($ $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|primitivePart| (($ $) NIL)) (|primitiveElement| (($) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|primitive?| (((|Boolean|) $) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))) (($ $) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|prime?| (((|Boolean|) $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|order| (((|PositiveInteger|) $) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))) (((|OnePointCompletion| (|PositiveInteger|)) $) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|one?| (((|Boolean|) $) NIL)) (|numberOfComponents| (((|NonNegativeInteger|)) NIL)) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) NIL)) (|norm| (((|Fraction| |#2|) $) NIL)) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) NIL (|has| |#1| (|Field|)))) (|nextItem| (((|Union| $ "failed") $) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|minimalPolynomial| ((|#3| $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|lookup| (((|PositiveInteger|) $) NIL (|has| (|Fraction| |#2|) (|Finite|)))) (|lift| ((|#3| $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|lcm| (($ (|List| $)) NIL (|has| (|Fraction| |#2|) (|Field|))) (($ $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|latex| (((|String|) $) NIL)) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) 52)) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) 51)) (|inv| (($ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|integralRepresents| (($ (|Vector| |#2|) |#2|) 71)) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) 50)) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) 49)) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) 86)) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) 77)) (|integralBasisAtInfinity| (((|Vector| $)) 46)) (|integralBasis| (((|Vector| $)) 45)) (|integralAtInfinity?| (((|Boolean|) $) NIL)) (|integral?| (((|Boolean|) $) NIL) (((|Boolean|) $ |#1|) NIL) (((|Boolean|) $ |#2|) NIL)) (|init| (($) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) CONST)) (|index| (($ (|PositiveInteger|)) NIL (|has| (|Fraction| |#2|) (|Finite|)))) (|hyperelliptic| (((|Union| |#2| "failed")) 63)) (|hash| (((|SingleInteger|) $) NIL)) (|genus| (((|NonNegativeInteger|)) NIL)) (|generator| (($) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|gcd| (($ (|List| $)) NIL (|has| (|Fraction| |#2|) (|Field|))) (($ $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|factor| (((|Factored| $) $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (|Fraction| |#2|) (|Field|))) (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|exquo| (((|Union| $ "failed") $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|euclideanSize| (((|NonNegativeInteger|) $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|enumerate| (((|List| $)) NIL (|has| (|Fraction| |#2|) (|Finite|)))) (|elt| ((|#1| $ |#1| |#1|) NIL)) (|elliptic| (((|Union| |#2| "failed")) 62)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|discriminant| (((|Fraction| |#2|) (|Vector| $)) NIL) (((|Fraction| |#2|)) 42)) (|discreteLog| (((|NonNegativeInteger|) $) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))) (((|Union| (|NonNegativeInteger|) "failed") $ $) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|differentiate| (($ $ (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|)) (|NonNegativeInteger|)) NIL (|has| (|Fraction| |#2|) (|Field|))) (($ $ (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|))) NIL (|has| (|Fraction| |#2|) (|Field|))) (($ $ (|Mapping| |#2| |#2|)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) NIL (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (OR (AND (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|Field|))) (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (($ $) NIL (OR (AND (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|Field|))) (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))))) (|derivationCoordinates| (((|Matrix| (|Fraction| |#2|)) (|Vector| $) (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|))) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|definingPolynomial| ((|#3|) 53)) (|createPrimitiveElement| (($) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|coordinates| (((|Vector| (|Fraction| |#2|)) $ (|Vector| $)) NIL) (((|Matrix| (|Fraction| |#2|)) (|Vector| $) (|Vector| $)) NIL) (((|Vector| (|Fraction| |#2|)) $) 72) (((|Matrix| (|Fraction| |#2|)) (|Vector| $)) NIL)) (|convert| (((|Vector| (|Fraction| |#2|)) $) NIL) (($ (|Vector| (|Fraction| |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|complementaryBasis| (((|Vector| $) (|Vector| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ (|Fraction| |#2|)) NIL) (($ (|Fraction| (|Integer|))) NIL (OR (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|RetractableTo| (|Fraction| (|Integer|)))))) (($ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|charthRoot| (($ $) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))) (((|Union| $ "failed") $) NIL (|has| (|Fraction| |#2|) (|CharacteristicNonZero|)))) (|characteristicPolynomial| ((|#3| $) NIL)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|branchPointAtInfinity?| (((|Boolean|)) 60)) (|branchPoint?| (((|Boolean|) |#1|) 153) (((|Boolean|) |#2|) 154)) (|basis| (((|Vector| $)) 124)) (|associates?| (((|Boolean|) $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) NIL)) (|absolutelyIrreducible?| (((|Boolean|)) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|Zero| (($) 94 T CONST)) (|One| (($) NIL T CONST)) (D (($ $ (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|)) (|NonNegativeInteger|)) NIL (|has| (|Fraction| |#2|) (|Field|))) (($ $ (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|))) NIL (|has| (|Fraction| |#2|) (|Field|))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) NIL (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (OR (AND (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|Field|))) (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (($ $) NIL (OR (AND (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|Field|))) (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))))) (= (((|Boolean|) $ $) NIL)) (/ (($ $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL (|has| (|Fraction| |#2|) (|Field|)))) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|Fraction| |#2|)) NIL) (($ (|Fraction| |#2|) $) NIL) (($ (|Fraction| (|Integer|)) $) NIL (|has| (|Fraction| |#2|) (|Field|))) (($ $ (|Fraction| (|Integer|))) NIL (|has| (|Fraction| |#2|) (|Field|))))) │ │ │ +(((|RadicalFunctionField| |#1| |#2| |#3| |#4| |#5|) (|FunctionFieldCategory| |#1| |#2| |#3|) (|UniqueFactorizationDomain|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| (|Fraction| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) (T |RadicalFunctionField|)) │ │ │ NIL │ │ │ -(((|RightUnitaryAttribute|) (|Category|)) (T |RightUnitaryAttribute|)) │ │ │ +(|FunctionFieldCategory| |#1| |#2| |#3|) │ │ │ +((|setRealSteps| (((|Integer|) (|Integer|)) 50)) (|setImagSteps| (((|Integer|) (|Integer|)) 51)) (|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) 52)) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) 49)) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) 47))) │ │ │ +(((|DrawComplex|) (CATEGORY |package| (SIGNATURE |drawComplex| ((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|))) (SIGNATURE |drawComplexVectorField| ((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |setRealSteps| ((|Integer|) (|Integer|))) (SIGNATURE |setImagSteps| ((|Integer|) (|Integer|))) (SIGNATURE |setClipValue| ((|DoubleFloat|) (|DoubleFloat|))))) (T |DrawComplex|)) │ │ │ +((|setClipValue| (*1 *2 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|DrawComplex|)))) (|setImagSteps| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|DrawComplex|)))) (|setRealSteps| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|DrawComplex|)))) (|drawComplexVectorField| (*1 *2 *3 *4 *4) (AND (|isDomain| *3 (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (|isDomain| *4 (|Segment| (|DoubleFloat|))) (|isDomain| *2 (|ThreeDimensionalViewport|)) (|isDomain| *1 (|DrawComplex|)))) (|drawComplex| (*1 *2 *3 *4 *4 *5) (AND (|isDomain| *3 (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (|isDomain| *4 (|Segment| (|DoubleFloat|))) (|isDomain| *5 (|Boolean|)) (|isDomain| *2 (|ThreeDimensionalViewport|)) (|isDomain| *1 (|DrawComplex|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |drawComplex| ((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|))) (SIGNATURE |drawComplexVectorField| ((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |setRealSteps| ((|Integer|) (|Integer|))) (SIGNATURE |setImagSteps| ((|Integer|) (|Integer|))) (SIGNATURE |setClipValue| ((|DoubleFloat|) (|DoubleFloat|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|))))) (|table| (($) NIL) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL)) (|swap!| (((|Void|) $ |#1| |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| ((|#2| $ |#1| |#2|) NIL)) (|select!| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|select| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|search| (((|Union| |#2| "failed") |#1| $) NIL)) (|sample| (($) NIL T CONST)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (|remove!| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Union| |#2| "failed") |#1| $) NIL)) (|remove| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#2| $ |#1| |#2|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#2| $ |#1|) NIL)) (|parts| (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| ((|#1| $) NIL (|has| |#1| (|OrderedSet|)))) (|members| (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (((|Boolean|) |#2| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|))))) (|maxIndex| ((|#1| $) NIL (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ (|Mapping| |#2| |#2|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL) (($ (|Mapping| |#2| |#2|) $) NIL) (($ (|Mapping| |#2| |#2| |#2|) $ $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|))))) (|keys| (((|List| |#1|) $) NIL)) (|key?| (((|Boolean|) |#1| $) NIL)) (|inspect| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL)) (|insert!| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL)) (|indices| (((|List| |#1|) $) NIL)) (|index?| (((|Boolean|) |#1| $) NIL)) (|hash| (((|SingleInteger|) $) NIL (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|))))) (|first| ((|#2| $) NIL (|has| |#1| (|OrderedSet|)))) (|find| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL)) (|fill!| (($ $ |#2|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|extract!| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) NIL (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|List| |#2|) (|List| |#2|)) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ |#2| |#2|) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|Equation| |#2|)) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|List| (|Equation| |#2|))) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) |#2| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|))))) (|entries| (((|List| |#2|) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (|dictionary| (($) NIL) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (((|NonNegativeInteger|) |#2| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL)) (|coerce| (((|OutputForm|) $) NIL (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|))))) (|bag| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) NIL (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|))))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|EqTable| |#1| |#2|) (|Join| (|TableAggregate| |#1| |#2|) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|))) (|SetCategory|) (|SetCategory|)) (T |EqTable|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +(|Join| (|TableAggregate| |#1| |#2|) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|polyPart| ((|#2| $) 36)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|fullPartialFraction| (($ (|Fraction| |#2|)) 84)) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) 37)) (|differentiate| (($ $) 32) (($ $ (|NonNegativeInteger|)) 34)) (|convert| (((|Fraction| |#2|) $) 46)) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) 31)) (|coerce| (((|OutputForm|) $) 120)) (D (($ $) 33) (($ $ (|NonNegativeInteger|)) 35)) (= (((|Boolean|) $ $) NIL)) (+ (($ |#2| $) 39))) │ │ │ +(((|FullPartialFractionExpansion| |#1| |#2|) (|Join| (|SetCategory|) (|ConvertibleTo| (|Fraction| |#2|)) (CATEGORY |domain| (SIGNATURE + ($ |#2| $)) (SIGNATURE |fullPartialFraction| ($ (|Fraction| |#2|))) (SIGNATURE |polyPart| (|#2| $)) (SIGNATURE |fracPart| ((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $)) (SIGNATURE |construct| ($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))))) (SIGNATURE |differentiate| ($ $)) (SIGNATURE D ($ $)) (SIGNATURE |differentiate| ($ $ (|NonNegativeInteger|))) (SIGNATURE D ($ $ (|NonNegativeInteger|))))) (|Join| (|Field|) (|CharacteristicZero|)) (|UnivariatePolynomialCategory| |#1|)) (T |FullPartialFractionExpansion|)) │ │ │ +((+ (*1 *1 *2 *1) (AND (|ofCategory| *3 (|Join| (|Field|) (|CharacteristicZero|))) (|isDomain| *1 (|FullPartialFractionExpansion| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|fullPartialFraction| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| *4)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *3 (|Join| (|Field|) (|CharacteristicZero|))) (|isDomain| *1 (|FullPartialFractionExpansion| *3 *4)))) (|polyPart| (*1 *2 *1) (AND (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)) (|isDomain| *1 (|FullPartialFractionExpansion| *3 *2)) (|ofCategory| *3 (|Join| (|Field|) (|CharacteristicZero|))))) (|fracPart| (*1 *2 *1) (AND (|ofCategory| *3 (|Join| (|Field|) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| *4) (|:| |num| *4)))) (|isDomain| *1 (|FullPartialFractionExpansion| *3 *4)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)))) (|construct| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| *4) (|:| |num| *4)))) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *3 (|Join| (|Field|) (|CharacteristicZero|))) (|isDomain| *1 (|FullPartialFractionExpansion| *3 *4)))) (|differentiate| (*1 *1 *1) (AND (|ofCategory| *2 (|Join| (|Field|) (|CharacteristicZero|))) (|isDomain| *1 (|FullPartialFractionExpansion| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (D (*1 *1 *1) (AND (|ofCategory| *2 (|Join| (|Field|) (|CharacteristicZero|))) (|isDomain| *1 (|FullPartialFractionExpansion| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|differentiate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Join| (|Field|) (|CharacteristicZero|))) (|isDomain| *1 (|FullPartialFractionExpansion| *3 *4)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)))) (D (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Join| (|Field|) (|CharacteristicZero|))) (|isDomain| *1 (|FullPartialFractionExpansion| *3 *4)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3))))) │ │ │ +(|Join| (|SetCategory|) (|ConvertibleTo| (|Fraction| |#2|)) (CATEGORY |domain| (SIGNATURE + ($ |#2| $)) (SIGNATURE |fullPartialFraction| ($ (|Fraction| |#2|))) (SIGNATURE |polyPart| (|#2| $)) (SIGNATURE |fracPart| ((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $)) (SIGNATURE |construct| ($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))))) (SIGNATURE |differentiate| ($ $)) (SIGNATURE D ($ $)) (SIGNATURE |differentiate| ($ $ (|NonNegativeInteger|))) (SIGNATURE D ($ $ (|NonNegativeInteger|))))) │ │ │ +((|tan| (($ $) 11)) (|sin| (($ $) 10)) (|sec| (($ $) 9)) (|csc| (($ $) 8)) (|cot| (($ $) 7)) (|cos| (($ $) 6))) │ │ │ +(((|TrigonometricFunctionCategory|) (|Category|)) (T |TrigonometricFunctionCategory|)) │ │ │ +((|tan| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))) (|sin| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))) (|sec| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))) (|csc| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))) (|cot| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))) (|cos| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|)))) │ │ │ +(|Join| (CATEGORY |domain| (SIGNATURE |cos| ($ $)) (SIGNATURE |cot| ($ $)) (SIGNATURE |csc| ($ $)) (SIGNATURE |sec| ($ $)) (SIGNATURE |sin| ($ $)) (SIGNATURE |tan| ($ $)))) │ │ │ +((|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) 100) (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) 89) (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) 122) (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) 111) (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) 78) (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) 67)) (|retract| (($ (|Matrix| (|Expression| (|Float|)))) 96) (($ (|Matrix| (|Expression| (|Integer|)))) 85) (($ (|Matrix| (|Polynomial| (|Float|)))) 118) (($ (|Matrix| (|Polynomial| (|Integer|)))) 107) (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) 74) (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) 60)) (|outputAsFortran| (((|Void|) $) 130)) (|coerce| (((|OutputForm|) $) 124) (($ (|List| (|FortranCode|))) 27) (($ (|FortranCode|)) 33) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 30) (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) 53))) │ │ │ +(((|Asp20| |#1|) (|Join| (|FortranMatrixFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|))))))) (|Symbol|)) (T |Asp20|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) (|isDomain| *1 (|Asp20| *3)) (|ofType| *3 (|Symbol|))))) │ │ │ +(|Join| (|FortranMatrixFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|))))))) │ │ │ +((|polyred| ((|#2| |#2|) 25)) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) 15)) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) 35)) (|doubleDisc| (((|Integer|) |#2|) 42)) (|badNum| (((|Integer|) |#2|) 21) (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) 20))) │ │ │ +(((|PointsOfFiniteOrderTools| |#1| |#2|) (CATEGORY |package| (SIGNATURE |getGoodPrime| ((|PositiveInteger|) (|Integer|))) (SIGNATURE |badNum| ((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|)) (SIGNATURE |badNum| ((|Integer|) |#2|)) (SIGNATURE |mix| ((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|)))))) (SIGNATURE |doubleDisc| ((|Integer|) |#2|)) (SIGNATURE |polyred| (|#2| |#2|))) (|UnivariatePolynomialCategory| (|Fraction| (|Integer|))) (|UnivariatePolynomialCategory| (|Fraction| |#1|))) (T |PointsOfFiniteOrderTools|)) │ │ │ +((|polyred| (*1 *2 *2) (AND (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| (|Integer|)))) (|isDomain| *1 (|PointsOfFiniteOrderTools| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Fraction| *3))))) (|doubleDisc| (*1 *2 *3) (AND (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *2))) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|PointsOfFiniteOrderTools| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| *4))))) (|mix| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *2))) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|PointsOfFiniteOrderTools| *4 *5)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))))) (|badNum| (*1 *2 *3) (AND (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *2))) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|PointsOfFiniteOrderTools| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| *4))))) (|badNum| (*1 *2 *3) (AND (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|)))) (|isDomain| *1 (|PointsOfFiniteOrderTools| *3 *4)) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *3))))) (|getGoodPrime| (*1 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *3))) (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|PointsOfFiniteOrderTools| *4 *5)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |getGoodPrime| ((|PositiveInteger|) (|Integer|))) (SIGNATURE |badNum| ((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|)) (SIGNATURE |badNum| ((|Integer|) |#2|)) (SIGNATURE |mix| ((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|)))))) (SIGNATURE |doubleDisc| ((|Integer|) |#2|)) (SIGNATURE |polyred| (|#2| |#2|))) │ │ │ +((|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) 61) (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) 62)) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) 63) (((|DoubleFloat|) (|DoubleFloat|)) 64)) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) 69) (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) 72)) (|fresnelS| (((|Float|) (|Float|)) 60)) (|fresnelC| (((|Float|) (|Float|)) 59)) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) 74) (((|DoubleFloat|) (|DoubleFloat|)) 73)) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) 91) (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) 83)) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) 94) (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) 92)) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) 65) (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) 66)) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) 67) (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) 68)) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) 105) (((|DoubleFloat|) (|DoubleFloat|)) 104)) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) 99) (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) 103)) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) 7) (((|DoubleFloat|) (|DoubleFloat|)) 9)) (|En| (((|OnePointCompletion| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|)) 23)) (|Ei6| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) 36)) (|Ei5| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) 35)) (|Ei4| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) 34)) (|Ei3| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) 33)) (|Ei2| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) 32)) (|Ei1| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) 31)) (|Ei| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) 37)) (E1 (((|OnePointCompletion| (|DoubleFloat|)) (|DoubleFloat|)) 22)) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) 79) (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) 75))) │ │ │ +(((|DoubleFloatSpecialFunctions|) (CATEGORY |package| (SIGNATURE |Gamma| ((|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |Gamma| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE E1 ((|OnePointCompletion| (|DoubleFloat|)) (|DoubleFloat|))) (SIGNATURE |En| ((|OnePointCompletion| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|))) (SIGNATURE |Ei| ((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|)))) (SIGNATURE |Ei1| ((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|)))) (SIGNATURE |Ei2| ((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|)))) (SIGNATURE |Ei3| ((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|)))) (SIGNATURE |Ei4| ((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|)))) (SIGNATURE |Ei5| ((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|)))) (SIGNATURE |Ei6| ((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|)))) (SIGNATURE |Beta| ((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |Beta| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |logGamma| ((|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |logGamma| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |digamma| ((|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |digamma| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |polygamma| ((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|))) (SIGNATURE |polygamma| ((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|)))) (SIGNATURE |besselJ| ((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |besselJ| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |besselY| ((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |besselY| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |besselI| ((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |besselI| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |besselK| ((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |besselK| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |airyAi| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |airyAi| ((|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |airyBi| ((|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |airyBi| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |hypergeometric0F1| ((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |hypergeometric0F1| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |fresnelS| ((|Float|) (|Float|))) (SIGNATURE |fresnelC| ((|Float|) (|Float|))))) (T |DoubleFloatSpecialFunctions|)) │ │ │ +((|fresnelC| (*1 *2 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|fresnelS| (*1 *2 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|hypergeometric0F1| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Complex| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|hypergeometric0F1| (*1 *2 *2 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|airyBi| (*1 *2 *2) (AND (|isDomain| *2 (|Complex| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|airyBi| (*1 *2 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|airyAi| (*1 *2 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|airyAi| (*1 *2 *2) (AND (|isDomain| *2 (|Complex| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|besselK| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Complex| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|besselK| (*1 *2 *2 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|besselI| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Complex| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|besselI| (*1 *2 *2 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|besselY| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Complex| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|besselY| (*1 *2 *2 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|besselJ| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Complex| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|besselJ| (*1 *2 *2 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|polygamma| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Complex| (|DoubleFloat|))) (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|polygamma| (*1 *2 *3 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|digamma| (*1 *2 *2) (AND (|isDomain| *2 (|Complex| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|digamma| (*1 *2 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|logGamma| (*1 *2 *2) (AND (|isDomain| *2 (|Complex| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|logGamma| (*1 *2 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|Beta| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Complex| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|Beta| (*1 *2 *2 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|Ei6| (*1 *2 *2) (AND (|isDomain| *2 (|OnePointCompletion| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|Ei5| (*1 *2 *2) (AND (|isDomain| *2 (|OnePointCompletion| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|Ei4| (*1 *2 *2) (AND (|isDomain| *2 (|OnePointCompletion| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|Ei3| (*1 *2 *2) (AND (|isDomain| *2 (|OnePointCompletion| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|Ei2| (*1 *2 *2) (AND (|isDomain| *2 (|OnePointCompletion| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|Ei1| (*1 *2 *2) (AND (|isDomain| *2 (|OnePointCompletion| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|Ei| (*1 *2 *2) (AND (|isDomain| *2 (|OnePointCompletion| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|En| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|OnePointCompletion| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)) (|isDomain| *4 (|DoubleFloat|)))) (E1 (*1 *2 *3) (AND (|isDomain| *2 (|OnePointCompletion| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)) (|isDomain| *3 (|DoubleFloat|)))) (|Gamma| (*1 *2 *2) (AND (|isDomain| *2 (|Complex| (|DoubleFloat|))) (|isDomain| *1 (|DoubleFloatSpecialFunctions|)))) (|Gamma| (*1 *2 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|DoubleFloatSpecialFunctions|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |Gamma| ((|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |Gamma| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE E1 ((|OnePointCompletion| (|DoubleFloat|)) (|DoubleFloat|))) (SIGNATURE |En| ((|OnePointCompletion| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|))) (SIGNATURE |Ei| ((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|)))) (SIGNATURE |Ei1| ((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|)))) (SIGNATURE |Ei2| ((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|)))) (SIGNATURE |Ei3| ((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|)))) (SIGNATURE |Ei4| ((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|)))) (SIGNATURE |Ei5| ((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|)))) (SIGNATURE |Ei6| ((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|)))) (SIGNATURE |Beta| ((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |Beta| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |logGamma| ((|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |logGamma| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |digamma| ((|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |digamma| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |polygamma| ((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|))) (SIGNATURE |polygamma| ((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|)))) (SIGNATURE |besselJ| ((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |besselJ| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |besselY| ((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |besselY| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |besselI| ((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |besselI| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |besselK| ((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |besselK| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |airyAi| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |airyAi| ((|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |airyBi| ((|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |airyBi| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |hypergeometric0F1| ((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |hypergeometric0F1| ((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (SIGNATURE |fresnelS| ((|Float|) (|Float|))) (SIGNATURE |fresnelC| ((|Float|) (|Float|)))) │ │ │ +((|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) 17) (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) 13))) │ │ │ +(((|PolynomialInterpolation| |#1| |#2|) (CATEGORY |package| (SIGNATURE |interpolate| ((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|))) (SIGNATURE |interpolate| ((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)))) (|Symbol|) (|Field|)) (T |PolynomialInterpolation|)) │ │ │ +((|interpolate| (*1 *2 *3 *3) (AND (|isDomain| *3 (|List| *5)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *5)) (|isDomain| *1 (|PolynomialInterpolation| *4 *5)) (|ofType| *4 (|Symbol|)))) (|interpolate| (*1 *2 *2 *3 *3) (AND (|isDomain| *2 (|UnivariatePolynomial| *4 *5)) (|isDomain| *3 (|List| *5)) (|ofType| *4 (|Symbol|)) (|ofCategory| *5 (|Field|)) (|isDomain| *1 (|PolynomialInterpolation| *4 *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |interpolate| ((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|))) (SIGNATURE |interpolate| ((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)))) │ │ │ +((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|sample| (($) 7 T CONST)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|merge!| (($ $ $) 40)) (|merge| (($ $ $) 41)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|max| ((|#1| $) 42)) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|inspect| ((|#1| $) 36)) (|insert!| (($ |#1| $) 37)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|extract!| ((|#1| $) 38)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|bag| (($ (|List| |#1|)) 39)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|PriorityQueueAggregate| |#1|) (|Category|) |OrdereSet|) (T |PriorityQueueAggregate|)) │ │ │ +((|max| (*1 *2 *1) (|ofCategory| *1 (|PriorityQueueAggregate| *2))) (|merge| (*1 *1 *1 *1) (|ofCategory| *1 (|PriorityQueueAggregate| *2))) (|merge!| (*1 *1 *1 *1) (|ofCategory| *1 (|PriorityQueueAggregate| *2)))) │ │ │ +(|Join| (|BagAggregate| |t#1|) (CATEGORY |domain| (ATTRIBUTE |finiteAggregate|) (SIGNATURE |max| (|t#1| $)) (SIGNATURE |merge| ($ $ $)) (SIGNATURE |merge!| ($ $ $)))) │ │ │ +(((|Aggregate|) . T) ((|BagAggregate| |#1|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 17)) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) 30)) (|suppOfZero| (((|List| |#1|) $) 36)) (|suppOfPole| (((|List| |#1|) $) 37)) (|supp| (((|List| |#1|) $) 35)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|split| (((|List| $) $) 29)) (|size| (((|NonNegativeInteger|) $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL)) (|retract| ((|#1| $) NIL)) (|reductum| (($ $) 24)) (|nthFactor| ((|#1| $ (|Integer|)) NIL)) (|nthCoef| (((|Integer|) $ (|Integer|)) NIL)) (|mapGen| (($ (|Mapping| |#1| |#1|) $) NIL)) (|mapCoef| (($ (|Mapping| (|Integer|) (|Integer|)) $) NIL)) (|latex| (((|String|) $) NIL)) (|incr| (($ $) 8)) (|highCommonTerms| (($ $ $) NIL (|has| (|Integer|) (|OrderedAbelianMonoid|)))) (|head| (((|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|))) $) 26)) (|hash| (((|SingleInteger|) $) NIL)) (|effective?| (((|Boolean|) $) 50)) (|divOfZero| (($ $) 38)) (|divOfPole| (($ $) 39)) (|degree| (((|Integer|) $) 58)) (|concat| (($ $ $) 44)) (|collect| (($ $) 33)) (|coerce| (((|OutputForm|) $) 22) (($ |#1|) 27)) (|coefficient| (((|Integer|) |#1| $) 32)) (|Zero| (($) 23 T CONST)) (= (((|Boolean|) $ $) 40)) (<= (((|Boolean|) $ $) 51)) (- (($ $) 48) (($ $ $) 47)) (+ (($ $ $) 45) (($ |#1| $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 49) (($ $ (|Integer|)) NIL) (($ (|Integer|) $) 49) (($ (|Integer|) |#1|) NIL))) │ │ │ +(((|Divisor| |#1|) (|Join| (|DivisorCategory| |#1|) (CATEGORY |domain| (SIGNATURE |head| ((|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|))) $)) (SIGNATURE |reductum| ($ $)))) (|SetCategoryWithDegree|)) (T |Divisor|)) │ │ │ +((|head| (*1 *2 *1) (AND (|isDomain| *2 (|Record| (|:| |gen| *3) (|:| |exp| (|Integer|)))) (|isDomain| *1 (|Divisor| *3)) (|ofCategory| *3 (|SetCategoryWithDegree|)))) (|reductum| (*1 *1 *1) (AND (|isDomain| *1 (|Divisor| *2)) (|ofCategory| *2 (|SetCategoryWithDegree|))))) │ │ │ +(|Join| (|DivisorCategory| |#1|) (CATEGORY |domain| (SIGNATURE |head| ((|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|))) $)) (SIGNATURE |reductum| ($ $)))) │ │ │ +((|Yun| (((|Factored| |#2|) |#2|) 46)) (|Musser| (((|Factored| |#2|) |#2|) 36))) │ │ │ +(((|FiniteFieldSquareFreeDecomposition| |#1| |#2|) (CATEGORY |package| (SIGNATURE |Musser| ((|Factored| |#2|) |#2|)) (SIGNATURE |Yun| ((|Factored| |#2|) |#2|))) (|FiniteFieldCategory|) (|UnivariatePolynomialCategory| |#1|)) (T |FiniteFieldSquareFreeDecomposition|)) │ │ │ +((|Yun| (*1 *2 *3) (AND (|ofCategory| *4 (|FiniteFieldCategory|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|FiniteFieldSquareFreeDecomposition| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|Musser| (*1 *2 *3) (AND (|ofCategory| *4 (|FiniteFieldCategory|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|FiniteFieldSquareFreeDecomposition| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |Musser| ((|Factored| |#2|) |#2|)) (SIGNATURE |Yun| ((|Factored| |#2|) |#2|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 124)) (|variables| (((|List| (|SingletonAsOrderedSet|)) $) NIL)) (|variable| (((|Symbol|) $) 115)) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) 62)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|truncate| (($ $ (|NonNegativeInteger|)) 78) (($ $ (|NonNegativeInteger|) (|NonNegativeInteger|)) 75)) (|terms| (((|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|))) $) 101)) (|tanh| (($ $) 168 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|tan| (($ $) 144 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sqrt| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sinh| (($ $) 164 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sin| (($ $) 140 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|series| (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) 114) (($ (|Stream| |#1|)) 109)) (|sech| (($ $) 172 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sec| (($ $) 148 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sample| (($) NIL T CONST)) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) 23)) (|quoByVar| (($ $) 26)) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) 74) (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) 76)) (|pole?| (((|Boolean|) $) 119)) (|pi| (($) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|order| (((|NonNegativeInteger|) $) 121) (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) 123)) (|one?| (((|Boolean|) $) NIL)) (|nthRoot| (($ $ (|Integer|)) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|multiplyExponents| (($ $ (|PositiveInteger|)) NIL)) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) NIL)) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| (|NonNegativeInteger|)) 13) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|log| (($ $) 130 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|integrate| (($ $) 128 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Symbol|)) NIL (OR (AND (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| (|Symbol|)))) (|has| |#1| (SIGNATURE |variables| ((|List| (|Symbol|)) |#1|))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (AND (|has| |#1| (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|))))) (($ $ (|Variable| |#2|)) 129 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|hash| (((|SingleInteger|) $) NIL)) (|extend| (($ $ (|NonNegativeInteger|)) 15)) (|exquo| (((|Union| $ "failed") $ $) 24 (|has| |#1| (|IntegralDomain|)))) (|exp| (($ $) 132 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|eval| (((|Stream| |#1|) $ |#1|) NIL (|has| |#1| (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|)))))) (|elt| ((|#1| $ (|NonNegativeInteger|)) 118) (($ $ $) 127 (|has| (|NonNegativeInteger|) (|SemiGroup|)))) (|differentiate| (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))) (($ $) 27 (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))) (($ $ (|Variable| |#2|)) 29)) (|degree| (((|NonNegativeInteger|) $) NIL)) (|csch| (($ $) 174 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|csc| (($ $) 150 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|coth| (($ $) 170 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cot| (($ $) 146 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cosh| (($ $) 166 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cos| (($ $) 142 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|complete| (($ $) NIL)) (|coerce| (((|OutputForm|) $) 200) (($ (|Integer|)) NIL) (($ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $) NIL (|has| |#1| (|IntegralDomain|))) (($ |#1|) 125 (|has| |#1| (|CommutativeRing|))) (($ (|UnivariatePolynomial| |#2| |#1|)) 50) (($ (|Variable| |#2|)) 32)) (|coefficients| (((|Stream| |#1|) $) 97)) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) 117)) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|center| ((|#1| $) 53)) (|atanh| (($ $) 180 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|atan| (($ $) 156 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|asinh| (($ $) 176 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asin| (($ $) 152 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asech| (($ $) 184 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asec| (($ $) 160 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|approximate| ((|#1| $ (|NonNegativeInteger|)) NIL (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|)))) (|has| |#1| (SIGNATURE |coerce| (|#1| (|Symbol|))))))) (|acsch| (($ $) 186 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acsc| (($ $) 162 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acoth| (($ $) 182 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acot| (($ $) 158 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acosh| (($ $) 178 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acos| (($ $) 154 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 17 T CONST)) (|One| (($) 19 T CONST)) (D (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))) (($ $) NIL (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))))) (= (((|Boolean|) $ $) NIL)) (/ (($ $ |#1|) NIL (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) 193)) (+ (($ $ $) 31)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ |#1|) 197 (|has| |#1| (|Field|))) (($ $ $) 133 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) 136 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ +(((|SparseUnivariateTaylorSeries| |#1| |#2| |#3|) (|Join| (|UnivariateTaylorSeriesCategory| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |univariatePolynomial| ((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ (|Variable| |#2|))) (SIGNATURE |differentiate| ($ $ (|Variable| |#2|))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ (|Variable| |#2|))) |noBranch|))) (|Ring|) (|Symbol|) |#1|) (T |SparseUnivariateTaylorSeries|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|UnivariatePolynomial| *4 *3)) (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Symbol|)) (|ofType| *5 *3) (|isDomain| *1 (|SparseUnivariateTaylorSeries| *3 *4 *5)))) (|univariatePolynomial| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|UnivariatePolynomial| *5 *4)) (|isDomain| *1 (|SparseUnivariateTaylorSeries| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofType| *5 (|Symbol|)) (|ofType| *6 *4))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|SparseUnivariateTaylorSeries| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3))) (|differentiate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|SparseUnivariateTaylorSeries| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3))) (|integrate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|SparseUnivariateTaylorSeries| *3 *4 *5)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3)))) │ │ │ +(|Join| (|UnivariateTaylorSeriesCategory| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |univariatePolynomial| ((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ (|Variable| |#2|))) (SIGNATURE |differentiate| ($ $ (|Variable| |#2|))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ (|Variable| |#2|))) |noBranch|))) │ │ │ +((|random| (($) 13)) (|enumerate| (((|List| $)) 15))) │ │ │ +(((|Finite&| |#1|) (CATEGORY |domain| (SIGNATURE |enumerate| ((|List| |#1|))) (SIGNATURE |random| (|#1|))) (|Finite|)) (T |Finite&|)) │ │ │ NIL │ │ │ -(((|ShallowlyMutableAttribute|) (|Category|)) (T |ShallowlyMutableAttribute|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |enumerate| ((|List| |#1|))) (SIGNATURE |random| (|#1|))) │ │ │ +((|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) 144)) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) 145)) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) 103)) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) NIL)) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) 147)) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) 159))) │ │ │ +(((|IdealDecompositionPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |zeroDimPrime?| ((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))))) (SIGNATURE |zeroDimPrimary?| ((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))))) (SIGNATURE |prime?| ((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))))) (SIGNATURE |radical| ((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))))) (SIGNATURE |primaryDecomp| ((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))))) (SIGNATURE |contract| ((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))))) (|List| (|Symbol|)) (|NonNegativeInteger|)) (T |IdealDecompositionPackage|)) │ │ │ +((|contract| (*1 *2 *2 *3) (AND (|isDomain| *2 (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| *5 (|NonNegativeInteger|)) (|OrderedVariableList| *4) (|DistributedMultivariatePolynomial| *4 (|Fraction| (|Integer|))))) (|isDomain| *3 (|List| (|OrderedVariableList| *4))) (|ofType| *4 (|List| (|Symbol|))) (|ofType| *5 (|NonNegativeInteger|)) (|isDomain| *1 (|IdealDecompositionPackage| *4 *5)))) (|primaryDecomp| (*1 *2 *3) (AND (|ofType| *4 (|List| (|Symbol|))) (|ofType| *5 (|NonNegativeInteger|)) (|isDomain| *2 (|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| *5 (|NonNegativeInteger|)) (|OrderedVariableList| *4) (|DistributedMultivariatePolynomial| *4 (|Fraction| (|Integer|)))))) (|isDomain| *1 (|IdealDecompositionPackage| *4 *5)) (|isDomain| *3 (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| *5 (|NonNegativeInteger|)) (|OrderedVariableList| *4) (|DistributedMultivariatePolynomial| *4 (|Fraction| (|Integer|))))))) (|radical| (*1 *2 *2) (AND (|isDomain| *2 (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| *4 (|NonNegativeInteger|)) (|OrderedVariableList| *3) (|DistributedMultivariatePolynomial| *3 (|Fraction| (|Integer|))))) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|NonNegativeInteger|)) (|isDomain| *1 (|IdealDecompositionPackage| *3 *4)))) (|prime?| (*1 *2 *3) (AND (|isDomain| *3 (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| *5 (|NonNegativeInteger|)) (|OrderedVariableList| *4) (|DistributedMultivariatePolynomial| *4 (|Fraction| (|Integer|))))) (|ofType| *4 (|List| (|Symbol|))) (|ofType| *5 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IdealDecompositionPackage| *4 *5)))) (|zeroDimPrimary?| (*1 *2 *3) (AND (|isDomain| *3 (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| *5 (|NonNegativeInteger|)) (|OrderedVariableList| *4) (|DistributedMultivariatePolynomial| *4 (|Fraction| (|Integer|))))) (|ofType| *4 (|List| (|Symbol|))) (|ofType| *5 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IdealDecompositionPackage| *4 *5)))) (|zeroDimPrime?| (*1 *2 *3) (AND (|isDomain| *3 (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| *5 (|NonNegativeInteger|)) (|OrderedVariableList| *4) (|DistributedMultivariatePolynomial| *4 (|Fraction| (|Integer|))))) (|ofType| *4 (|List| (|Symbol|))) (|ofType| *5 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IdealDecompositionPackage| *4 *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |zeroDimPrime?| ((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))))) (SIGNATURE |zeroDimPrimary?| ((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))))) (SIGNATURE |prime?| ((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))))) (SIGNATURE |radical| ((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))))) (SIGNATURE |primaryDecomp| ((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))))) (SIGNATURE |contract| ((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 62)) (|wholePart| (((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|EuclideanDomain|)))) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|PolynomialFactorizationExplicit|)))) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|PolynomialFactorizationExplicit|)))) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|sign| (((|Integer|) $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|OrderedIntegralDomain|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) "failed") $) NIL) (((|Union| (|Symbol|) "failed") $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|RetractableTo| (|Symbol|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|RetractableTo| (|Integer|)))) (((|Union| (|Integer|) "failed") $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|RetractableTo| (|Integer|)))) (((|Union| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) "failed") $) 24)) (|retract| (((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) $) NIL) (((|Symbol|) $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|RetractableTo| (|Symbol|)))) (((|Fraction| (|Integer|)) $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|RetractableTo| (|Integer|)))) (((|Integer|) $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|RetractableTo| (|Integer|)))) (((|UnivariatePuiseuxSeries| |#2| |#3| |#4|) $) NIL)) (|rem| (($ $ $) NIL)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|))) (|:| |vec| (|Vector| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) (|Matrix| $)) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|random| (($) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|IntegerNumberSystem|)))) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|prime?| (((|Boolean|) $) NIL)) (|positive?| (((|Boolean|) $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|OrderedIntegralDomain|)))) (|patternMatch| (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|PatternMatchable| (|Integer|)))) (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|PatternMatchable| (|Float|))))) (|one?| (((|Boolean|) $) NIL)) (|numerator| (($ $) NIL)) (|numer| (((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) $) 21)) (|nextItem| (((|Union| $ "failed") $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|StepThrough|)))) (|negative?| (((|Boolean|) $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|OrderedIntegralDomain|)))) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|min| (($ $ $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|OrderedSet|)))) (|map| (($ (|Mapping| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) $) NIL)) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) 76)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) NIL)) (|init| (($) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|StepThrough|)) CONST)) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|fractionPart| (($ $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|EuclideanDomain|)))) (|floor| (((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|IntegerNumberSystem|)))) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|PolynomialFactorizationExplicit|)))) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|PolynomialFactorizationExplicit|)))) (|factor| (((|Factored| $) $) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|eval| (($ $ (|List| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) (|List| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|))) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|Evalable| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)))) (($ $ (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|Evalable| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)))) (($ $ (|Equation| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|))) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|Evalable| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)))) (($ $ (|List| (|Equation| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)))) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|Evalable| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)))) (($ $ (|List| (|Symbol|)) (|List| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|))) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|InnerEvalable| (|Symbol|) (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)))) (($ $ (|Symbol|) (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|InnerEvalable| (|Symbol|) (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|))))) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|elt| (($ $ (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|Eltable| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|))))) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|differentiate| (($ $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|DifferentialRing|))) (($ $ (|Symbol|)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|))) NIL)) (|denominator| (($ $) NIL)) (|denom| (((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) $) 17)) (|convert| (((|Pattern| (|Integer|)) $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|ConvertibleTo| (|Pattern| (|Integer|))))) (((|Pattern| (|Float|)) $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|ConvertibleTo| (|Pattern| (|Float|))))) (((|InputForm|) $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|ConvertibleTo| (|InputForm|)))) (((|Float|) $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|RealConstant|))) (((|DoubleFloat|) $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|RealConstant|)))) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (AND (|has| $ (|CharacteristicNonZero|)) (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|PolynomialFactorizationExplicit|))))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL) (($ (|Fraction| (|Integer|))) NIL) (($ (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) 28) (($ (|Symbol|)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|RetractableTo| (|Symbol|)))) (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) 36)) (|charthRoot| (((|Union| $ "failed") $) NIL (OR (AND (|has| $ (|CharacteristicNonZero|)) (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|PolynomialFactorizationExplicit|))) (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|CharacteristicNonZero|))))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|ceiling| (((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|IntegerNumberSystem|)))) (|associates?| (((|Boolean|) $ $) NIL)) (|abs| (($ $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|OrderedIntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|Zero| (($) 41 T CONST)) (|One| (($) NIL T CONST)) (D (($ $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|DifferentialRing|))) (($ $ (|Symbol|)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|))) NIL)) (>= (((|Boolean|) $ $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|OrderedSet|)))) (/ (($ $ $) 33) (($ (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) 30)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|Fraction| (|Integer|))) NIL) (($ (|Fraction| (|Integer|)) $) NIL) (($ (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) $) 29) (($ $ (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) NIL))) │ │ │ +(((|ExponentialExpansion| |#1| |#2| |#3| |#4|) (|Join| (|QuotientFieldCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) (|RetractableTo| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (CATEGORY |domain| (SIGNATURE |limitPlus| ((|Union| (|OrderedCompletion| |#2|) "failed") $)) (SIGNATURE |coerce| ($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|))))) (|Join| (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|GcdDomain|)) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|)) (|Symbol|) |#2|) (T |ExponentialExpansion|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|UnivariatePuiseuxSeries| *4 *5 *6)) (|ofCategory| *4 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *3))) (|ofType| *5 (|Symbol|)) (|ofType| *6 *4) (|ofCategory| *3 (|Join| (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|GcdDomain|))) (|isDomain| *1 (|ExponentialExpansion| *3 *4 *5 *6)))) (|limitPlus| (*1 *2 *1) (|partial| AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|GcdDomain|))) (|isDomain| *2 (|OrderedCompletion| *4)) (|isDomain| *1 (|ExponentialExpansion| *3 *4 *5 *6)) (|ofCategory| *4 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *3))) (|ofType| *5 (|Symbol|)) (|ofType| *6 *4)))) │ │ │ +(|Join| (|QuotientFieldCategory| (|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|)) (|RetractableTo| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (CATEGORY |domain| (SIGNATURE |limitPlus| ((|Union| (|OrderedCompletion| |#2|) "failed") $)) (SIGNATURE |coerce| ($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|))))) │ │ │ +((|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47))) │ │ │ +(((|ElementaryRischDESystem| |#1| |#2|) (CATEGORY |package| (SIGNATURE |rischDEsys| ((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (|Join| (|GcdDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|))) (|Join| (|TranscendentalFunctionCategory|) (|AlgebraicallyClosedField|) (|FunctionSpace| |#1|))) (T |ElementaryRischDESystem|)) │ │ │ +((|rischDEsys| (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| AND (|isDomain| *5 (|Symbol|)) (|isDomain| *6 (|Mapping| (|Union| (|Record| (|:| |mainpart| *4) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (|List| *4))) (|isDomain| *7 (|Mapping| (|Union| (|Record| (|:| |ratpart| *4) (|:| |coeff| *4)) "failed") *4 *4)) (|ofCategory| *4 (|Join| (|TranscendentalFunctionCategory|) (|AlgebraicallyClosedField|) (|FunctionSpace| *8))) (|ofCategory| *8 (|Join| (|GcdDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| *3) (|LinearlyExplicitRingOver| *3))) (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|List| *4)) (|isDomain| *1 (|ElementaryRischDESystem| *8 *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |rischDEsys| ((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|write| (((|String|) $ (|String|)) 87) (((|String|) $ (|String|) (|String|)) 85) (((|String|) $ (|String|) (|List| (|String|))) 84)) (|viewport2D| (($) 56)) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) 42)) (|units| (((|Void|) $ (|PositiveInteger|) (|String|)) 70) (((|Void|) $ (|PositiveInteger|) (|Palette|)) 71)) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) 45)) (|title| (((|Void|) $ (|String|)) 66)) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) 75)) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) 46)) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) 43)) (|reset| (((|Void|) $) 67)) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) 74)) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) 30)) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) 73)) (|options| (((|List| (|DrawOption|)) $) 22) (($ $ (|List| (|DrawOption|))) 23)) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) 40)) (|makeViewport2D| (($ $) 57) (($ (|GraphImage|) (|List| (|DrawOption|))) 58)) (|latex| (((|String|) $) NIL)) (|key| (((|Integer|) $) 37)) (|hash| (((|SingleInteger|) $) NIL)) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) 36)) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) 35)) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) 65)) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) NIL)) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) 32)) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) 39)) (|controlPanel| (((|Void|) $ (|String|)) 76)) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) 72)) (|coerce| (((|OutputForm|) $) 82)) (|close| (((|Void|) $) 77)) (|axes| (((|Void|) $ (|PositiveInteger|) (|String|)) 68) (((|Void|) $ (|PositiveInteger|) (|Palette|)) 69)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|TwoDimensionalViewport|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |getPickedPoints| ((|List| (|Point| (|DoubleFloat|))) $)) (SIGNATURE |viewport2D| ($)) (SIGNATURE |makeViewport2D| ($ $)) (SIGNATURE |options| ((|List| (|DrawOption|)) $)) (SIGNATURE |options| ($ $ (|List| (|DrawOption|)))) (SIGNATURE |makeViewport2D| ($ (|GraphImage|) (|List| (|DrawOption|)))) (SIGNATURE |graphState| ((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|))) (SIGNATURE |graphStates| ((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $)) (SIGNATURE |graphs| ((|Vector| (|Union| (|GraphImage|) "undefined")) $)) (SIGNATURE |title| ((|Void|) $ (|String|))) (SIGNATURE |putGraph| ((|Void|) $ (|GraphImage|) (|PositiveInteger|))) (SIGNATURE |getGraph| ((|GraphImage|) $ (|PositiveInteger|))) (SIGNATURE |axes| ((|Void|) $ (|PositiveInteger|) (|String|))) (SIGNATURE |axes| ((|Void|) $ (|PositiveInteger|) (|Palette|))) (SIGNATURE |units| ((|Void|) $ (|PositiveInteger|) (|String|))) (SIGNATURE |units| ((|Void|) $ (|PositiveInteger|) (|Palette|))) (SIGNATURE |points| ((|Void|) $ (|PositiveInteger|) (|String|))) (SIGNATURE |region| ((|Void|) $ (|PositiveInteger|) (|String|))) (SIGNATURE |connect| ((|Void|) $ (|PositiveInteger|) (|String|))) (SIGNATURE |controlPanel| ((|Void|) $ (|String|))) (SIGNATURE |close| ((|Void|) $)) (SIGNATURE |dimensions| ((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |scale| ((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|))) (SIGNATURE |translate| ((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|))) (SIGNATURE |show| ((|Void|) $ (|PositiveInteger|) (|String|))) (SIGNATURE |move| ((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |update| ((|Void|) $ (|GraphImage|) (|PositiveInteger|))) (SIGNATURE |resize| ((|Void|) $ (|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |write| ((|String|) $ (|String|))) (SIGNATURE |write| ((|String|) $ (|String|) (|String|))) (SIGNATURE |write| ((|String|) $ (|String|) (|List| (|String|)))) (SIGNATURE |reset| ((|Void|) $)) (SIGNATURE |key| ((|Integer|) $)) (SIGNATURE |coerce| ((|OutputForm|) $))))) (T |TwoDimensionalViewport|)) │ │ │ +((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|getPickedPoints| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Point| (|DoubleFloat|)))) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|viewport2D| (*1 *1) (|isDomain| *1 (|TwoDimensionalViewport|))) (|makeViewport2D| (*1 *1 *1) (|isDomain| *1 (|TwoDimensionalViewport|))) (|options| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|DrawOption|))) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|options| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|DrawOption|))) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|makeViewport2D| (*1 *1 *2 *3) (AND (|isDomain| *2 (|GraphImage|)) (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|graphState| (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *5 (|Integer|)) (|isDomain| *6 (|Palette|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|graphStates| (*1 *2 *1) (AND (|isDomain| *2 (|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|))))) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|graphs| (*1 *2 *1) (AND (|isDomain| *2 (|Vector| (|Union| (|GraphImage|) "undefined"))) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|title| (*1 *2 *1 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|putGraph| (*1 *2 *1 *3 *4) (AND (|isDomain| *3 (|GraphImage|)) (|isDomain| *4 (|PositiveInteger|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|getGraph| (*1 *2 *1 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|GraphImage|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|axes| (*1 *2 *1 *3 *4) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|axes| (*1 *2 *1 *3 *4) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|Palette|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|units| (*1 *2 *1 *3 *4) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|units| (*1 *2 *1 *3 *4) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|Palette|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|points| (*1 *2 *1 *3 *4) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|region| (*1 *2 *1 *3 *4) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|connect| (*1 *2 *1 *3 *4) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|controlPanel| (*1 *2 *1 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|close| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|dimensions| (*1 *2 *1 *3 *3 *4 *4) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *4 (|PositiveInteger|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|scale| (*1 *2 *1 *3 *4 *4) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|Float|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|translate| (*1 *2 *1 *3 *4 *4) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|Float|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|show| (*1 *2 *1 *3 *4) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|move| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|update| (*1 *2 *1 *3 *4) (AND (|isDomain| *3 (|GraphImage|)) (|isDomain| *4 (|PositiveInteger|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|resize| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|write| (*1 *2 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|write| (*1 *2 *1 *2 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|write| (*1 *2 *1 *2 *3) (AND (|isDomain| *3 (|List| (|String|))) (|isDomain| *2 (|String|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|reset| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TwoDimensionalViewport|)))) (|key| (*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|TwoDimensionalViewport|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |getPickedPoints| ((|List| (|Point| (|DoubleFloat|))) $)) (SIGNATURE |viewport2D| ($)) (SIGNATURE |makeViewport2D| ($ $)) (SIGNATURE |options| ((|List| (|DrawOption|)) $)) (SIGNATURE |options| ($ $ (|List| (|DrawOption|)))) (SIGNATURE |makeViewport2D| ($ (|GraphImage|) (|List| (|DrawOption|)))) (SIGNATURE |graphState| ((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|))) (SIGNATURE |graphStates| ((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $)) (SIGNATURE |graphs| ((|Vector| (|Union| (|GraphImage|) "undefined")) $)) (SIGNATURE |title| ((|Void|) $ (|String|))) (SIGNATURE |putGraph| ((|Void|) $ (|GraphImage|) (|PositiveInteger|))) (SIGNATURE |getGraph| ((|GraphImage|) $ (|PositiveInteger|))) (SIGNATURE |axes| ((|Void|) $ (|PositiveInteger|) (|String|))) (SIGNATURE |axes| ((|Void|) $ (|PositiveInteger|) (|Palette|))) (SIGNATURE |units| ((|Void|) $ (|PositiveInteger|) (|String|))) (SIGNATURE |units| ((|Void|) $ (|PositiveInteger|) (|Palette|))) (SIGNATURE |points| ((|Void|) $ (|PositiveInteger|) (|String|))) (SIGNATURE |region| ((|Void|) $ (|PositiveInteger|) (|String|))) (SIGNATURE |connect| ((|Void|) $ (|PositiveInteger|) (|String|))) (SIGNATURE |controlPanel| ((|Void|) $ (|String|))) (SIGNATURE |close| ((|Void|) $)) (SIGNATURE |dimensions| ((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |scale| ((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|))) (SIGNATURE |translate| ((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|))) (SIGNATURE |show| ((|Void|) $ (|PositiveInteger|) (|String|))) (SIGNATURE |move| ((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |update| ((|Void|) $ (|GraphImage|) (|PositiveInteger|))) (SIGNATURE |resize| ((|Void|) $ (|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |write| ((|String|) $ (|String|))) (SIGNATURE |write| ((|String|) $ (|String|) (|String|))) (SIGNATURE |write| ((|String|) $ (|String|) (|List| (|String|)))) (SIGNATURE |reset| ((|Void|) $)) (SIGNATURE |key| ((|Integer|) $)) (SIGNATURE |coerce| ((|OutputForm|) $)))) │ │ │ +((|rowEchelon| ((|#8| |#4|) 20)) (|nullSpace| (((|List| |#3|) |#4|) 29 (|has| |#7| (ATTRIBUTE |shallowlyMutable|)))) (|inverse| (((|Union| |#8| "failed") |#4|) 23))) │ │ │ +(((|InnerMatrixQuotientFieldFunctions| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (CATEGORY |package| (SIGNATURE |rowEchelon| (|#8| |#4|)) (SIGNATURE |inverse| ((|Union| |#8| "failed") |#4|)) (IF (|has| |#7| (ATTRIBUTE |shallowlyMutable|)) (SIGNATURE |nullSpace| ((|List| |#3|) |#4|)) |noBranch|)) (|IntegralDomain|) (|FiniteLinearAggregate| |#1|) (|FiniteLinearAggregate| |#1|) (|MatrixCategory| |#1| |#2| |#3|) (|QuotientFieldCategory| |#1|) (|FiniteLinearAggregate| |#5|) (|FiniteLinearAggregate| |#5|) (|MatrixCategory| |#5| |#6| |#7|)) (T |InnerMatrixQuotientFieldFunctions|)) │ │ │ +((|nullSpace| (*1 *2 *3) (AND (|has| *9 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|ofCategory| *7 (|QuotientFieldCategory| *4)) (|ofCategory| *8 (|FiniteLinearAggregate| *7)) (|ofCategory| *9 (|FiniteLinearAggregate| *7)) (|isDomain| *2 (|List| *6)) (|isDomain| *1 (|InnerMatrixQuotientFieldFunctions| *4 *5 *6 *3 *7 *8 *9 *10)) (|ofCategory| *3 (|MatrixCategory| *4 *5 *6)) (|ofCategory| *10 (|MatrixCategory| *7 *8 *9)))) (|inverse| (*1 *2 *3) (|partial| AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|ofCategory| *7 (|QuotientFieldCategory| *4)) (|ofCategory| *2 (|MatrixCategory| *7 *8 *9)) (|isDomain| *1 (|InnerMatrixQuotientFieldFunctions| *4 *5 *6 *3 *7 *8 *9 *2)) (|ofCategory| *3 (|MatrixCategory| *4 *5 *6)) (|ofCategory| *8 (|FiniteLinearAggregate| *7)) (|ofCategory| *9 (|FiniteLinearAggregate| *7)))) (|rowEchelon| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|ofCategory| *7 (|QuotientFieldCategory| *4)) (|ofCategory| *2 (|MatrixCategory| *7 *8 *9)) (|isDomain| *1 (|InnerMatrixQuotientFieldFunctions| *4 *5 *6 *3 *7 *8 *9 *2)) (|ofCategory| *3 (|MatrixCategory| *4 *5 *6)) (|ofCategory| *8 (|FiniteLinearAggregate| *7)) (|ofCategory| *9 (|FiniteLinearAggregate| *7))))) │ │ │ +(CATEGORY |package| (SIGNATURE |rowEchelon| (|#8| |#4|)) (SIGNATURE |inverse| ((|Union| |#8| "failed") |#4|)) (IF (|has| |#7| (ATTRIBUTE |shallowlyMutable|)) (SIGNATURE |nullSpace| ((|List| |#3|) |#4|)) |noBranch|)) │ │ │ +((|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) 38)) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) 12)) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) 13)) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) 47))) │ │ │ +(((|MonomialExtensionTools| |#1| |#2|) (CATEGORY |package| (SIGNATURE |split| ((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|))) (SIGNATURE |splitSquarefree| ((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|))) (SIGNATURE |normalDenom| (|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|))) (SIGNATURE |decompose| ((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)))) (|Field|) (|UnivariatePolynomialCategory| |#1|)) (T |MonomialExtensionTools|)) │ │ │ +((|decompose| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| *6 *6)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Record| (|:| |poly| *6) (|:| |normal| (|Fraction| *6)) (|:| |special| (|Fraction| *6)))) (|isDomain| *1 (|MonomialExtensionTools| *5 *6)) (|isDomain| *3 (|Fraction| *6)))) (|normalDenom| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| *2)) (|isDomain| *4 (|Mapping| *2 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *5)) (|isDomain| *1 (|MonomialExtensionTools| *5 *2)) (|ofCategory| *5 (|Field|)))) (|splitSquarefree| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| *3 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Record| (|:| |normal| (|Factored| *3)) (|:| |special| (|Factored| *3)))) (|isDomain| *1 (|MonomialExtensionTools| *5 *3)))) (|split| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| *3 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Record| (|:| |normal| *3) (|:| |special| *3))) (|isDomain| *1 (|MonomialExtensionTools| *5 *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |split| ((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|))) (SIGNATURE |splitSquarefree| ((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|))) (SIGNATURE |normalDenom| (|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|))) (SIGNATURE |decompose| ((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|variables| (((|List| |#3|) $) 70)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 50 (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) 51 (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) 53 (|has| |#1| (|IntegralDomain|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|reductum| (($ $) 59)) (|recip| (((|Union| $ "failed") $) 33)) (|pole?| (((|Boolean|) $) 69)) (|one?| (((|Boolean|) $) 30)) (|monomial?| (((|Boolean|) $) 61)) (|monomial| (($ |#1| |#2|) 60) (($ $ |#3| |#2|) 72) (($ $ (|List| |#3|) (|List| |#2|)) 71)) (|map| (($ (|Mapping| |#1| |#1|) $) 62)) (|leadingMonomial| (($ $) 64)) (|leadingCoefficient| ((|#1| $) 65)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|exquo| (((|Union| $ "failed") $ $) 49 (|has| |#1| (|IntegralDomain|)))) (|degree| ((|#2| $) 63)) (|complete| (($ $) 68)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ (|Fraction| (|Integer|))) 56 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $) 48 (|has| |#1| (|IntegralDomain|))) (($ |#1|) 46 (|has| |#1| (|CommutativeRing|)))) (|coefficient| ((|#1| $ |#2|) 58)) (|charthRoot| (((|Union| $ "failed") $) 47 (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 52 (|has| |#1| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (/ (($ $ |#1|) 57 (|has| |#1| (|Field|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (|Fraction| (|Integer|)) $) 55 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) 54 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ +(((|PowerSeriesCategory| |#1| |#2| |#3|) (|Category|) (|Ring|) (|OrderedAbelianMonoid|) (|OrderedSet|)) (T |PowerSeriesCategory|)) │ │ │ +((|leadingCoefficient| (*1 *2 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *2 *3 *4)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|Ring|)))) (|leadingMonomial| (*1 *1 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *4 (|OrderedSet|)))) (|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *3 *2 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|monomial| (*1 *1 *1 *2 *3) (AND (|ofCategory| *1 (|PowerSeriesCategory| *4 *3 *2)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|OrderedSet|)))) (|monomial| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *6)) (|isDomain| *3 (|List| *5)) (|ofCategory| *1 (|PowerSeriesCategory| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoid|)) (|ofCategory| *6 (|OrderedSet|)))) (|variables| (*1 *2 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *5)))) (|pole?| (*1 *2 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|complete| (*1 *1 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *4 (|OrderedSet|))))) │ │ │ +(|Join| (|AbelianMonoidRing| |t#1| |t#2|) (CATEGORY |domain| (SIGNATURE |monomial| ($ $ |t#3| |t#2|)) (SIGNATURE |monomial| ($ $ (|List| |t#3|) (|List| |t#2|))) (SIGNATURE |leadingMonomial| ($ $)) (SIGNATURE |leadingCoefficient| (|t#1| $)) (SIGNATURE |degree| (|t#2| $)) (SIGNATURE |variables| ((|List| |t#3|) $)) (SIGNATURE |pole?| ((|Boolean|) $)) (SIGNATURE |complete| ($ $)))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| |#2|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) |has| |#1| (|IntegralDomain|)) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|EntireRing|) |has| |#1| (|IntegralDomain|)) ((|IntegralDomain|) |has| |#1| (|IntegralDomain|)) ((|LeftModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Module| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) |has| |#1| (|IntegralDomain|)) ((|Monoid|) . T) ((|RightModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|union| (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 77)) (|symmetricDifference| (($ $ $) 80)) (|subset?| (((|Boolean|) $ $) 83)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|set| (($ (|List| |#1|)) 24) (($) 15)) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) 71 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|removeDuplicates!| (($ $) 72)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|remove!| (($ |#1| $) 61 (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Mapping| (|Boolean|) |#1|) $) 64 (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ |#1| $ (|Integer|)) 62) (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) 65)) (|remove| (($ |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ |#1| $ (|Integer|)) 67) (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) 68)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|parts| (((|List| |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|multiset| (($) 13) (($ |#1|) 26) (($ (|List| |#1|)) 21)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|members| (((|List| |#1|) $) 38)) (|member?| (((|Boolean|) |#1| $) 57 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 75 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 76)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL)) (|intersect| (($ $ $) 78)) (|inspect| ((|#1| $) 54)) (|insert!| (($ |#1| $) 55) (($ |#1| $ (|NonNegativeInteger|)) 73)) (|hash| (((|SingleInteger|) $) NIL)) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) NIL)) (|extract!| ((|#1| $) 53)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) 49)) (|empty| (($) 12)) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) 47)) (|difference| (($ $ |#1|) NIL) (($ $ $) 79)) (|dictionary| (($) 14) (($ (|List| |#1|)) 23)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 60 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) 66)) (|convert| (((|InputForm|) $) 36 (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) 20)) (|coerce| (((|OutputForm|) $) 44)) (|brace| (($ (|List| |#1|)) 25) (($) 16)) (|bag| (($ (|List| |#1|)) 22)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 81)) (< (((|Boolean|) $ $) 82)) (|#| (((|NonNegativeInteger|) $) 59 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|Multiset| |#1|) (|Join| (|MultisetAggregate| |#1|) (CATEGORY |domain| (ATTRIBUTE |finiteAggregate|) (ATTRIBUTE |shallowlyMutable|) (SIGNATURE |multiset| ($)) (SIGNATURE |multiset| ($ |#1|)) (SIGNATURE |multiset| ($ (|List| |#1|))) (SIGNATURE |members| ((|List| |#1|) $)) (SIGNATURE |remove| ($ |#1| $ (|Integer|))) (SIGNATURE |remove| ($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|))) (SIGNATURE |remove!| ($ |#1| $ (|Integer|))) (SIGNATURE |remove!| ($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|))))) (|SetCategory|)) (T |Multiset|)) │ │ │ +((|multiset| (*1 *1) (AND (|isDomain| *1 (|Multiset| *2)) (|ofCategory| *2 (|SetCategory|)))) (|multiset| (*1 *1 *2) (AND (|isDomain| *1 (|Multiset| *2)) (|ofCategory| *2 (|SetCategory|)))) (|multiset| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Multiset| *3)))) (|members| (*1 *2 *1) (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|Multiset| *3)) (|ofCategory| *3 (|SetCategory|)))) (|remove| (*1 *1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|Multiset| *2)) (|ofCategory| *2 (|SetCategory|)))) (|remove| (*1 *1 *2 *1 *3) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *4)) (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *1 (|Multiset| *4)))) (|remove!| (*1 *1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|Multiset| *2)) (|ofCategory| *2 (|SetCategory|)))) (|remove!| (*1 *1 *2 *1 *3) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *4)) (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *1 (|Multiset| *4))))) │ │ │ +(|Join| (|MultisetAggregate| |#1|) (CATEGORY |domain| (ATTRIBUTE |finiteAggregate|) (ATTRIBUTE |shallowlyMutable|) (SIGNATURE |multiset| ($)) (SIGNATURE |multiset| ($ |#1|)) (SIGNATURE |multiset| ($ (|List| |#1|))) (SIGNATURE |members| ((|List| |#1|) $)) (SIGNATURE |remove| ($ |#1| $ (|Integer|))) (SIGNATURE |remove| ($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|))) (SIGNATURE |remove!| ($ |#1| $ (|Integer|))) (SIGNATURE |remove!| ($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|))))) │ │ │ +((|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) 92) (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) 87) (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) 76) (((|Result|) (|NumericalPDEProblem|)) 77)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) 50) (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) 52))) │ │ │ +(((|AnnaPartialDifferentialEquationPackage|) (CATEGORY |package| (SIGNATURE |solve| ((|Result|) (|NumericalPDEProblem|))) (SIGNATURE |solve| ((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|))) (SIGNATURE |solve| ((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|))) (SIGNATURE |solve| ((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|))) (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|))) (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|))))) (T |AnnaPartialDifferentialEquationPackage|)) │ │ │ +((|measure| (*1 *2 *3 *4) (AND (|isDomain| *3 (|NumericalPDEProblem|)) (|isDomain| *4 (|RoutinesTable|)) (|isDomain| *2 (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) (|isDomain| *1 (|AnnaPartialDifferentialEquationPackage|)))) (|measure| (*1 *2 *3) (AND (|isDomain| *3 (|NumericalPDEProblem|)) (|isDomain| *2 (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) (|isDomain| *1 (|AnnaPartialDifferentialEquationPackage|)))) (|solve| (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *6 (|List| (|List| (|Expression| *3)))) (|isDomain| *7 (|String|)) (|isDomain| *5 (|List| (|Expression| (|Float|)))) (|isDomain| *3 (|Float|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|AnnaPartialDifferentialEquationPackage|)))) (|solve| (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *6 (|List| (|List| (|Expression| *3)))) (|isDomain| *7 (|String|)) (|isDomain| *8 (|DoubleFloat|)) (|isDomain| *5 (|List| (|Expression| (|Float|)))) (|isDomain| *3 (|Float|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|AnnaPartialDifferentialEquationPackage|)))) (|solve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|NumericalPDEProblem|)) (|isDomain| *4 (|RoutinesTable|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|AnnaPartialDifferentialEquationPackage|)))) (|solve| (*1 *2 *3) (AND (|isDomain| *3 (|NumericalPDEProblem|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|AnnaPartialDifferentialEquationPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |solve| ((|Result|) (|NumericalPDEProblem|))) (SIGNATURE |solve| ((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|))) (SIGNATURE |solve| ((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|))) (SIGNATURE |solve| ((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|))) (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|))) (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) 68)) (|retract| ((|#1| $) NIL)) (|ratpart| ((|#1| $) 24)) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) 25)) (|latex| (((|String|) $) NIL)) (|integral| (($ |#1| |#1|) 32) (($ |#1| (|Symbol|)) 43 (|has| |#1| (|RetractableTo| (|Symbol|))))) (|hash| (((|SingleInteger|) $) NIL)) (|elem?| (((|Boolean|) $) 28)) (|differentiate| ((|#1| $ (|Mapping| |#1| |#1|)) 80) ((|#1| $ (|Symbol|)) 81 (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (|coerce| (((|OutputForm|) $) 95) (($ |#1|) 23)) (|Zero| (($) 16 T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) 15) (($ $ $) NIL)) (+ (($ $ $) 77)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 14) (($ (|Fraction| (|Integer|)) $) 35) (($ $ (|Fraction| (|Integer|))) NIL))) │ │ │ +(((|IntegrationResult| |#1|) (|Join| (|Module| (|Fraction| (|Integer|))) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |mkAnswer| ($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (SIGNATURE |ratpart| (|#1| $)) (SIGNATURE |logpart| ((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $)) (SIGNATURE |notelem| ((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (SIGNATURE |elem?| ((|Boolean|) $)) (SIGNATURE |integral| ($ |#1| |#1|)) (SIGNATURE |differentiate| (|#1| $ (|Mapping| |#1| |#1|))) (IF (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (SIGNATURE |differentiate| (|#1| $ (|Symbol|))) |noBranch|) (IF (|has| |#1| (|RetractableTo| (|Symbol|))) (SIGNATURE |integral| ($ |#1| (|Symbol|))) |noBranch|))) (|Field|)) (T |IntegrationResult|)) │ │ │ +((|mkAnswer| (*1 *1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| *2)) (|:| |logand| (|SparseUnivariatePolynomial| *2))))) (|isDomain| *4 (|List| (|Record| (|:| |integrand| *2) (|:| |intvar| *2)))) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|IntegrationResult| *2)))) (|ratpart| (*1 *2 *1) (AND (|isDomain| *1 (|IntegrationResult| *2)) (|ofCategory| *2 (|Field|)))) (|logpart| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| *3)) (|:| |logand| (|SparseUnivariatePolynomial| *3))))) (|isDomain| *1 (|IntegrationResult| *3)) (|ofCategory| *3 (|Field|)))) (|notelem| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |integrand| *3) (|:| |intvar| *3)))) (|isDomain| *1 (|IntegrationResult| *3)) (|ofCategory| *3 (|Field|)))) (|elem?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IntegrationResult| *3)) (|ofCategory| *3 (|Field|)))) (|integral| (*1 *1 *2 *2) (AND (|isDomain| *1 (|IntegrationResult| *2)) (|ofCategory| *2 (|Field|)))) (|differentiate| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Mapping| *2 *2)) (|isDomain| *1 (|IntegrationResult| *2)) (|ofCategory| *2 (|Field|)))) (|differentiate| (*1 *2 *1 *3) (AND (|ofCategory| *2 (|Field|)) (|ofCategory| *2 (|PartialDifferentialRing| *3)) (|isDomain| *1 (|IntegrationResult| *2)) (|isDomain| *3 (|Symbol|)))) (|integral| (*1 *1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *1 (|IntegrationResult| *2)) (|ofCategory| *2 (|RetractableTo| *3)) (|ofCategory| *2 (|Field|))))) │ │ │ +(|Join| (|Module| (|Fraction| (|Integer|))) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |mkAnswer| ($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (SIGNATURE |ratpart| (|#1| $)) (SIGNATURE |logpart| ((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $)) (SIGNATURE |notelem| ((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (SIGNATURE |elem?| ((|Boolean|) $)) (SIGNATURE |integral| ($ |#1| |#1|)) (SIGNATURE |differentiate| (|#1| $ (|Mapping| |#1| |#1|))) (IF (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (SIGNATURE |differentiate| (|#1| $ (|Symbol|))) |noBranch|) (IF (|has| |#1| (|RetractableTo| (|Symbol|))) (SIGNATURE |integral| ($ |#1| (|Symbol|))) |noBranch|))) │ │ │ +((|oddInfiniteProduct| ((|#2| |#2|) 27)) (|infiniteProduct| ((|#2| |#2|) 23)) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) 29)) (|evenInfiniteProduct| ((|#2| |#2|) 25))) │ │ │ +(((|InfiniteProductPrimeField| |#1| |#2|) (CATEGORY |package| (SIGNATURE |infiniteProduct| (|#2| |#2|)) (SIGNATURE |evenInfiniteProduct| (|#2| |#2|)) (SIGNATURE |oddInfiniteProduct| (|#2| |#2|)) (SIGNATURE |generalInfiniteProduct| (|#2| |#2| (|Integer|) (|Integer|)))) (|Join| (|Field|) (|Finite|) (|ConvertibleTo| (|Integer|))) (|UnivariateTaylorSeriesCategory| |#1|)) (T |InfiniteProductPrimeField|)) │ │ │ +((|generalInfiniteProduct| (*1 *2 *2 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|Join| (|Field|) (|Finite|) (|ConvertibleTo| *3))) (|isDomain| *1 (|InfiniteProductPrimeField| *4 *2)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *4)))) (|oddInfiniteProduct| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|Field|) (|Finite|) (|ConvertibleTo| (|Integer|)))) (|isDomain| *1 (|InfiniteProductPrimeField| *3 *2)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))) (|evenInfiniteProduct| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|Field|) (|Finite|) (|ConvertibleTo| (|Integer|)))) (|isDomain| *1 (|InfiniteProductPrimeField| *3 *2)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))) (|infiniteProduct| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|Field|) (|Finite|) (|ConvertibleTo| (|Integer|)))) (|isDomain| *1 (|InfiniteProductPrimeField| *3 *2)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |infiniteProduct| (|#2| |#2|)) (SIGNATURE |evenInfiniteProduct| (|#2| |#2|)) (SIGNATURE |oddInfiniteProduct| (|#2| |#2|)) (SIGNATURE |generalInfiniteProduct| (|#2| |#2| (|Integer|) (|Integer|)))) │ │ │ +((|union| (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (|symmetricDifference| (($ $ $) 10)) (|difference| (($ $ $) NIL) (($ $ |#2|) 15))) │ │ │ +(((|SetAggregate&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |union| (|#1| |#2| |#1|)) (SIGNATURE |union| (|#1| |#1| |#2|)) (SIGNATURE |union| (|#1| |#1| |#1|)) (SIGNATURE |symmetricDifference| (|#1| |#1| |#1|)) (SIGNATURE |difference| (|#1| |#1| |#2|)) (SIGNATURE |difference| (|#1| |#1| |#1|))) (|SetAggregate| |#2|) (|SetCategory|)) (T |SetAggregate&|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +(CATEGORY |domain| (SIGNATURE |union| (|#1| |#2| |#1|)) (SIGNATURE |union| (|#1| |#1| |#2|)) (SIGNATURE |union| (|#1| |#1| |#1|)) (SIGNATURE |symmetricDifference| (|#1| |#1| |#1|)) (SIGNATURE |difference| (|#1| |#1| |#2|)) (SIGNATURE |difference| (|#1| |#1| |#1|))) │ │ │ +((|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) 14))) │ │ │ +(((|RationalFunctionFactorizer| |#1|) (CATEGORY |package| (SIGNATURE |factorFraction| ((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))))) (|EuclideanDomain|)) (T |RationalFunctionFactorizer|)) │ │ │ +((|factorFraction| (*1 *2 *3) (AND (|isDomain| *3 (|Fraction| (|Polynomial| *4))) (|ofCategory| *4 (|EuclideanDomain|)) (|isDomain| *2 (|Fraction| (|Factored| (|Polynomial| *4)))) (|isDomain| *1 (|RationalFunctionFactorizer| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |factorFraction| ((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))))) │ │ │ +((|swap!| (((|Void|) $ |#2| |#2|) 36)) (|minIndex| ((|#2| $) 23)) (|maxIndex| ((|#2| $) 21)) (|map!| (($ (|Mapping| |#3| |#3|) $) 32)) (|map| (($ (|Mapping| |#3| |#3|) $) 30)) (|first| ((|#3| $) 26)) (|fill!| (($ $ |#3|) 33)) (|entry?| (((|Boolean|) |#3| $) 17)) (|entries| (((|List| |#3|) $) 15)) (|elt| ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) │ │ │ +(((|IndexedAggregate&| |#1| |#2| |#3|) (CATEGORY |domain| (SIGNATURE |swap!| ((|Void|) |#1| |#2| |#2|)) (SIGNATURE |fill!| (|#1| |#1| |#3|)) (SIGNATURE |first| (|#3| |#1|)) (SIGNATURE |minIndex| (|#2| |#1|)) (SIGNATURE |maxIndex| (|#2| |#1|)) (SIGNATURE |entry?| ((|Boolean|) |#3| |#1|)) (SIGNATURE |entries| ((|List| |#3|) |#1|)) (SIGNATURE |elt| (|#3| |#1| |#2|)) (SIGNATURE |elt| (|#3| |#1| |#2| |#3|)) (SIGNATURE |map!| (|#1| (|Mapping| |#3| |#3|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#3| |#3|) |#1|))) (|IndexedAggregate| |#2| |#3|) (|SetCategory|) (|Type|)) (T |IndexedAggregate&|)) │ │ │ NIL │ │ │ -(((|UnitsKnownAttribute|) (|Category|)) (T |UnitsKnownAttribute|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |swap!| ((|Void|) |#1| |#2| |#2|)) (SIGNATURE |fill!| (|#1| |#1| |#3|)) (SIGNATURE |first| (|#3| |#1|)) (SIGNATURE |minIndex| (|#2| |#1|)) (SIGNATURE |maxIndex| (|#2| |#1|)) (SIGNATURE |entry?| ((|Boolean|) |#3| |#1|)) (SIGNATURE |entries| ((|List| |#3|) |#1|)) (SIGNATURE |elt| (|#3| |#1| |#2|)) (SIGNATURE |elt| (|#3| |#1| |#2| |#3|)) (SIGNATURE |map!| (|#1| (|Mapping| |#3| |#3|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#3| |#3|) |#1|))) │ │ │ +((|quadraticBezier| (((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|)) 20)) (|linearBezier| (((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|)) 17)) (|cubicBezier| (((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|)) 21))) │ │ │ +(((|Bezier| |#1|) (CATEGORY |package| (SIGNATURE |linearBezier| ((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|))) (SIGNATURE |quadraticBezier| ((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|))) (SIGNATURE |cubicBezier| ((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|)))) (|Ring|)) (T |Bezier|)) │ │ │ +((|cubicBezier| (*1 *2 *3 *3 *3 *3) (AND (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Mapping| (|List| *4) *4)) (|isDomain| *1 (|Bezier| *4)) (|isDomain| *3 (|List| *4)))) (|quadraticBezier| (*1 *2 *3 *3 *3) (AND (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Mapping| (|List| *4) *4)) (|isDomain| *1 (|Bezier| *4)) (|isDomain| *3 (|List| *4)))) (|linearBezier| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Mapping| (|List| *4) *4)) (|isDomain| *1 (|Bezier| *4)) (|isDomain| *3 (|List| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |linearBezier| ((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|))) (SIGNATURE |quadraticBezier| ((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|))) (SIGNATURE |cubicBezier| ((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|)))) │ │ │ +((|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) 24)) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) 49)) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) 48)) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) 65)) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) 55)) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) 50)) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) 26)) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) 19)) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) 25)) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) 43)) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) 37)) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) 31)) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) 32)) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) 60)) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) 15)) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) 14))) │ │ │ +(((|DrawOptionFunctions0|) (CATEGORY |package| (SIGNATURE |adaptive| ((|Boolean|) (|List| (|DrawOption|)) (|Boolean|))) (SIGNATURE |clipBoolean| ((|Boolean|) (|List| (|DrawOption|)) (|Boolean|))) (SIGNATURE |viewpoint| ((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))))) (SIGNATURE |title| ((|String|) (|List| (|DrawOption|)) (|String|))) (SIGNATURE |style| ((|String|) (|List| (|DrawOption|)) (|String|))) (SIGNATURE |toScale| ((|Boolean|) (|List| (|DrawOption|)) (|Boolean|))) (SIGNATURE |pointColorPalette| ((|Palette|) (|List| (|DrawOption|)) (|Palette|))) (SIGNATURE |curveColorPalette| ((|Palette|) (|List| (|DrawOption|)) (|Palette|))) (SIGNATURE |ranges| ((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|))))) (SIGNATURE |var1Steps| ((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|))) (SIGNATURE |var2Steps| ((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|))) (SIGNATURE |space| ((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|)))) (SIGNATURE |tubePoints| ((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|))) (SIGNATURE |tubeRadius| ((|Float|) (|List| (|DrawOption|)) (|Float|))) (SIGNATURE |coord| ((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))))) (SIGNATURE |units| ((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|)))))) (T |DrawOptionFunctions0|)) │ │ │ +((|units| (*1 *2 *3 *2) (AND (|isDomain| *2 (|List| (|Float|))) (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *1 (|DrawOptionFunctions0|)))) (|coord| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *1 (|DrawOptionFunctions0|)))) (|tubeRadius| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *1 (|DrawOptionFunctions0|)))) (|tubePoints| (*1 *2 *3 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *1 (|DrawOptionFunctions0|)))) (|space| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|))) (|isDomain| *1 (|DrawOptionFunctions0|)))) (|var2Steps| (*1 *2 *3 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *1 (|DrawOptionFunctions0|)))) (|var1Steps| (*1 *2 *3 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *1 (|DrawOptionFunctions0|)))) (|ranges| (*1 *2 *3 *2) (AND (|isDomain| *2 (|List| (|Segment| (|Float|)))) (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *1 (|DrawOptionFunctions0|)))) (|curveColorPalette| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Palette|)) (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *1 (|DrawOptionFunctions0|)))) (|pointColorPalette| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Palette|)) (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *1 (|DrawOptionFunctions0|)))) (|toScale| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *1 (|DrawOptionFunctions0|)))) (|style| (*1 *2 *3 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *1 (|DrawOptionFunctions0|)))) (|title| (*1 *2 *3 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *1 (|DrawOptionFunctions0|)))) (|viewpoint| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *1 (|DrawOptionFunctions0|)))) (|clipBoolean| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *1 (|DrawOptionFunctions0|)))) (|adaptive| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *1 (|DrawOptionFunctions0|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |adaptive| ((|Boolean|) (|List| (|DrawOption|)) (|Boolean|))) (SIGNATURE |clipBoolean| ((|Boolean|) (|List| (|DrawOption|)) (|Boolean|))) (SIGNATURE |viewpoint| ((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))))) (SIGNATURE |title| ((|String|) (|List| (|DrawOption|)) (|String|))) (SIGNATURE |style| ((|String|) (|List| (|DrawOption|)) (|String|))) (SIGNATURE |toScale| ((|Boolean|) (|List| (|DrawOption|)) (|Boolean|))) (SIGNATURE |pointColorPalette| ((|Palette|) (|List| (|DrawOption|)) (|Palette|))) (SIGNATURE |curveColorPalette| ((|Palette|) (|List| (|DrawOption|)) (|Palette|))) (SIGNATURE |ranges| ((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|))))) (SIGNATURE |var1Steps| ((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|))) (SIGNATURE |var2Steps| ((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|))) (SIGNATURE |space| ((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|)))) (SIGNATURE |tubePoints| ((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|))) (SIGNATURE |tubeRadius| ((|Float|) (|List| (|DrawOption|)) (|Float|))) (SIGNATURE |coord| ((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))))) (SIGNATURE |units| ((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))))) │ │ │ +((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) 41)) (|setRow!| (($ $ (|Integer|) |#2|) 39)) (|setColumn!| (($ $ (|Integer|) |#3|) 38)) (|sample| (($) 7 T CONST)) (|row| ((|#2| $ (|Integer|)) 43)) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) 40)) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) 45)) (|parts| (((|List| |#1|) $) 30)) (|nrows| (((|NonNegativeInteger|) $) 48)) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) 54)) (|ncols| (((|NonNegativeInteger|) $) 47)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|minRowIndex| (((|Integer|) $) 52)) (|minColIndex| (((|Integer|) $) 50)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxRowIndex| (((|Integer|) $) 51)) (|maxColIndex| (((|Integer|) $) 49)) (|map!| (($ (|Mapping| |#1| |#1|) $) 34)) (|map| (($ (|Mapping| |#1| |#1|) $) 35) (($ (|Mapping| |#1| |#1| |#1|) $ $) 37) (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) 36)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|fill!| (($ $ |#1|) 53)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ (|Integer|) (|Integer|)) 46) ((|#1| $ (|Integer|) (|Integer|) |#1|) 44)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|column| ((|#3| $ (|Integer|)) 42)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|TwoDimensionalArrayCategory| |#1| |#2| |#3|) (|Category|) (|Type|) (|FiniteLinearAggregate| |t#1|) (|FiniteLinearAggregate| |t#1|)) (T |TwoDimensionalArrayCategory|)) │ │ │ +((|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|new| (*1 *1 *2 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Type|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|fill!| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *3 *4)) (|ofCategory| *2 (|Type|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (|minRowIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Integer|)))) (|maxRowIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Integer|)))) (|minColIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Integer|)))) (|maxColIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Integer|)))) (|nrows| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|NonNegativeInteger|)))) (|ncols| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|NonNegativeInteger|)))) (|elt| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|qelt| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|elt| (*1 *2 *1 *3 *3 *2) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5)) (|ofCategory| *2 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)))) (|row| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *4 *2 *5)) (|ofCategory| *4 (|Type|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *2 (|FiniteLinearAggregate| *4)))) (|column| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *4 *5 *2)) (|ofCategory| *4 (|Type|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *2 (|FiniteLinearAggregate| *4)))) (|parts| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|List| *3)))) (|setelt| (*1 *2 *1 *3 *3 *2) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5)) (|ofCategory| *2 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)))) (|qsetelt!| (*1 *2 *1 *3 *3 *2) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5)) (|ofCategory| *2 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)))) (|setRow!| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *4 *3 *5)) (|ofCategory| *4 (|Type|)) (|ofCategory| *3 (|FiniteLinearAggregate| *4)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)))) (|setColumn!| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *4 *5 *3)) (|ofCategory| *4 (|Type|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *3 (|FiniteLinearAggregate| *4)))) (|map!| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|map| (*1 *1 *2 *1 *1) (AND (|isDomain| *2 (|Mapping| *3 *3 *3)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|map| (*1 *1 *2 *1 *1 *3) (AND (|isDomain| *2 (|Mapping| *3 *3 *3)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3))))) │ │ │ +(|Join| (|HomogeneousAggregate| |t#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (ATTRIBUTE |finiteAggregate|) (SIGNATURE |new| ($ (|NonNegativeInteger|) (|NonNegativeInteger|) |t#1|)) (SIGNATURE |fill!| ($ $ |t#1|)) (SIGNATURE |minRowIndex| ((|Integer|) $)) (SIGNATURE |maxRowIndex| ((|Integer|) $)) (SIGNATURE |minColIndex| ((|Integer|) $)) (SIGNATURE |maxColIndex| ((|Integer|) $)) (SIGNATURE |nrows| ((|NonNegativeInteger|) $)) (SIGNATURE |ncols| ((|NonNegativeInteger|) $)) (SIGNATURE |elt| (|t#1| $ (|Integer|) (|Integer|))) (SIGNATURE |qelt| (|t#1| $ (|Integer|) (|Integer|))) (SIGNATURE |elt| (|t#1| $ (|Integer|) (|Integer|) |t#1|)) (SIGNATURE |row| (|t#2| $ (|Integer|))) (SIGNATURE |column| (|t#3| $ (|Integer|))) (SIGNATURE |parts| ((|List| |t#1|) $)) (SIGNATURE |setelt| (|t#1| $ (|Integer|) (|Integer|) |t#1|)) (SIGNATURE |qsetelt!| (|t#1| $ (|Integer|) (|Integer|) |t#1|)) (SIGNATURE |setRow!| ($ $ (|Integer|) |t#2|)) (SIGNATURE |setColumn!| ($ $ (|Integer|) |t#3|)) (SIGNATURE |map| ($ (|Mapping| |t#1| |t#1|) $)) (SIGNATURE |map!| ($ (|Mapping| |t#1| |t#1|) $)) (SIGNATURE |map| ($ (|Mapping| |t#1| |t#1| |t#1|) $ $)) (SIGNATURE |map| ($ (|Mapping| |t#1| |t#1| |t#1|) $ $ |t#1|)))) │ │ │ +(((|Aggregate|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|symbol?| (((|Boolean|) $) 37)) (|symbol| ((|#2| $) 41)) (|string?| (((|Boolean|) $) 36)) (|string| ((|#1| $) 40)) (|pair?| (((|Boolean|) $) 34)) (|null?| (((|Boolean|) $) 14)) (|list?| (((|Boolean|) $) 35)) (|latex| (((|String|) $) NIL)) (|integer?| (((|Boolean|) $) 38)) (|integer| ((|#3| $) 43)) (|hash| (((|SingleInteger|) $) NIL)) (|float?| (((|Boolean|) $) 39)) (|float| ((|#4| $) 42)) (|expr| ((|#5| $) 44)) (|eq| (((|Boolean|) $ $) 33)) (|elt| (($ $ (|Integer|)) 55) (($ $ (|List| (|Integer|))) 57)) (|destruct| (((|List| $) $) 21)) (|convert| (($ (|List| $)) 45) (($ |#1|) 46) (($ |#2|) 47) (($ |#3|) 48) (($ |#4|) 49) (($ |#5|) 50)) (|coerce| (((|OutputForm|) $) 22)) (|cdr| (($ $) 20)) (|car| (($ $) 51)) (|atom?| (((|Boolean|) $) 18)) (= (((|Boolean|) $ $) 32)) (|#| (((|Integer|) $) 53))) │ │ │ +(((|SExpressionOf| |#1| |#2| |#3| |#4| |#5|) (|SExpressionCategory| |#1| |#2| |#3| |#4| |#5|) (|SetCategory|) (|SetCategory|) (|SetCategory|) (|SetCategory|) (|SetCategory|)) (T |SExpressionOf|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +(|SExpressionCategory| |#1| |#2| |#3| |#4| |#5|) │ │ │ +((|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) 31))) │ │ │ +(((|ComplexIntegerSolveLinearPolynomialEquation| |#1| |#2|) (CATEGORY |package| (SIGNATURE |solveLinearPolynomialEquation| ((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)))) (|IntegerNumberSystem|) (|ComplexCategory| |#1|)) (T |ComplexIntegerSolveLinearPolynomialEquation|)) │ │ │ +((|solveLinearPolynomialEquation| (*1 *2 *2 *3) (|partial| AND (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *5))) (|isDomain| *3 (|SparseUnivariatePolynomial| *5)) (|ofCategory| *5 (|ComplexCategory| *4)) (|ofCategory| *4 (|IntegerNumberSystem|)) (|isDomain| *1 (|ComplexIntegerSolveLinearPolynomialEquation| *4 *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |solveLinearPolynomialEquation| ((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 14)) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) 18)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|size| (((|NonNegativeInteger|) $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL)) (|retract| ((|#1| $) NIL)) (|nthFactor| ((|#1| $ (|Integer|)) NIL)) (|nthCoef| (((|Integer|) $ (|Integer|)) NIL)) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|mapGen| (($ (|Mapping| |#1| |#1|) $) NIL)) (|mapCoef| (($ (|Mapping| (|Integer|) (|Integer|)) $) 10)) (|latex| (((|String|) $) NIL)) (|highCommonTerms| (($ $ $) NIL (|has| (|Integer|) (|OrderedAbelianMonoid|)))) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ |#1|) NIL)) (|coefficient| (((|Integer|) |#1| $) NIL)) (|Zero| (($) 15 T CONST)) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) 21 (|has| |#1| (|OrderedSet|)))) (- (($ $) 11) (($ $ $) 20)) (+ (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ (|Integer|)) NIL) (($ (|Integer|) |#1|) 19))) │ │ │ +(((|FreeAbelianGroup| |#1|) (|Join| (|AbelianGroup|) (|Module| (|Integer|)) (|FreeAbelianMonoidCategory| |#1| (|Integer|)) (CATEGORY |package| (IF (|has| |#1| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |noBranch|))) (|SetCategory|)) (T |FreeAbelianGroup|)) │ │ │ NIL │ │ │ -(((|AttributeRegistry|) (|Category|)) (T |AttributeRegistry|)) │ │ │ +(|Join| (|AbelianGroup|) (|Module| (|Integer|)) (|FreeAbelianMonoidCategory| |#1| (|Integer|)) (CATEGORY |package| (IF (|has| |#1| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |noBranch|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 34)) (|variables| (((|List| |#2|) $) NIL)) (|univariate| (((|SparseUnivariatePolynomial| $) $ |#2|) NIL) (((|SparseUnivariatePolynomial| |#1|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|totalDegree| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|List| |#2|)) NIL)) (|tail| (($ $) 28)) (|supRittWu?| (((|Boolean|) $ $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|subResultantGcd| (($ $ $) 92 (|has| |#1| (|IntegralDomain|)))) (|subResultantChain| (((|List| $) $ $) 105 (|has| |#1| (|IntegralDomain|)))) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|squareFreePart| (($ $) NIL (|has| |#1| (|GcdDomain|)))) (|squareFree| (((|Factored| $) $) NIL (|has| |#1| (|GcdDomain|)))) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| |#2| "failed") $) NIL) (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) NIL (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#2| (|ConvertibleTo| (|Symbol|))))) (((|Union| $ "failed") (|Polynomial| (|Integer|))) NIL (OR (AND (|has| |#1| (|Algebra| (|Integer|))) (|has| |#2| (|ConvertibleTo| (|Symbol|))) (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#2| (|ConvertibleTo| (|Symbol|)))))) (((|Union| $ "failed") (|Polynomial| |#1|)) NIL (OR (AND (|has| |#2| (|ConvertibleTo| (|Symbol|))) (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|not| (|has| |#1| (|Algebra| (|Integer|))))) (AND (|has| |#1| (|Algebra| (|Integer|))) (|has| |#2| (|ConvertibleTo| (|Symbol|))) (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|not| (|has| |#1| (|IntegerNumberSystem|)))) (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#2| (|ConvertibleTo| (|Symbol|))) (|not| (|has| |#1| (|QuotientFieldCategory| (|Integer|))))))) (((|Union| (|SparseMultivariatePolynomial| |#1| |#2|) "failed") $) 18)) (|retract| ((|#1| $) NIL) (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) ((|#2| $) NIL) (($ (|Polynomial| (|Fraction| (|Integer|)))) NIL (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#2| (|ConvertibleTo| (|Symbol|))))) (($ (|Polynomial| (|Integer|))) NIL (OR (AND (|has| |#1| (|Algebra| (|Integer|))) (|has| |#2| (|ConvertibleTo| (|Symbol|))) (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#2| (|ConvertibleTo| (|Symbol|)))))) (($ (|Polynomial| |#1|)) NIL (OR (AND (|has| |#2| (|ConvertibleTo| (|Symbol|))) (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|not| (|has| |#1| (|Algebra| (|Integer|))))) (AND (|has| |#1| (|Algebra| (|Integer|))) (|has| |#2| (|ConvertibleTo| (|Symbol|))) (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (|not| (|has| |#1| (|IntegerNumberSystem|)))) (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#2| (|ConvertibleTo| (|Symbol|))) (|not| (|has| |#1| (|QuotientFieldCategory| (|Integer|))))))) (((|SparseMultivariatePolynomial| |#1| |#2|) $) NIL)) (|resultant| (($ $ $ |#2|) NIL (|has| |#1| (|CommutativeRing|))) (($ $ $) 103 (|has| |#1| (|IntegralDomain|)))) (|reductum| (($ $) NIL) (($ $ |#2|) NIL)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| |#1|) (|Matrix| $)) NIL)) (|reduced?| (((|Boolean|) $ $) NIL) (((|Boolean|) $ (|List| $)) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|quasiMonic?| (((|Boolean|) $) NIL)) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 69)) (|primitivePart!| (($ $) 118 (|has| |#1| (|GcdDomain|)))) (|primitivePart| (($ $) NIL (|has| |#1| (|GcdDomain|))) (($ $ |#2|) NIL (|has| |#1| (|GcdDomain|)))) (|primitiveMonomials| (((|List| $) $) NIL)) (|prime?| (((|Boolean|) $) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|primPartElseUnitCanonical!| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|primPartElseUnitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|prem| (($ $ $) 64) (($ $ $ |#2|) NIL)) (|pquo| (($ $ $) 67) (($ $ $ |#2|) NIL)) (|pomopo!| (($ $ |#1| (|IndexedExponents| |#2|) $) NIL)) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) NIL (AND (|has| |#1| (|PatternMatchable| (|Float|))) (|has| |#2| (|PatternMatchable| (|Float|))))) (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) NIL (AND (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#2| (|PatternMatchable| (|Integer|)))))) (|one?| (((|Boolean|) $) NIL)) (|numberOfMonomials| (((|NonNegativeInteger|) $) NIL)) (|normalized?| (((|Boolean|) $ $) NIL) (((|Boolean|) $ (|List| $)) NIL)) (|nextsubResultant2| (($ $ $ $ $) 89 (|has| |#1| (|IntegralDomain|)))) (|mvar| ((|#2| $) 19)) (|multivariate| (($ (|SparseUnivariatePolynomial| |#1|) |#2|) NIL) (($ (|SparseUnivariatePolynomial| $) |#2|) NIL)) (|monomials| (((|List| $) $) NIL)) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| (|IndexedExponents| |#2|)) NIL) (($ $ |#2| (|NonNegativeInteger|)) 36) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) NIL)) (|monicModulo| (($ $ $) 60)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#2|) NIL)) (|monic?| (((|Boolean|) $) NIL)) (|minimumDegree| (((|IndexedExponents| |#2|) $) NIL) (((|NonNegativeInteger|) $ |#2|) NIL) (((|List| (|NonNegativeInteger|)) $ (|List| |#2|)) NIL)) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|mdeg| (((|NonNegativeInteger|) $) 20)) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|mapExponents| (($ (|Mapping| (|IndexedExponents| |#2|) (|IndexedExponents| |#2|)) $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|mainVariable| (((|Union| |#2| "failed") $) NIL)) (|mainSquareFreePart| (($ $) NIL (|has| |#1| (|GcdDomain|)))) (|mainPrimitivePart| (($ $) NIL (|has| |#1| (|GcdDomain|)))) (|mainMonomials| (((|List| $) $) NIL)) (|mainMonomial| (($ $) 37)) (|mainContent| (($ $) NIL (|has| |#1| (|GcdDomain|)))) (|mainCoefficients| (((|List| $) $) 41)) (|leastMonomial| (($ $) 39)) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#1| $) NIL) (($ $ |#2|) 45)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL (|has| |#1| (|GcdDomain|)))) (|lcm| (($ (|List| $)) NIL (|has| |#1| (|GcdDomain|))) (($ $ $) NIL (|has| |#1| (|GcdDomain|)))) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) 81)) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) 66) (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#2|) NIL)) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) NIL) (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#2|) NIL)) (|lazyPrem| (($ $ $) 71) (($ $ $ |#2|) NIL)) (|lazyPquo| (($ $ $) 74) (($ $ $ |#2|) NIL)) (|latex| (((|String|) $) NIL)) (|lastSubResultant| (($ $ $) 107 (|has| |#1| (|IntegralDomain|)))) (|iteratedInitials| (((|List| $) $) 30)) (|isTimes| (((|Union| (|List| $) "failed") $) NIL)) (|isPlus| (((|Union| (|List| $) "failed") $) NIL)) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) NIL)) (|initiallyReduced?| (((|Boolean|) $ $) NIL) (((|Boolean|) $ (|List| $)) NIL)) (|initiallyReduce| (($ $ $) NIL)) (|init| (($ $) 21)) (|infRittWu?| (((|Boolean|) $ $) NIL)) (|headReduced?| (((|Boolean|) $ $) NIL) (((|Boolean|) $ (|List| $)) NIL)) (|headReduce| (($ $ $) NIL)) (|head| (($ $) 23)) (|hash| (((|SingleInteger|) $) NIL)) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (|IntegralDomain|)))) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (|IntegralDomain|)))) (|ground?| (((|Boolean|) $) 52)) (|ground| ((|#1| $) 55)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|GcdDomain|)))) (|gcd| ((|#1| |#1| $) 115 (|has| |#1| (|GcdDomain|))) (($ (|List| $)) NIL (|has| |#1| (|GcdDomain|))) (($ $ $) NIL (|has| |#1| (|GcdDomain|)))) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factor| (((|Factored| $) $) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (|IntegralDomain|)))) (|exquo| (((|Union| $ "failed") $ |#1|) NIL (|has| |#1| (|IntegralDomain|))) (((|Union| $ "failed") $ $) 83 (|has| |#1| (|IntegralDomain|)))) (|exactQuotient!| (($ $ |#1|) 111 (|has| |#1| (|IntegralDomain|))) (($ $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|exactQuotient| (($ $ |#1|) 110 (|has| |#1| (|IntegralDomain|))) (($ $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|eval| (($ $ (|List| (|Equation| $))) NIL) (($ $ (|Equation| $)) NIL) (($ $ $ $) NIL) (($ $ (|List| $) (|List| $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (|List| |#2|) (|List| |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (|List| |#2|) (|List| $)) NIL)) (|discriminant| (($ $ |#2|) NIL (|has| |#1| (|CommutativeRing|)))) (|differentiate| (($ $ |#2|) NIL) (($ $ (|List| |#2|)) NIL) (($ $ |#2| (|NonNegativeInteger|)) NIL) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) NIL)) (|degree| (((|IndexedExponents| |#2|) $) NIL) (((|NonNegativeInteger|) $ |#2|) 43) (((|List| (|NonNegativeInteger|)) $ (|List| |#2|)) NIL)) (|deepestTail| (($ $) NIL)) (|deepestInitial| (($ $) 33)) (|convert| (((|Pattern| (|Float|)) $) NIL (AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Float|)))))) (((|Pattern| (|Integer|)) $) NIL (AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|)))))) (((|InputForm|) $) NIL (AND (|has| |#1| (|ConvertibleTo| (|InputForm|))) (|has| |#2| (|ConvertibleTo| (|InputForm|))))) (($ (|Polynomial| (|Fraction| (|Integer|)))) NIL (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#2| (|ConvertibleTo| (|Symbol|))))) (($ (|Polynomial| (|Integer|))) NIL (OR (AND (|has| |#1| (|Algebra| (|Integer|))) (|has| |#2| (|ConvertibleTo| (|Symbol|))) (|not| (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (AND (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#2| (|ConvertibleTo| (|Symbol|)))))) (($ (|Polynomial| |#1|)) NIL (|has| |#2| (|ConvertibleTo| (|Symbol|)))) (((|String|) $) NIL (AND (|has| |#1| (|RetractableTo| (|Integer|))) (|has| |#2| (|ConvertibleTo| (|Symbol|))))) (((|Polynomial| |#1|) $) NIL (|has| |#2| (|ConvertibleTo| (|Symbol|))))) (|content| ((|#1| $) 114 (|has| |#1| (|GcdDomain|))) (($ $ |#2|) NIL (|has| |#1| (|GcdDomain|)))) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((|Polynomial| |#1|) $) NIL (|has| |#2| (|ConvertibleTo| (|Symbol|)))) (((|SparseMultivariatePolynomial| |#1| |#2|) $) 15) (($ (|SparseMultivariatePolynomial| |#1| |#2|)) 16) (($ (|Fraction| (|Integer|))) NIL (OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))) (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|coefficients| (((|List| |#1|) $) NIL)) (|coefficient| ((|#1| $ (|IndexedExponents| |#2|)) NIL) (($ $ |#2| (|NonNegativeInteger|)) 44) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) NIL)) (|charthRoot| (((|Union| $ "failed") $) NIL (OR (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) (|has| |#1| (|CharacteristicNonZero|))))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|CommutativeRing|)))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 13 T CONST)) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) NIL)) (|One| (($) 35 T CONST)) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) 87 (|has| |#1| (|IntegralDomain|)))) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) 86 (|has| |#1| (|IntegralDomain|)))) (D (($ $ |#2|) NIL) (($ $ (|List| |#2|)) NIL) (($ $ |#2| (|NonNegativeInteger|)) NIL) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) NIL)) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) 54)) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (/ (($ $ |#1|) NIL (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) 63)) (+ (($ $ $) 73)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) 61)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 59) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) │ │ │ +(((|NewSparseMultivariatePolynomial| |#1| |#2|) (|Join| (|RecursivePolynomialCategory| |#1| (|IndexedExponents| |#2|) |#2|) (|CoercibleTo| (|SparseMultivariatePolynomial| |#1| |#2|)) (|RetractableTo| (|SparseMultivariatePolynomial| |#1| |#2|))) (|Ring|) (|OrderedSet|)) (T |NewSparseMultivariatePolynomial|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (ATTRIBUTE |finiteAggregate|) (ATTRIBUTE (|commutative| "*")) (ATTRIBUTE |shallowlyMutable|) (ATTRIBUTE |unitsKnown|) (ATTRIBUTE |leftUnitary|) (ATTRIBUTE |rightUnitary|) (ATTRIBUTE |noZeroDivisors|) (ATTRIBUTE |canonicalUnitNormal|) (ATTRIBUTE |canonicalsClosed|) (ATTRIBUTE |arbitraryPrecision|) (ATTRIBUTE |partiallyOrderedSet|) (ATTRIBUTE |central|) (ATTRIBUTE |noetherian|) (ATTRIBUTE |additiveValuation|) (ATTRIBUTE |multiplicativeValuation|) (ATTRIBUTE |NullSquare|) (ATTRIBUTE |JacobiIdentity|) (ATTRIBUTE |canonical|) (ATTRIBUTE |approximate|))) │ │ │ -((~= (((|Boolean|) $ $) 9))) │ │ │ -(((|BasicType&| |#1|) (CATEGORY |domain| (SIGNATURE ~= ((|Boolean|) |#1| |#1|))) (|BasicType|)) (T |BasicType&|)) │ │ │ +(|Join| (|RecursivePolynomialCategory| |#1| (|IndexedExponents| |#2|) |#2|) (|CoercibleTo| (|SparseMultivariatePolynomial| |#1| |#2|)) (|RetractableTo| (|SparseMultivariatePolynomial| |#1| |#2|))) │ │ │ +((|sign| (((|Union| (|Integer|) "failed") |#1|) 19)) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) 13)) (|direction| (((|Integer|) (|String|)) 28))) │ │ │ +(((|ToolsForSign| |#1|) (CATEGORY |package| (SIGNATURE |sign| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |nonQsign| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |direction| ((|Integer|) (|String|)))) (|Ring|)) (T |ToolsForSign|)) │ │ │ +((|direction| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ToolsForSign| *4)) (|ofCategory| *4 (|Ring|)))) (|nonQsign| (*1 *2 *3) (|partial| AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ToolsForSign| *3)) (|ofCategory| *3 (|Ring|)))) (|sign| (*1 *2 *3) (|partial| AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ToolsForSign| *3)) (|ofCategory| *3 (|Ring|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |sign| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |nonQsign| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |direction| ((|Integer|) (|String|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 64)) (|variables| (((|List| (|SingletonAsOrderedSet|)) $) NIL)) (|variable| (((|Symbol|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|truncate| (($ $ (|Integer|)) 54) (($ $ (|Integer|) (|Integer|)) 55)) (|terms| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) 61)) (|taylorQuoByVar| (($ $) 100)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) 215)) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) 34)) (|sample| (($) NIL T CONST)) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|pole?| (((|Boolean|) $) NIL)) (|order| (((|Integer|) $) 59) (((|Integer|) $ (|Integer|)) 60)) (|one?| (((|Boolean|) $) NIL)) (|multiplyExponents| (($ $ (|PositiveInteger|)) 77)) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) 74)) (|monomial?| (((|Boolean|) $) 25)) (|monomial| (($ |#1| (|Integer|)) 22) (($ $ (|SingletonAsOrderedSet|) (|Integer|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|Integer|))) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) 68)) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) 11)) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|integrate| (($ $) 112 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) 99)) (|iCompose| (($ $ $) 108)) (|hash| (((|SingleInteger|) $) NIL)) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) 13)) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) 12)) (|extend| (($ $ (|Integer|)) 45)) (|exquo| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|eval| (((|Stream| |#1|) $ |#1|) NIL (|has| |#1| (SIGNATURE ** (|#1| |#1| (|Integer|)))))) (|elt| ((|#1| $ (|Integer|)) 57) (($ $ $) NIL (|has| (|Integer|) (|SemiGroup|)))) (|differentiate| (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))) (($ $) 71 (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))) (|degree| (((|Integer|) $) NIL)) (|complete| (($ $) 46)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) 28) (($ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $) NIL (|has| |#1| (|IntegralDomain|))) (($ |#1|) 27 (|has| |#1| (|CommutativeRing|)))) (|coefficient| ((|#1| $ (|Integer|)) 56)) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 37)) (|center| ((|#1| $) NIL)) (|cTanh| (($ $) 180 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cTan| (($ $) 156 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cSinh| (($ $) 177 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cSin| (($ $) 153 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cSech| (($ $) 182 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cSec| (($ $) 159 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) 146 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cPower| (($ $ |#1|) 121 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cLog| (($ $) 150 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cExp| (($ $) 148 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cCsch| (($ $) 183 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cCsc| (($ $) 160 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cCoth| (($ $) 181 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cCot| (($ $) 158 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cCosh| (($ $) 178 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cCos| (($ $) 154 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cAtanh| (($ $) 188 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cAtan| (($ $) 168 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cAsinh| (($ $) 185 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cAsin| (($ $) 163 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cAsech| (($ $) 192 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cAsec| (($ $) 172 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cAcsch| (($ $) 194 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cAcsc| (($ $) 174 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cAcoth| (($ $) 190 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cAcot| (($ $) 170 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cAcosh| (($ $) 187 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cAcos| (($ $) 166 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|approximate| ((|#1| $ (|Integer|)) NIL (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| (|Integer|)))) (|has| |#1| (SIGNATURE |coerce| (|#1| (|Symbol|))))))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 29 T CONST)) (|One| (($) 38 T CONST)) (D (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))) (($ $) NIL (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))) (= (((|Boolean|) $ $) 66)) (/ (($ $ |#1|) NIL (|has| |#1| (|Field|)))) (- (($ $) 85) (($ $ $) 65)) (+ (($ $ $) 82)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) 103)) (* (($ (|PositiveInteger|) $) 90) (($ (|NonNegativeInteger|) $) 88) (($ (|Integer|) $) 86) (($ $ $) 96) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ +(((|InnerSparseUnivariatePowerSeries| |#1|) (|Join| (|UnivariatePowerSeriesCategory| |#1| (|Integer|)) (CATEGORY |domain| (SIGNATURE |makeSeries| ($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))))) (SIGNATURE |getRef| ((|Reference| (|OrderedCompletion| (|Integer|))) $)) (SIGNATURE |getStream| ((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $)) (SIGNATURE |series| ($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))))) (SIGNATURE |monomial?| ((|Boolean|) $)) (SIGNATURE |multiplyCoefficients| ($ (|Mapping| |#1| (|Integer|)) $)) (SIGNATURE |iExquo| ((|Union| $ "failed") $ $ (|Boolean|))) (SIGNATURE |taylorQuoByVar| ($ $)) (SIGNATURE |iCompose| ($ $ $)) (SIGNATURE |seriesToOutputForm| ((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|)))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ($ $)) (SIGNATURE |cPower| ($ $ |#1|)) (SIGNATURE |cRationalPower| ($ $ (|Fraction| (|Integer|)))) (SIGNATURE |cExp| ($ $)) (SIGNATURE |cLog| ($ $)) (SIGNATURE |cSin| ($ $)) (SIGNATURE |cCos| ($ $)) (SIGNATURE |cTan| ($ $)) (SIGNATURE |cCot| ($ $)) (SIGNATURE |cSec| ($ $)) (SIGNATURE |cCsc| ($ $)) (SIGNATURE |cAsin| ($ $)) (SIGNATURE |cAcos| ($ $)) (SIGNATURE |cAtan| ($ $)) (SIGNATURE |cAcot| ($ $)) (SIGNATURE |cAsec| ($ $)) (SIGNATURE |cAcsc| ($ $)) (SIGNATURE |cSinh| ($ $)) (SIGNATURE |cCosh| ($ $)) (SIGNATURE |cTanh| ($ $)) (SIGNATURE |cCoth| ($ $)) (SIGNATURE |cSech| ($ $)) (SIGNATURE |cCsch| ($ $)) (SIGNATURE |cAsinh| ($ $)) (SIGNATURE |cAcosh| ($ $)) (SIGNATURE |cAtanh| ($ $)) (SIGNATURE |cAcoth| ($ $)) (SIGNATURE |cAsech| ($ $)) (SIGNATURE |cAcsch| ($ $))) |noBranch|))) (|Ring|)) (T |InnerSparseUnivariatePowerSeries|)) │ │ │ +((|monomial?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *3)) (|ofCategory| *3 (|Ring|)))) (|makeSeries| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Reference| (|OrderedCompletion| (|Integer|)))) (|isDomain| *3 (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| *4)))) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *4)))) (|getRef| (*1 *2 *1) (AND (|isDomain| *2 (|Reference| (|OrderedCompletion| (|Integer|)))) (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *3)) (|ofCategory| *3 (|Ring|)))) (|getStream| (*1 *2 *1) (AND (|isDomain| *2 (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| *3)))) (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *3)) (|ofCategory| *3 (|Ring|)))) (|series| (*1 *1 *2) (AND (|isDomain| *2 (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| *3)))) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *3)))) (|multiplyCoefficients| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 (|Integer|))) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *3)))) (|iExquo| (*1 *1 *1 *1 *2) (|partial| AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *3)) (|ofCategory| *3 (|Ring|)))) (|taylorQuoByVar| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Ring|)))) (|iCompose| (*1 *1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Ring|)))) (|seriesToOutputForm| (*1 *2 *3 *4 *5 *6 *7) (AND (|isDomain| *3 (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| *6)))) (|isDomain| *4 (|Reference| (|OrderedCompletion| (|Integer|)))) (|isDomain| *5 (|Symbol|)) (|isDomain| *7 (|Fraction| (|Integer|))) (|ofCategory| *6 (|Ring|)) (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *6)))) (|integrate| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cPower| (*1 *1 *1 *2) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cRationalPower| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *3)) (|ofCategory| *3 (|Algebra| *2)) (|ofCategory| *3 (|Ring|)))) (|cExp| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cLog| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cSin| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cCos| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cTan| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cCot| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cSec| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cCsc| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cAsin| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cAcos| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cAtan| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cAcot| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cAsec| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cAcsc| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cSinh| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cCosh| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cTanh| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cCoth| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cSech| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cCsch| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cAsinh| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cAcosh| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cAtanh| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cAcoth| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cAsech| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|)))) (|cAcsch| (*1 *1 *1) (AND (|isDomain| *1 (|InnerSparseUnivariatePowerSeries| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|Ring|))))) │ │ │ +(|Join| (|UnivariatePowerSeriesCategory| |#1| (|Integer|)) (CATEGORY |domain| (SIGNATURE |makeSeries| ($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))))) (SIGNATURE |getRef| ((|Reference| (|OrderedCompletion| (|Integer|))) $)) (SIGNATURE |getStream| ((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $)) (SIGNATURE |series| ($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))))) (SIGNATURE |monomial?| ((|Boolean|) $)) (SIGNATURE |multiplyCoefficients| ($ (|Mapping| |#1| (|Integer|)) $)) (SIGNATURE |iExquo| ((|Union| $ "failed") $ $ (|Boolean|))) (SIGNATURE |taylorQuoByVar| ($ $)) (SIGNATURE |iCompose| ($ $ $)) (SIGNATURE |seriesToOutputForm| ((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|)))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ($ $)) (SIGNATURE |cPower| ($ $ |#1|)) (SIGNATURE |cRationalPower| ($ $ (|Fraction| (|Integer|)))) (SIGNATURE |cExp| ($ $)) (SIGNATURE |cLog| ($ $)) (SIGNATURE |cSin| ($ $)) (SIGNATURE |cCos| ($ $)) (SIGNATURE |cTan| ($ $)) (SIGNATURE |cCot| ($ $)) (SIGNATURE |cSec| ($ $)) (SIGNATURE |cCsc| ($ $)) (SIGNATURE |cAsin| ($ $)) (SIGNATURE |cAcos| ($ $)) (SIGNATURE |cAtan| ($ $)) (SIGNATURE |cAcot| ($ $)) (SIGNATURE |cAsec| ($ $)) (SIGNATURE |cAcsc| ($ $)) (SIGNATURE |cSinh| ($ $)) (SIGNATURE |cCosh| ($ $)) (SIGNATURE |cTanh| ($ $)) (SIGNATURE |cCoth| ($ $)) (SIGNATURE |cSech| ($ $)) (SIGNATURE |cCsch| ($ $)) (SIGNATURE |cAsinh| ($ $)) (SIGNATURE |cAcosh| ($ $)) (SIGNATURE |cAtanh| ($ $)) (SIGNATURE |cAcoth| ($ $)) (SIGNATURE |cAsech| ($ $)) (SIGNATURE |cAcsch| ($ $))) |noBranch|))) │ │ │ +((|retractIfCan| (((|Union| $ "failed") (|Expression| (|Float|))) 36) (((|Union| $ "failed") (|Expression| (|Integer|))) 41) (((|Union| $ "failed") (|Polynomial| (|Float|))) 46) (((|Union| $ "failed") (|Polynomial| (|Integer|))) 51) (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) 31) (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) 26)) (|retract| (($ (|Expression| (|Float|))) 34) (($ (|Expression| (|Integer|))) 39) (($ (|Polynomial| (|Float|))) 44) (($ (|Polynomial| (|Integer|))) 49) (($ (|Fraction| (|Polynomial| (|Float|)))) 29) (($ (|Fraction| (|Polynomial| (|Integer|)))) 23)) (|outputAsFortran| (((|Void|) $) 73)) (|coerce| (((|OutputForm|) $) 66) (($ (|List| (|FortranCode|))) 57) (($ (|FortranCode|)) 63) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 60) (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) 22))) │ │ │ +(((|Asp1| |#1|) (|Join| (|FortranFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))))) (|Symbol|)) (T |Asp1|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) (|isDomain| *1 (|Asp1| *3)) (|ofType| *3 (|Symbol|))))) │ │ │ +(|Join| (|FortranFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|transcendent?| (((|Boolean|) $) 92)) (|transcendenceDegree| (((|NonNegativeInteger|)) 88)) (|trace| ((|#1| $) 136) (($ $ (|PositiveInteger|)) 133 (|has| |#1| (|Finite|)))) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) 118 (|has| |#1| (|Finite|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 73)) (|squareFree| (((|Factored| $) $) 72)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|size| (((|NonNegativeInteger|)) 108 (|has| |#1| (|Finite|)))) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) 99)) (|retract| ((|#1| $) 98)) (|represents| (($ (|Vector| |#1|)) 142)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) 124 (|has| |#1| (|Finite|)))) (|rem| (($ $ $) 54)) (|recip| (((|Union| $ "failed") $) 33)) (|random| (($) 105 (|has| |#1| (|Finite|)))) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|primitiveElement| (($) 120 (|has| |#1| (|Finite|)))) (|primitive?| (((|Boolean|) $) 121 (|has| |#1| (|Finite|)))) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) 85 (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|)))) (($ $) 84 (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|prime?| (((|Boolean|) $) 71)) (|order| (((|PositiveInteger|) $) 123 (|has| |#1| (|Finite|))) (((|OnePointCompletion| (|PositiveInteger|)) $) 82 (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|one?| (((|Boolean|) $) 30)) (|normalElement| (($) 131 (|has| |#1| (|Finite|)))) (|normal?| (((|Boolean|) $) 130 (|has| |#1| (|Finite|)))) (|norm| ((|#1| $) 137) (($ $ (|PositiveInteger|)) 134 (|has| |#1| (|Finite|)))) (|nextItem| (((|Union| $ "failed") $) 109 (|has| |#1| (|Finite|)))) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) 141) (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) 135 (|has| |#1| (|Finite|)))) (|lookup| (((|PositiveInteger|) $) 106 (|has| |#1| (|Finite|)))) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) 127 (|has| |#1| (|Finite|)))) (|linearAssociatedLog| (((|SparseUnivariatePolynomial| |#1|) $) 126 (|has| |#1| (|Finite|))) (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) 125 (|has| |#1| (|Finite|)))) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) 128 (|has| |#1| (|Finite|)))) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 70)) (|init| (($) 110 (|has| |#1| (|Finite|)) CONST)) (|index| (($ (|PositiveInteger|)) 107 (|has| |#1| (|Finite|)))) (|inGroundField?| (((|Boolean|) $) 91)) (|hash| (((|SingleInteger|) $) 10)) (|generator| (($) 129 (|has| |#1| (|Finite|)))) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) 117 (|has| |#1| (|Finite|)))) (|factor| (((|Factored| $) $) 74)) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) 89) (((|PositiveInteger|)) 139)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|enumerate| (((|List| $)) 104 (|has| |#1| (|Finite|)))) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|discreteLog| (((|NonNegativeInteger|) $) 122 (|has| |#1| (|Finite|))) (((|Union| (|NonNegativeInteger|) "failed") $ $) 83 (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|dimension| (((|CardinalNumber|)) 97)) (|differentiate| (($ $) 114 (|has| |#1| (|Finite|))) (($ $ (|NonNegativeInteger|)) 112 (|has| |#1| (|Finite|)))) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) 90) (((|PositiveInteger|) $) 138)) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) 140)) (|createPrimitiveElement| (($) 119 (|has| |#1| (|Finite|)))) (|createNormalElement| (($) 132 (|has| |#1| (|Finite|)))) (|coordinates| (((|Vector| |#1|) $) 144) (((|Matrix| |#1|) (|Vector| $)) 143)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) 116 (|has| |#1| (|Finite|)))) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Fraction| (|Integer|))) 65) (($ |#1|) 100)) (|charthRoot| (($ $) 115 (|has| |#1| (|Finite|))) (((|Union| $ "failed") $) 81 (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|basis| (((|Vector| $)) 146) (((|Vector| $) (|PositiveInteger|)) 145)) (|associates?| (((|Boolean|) $ $) 38)) (|algebraic?| (((|Boolean|) $) 93)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 69)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (|Frobenius| (($ $) 87 (|has| |#1| (|Finite|))) (($ $ (|NonNegativeInteger|)) 86 (|has| |#1| (|Finite|)))) (D (($ $) 113 (|has| |#1| (|Finite|))) (($ $ (|NonNegativeInteger|)) 111 (|has| |#1| (|Finite|)))) (= (((|Boolean|) $ $) 6)) (/ (($ $ $) 64) (($ $ |#1|) 96)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 68)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 67) (($ (|Fraction| (|Integer|)) $) 66) (($ $ |#1|) 95) (($ |#1| $) 94))) │ │ │ +(((|FiniteAlgebraicExtensionField| |#1|) (|Category|) (|Field|)) (T |FiniteAlgebraicExtensionField|)) │ │ │ +((|basis| (*1 *2) (AND (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)))) (|basis| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *4)))) (|coordinates| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Vector| *3)))) (|coordinates| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *4)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|Matrix| *4)))) (|represents| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)))) (|minimalPolynomial| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|definingPolynomial| (*1 *2) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|extensionDegree| (*1 *2) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|PositiveInteger|)))) (|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|PositiveInteger|)))) (|norm| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *2)) (|ofCategory| *2 (|Field|)))) (|trace| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *2)) (|ofCategory| *2 (|Field|)))) (|minimalPolynomial| (*1 *2 *1 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Finite|)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *4)))) (|norm| (*1 *1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|)))) (|trace| (*1 *1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|)))) (|createNormalElement| (*1 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *2)) (|ofCategory| *2 (|Finite|)) (|ofCategory| *2 (|Field|)))) (|normalElement| (*1 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *2)) (|ofCategory| *2 (|Finite|)) (|ofCategory| *2 (|Field|)))) (|normal?| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|)) (|isDomain| *2 (|Boolean|)))) (|generator| (*1 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *2)) (|ofCategory| *2 (|Finite|)) (|ofCategory| *2 (|Field|)))) (|linearAssociatedExp| (*1 *1 *1 *2) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|Finite|)) (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)))) (|linearAssociatedOrder| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|linearAssociatedLog| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|linearAssociatedLog| (*1 *2 *1 *1) (|partial| AND (|ofCategory| *1 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3))))) │ │ │ +(|Join| (|ExtensionField| |t#1|) (|RetractableTo| |t#1|) (CATEGORY |domain| (SIGNATURE |basis| ((|Vector| $))) (SIGNATURE |basis| ((|Vector| $) (|PositiveInteger|))) (SIGNATURE |coordinates| ((|Vector| |t#1|) $)) (SIGNATURE |coordinates| ((|Matrix| |t#1|) (|Vector| $))) (SIGNATURE |represents| ($ (|Vector| |t#1|))) (SIGNATURE |minimalPolynomial| ((|SparseUnivariatePolynomial| |t#1|) $)) (SIGNATURE |definingPolynomial| ((|SparseUnivariatePolynomial| |t#1|))) (SIGNATURE |extensionDegree| ((|PositiveInteger|))) (SIGNATURE |degree| ((|PositiveInteger|) $)) (SIGNATURE |norm| (|t#1| $)) (SIGNATURE |trace| (|t#1| $)) (IF (|has| |t#1| (|Finite|)) (PROGN (ATTRIBUTE (|FiniteFieldCategory|)) (SIGNATURE |minimalPolynomial| ((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|))) (SIGNATURE |norm| ($ $ (|PositiveInteger|))) (SIGNATURE |trace| ($ $ (|PositiveInteger|))) (SIGNATURE |createNormalElement| ($)) (SIGNATURE |normalElement| ($)) (SIGNATURE |normal?| ((|Boolean|) $)) (SIGNATURE |generator| ($)) (SIGNATURE |linearAssociatedExp| ($ $ (|SparseUnivariatePolynomial| |t#1|))) (SIGNATURE |linearAssociatedOrder| ((|SparseUnivariatePolynomial| |t#1|) $)) (SIGNATURE |linearAssociatedLog| ((|SparseUnivariatePolynomial| |t#1|) $)) (SIGNATURE |linearAssociatedLog| ((|Union| (|SparseUnivariatePolynomial| |t#1|) "failed") $ $))) |noBranch|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) OR (|has| |#1| (|Finite|)) (|has| |#1| (|CharacteristicNonZero|))) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DifferentialRing|) |has| |#1| (|Finite|)) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|ExtensionField| |#1|) . T) ((|Field|) . T) ((|FieldOfPrimeCharacteristic|) OR (|has| |#1| (|Finite|)) (|has| |#1| (|CharacteristicNonZero|))) ((|Finite|) |has| |#1| (|Finite|)) ((|FiniteFieldCategory|) |has| |#1| (|Finite|)) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| |#1|) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RetractableTo| |#1|) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| |#1|) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|StepThrough|) |has| |#1| (|Finite|)) ((|UniqueFactorizationDomain|) . T) ((|VectorSpace| |#1|) . T)) │ │ │ +((|zero?| (((|Boolean|) $) 30)) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) 32)) (|vertConcat| (($ $ $) 57)) (|transpose| (($ |#3|) 53) (($ $) 54)) (|symmetric?| (((|Boolean|) $) 26)) (|swapRows!| (($ $ (|Integer|) (|Integer|)) 59)) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) 60)) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 64)) (|squareTop| (($ $) 55)) (|square?| (((|Boolean|) $) 14)) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) 65)) (|setelt| ((|#2| $ (|Integer|) (|Integer|) |#2|) NIL) (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) 63)) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) 39)) (|pfaffian| ((|#2| $) 108)) (|matrix| (($ (|List| (|List| |#2|))) 35) (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) 37)) (|listOfLists| (((|List| (|List| |#2|)) $) 58)) (|horizConcat| (($ $ $) 56)) (|exquo| (((|Union| $ "failed") $ |#2|) 111)) (|elt| ((|#2| $ (|Integer|) (|Integer|)) NIL) ((|#2| $ (|Integer|) (|Integer|) |#2|) NIL) (($ $ (|List| (|Integer|)) (|List| (|Integer|))) 62)) (|diagonalMatrix| (($ (|List| |#2|)) 41) (($ (|List| $)) 43)) (|diagonal?| (((|Boolean|) $) 23)) (|columnSpace| (((|List| |#4|) $) 94)) (|coerce| (((|OutputForm|) $) NIL) (($ |#4|) 48)) (|antisymmetric?| (((|Boolean|) $) 28)) (/ (($ $ |#2|) 113)) (- (($ $ $) 69) (($ $) 72)) (+ (($ $ $) 67)) (** (($ $ (|NonNegativeInteger|)) 81) (($ $ (|Integer|)) 116)) (* (($ $ $) 78) (($ |#2| $) 74) (($ $ |#2|) 75) (($ (|Integer|) $) 77) ((|#4| $ |#4|) 85) ((|#3| |#3| $) 89))) │ │ │ +(((|MatrixCategory&| |#1| |#2| |#3| |#4|) (CATEGORY |domain| (SIGNATURE ** (|#1| |#1| (|Integer|))) (SIGNATURE |pfaffian| (|#2| |#1|)) (SIGNATURE |columnSpace| ((|List| |#4|) |#1|)) (SIGNATURE / (|#1| |#1| |#2|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#2|)) (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE * (|#3| |#3| |#1|)) (SIGNATURE * (|#4| |#1| |#4|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|)) (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE + (|#1| |#1| |#1|)) (SIGNATURE |setsubMatrix!| (|#1| |#1| (|Integer|) (|Integer|) |#1|)) (SIGNATURE |subMatrix| (|#1| |#1| (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |swapColumns!| (|#1| |#1| (|Integer|) (|Integer|))) (SIGNATURE |swapRows!| (|#1| |#1| (|Integer|) (|Integer|))) (SIGNATURE |setelt| (|#1| |#1| (|List| (|Integer|)) (|List| (|Integer|)) |#1|)) (SIGNATURE |elt| (|#1| |#1| (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |listOfLists| ((|List| (|List| |#2|)) |#1|)) (SIGNATURE |vertConcat| (|#1| |#1| |#1|)) (SIGNATURE |horizConcat| (|#1| |#1| |#1|)) (SIGNATURE |squareTop| (|#1| |#1|)) (SIGNATURE |transpose| (|#1| |#1|)) (SIGNATURE |transpose| (|#1| |#3|)) (SIGNATURE |coerce| (|#1| |#4|)) (SIGNATURE |diagonalMatrix| (|#1| (|List| |#1|))) (SIGNATURE |diagonalMatrix| (|#1| (|List| |#2|))) (SIGNATURE |scalarMatrix| (|#1| (|NonNegativeInteger|) |#2|)) (SIGNATURE |matrix| (|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|)))) (SIGNATURE |matrix| (|#1| (|List| (|List| |#2|)))) (SIGNATURE |zero| (|#1| (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |zero?| ((|Boolean|) |#1|)) (SIGNATURE |antisymmetric?| ((|Boolean|) |#1|)) (SIGNATURE |symmetric?| ((|Boolean|) |#1|)) (SIGNATURE |diagonal?| ((|Boolean|) |#1|)) (SIGNATURE |square?| ((|Boolean|) |#1|)) (SIGNATURE |setelt| (|#2| |#1| (|Integer|) (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|) (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|) (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|MatrixCategory| |#2| |#3| |#4|) (|Ring|) (|FiniteLinearAggregate| |#2|) (|FiniteLinearAggregate| |#2|)) (T |MatrixCategory&|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE ~= ((|Boolean|) |#1| |#1|))) │ │ │ -((|permutation| (($ $ $) 8)) (|factorial| (($ $) 7)) (|binomial| (($ $ $) 6))) │ │ │ -(((|CombinatorialFunctionCategory|) (|Category|)) (T |CombinatorialFunctionCategory|)) │ │ │ -((|permutation| (*1 *1 *1 *1) (|ofCategory| *1 (|CombinatorialFunctionCategory|))) (|factorial| (*1 *1 *1) (|ofCategory| *1 (|CombinatorialFunctionCategory|))) (|binomial| (*1 *1 *1 *1) (|ofCategory| *1 (|CombinatorialFunctionCategory|)))) │ │ │ -(|Join| (CATEGORY |domain| (SIGNATURE |binomial| ($ $ $)) (SIGNATURE |factorial| ($ $)) (SIGNATURE |permutation| ($ $ $)))) │ │ │ -((|elt| ((|#2| $ |#1|) 6))) │ │ │ -(((|Eltable| |#1| |#2|) (|Category|) (|SetCategory|) (|Type|)) (T |Eltable|)) │ │ │ -((|elt| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|Eltable| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Type|))))) │ │ │ -(|Join| (CATEGORY |domain| (SIGNATURE |elt| (|t#2| $ |t#1|)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (= (((|Boolean|) $ $) 6))) │ │ │ -(((|BasicType|) (|Category|)) (T |BasicType|)) │ │ │ -((~= (*1 *2 *1 *1) (AND (|ofCategory| *1 (|BasicType|)) (|isDomain| *2 (|Boolean|)))) (= (*1 *2 *1 *1) (AND (|ofCategory| *1 (|BasicType|)) (|isDomain| *2 (|Boolean|))))) │ │ │ -(|Join| (CATEGORY |domain| (SIGNATURE = ((|Boolean|) $ $)) (SIGNATURE ~= ((|Boolean|) $ $)))) │ │ │ -((|in?| (((|Boolean|) (|DoubleFloat|)) 10))) │ │ │ -(((|ExpertSystemContinuityPackage1| |#1| |#2|) (CATEGORY |package| (SIGNATURE |in?| ((|Boolean|) (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|)) (T |ExpertSystemContinuityPackage1|)) │ │ │ -((|in?| (*1 *2 *3) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ExpertSystemContinuityPackage1| *4 *5)) (|ofType| *4 *3) (|ofType| *5 *3)))) │ │ │ -(CATEGORY |package| (SIGNATURE |in?| ((|Boolean|) (|DoubleFloat|)))) │ │ │ -((|screenResolution| (((|Integer|) (|Integer|)) 30) (((|Integer|)) 22)) (|minPoints| (((|Integer|) (|Integer|)) 26) (((|Integer|)) 18)) (|maxPoints| (((|Integer|) (|Integer|)) 28) (((|Integer|)) 20)) (|drawToScale| (((|Boolean|) (|Boolean|)) 12) (((|Boolean|)) 10)) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) 11) (((|Boolean|)) 9)) (|adaptive| (((|Boolean|) (|Boolean|)) 24) (((|Boolean|)) 15))) │ │ │ -(((|GraphicsDefaults|) (CATEGORY |package| (SIGNATURE |clipPointsDefault| ((|Boolean|))) (SIGNATURE |drawToScale| ((|Boolean|))) (SIGNATURE |clipPointsDefault| ((|Boolean|) (|Boolean|))) (SIGNATURE |drawToScale| ((|Boolean|) (|Boolean|))) (SIGNATURE |adaptive| ((|Boolean|))) (SIGNATURE |maxPoints| ((|Integer|))) (SIGNATURE |minPoints| ((|Integer|))) (SIGNATURE |screenResolution| ((|Integer|))) (SIGNATURE |adaptive| ((|Boolean|) (|Boolean|))) (SIGNATURE |maxPoints| ((|Integer|) (|Integer|))) (SIGNATURE |minPoints| ((|Integer|) (|Integer|))) (SIGNATURE |screenResolution| ((|Integer|) (|Integer|))))) (T |GraphicsDefaults|)) │ │ │ -((|screenResolution| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|minPoints| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|maxPoints| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|adaptive| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|screenResolution| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|minPoints| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|maxPoints| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|adaptive| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|drawToScale| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|clipPointsDefault| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|drawToScale| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|clipPointsDefault| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |clipPointsDefault| ((|Boolean|))) (SIGNATURE |drawToScale| ((|Boolean|))) (SIGNATURE |clipPointsDefault| ((|Boolean|) (|Boolean|))) (SIGNATURE |drawToScale| ((|Boolean|) (|Boolean|))) (SIGNATURE |adaptive| ((|Boolean|))) (SIGNATURE |maxPoints| ((|Integer|))) (SIGNATURE |minPoints| ((|Integer|))) (SIGNATURE |screenResolution| ((|Integer|))) (SIGNATURE |adaptive| ((|Boolean|) (|Boolean|))) (SIGNATURE |maxPoints| ((|Integer|) (|Integer|))) (SIGNATURE |minPoints| ((|Integer|) (|Integer|))) (SIGNATURE |screenResolution| ((|Integer|) (|Integer|)))) │ │ │ -((|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) 10)) (|bitLength| (((|Integer|) (|Integer|)) 7)) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) 8))) │ │ │ -(((|IntegerBits|) (CATEGORY |package| (SIGNATURE |bitLength| ((|Integer|) (|Integer|))) (SIGNATURE |bitCoef| ((|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |bitTruth| ((|Boolean|) (|Integer|) (|Integer|))))) (T |IntegerBits|)) │ │ │ -((|bitTruth| (*1 *2 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IntegerBits|)))) (|bitCoef| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerBits|)))) (|bitLength| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerBits|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |bitLength| ((|Integer|) (|Integer|))) (SIGNATURE |bitCoef| ((|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |bitTruth| ((|Boolean|) (|Integer|) (|Integer|)))) │ │ │ -((|convert| ((|#1| $) 6))) │ │ │ -(((|ConvertibleTo| |#1|) (|Category|) (|Type|)) (T |ConvertibleTo|)) │ │ │ -((|convert| (*1 *2 *1) (AND (|ofCategory| *1 (|ConvertibleTo| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ -(|Join| (CATEGORY |domain| (SIGNATURE |convert| (|t#1| $)))) │ │ │ -((|coerce| ((|#1| $) 6))) │ │ │ -(((|CoercibleTo| |#1|) (|Category|) (|Type|)) (T |CoercibleTo|)) │ │ │ -((|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|CoercibleTo| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ -(|Join| (CATEGORY |domain| (SIGNATURE |coerce| (|t#1| $)))) │ │ │ -((|zero?| (((|Boolean|) |#1|) 5)) (|repack1| (((|Void|) |#1| (|U32Vector|) (|Integer|) |#2|) 8)) (|pseudoRem| ((|#1| |#1| |#1| |#2|) 1)) (|packModulus| (((|Union| |#2| "failed") (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Integer|)) 3)) (|packExps| ((|SortedExponentVector| (|Integer|) (|Integer|) |#2|) 7)) (|degree| (((|Integer|) |#1|) 6)) (|canonicalIfCan| (((|Union| |#1| "failed") |#1| |#2|) 2)) (|MPtoMPT| ((|#1| (|Polynomial| (|Integer|)) (|Symbol|) (|List| (|Symbol|)) |#2|) 4))) │ │ │ -(((|ModularAlgebraicGcdOperations| |#1| |#2|) (|Category|) (|Type|) (|Type|)) (T |ModularAlgebraicGcdOperations|)) │ │ │ -((|repack1| (*1 *2 *3 *4 *5 *6) (AND (|isDomain| *4 (|U32Vector|)) (|isDomain| *5 (|Integer|)) (|ofCategory| *1 (|ModularAlgebraicGcdOperations| *3 *6)) (|ofCategory| *3 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|Void|)))) (|packExps| (*1 *2 *3 *3 *4) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|ModularAlgebraicGcdOperations| *5 *4)) (|ofCategory| *5 (|Type|)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 |SortedExponentVector|))) (|degree| (*1 *2 *3) (AND (|ofCategory| *1 (|ModularAlgebraicGcdOperations| *3 *4)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Integer|)))) (|zero?| (*1 *2 *3) (AND (|ofCategory| *1 (|ModularAlgebraicGcdOperations| *3 *4)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|MPtoMPT| (*1 *2 *3 *4 *5 *6) (AND (|isDomain| *3 (|Polynomial| (|Integer|))) (|isDomain| *5 (|List| (|Symbol|))) (|ofCategory| *1 (|ModularAlgebraicGcdOperations| *2 *6)) (|ofCategory| *6 (|Type|)) (|isDomain| *4 (|Symbol|)) (|ofCategory| *2 (|Type|)))) (|packModulus| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *3 (|List| (|Polynomial| (|Integer|)))) (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *5 (|Integer|)) (|ofCategory| *1 (|ModularAlgebraicGcdOperations| *6 *2)) (|ofCategory| *6 (|Type|)) (|ofCategory| *2 (|Type|)))) (|canonicalIfCan| (*1 *2 *2 *3) (|partial| AND (|ofCategory| *1 (|ModularAlgebraicGcdOperations| *2 *3)) (|ofCategory| *2 (|Type|)) (|ofCategory| *3 (|Type|)))) (|pseudoRem| (*1 *2 *2 *2 *3) (AND (|ofCategory| *1 (|ModularAlgebraicGcdOperations| *2 *3)) (|ofCategory| *2 (|Type|)) (|ofCategory| *3 (|Type|))))) │ │ │ -(|Join| (CATEGORY |package| (SIGNATURE |pseudoRem| (|t#1| |t#1| |t#1| |t#2|)) (SIGNATURE |canonicalIfCan| ((|Union| |t#1| "failed") |t#1| |t#2|)) (SIGNATURE |packModulus| ((|Union| |t#2| "failed") (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Integer|))) (SIGNATURE |MPtoMPT| (|t#1| (|Polynomial| (|Integer|)) (|Symbol|) (|List| (|Symbol|)) |t#2|)) (SIGNATURE |zero?| ((|Boolean|) |t#1|)) (SIGNATURE |degree| ((|Integer|) |t#1|)) (SIGNATURE |packExps| (|SortedExponentVector| (|Integer|) (|Integer|) |t#2|)) (SIGNATURE |repack1| ((|Void|) |t#1| (|U32Vector|) (|Integer|) |t#2|)))) │ │ │ -((|systemCommand| (((|Void|) (|String|)) 8))) │ │ │ -(((|MoreSystemCommands|) (CATEGORY |package| (SIGNATURE |systemCommand| ((|Void|) (|String|))))) (T |MoreSystemCommands|)) │ │ │ -((|systemCommand| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|MoreSystemCommands|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |systemCommand| ((|Void|) (|String|)))) │ │ │ +(CATEGORY |domain| (SIGNATURE ** (|#1| |#1| (|Integer|))) (SIGNATURE |pfaffian| (|#2| |#1|)) (SIGNATURE |columnSpace| ((|List| |#4|) |#1|)) (SIGNATURE / (|#1| |#1| |#2|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#2|)) (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE * (|#3| |#3| |#1|)) (SIGNATURE * (|#4| |#1| |#4|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|)) (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE + (|#1| |#1| |#1|)) (SIGNATURE |setsubMatrix!| (|#1| |#1| (|Integer|) (|Integer|) |#1|)) (SIGNATURE |subMatrix| (|#1| |#1| (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |swapColumns!| (|#1| |#1| (|Integer|) (|Integer|))) (SIGNATURE |swapRows!| (|#1| |#1| (|Integer|) (|Integer|))) (SIGNATURE |setelt| (|#1| |#1| (|List| (|Integer|)) (|List| (|Integer|)) |#1|)) (SIGNATURE |elt| (|#1| |#1| (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |listOfLists| ((|List| (|List| |#2|)) |#1|)) (SIGNATURE |vertConcat| (|#1| |#1| |#1|)) (SIGNATURE |horizConcat| (|#1| |#1| |#1|)) (SIGNATURE |squareTop| (|#1| |#1|)) (SIGNATURE |transpose| (|#1| |#1|)) (SIGNATURE |transpose| (|#1| |#3|)) (SIGNATURE |coerce| (|#1| |#4|)) (SIGNATURE |diagonalMatrix| (|#1| (|List| |#1|))) (SIGNATURE |diagonalMatrix| (|#1| (|List| |#2|))) (SIGNATURE |scalarMatrix| (|#1| (|NonNegativeInteger|) |#2|)) (SIGNATURE |matrix| (|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|)))) (SIGNATURE |matrix| (|#1| (|List| (|List| |#2|)))) (SIGNATURE |zero| (|#1| (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |zero?| ((|Boolean|) |#1|)) (SIGNATURE |antisymmetric?| ((|Boolean|) |#1|)) (SIGNATURE |symmetric?| ((|Boolean|) |#1|)) (SIGNATURE |diagonal?| ((|Boolean|) |#1|)) (SIGNATURE |square?| ((|Boolean|) |#1|)) (SIGNATURE |setelt| (|#2| |#1| (|Integer|) (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|) (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|) (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) │ │ │ +((|select| (($ (|Mapping| (|Boolean|) |#1|) $) 16)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) 9)) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) 12)) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) 14)) (|construct| (((|Stream| |#1|) $) 17)) (|coerce| (((|OutputForm|) $) NIL))) │ │ │ +(((|InfiniteTuple| |#1|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (SIGNATURE |filterWhile| ($ (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |filterUntil| ($ (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |select| ($ (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |generate| ($ (|Mapping| |#1| |#1|) |#1|)) (SIGNATURE |construct| ((|Stream| |#1|) $)))) (|Type|)) (T |InfiniteTuple|)) │ │ │ +((|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|InfiniteTuple| *3)))) (|filterWhile| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|InfiniteTuple| *3)))) (|filterUntil| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|InfiniteTuple| *3)))) (|select| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|InfiniteTuple| *3)))) (|generate| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|InfiniteTuple| *3)))) (|construct| (*1 *2 *1) (AND (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|InfiniteTuple| *3)) (|ofCategory| *3 (|Type|))))) │ │ │ +(|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (SIGNATURE |filterWhile| ($ (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |filterUntil| ($ (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |select| ($ (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |generate| ($ (|Mapping| |#1| |#1|) |#1|)) (SIGNATURE |construct| ((|Stream| |#1|) $)))) │ │ │ +((|usingTable?| (((|Boolean|)) 24)) (|startStats!| (((|Void|) (|String|)) 26)) (|printingInfo?| (((|Boolean|)) 36)) (|printStats!| (((|Void|)) 34)) (|printInfo!| (((|Void|) (|String|) (|String|)) 25)) (|makingStats?| (((|Boolean|)) 37)) (|insert!| (((|Void|) |#1| |#2|) 44)) (|initTable!| (((|Void|)) 20)) (|extractIfCan| (((|Union| |#2| "failed") |#1|) 42)) (|clearTable!| (((|Void|)) 35))) │ │ │ +(((|TabulatedComputationPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |initTable!| ((|Void|))) (SIGNATURE |printInfo!| ((|Void|) (|String|) (|String|))) (SIGNATURE |startStats!| ((|Void|) (|String|))) (SIGNATURE |printStats!| ((|Void|))) (SIGNATURE |clearTable!| ((|Void|))) (SIGNATURE |usingTable?| ((|Boolean|))) (SIGNATURE |printingInfo?| ((|Boolean|))) (SIGNATURE |makingStats?| ((|Boolean|))) (SIGNATURE |extractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |insert!| ((|Void|) |#1| |#2|))) (|SetCategory|) (|SetCategory|)) (T |TabulatedComputationPackage|)) │ │ │ +((|insert!| (*1 *2 *3 *4) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TabulatedComputationPackage| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))) (|extractIfCan| (*1 *2 *3) (|partial| AND (|ofCategory| *2 (|SetCategory|)) (|isDomain| *1 (|TabulatedComputationPackage| *3 *2)) (|ofCategory| *3 (|SetCategory|)))) (|makingStats?| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|TabulatedComputationPackage| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))) (|printingInfo?| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|TabulatedComputationPackage| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))) (|usingTable?| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|TabulatedComputationPackage| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))) (|clearTable!| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TabulatedComputationPackage| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))) (|printStats!| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TabulatedComputationPackage| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))) (|startStats!| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TabulatedComputationPackage| *4 *5)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)))) (|printInfo!| (*1 *2 *3 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TabulatedComputationPackage| *4 *5)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)))) (|initTable!| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|TabulatedComputationPackage| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |initTable!| ((|Void|))) (SIGNATURE |printInfo!| ((|Void|) (|String|) (|String|))) (SIGNATURE |startStats!| ((|Void|) (|String|))) (SIGNATURE |printStats!| ((|Void|))) (SIGNATURE |clearTable!| ((|Void|))) (SIGNATURE |usingTable?| ((|Boolean|))) (SIGNATURE |printingInfo?| ((|Boolean|))) (SIGNATURE |makingStats?| ((|Boolean|))) (SIGNATURE |extractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |insert!| ((|Void|) |#1| |#2|))) │ │ │ +((|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) 76)) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) 69) (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) 68)) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) 57)) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) 50)) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) 49)) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) 45)) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) 42)) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) 38))) │ │ │ +(((|NagOrdinaryDifferentialEquationsPackage|) (CATEGORY |package| (SIGNATURE |d02bbf| ((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT))))) (SIGNATURE |d02bhf| ((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))))) (SIGNATURE |d02cjf| ((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT))))) (SIGNATURE |d02ejf| ((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT))))) (SIGNATURE |d02gaf| ((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))))) (SIGNATURE |d02gbf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG))))) (SIGNATURE |d02kef| ((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))))) (SIGNATURE |d02kef| ((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|))) (SIGNATURE |d02raf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP))))))) (T |NagOrdinaryDifferentialEquationsPackage|)) │ │ │ +((|d02raf| (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *6 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS)))) (|isDomain| *7 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagOrdinaryDifferentialEquationsPackage|)))) (|d02kef| (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (AND (|isDomain| *3 (|Matrix| (|DoubleFloat|))) (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|DoubleFloat|)) (|isDomain| *6 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN)))) (|isDomain| *7 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) (|isDomain| *8 (|FileName|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagOrdinaryDifferentialEquationsPackage|)))) (|d02kef| (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (AND (|isDomain| *3 (|Matrix| (|DoubleFloat|))) (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|DoubleFloat|)) (|isDomain| *6 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN)))) (|isDomain| *7 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagOrdinaryDifferentialEquationsPackage|)))) (|d02gbf| (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (AND (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *6 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF)))) (|isDomain| *7 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagOrdinaryDifferentialEquationsPackage|)))) (|d02gaf| (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (AND (|isDomain| *3 (|Matrix| (|DoubleFloat|))) (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|DoubleFloat|)) (|isDomain| *6 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagOrdinaryDifferentialEquationsPackage|)))) (|d02ejf| (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (AND (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|String|)) (|isDomain| *6 (|Matrix| (|DoubleFloat|))) (|isDomain| *7 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G)))) (|isDomain| *8 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) (|isDomain| *9 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV)))) (|isDomain| *10 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagOrdinaryDifferentialEquationsPackage|)))) (|d02cjf| (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (AND (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|String|)) (|isDomain| *6 (|Matrix| (|DoubleFloat|))) (|isDomain| *7 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G)))) (|isDomain| *8 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) (|isDomain| *9 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagOrdinaryDifferentialEquationsPackage|)))) (|d02bhf| (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (AND (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *6 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G)))) (|isDomain| *7 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagOrdinaryDifferentialEquationsPackage|)))) (|d02bbf| (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (AND (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *6 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) (|isDomain| *7 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagOrdinaryDifferentialEquationsPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |d02bbf| ((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT))))) (SIGNATURE |d02bhf| ((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))))) (SIGNATURE |d02cjf| ((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT))))) (SIGNATURE |d02ejf| ((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT))))) (SIGNATURE |d02gaf| ((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))))) (SIGNATURE |d02gbf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG))))) (SIGNATURE |d02kef| ((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))))) (SIGNATURE |d02kef| ((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|))) (SIGNATURE |d02raf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 117 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) 115 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#1| "failed") $) 114)) (|retract| (((|Integer|) $) 118 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) 116 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1| $) 113)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) 88 (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) 87 (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) 86) (((|Matrix| |#1|) (|Matrix| $)) 85)) (|recip| (((|Union| $ "failed") $) 33)) (|real| ((|#1| $) 78)) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) 74 (|has| |#1| (|IntegerNumberSystem|)))) (|rational?| (((|Boolean|) $) 76 (|has| |#1| (|IntegerNumberSystem|)))) (|rational| (((|Fraction| (|Integer|)) $) 75 (|has| |#1| (|IntegerNumberSystem|)))) (|quatern| (($ |#1| |#1| |#1| |#1|) 79)) (|one?| (((|Boolean|) $) 30)) (|norm| ((|#1| $) 80)) (|min| (($ $ $) 66 (|has| |#1| (|OrderedSet|)))) (|max| (($ $ $) 65 (|has| |#1| (|OrderedSet|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 89)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 71 (|has| |#1| (|Field|)))) (|imagK| ((|#1| $) 81)) (|imagJ| ((|#1| $) 82)) (|imagI| ((|#1| $) 83)) (|hash| (((|SingleInteger|) $) 10)) (|eval| (($ $ (|List| |#1|) (|List| |#1|)) 95 (|has| |#1| (|Evalable| |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (|Evalable| |#1|))) (($ $ (|Equation| |#1|)) 93 (|has| |#1| (|Evalable| |#1|))) (($ $ (|List| (|Equation| |#1|))) 92 (|has| |#1| (|Evalable| |#1|))) (($ $ (|List| (|Symbol|)) (|List| |#1|)) 91 (|has| |#1| (|InnerEvalable| (|Symbol|) |#1|))) (($ $ (|Symbol|) |#1|) 90 (|has| |#1| (|InnerEvalable| (|Symbol|) |#1|)))) (|elt| (($ $ |#1|) 96 (|has| |#1| (|Eltable| |#1| |#1|)))) (|differentiate| (($ $) 112 (|has| |#1| (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) 110 (|has| |#1| (|DifferentialRing|))) (($ $ (|Symbol|)) 108 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) 107 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 106 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 105 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) 98) (($ $ (|Mapping| |#1| |#1|)) 97)) (|convert| (((|InputForm|) $) 72 (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|conjugate| (($ $) 84)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ |#1|) 36) (($ (|Fraction| (|Integer|))) 60 (OR (|has| |#1| (|Field|)) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))))) (|charthRoot| (((|Union| $ "failed") $) 73 (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|abs| ((|#1| $) 77 (|has| |#1| (|RealNumberSystem|)))) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 70 (|has| |#1| (|Field|)))) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $) 111 (|has| |#1| (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) 109 (|has| |#1| (|DifferentialRing|))) (($ $ (|Symbol|)) 104 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) 103 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 102 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 101 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) 100) (($ $ (|Mapping| |#1| |#1|)) 99)) (>= (((|Boolean|) $ $) 63 (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) 62 (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 64 (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) 61 (|has| |#1| (|OrderedSet|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 69 (|has| |#1| (|Field|)))) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 38) (($ |#1| $) 37) (($ $ (|Fraction| (|Integer|))) 68 (|has| |#1| (|Field|))) (($ (|Fraction| (|Integer|)) $) 67 (|has| |#1| (|Field|))))) │ │ │ +(((|QuaternionCategory| |#1|) (|Category|) (|CommutativeRing|)) (T |QuaternionCategory|)) │ │ │ +((|conjugate| (*1 *1 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagI| (*1 *2 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagJ| (*1 *2 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagK| (*1 *2 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|norm| (*1 *2 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|quatern| (*1 *1 *2 *2 *2 *2) (AND (|ofCategory| *1 (|QuaternionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|real| (*1 *2 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|abs| (*1 *2 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|RealNumberSystem|)))) (|rational?| (*1 *2 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|)))) (|rational| (*1 *2 *1) (AND (|ofCategory| *1 (|QuaternionCategory| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Fraction| (|Integer|))))) (|rationalIfCan| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|QuaternionCategory| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Fraction| (|Integer|)))))) │ │ │ +(|Join| (|Algebra| |t#1|) (|FullyRetractableTo| |t#1|) (|DifferentialExtension| |t#1|) (|FullyEvalableOver| |t#1|) (|FullyLinearlyExplicitRingOver| |t#1|) (CATEGORY |domain| (SIGNATURE |conjugate| ($ $)) (SIGNATURE |imagI| (|t#1| $)) (SIGNATURE |imagJ| (|t#1| $)) (SIGNATURE |imagK| (|t#1| $)) (SIGNATURE |norm| (|t#1| $)) (SIGNATURE |quatern| ($ |t#1| |t#1| |t#1| |t#1|)) (SIGNATURE |real| (|t#1| $)) (IF (|has| |t#1| (|EntireRing|)) (ATTRIBUTE (|EntireRing|)) |noBranch|) (IF (|has| |t#1| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |noBranch|) (IF (|has| |t#1| (|Field|)) (ATTRIBUTE (|DivisionRing|)) |noBranch|) (IF (|has| |t#1| (|ConvertibleTo| (|InputForm|))) (ATTRIBUTE (|ConvertibleTo| (|InputForm|))) |noBranch|) (IF (|has| |t#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |noBranch|) (IF (|has| |t#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |noBranch|) (IF (|has| |t#1| (|RealNumberSystem|)) (SIGNATURE |abs| (|t#1| $)) |noBranch|) (IF (|has| |t#1| (|IntegerNumberSystem|)) (PROGN (SIGNATURE |rational?| ((|Boolean|) $)) (SIGNATURE |rational| ((|Fraction| (|Integer|)) $)) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") $))) |noBranch|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) |has| |#1| (|Field|)) ((|Algebra| |#1|) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Field|)) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|Field|)) (|has| |#1| (|EntireRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|DifferentialExtension| |#1|) . T) ((|DifferentialRing|) |has| |#1| (|DifferentialRing|)) ((|DivisionRing|) |has| |#1| (|Field|)) ((|Eltable| |#1| $) |has| |#1| (|Eltable| |#1| |#1|)) ((|EntireRing|) OR (|has| |#1| (|Field|)) (|has| |#1| (|EntireRing|))) ((|Evalable| |#1|) |has| |#1| (|Evalable| |#1|)) ((|FullyEvalableOver| |#1|) . T) ((|FullyLinearlyExplicitRingOver| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|InnerEvalable| (|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|)) ((|InnerEvalable| |#1| |#1|) |has| |#1| (|Evalable| |#1|)) ((|LeftModule| (|Fraction| (|Integer|))) |has| |#1| (|Field|)) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LinearlyExplicitRingOver| (|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LinearlyExplicitRingOver| |#1|) . T) ((|Module| (|Fraction| (|Integer|))) |has| |#1| (|Field|)) ((|Module| |#1|) . T) ((|Monoid|) . T) ((|OrderedSet|) |has| |#1| (|OrderedSet|)) ((|PartialDifferentialRing| (|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RightModule| (|Fraction| (|Integer|))) |has| |#1| (|Field|)) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|Field|)) (|has| |#1| (|EntireRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +((|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) 47)) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) 44)) (|OMreceive| (((|Any|) (|OpenMathConnection|)) 16))) │ │ │ +(((|OpenMathServerPackage|) (CATEGORY |package| (SIGNATURE |OMreceive| ((|Any|) (|OpenMathConnection|))) (SIGNATURE |OMsend| ((|Void|) (|OpenMathConnection|) (|Any|))) (SIGNATURE |OMserve| ((|Void|) (|SingleInteger|) (|SingleInteger|))))) (T |OpenMathServerPackage|)) │ │ │ +((|OMserve| (*1 *2 *3 *3) (AND (|isDomain| *3 (|SingleInteger|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathServerPackage|)))) (|OMsend| (*1 *2 *3 *4) (AND (|isDomain| *3 (|OpenMathConnection|)) (|isDomain| *4 (|Any|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathServerPackage|)))) (|OMreceive| (*1 *2 *3) (AND (|isDomain| *3 (|OpenMathConnection|)) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|OpenMathServerPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |OMreceive| ((|Any|) (|OpenMathConnection|))) (SIGNATURE |OMsend| ((|Void|) (|OpenMathConnection|) (|Any|))) (SIGNATURE |OMserve| ((|Void|) (|SingleInteger|) (|SingleInteger|)))) │ │ │ ((|showTheIFTable| (($) 9)) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 26)) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) 23)) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) 20)) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) 18)) (|clearTheIFTable| (((|Void|)) 12))) │ │ │ (((|ODEIntensityFunctionsTable|) (CATEGORY |domain| (SIGNATURE |showTheIFTable| ($)) (SIGNATURE |clearTheIFTable| ((|Void|))) (SIGNATURE |keys| ((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $)) (SIGNATURE |iFTable| ($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))))) (SIGNATURE |insert!| ($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) (SIGNATURE |showIntensityFunctions| ((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))))) (T |ODEIntensityFunctionsTable|)) │ │ │ ((|showIntensityFunctions| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *2 (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) (|isDomain| *1 (|ODEIntensityFunctionsTable|)))) (|insert!| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) (|isDomain| *1 (|ODEIntensityFunctionsTable|)))) (|iFTable| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) (|isDomain| *1 (|ODEIntensityFunctionsTable|)))) (|keys| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (|isDomain| *1 (|ODEIntensityFunctionsTable|)))) (|clearTheIFTable| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|ODEIntensityFunctionsTable|)))) (|showTheIFTable| (*1 *1) (|isDomain| *1 (|ODEIntensityFunctionsTable|)))) │ │ │ (CATEGORY |domain| (SIGNATURE |showTheIFTable| ($)) (SIGNATURE |clearTheIFTable| ((|Void|))) (SIGNATURE |keys| ((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $)) (SIGNATURE |iFTable| ($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))))) (SIGNATURE |insert!| ($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) (SIGNATURE |showIntensityFunctions| ((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) │ │ │ -((|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) 9) (((|Void|) (|OpenMathDevice|) $) 8) (((|String|) $ (|Boolean|)) 7) (((|String|) $) 6))) │ │ │ -(((|OpenMath|) (|Category|)) (T |OpenMath|)) │ │ │ -((|OMwrite| (*1 *2 *3 *1 *4) (AND (|ofCategory| *1 (|OpenMath|)) (|isDomain| *3 (|OpenMathDevice|)) (|isDomain| *4 (|Boolean|)) (|isDomain| *2 (|Void|)))) (|OMwrite| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|OpenMath|)) (|isDomain| *3 (|OpenMathDevice|)) (|isDomain| *2 (|Void|)))) (|OMwrite| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|OpenMath|)) (|isDomain| *3 (|Boolean|)) (|isDomain| *2 (|String|)))) (|OMwrite| (*1 *2 *1) (AND (|ofCategory| *1 (|OpenMath|)) (|isDomain| *2 (|String|))))) │ │ │ -(|Join| (CATEGORY |domain| (SIGNATURE |OMwrite| ((|String|) $)) (SIGNATURE |OMwrite| ((|String|) $ (|Boolean|))) (SIGNATURE |OMwrite| ((|Void|) (|OpenMathDevice|) $)) (SIGNATURE |OMwrite| ((|Void|) (|OpenMathDevice|) $ (|Boolean|))))) │ │ │ -((|OMmakeConn| (($ (|SingleInteger|)) 7)) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) 15)) (|OMconnOutDevice| (((|OpenMathDevice|) $) 12)) (|OMconnInDevice| (((|OpenMathDevice|) $) 11)) (|OMcloseConn| (((|Void|) $) 9)) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) 16))) │ │ │ -(((|OpenMathConnection|) (CATEGORY |domain| (SIGNATURE |OMmakeConn| ($ (|SingleInteger|))) (SIGNATURE |OMcloseConn| ((|Void|) $)) (SIGNATURE |OMconnInDevice| ((|OpenMathDevice|) $)) (SIGNATURE |OMconnOutDevice| ((|OpenMathDevice|) $)) (SIGNATURE |OMconnectTCP| ((|Boolean|) $ (|String|) (|SingleInteger|))) (SIGNATURE |OMbindTCP| ((|Boolean|) $ (|SingleInteger|))))) (T |OpenMathConnection|)) │ │ │ -((|OMbindTCP| (*1 *2 *1 *3) (AND (|isDomain| *3 (|SingleInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OpenMathConnection|)))) (|OMconnectTCP| (*1 *2 *1 *3 *4) (AND (|isDomain| *3 (|String|)) (|isDomain| *4 (|SingleInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OpenMathConnection|)))) (|OMconnOutDevice| (*1 *2 *1) (AND (|isDomain| *2 (|OpenMathDevice|)) (|isDomain| *1 (|OpenMathConnection|)))) (|OMconnInDevice| (*1 *2 *1) (AND (|isDomain| *2 (|OpenMathDevice|)) (|isDomain| *1 (|OpenMathConnection|)))) (|OMcloseConn| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathConnection|)))) (|OMmakeConn| (*1 *1 *2) (AND (|isDomain| *2 (|SingleInteger|)) (|isDomain| *1 (|OpenMathConnection|))))) │ │ │ -(CATEGORY |domain| (SIGNATURE |OMmakeConn| ($ (|SingleInteger|))) (SIGNATURE |OMcloseConn| ((|Void|) $)) (SIGNATURE |OMconnInDevice| ((|OpenMathDevice|) $)) (SIGNATURE |OMconnOutDevice| ((|OpenMathDevice|) $)) (SIGNATURE |OMconnectTCP| ((|Boolean|) $ (|String|) (|SingleInteger|))) (SIGNATURE |OMbindTCP| ((|Boolean|) $ (|SingleInteger|)))) │ │ │ -((|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) 12)) (|OMputVariable| (((|Void|) $ (|Symbol|)) 32)) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) 34)) (|OMputString| (((|Void|) $ (|String|)) 33)) (|OMputObject| (((|Void|) $) 19)) (|OMputInteger| (((|Void|) $ (|Integer|)) 28)) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) 30)) (|OMputError| (((|Void|) $) 18)) (|OMputEndObject| (((|Void|) $) 26)) (|OMputEndError| (((|Void|) $) 25)) (|OMputEndBind| (((|Void|) $) 23)) (|OMputEndBVar| (((|Void|) $) 24)) (|OMputEndAttr| (((|Void|) $) 22)) (|OMputEndAtp| (((|Void|) $) 21)) (|OMputEndApp| (((|Void|) $) 20)) (|OMputBind| (((|Void|) $) 16)) (|OMputBVar| (((|Void|) $) 17)) (|OMputAttr| (((|Void|) $) 15)) (|OMputAtp| (((|Void|) $) 14)) (|OMputApp| (((|Void|) $) 13)) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) 9)) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) 8)) (|OMgetVariable| (((|Symbol|) $) 51)) (|OMgetType| (((|Symbol|) $) 55)) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) 54)) (|OMgetString| (((|String|) $) 52)) (|OMgetObject| (((|Void|) $) 41)) (|OMgetInteger| (((|Integer|) $) 49)) (|OMgetFloat| (((|DoubleFloat|) $) 50)) (|OMgetError| (((|Void|) $) 40)) (|OMgetEndObject| (((|Void|) $) 48)) (|OMgetEndError| (((|Void|) $) 47)) (|OMgetEndBind| (((|Void|) $) 45)) (|OMgetEndBVar| (((|Void|) $) 46)) (|OMgetEndAttr| (((|Void|) $) 44)) (|OMgetEndAtp| (((|Void|) $) 43)) (|OMgetEndApp| (((|Void|) $) 42)) (|OMgetBind| (((|Void|) $) 38)) (|OMgetBVar| (((|Void|) $) 39)) (|OMgetAttr| (((|Void|) $) 37)) (|OMgetAtp| (((|Void|) $) 36)) (|OMgetApp| (((|Void|) $) 35)) (|OMclose| (((|Void|) $) 11))) │ │ │ -(((|OpenMathDevice|) (CATEGORY |domain| (SIGNATURE |OMopenFile| ($ (|String|) (|String|) (|OpenMathEncoding|))) (SIGNATURE |OMopenString| ($ (|String|) (|OpenMathEncoding|))) (SIGNATURE |OMclose| ((|Void|) $)) (SIGNATURE |OMsetEncoding| ((|Void|) $ (|OpenMathEncoding|))) (SIGNATURE |OMputApp| ((|Void|) $)) (SIGNATURE |OMputAtp| ((|Void|) $)) (SIGNATURE |OMputAttr| ((|Void|) $)) (SIGNATURE |OMputBind| ((|Void|) $)) (SIGNATURE |OMputBVar| ((|Void|) $)) (SIGNATURE |OMputError| ((|Void|) $)) (SIGNATURE |OMputObject| ((|Void|) $)) (SIGNATURE |OMputEndApp| ((|Void|) $)) (SIGNATURE |OMputEndAtp| ((|Void|) $)) (SIGNATURE |OMputEndAttr| ((|Void|) $)) (SIGNATURE |OMputEndBind| ((|Void|) $)) (SIGNATURE |OMputEndBVar| ((|Void|) $)) (SIGNATURE |OMputEndError| ((|Void|) $)) (SIGNATURE |OMputEndObject| ((|Void|) $)) (SIGNATURE |OMputInteger| ((|Void|) $ (|Integer|))) (SIGNATURE |OMputFloat| ((|Void|) $ (|DoubleFloat|))) (SIGNATURE |OMputVariable| ((|Void|) $ (|Symbol|))) (SIGNATURE |OMputString| ((|Void|) $ (|String|))) (SIGNATURE |OMputSymbol| ((|Void|) $ (|String|) (|String|))) (SIGNATURE |OMgetApp| ((|Void|) $)) (SIGNATURE |OMgetAtp| ((|Void|) $)) (SIGNATURE |OMgetAttr| ((|Void|) $)) (SIGNATURE |OMgetBind| ((|Void|) $)) (SIGNATURE |OMgetBVar| ((|Void|) $)) (SIGNATURE |OMgetError| ((|Void|) $)) (SIGNATURE |OMgetObject| ((|Void|) $)) (SIGNATURE |OMgetEndApp| ((|Void|) $)) (SIGNATURE |OMgetEndAtp| ((|Void|) $)) (SIGNATURE |OMgetEndAttr| ((|Void|) $)) (SIGNATURE |OMgetEndBind| ((|Void|) $)) (SIGNATURE |OMgetEndBVar| ((|Void|) $)) (SIGNATURE |OMgetEndError| ((|Void|) $)) (SIGNATURE |OMgetEndObject| ((|Void|) $)) (SIGNATURE |OMgetInteger| ((|Integer|) $)) (SIGNATURE |OMgetFloat| ((|DoubleFloat|) $)) (SIGNATURE |OMgetVariable| ((|Symbol|) $)) (SIGNATURE |OMgetString| ((|String|) $)) (SIGNATURE |OMgetSymbol| ((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $)) (SIGNATURE |OMgetType| ((|Symbol|) $)))) (T |OpenMathDevice|)) │ │ │ -((|OMgetType| (*1 *2 *1) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetSymbol| (*1 *2 *1) (AND (|isDomain| *2 (|Record| (|:| |cd| (|String|)) (|:| |name| (|String|)))) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetString| (*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetVariable| (*1 *2 *1) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetFloat| (*1 *2 *1) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetInteger| (*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetEndObject| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetEndError| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetEndBVar| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetEndBind| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetEndAttr| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetEndAtp| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetEndApp| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetObject| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetError| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetBVar| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetBind| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetAttr| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetAtp| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMgetApp| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputSymbol| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputString| (*1 *2 *1 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputVariable| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputFloat| (*1 *2 *1 *3) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputInteger| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputEndObject| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputEndError| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputEndBVar| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputEndBind| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputEndAttr| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputEndAtp| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputEndApp| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputObject| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputError| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputBVar| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputBind| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputAttr| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputAtp| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMputApp| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMsetEncoding| (*1 *2 *1 *3) (AND (|isDomain| *3 (|OpenMathEncoding|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMclose| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMopenString| (*1 *1 *2 *3) (AND (|isDomain| *2 (|String|)) (|isDomain| *3 (|OpenMathEncoding|)) (|isDomain| *1 (|OpenMathDevice|)))) (|OMopenFile| (*1 *1 *2 *2 *3) (AND (|isDomain| *2 (|String|)) (|isDomain| *3 (|OpenMathEncoding|)) (|isDomain| *1 (|OpenMathDevice|))))) │ │ │ -(CATEGORY |domain| (SIGNATURE |OMopenFile| ($ (|String|) (|String|) (|OpenMathEncoding|))) (SIGNATURE |OMopenString| ($ (|String|) (|OpenMathEncoding|))) (SIGNATURE |OMclose| ((|Void|) $)) (SIGNATURE |OMsetEncoding| ((|Void|) $ (|OpenMathEncoding|))) (SIGNATURE |OMputApp| ((|Void|) $)) (SIGNATURE |OMputAtp| ((|Void|) $)) (SIGNATURE |OMputAttr| ((|Void|) $)) (SIGNATURE |OMputBind| ((|Void|) $)) (SIGNATURE |OMputBVar| ((|Void|) $)) (SIGNATURE |OMputError| ((|Void|) $)) (SIGNATURE |OMputObject| ((|Void|) $)) (SIGNATURE |OMputEndApp| ((|Void|) $)) (SIGNATURE |OMputEndAtp| ((|Void|) $)) (SIGNATURE |OMputEndAttr| ((|Void|) $)) (SIGNATURE |OMputEndBind| ((|Void|) $)) (SIGNATURE |OMputEndBVar| ((|Void|) $)) (SIGNATURE |OMputEndError| ((|Void|) $)) (SIGNATURE |OMputEndObject| ((|Void|) $)) (SIGNATURE |OMputInteger| ((|Void|) $ (|Integer|))) (SIGNATURE |OMputFloat| ((|Void|) $ (|DoubleFloat|))) (SIGNATURE |OMputVariable| ((|Void|) $ (|Symbol|))) (SIGNATURE |OMputString| ((|Void|) $ (|String|))) (SIGNATURE |OMputSymbol| ((|Void|) $ (|String|) (|String|))) (SIGNATURE |OMgetApp| ((|Void|) $)) (SIGNATURE |OMgetAtp| ((|Void|) $)) (SIGNATURE |OMgetAttr| ((|Void|) $)) (SIGNATURE |OMgetBind| ((|Void|) $)) (SIGNATURE |OMgetBVar| ((|Void|) $)) (SIGNATURE |OMgetError| ((|Void|) $)) (SIGNATURE |OMgetObject| ((|Void|) $)) (SIGNATURE |OMgetEndApp| ((|Void|) $)) (SIGNATURE |OMgetEndAtp| ((|Void|) $)) (SIGNATURE |OMgetEndAttr| ((|Void|) $)) (SIGNATURE |OMgetEndBind| ((|Void|) $)) (SIGNATURE |OMgetEndBVar| ((|Void|) $)) (SIGNATURE |OMgetEndError| ((|Void|) $)) (SIGNATURE |OMgetEndObject| ((|Void|) $)) (SIGNATURE |OMgetInteger| ((|Integer|) $)) (SIGNATURE |OMgetFloat| ((|DoubleFloat|) $)) (SIGNATURE |OMgetVariable| ((|Symbol|) $)) (SIGNATURE |OMgetString| ((|String|) $)) (SIGNATURE |OMgetSymbol| ((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $)) (SIGNATURE |OMgetType| ((|Symbol|) $))) │ │ │ -((|outputList| (((|Void|) (|List| (|Any|))) 24)) (|output| (((|Void|) (|String|) (|OutputForm|)) 14) (((|Void|) (|OutputForm|)) 9) (((|Void|) (|String|)) 11))) │ │ │ -(((|OutputPackage|) (CATEGORY |package| (SIGNATURE |output| ((|Void|) (|String|))) (SIGNATURE |output| ((|Void|) (|OutputForm|))) (SIGNATURE |output| ((|Void|) (|String|) (|OutputForm|))) (SIGNATURE |outputList| ((|Void|) (|List| (|Any|)))))) (T |OutputPackage|)) │ │ │ -((|outputList| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Any|))) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OutputPackage|)))) (|output| (*1 *2 *3 *4) (AND (|isDomain| *3 (|String|)) (|isDomain| *4 (|OutputForm|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OutputPackage|)))) (|output| (*1 *2 *3) (AND (|isDomain| *3 (|OutputForm|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OutputPackage|)))) (|output| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OutputPackage|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |output| ((|Void|) (|String|))) (SIGNATURE |output| ((|Void|) (|OutputForm|))) (SIGNATURE |output| ((|Void|) (|String|) (|OutputForm|))) (SIGNATURE |outputList| ((|Void|) (|List| (|Any|))))) │ │ │ -((|integral| (($ $ (|SegmentBinding| $)) 7) (($ $ (|Symbol|)) 6))) │ │ │ -(((|PrimitiveFunctionCategory|) (|Category|)) (T |PrimitiveFunctionCategory|)) │ │ │ -((|integral| (*1 *1 *1 *2) (AND (|isDomain| *2 (|SegmentBinding| *1)) (|ofCategory| *1 (|PrimitiveFunctionCategory|)))) (|integral| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PrimitiveFunctionCategory|)) (|isDomain| *2 (|Symbol|))))) │ │ │ -(|Join| (CATEGORY |domain| (SIGNATURE |integral| ($ $ (|Symbol|))) (SIGNATURE |integral| ($ $ (|SegmentBinding| $))))) │ │ │ -((|tanhIfCan| (((|Union| |#1| "failed") |#1|) 18)) (|tanIfCan| (((|Union| |#1| "failed") |#1|) 6)) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) 16)) (|sinIfCan| (((|Union| |#1| "failed") |#1|) 4)) (|sechIfCan| (((|Union| |#1| "failed") |#1|) 20)) (|secIfCan| (((|Union| |#1| "failed") |#1|) 8)) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) 1)) (|logIfCan| (((|Union| |#1| "failed") |#1|) 3)) (|expIfCan| (((|Union| |#1| "failed") |#1|) 2)) (|cschIfCan| (((|Union| |#1| "failed") |#1|) 21)) (|cscIfCan| (((|Union| |#1| "failed") |#1|) 9)) (|cothIfCan| (((|Union| |#1| "failed") |#1|) 19)) (|cotIfCan| (((|Union| |#1| "failed") |#1|) 7)) (|coshIfCan| (((|Union| |#1| "failed") |#1|) 17)) (|cosIfCan| (((|Union| |#1| "failed") |#1|) 5)) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) 24)) (|atanIfCan| (((|Union| |#1| "failed") |#1|) 12)) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) 22)) (|asinIfCan| (((|Union| |#1| "failed") |#1|) 10)) (|asechIfCan| (((|Union| |#1| "failed") |#1|) 26)) (|asecIfCan| (((|Union| |#1| "failed") |#1|) 14)) (|acschIfCan| (((|Union| |#1| "failed") |#1|) 27)) (|acscIfCan| (((|Union| |#1| "failed") |#1|) 15)) (|acothIfCan| (((|Union| |#1| "failed") |#1|) 25)) (|acotIfCan| (((|Union| |#1| "failed") |#1|) 13)) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) 23)) (|acosIfCan| (((|Union| |#1| "failed") |#1|) 11))) │ │ │ -(((|PartialTranscendentalFunctions| |#1|) (|Category|) (|TranscendentalFunctionCategory|)) (T |PartialTranscendentalFunctions|)) │ │ │ -((|acschIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|asechIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|acothIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|atanhIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|acoshIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|asinhIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|cschIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|sechIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|cothIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|tanhIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|coshIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|sinhIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|acscIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|asecIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|acotIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|atanIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|acosIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|asinIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|cscIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|secIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|cotIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|tanIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|cosIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|sinIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|logIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|expIfCan| (*1 *2 *2) (|partial| AND (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|)))) (|nthRootIfCan| (*1 *2 *2 *3) (|partial| AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|PartialTranscendentalFunctions| *2)) (|ofCategory| *2 (|TranscendentalFunctionCategory|))))) │ │ │ -(|Join| (CATEGORY |package| (SIGNATURE |nthRootIfCan| ((|Union| |t#1| "failed") |t#1| (|NonNegativeInteger|))) (SIGNATURE |expIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |logIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |sinIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |cosIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |tanIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |cotIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |secIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |cscIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |asinIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |acosIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |atanIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |acotIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |asecIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |acscIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |sinhIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |coshIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |tanhIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |cothIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |sechIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |cschIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |asinhIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |acoshIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |atanhIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |acothIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |asechIfCan| ((|Union| |t#1| "failed") |t#1|)) (SIGNATURE |acschIfCan| ((|Union| |t#1| "failed") |t#1|)))) │ │ │ -((|print| (((|Void|) (|OutputForm|)) 9))) │ │ │ -(((|PrintPackage|) (CATEGORY |package| (SIGNATURE |print| ((|Void|) (|OutputForm|))))) (T |PrintPackage|)) │ │ │ -((|print| (*1 *2 *3) (AND (|isDomain| *3 (|OutputForm|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|PrintPackage|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |print| ((|Void|) (|OutputForm|)))) │ │ │ -((|uniform01| (((|Float|)) 15)) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) 20)) (|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) 42)) (|normal01| (((|Float|)) 33)) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) 34)) (|exponential1| (((|Float|)) 26)) (|exponential| (((|Mapping| (|Float|)) (|Float|)) 27)) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) 37)) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) 38)) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) 41)) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) 39))) │ │ │ -(((|RandomFloatDistributions|) (CATEGORY |package| (SIGNATURE |uniform01| ((|Float|))) (SIGNATURE |normal01| ((|Float|))) (SIGNATURE |exponential1| ((|Float|))) (SIGNATURE |chiSquare1| ((|Float|) (|NonNegativeInteger|))) (SIGNATURE |uniform| ((|Mapping| (|Float|)) (|Float|) (|Float|))) (SIGNATURE |normal| ((|Mapping| (|Float|)) (|Float|) (|Float|))) (SIGNATURE |exponential| ((|Mapping| (|Float|)) (|Float|))) (SIGNATURE |chiSquare| ((|Mapping| (|Float|)) (|NonNegativeInteger|))) (SIGNATURE |Beta| ((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE F ((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |t| ((|Mapping| (|Float|)) (|NonNegativeInteger|))))) (T |RandomFloatDistributions|)) │ │ │ -((|t| (*1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Mapping| (|Float|))) (|isDomain| *1 (|RandomFloatDistributions|)))) (F (*1 *2 *3 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Mapping| (|Float|))) (|isDomain| *1 (|RandomFloatDistributions|)))) (|Beta| (*1 *2 *3 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Mapping| (|Float|))) (|isDomain| *1 (|RandomFloatDistributions|)))) (|chiSquare| (*1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Mapping| (|Float|))) (|isDomain| *1 (|RandomFloatDistributions|)))) (|exponential| (*1 *2 *3) (AND (|isDomain| *2 (|Mapping| (|Float|))) (|isDomain| *1 (|RandomFloatDistributions|)) (|isDomain| *3 (|Float|)))) (|normal| (*1 *2 *3 *3) (AND (|isDomain| *2 (|Mapping| (|Float|))) (|isDomain| *1 (|RandomFloatDistributions|)) (|isDomain| *3 (|Float|)))) (|uniform| (*1 *2 *3 *3) (AND (|isDomain| *2 (|Mapping| (|Float|))) (|isDomain| *1 (|RandomFloatDistributions|)) (|isDomain| *3 (|Float|)))) (|chiSquare1| (*1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|RandomFloatDistributions|)))) (|exponential1| (*1 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|RandomFloatDistributions|)))) (|normal01| (*1 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|RandomFloatDistributions|)))) (|uniform01| (*1 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|RandomFloatDistributions|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |uniform01| ((|Float|))) (SIGNATURE |normal01| ((|Float|))) (SIGNATURE |exponential1| ((|Float|))) (SIGNATURE |chiSquare1| ((|Float|) (|NonNegativeInteger|))) (SIGNATURE |uniform| ((|Mapping| (|Float|)) (|Float|) (|Float|))) (SIGNATURE |normal| ((|Mapping| (|Float|)) (|Float|) (|Float|))) (SIGNATURE |exponential| ((|Mapping| (|Float|)) (|Float|))) (SIGNATURE |chiSquare| ((|Mapping| (|Float|)) (|NonNegativeInteger|))) (SIGNATURE |Beta| ((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE F ((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |t| ((|Mapping| (|Float|)) (|NonNegativeInteger|)))) │ │ │ -((|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) 33)) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 30)) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) NIL)) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) NIL)) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) NIL))) │ │ │ -(((|RandomIntegerDistributions|) (CATEGORY |package| (SIGNATURE |uniform| ((|Mapping| (|Integer|)) (|Segment| (|Integer|)))) (SIGNATURE |binomial| ((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|)) (SIGNATURE |poisson| ((|Mapping| (|Integer|)) |RationalNumber|)) (SIGNATURE |geometric| ((|Mapping| (|Integer|)) |RationalNumber|)) (SIGNATURE |ridHack1| ((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))))) (T |RandomIntegerDistributions|)) │ │ │ -((|ridHack1| (*1 *2 *2 *2 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|RandomIntegerDistributions|)))) (|geometric| (*1 *2 *3) (AND (|isDomain| *3 |RationalNumber|) (|isDomain| *2 (|Mapping| (|Integer|))) (|isDomain| *1 (|RandomIntegerDistributions|)))) (|poisson| (*1 *2 *3) (AND (|isDomain| *3 |RationalNumber|) (|isDomain| *2 (|Mapping| (|Integer|))) (|isDomain| *1 (|RandomIntegerDistributions|)))) (|binomial| (*1 *2 *3 *4) (AND (|isDomain| *4 |RationalNumber|) (|isDomain| *2 (|Mapping| (|Integer|))) (|isDomain| *1 (|RandomIntegerDistributions|)) (|isDomain| *3 (|Integer|)))) (|uniform| (*1 *2 *3) (AND (|isDomain| *3 (|Segment| (|Integer|))) (|isDomain| *2 (|Mapping| (|Integer|))) (|isDomain| *1 (|RandomIntegerDistributions|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |uniform| ((|Mapping| (|Integer|)) (|Segment| (|Integer|)))) (SIGNATURE |binomial| ((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|)) (SIGNATURE |poisson| ((|Mapping| (|Integer|)) |RationalNumber|)) (SIGNATURE |geometric| ((|Mapping| (|Integer|)) |RationalNumber|)) (SIGNATURE |ridHack1| ((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)))) │ │ │ -((|polygamma| (($ $ $) 10)) (|digamma| (($ $) 9)) (|besselY| (($ $ $) 13)) (|besselK| (($ $ $) 15)) (|besselJ| (($ $ $) 12)) (|besselI| (($ $ $) 14)) (|airyBi| (($ $) 17)) (|airyAi| (($ $) 16)) (|abs| (($ $) 6)) (|Gamma| (($ $ $) 11) (($ $) 7)) (|Beta| (($ $ $) 8))) │ │ │ -(((|SpecialFunctionCategory|) (|Category|)) (T |SpecialFunctionCategory|)) │ │ │ -((|airyBi| (*1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|airyAi| (*1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|besselK| (*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|besselI| (*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|besselY| (*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|besselJ| (*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|Gamma| (*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|polygamma| (*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|digamma| (*1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|Beta| (*1 *1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|Gamma| (*1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|))) (|abs| (*1 *1 *1) (|ofCategory| *1 (|SpecialFunctionCategory|)))) │ │ │ -(|Join| (CATEGORY |domain| (SIGNATURE |abs| ($ $)) (SIGNATURE |Gamma| ($ $)) (SIGNATURE |Beta| ($ $ $)) (SIGNATURE |digamma| ($ $)) (SIGNATURE |polygamma| ($ $ $)) (SIGNATURE |Gamma| ($ $ $)) (SIGNATURE |besselJ| ($ $ $)) (SIGNATURE |besselY| ($ $ $)) (SIGNATURE |besselI| ($ $ $)) (SIGNATURE |besselK| ($ $ $)) (SIGNATURE |airyAi| ($ $)) (SIGNATURE |airyBi| ($ $)))) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (((|Boolean|) $) NIL (|has| |#1| (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| |#1| (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|shrinkable| (((|Boolean|) (|Boolean|)) 24)) (|setelt| ((|#1| $ (|Integer|) |#1|) 27 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) 51)) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates!| (($ $) 54 (|has| |#1| (|SetCategory|)))) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|remove!| (($ |#1| $) NIL (|has| |#1| (|SetCategory|))) (($ (|Mapping| (|Boolean|) |#1|) $) 43)) (|remove| (($ |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) NIL)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) NIL) (((|Integer|) |#1| $) NIL (|has| |#1| (|SetCategory|))) (((|Integer|) |#1| $ (|Integer|)) NIL (|has| |#1| (|SetCategory|)))) (|physicalLength!| (($ $ (|Integer|)) 13)) (|physicalLength| (((|NonNegativeInteger|) $) 11)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|new| (($ (|NonNegativeInteger|) |#1|) 22)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) 20 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|merge!| (($ $ $) NIL (|has| |#1| (|OrderedSet|))) (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) 34)) (|merge| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxIndex| (((|Integer|) $) 19 (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|insert!| (($ $ $ (|Integer|)) 50) (($ |#1| $ (|Integer|)) 36)) (|insert| (($ |#1| $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|flexibleArray| (($ (|List| |#1|)) 28)) (|first| ((|#1| $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) NIL)) (|fill!| (($ $ |#1|) 18 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 39)) (|entry?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) 14)) (|elt| ((|#1| $ (|Integer|) |#1|) NIL) ((|#1| $ (|Integer|)) 32) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) 49) (($ $ (|Integer|)) 44)) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) 40 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) 31)) (|convert| (((|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) NIL)) (|concat!| (($ $ $) 41) (($ $ |#1|) 38)) (|concat| (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (|List| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) 15 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|IndexedFlexibleArray| |#1| |#2|) (|Join| (|OneDimensionalArrayAggregate| |#1|) (|ExtensibleLinearAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |flexibleArray| ($ (|List| |#1|))) (SIGNATURE |physicalLength| ((|NonNegativeInteger|) $)) (SIGNATURE |physicalLength!| ($ $ (|Integer|))) (SIGNATURE |shrinkable| ((|Boolean|) (|Boolean|))))) (|Type|) (|Integer|)) (T |IndexedFlexibleArray|)) │ │ │ +((|flexibleArray| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|IndexedFlexibleArray| *3 *4)) (|ofType| *4 (|Integer|)))) (|physicalLength| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|IndexedFlexibleArray| *3 *4)) (|ofCategory| *3 (|Type|)) (|ofType| *4 (|Integer|)))) (|physicalLength!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IndexedFlexibleArray| *3 *4)) (|ofCategory| *3 (|Type|)) (|ofType| *4 *2))) (|shrinkable| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IndexedFlexibleArray| *3 *4)) (|ofCategory| *3 (|Type|)) (|ofType| *4 (|Integer|))))) │ │ │ +(|Join| (|OneDimensionalArrayAggregate| |#1|) (|ExtensibleLinearAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |flexibleArray| ($ (|List| |#1|))) (SIGNATURE |physicalLength| ((|NonNegativeInteger|) $)) (SIGNATURE |physicalLength!| ($ $ (|Integer|))) (SIGNATURE |shrinkable| ((|Boolean|) (|Boolean|))))) │ │ │ NIL │ │ │ -(((|Type|) (|Category|)) (T |Type|)) │ │ │ +(((|ShallowlyMutableAttribute|) (|Category|)) (T |ShallowlyMutableAttribute|)) │ │ │ NIL │ │ │ (|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 7)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|AnonymousFunction|) (|SetCategory|)) (T |AnonymousFunction|)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|numericalOptimization| (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) NIL) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 69)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 23) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|e04nafAnnaType|) (|NumericalOptimizationCategory|)) (T |e04nafAnnaType|)) │ │ │ NIL │ │ │ -(|SetCategory|) │ │ │ -((|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 16)) (|sample| (($) 10)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 15)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 14)) (|eq?| (((|Boolean|) $ $) 8)) (|empty?| (((|Boolean|) $) 13))) │ │ │ -(((|Aggregate&| |#1|) (CATEGORY |domain| (SIGNATURE |sample| (|#1|)) (SIGNATURE |size?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |less?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |empty?| ((|Boolean|) |#1|)) (SIGNATURE |eq?| ((|Boolean|) |#1| |#1|))) (|Aggregate|)) (T |Aggregate&|)) │ │ │ +(|NumericalOptimizationCategory|) │ │ │ +((|logGamma| (((|Complex| (|Float|)) (|Complex| (|Float|))) 64) (((|Float|) (|Float|)) 65)) (|Gamma| (((|Complex| (|Float|)) (|Complex| (|Float|))) 52) (((|Float|) (|Float|)) 61))) │ │ │ +(((|FloatSpecialFunctions|) (CATEGORY |package| (SIGNATURE |logGamma| ((|Float|) (|Float|))) (SIGNATURE |logGamma| ((|Complex| (|Float|)) (|Complex| (|Float|)))) (SIGNATURE |Gamma| ((|Float|) (|Float|))) (SIGNATURE |Gamma| ((|Complex| (|Float|)) (|Complex| (|Float|)))))) (T |FloatSpecialFunctions|)) │ │ │ +((|Gamma| (*1 *2 *2) (AND (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|FloatSpecialFunctions|)))) (|Gamma| (*1 *2 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|FloatSpecialFunctions|)))) (|logGamma| (*1 *2 *2) (AND (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|FloatSpecialFunctions|)))) (|logGamma| (*1 *2 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|FloatSpecialFunctions|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |logGamma| ((|Float|) (|Float|))) (SIGNATURE |logGamma| ((|Complex| (|Float|)) (|Complex| (|Float|)))) (SIGNATURE |Gamma| ((|Float|) (|Float|))) (SIGNATURE |Gamma| ((|Complex| (|Float|)) (|Complex| (|Float|))))) │ │ │ +((|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) 127)) (|randomR| ((|#1|) 75)) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) 136)) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) 67)) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) 146)) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) 91))) │ │ │ +(((|PolynomialFactorizationByRecursion| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |solveLinearPolynomialEquationByRecursion| ((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|))) (SIGNATURE |factorByRecursion| ((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|))) (SIGNATURE |factorSquareFreeByRecursion| ((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|))) (SIGNATURE |randomR| (|#1|)) (SIGNATURE |bivariateSLPEBR| ((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|)) (SIGNATURE |factorSFBRlcUnit| ((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)))) (|PolynomialFactorizationExplicit|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|PolynomialCategory| |#1| |#2| |#3|)) (T |PolynomialFactorizationByRecursion|)) │ │ │ +((|factorSFBRlcUnit| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *7)) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *5 (|PolynomialFactorizationExplicit|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *8 (|PolynomialCategory| *5 *6 *7)) (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *8))) (|isDomain| *1 (|PolynomialFactorizationByRecursion| *5 *6 *7 *8)) (|isDomain| *4 (|SparseUnivariatePolynomial| *8)))) (|bivariateSLPEBR| (*1 *2 *2 *3 *4) (|partial| AND (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *7))) (|isDomain| *3 (|SparseUnivariatePolynomial| *7)) (|ofCategory| *7 (|PolynomialCategory| *5 *6 *4)) (|ofCategory| *5 (|PolynomialFactorizationExplicit|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *1 (|PolynomialFactorizationByRecursion| *5 *6 *4 *7)))) (|randomR| (*1 *2) (AND (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|PolynomialFactorizationExplicit|)) (|isDomain| *1 (|PolynomialFactorizationByRecursion| *2 *3 *4 *5)) (|ofCategory| *5 (|PolynomialCategory| *2 *3 *4)))) (|factorSquareFreeByRecursion| (*1 *2 *3) (AND (|ofCategory| *4 (|PolynomialFactorizationExplicit|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *7))) (|isDomain| *1 (|PolynomialFactorizationByRecursion| *4 *5 *6 *7)) (|isDomain| *3 (|SparseUnivariatePolynomial| *7)))) (|factorByRecursion| (*1 *2 *3) (AND (|ofCategory| *4 (|PolynomialFactorizationExplicit|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *7))) (|isDomain| *1 (|PolynomialFactorizationByRecursion| *4 *5 *6 *7)) (|isDomain| *3 (|SparseUnivariatePolynomial| *7)))) (|solveLinearPolynomialEquationByRecursion| (*1 *2 *2 *3) (|partial| AND (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *7))) (|isDomain| *3 (|SparseUnivariatePolynomial| *7)) (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|PolynomialFactorizationExplicit|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *1 (|PolynomialFactorizationByRecursion| *4 *5 *6 *7))))) │ │ │ +(CATEGORY |package| (SIGNATURE |solveLinearPolynomialEquationByRecursion| ((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|))) (SIGNATURE |factorByRecursion| ((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|))) (SIGNATURE |factorSquareFreeByRecursion| ((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|))) (SIGNATURE |randomR| (|#1|)) (SIGNATURE |bivariateSLPEBR| ((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|)) (SIGNATURE |factorSFBRlcUnit| ((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) 78)) (|zeroSetSplit| (((|List| $) (|List| |#4|)) 79)) (|variables| (((|List| |#3|) $) 32)) (|trivialIdeal?| (((|Boolean|) $) 25)) (|triangular?| (((|Boolean|) $) 16 (|has| |#1| (|IntegralDomain|)))) (|stronglyReduced?| (((|Boolean|) |#4| $) 94) (((|Boolean|) $) 90)) (|stronglyReduce| ((|#4| |#4| $) 85)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) 26)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 43)) (|select| (($ (|Mapping| (|Boolean|) |#4|) $) 64 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Union| |#4| "failed") $ |#3|) 72)) (|sample| (($) 44 T CONST)) (|roughUnitIdeal?| (((|Boolean|) $) 21 (|has| |#1| (|IntegralDomain|)))) (|roughSubIdeal?| (((|Boolean|) $ $) 23 (|has| |#1| (|IntegralDomain|)))) (|roughEqualIdeals?| (((|Boolean|) $ $) 22 (|has| |#1| (|IntegralDomain|)))) (|roughBase?| (((|Boolean|) $) 24 (|has| |#1| (|IntegralDomain|)))) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 86)) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) 17 (|has| |#1| (|IntegralDomain|)))) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) 18 (|has| |#1| (|IntegralDomain|)))) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) 35)) (|retract| (($ (|List| |#4|)) 34)) (|rest| (((|Union| $ "failed") $) 75)) (|removeZero| ((|#4| |#4| $) 82)) (|removeDuplicates| (($ $) 67 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|remove| (($ |#4| $) 66 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (($ (|Mapping| (|Boolean|) |#4|) $) 63 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 19 (|has| |#1| (|IntegralDomain|)))) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) 95)) (|reduceByQuasiMonic| ((|#4| |#4| $) 80)) (|reduce| ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4| |#4|) 65 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4|) 62 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#4| (|Mapping| |#4| |#4| |#4|) $) 61 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 87)) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) 98)) (|parts| (((|List| |#4|) $) 51 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|normalized?| (((|Boolean|) |#4| $) 97) (((|Boolean|) $) 96)) (|mvar| ((|#3| $) 33)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 42)) (|members| (((|List| |#4|) $) 52 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#4| $) 54 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#4| |#4|) $) 47 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#4| |#4|) $) 46)) (|mainVariables| (((|List| |#3|) $) 31)) (|mainVariable?| (((|Boolean|) |#3| $) 30)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 41)) (|latex| (((|String|) $) 9)) (|last| (((|Union| |#4| "failed") $) 76)) (|initials| (((|List| |#4|) $) 100)) (|initiallyReduced?| (((|Boolean|) |#4| $) 92) (((|Boolean|) $) 88)) (|initiallyReduce| ((|#4| |#4| $) 83)) (|infRittWu?| (((|Boolean|) $ $) 103)) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (|IntegralDomain|)))) (|headReduced?| (((|Boolean|) |#4| $) 93) (((|Boolean|) $) 89)) (|headReduce| ((|#4| |#4| $) 84)) (|hash| (((|SingleInteger|) $) 10)) (|first| (((|Union| |#4| "failed") $) 77)) (|find| (((|Union| |#4| "failed") (|Mapping| (|Boolean|) |#4|) $) 60)) (|extendIfCan| (((|Union| $ "failed") $ |#4|) 71)) (|extend| (($ $ |#4|) 70)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#4|) $) 49 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| |#4|) (|List| |#4|)) 58 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) (($ $ |#4| |#4|) 57 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) (($ $ (|Equation| |#4|)) 56 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) (($ $ (|List| (|Equation| |#4|))) 55 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 37)) (|empty?| (((|Boolean|) $) 40)) (|empty| (($) 39)) (|degree| (((|NonNegativeInteger|) $) 99)) (|count| (((|NonNegativeInteger|) |#4| $) 53 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#4|) $) 50 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|copy| (($ $) 38)) (|convert| (((|InputForm|) $) 68 (|has| |#4| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#4|)) 59)) (|collectUpper| (($ $ |#3|) 27)) (|collectUnder| (($ $ |#3|) 29)) (|collectQuasiMonic| (($ $) 81)) (|collect| (($ $ |#3|) 28)) (|coerce| (((|OutputForm|) $) 11) (((|List| |#4|) $) 36)) (|coHeight| (((|NonNegativeInteger|) $) 69 (|has| |#3| (|Finite|)))) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 102) (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 101)) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) 91)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#4|) $) 48 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|algebraicVariables| (((|List| |#3|) $) 74)) (|algebraic?| (((|Boolean|) |#3| $) 73)) (= (((|Boolean|) $ $) 6)) (|#| (((|NonNegativeInteger|) $) 45 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|TriangularSetCategory| |#1| |#2| |#3| |#4|) (|Category|) (|IntegralDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |t#1| |t#2| |t#3|)) (T |TriangularSetCategory|)) │ │ │ +((|infRittWu?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|Boolean|)))) (|basicSet| (*1 *2 *3 *4) (|partial| AND (|isDomain| *4 (|Mapping| (|Boolean|) *8 *8)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |bas| *1) (|:| |top| (|List| *8)))) (|isDomain| *3 (|List| *8)) (|ofCategory| *1 (|TriangularSetCategory| *5 *6 *7 *8)))) (|basicSet| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *4 (|Mapping| (|Boolean|) *9)) (|isDomain| *5 (|Mapping| (|Boolean|) *9 *9)) (|ofCategory| *9 (|RecursivePolynomialCategory| *6 *7 *8)) (|ofCategory| *6 (|IntegralDomain|)) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|ofCategory| *8 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |bas| *1) (|:| |top| (|List| *9)))) (|isDomain| *3 (|List| *9)) (|ofCategory| *1 (|TriangularSetCategory| *6 *7 *8 *9)))) (|initials| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|List| *6)))) (|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|NonNegativeInteger|)))) (|quasiComponent| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|Record| (|:| |close| (|List| *6)) (|:| |open| (|List| *6)))))) (|normalized?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Boolean|)))) (|normalized?| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|Boolean|)))) (|reduced?| (*1 *2 *3 *1 *4) (AND (|isDomain| *4 (|Mapping| (|Boolean|) *3 *3)) (|ofCategory| *1 (|TriangularSetCategory| *5 *6 *7 *3)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *5 *6 *7)) (|isDomain| *2 (|Boolean|)))) (|stronglyReduced?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Boolean|)))) (|headReduced?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Boolean|)))) (|initiallyReduced?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Boolean|)))) (|autoReduced?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *7 (|List| *7))) (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *7)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Boolean|)))) (|stronglyReduced?| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|Boolean|)))) (|headReduced?| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|Boolean|)))) (|initiallyReduced?| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|Boolean|)))) (|reduce| (*1 *2 *2 *1 *3 *4) (AND (|isDomain| *3 (|Mapping| *2 *2 *2)) (|isDomain| *4 (|Mapping| (|Boolean|) *2 *2)) (|ofCategory| *1 (|TriangularSetCategory| *5 *6 *7 *2)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *5 *6 *7)))) (|rewriteSetWithReduction| (*1 *2 *2 *1 *3 *4) (AND (|isDomain| *2 (|List| *8)) (|isDomain| *3 (|Mapping| *8 *8 *8)) (|isDomain| *4 (|Mapping| (|Boolean|) *8 *8)) (|ofCategory| *1 (|TriangularSetCategory| *5 *6 *7 *8)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)))) (|stronglyReduce| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|headReduce| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|initiallyReduce| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|removeZero| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|collectQuasiMonic| (*1 *1 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *2 *3 *4 *5)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|RecursivePolynomialCategory| *2 *3 *4)))) (|reduceByQuasiMonic| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|zeroSetSplit| (*1 *2 *3) (AND (|isDomain| *3 (|List| *7)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *7)))) (|zeroSetSplitIntoTriangularSystems| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|List| (|Record| (|:| |close| *1) (|:| |open| (|List| *7))))) (|isDomain| *3 (|List| *7)) (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *6 *7)))) (|first| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|last| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|rest| (*1 *1 *1) (|partial| AND (|ofCategory| *1 (|TriangularSetCategory| *2 *3 *4 *5)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|RecursivePolynomialCategory| *2 *3 *4)))) (|algebraicVariables| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|List| *5)))) (|algebraic?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *3 *6)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *4 *5 *3)) (|isDomain| *2 (|Boolean|)))) (|select| (*1 *2 *1 *3) (|partial| AND (|ofCategory| *1 (|TriangularSetCategory| *4 *5 *3 *2)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *4 *5 *3)))) (|extendIfCan| (*1 *1 *1 *2) (|partial| AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|extend| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *2 (|RecursivePolynomialCategory| *3 *4 *5)))) (|coHeight| (*1 *2 *1) (AND (|ofCategory| *1 (|TriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *5 (|Finite|)) (|isDomain| *2 (|NonNegativeInteger|))))) │ │ │ +(|Join| (|PolynomialSetCategory| |t#1| |t#2| |t#3| |t#4|) (CATEGORY |domain| (ATTRIBUTE |finiteAggregate|) (ATTRIBUTE |shallowlyMutable|) (SIGNATURE |infRittWu?| ((|Boolean|) $ $)) (SIGNATURE |basicSet| ((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |t#4|))) "failed") (|List| |t#4|) (|Mapping| (|Boolean|) |t#4| |t#4|))) (SIGNATURE |basicSet| ((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |t#4|))) "failed") (|List| |t#4|) (|Mapping| (|Boolean|) |t#4|) (|Mapping| (|Boolean|) |t#4| |t#4|))) (SIGNATURE |initials| ((|List| |t#4|) $)) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |quasiComponent| ((|Record| (|:| |close| (|List| |t#4|)) (|:| |open| (|List| |t#4|))) $)) (SIGNATURE |normalized?| ((|Boolean|) |t#4| $)) (SIGNATURE |normalized?| ((|Boolean|) $)) (SIGNATURE |reduced?| ((|Boolean|) |t#4| $ (|Mapping| (|Boolean|) |t#4| |t#4|))) (SIGNATURE |stronglyReduced?| ((|Boolean|) |t#4| $)) (SIGNATURE |headReduced?| ((|Boolean|) |t#4| $)) (SIGNATURE |initiallyReduced?| ((|Boolean|) |t#4| $)) (SIGNATURE |autoReduced?| ((|Boolean|) $ (|Mapping| (|Boolean|) |t#4| (|List| |t#4|)))) (SIGNATURE |stronglyReduced?| ((|Boolean|) $)) (SIGNATURE |headReduced?| ((|Boolean|) $)) (SIGNATURE |initiallyReduced?| ((|Boolean|) $)) (SIGNATURE |reduce| (|t#4| |t#4| $ (|Mapping| |t#4| |t#4| |t#4|) (|Mapping| (|Boolean|) |t#4| |t#4|))) (SIGNATURE |rewriteSetWithReduction| ((|List| |t#4|) (|List| |t#4|) $ (|Mapping| |t#4| |t#4| |t#4|) (|Mapping| (|Boolean|) |t#4| |t#4|))) (SIGNATURE |stronglyReduce| (|t#4| |t#4| $)) (SIGNATURE |headReduce| (|t#4| |t#4| $)) (SIGNATURE |initiallyReduce| (|t#4| |t#4| $)) (SIGNATURE |removeZero| (|t#4| |t#4| $)) (SIGNATURE |collectQuasiMonic| ($ $)) (SIGNATURE |reduceByQuasiMonic| (|t#4| |t#4| $)) (SIGNATURE |zeroSetSplit| ((|List| $) (|List| |t#4|))) (SIGNATURE |zeroSetSplitIntoTriangularSystems| ((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |t#4|)))) (|List| |t#4|))) (SIGNATURE |first| ((|Union| |t#4| "failed") $)) (SIGNATURE |last| ((|Union| |t#4| "failed") $)) (SIGNATURE |rest| ((|Union| $ "failed") $)) (SIGNATURE |algebraicVariables| ((|List| |t#3|) $)) (SIGNATURE |algebraic?| ((|Boolean|) |t#3| $)) (SIGNATURE |select| ((|Union| |t#4| "failed") $ |t#3|)) (SIGNATURE |extendIfCan| ((|Union| $ "failed") $ |t#4|)) (SIGNATURE |extend| ($ $ |t#4|)) (IF (|has| |t#3| (|Finite|)) (SIGNATURE |coHeight| ((|NonNegativeInteger|) $)) |noBranch|))) │ │ │ +(((|Aggregate|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|List| |#4|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| |#4|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|))) ((|Evalable| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|HomogeneousAggregate| |#4|) . T) ((|InnerEvalable| |#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|PolynomialSetCategory| |#1| |#2| |#3| |#4|) . T) ((|SetCategory|) . T) ((|Type|) . T)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|unit| (((|Union| $ "failed")) 35 (|has| |#1| (|IntegralDomain|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) 76)) (|someBasis| (((|Vector| $)) 79)) (|sample| (($) 16 T CONST)) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) 38 (|has| |#1| (|IntegralDomain|)))) (|rightUnit| (((|Union| $ "failed")) 36 (|has| |#1| (|IntegralDomain|)))) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) 63)) (|rightTrace| ((|#1| $) 72)) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) 74)) (|rightRecip| (((|Union| $ "failed") $) 43 (|has| |#1| (|IntegralDomain|)))) (|rightPower| (($ $ (|PositiveInteger|)) 27)) (|rightNorm| ((|#1| $) 70)) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) 40 (|has| |#1| (|IntegralDomain|)))) (|rightDiscriminant| ((|#1| (|Vector| $)) 65)) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) 61)) (|rightAlternative?| (((|Boolean|)) 55)) (|represents| (($ (|Vector| |#1|) (|Vector| $)) 67)) (|recip| (((|Union| $ "failed") $) 45 (|has| |#1| (|IntegralDomain|)))) (|rank| (((|PositiveInteger|)) 78)) (|powerAssociative?| (((|Boolean|)) 52)) (|plenaryPower| (($ $ (|PositiveInteger|)) 32)) (|noncommutativeJordanAlgebra?| (((|Boolean|)) 48)) (|lieAlgebra?| (((|Boolean|)) 46)) (|lieAdmissible?| (((|Boolean|)) 50)) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) 39 (|has| |#1| (|IntegralDomain|)))) (|leftUnit| (((|Union| $ "failed")) 37 (|has| |#1| (|IntegralDomain|)))) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) 64)) (|leftTrace| ((|#1| $) 73)) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) 75)) (|leftRecip| (((|Union| $ "failed") $) 44 (|has| |#1| (|IntegralDomain|)))) (|leftPower| (($ $ (|PositiveInteger|)) 28)) (|leftNorm| ((|#1| $) 71)) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) 41 (|has| |#1| (|IntegralDomain|)))) (|leftDiscriminant| ((|#1| (|Vector| $)) 66)) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) 62)) (|leftAlternative?| (((|Boolean|)) 56)) (|latex| (((|String|) $) 9)) (|jordanAlgebra?| (((|Boolean|)) 47)) (|jordanAdmissible?| (((|Boolean|)) 49)) (|jacobiIdentity?| (((|Boolean|)) 51)) (|hash| (((|SingleInteger|) $) 10)) (|flexible?| (((|Boolean|)) 54)) (|coordinates| (((|Vector| |#1|) $ (|Vector| $)) 69) (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) 68)) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) 77)) (|commutator| (($ $ $) 24)) (|commutative?| (((|Boolean|)) 60)) (|coerce| (((|OutputForm|) $) 11)) (|associatorDependence| (((|List| (|Vector| |#1|))) 42 (|has| |#1| (|IntegralDomain|)))) (|associator| (($ $ $ $) 25)) (|associative?| (((|Boolean|)) 58)) (|antiCommutator| (($ $ $) 23)) (|antiCommutative?| (((|Boolean|)) 59)) (|antiAssociative?| (((|Boolean|)) 57)) (|alternative?| (((|Boolean|)) 53)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 29)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 26) (($ $ |#1|) 34) (($ |#1| $) 33))) │ │ │ +(((|FiniteRankNonAssociativeAlgebra| |#1|) (|Category|) (|CommutativeRing|)) (T |FiniteRankNonAssociativeAlgebra|)) │ │ │ +((|someBasis| (*1 *2) (AND (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)))) (|rank| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|PositiveInteger|)))) (|conditionsForIdempotents| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|List| (|Polynomial| *4))))) (|structuralConstants| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Vector| (|Matrix| *4))))) (|leftRegularRepresentation| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4)))) (|rightRegularRepresentation| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4)))) (|leftTrace| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|rightTrace| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|leftNorm| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|rightNorm| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|coordinates| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Vector| *4)))) (|coordinates| (*1 *2 *3 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4)))) (|represents| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Vector| *4)) (|isDomain| *3 (|Vector| *1)) (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)))) (|leftDiscriminant| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|rightDiscriminant| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|leftTraceMatrix| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4)))) (|rightTraceMatrix| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *1)) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Matrix| *4)))) (|leftCharacteristicPolynomial| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|rightCharacteristicPolynomial| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|commutative?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|antiCommutative?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|associative?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|antiAssociative?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|leftAlternative?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|rightAlternative?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|flexible?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|alternative?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|powerAssociative?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|jacobiIdentity?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|lieAdmissible?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|jordanAdmissible?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|noncommutativeJordanAlgebra?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|jordanAlgebra?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|lieAlgebra?| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Boolean|)))) (|recip| (*1 *1 *1) (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|IntegralDomain|)))) (|leftRecip| (*1 *1 *1) (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|IntegralDomain|)))) (|rightRecip| (*1 *1 *1) (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|IntegralDomain|)))) (|associatorDependence| (*1 *2) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| (|Vector| *3))))) (|leftMinimalPolynomial| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|rightMinimalPolynomial| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *3)))) (|leftUnits| (*1 *2) (|partial| AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Record| (|:| |particular| *1) (|:| |basis| (|List| *1)))) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)))) (|rightUnits| (*1 *2) (|partial| AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|CommutativeRing|)) (|isDomain| *2 (|Record| (|:| |particular| *1) (|:| |basis| (|List| *1)))) (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *3)))) (|leftUnit| (*1 *1) (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|CommutativeRing|)))) (|rightUnit| (*1 *1) (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|CommutativeRing|)))) (|unit| (*1 *1) (|partial| AND (|ofCategory| *1 (|FiniteRankNonAssociativeAlgebra| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|CommutativeRing|))))) │ │ │ +(|Join| (|NonAssociativeAlgebra| |t#1|) (CATEGORY |domain| (SIGNATURE |someBasis| ((|Vector| $))) (SIGNATURE |rank| ((|PositiveInteger|))) (SIGNATURE |conditionsForIdempotents| ((|List| (|Polynomial| |t#1|)) (|Vector| $))) (SIGNATURE |structuralConstants| ((|Vector| (|Matrix| |t#1|)) (|Vector| $))) (SIGNATURE |leftRegularRepresentation| ((|Matrix| |t#1|) $ (|Vector| $))) (SIGNATURE |rightRegularRepresentation| ((|Matrix| |t#1|) $ (|Vector| $))) (SIGNATURE |leftTrace| (|t#1| $)) (SIGNATURE |rightTrace| (|t#1| $)) (SIGNATURE |leftNorm| (|t#1| $)) (SIGNATURE |rightNorm| (|t#1| $)) (SIGNATURE |coordinates| ((|Vector| |t#1|) $ (|Vector| $))) (SIGNATURE |coordinates| ((|Matrix| |t#1|) (|Vector| $) (|Vector| $))) (SIGNATURE |represents| ($ (|Vector| |t#1|) (|Vector| $))) (SIGNATURE |leftDiscriminant| (|t#1| (|Vector| $))) (SIGNATURE |rightDiscriminant| (|t#1| (|Vector| $))) (SIGNATURE |leftTraceMatrix| ((|Matrix| |t#1|) (|Vector| $))) (SIGNATURE |rightTraceMatrix| ((|Matrix| |t#1|) (|Vector| $))) (SIGNATURE |leftCharacteristicPolynomial| ((|SparseUnivariatePolynomial| |t#1|) $)) (SIGNATURE |rightCharacteristicPolynomial| ((|SparseUnivariatePolynomial| |t#1|) $)) (SIGNATURE |commutative?| ((|Boolean|))) (SIGNATURE |antiCommutative?| ((|Boolean|))) (SIGNATURE |associative?| ((|Boolean|))) (SIGNATURE |antiAssociative?| ((|Boolean|))) (SIGNATURE |leftAlternative?| ((|Boolean|))) (SIGNATURE |rightAlternative?| ((|Boolean|))) (SIGNATURE |flexible?| ((|Boolean|))) (SIGNATURE |alternative?| ((|Boolean|))) (SIGNATURE |powerAssociative?| ((|Boolean|))) (SIGNATURE |jacobiIdentity?| ((|Boolean|))) (SIGNATURE |lieAdmissible?| ((|Boolean|))) (SIGNATURE |jordanAdmissible?| ((|Boolean|))) (SIGNATURE |noncommutativeJordanAlgebra?| ((|Boolean|))) (SIGNATURE |jordanAlgebra?| ((|Boolean|))) (SIGNATURE |lieAlgebra?| ((|Boolean|))) (IF (|has| |t#1| (|IntegralDomain|)) (PROGN (SIGNATURE |recip| ((|Union| $ "failed") $)) (SIGNATURE |leftRecip| ((|Union| $ "failed") $)) (SIGNATURE |rightRecip| ((|Union| $ "failed") $)) (SIGNATURE |associatorDependence| ((|List| (|Vector| |t#1|)))) (SIGNATURE |leftMinimalPolynomial| ((|SparseUnivariatePolynomial| |t#1|) $)) (SIGNATURE |rightMinimalPolynomial| ((|SparseUnivariatePolynomial| |t#1|) $)) (SIGNATURE |leftUnits| ((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed"))) (SIGNATURE |rightUnits| ((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed"))) (SIGNATURE |leftUnit| ((|Union| $ "failed"))) (SIGNATURE |rightUnit| ((|Union| $ "failed"))) (SIGNATURE |unit| ((|Union| $ "failed"))) (ATTRIBUTE |unitsKnown|)) |noBranch|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#1|) . T) ((|Module| |#1|) . T) ((|Monad|) . T) ((|NonAssociativeAlgebra| |#1|) . T) ((|NonAssociativeRng|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T)) │ │ │ +((|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) 27) (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) 23)) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) 16))) │ │ │ +(((|ElementaryFunctionDefiniteIntegration| |#1| |#2|) (CATEGORY |package| (SIGNATURE |integrate| ((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)))) (SIGNATURE |integrate| ((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|))) (SIGNATURE |innerint| ((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)))) (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|))) (|Join| (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| |#1|))) (T |ElementaryFunctionDefiniteIntegration|)) │ │ │ +((|innerint| (*1 *2 *3 *4 *5 *5 *6) (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *6 (|Boolean|)) (|ofCategory| *7 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|ofCategory| *3 (|Join| (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *7))) (|isDomain| *2 (|Union| (|:| |f1| (|OrderedCompletion| *3)) (|:| |f2| (|List| (|OrderedCompletion| *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (|isDomain| *1 (|ElementaryFunctionDefiniteIntegration| *7 *3)) (|isDomain| *5 (|OrderedCompletion| *3)))) (|integrate| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|SegmentBinding| (|OrderedCompletion| *3))) (|isDomain| *5 (|String|)) (|ofCategory| *3 (|Join| (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *6))) (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Union| (|:| |f1| (|OrderedCompletion| *3)) (|:| |f2| (|List| (|OrderedCompletion| *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (|isDomain| *1 (|ElementaryFunctionDefiniteIntegration| *6 *3)))) (|integrate| (*1 *2 *3 *4) (AND (|isDomain| *4 (|SegmentBinding| (|OrderedCompletion| *3))) (|ofCategory| *3 (|Join| (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *5))) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Union| (|:| |f1| (|OrderedCompletion| *3)) (|:| |f2| (|List| (|OrderedCompletion| *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (|isDomain| *1 (|ElementaryFunctionDefiniteIntegration| *5 *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |integrate| ((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)))) (SIGNATURE |integrate| ((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|))) (SIGNATURE |innerint| ((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)))) │ │ │ +((~= (((|Boolean|) $ $) 18 (|has| |#2| (|SetCategory|)))) (|swap!| (((|Void|) $ |#1| |#1|) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setelt| ((|#2| $ |#1| |#2|) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) 7 T CONST)) (|qsetelt!| ((|#2| $ |#1| |#2|) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#2| $ |#1|) 48)) (|parts| (((|List| |#2|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|minIndex| ((|#1| $) 40 (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#2|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#2| $) 27 (AND (|has| |#2| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxIndex| ((|#1| $) 41 (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#2| |#2|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#2| |#2|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|latex| (((|String|) $) 22 (|has| |#2| (|SetCategory|)))) (|indices| (((|List| |#1|) $) 43)) (|index?| (((|Boolean|) |#1| $) 44)) (|hash| (((|SingleInteger|) $) 21 (|has| |#2| (|SetCategory|)))) (|first| ((|#2| $) 39 (|has| |#1| (|OrderedSet|)))) (|fill!| (($ $ |#2|) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#2|))) 26 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|Equation| |#2|)) 25 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ |#2| |#2|) 24 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|List| |#2|) (|List| |#2|)) 23 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|entry?| (((|Boolean|) |#2| $) 42 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|))))) (|entries| (((|List| |#2|) $) 45)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#2| $ |#1| |#2|) 47) ((|#2| $ |#1|) 46)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#2| $) 28 (AND (|has| |#2| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|coerce| (((|OutputForm|) $) 20 (|has| |#2| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#2| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|IndexedAggregate| |#1| |#2|) (|Category|) (|SetCategory|) (|Type|)) (T |IndexedAggregate|)) │ │ │ +((|entries| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|List| *4)))) (|index?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|indices| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|List| *3)))) (|entry?| (*1 *2 *3 *1) (AND (|has| *1 (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *1 (|IndexedAggregate| *4 *3)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|maxIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *2 *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|OrderedSet|)))) (|minIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *2 *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|OrderedSet|)))) (|first| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *2 (|Type|)))) (|fill!| (*1 *1 *1 *2) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|IndexedAggregate| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Type|)))) (|swap!| (*1 *2 *1 *3 *3) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|IndexedAggregate| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Void|))))) │ │ │ +(|Join| (|HomogeneousAggregate| |t#2|) (|EltableAggregate| |t#1| |t#2|) (CATEGORY |domain| (SIGNATURE |entries| ((|List| |t#2|) $)) (SIGNATURE |index?| ((|Boolean|) |t#1| $)) (SIGNATURE |indices| ((|List| |t#1|) $)) (IF (|has| |t#2| (|SetCategory|)) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (SIGNATURE |entry?| ((|Boolean|) |t#2| $)) |noBranch|) |noBranch|) (IF (|has| |t#1| (|OrderedSet|)) (PROGN (SIGNATURE |maxIndex| (|t#1| $)) (SIGNATURE |minIndex| (|t#1| $)) (SIGNATURE |first| (|t#2| $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (PROGN (SIGNATURE |fill!| ($ $ |t#2|)) (SIGNATURE |swap!| ((|Void|) $ |t#1| |t#1|))) |noBranch|))) │ │ │ +(((|Aggregate|) . T) ((|BasicType|) |has| |#2| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#2| (|SetCategory|)) ((|Eltable| |#1| |#2|) . T) ((|EltableAggregate| |#1| |#2|) . T) ((|Evalable| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|HomogeneousAggregate| |#2|) . T) ((|InnerEvalable| |#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|SetCategory|) |has| |#2| (|SetCategory|)) ((|Type|) . T)) │ │ │ +((|noLinearFactor?| (((|Boolean|) |#1|) 24)) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) 23) (((|NonNegativeInteger|)) 22)) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) 25) (((|Boolean|) |#1|) 26))) │ │ │ +(((|BrillhartTests| |#1|) (CATEGORY |package| (SIGNATURE |brillhartIrreducible?| ((|Boolean|) |#1|)) (SIGNATURE |brillhartIrreducible?| ((|Boolean|) |#1| (|Boolean|))) (SIGNATURE |brillhartTrials| ((|NonNegativeInteger|))) (SIGNATURE |brillhartTrials| ((|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |noLinearFactor?| ((|Boolean|) |#1|))) (|UnivariatePolynomialCategory| (|Integer|))) (T |BrillhartTests|)) │ │ │ +((|noLinearFactor?| (*1 *2 *3) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|BrillhartTests| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|brillhartTrials| (*1 *2 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|BrillhartTests| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|brillhartTrials| (*1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|BrillhartTests| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|brillhartIrreducible?| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|BrillhartTests| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|brillhartIrreducible?| (*1 *2 *3) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|BrillhartTests| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |brillhartIrreducible?| ((|Boolean|) |#1|)) (SIGNATURE |brillhartIrreducible?| ((|Boolean|) |#1| (|Boolean|))) (SIGNATURE |brillhartTrials| ((|NonNegativeInteger|))) (SIGNATURE |brillhartTrials| ((|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |noLinearFactor?| ((|Boolean|) |#1|))) │ │ │ +((|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) 13))) │ │ │ +(((|SparseUnivariatePolynomialFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)))) (|Ring|) (|Ring|)) (T |SparseUnivariatePolynomialFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|SparseUnivariatePolynomial| *5)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *6)) (|isDomain| *1 (|SparseUnivariatePolynomialFunctions2| *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| ((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)))) │ │ │ +((|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) │ │ │ +(((|MakeRecord| |#1| |#2|) (CATEGORY |package| (SIGNATURE |makeRecord| ((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (|Type|) (|Type|)) (T |MakeRecord|)) │ │ │ +((|makeRecord| (*1 *2 *3 *4) (AND (|isDomain| *2 (|Record| (|:| |part1| *3) (|:| |part2| *4))) (|isDomain| *1 (|MakeRecord| *3 *4)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|Type|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |makeRecord| ((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) │ │ │ +((|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) 179)) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) 97)) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) 175)) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) 184)) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) 192 (|has| |#3| (|LinearOrdinaryDifferentialOperatorCategory| |#2|))))) │ │ │ +(((|PureAlgebraicIntegration| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |palgint| ((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|))) (SIGNATURE |palgextint| ((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|)) (SIGNATURE |palglimint| ((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|))) (SIGNATURE |palgRDE| ((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)))) (IF (|has| |#3| (|LinearOrdinaryDifferentialOperatorCategory| |#2|)) (SIGNATURE |palgLODE| ((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|))) |noBranch|)) (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|))) (|Join| (|FunctionSpace| |#1|) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|)) (|SetCategory|)) (T |PureAlgebraicIntegration|)) │ │ │ +((|palgLODE| (*1 *2 *3 *4 *5 *5 *6) (AND (|isDomain| *5 (|Kernel| *4)) (|isDomain| *6 (|Symbol|)) (|ofCategory| *4 (|Join| (|FunctionSpace| *7) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *7 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |particular| (|Union| *4 "failed")) (|:| |basis| (|List| *4)))) (|isDomain| *1 (|PureAlgebraicIntegration| *7 *4 *3)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4)) (|ofCategory| *3 (|SetCategory|)))) (|palgRDE| (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| AND (|isDomain| *3 (|Kernel| *2)) (|isDomain| *4 (|Mapping| (|Union| *2 "failed") *2 *2 (|Symbol|))) (|ofCategory| *2 (|Join| (|FunctionSpace| *5) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *5 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *1 (|PureAlgebraicIntegration| *5 *2 *6)) (|ofCategory| *6 (|SetCategory|)))) (|palglimint| (*1 *2 *3 *4 *4 *5) (|partial| AND (|isDomain| *4 (|Kernel| *3)) (|isDomain| *5 (|List| *3)) (|ofCategory| *3 (|Join| (|FunctionSpace| *6) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *6 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |mainpart| *3) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| *3) (|:| |logand| *3)))))) (|isDomain| *1 (|PureAlgebraicIntegration| *6 *3 *7)) (|ofCategory| *7 (|SetCategory|)))) (|palgextint| (*1 *2 *3 *4 *4 *3) (|partial| AND (|isDomain| *4 (|Kernel| *3)) (|ofCategory| *3 (|Join| (|FunctionSpace| *5) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *5 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |ratpart| *3) (|:| |coeff| *3))) (|isDomain| *1 (|PureAlgebraicIntegration| *5 *3 *6)) (|ofCategory| *6 (|SetCategory|)))) (|palgint| (*1 *2 *3 *4 *4) (AND (|isDomain| *4 (|Kernel| *3)) (|ofCategory| *3 (|Join| (|FunctionSpace| *5) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *5 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|IntegrationResult| *3)) (|isDomain| *1 (|PureAlgebraicIntegration| *5 *3 *6)) (|ofCategory| *6 (|SetCategory|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |palgint| ((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|))) (SIGNATURE |palgextint| ((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|)) (SIGNATURE |palglimint| ((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|))) (SIGNATURE |palgRDE| ((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)))) (IF (|has| |#3| (|LinearOrdinaryDifferentialOperatorCategory| |#2|)) (SIGNATURE |palgLODE| ((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|))) |noBranch|)) │ │ │ +((|truncate| (($ $) 16)) (|round| (($ $) 22)) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) 49)) (|norm| (($ $) 24)) (|fractionPart| (($ $) 11)) (|floor| (($ $) 38)) (|convert| (((|Float|) $) NIL) (((|DoubleFloat|) $) NIL) (((|Pattern| (|Float|)) $) 33)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL) (($ (|Fraction| (|Integer|))) 28) (($ (|Integer|)) NIL) (($ (|Fraction| (|Integer|))) 28)) (|characteristic| (((|NonNegativeInteger|)) 8)) (|ceiling| (($ $) 39))) │ │ │ +(((|RealNumberSystem&| |#1|) (CATEGORY |domain| (SIGNATURE |round| (|#1| |#1|)) (SIGNATURE |truncate| (|#1| |#1|)) (SIGNATURE |fractionPart| (|#1| |#1|)) (SIGNATURE |floor| (|#1| |#1|)) (SIGNATURE |ceiling| (|#1| |#1|)) (SIGNATURE |norm| (|#1| |#1|)) (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Float|) |#1|) |#1| (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) |#1|))) (SIGNATURE |convert| ((|Pattern| (|Float|)) |#1|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |convert| ((|DoubleFloat|) |#1|)) (SIGNATURE |convert| ((|Float|) |#1|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |coerce| (|#1| |#1|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |characteristic| ((|NonNegativeInteger|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|RealNumberSystem|)) (T |RealNumberSystem&|)) │ │ │ +((|characteristic| (*1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|RealNumberSystem&| *3)) (|ofCategory| *3 (|RealNumberSystem|))))) │ │ │ +(CATEGORY |domain| (SIGNATURE |round| (|#1| |#1|)) (SIGNATURE |truncate| (|#1| |#1|)) (SIGNATURE |fractionPart| (|#1| |#1|)) (SIGNATURE |floor| (|#1| |#1|)) (SIGNATURE |ceiling| (|#1| |#1|)) (SIGNATURE |norm| (|#1| |#1|)) (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Float|) |#1|) |#1| (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) |#1|))) (SIGNATURE |convert| ((|Pattern| (|Float|)) |#1|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |convert| ((|DoubleFloat|) |#1|)) (SIGNATURE |convert| ((|Float|) |#1|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |coerce| (|#1| |#1|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |characteristic| ((|NonNegativeInteger|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) │ │ │ +((|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) 114)) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) 103 (|has| |#1| (|GcdDomain|))) (((|List| |#4|) (|List| |#4|)) 104 (|has| |#1| (|GcdDomain|)))) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) 34)) (|univariate?| (((|Boolean|) |#4|) 33)) (|squareFreeFactors| (((|List| |#4|) |#4|) 100 (|has| |#1| (|GcdDomain|)))) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) 19)) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) 21)) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) 22)) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) 72)) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) 84)) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) 107)) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) 106)) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) 47) (((|List| |#4|) (|List| |#4|) (|List| |#4|)) 49)) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) 48)) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) 110 (|has| |#1| (|GcdDomain|)))) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) 113 (|has| |#1| (|GcdDomain|)))) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) 112 (|has| |#1| (|GcdDomain|)))) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) 86) (((|List| |#4|) (|List| |#4|) (|List| |#4|)) 88) (((|List| |#4|) (|List| |#4|) |#4|) 117) (((|List| |#4|) |#4| |#4|) 115) (((|List| |#4|) (|List| |#4|)) 87)) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) 97 (AND (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|EuclideanDomain|))))) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) 40)) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) 61)) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) 52)) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) 28)) (|linear?| (((|Boolean|) |#4|) 27)) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) 96 (AND (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|EuclideanDomain|))))) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) 95 (AND (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|EuclideanDomain|))))) (|interReduce| (((|List| |#4|) (|List| |#4|)) 65)) (|crushedSet| (((|List| |#4|) (|List| |#4|)) 78)) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) 50)) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) 38)) (|bivariate?| (((|Boolean|) |#4|) 35))) │ │ │ +(((|PolynomialSetUtilitiesPackage| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |removeRedundantFactors| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |removeRedundantFactors| ((|List| |#4|) |#4| |#4|)) (SIGNATURE |removeSquaresIfCan| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |unprotectedRemoveRedundantFactors| ((|List| |#4|) |#4| |#4|)) (SIGNATURE |removeRedundantFactors| ((|List| |#4|) (|List| |#4|) |#4|)) (SIGNATURE |removeRedundantFactors| ((|List| |#4|) (|List| |#4|) (|List| |#4|))) (SIGNATURE |removeRedundantFactors| ((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|)))) (SIGNATURE |certainlySubVariety?| ((|Boolean|) (|List| |#4|) (|List| |#4|))) (SIGNATURE |possiblyNewVariety?| ((|Boolean|) (|List| |#4|) (|List| (|List| |#4|)))) (SIGNATURE |probablyZeroDim?| ((|Boolean|) (|List| |#4|))) (SIGNATURE |selectPolynomials| ((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|))) (SIGNATURE |selectOrPolynomials| ((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|))) (SIGNATURE |selectAndPolynomials| ((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|))) (SIGNATURE |quasiMonicPolynomials| ((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|))) (SIGNATURE |univariate?| ((|Boolean|) |#4|)) (SIGNATURE |univariatePolynomials| ((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|))) (SIGNATURE |linear?| ((|Boolean|) |#4|)) (SIGNATURE |linearPolynomials| ((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|))) (SIGNATURE |bivariate?| ((|Boolean|) |#4|)) (SIGNATURE |bivariatePolynomials| ((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|))) (SIGNATURE |removeRoughlyRedundantFactorsInPols| ((|List| |#4|) (|List| |#4|) (|List| |#4|))) (SIGNATURE |removeRoughlyRedundantFactorsInPols| ((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|))) (SIGNATURE |removeRoughlyRedundantFactorsInPol| (|#4| |#4| (|List| |#4|))) (SIGNATURE |interReduce| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |roughBasicSet| ((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|))) (SIGNATURE |crushedSet| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |rewriteSetByReducingWithParticularGenerators| ((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|))) (SIGNATURE |rewriteIdealWithQuasiMonicGenerators| ((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|))) (IF (|has| |#1| (|GcdDomain|)) (PROGN (SIGNATURE |squareFreeFactors| ((|List| |#4|) |#4|)) (SIGNATURE |univariatePolynomialsGcds| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |univariatePolynomialsGcds| ((|List| |#4|) (|List| |#4|) (|Boolean|))) (SIGNATURE |removeRoughlyRedundantFactorsInContents| ((|List| |#4|) (|List| |#4|) (|List| |#4|))) (SIGNATURE |removeRedundantFactorsInContents| ((|List| |#4|) (|List| |#4|) (|List| |#4|))) (SIGNATURE |removeRedundantFactorsInPols| ((|List| |#4|) (|List| |#4|) (|List| |#4|)))) |noBranch|) (IF (|has| |#1| (|EuclideanDomain|)) (IF (|has| |#1| (|CharacteristicZero|)) (PROGN (SIGNATURE |irreducibleFactors| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |lazyIrreducibleFactors| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |removeIrreducibleRedundantFactors| ((|List| |#4|) (|List| |#4|) (|List| |#4|)))) |noBranch|) |noBranch|)) (|IntegralDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|)) (T |PolynomialSetUtilitiesPackage|)) │ │ │ +((|removeIrreducibleRedundantFactors| (*1 *2 *2 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|CharacteristicZero|)) (|ofCategory| *3 (|EuclideanDomain|)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))) (|lazyIrreducibleFactors| (*1 *2 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|CharacteristicZero|)) (|ofCategory| *3 (|EuclideanDomain|)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))) (|irreducibleFactors| (*1 *2 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|CharacteristicZero|)) (|ofCategory| *3 (|EuclideanDomain|)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))) (|removeRedundantFactorsInPols| (*1 *2 *2 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))) (|removeRedundantFactorsInContents| (*1 *2 *2 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))) (|removeRoughlyRedundantFactorsInContents| (*1 *2 *2 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))) (|univariatePolynomialsGcds| (*1 *2 *2 *3) (AND (|isDomain| *2 (|List| *7)) (|isDomain| *3 (|Boolean|)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7)))) (|univariatePolynomialsGcds| (*1 *2 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))) (|squareFreeFactors| (*1 *2 *3) (AND (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *3)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)))) (|rewriteIdealWithQuasiMonicGenerators| (*1 *2 *2 *3 *4) (AND (|isDomain| *2 (|List| *8)) (|isDomain| *3 (|Mapping| (|Boolean|) *8 *8)) (|isDomain| *4 (|Mapping| *8 *8 *8)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *5 *6 *7 *8)))) (|rewriteSetByReducingWithParticularGenerators| (*1 *2 *2 *3 *4 *5) (AND (|isDomain| *2 (|List| *9)) (|isDomain| *3 (|Mapping| (|Boolean|) *9)) (|isDomain| *4 (|Mapping| (|Boolean|) *9 *9)) (|isDomain| *5 (|Mapping| *9 *9 *9)) (|ofCategory| *9 (|RecursivePolynomialCategory| *6 *7 *8)) (|ofCategory| *6 (|IntegralDomain|)) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|ofCategory| *8 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *6 *7 *8 *9)))) (|crushedSet| (*1 *2 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))) (|roughBasicSet| (*1 *2 *3) (|partial| AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Record| (|:| |bas| (|GeneralTriangularSet| *4 *5 *6 *7)) (|:| |top| (|List| *7)))) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7)) (|isDomain| *3 (|List| *7)))) (|interReduce| (*1 *2 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))) (|removeRoughlyRedundantFactorsInPol| (*1 *2 *2 *3) (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *2)))) (|removeRoughlyRedundantFactorsInPols| (*1 *2 *2 *2 *3) (AND (|isDomain| *2 (|List| *7)) (|isDomain| *3 (|Boolean|)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7)))) (|removeRoughlyRedundantFactorsInPols| (*1 *2 *2 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))) (|bivariatePolynomials| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Record| (|:| |goodPols| (|List| *7)) (|:| |badPols| (|List| *7)))) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7)) (|isDomain| *3 (|List| *7)))) (|bivariate?| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *3)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)))) (|linearPolynomials| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Record| (|:| |goodPols| (|List| *7)) (|:| |badPols| (|List| *7)))) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7)) (|isDomain| *3 (|List| *7)))) (|linear?| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *3)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)))) (|univariatePolynomials| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Record| (|:| |goodPols| (|List| *7)) (|:| |badPols| (|List| *7)))) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7)) (|isDomain| *3 (|List| *7)))) (|univariate?| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *3)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)))) (|quasiMonicPolynomials| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|isDomain| *2 (|Record| (|:| |goodPols| (|List| *7)) (|:| |badPols| (|List| *7)))) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7)) (|isDomain| *3 (|List| *7)))) (|selectAndPolynomials| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Mapping| (|Boolean|) *8))) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |goodPols| (|List| *8)) (|:| |badPols| (|List| *8)))) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *5 *6 *7 *8)) (|isDomain| *4 (|List| *8)))) (|selectOrPolynomials| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Mapping| (|Boolean|) *8))) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |goodPols| (|List| *8)) (|:| |badPols| (|List| *8)))) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *5 *6 *7 *8)) (|isDomain| *4 (|List| *8)))) (|selectPolynomials| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *8)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |goodPols| (|List| *8)) (|:| |badPols| (|List| *8)))) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *5 *6 *7 *8)) (|isDomain| *4 (|List| *8)))) (|probablyZeroDim?| (*1 *2 *3) (AND (|isDomain| *3 (|List| *7)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7)))) (|possiblyNewVariety?| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| (|List| *8))) (|isDomain| *3 (|List| *8)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *5 *6 *7 *8)))) (|certainlySubVariety?| (*1 *2 *3 *3) (AND (|isDomain| *3 (|List| *7)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7)))) (|removeRedundantFactors| (*1 *2 *2 *2 *3) (AND (|isDomain| *3 (|Mapping| (|List| *7) (|List| *7))) (|isDomain| *2 (|List| *7)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *7)))) (|removeRedundantFactors| (*1 *2 *2 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))) (|removeRedundantFactors| (*1 *2 *2 *3) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *3)))) (|unprotectedRemoveRedundantFactors| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *3)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)))) (|removeSquaresIfCan| (*1 *2 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6)))) (|removeRedundantFactors| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *4 *5 *6 *3)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)))) (|removeRedundantFactors| (*1 *2 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|PolynomialSetUtilitiesPackage| *3 *4 *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |removeRedundantFactors| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |removeRedundantFactors| ((|List| |#4|) |#4| |#4|)) (SIGNATURE |removeSquaresIfCan| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |unprotectedRemoveRedundantFactors| ((|List| |#4|) |#4| |#4|)) (SIGNATURE |removeRedundantFactors| ((|List| |#4|) (|List| |#4|) |#4|)) (SIGNATURE |removeRedundantFactors| ((|List| |#4|) (|List| |#4|) (|List| |#4|))) (SIGNATURE |removeRedundantFactors| ((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|)))) (SIGNATURE |certainlySubVariety?| ((|Boolean|) (|List| |#4|) (|List| |#4|))) (SIGNATURE |possiblyNewVariety?| ((|Boolean|) (|List| |#4|) (|List| (|List| |#4|)))) (SIGNATURE |probablyZeroDim?| ((|Boolean|) (|List| |#4|))) (SIGNATURE |selectPolynomials| ((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|))) (SIGNATURE |selectOrPolynomials| ((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|))) (SIGNATURE |selectAndPolynomials| ((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|))) (SIGNATURE |quasiMonicPolynomials| ((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|))) (SIGNATURE |univariate?| ((|Boolean|) |#4|)) (SIGNATURE |univariatePolynomials| ((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|))) (SIGNATURE |linear?| ((|Boolean|) |#4|)) (SIGNATURE |linearPolynomials| ((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|))) (SIGNATURE |bivariate?| ((|Boolean|) |#4|)) (SIGNATURE |bivariatePolynomials| ((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|))) (SIGNATURE |removeRoughlyRedundantFactorsInPols| ((|List| |#4|) (|List| |#4|) (|List| |#4|))) (SIGNATURE |removeRoughlyRedundantFactorsInPols| ((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|))) (SIGNATURE |removeRoughlyRedundantFactorsInPol| (|#4| |#4| (|List| |#4|))) (SIGNATURE |interReduce| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |roughBasicSet| ((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|))) (SIGNATURE |crushedSet| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |rewriteSetByReducingWithParticularGenerators| ((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|))) (SIGNATURE |rewriteIdealWithQuasiMonicGenerators| ((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|))) (IF (|has| |#1| (|GcdDomain|)) (PROGN (SIGNATURE |squareFreeFactors| ((|List| |#4|) |#4|)) (SIGNATURE |univariatePolynomialsGcds| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |univariatePolynomialsGcds| ((|List| |#4|) (|List| |#4|) (|Boolean|))) (SIGNATURE |removeRoughlyRedundantFactorsInContents| ((|List| |#4|) (|List| |#4|) (|List| |#4|))) (SIGNATURE |removeRedundantFactorsInContents| ((|List| |#4|) (|List| |#4|) (|List| |#4|))) (SIGNATURE |removeRedundantFactorsInPols| ((|List| |#4|) (|List| |#4|) (|List| |#4|)))) |noBranch|) (IF (|has| |#1| (|EuclideanDomain|)) (IF (|has| |#1| (|CharacteristicZero|)) (PROGN (SIGNATURE |irreducibleFactors| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |lazyIrreducibleFactors| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |removeIrreducibleRedundantFactors| ((|List| |#4|) (|List| |#4|) (|List| |#4|)))) |noBranch|) |noBranch|)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|weights| (((|List| (|NonNegativeInteger|)) $) NIL) (((|List| (|NonNegativeInteger|)) $ (|Symbol|)) NIL)) (|weight| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|Symbol|)) NIL)) (|variables| (((|List| (|SequentialDifferentialVariable| (|Symbol|))) $) NIL)) (|univariate| (((|SparseUnivariatePolynomial| $) $ (|SequentialDifferentialVariable| (|Symbol|))) NIL) (((|SparseUnivariatePolynomial| |#1|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|totalDegree| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|List| (|SequentialDifferentialVariable| (|Symbol|)))) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|squareFreePart| (($ $) NIL (|has| |#1| (|GcdDomain|)))) (|squareFree| (((|Factored| $) $) NIL (|has| |#1| (|GcdDomain|)))) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|separant| (($ $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|SequentialDifferentialVariable| (|Symbol|)) "failed") $) NIL) (((|Union| (|Symbol|) "failed") $) NIL) (((|Union| (|SparseMultivariatePolynomial| |#1| (|Symbol|)) "failed") $) NIL)) (|retract| ((|#1| $) NIL) (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|SequentialDifferentialVariable| (|Symbol|)) $) NIL) (((|Symbol|) $) NIL) (((|SparseMultivariatePolynomial| |#1| (|Symbol|)) $) NIL)) (|resultant| (($ $ $ (|SequentialDifferentialVariable| (|Symbol|))) NIL (|has| |#1| (|CommutativeRing|)))) (|reductum| (($ $) NIL)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| |#1|) (|Matrix| $)) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|primitivePart| (($ $) NIL (|has| |#1| (|GcdDomain|))) (($ $ (|SequentialDifferentialVariable| (|Symbol|))) NIL (|has| |#1| (|GcdDomain|)))) (|primitiveMonomials| (((|List| $) $) NIL)) (|prime?| (((|Boolean|) $) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|pomopo!| (($ $ |#1| (|IndexedExponents| (|SequentialDifferentialVariable| (|Symbol|))) $) NIL)) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) NIL (AND (|has| (|SequentialDifferentialVariable| (|Symbol|)) (|PatternMatchable| (|Float|))) (|has| |#1| (|PatternMatchable| (|Float|))))) (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) NIL (AND (|has| (|SequentialDifferentialVariable| (|Symbol|)) (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Integer|)))))) (|order| (((|NonNegativeInteger|) $ (|Symbol|)) NIL) (((|NonNegativeInteger|) $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|numberOfMonomials| (((|NonNegativeInteger|) $) NIL)) (|multivariate| (($ (|SparseUnivariatePolynomial| |#1|) (|SequentialDifferentialVariable| (|Symbol|))) NIL) (($ (|SparseUnivariatePolynomial| $) (|SequentialDifferentialVariable| (|Symbol|))) NIL)) (|monomials| (((|List| $) $) NIL)) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| (|IndexedExponents| (|SequentialDifferentialVariable| (|Symbol|)))) NIL) (($ $ (|SequentialDifferentialVariable| (|Symbol|)) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SequentialDifferentialVariable| (|Symbol|))) (|List| (|NonNegativeInteger|))) NIL)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ (|SequentialDifferentialVariable| (|Symbol|))) NIL)) (|minimumDegree| (((|IndexedExponents| (|SequentialDifferentialVariable| (|Symbol|))) $) NIL) (((|NonNegativeInteger|) $ (|SequentialDifferentialVariable| (|Symbol|))) NIL) (((|List| (|NonNegativeInteger|)) $ (|List| (|SequentialDifferentialVariable| (|Symbol|)))) NIL)) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|mapExponents| (($ (|Mapping| (|IndexedExponents| (|SequentialDifferentialVariable| (|Symbol|))) (|IndexedExponents| (|SequentialDifferentialVariable| (|Symbol|)))) $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) (|Symbol|)) NIL) (((|Mapping| $ (|NonNegativeInteger|)) $) NIL (|has| |#1| (|DifferentialRing|)))) (|mainVariable| (((|Union| (|SequentialDifferentialVariable| (|Symbol|)) "failed") $) NIL)) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|leader| (((|SequentialDifferentialVariable| (|Symbol|)) $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL (|has| |#1| (|GcdDomain|)))) (|lcm| (($ (|List| $)) NIL (|has| |#1| (|GcdDomain|))) (($ $ $) NIL (|has| |#1| (|GcdDomain|)))) (|latex| (((|String|) $) NIL)) (|isobaric?| (((|Boolean|) $) NIL)) (|isTimes| (((|Union| (|List| $) "failed") $) NIL)) (|isPlus| (((|Union| (|List| $) "failed") $) NIL)) (|isExpt| (((|Union| (|Record| (|:| |var| (|SequentialDifferentialVariable| (|Symbol|))) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) NIL)) (|initial| (($ $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|ground?| (((|Boolean|) $) NIL)) (|ground| ((|#1| $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|GcdDomain|)))) (|gcd| (($ (|List| $)) NIL (|has| |#1| (|GcdDomain|))) (($ $ $) NIL (|has| |#1| (|GcdDomain|)))) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factor| (((|Factored| $) $) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|exquo| (((|Union| $ "failed") $ |#1|) NIL (|has| |#1| (|IntegralDomain|))) (((|Union| $ "failed") $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|eval| (($ $ (|List| (|Equation| $))) NIL) (($ $ (|Equation| $)) NIL) (($ $ $ $) NIL) (($ $ (|List| $) (|List| $)) NIL) (($ $ (|SequentialDifferentialVariable| (|Symbol|)) |#1|) NIL) (($ $ (|List| (|SequentialDifferentialVariable| (|Symbol|))) (|List| |#1|)) NIL) (($ $ (|SequentialDifferentialVariable| (|Symbol|)) $) NIL) (($ $ (|List| (|SequentialDifferentialVariable| (|Symbol|))) (|List| $)) NIL) (($ $ (|Symbol|) $) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|List| (|Symbol|)) (|List| $)) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|Symbol|) |#1|) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|List| (|Symbol|)) (|List| |#1|)) NIL (|has| |#1| (|DifferentialRing|)))) (|discriminant| (($ $ (|SequentialDifferentialVariable| (|Symbol|))) NIL (|has| |#1| (|CommutativeRing|)))) (|differentiate| (($ $ (|SequentialDifferentialVariable| (|Symbol|))) NIL) (($ $ (|List| (|SequentialDifferentialVariable| (|Symbol|)))) NIL) (($ $ (|SequentialDifferentialVariable| (|Symbol|)) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SequentialDifferentialVariable| (|Symbol|))) (|List| (|NonNegativeInteger|))) NIL) (($ $) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|Symbol|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#1| |#1|)) NIL)) (|differentialVariables| (((|List| (|Symbol|)) $) NIL)) (|degree| (((|IndexedExponents| (|SequentialDifferentialVariable| (|Symbol|))) $) NIL) (((|NonNegativeInteger|) $ (|SequentialDifferentialVariable| (|Symbol|))) NIL) (((|List| (|NonNegativeInteger|)) $ (|List| (|SequentialDifferentialVariable| (|Symbol|)))) NIL) (((|NonNegativeInteger|) $ (|Symbol|)) NIL)) (|convert| (((|Pattern| (|Float|)) $) NIL (AND (|has| (|SequentialDifferentialVariable| (|Symbol|)) (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))))) (((|Pattern| (|Integer|)) $) NIL (AND (|has| (|SequentialDifferentialVariable| (|Symbol|)) (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))))) (((|InputForm|) $) NIL (AND (|has| (|SequentialDifferentialVariable| (|Symbol|)) (|ConvertibleTo| (|InputForm|))) (|has| |#1| (|ConvertibleTo| (|InputForm|)))))) (|content| ((|#1| $) NIL (|has| |#1| (|GcdDomain|))) (($ $ (|SequentialDifferentialVariable| (|Symbol|))) NIL (|has| |#1| (|GcdDomain|)))) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#1|) NIL) (($ (|SequentialDifferentialVariable| (|Symbol|))) NIL) (($ (|Symbol|)) NIL) (($ (|SparseMultivariatePolynomial| |#1| (|Symbol|))) NIL) (($ (|Fraction| (|Integer|))) NIL (OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))) (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|coefficients| (((|List| |#1|) $) NIL)) (|coefficient| ((|#1| $ (|IndexedExponents| (|SequentialDifferentialVariable| (|Symbol|)))) NIL) (($ $ (|SequentialDifferentialVariable| (|Symbol|)) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SequentialDifferentialVariable| (|Symbol|))) (|List| (|NonNegativeInteger|))) NIL)) (|charthRoot| (((|Union| $ "failed") $) NIL (OR (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) (|has| |#1| (|CharacteristicNonZero|))))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|CommutativeRing|)))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (D (($ $ (|SequentialDifferentialVariable| (|Symbol|))) NIL) (($ $ (|List| (|SequentialDifferentialVariable| (|Symbol|)))) NIL) (($ $ (|SequentialDifferentialVariable| (|Symbol|)) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SequentialDifferentialVariable| (|Symbol|))) (|List| (|NonNegativeInteger|))) NIL) (($ $) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|Symbol|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#1| |#1|)) NIL)) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (/ (($ $ |#1|) NIL (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) │ │ │ +(((|SequentialDifferentialPolynomial| |#1|) (|Join| (|DifferentialPolynomialCategory| |#1| (|Symbol|) (|SequentialDifferentialVariable| (|Symbol|)) (|IndexedExponents| (|SequentialDifferentialVariable| (|Symbol|)))) (|RetractableTo| (|SparseMultivariatePolynomial| |#1| (|Symbol|)))) (|Ring|)) (T |SequentialDifferentialPolynomial|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |sample| (|#1|)) (SIGNATURE |size?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |less?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |empty?| ((|Boolean|) |#1|)) (SIGNATURE |eq?| ((|Boolean|) |#1| |#1|))) │ │ │ -((|retractable?| (((|Boolean|) (|Any|)) 13)) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) 21)) (|retract| ((|#1| (|Any|)) 22)) (|coerce| (((|Any|) |#1|) 18))) │ │ │ -(((|AnyFunctions1| |#1|) (CATEGORY |package| (SIGNATURE |coerce| ((|Any|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#1| "failed") (|Any|))) (SIGNATURE |retractable?| ((|Boolean|) (|Any|))) (SIGNATURE |retract| (|#1| (|Any|)))) (|Type|)) (T |AnyFunctions1|)) │ │ │ -((|retract| (*1 *2 *3) (AND (|isDomain| *3 (|Any|)) (|isDomain| *1 (|AnyFunctions1| *2)) (|ofCategory| *2 (|Type|)))) (|retractable?| (*1 *2 *3) (AND (|isDomain| *3 (|Any|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|AnyFunctions1| *4)) (|ofCategory| *4 (|Type|)))) (|retractIfCan| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Any|)) (|isDomain| *1 (|AnyFunctions1| *2)) (|ofCategory| *2 (|Type|)))) (|coerce| (*1 *2 *3) (AND (|isDomain| *2 (|Any|)) (|isDomain| *1 (|AnyFunctions1| *3)) (|ofCategory| *3 (|Type|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |coerce| ((|Any|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#1| "failed") (|Any|))) (SIGNATURE |retractable?| ((|Boolean|) (|Any|))) (SIGNATURE |retract| (|#1| (|Any|)))) │ │ │ -((|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|sample| (($) 7 T CONST)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|copy| (($ $) 13)) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|Aggregate|) (|Category|)) (T |Aggregate|)) │ │ │ -((|eq?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|Aggregate|)) (|isDomain| *2 (|Boolean|)))) (|copy| (*1 *1 *1) (|ofCategory| *1 (|Aggregate|))) (|empty| (*1 *1) (|ofCategory| *1 (|Aggregate|))) (|empty?| (*1 *2 *1) (AND (|ofCategory| *1 (|Aggregate|)) (|isDomain| *2 (|Boolean|)))) (|less?| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|Aggregate|)) (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)))) (|more?| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|Aggregate|)) (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)))) (|size?| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|Aggregate|)) (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)))) (|sample| (*1 *1) (|ofCategory| *1 (|Aggregate|))) (|#| (*1 *2 *1) (AND (|has| *1 (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *1 (|Aggregate|)) (|isDomain| *2 (|NonNegativeInteger|))))) │ │ │ -(|Join| (|Type|) (CATEGORY |domain| (SIGNATURE |eq?| ((|Boolean|) $ $)) (SIGNATURE |copy| ($ $)) (SIGNATURE |empty| ($)) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |less?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |size?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |sample| ($) |constant|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (SIGNATURE |#| ((|NonNegativeInteger|) $)) |noBranch|))) │ │ │ -(((|Type|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|type| (((|Union| "left" "center" "right" "vertical" "horizontal") $) 12)) (|transCoord| (((|Integer|) $) 17)) (|ramifMult| (((|Integer|) $) 15)) (|quotValuation| (((|Integer|) $) 13)) (|latex| (((|String|) $) 9)) (|infClsPt?| (((|Boolean|) $) 14)) (|hash| (((|SingleInteger|) $) 10)) (|excepCoord| (((|Integer|) $) 19)) (|createHN| (($ (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Union| "left" "center" "right" "vertical" "horizontal")) 16)) (|coerce| (((|OutputForm|) $) 11) (($ (|List| (|Integer|))) 20)) (|chartCoord| (((|Integer|) $) 18)) (= (((|Boolean|) $ $) 6))) │ │ │ -(((|BlowUpMethodCategory|) (|Category|)) (T |BlowUpMethodCategory|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Integer|))) (|ofCategory| *1 (|BlowUpMethodCategory|)))) (|excepCoord| (*1 *2 *1) (AND (|ofCategory| *1 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Integer|)))) (|chartCoord| (*1 *2 *1) (AND (|ofCategory| *1 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Integer|)))) (|transCoord| (*1 *2 *1) (AND (|ofCategory| *1 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Integer|)))) (|createHN| (*1 *1 *2 *2 *2 *2 *2 *3 *4) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|Boolean|)) (|isDomain| *4 (|Union| "left" "center" "right" "vertical" "horizontal")) (|ofCategory| *1 (|BlowUpMethodCategory|)))) (|ramifMult| (*1 *2 *1) (AND (|ofCategory| *1 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Integer|)))) (|infClsPt?| (*1 *2 *1) (AND (|ofCategory| *1 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Boolean|)))) (|quotValuation| (*1 *2 *1) (AND (|ofCategory| *1 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Integer|)))) (|type| (*1 *2 *1) (AND (|ofCategory| *1 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Union| "left" "center" "right" "vertical" "horizontal"))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|List| (|Integer|)))) (SIGNATURE |excepCoord| ((|Integer|) $)) (SIGNATURE |chartCoord| ((|Integer|) $)) (SIGNATURE |transCoord| ((|Integer|) $)) (SIGNATURE |createHN| ($ (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Union| "left" "center" "right" "vertical" "horizontal"))) (SIGNATURE |ramifMult| ((|Integer|) $)) (SIGNATURE |infClsPt?| ((|Boolean|) $)) (SIGNATURE |quotValuation| ((|Integer|) $)) (SIGNATURE |type| ((|Union| "left" "center" "right" "vertical" "horizontal") $)))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((|summation| (($ $ (|Symbol|)) 12) (($ $ (|SegmentBinding| $)) 11)) (|product| (($ $ (|Symbol|)) 10) (($ $ (|SegmentBinding| $)) 9)) (|permutation| (($ $ $) 8)) (|factorials| (($ $) 14) (($ $ (|Symbol|)) 13)) (|factorial| (($ $) 7)) (|binomial| (($ $ $) 6))) │ │ │ -(((|CombinatorialOpsCategory|) (|Category|)) (T |CombinatorialOpsCategory|)) │ │ │ -((|factorials| (*1 *1 *1) (|ofCategory| *1 (|CombinatorialOpsCategory|))) (|factorials| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|CombinatorialOpsCategory|)) (|isDomain| *2 (|Symbol|)))) (|summation| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|CombinatorialOpsCategory|)) (|isDomain| *2 (|Symbol|)))) (|summation| (*1 *1 *1 *2) (AND (|isDomain| *2 (|SegmentBinding| *1)) (|ofCategory| *1 (|CombinatorialOpsCategory|)))) (|product| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|CombinatorialOpsCategory|)) (|isDomain| *2 (|Symbol|)))) (|product| (*1 *1 *1 *2) (AND (|isDomain| *2 (|SegmentBinding| *1)) (|ofCategory| *1 (|CombinatorialOpsCategory|))))) │ │ │ -(|Join| (|CombinatorialFunctionCategory|) (CATEGORY |domain| (SIGNATURE |factorials| ($ $)) (SIGNATURE |factorials| ($ $ (|Symbol|))) (SIGNATURE |summation| ($ $ (|Symbol|))) (SIGNATURE |summation| ($ $ (|SegmentBinding| $))) (SIGNATURE |product| ($ $ (|Symbol|))) (SIGNATURE |product| ($ $ (|SegmentBinding| $))))) │ │ │ -(((|CombinatorialFunctionCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|mkcomm| (($ (|Integer|)) 13) (($ $ $) 14)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 17)) (= (((|Boolean|) $ $) 9))) │ │ │ -(((|Commutator|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |mkcomm| ($ (|Integer|))) (SIGNATURE |mkcomm| ($ $ $))))) (T |Commutator|)) │ │ │ -((|mkcomm| (*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Commutator|)))) (|mkcomm| (*1 *1 *1 *1) (|isDomain| *1 (|Commutator|)))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |mkcomm| ($ (|Integer|))) (SIGNATURE |mkcomm| ($ $ $)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|smaller?| (((|Boolean|) $ $) 12)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6))) │ │ │ -(((|Comparable|) (|Category|)) (T |Comparable|)) │ │ │ -((|smaller?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|Comparable|)) (|isDomain| *2 (|Boolean|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |smaller?| ((|Boolean|) $ $)))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|yellow| (($) 15)) (|red| (($) 14)) (|numberOfHues| (((|PositiveInteger|)) 22)) (|latex| (((|String|) $) NIL)) (|hue| (((|Integer|) $) 19)) (|hash| (((|SingleInteger|) $) NIL)) (|green| (($) 16)) (|color| (($ (|Integer|)) 23)) (|coerce| (((|OutputForm|) $) 29)) (|blue| (($) 17)) (= (((|Boolean|) $ $) 13)) (+ (($ $ $) 11)) (* (($ (|PositiveInteger|) $) 21) (($ (|DoubleFloat|) $) 8))) │ │ │ -(((|Color|) (|Join| (|AbelianSemiGroup|) (CATEGORY |domain| (SIGNATURE * ($ (|PositiveInteger|) $)) (SIGNATURE * ($ (|DoubleFloat|) $)) (SIGNATURE + ($ $ $)) (SIGNATURE |red| ($)) (SIGNATURE |yellow| ($)) (SIGNATURE |green| ($)) (SIGNATURE |blue| ($)) (SIGNATURE |hue| ((|Integer|) $)) (SIGNATURE |numberOfHues| ((|PositiveInteger|))) (SIGNATURE |color| ($ (|Integer|)))))) (T |Color|)) │ │ │ -((+ (*1 *1 *1 *1) (|isDomain| *1 (|Color|))) (* (*1 *1 *2 *1) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|Color|)))) (* (*1 *1 *2 *1) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|Color|)))) (|red| (*1 *1) (|isDomain| *1 (|Color|))) (|yellow| (*1 *1) (|isDomain| *1 (|Color|))) (|green| (*1 *1) (|isDomain| *1 (|Color|))) (|blue| (*1 *1) (|isDomain| *1 (|Color|))) (|hue| (*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Color|)))) (|numberOfHues| (*1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|Color|)))) (|color| (*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Color|))))) │ │ │ -(|Join| (|AbelianSemiGroup|) (CATEGORY |domain| (SIGNATURE * ($ (|PositiveInteger|) $)) (SIGNATURE * ($ (|DoubleFloat|) $)) (SIGNATURE + ($ $ $)) (SIGNATURE |red| ($)) (SIGNATURE |yellow| ($)) (SIGNATURE |green| ($)) (SIGNATURE |blue| ($)) (SIGNATURE |hue| ((|Integer|) $)) (SIGNATURE |numberOfHues| ((|PositiveInteger|))) (SIGNATURE |color| ($ (|Integer|))))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|solid?| (((|Boolean|) $) 9)) (|solid| (((|Boolean|) $ (|Boolean|)) 11)) (|new| (($) 12)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|copy| (($ $) 13)) (|coerce| (((|OutputForm|) $) 17)) (|closed?| (((|Boolean|) $) 8)) (|close| (((|Boolean|) $ (|Boolean|)) 10)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|SubSpaceComponentProperty|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |new| ($)) (SIGNATURE |closed?| ((|Boolean|) $)) (SIGNATURE |solid?| ((|Boolean|) $)) (SIGNATURE |close| ((|Boolean|) $ (|Boolean|))) (SIGNATURE |solid| ((|Boolean|) $ (|Boolean|))) (SIGNATURE |copy| ($ $))))) (T |SubSpaceComponentProperty|)) │ │ │ -((|new| (*1 *1) (|isDomain| *1 (|SubSpaceComponentProperty|))) (|closed?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SubSpaceComponentProperty|)))) (|solid?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SubSpaceComponentProperty|)))) (|close| (*1 *2 *1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SubSpaceComponentProperty|)))) (|solid| (*1 *2 *1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SubSpaceComponentProperty|)))) (|copy| (*1 *1 *1) (|isDomain| *1 (|SubSpaceComponentProperty|)))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |new| ($)) (SIGNATURE |closed?| ((|Boolean|) $)) (SIGNATURE |solid?| ((|Boolean|) $)) (SIGNATURE |close| ((|Boolean|) $ (|Boolean|))) (SIGNATURE |solid| ((|Boolean|) $ (|Boolean|))) (SIGNATURE |copy| ($ $)))) │ │ │ -((|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) 17))) │ │ │ -(((|DrawOptionFunctions1| |#1|) (CATEGORY |package| (SIGNATURE |option| ((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)))) (|Type|)) (T |DrawOptionFunctions1|)) │ │ │ -((|option| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *4 (|Symbol|)) (|isDomain| *1 (|DrawOptionFunctions1| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |option| ((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)))) │ │ │ -((|qsetelt!| ((|#3| $ |#2| |#3|) 12)) (|qelt| ((|#3| $ |#2|) 10))) │ │ │ -(((|EltableAggregate&| |#1| |#2| |#3|) (CATEGORY |domain| (SIGNATURE |qsetelt!| (|#3| |#1| |#2| |#3|)) (SIGNATURE |qelt| (|#3| |#1| |#2|))) (|EltableAggregate| |#2| |#3|) (|SetCategory|) (|Type|)) (T |EltableAggregate&|)) │ │ │ +(|Join| (|DifferentialPolynomialCategory| |#1| (|Symbol|) (|SequentialDifferentialVariable| (|Symbol|)) (|IndexedExponents| (|SequentialDifferentialVariable| (|Symbol|)))) (|RetractableTo| (|SparseMultivariatePolynomial| |#1| (|Symbol|)))) │ │ │ +((|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) 103) (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) 92) (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) 125) (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) 114) (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) 82) (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) 71)) (|retract| (($ (|Matrix| (|Expression| (|Float|)))) 99) (($ (|Matrix| (|Expression| (|Integer|)))) 88) (($ (|Matrix| (|Polynomial| (|Float|)))) 121) (($ (|Matrix| (|Polynomial| (|Integer|)))) 110) (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) 78) (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) 64)) (|outputAsFortran| (((|Void|) $) 57)) (|coerce| (((|OutputForm|) $) 43) (($ (|List| (|FortranCode|))) 50) (($ (|FortranCode|)) 39) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 47) (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) 40))) │ │ │ +(((|Asp74| |#1|) (|Join| (|FortranMatrixFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|))))))) (|Symbol|)) (T |Asp74|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) (|isDomain| *1 (|Asp74| *3)) (|ofType| *3 (|Symbol|))))) │ │ │ +(|Join| (|FortranMatrixFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|))))))) │ │ │ +((|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) 36)) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) 19)) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) 31) ((|#1| (|List| |#1|) (|List| |#1|)) 29))) │ │ │ +(((|CRApackage| |#1|) (CATEGORY |package| (SIGNATURE |modTree| ((|List| |#1|) |#1| (|List| |#1|))) (SIGNATURE |chineseRemainder| (|#1| (|List| |#1|) (|List| |#1|))) (SIGNATURE |chineseRemainder| ((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|))) (SIGNATURE |multiEuclideanTree| ((|List| |#1|) (|List| |#1|) |#1|))) (|EuclideanDomain|)) (T |CRApackage|)) │ │ │ +((|multiEuclideanTree| (*1 *2 *2 *3) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|EuclideanDomain|)) (|isDomain| *1 (|CRApackage| *3)))) (|chineseRemainder| (*1 *2 *3 *2) (AND (|isDomain| *3 (|List| (|List| *4))) (|isDomain| *2 (|List| *4)) (|ofCategory| *4 (|EuclideanDomain|)) (|isDomain| *1 (|CRApackage| *4)))) (|chineseRemainder| (*1 *2 *3 *3) (AND (|isDomain| *3 (|List| *2)) (|isDomain| *1 (|CRApackage| *2)) (|ofCategory| *2 (|EuclideanDomain|)))) (|modTree| (*1 *2 *3 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|EuclideanDomain|)) (|isDomain| *1 (|CRApackage| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |modTree| ((|List| |#1|) |#1| (|List| |#1|))) (SIGNATURE |chineseRemainder| (|#1| (|List| |#1|) (|List| |#1|))) (SIGNATURE |chineseRemainder| ((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|))) (SIGNATURE |multiEuclideanTree| ((|List| |#1|) (|List| |#1|) |#1|))) │ │ │ +((|rowEchelon| ((|#4| |#4|) 26)) (|rank| (((|NonNegativeInteger|) |#4|) 31)) (|nullity| (((|NonNegativeInteger|) |#4|) 32)) (|nullSpace| (((|List| |#3|) |#4|) 37 (|has| |#3| (ATTRIBUTE |shallowlyMutable|)))) (|inverse| (((|Union| |#4| "failed") |#4|) 47)) (|generalizedInverse| ((|#4| |#4|) 40)) (|determinant| ((|#1| |#4|) 39))) │ │ │ +(((|InnerMatrixLinearAlgebraFunctions| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |rowEchelon| (|#4| |#4|)) (SIGNATURE |rank| ((|NonNegativeInteger|) |#4|)) (SIGNATURE |nullity| ((|NonNegativeInteger|) |#4|)) (IF (|has| |#3| (ATTRIBUTE |shallowlyMutable|)) (SIGNATURE |nullSpace| ((|List| |#3|) |#4|)) |noBranch|) (SIGNATURE |determinant| (|#1| |#4|)) (SIGNATURE |generalizedInverse| (|#4| |#4|)) (SIGNATURE |inverse| ((|Union| |#4| "failed") |#4|))) (|Field|) (|FiniteLinearAggregate| |#1|) (|FiniteLinearAggregate| |#1|) (|MatrixCategory| |#1| |#2| |#3|)) (T |InnerMatrixLinearAlgebraFunctions|)) │ │ │ +((|inverse| (*1 *2 *2) (|partial| AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *1 (|InnerMatrixLinearAlgebraFunctions| *3 *4 *5 *2)) (|ofCategory| *2 (|MatrixCategory| *3 *4 *5)))) (|generalizedInverse| (*1 *2 *2) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *1 (|InnerMatrixLinearAlgebraFunctions| *3 *4 *5 *2)) (|ofCategory| *2 (|MatrixCategory| *3 *4 *5)))) (|determinant| (*1 *2 *3) (AND (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|InnerMatrixLinearAlgebraFunctions| *2 *4 *5 *3)) (|ofCategory| *3 (|MatrixCategory| *2 *4 *5)))) (|nullSpace| (*1 *2 *3) (AND (|has| *6 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|isDomain| *2 (|List| *6)) (|isDomain| *1 (|InnerMatrixLinearAlgebraFunctions| *4 *5 *6 *3)) (|ofCategory| *3 (|MatrixCategory| *4 *5 *6)))) (|nullity| (*1 *2 *3) (AND (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|InnerMatrixLinearAlgebraFunctions| *4 *5 *6 *3)) (|ofCategory| *3 (|MatrixCategory| *4 *5 *6)))) (|rank| (*1 *2 *3) (AND (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|InnerMatrixLinearAlgebraFunctions| *4 *5 *6 *3)) (|ofCategory| *3 (|MatrixCategory| *4 *5 *6)))) (|rowEchelon| (*1 *2 *2) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *1 (|InnerMatrixLinearAlgebraFunctions| *3 *4 *5 *2)) (|ofCategory| *2 (|MatrixCategory| *3 *4 *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |rowEchelon| (|#4| |#4|)) (SIGNATURE |rank| ((|NonNegativeInteger|) |#4|)) (SIGNATURE |nullity| ((|NonNegativeInteger|) |#4|)) (IF (|has| |#3| (ATTRIBUTE |shallowlyMutable|)) (SIGNATURE |nullSpace| ((|List| |#3|) |#4|)) |noBranch|) (SIGNATURE |determinant| (|#1| |#4|)) (SIGNATURE |generalizedInverse| (|#4| |#4|)) (SIGNATURE |inverse| ((|Union| |#4| "failed") |#4|))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|tower| (((|List| (|Kernel| $)) $) 43)) (|subst| (($ $ (|Equation| $)) 55) (($ $ (|List| (|Equation| $))) 54) (($ $ (|List| (|Kernel| $)) (|List| $)) 53)) (|retractIfCan| (((|Union| (|Kernel| $) "failed") $) 68)) (|retract| (((|Kernel| $) $) 67)) (|paren| (($ $) 50) (($ (|List| $)) 49)) (|operators| (((|List| (|BasicOperator|)) $) 42)) (|operator| (((|BasicOperator|) (|BasicOperator|)) 41)) (|odd?| (((|Boolean|) $) 21 (|has| $ (|RetractableTo| (|Integer|))))) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) 24 (|has| $ (|Ring|)))) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|map| (($ (|Mapping| $ $) (|Kernel| $)) 35)) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) 45)) (|latex| (((|String|) $) 9)) (|kernels| (((|List| (|Kernel| $)) $) 44)) (|kernel| (($ (|BasicOperator|) $) 37) (($ (|BasicOperator|) (|List| $)) 36)) (|is?| (((|Boolean|) $ (|BasicOperator|)) 39) (((|Boolean|) $ (|Symbol|)) 38)) (|height| (((|NonNegativeInteger|) $) 46)) (|hash| (((|SingleInteger|) $) 10)) (|freeOf?| (((|Boolean|) $ $) 34) (((|Boolean|) $ (|Symbol|)) 33)) (|even?| (((|Boolean|) $) 22 (|has| $ (|RetractableTo| (|Integer|))))) (|eval| (($ $ (|Kernel| $) $) 66) (($ $ (|List| (|Kernel| $)) (|List| $)) 65) (($ $ (|List| (|Equation| $))) 64) (($ $ (|Equation| $)) 63) (($ $ $ $) 62) (($ $ (|List| $) (|List| $)) 61) (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) 32) (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) 31) (($ $ (|Symbol|) (|Mapping| $ (|List| $))) 30) (($ $ (|Symbol|) (|Mapping| $ $)) 29) (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) 28) (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) 27) (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) 26) (($ $ (|BasicOperator|) (|Mapping| $ $)) 25)) (|elt| (($ (|BasicOperator|) $) 60) (($ (|BasicOperator|) $ $) 59) (($ (|BasicOperator|) $ $ $) 58) (($ (|BasicOperator|) $ $ $ $) 57) (($ (|BasicOperator|) (|List| $)) 56)) (|distribute| (($ $) 48) (($ $ $) 47)) (|definingPolynomial| (($ $) 23 (|has| $ (|Ring|)))) (|coerce| (((|OutputForm|) $) 11) (($ (|Kernel| $)) 69)) (|box| (($ $) 52) (($ (|List| $)) 51)) (|belong?| (((|Boolean|) (|BasicOperator|)) 40)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17))) │ │ │ +(((|ExpressionSpace|) (|Category|)) (T |ExpressionSpace|)) │ │ │ +((|elt| (*1 *1 *2 *1) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|BasicOperator|)))) (|elt| (*1 *1 *2 *1 *1) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|BasicOperator|)))) (|elt| (*1 *1 *2 *1 *1 *1) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|BasicOperator|)))) (|elt| (*1 *1 *2 *1 *1 *1 *1) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|BasicOperator|)))) (|elt| (*1 *1 *2 *3) (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|subst| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Equation| *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|subst| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Equation| *1))) (|ofCategory| *1 (|ExpressionSpace|)))) (|subst| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| (|Kernel| *1))) (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|box| (*1 *1 *1) (|ofCategory| *1 (|ExpressionSpace|))) (|box| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|paren| (*1 *1 *1) (|ofCategory| *1 (|ExpressionSpace|))) (|paren| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|distribute| (*1 *1 *1) (|ofCategory| *1 (|ExpressionSpace|))) (|distribute| (*1 *1 *1 *1) (|ofCategory| *1 (|ExpressionSpace|))) (|height| (*1 *2 *1) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|mainKernel| (*1 *2 *1) (|partial| AND (|isDomain| *2 (|Kernel| *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|kernels| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Kernel| *1))) (|ofCategory| *1 (|ExpressionSpace|)))) (|tower| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Kernel| *1))) (|ofCategory| *1 (|ExpressionSpace|)))) (|operators| (*1 *2 *1) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|List| (|BasicOperator|))))) (|operator| (*1 *2 *2) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|BasicOperator|)))) (|belong?| (*1 *2 *3) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *3 (|BasicOperator|)) (|isDomain| *2 (|Boolean|)))) (|is?| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *3 (|BasicOperator|)) (|isDomain| *2 (|Boolean|)))) (|is?| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Boolean|)))) (|kernel| (*1 *1 *2 *1) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|BasicOperator|)))) (|kernel| (*1 *1 *2 *3) (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|map| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Mapping| *1 *1)) (|isDomain| *3 (|Kernel| *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|freeOf?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|Boolean|)))) (|freeOf?| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Boolean|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *3 (|List| (|Mapping| *1 *1))) (|ofCategory| *1 (|ExpressionSpace|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *3 (|List| (|Mapping| *1 (|List| *1)))) (|ofCategory| *1 (|ExpressionSpace|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Mapping| *1 (|List| *1))) (|ofCategory| *1 (|ExpressionSpace|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Mapping| *1 *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| (|BasicOperator|))) (|isDomain| *3 (|List| (|Mapping| *1 *1))) (|ofCategory| *1 (|ExpressionSpace|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| (|BasicOperator|))) (|isDomain| *3 (|List| (|Mapping| *1 (|List| *1)))) (|ofCategory| *1 (|ExpressionSpace|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|Mapping| *1 (|List| *1))) (|ofCategory| *1 (|ExpressionSpace|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|Mapping| *1 *1)) (|ofCategory| *1 (|ExpressionSpace|)))) (|minPoly| (*1 *2 *3) (AND (|isDomain| *3 (|Kernel| *1)) (|ofCategory| *1 (|Ring|)) (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *1)))) (|definingPolynomial| (*1 *1 *1) (AND (|ofCategory| *1 (|Ring|)) (|ofCategory| *1 (|ExpressionSpace|)))) (|even?| (*1 *2 *1) (AND (|ofCategory| *1 (|RetractableTo| (|Integer|))) (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|Boolean|)))) (|odd?| (*1 *2 *1) (AND (|ofCategory| *1 (|RetractableTo| (|Integer|))) (|ofCategory| *1 (|ExpressionSpace|)) (|isDomain| *2 (|Boolean|))))) │ │ │ +(|Join| (|OrderedSet|) (|RetractableTo| (|Kernel| $)) (|InnerEvalable| (|Kernel| $) $) (|Evalable| $) (CATEGORY |domain| (SIGNATURE |elt| ($ (|BasicOperator|) $)) (SIGNATURE |elt| ($ (|BasicOperator|) $ $)) (SIGNATURE |elt| ($ (|BasicOperator|) $ $ $)) (SIGNATURE |elt| ($ (|BasicOperator|) $ $ $ $)) (SIGNATURE |elt| ($ (|BasicOperator|) (|List| $))) (SIGNATURE |subst| ($ $ (|Equation| $))) (SIGNATURE |subst| ($ $ (|List| (|Equation| $)))) (SIGNATURE |subst| ($ $ (|List| (|Kernel| $)) (|List| $))) (SIGNATURE |box| ($ $)) (SIGNATURE |box| ($ (|List| $))) (SIGNATURE |paren| ($ $)) (SIGNATURE |paren| ($ (|List| $))) (SIGNATURE |distribute| ($ $)) (SIGNATURE |distribute| ($ $ $)) (SIGNATURE |height| ((|NonNegativeInteger|) $)) (SIGNATURE |mainKernel| ((|Union| (|Kernel| $) "failed") $)) (SIGNATURE |kernels| ((|List| (|Kernel| $)) $)) (SIGNATURE |tower| ((|List| (|Kernel| $)) $)) (SIGNATURE |operators| ((|List| (|BasicOperator|)) $)) (SIGNATURE |operator| ((|BasicOperator|) (|BasicOperator|))) (SIGNATURE |belong?| ((|Boolean|) (|BasicOperator|))) (SIGNATURE |is?| ((|Boolean|) $ (|BasicOperator|))) (SIGNATURE |is?| ((|Boolean|) $ (|Symbol|))) (SIGNATURE |kernel| ($ (|BasicOperator|) $)) (SIGNATURE |kernel| ($ (|BasicOperator|) (|List| $))) (SIGNATURE |map| ($ (|Mapping| $ $) (|Kernel| $))) (SIGNATURE |freeOf?| ((|Boolean|) $ $)) (SIGNATURE |freeOf?| ((|Boolean|) $ (|Symbol|))) (SIGNATURE |eval| ($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $)))) (SIGNATURE |eval| ($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $))))) (SIGNATURE |eval| ($ $ (|Symbol|) (|Mapping| $ (|List| $)))) (SIGNATURE |eval| ($ $ (|Symbol|) (|Mapping| $ $))) (SIGNATURE |eval| ($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $)))) (SIGNATURE |eval| ($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $))))) (SIGNATURE |eval| ($ $ (|BasicOperator|) (|Mapping| $ (|List| $)))) (SIGNATURE |eval| ($ $ (|BasicOperator|) (|Mapping| $ $))) (IF (|has| $ (|Ring|)) (PROGN (SIGNATURE |minPoly| ((|SparseUnivariatePolynomial| $) (|Kernel| $))) (SIGNATURE |definingPolynomial| ($ $))) |noBranch|) (IF (|has| $ (|RetractableTo| (|Integer|))) (PROGN (SIGNATURE |even?| ((|Boolean|) $)) (SIGNATURE |odd?| ((|Boolean|) $))) |noBranch|))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Evalable| $) . T) ((|InnerEvalable| (|Kernel| $) $) . T) ((|InnerEvalable| $ $) . T) ((|OrderedSet|) . T) ((|RetractableTo| (|Kernel| $)) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|unravel| (($ (|List| |#3|)) 38)) (|transpose| (($ $) 97) (($ $ (|Integer|) (|Integer|)) 96)) (|sample| (($) 17)) (|retractIfCan| (((|Union| |#3| "failed") $) 58)) (|retract| ((|#3| $) NIL)) (|reindex| (($ $ (|List| (|Integer|))) 98)) (|ravel| (((|List| |#3|) $) 34)) (|rank| (((|NonNegativeInteger|) $) 42)) (|product| (($ $ $) 91)) (|leviCivitaSymbol| (($) 41)) (|latex| (((|String|) $) NIL)) (|kroneckerDelta| (($) 16)) (|hash| (((|SingleInteger|) $) NIL)) (|elt| ((|#3| $) 44) ((|#3| $ (|Integer|)) 45) ((|#3| $ (|Integer|) (|Integer|)) 46) ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) 47) ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 48) ((|#3| $ (|List| (|Integer|))) 50)) (|degree| (((|NonNegativeInteger|) $) 43)) (|contract| (($ $ (|Integer|) $ (|Integer|)) 92) (($ $ (|Integer|) (|Integer|)) 94)) (|coerce| (((|OutputForm|) $) 65) (($ |#3|) 66) (($ (|DirectProduct| |#2| |#3|)) 73) (($ (|SquareMatrix| |#2| |#3|)) 76) (($ (|List| |#3|)) 51) (($ (|List| $)) 56)) (|Zero| (($) 67 T CONST)) (|One| (($) 68 T CONST)) (= (((|Boolean|) $ $) 78)) (- (($ $) 84) (($ $ $) 82)) (+ (($ $ $) 80)) (* (($ |#3| $) 89) (($ $ |#3|) 90) (($ $ (|Integer|)) 87) (($ (|Integer|) $) 86) (($ $ $) 93))) │ │ │ +(((|CartesianTensor| |#1| |#2| |#3|) (|Join| (|GradedAlgebra| |#3| (|NonNegativeInteger|)) (|GradedModule| (|Integer|) (|NonNegativeInteger|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|DirectProduct| |#2| |#3|))) (SIGNATURE |coerce| ($ (|SquareMatrix| |#2| |#3|))) (SIGNATURE |coerce| ($ (|List| |#3|))) (SIGNATURE |coerce| ($ (|List| $))) (SIGNATURE |rank| ((|NonNegativeInteger|) $)) (SIGNATURE |elt| (|#3| $)) (SIGNATURE |elt| (|#3| $ (|Integer|))) (SIGNATURE |elt| (|#3| $ (|Integer|) (|Integer|))) (SIGNATURE |elt| (|#3| $ (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |elt| (|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |elt| (|#3| $ (|List| (|Integer|)))) (SIGNATURE |product| ($ $ $)) (SIGNATURE * ($ $ $)) (SIGNATURE |contract| ($ $ (|Integer|) $ (|Integer|))) (SIGNATURE |contract| ($ $ (|Integer|) (|Integer|))) (SIGNATURE |transpose| ($ $)) (SIGNATURE |transpose| ($ $ (|Integer|) (|Integer|))) (SIGNATURE |reindex| ($ $ (|List| (|Integer|)))) (SIGNATURE |kroneckerDelta| ($)) (SIGNATURE |leviCivitaSymbol| ($)) (SIGNATURE |ravel| ((|List| |#3|) $)) (SIGNATURE |unravel| ($ (|List| |#3|))) (SIGNATURE |sample| ($)))) (|Integer|) (|NonNegativeInteger|) (|CommutativeRing|)) (T |CartesianTensor|)) │ │ │ +((|product| (*1 *1 *1 *1) (AND (|isDomain| *1 (|CartesianTensor| *2 *3 *4)) (|ofType| *2 (|Integer|)) (|ofType| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|CommutativeRing|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|DirectProduct| *4 *5)) (|ofType| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|CommutativeRing|)) (|isDomain| *1 (|CartesianTensor| *3 *4 *5)) (|ofType| *3 (|Integer|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|SquareMatrix| *4 *5)) (|ofType| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|CommutativeRing|)) (|isDomain| *1 (|CartesianTensor| *3 *4 *5)) (|ofType| *3 (|Integer|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| *5)) (|ofCategory| *5 (|CommutativeRing|)) (|isDomain| *1 (|CartesianTensor| *3 *4 *5)) (|ofType| *3 (|Integer|)) (|ofType| *4 (|NonNegativeInteger|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|CartesianTensor| *3 *4 *5))) (|isDomain| *1 (|CartesianTensor| *3 *4 *5)) (|ofType| *3 (|Integer|)) (|ofType| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|CommutativeRing|)))) (|rank| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|CartesianTensor| *3 *4 *5)) (|ofType| *3 (|Integer|)) (|ofType| *4 *2) (|ofCategory| *5 (|CommutativeRing|)))) (|elt| (*1 *2 *1) (AND (|ofCategory| *2 (|CommutativeRing|)) (|isDomain| *1 (|CartesianTensor| *3 *4 *2)) (|ofType| *3 (|Integer|)) (|ofType| *4 (|NonNegativeInteger|)))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *2 (|CommutativeRing|)) (|isDomain| *1 (|CartesianTensor| *4 *5 *2)) (|ofType| *4 *3) (|ofType| *5 (|NonNegativeInteger|)))) (|elt| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *2 (|CommutativeRing|)) (|isDomain| *1 (|CartesianTensor| *4 *5 *2)) (|ofType| *4 *3) (|ofType| *5 (|NonNegativeInteger|)))) (|elt| (*1 *2 *1 *3 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *2 (|CommutativeRing|)) (|isDomain| *1 (|CartesianTensor| *4 *5 *2)) (|ofType| *4 *3) (|ofType| *5 (|NonNegativeInteger|)))) (|elt| (*1 *2 *1 *3 *3 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *2 (|CommutativeRing|)) (|isDomain| *1 (|CartesianTensor| *4 *5 *2)) (|ofType| *4 *3) (|ofType| *5 (|NonNegativeInteger|)))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|ofCategory| *2 (|CommutativeRing|)) (|isDomain| *1 (|CartesianTensor| *4 *5 *2)) (|ofType| *4 (|Integer|)) (|ofType| *5 (|NonNegativeInteger|)))) (* (*1 *1 *1 *1) (AND (|isDomain| *1 (|CartesianTensor| *2 *3 *4)) (|ofType| *2 (|Integer|)) (|ofType| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|CommutativeRing|)))) (|contract| (*1 *1 *1 *2 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|CartesianTensor| *3 *4 *5)) (|ofType| *3 *2) (|ofType| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|CommutativeRing|)))) (|contract| (*1 *1 *1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|CartesianTensor| *3 *4 *5)) (|ofType| *3 *2) (|ofType| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|CommutativeRing|)))) (|transpose| (*1 *1 *1) (AND (|isDomain| *1 (|CartesianTensor| *2 *3 *4)) (|ofType| *2 (|Integer|)) (|ofType| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|CommutativeRing|)))) (|transpose| (*1 *1 *1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|CartesianTensor| *3 *4 *5)) (|ofType| *3 *2) (|ofType| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|CommutativeRing|)))) (|reindex| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|CartesianTensor| *3 *4 *5)) (|ofType| *3 (|Integer|)) (|ofType| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|CommutativeRing|)))) (|kroneckerDelta| (*1 *1) (AND (|isDomain| *1 (|CartesianTensor| *2 *3 *4)) (|ofType| *2 (|Integer|)) (|ofType| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|CommutativeRing|)))) (|leviCivitaSymbol| (*1 *1) (AND (|isDomain| *1 (|CartesianTensor| *2 *3 *4)) (|ofType| *2 (|Integer|)) (|ofType| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|CommutativeRing|)))) (|ravel| (*1 *2 *1) (AND (|isDomain| *2 (|List| *5)) (|isDomain| *1 (|CartesianTensor| *3 *4 *5)) (|ofType| *3 (|Integer|)) (|ofType| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|CommutativeRing|)))) (|unravel| (*1 *1 *2) (AND (|isDomain| *2 (|List| *5)) (|ofCategory| *5 (|CommutativeRing|)) (|isDomain| *1 (|CartesianTensor| *3 *4 *5)) (|ofType| *3 (|Integer|)) (|ofType| *4 (|NonNegativeInteger|)))) (|sample| (*1 *1) (AND (|isDomain| *1 (|CartesianTensor| *2 *3 *4)) (|ofType| *2 (|Integer|)) (|ofType| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|CommutativeRing|))))) │ │ │ +(|Join| (|GradedAlgebra| |#3| (|NonNegativeInteger|)) (|GradedModule| (|Integer|) (|NonNegativeInteger|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|DirectProduct| |#2| |#3|))) (SIGNATURE |coerce| ($ (|SquareMatrix| |#2| |#3|))) (SIGNATURE |coerce| ($ (|List| |#3|))) (SIGNATURE |coerce| ($ (|List| $))) (SIGNATURE |rank| ((|NonNegativeInteger|) $)) (SIGNATURE |elt| (|#3| $)) (SIGNATURE |elt| (|#3| $ (|Integer|))) (SIGNATURE |elt| (|#3| $ (|Integer|) (|Integer|))) (SIGNATURE |elt| (|#3| $ (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |elt| (|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |elt| (|#3| $ (|List| (|Integer|)))) (SIGNATURE |product| ($ $ $)) (SIGNATURE * ($ $ $)) (SIGNATURE |contract| ($ $ (|Integer|) $ (|Integer|))) (SIGNATURE |contract| ($ $ (|Integer|) (|Integer|))) (SIGNATURE |transpose| ($ $)) (SIGNATURE |transpose| ($ $ (|Integer|) (|Integer|))) (SIGNATURE |reindex| ($ $ (|List| (|Integer|)))) (SIGNATURE |kroneckerDelta| ($)) (SIGNATURE |leviCivitaSymbol| ($)) (SIGNATURE |ravel| ((|List| |#3|) $)) (SIGNATURE |unravel| ($ (|List| |#3|))) (SIGNATURE |sample| ($)))) │ │ │ +((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) 91) (((|Boolean|) $) 85 (|has| |#1| (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) 82 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) 81 (AND (|has| |#1| (|OrderedSet|)) (|has| $ (ATTRIBUTE |shallowlyMutable|))))) (|sort| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) 92) (($ $) 86 (|has| |#1| (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setelt| ((|#1| $ (|Integer|) |#1|) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) 53 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) 70 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) 7 T CONST)) (|reverse!| (($ $) 83 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) 93)) (|removeDuplicates| (($ $) 73 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|remove| (($ |#1| $) 72 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (($ (|Mapping| (|Boolean|) |#1|) $) 69 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 71 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) 67 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) 48)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) 90) (((|Integer|) |#1| $) 89 (|has| |#1| (|SetCategory|))) (((|Integer|) |#1| $ (|Integer|)) 88 (|has| |#1| (|SetCategory|)))) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|new| (($ (|NonNegativeInteger|) |#1|) 64)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|minIndex| (((|Integer|) $) 40 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) 80 (|has| |#1| (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) 94) (($ $ $) 87 (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxIndex| (((|Integer|) $) 41 (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) 79 (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35) (($ (|Mapping| |#1| |#1| |#1|) $ $) 59)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|insert| (($ |#1| $ (|Integer|)) 55) (($ $ $ (|Integer|)) 54)) (|indices| (((|List| (|Integer|)) $) 43)) (|index?| (((|Boolean|) (|Integer|) $) 44)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|first| ((|#1| $) 39 (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) 66)) (|fill!| (($ $ |#1|) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|entry?| (((|Boolean|) |#1| $) 42 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) 45)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ (|Integer|) |#1|) 47) ((|#1| $ (|Integer|)) 46) (($ $ (|UniversalSegment| (|Integer|))) 58)) (|delete| (($ $ (|Integer|)) 57) (($ $ (|UniversalSegment| (|Integer|))) 56)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copyInto!| (($ $ $ (|Integer|)) 84 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) 13)) (|convert| (((|InputForm|) $) 74 (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) 65)) (|concat| (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (|List| $)) 60)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) 77 (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) 76 (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (<= (((|Boolean|) $ $) 78 (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) 75 (|has| |#1| (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|OneDimensionalArrayAggregate| |#1|) (|Category|) (|Type|)) (T |OneDimensionalArrayAggregate|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |qsetelt!| (|#3| |#1| |#2| |#3|)) (SIGNATURE |qelt| (|#3| |#1| |#2|))) │ │ │ -((|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) 14))) │ │ │ -(((|EquationFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)))) (|Type|) (|Type|)) (T |EquationFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Equation| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|Equation| *6)) (|isDomain| *1 (|EquationFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)))) │ │ │ -((|setelt| ((|#2| $ |#1| |#2|) 8 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qsetelt!| ((|#2| $ |#1| |#2|) 7 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#2| $ |#1|) 9)) (|elt| ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 10))) │ │ │ -(((|EltableAggregate| |#1| |#2|) (|Category|) (|SetCategory|) (|Type|)) (T |EltableAggregate|)) │ │ │ -((|elt| (*1 *2 *1 *3 *2) (AND (|ofCategory| *1 (|EltableAggregate| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Type|)))) (|qelt| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|EltableAggregate| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Type|)))) (|setelt| (*1 *2 *1 *3 *2) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|EltableAggregate| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Type|)))) (|qsetelt!| (*1 *2 *1 *3 *2) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|EltableAggregate| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Type|))))) │ │ │ -(|Join| (|Eltable| |t#1| |t#2|) (CATEGORY |domain| (SIGNATURE |elt| (|t#2| $ |t#1| |t#2|)) (SIGNATURE |qelt| (|t#2| $ |t#1|)) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (PROGN (SIGNATURE |setelt| (|t#2| $ |t#1| |t#2|)) (SIGNATURE |qsetelt!| (|t#2| $ |t#1| |t#2|))) |noBranch|))) │ │ │ -(((|Eltable| |#1| |#2|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 7)) (= (((|Boolean|) $ $) 9))) │ │ │ -(((|Exit|) (|SetCategory|)) (T |Exit|)) │ │ │ +(|Join| (|FiniteLinearAggregate| |t#1|) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|))) │ │ │ +(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| (|Integer|) |#1|) . T) ((|EltableAggregate| (|Integer|) |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|FiniteLinearAggregate| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|IndexedAggregate| (|Integer|) |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|LinearAggregate| |#1|) . T) ((|OrderedSet|) |has| |#1| (|OrderedSet|)) ((|SetCategory|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|Type|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|writable?| (((|Boolean|) $) 20)) (|readable?| (((|Boolean|) $) 19)) (|new| (($ (|String|) (|String|) (|String|)) 21)) (|name| (((|String|) $) 16)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|filename| (($ (|String|) (|String|) (|String|)) 14)) (|extension| (((|String|) $) 17)) (|exists?| (((|Boolean|) $) 18)) (|directory| (((|String|) $) 15)) (|coerce| (((|OutputForm|) $) 12) (($ (|String|)) 13) (((|String|) $) 9)) (= (((|Boolean|) $ $) 7))) │ │ │ +(((|FileName|) (|FileNameCategory|)) (T |FileName|)) │ │ │ NIL │ │ │ -(|SetCategory|) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|write!| ((|#2| $ |#2|) 13)) (|reopen!| (($ $ (|String|)) 18)) (|read!| ((|#2| $) 14)) (|open| (($ |#1|) 20) (($ |#1| (|String|)) 19)) (|name| ((|#1| $) 16)) (|latex| (((|String|) $) 9)) (|iomode| (((|String|) $) 15)) (|hash| (((|SingleInteger|) $) 10)) (|flush| (((|Void|) $) 12)) (|coerce| (((|OutputForm|) $) 11)) (|close!| (($ $) 17)) (= (((|Boolean|) $ $) 6))) │ │ │ -(((|FileCategory| |#1| |#2|) (|Category|) (|SetCategory|) (|SetCategory|)) (T |FileCategory|)) │ │ │ -((|open| (*1 *1 *2) (AND (|ofCategory| *1 (|FileCategory| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|open| (*1 *1 *2 *3) (AND (|isDomain| *3 (|String|)) (|ofCategory| *1 (|FileCategory| *2 *4)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))) (|reopen!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|String|)) (|ofCategory| *1 (|FileCategory| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))) (|close!| (*1 *1 *1) (AND (|ofCategory| *1 (|FileCategory| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|name| (*1 *2 *1) (AND (|ofCategory| *1 (|FileCategory| *2 *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|iomode| (*1 *2 *1) (AND (|ofCategory| *1 (|FileCategory| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|String|)))) (|read!| (*1 *2 *1) (AND (|ofCategory| *1 (|FileCategory| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|write!| (*1 *2 *1 *2) (AND (|ofCategory| *1 (|FileCategory| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|flush| (*1 *2 *1) (AND (|ofCategory| *1 (|FileCategory| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Void|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |open| ($ |t#1|)) (SIGNATURE |open| ($ |t#1| (|String|))) (SIGNATURE |reopen!| ($ $ (|String|))) (SIGNATURE |close!| ($ $)) (SIGNATURE |name| (|t#1| $)) (SIGNATURE |iomode| ((|String|) $)) (SIGNATURE |read!| (|t#2| $)) (SIGNATURE |write!| (|t#2| $ |t#2|)) (SIGNATURE |flush| ((|Void|) $)))) │ │ │ +(|FileNameCategory|) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|degree| (((|PositiveInteger|) $) 12)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6))) │ │ │ +(((|SetCategoryWithDegree|) (|Category|)) (T |SetCategoryWithDegree|)) │ │ │ +((|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|SetCategoryWithDegree|)) (|isDomain| *2 (|PositiveInteger|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |degree| ((|PositiveInteger|) $)))) │ │ │ (((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((|random| (($) 13)) (|enumerate| (((|List| $)) 15))) │ │ │ -(((|Finite&| |#1|) (CATEGORY |domain| (SIGNATURE |enumerate| ((|List| |#1|))) (SIGNATURE |random| (|#1|))) (|Finite|)) (T |Finite&|)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|differentiate| (($ $) 37) (($ $ (|NonNegativeInteger|)) 35)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $) 36) (($ $ (|NonNegativeInteger|)) 34)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ +(((|DifferentialRing|) (|Category|)) (T |DifferentialRing|)) │ │ │ +((|differentiate| (*1 *1 *1) (|ofCategory| *1 (|DifferentialRing|))) (D (*1 *1 *1) (|ofCategory| *1 (|DifferentialRing|))) (|differentiate| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|DifferentialRing|)) (|isDomain| *2 (|NonNegativeInteger|)))) (D (*1 *1 *1 *2) (AND (|ofCategory| *1 (|DifferentialRing|)) (|isDomain| *2 (|NonNegativeInteger|))))) │ │ │ +(|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |differentiate| ($ $)) (SIGNATURE D ($ $)) (SIGNATURE |differentiate| ($ $ (|NonNegativeInteger|))) (SIGNATURE D ($ $ (|NonNegativeInteger|))))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +((|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) 30)) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) 56)) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) 61))) │ │ │ +(((|TranscendentalRischDE| |#1| |#2|) (CATEGORY |package| (SIGNATURE |monomRDE| ((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|))) (SIGNATURE |baseRDE| ((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|))) (SIGNATURE |polyRDE| ((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)))) (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Integer|))) (|UnivariatePolynomialCategory| |#1|)) (T |TranscendentalRischDE|)) │ │ │ +((|polyRDE| (*1 *2 *3 *3 *3 *4 *5) (AND (|isDomain| *5 (|Mapping| *3 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *6)) (|ofCategory| *6 (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| *4))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Union| (|:| |ans| (|Record| (|:| |ans| *3) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (|isDomain| *1 (|TranscendentalRischDE| *6 *3)))) (|baseRDE| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)))) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Record| (|:| |ans| (|Fraction| *5)) (|:| |nosol| (|Boolean|)))) (|isDomain| *1 (|TranscendentalRischDE| *4 *5)) (|isDomain| *3 (|Fraction| *5)))) (|monomRDE| (*1 *2 *3 *3 *4) (|partial| AND (|isDomain| *4 (|Mapping| *6 *6)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |a| *6) (|:| |b| (|Fraction| *6)) (|:| |c| (|Fraction| *6)) (|:| |t| *6))) (|isDomain| *1 (|TranscendentalRischDE| *5 *6)) (|isDomain| *3 (|Fraction| *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |monomRDE| ((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|))) (SIGNATURE |baseRDE| ((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|))) (SIGNATURE |polyRDE| ((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) 17)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) 55)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|d03eefAnnaType|) (|PartialDifferentialEquationsSolverCategory|)) (T |d03eefAnnaType|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |enumerate| ((|List| |#1|))) (SIGNATURE |random| (|#1|))) │ │ │ -((|coerce| (((|ScriptFormulaFormat|) |#1|) 11))) │ │ │ -(((|ScriptFormulaFormat1| |#1|) (CATEGORY |package| (SIGNATURE |coerce| ((|ScriptFormulaFormat|) |#1|))) (|SetCategory|)) (T |ScriptFormulaFormat1|)) │ │ │ -((|coerce| (*1 *2 *3) (AND (|isDomain| *2 (|ScriptFormulaFormat|)) (|isDomain| *1 (|ScriptFormulaFormat1| *3)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |coerce| ((|ScriptFormulaFormat|) |#1|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|writable?| (((|Boolean|) $) 13)) (|readable?| (((|Boolean|) $) 14)) (|new| (($ (|String|) (|String|) (|String|)) 12)) (|name| (((|String|) $) 17)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|filename| (($ (|String|) (|String|) (|String|)) 19)) (|extension| (((|String|) $) 16)) (|exists?| (((|Boolean|) $) 15)) (|directory| (((|String|) $) 18)) (|coerce| (((|OutputForm|) $) 11) (($ (|String|)) 21) (((|String|) $) 20)) (= (((|Boolean|) $ $) 6))) │ │ │ -(((|FileNameCategory|) (|Category|)) (T |FileNameCategory|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|ofCategory| *1 (|FileNameCategory|)))) (|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|String|)))) (|filename| (*1 *1 *2 *2 *2) (AND (|isDomain| *2 (|String|)) (|ofCategory| *1 (|FileNameCategory|)))) (|directory| (*1 *2 *1) (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|String|)))) (|name| (*1 *2 *1) (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|String|)))) (|extension| (*1 *2 *1) (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|String|)))) (|exists?| (*1 *2 *1) (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|Boolean|)))) (|readable?| (*1 *2 *1) (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|Boolean|)))) (|writable?| (*1 *2 *1) (AND (|ofCategory| *1 (|FileNameCategory|)) (|isDomain| *2 (|Boolean|)))) (|new| (*1 *1 *2 *2 *2) (AND (|isDomain| *2 (|String|)) (|ofCategory| *1 (|FileNameCategory|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|String|))) (SIGNATURE |coerce| ((|String|) $)) (SIGNATURE |filename| ($ (|String|) (|String|) (|String|))) (SIGNATURE |directory| ((|String|) $)) (SIGNATURE |name| ((|String|) $)) (SIGNATURE |extension| ((|String|) $)) (SIGNATURE |exists?| ((|Boolean|) $)) (SIGNATURE |readable?| ((|Boolean|) $)) (SIGNATURE |writable?| ((|Boolean|) $)) (SIGNATURE |new| ($ (|String|) (|String|) (|String|))))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|size| (((|NonNegativeInteger|)) 16)) (|random| (($) 13)) (|lookup| (((|PositiveInteger|) $) 14)) (|latex| (((|String|) $) 9)) (|index| (($ (|PositiveInteger|)) 15)) (|hash| (((|SingleInteger|) $) 10)) (|enumerate| (((|List| $)) 12)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6))) │ │ │ -(((|Finite|) (|Category|)) (T |Finite|)) │ │ │ -((|size| (*1 *2) (AND (|ofCategory| *1 (|Finite|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|index| (*1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|ofCategory| *1 (|Finite|)))) (|lookup| (*1 *2 *1) (AND (|ofCategory| *1 (|Finite|)) (|isDomain| *2 (|PositiveInteger|)))) (|random| (*1 *1) (|ofCategory| *1 (|Finite|))) (|enumerate| (*1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|Finite|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |size| ((|NonNegativeInteger|))) (SIGNATURE |index| ($ (|PositiveInteger|))) (SIGNATURE |lookup| ((|PositiveInteger|) $)) (SIGNATURE |random| ($)) (SIGNATURE |enumerate| ((|List| $))))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|reductum| (($ $) 12)) (|monomial| (($ |#1| |#2|) 15)) (|map| (($ (|Mapping| |#1| |#1|) $) 16)) (|leadingSupport| ((|#2| $) 13)) (|leadingCoefficient| ((|#1| $) 14)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6))) │ │ │ -(((|IndexedDirectProductCategory| |#1| |#2|) (|Category|) (|SetCategory|) (|OrderedSet|)) (T |IndexedDirectProductCategory|)) │ │ │ -((|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|IndexedDirectProductCategory| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|OrderedSet|)))) (|monomial| (*1 *1 *2 *3) (AND (|ofCategory| *1 (|IndexedDirectProductCategory| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|OrderedSet|)))) (|leadingCoefficient| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedDirectProductCategory| *2 *3)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *2 (|SetCategory|)))) (|leadingSupport| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedDirectProductCategory| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|OrderedSet|)))) (|reductum| (*1 *1 *1) (AND (|ofCategory| *1 (|IndexedDirectProductCategory| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|OrderedSet|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |map| ($ (|Mapping| |t#1| |t#1|) $)) (SIGNATURE |monomial| ($ |t#1| |t#2|)) (SIGNATURE |leadingCoefficient| (|t#1| $)) (SIGNATURE |leadingSupport| (|t#2| $)) (SIGNATURE |reductum| ($ $)))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((|outputAsFortran| (((|Void|) $) 7)) (|coerce| (((|OutputForm|) $) 8))) │ │ │ -(((|FortranProgramCategory|) (|Category|)) (T |FortranProgramCategory|)) │ │ │ -((|outputAsFortran| (*1 *2 *1) (AND (|ofCategory| *1 (|FortranProgramCategory|)) (|isDomain| *2 (|Void|))))) │ │ │ -(|Join| (|Type|) (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |outputAsFortran| ((|Void|) $)))) │ │ │ -(((|CoercibleTo| (|OutputForm|)) . T) ((|Type|) . T)) │ │ │ -((|eval| (($ $ (|List| |#2|) (|List| |#3|)) NIL) (($ $ |#2| |#3|) 12))) │ │ │ -(((|InnerEvalable&| |#1| |#2| |#3|) (CATEGORY |domain| (SIGNATURE |eval| (|#1| |#1| |#2| |#3|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#2|) (|List| |#3|)))) (|InnerEvalable| |#2| |#3|) (|SetCategory|) (|Type|)) (T |InnerEvalable&|)) │ │ │ +(|PartialDifferentialEquationsSolverCategory|) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|symmetricSquare| (($ $) NIL (|has| |#1| (|Field|)))) (|symmetricProduct| (($ $ $) NIL (|has| |#1| (|Field|)))) (|symmetricPower| (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|Field|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|rightRemainder| (($ $ $) NIL (|has| |#1| (|Field|)))) (|rightQuotient| (($ $ $) NIL (|has| |#1| (|Field|)))) (|rightLcm| (($ $ $) NIL (|has| |#1| (|Field|)))) (|rightGcd| (($ $ $) NIL (|has| |#1| (|Field|)))) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| |#1| (|Field|)))) (|rightExactQuotient| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|Field|)))) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#1| (|Field|)))) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#1| "failed") $) NIL)) (|retract| (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1| $) NIL)) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|primitivePart| (($ $) NIL (|has| |#1| (|GcdDomain|)))) (|one?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| (|NonNegativeInteger|)) NIL)) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|minimumDegree| (((|NonNegativeInteger|) $) NIL)) (|leftRemainder| (($ $ $) NIL (|has| |#1| (|Field|)))) (|leftQuotient| (($ $ $) NIL (|has| |#1| (|Field|)))) (|leftLcm| (($ $ $) NIL (|has| |#1| (|Field|)))) (|leftGcd| (($ $ $) NIL (|has| |#1| (|Field|)))) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| |#1| (|Field|)))) (|leftExactQuotient| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|Field|)))) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#1| (|Field|)))) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|exquo| (((|Union| $ "failed") $ |#1|) NIL (|has| |#1| (|IntegralDomain|)))) (|elt| ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (|directSum| (($ $ $) NIL (|has| |#1| (|Field|)))) (|degree| (((|NonNegativeInteger|) $) NIL)) (|content| ((|#1| $) NIL (|has| |#1| (|GcdDomain|)))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ (|Fraction| (|Integer|))) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (($ |#1|) NIL)) (|coefficients| (((|List| |#1|) $) NIL)) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) NIL)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|apply| ((|#1| $ |#1| |#1|) NIL)) (|adjoint| (($ $) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (D (($) NIL)) (= (((|Boolean|) $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) │ │ │ +(((|LinearOrdinaryDifferentialOperator2| |#1| |#2|) (|Join| (|LinearOrdinaryDifferentialOperatorCategory| |#1|) (|Eltable| |#2| |#2|)) (|DifferentialRing|) (|Join| (|LeftModule| |#1|) (CATEGORY |domain| (SIGNATURE |differentiate| ($ $))))) (T |LinearOrdinaryDifferentialOperator2|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |eval| (|#1| |#1| |#2| |#3|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#2|) (|List| |#3|)))) │ │ │ -((|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) 15))) │ │ │ -(((|InfiniteTupleFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)))) (|Type|) (|Type|)) (T |InfiniteTupleFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|InfiniteTuple| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|InfiniteTuple| *6)) (|isDomain| *1 (|InfiniteTupleFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)))) │ │ │ -((|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) 20) (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) 19) (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) 18))) │ │ │ -(((|InfiniteTupleFunctions3| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |map| ((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|))) (SIGNATURE |map| ((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|))) (SIGNATURE |map| ((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)))) (|Type|) (|Type|) (|Type|)) (T |InfiniteTupleFunctions3|)) │ │ │ -((|map| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *8 *6 *7)) (|isDomain| *4 (|InfiniteTuple| *6)) (|isDomain| *5 (|Stream| *7)) (|ofCategory| *6 (|Type|)) (|ofCategory| *7 (|Type|)) (|ofCategory| *8 (|Type|)) (|isDomain| *2 (|Stream| *8)) (|isDomain| *1 (|InfiniteTupleFunctions3| *6 *7 *8)))) (|map| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *8 *6 *7)) (|isDomain| *4 (|Stream| *6)) (|isDomain| *5 (|InfiniteTuple| *7)) (|ofCategory| *6 (|Type|)) (|ofCategory| *7 (|Type|)) (|ofCategory| *8 (|Type|)) (|isDomain| *2 (|Stream| *8)) (|isDomain| *1 (|InfiniteTupleFunctions3| *6 *7 *8)))) (|map| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *8 *6 *7)) (|isDomain| *4 (|InfiniteTuple| *6)) (|isDomain| *5 (|InfiniteTuple| *7)) (|ofCategory| *6 (|Type|)) (|ofCategory| *7 (|Type|)) (|ofCategory| *8 (|Type|)) (|isDomain| *2 (|InfiniteTuple| *8)) (|isDomain| *1 (|InfiniteTupleFunctions3| *6 *7 *8))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|))) (SIGNATURE |map| ((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|))) (SIGNATURE |map| ((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)))) │ │ │ -((|eval| (($ $ (|List| |#1|) (|List| |#2|)) 7) (($ $ |#1| |#2|) 6))) │ │ │ -(((|InnerEvalable| |#1| |#2|) (|Category|) (|SetCategory|) (|Type|)) (T |InnerEvalable|)) │ │ │ -((|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *4)) (|isDomain| *3 (|List| *5)) (|ofCategory| *1 (|InnerEvalable| *4 *5)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|Type|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|ofCategory| *1 (|InnerEvalable| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|Type|))))) │ │ │ -(|Join| (CATEGORY |domain| (SIGNATURE |eval| ($ $ |t#1| |t#2|)) (SIGNATURE |eval| ($ $ (|List| |t#1|) (|List| |t#2|))))) │ │ │ -((|select| (($ (|Mapping| (|Boolean|) |#1|) $) 16)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) 9)) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) 12)) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) 14)) (|construct| (((|Stream| |#1|) $) 17)) (|coerce| (((|OutputForm|) $) NIL))) │ │ │ -(((|InfiniteTuple| |#1|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (SIGNATURE |filterWhile| ($ (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |filterUntil| ($ (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |select| ($ (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |generate| ($ (|Mapping| |#1| |#1|) |#1|)) (SIGNATURE |construct| ((|Stream| |#1|) $)))) (|Type|)) (T |InfiniteTuple|)) │ │ │ -((|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|InfiniteTuple| *3)))) (|filterWhile| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|InfiniteTuple| *3)))) (|filterUntil| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|InfiniteTuple| *3)))) (|select| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|InfiniteTuple| *3)))) (|generate| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|InfiniteTuple| *3)))) (|construct| (*1 *2 *1) (AND (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|InfiniteTuple| *3)) (|ofCategory| *3 (|Type|))))) │ │ │ -(|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (SIGNATURE |filterWhile| ($ (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |filterUntil| ($ (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |select| ($ (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |generate| ($ (|Mapping| |#1| |#1|) |#1|)) (SIGNATURE |construct| ((|Stream| |#1|) $)))) │ │ │ -((|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) 13))) │ │ │ -(((|ListFunctions3| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |map| ((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)))) (|Type|) (|Type|) (|Type|)) (T |ListFunctions3|)) │ │ │ -((|map| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *8 *6 *7)) (|isDomain| *4 (|List| *6)) (|isDomain| *5 (|List| *7)) (|ofCategory| *6 (|Type|)) (|ofCategory| *7 (|Type|)) (|ofCategory| *8 (|Type|)) (|isDomain| *2 (|List| *8)) (|isDomain| *1 (|ListFunctions3| *6 *7 *8))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ |#1| $) 22))) │ │ │ -(((|LeftModule| |#1|) (|Category|) (|Rng|)) (T |LeftModule|)) │ │ │ -((* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|LeftModule| *2)) (|ofCategory| *2 (|Rng|))))) │ │ │ -(|Join| (|AbelianGroup|) (CATEGORY |domain| (SIGNATURE * ($ |t#1| $)))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((|\\/| (($ $ $) 9))) │ │ │ -(((|Logic&| |#1|) (CATEGORY |domain| (SIGNATURE |\\/| (|#1| |#1| |#1|))) (|Logic|)) (T |Logic&|)) │ │ │ +(|Join| (|LinearOrdinaryDifferentialOperatorCategory| |#1|) (|Eltable| |#2| |#2|)) │ │ │ +((|multiServ| (((|Void|) (|SExpression|)) 20)) (|getDatabase| (((|String|) (|String|) (|String|)) 7)) (|axServer| (((|Void|) (|Integer|) (|Mapping| (|Void|) (|SExpression|))) 14))) │ │ │ +(((|AxiomServer|) (CATEGORY |package| (SIGNATURE |axServer| ((|Void|) (|Integer|) (|Mapping| (|Void|) (|SExpression|)))) (SIGNATURE |multiServ| ((|Void|) (|SExpression|))) (SIGNATURE |getDatabase| ((|String|) (|String|) (|String|))))) (T |AxiomServer|)) │ │ │ +((|getDatabase| (*1 *2 *2 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|AxiomServer|)))) (|multiServ| (*1 *2 *3) (AND (|isDomain| *3 (|SExpression|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|AxiomServer|)))) (|axServer| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Mapping| (|Void|) (|SExpression|))) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|AxiomServer|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |axServer| ((|Void|) (|Integer|) (|Mapping| (|Void|) (|SExpression|)))) (SIGNATURE |multiServ| ((|Void|) (|SExpression|))) (SIGNATURE |getDatabase| ((|String|) (|String|) (|String|)))) │ │ │ +((|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) 16) (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) 14) (((|Union| (|Integer|) "failed") |#2|) 51))) │ │ │ +(((|ElementaryFunctionSign| |#1| |#2|) (CATEGORY |package| (SIGNATURE |sign| ((|Union| (|Integer|) "failed") |#2|)) (SIGNATURE |sign| ((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|))) (SIGNATURE |sign| ((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)))) (|Join| (|IntegralDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|GcdDomain|)) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|))) (T |ElementaryFunctionSign|)) │ │ │ +((|sign| (*1 *2 *3 *4 *3 *5) (|partial| AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|String|)) (|ofCategory| *6 (|Join| (|IntegralDomain|) (|OrderedSet|) (|RetractableTo| *2) (|LinearlyExplicitRingOver| *2) (|GcdDomain|))) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ElementaryFunctionSign| *6 *3)) (|ofCategory| *3 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *6))))) (|sign| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|OrderedCompletion| *3)) (|ofCategory| *3 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *6))) (|ofCategory| *6 (|Join| (|IntegralDomain|) (|OrderedSet|) (|RetractableTo| *2) (|LinearlyExplicitRingOver| *2) (|GcdDomain|))) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ElementaryFunctionSign| *6 *3)))) (|sign| (*1 *2 *3) (|partial| AND (|ofCategory| *4 (|Join| (|IntegralDomain|) (|OrderedSet|) (|RetractableTo| *2) (|LinearlyExplicitRingOver| *2) (|GcdDomain|))) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ElementaryFunctionSign| *4 *3)) (|ofCategory| *3 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *4)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |sign| ((|Union| (|Integer|) "failed") |#2|)) (SIGNATURE |sign| ((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|))) (SIGNATURE |sign| ((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|variables| (((|List| (|SingletonAsOrderedSet|)) $) NIL)) (|variable| (((|Symbol|) $) 17)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|truncate| (($ $ (|Fraction| (|Integer|))) NIL) (($ $ (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) NIL)) (|terms| (((|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|))) $) NIL)) (|tanh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|tan| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL (|has| |#1| (|Field|)))) (|squareFree| (((|Factored| $) $) NIL (|has| |#1| (|Field|)))) (|sqrt| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sizeLess?| (((|Boolean|) $ $) NIL (|has| |#1| (|Field|)))) (|sinh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sin| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) NIL)) (|sech| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sec| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sample| (($) NIL T CONST)) (|rem| (($ $ $) NIL (|has| |#1| (|Field|)))) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|quo| (($ $ $) NIL (|has| |#1| (|Field|)))) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL (|has| |#1| (|Field|)))) (|prime?| (((|Boolean|) $) NIL (|has| |#1| (|Field|)))) (|pole?| (((|Boolean|) $) NIL)) (|pi| (($) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|order| (((|Fraction| (|Integer|)) $) NIL) (((|Fraction| (|Integer|)) $ (|Fraction| (|Integer|))) NIL)) (|one?| (((|Boolean|) $) NIL)) (|nthRoot| (($ $ (|Integer|)) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|multiplyExponents| (($ $ (|PositiveInteger|)) NIL) (($ $ (|Fraction| (|Integer|))) NIL)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| |#1| (|Field|)))) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| (|Fraction| (|Integer|))) NIL) (($ $ (|SingletonAsOrderedSet|) (|Fraction| (|Integer|))) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|Fraction| (|Integer|)))) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) 22)) (|log| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL (|has| |#1| (|Field|)))) (|lcm| (($ (|List| $)) NIL (|has| |#1| (|Field|))) (($ $ $) NIL (|has| |#1| (|Field|)))) (|latex| (((|String|) $) NIL)) (|inv| (($ $) NIL (|has| |#1| (|Field|)))) (|integrate| (($ $) 26 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Symbol|)) 33 (OR (AND (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| (|Symbol|)))) (|has| |#1| (SIGNATURE |variables| ((|List| (|Symbol|)) |#1|))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (AND (|has| |#1| (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|))))) (($ $ (|Variable| |#2|)) 27 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|Field|)))) (|gcd| (($ (|List| $)) NIL (|has| |#1| (|Field|))) (($ $ $) NIL (|has| |#1| (|Field|)))) (|factor| (((|Factored| $) $) NIL (|has| |#1| (|Field|)))) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (|Field|))) (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| |#1| (|Field|)))) (|extend| (($ $ (|Fraction| (|Integer|))) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| |#1| (|Field|)))) (|exp| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|eval| (((|Stream| |#1|) $ |#1|) NIL (|has| |#1| (SIGNATURE ** (|#1| |#1| (|Fraction| (|Integer|))))))) (|euclideanSize| (((|NonNegativeInteger|) $) NIL (|has| |#1| (|Field|)))) (|elt| ((|#1| $ (|Fraction| (|Integer|))) NIL) (($ $ $) NIL (|has| (|Fraction| (|Integer|)) (|SemiGroup|)))) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#1| (|Field|)))) (|differentiate| (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) 25 (AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))) (($ $) 13 (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))) (($ $ (|Variable| |#2|)) 15)) (|degree| (((|Fraction| (|Integer|)) $) NIL)) (|csch| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|csc| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|coth| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cot| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cosh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cos| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|complete| (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#1|) NIL (|has| |#1| (|CommutativeRing|))) (($ (|Variable| |#2|)) NIL) (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) 9) (($ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|coefficient| ((|#1| $ (|Fraction| (|Integer|))) NIL)) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|center| ((|#1| $) 18)) (|atanh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|atan| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|asinh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asin| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asech| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asec| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|approximate| ((|#1| $ (|Fraction| (|Integer|))) NIL (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| (|Fraction| (|Integer|))))) (|has| |#1| (SIGNATURE |coerce| (|#1| (|Symbol|))))))) (|acsch| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acsc| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acoth| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acot| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acosh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acos| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL (|has| |#1| (|Field|)))) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (D (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))) (($ $) NIL (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))))) (= (((|Boolean|) $ $) NIL)) (/ (($ $ |#1|) NIL (|has| |#1| (|Field|))) (($ $ $) NIL (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) 24)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL (|has| |#1| (|Field|))) (($ $ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ +(((|GeneralUnivariatePowerSeries| |#1| |#2| |#3|) (|Join| (|UnivariatePuiseuxSeriesCategory| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Variable| |#2|))) (SIGNATURE |coerce| ($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|))) (SIGNATURE |differentiate| ($ $ (|Variable| |#2|))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ (|Variable| |#2|))) |noBranch|))) (|Ring|) (|Symbol|) |#1|) (T |GeneralUnivariatePowerSeries|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|GeneralUnivariatePowerSeries| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|UnivariatePuiseuxSeries| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Symbol|)) (|ofType| *5 *3) (|isDomain| *1 (|GeneralUnivariatePowerSeries| *3 *4 *5)))) (|differentiate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|GeneralUnivariatePowerSeries| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3))) (|integrate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|GeneralUnivariatePowerSeries| *3 *4 *5)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3)))) │ │ │ +(|Join| (|UnivariatePuiseuxSeriesCategory| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Variable| |#2|))) (SIGNATURE |coerce| ($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|))) (SIGNATURE |differentiate| ($ $ (|Variable| |#2|))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ (|Variable| |#2|))) |noBranch|))) │ │ │ +((|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) 12))) │ │ │ +(((|PatternMatchIntegerNumberSystem| |#1|) (CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)))) (|IntegerNumberSystem|)) (T |PatternMatchIntegerNumberSystem|)) │ │ │ +((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchResult| (|Integer|) *3)) (|isDomain| *4 (|Pattern| (|Integer|))) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *1 (|PatternMatchIntegerNumberSystem| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|setelt| ((|#1| $ (|Integer|) |#1|) NIL)) (|removeConjugate| (((|List| $) (|List| $) (|NonNegativeInteger|)) NIL) (((|List| $) (|List| $)) NIL)) (|rational?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL) (((|Boolean|) $) NIL)) (|pointValue| (((|List| |#1|) $) NIL)) (|origin| (($) NIL)) (|orbit| (((|List| $) $) NIL) (((|List| $) $ (|NonNegativeInteger|)) NIL)) (|list| (((|List| |#1|) $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|elt| ((|#1| $ (|Integer|)) NIL)) (|degree| (((|PositiveInteger|) $) NIL)) (|definingField| ((|#1| $) NIL)) (|conjugate| (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (((|List| |#1|) $) NIL) (($ (|List| |#1|)) NIL)) (|affinePoint| (($ (|List| |#1|)) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|AffinePlane| |#1|) (|AffineSpaceCategory| |#1|) (|Field|)) (T |AffinePlane|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |\\/| (|#1| |#1| |#1|))) │ │ │ -((|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) 11)) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) 9))) │ │ │ -(((|MappingPackageInternalHacks1| |#1|) (CATEGORY |package| (SIGNATURE |iter| (|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|)) (SIGNATURE |recur| (|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|))) (|SetCategory|)) (T |MappingPackageInternalHacks1|)) │ │ │ -((|recur| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 (|NonNegativeInteger|) *2)) (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *2 (|SetCategory|)) (|isDomain| *1 (|MappingPackageInternalHacks1| *2)))) (|iter| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *2)) (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *2 (|SetCategory|)) (|isDomain| *1 (|MappingPackageInternalHacks1| *2))))) │ │ │ -(CATEGORY |package| (SIGNATURE |iter| (|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|)) (SIGNATURE |recur| (|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|))) │ │ │ -((|arg2| ((|#2| |#1| |#2|) 9)) (|arg1| ((|#1| |#1| |#2|) 8))) │ │ │ -(((|MappingPackageInternalHacks2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |arg1| (|#1| |#1| |#2|)) (SIGNATURE |arg2| (|#2| |#1| |#2|))) (|SetCategory|) (|SetCategory|)) (T |MappingPackageInternalHacks2|)) │ │ │ -((|arg2| (*1 *2 *3 *2) (AND (|isDomain| *1 (|MappingPackageInternalHacks2| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|arg1| (*1 *2 *2 *3) (AND (|isDomain| *1 (|MappingPackageInternalHacks2| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |arg1| (|#1| |#1| |#2|)) (SIGNATURE |arg2| (|#2| |#1| |#2|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (~ (($ $) 10)) (|\\/| (($ $ $) 8)) (= (((|Boolean|) $ $) 6)) (|/\\| (($ $ $) 9))) │ │ │ -(((|Logic|) (|Category|)) (T |Logic|)) │ │ │ -((~ (*1 *1 *1) (|ofCategory| *1 (|Logic|))) (|/\\| (*1 *1 *1 *1) (|ofCategory| *1 (|Logic|))) (|\\/| (*1 *1 *1 *1) (|ofCategory| *1 (|Logic|)))) │ │ │ -(|Join| (|BasicType|) (CATEGORY |domain| (SIGNATURE ~ ($ $)) (SIGNATURE |/\\| ($ $ $)) (SIGNATURE |\\/| ($ $ $)))) │ │ │ -(((|BasicType|) . T)) │ │ │ -((|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) 11))) │ │ │ -(((|MappingPackageInternalHacks3| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |comp| (|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|))) (|SetCategory|) (|SetCategory|) (|SetCategory|)) (T |MappingPackageInternalHacks3|)) │ │ │ -((|comp| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *2 *6)) (|isDomain| *4 (|Mapping| *6 *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)) (|isDomain| *1 (|MappingPackageInternalHacks3| *5 *6 *2))))) │ │ │ -(CATEGORY |package| (SIGNATURE |comp| (|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|))) │ │ │ -((|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) 23)) (|nullary| (((|Mapping| |#1|) |#1|) 8)) (|id| ((|#1| |#1|) 16)) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) 15) ((|#1| (|Mapping| |#1| |#1|)) 11)) (|coerce| (((|Mapping| |#1|) |#1|) 9)) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) 20))) │ │ │ -(((|MappingPackage1| |#1|) (CATEGORY |package| (SIGNATURE |nullary| ((|Mapping| |#1|) |#1|)) (SIGNATURE |coerce| ((|Mapping| |#1|) |#1|)) (SIGNATURE |fixedPoint| (|#1| (|Mapping| |#1| |#1|))) (SIGNATURE |fixedPoint| ((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|))) (SIGNATURE |id| (|#1| |#1|)) (SIGNATURE ** ((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|))) (SIGNATURE |recur| ((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)))) (|SetCategory|)) (T |MappingPackage1|)) │ │ │ -((|recur| (*1 *2 *2) (AND (|isDomain| *2 (|Mapping| *3 (|NonNegativeInteger|) *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|MappingPackage1| *3)))) (** (*1 *2 *2 *3) (AND (|isDomain| *2 (|Mapping| *4 *4)) (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *1 (|MappingPackage1| *4)))) (|id| (*1 *2 *2) (AND (|isDomain| *1 (|MappingPackage1| *2)) (|ofCategory| *2 (|SetCategory|)))) (|fixedPoint| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| (|List| *5) (|List| *5))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|List| *5)) (|isDomain| *1 (|MappingPackage1| *5)) (|ofCategory| *5 (|SetCategory|)))) (|fixedPoint| (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| *2 *2)) (|isDomain| *1 (|MappingPackage1| *2)) (|ofCategory| *2 (|SetCategory|)))) (|coerce| (*1 *2 *3) (AND (|isDomain| *2 (|Mapping| *3)) (|isDomain| *1 (|MappingPackage1| *3)) (|ofCategory| *3 (|SetCategory|)))) (|nullary| (*1 *2 *3) (AND (|isDomain| *2 (|Mapping| *3)) (|isDomain| *1 (|MappingPackage1| *3)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |nullary| ((|Mapping| |#1|) |#1|)) (SIGNATURE |coerce| ((|Mapping| |#1|) |#1|)) (SIGNATURE |fixedPoint| (|#1| (|Mapping| |#1| |#1|))) (SIGNATURE |fixedPoint| ((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|))) (SIGNATURE |id| (|#1| |#1|)) (SIGNATURE ** ((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|))) (SIGNATURE |recur| ((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)))) │ │ │ -((|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) 16)) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) 13)) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) 14)) (|const| (((|Mapping| |#2| |#1|) |#2|) 11))) │ │ │ -(((|MappingPackage2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |const| ((|Mapping| |#2| |#1|) |#2|)) (SIGNATURE |curry| ((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|)) (SIGNATURE |constant| ((|Mapping| |#2| |#1|) (|Mapping| |#2|))) (SIGNATURE |diag| ((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)))) (|SetCategory|) (|SetCategory|)) (T |MappingPackage2|)) │ │ │ -((|diag| (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| *5 *4 *4)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|isDomain| *2 (|Mapping| *5 *4)) (|isDomain| *1 (|MappingPackage2| *4 *5)))) (|constant| (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| *5)) (|ofCategory| *5 (|SetCategory|)) (|isDomain| *2 (|Mapping| *5 *4)) (|isDomain| *1 (|MappingPackage2| *4 *5)) (|ofCategory| *4 (|SetCategory|)))) (|curry| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *5 *4)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|isDomain| *2 (|Mapping| *5)) (|isDomain| *1 (|MappingPackage2| *4 *5)))) (|const| (*1 *2 *3) (AND (|isDomain| *2 (|Mapping| *3 *4)) (|isDomain| *1 (|MappingPackage2| *4 *3)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |const| ((|Mapping| |#2| |#1|) |#2|)) (SIGNATURE |curry| ((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|)) (SIGNATURE |constant| ((|Mapping| |#2| |#1|) (|Mapping| |#2|))) (SIGNATURE |diag| ((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)))) │ │ │ -((|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) 17)) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) 11)) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) 13)) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) 14)) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) 15)) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) 21))) │ │ │ -(((|MappingPackage3| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |curryRight| ((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|)) (SIGNATURE |curryLeft| ((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|)) (SIGNATURE |constantRight| ((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|))) (SIGNATURE |constantLeft| ((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|))) (SIGNATURE |twist| ((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|))) (SIGNATURE * ((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)))) (|SetCategory|) (|SetCategory|) (|SetCategory|)) (T |MappingPackage3|)) │ │ │ -((* (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *7 *6)) (|isDomain| *4 (|Mapping| *6 *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Mapping| *7 *5)) (|isDomain| *1 (|MappingPackage3| *5 *6 *7)))) (|twist| (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| *6 *4 *5)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|isDomain| *2 (|Mapping| *6 *5 *4)) (|isDomain| *1 (|MappingPackage3| *4 *5 *6)))) (|constantLeft| (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|isDomain| *2 (|Mapping| *6 *4 *5)) (|isDomain| *1 (|MappingPackage3| *4 *5 *6)) (|ofCategory| *4 (|SetCategory|)))) (|constantRight| (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| *6 *4)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|isDomain| *2 (|Mapping| *6 *4 *5)) (|isDomain| *1 (|MappingPackage3| *4 *5 *6)) (|ofCategory| *5 (|SetCategory|)))) (|curryLeft| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *4 *5)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|isDomain| *2 (|Mapping| *6 *5)) (|isDomain| *1 (|MappingPackage3| *4 *5 *6)))) (|curryRight| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5 *4)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|isDomain| *2 (|Mapping| *6 *5)) (|isDomain| *1 (|MappingPackage3| *5 *4 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |curryRight| ((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|)) (SIGNATURE |curryLeft| ((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|)) (SIGNATURE |constantRight| ((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|))) (SIGNATURE |constantLeft| ((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|))) (SIGNATURE |twist| ((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|))) (SIGNATURE * ((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)))) │ │ │ -((|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) 19)) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) 12))) │ │ │ -(((|MakeBinaryCompiledFunction| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |binaryFunction| ((|Mapping| |#4| |#2| |#3|) (|Symbol|))) (SIGNATURE |compiledFunction| ((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)))) (|ConvertibleTo| (|InputForm|)) (|Type|) (|Type|) (|Type|)) (T |MakeBinaryCompiledFunction|)) │ │ │ -((|compiledFunction| (*1 *2 *3 *4 *4) (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Mapping| *7 *5 *6)) (|isDomain| *1 (|MakeBinaryCompiledFunction| *3 *5 *6 *7)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|ofCategory| *7 (|Type|)))) (|binaryFunction| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| *7 *5 *6)) (|isDomain| *1 (|MakeBinaryCompiledFunction| *4 *5 *6 *7)) (|ofCategory| *4 (|ConvertibleTo| (|InputForm|))) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|ofCategory| *7 (|Type|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |binaryFunction| ((|Mapping| |#4| |#2| |#3|) (|Symbol|))) (SIGNATURE |compiledFunction| ((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)))) │ │ │ -((|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) 9) (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) 12) (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) 11) (((|Symbol|) |#1| (|Symbol|)) 10))) │ │ │ -(((|MakeFunction| |#1|) (CATEGORY |package| (SIGNATURE |function| ((|Symbol|) |#1| (|Symbol|))) (SIGNATURE |function| ((|Symbol|) |#1| (|Symbol|) (|Symbol|))) (SIGNATURE |function| ((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|))) (SIGNATURE |function| ((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))))) (|ConvertibleTo| (|InputForm|))) (T |MakeFunction|)) │ │ │ -((|function| (*1 *2 *3 *2 *4) (AND (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|MakeFunction| *3)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))) (|function| (*1 *2 *3 *2 *2 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|MakeFunction| *3)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))) (|function| (*1 *2 *3 *2 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|MakeFunction| *3)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))) (|function| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|MakeFunction| *3)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|)))))) │ │ │ -(CATEGORY |package| (SIGNATURE |function| ((|Symbol|) |#1| (|Symbol|))) (SIGNATURE |function| ((|Symbol|) |#1| (|Symbol|) (|Symbol|))) (SIGNATURE |function| ((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|))) (SIGNATURE |function| ((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))))) │ │ │ -((|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) │ │ │ -(((|MakeRecord| |#1| |#2|) (CATEGORY |package| (SIGNATURE |makeRecord| ((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (|Type|) (|Type|)) (T |MakeRecord|)) │ │ │ -((|makeRecord| (*1 *2 *3 *4) (AND (|isDomain| *2 (|Record| (|:| |part1| *3) (|:| |part2| *4))) (|isDomain| *1 (|MakeRecord| *3 *4)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|Type|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |makeRecord| ((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) │ │ │ -((|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) 11)) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) 21))) │ │ │ -(((|MakeUnaryCompiledFunction| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |unaryFunction| ((|Mapping| |#3| |#2|) (|Symbol|))) (SIGNATURE |compiledFunction| ((|Mapping| |#3| |#2|) |#1| (|Symbol|)))) (|ConvertibleTo| (|InputForm|)) (|Type|) (|Type|)) (T |MakeUnaryCompiledFunction|)) │ │ │ -((|compiledFunction| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Mapping| *6 *5)) (|isDomain| *1 (|MakeUnaryCompiledFunction| *3 *5 *6)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)))) (|unaryFunction| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| *6 *5)) (|isDomain| *1 (|MakeUnaryCompiledFunction| *4 *5 *6)) (|ofCategory| *4 (|ConvertibleTo| (|InputForm|))) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |unaryFunction| ((|Mapping| |#3| |#2|) (|Symbol|))) (SIGNATURE |compiledFunction| ((|Mapping| |#3| |#2|) |#1| (|Symbol|)))) │ │ │ -((|rightPower| (($ $ (|PositiveInteger|)) 12)) (|leftPower| (($ $ (|PositiveInteger|)) 13)) (** (($ $ (|PositiveInteger|)) 10))) │ │ │ -(((|Monad&| |#1|) (CATEGORY |domain| (SIGNATURE ** (|#1| |#1| (|PositiveInteger|))) (SIGNATURE |leftPower| (|#1| |#1| (|PositiveInteger|))) (SIGNATURE |rightPower| (|#1| |#1| (|PositiveInteger|)))) (|Monad|)) (T |Monad&|)) │ │ │ +(|AffineSpaceCategory| |#1|) │ │ │ +((|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) 23 (|has| |#1| (|OrderedRing|))) (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) 17))) │ │ │ +(((|UniversalSegmentFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|))) (IF (|has| |#1| (|OrderedRing|)) (SIGNATURE |map| ((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|))) |noBranch|)) (|Type|) (|Type|)) (T |UniversalSegmentFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|UniversalSegment| *5)) (|ofCategory| *5 (|OrderedRing|)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|Stream| *6)) (|isDomain| *1 (|UniversalSegmentFunctions2| *5 *6)))) (|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|UniversalSegment| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|UniversalSegment| *6)) (|isDomain| *1 (|UniversalSegmentFunctions2| *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| ((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|))) (IF (|has| |#1| (|OrderedRing|)) (SIGNATURE |map| ((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|))) |noBranch|)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 73)) (|squareFree| (((|Factored| $) $) 72)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|sample| (($) 16 T CONST)) (|rem| (($ $ $) 54)) (|recip| (((|Union| $ "failed") $) 33)) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|prime?| (((|Boolean|) $) 71)) (|one?| (((|Boolean|) $) 30)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 70)) (|hash| (((|SingleInteger|) $) 10)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|factor| (((|Factored| $) $) 74)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Fraction| (|Integer|))) 65)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 38)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 69)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (/ (($ $ $) 64)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 68)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 67) (($ (|Fraction| (|Integer|)) $) 66))) │ │ │ +(((|Field|) (|Category|)) (T |Field|)) │ │ │ +((/ (*1 *1 *1 *1) (|ofCategory| *1 (|Field|)))) │ │ │ +(|Join| (|EuclideanDomain|) (|UniqueFactorizationDomain|) (|DivisionRing|) (CATEGORY |domain| (SIGNATURE / ($ $ $)) (ATTRIBUTE |canonicalUnitNormal|) (ATTRIBUTE |canonicalsClosed|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|UniqueFactorizationDomain|) . T)) │ │ │ +((|monomial?| (((|Boolean|) $) 12)) (|map| (($ (|Mapping| |#2| |#2|) $) 21)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (|Fraction| (|Integer|)) $) 24) (($ $ (|Fraction| (|Integer|))) NIL))) │ │ │ +(((|AbelianMonoidRing&| |#1| |#2| |#3|) (CATEGORY |domain| (SIGNATURE * (|#1| |#1| (|Fraction| (|Integer|)))) (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)) (SIGNATURE |monomial?| ((|Boolean|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) (|AbelianMonoidRing| |#2| |#3|) (|Ring|) (|OrderedAbelianMonoid|)) (T |AbelianMonoidRing&|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE ** (|#1| |#1| (|PositiveInteger|))) (SIGNATURE |leftPower| (|#1| |#1| (|PositiveInteger|))) (SIGNATURE |rightPower| (|#1| |#1| (|PositiveInteger|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 7)) (= (((|Boolean|) $ $) 9))) │ │ │ -(((|None|) (|SetCategory|)) (T |None|)) │ │ │ +(CATEGORY |domain| (SIGNATURE * (|#1| |#1| (|Fraction| (|Integer|)))) (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)) (SIGNATURE |monomial?| ((|Boolean|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|numericalOptimization| (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) NIL) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 48)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 23) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|e04mbfAnnaType|) (|NumericalOptimizationCategory|)) (T |e04mbfAnnaType|)) │ │ │ NIL │ │ │ -(|SetCategory|) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) 15)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 14) (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 8) (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 10) (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) 12)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|NumericalIntegrationProblem|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |coerce| ($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |coerce| ($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))))) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE |retract| ((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $))))) (T |NumericalIntegrationProblem|)) │ │ │ -((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|NumericalIntegrationProblem|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *1 (|NumericalIntegrationProblem|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *1 (|NumericalIntegrationProblem|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) (|isDomain| *1 (|NumericalIntegrationProblem|)))) (|retract| (*1 *2 *1) (AND (|isDomain| *2 (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) (|isDomain| *1 (|NumericalIntegrationProblem|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |coerce| ($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |coerce| ($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))))) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE |retract| ((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|rightPower| (($ $ (|PositiveInteger|)) 14)) (|leftPower| (($ $ (|PositiveInteger|)) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6)) (** (($ $ (|PositiveInteger|)) 12)) (* (($ $ $) 15))) │ │ │ -(((|Monad|) (|Category|)) (T |Monad|)) │ │ │ -((* (*1 *1 *1 *1) (|ofCategory| *1 (|Monad|))) (|rightPower| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|Monad|)) (|isDomain| *2 (|PositiveInteger|)))) (|leftPower| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|Monad|)) (|isDomain| *2 (|PositiveInteger|)))) (** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|Monad|)) (|isDomain| *2 (|PositiveInteger|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE * ($ $ $)) (SIGNATURE |rightPower| ($ $ (|PositiveInteger|))) (SIGNATURE |leftPower| ($ $ (|PositiveInteger|))) (SIGNATURE ** ($ $ (|PositiveInteger|))))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((|coerce| (((|None|) |#1|) 8))) │ │ │ -(((|NoneFunctions1| |#1|) (CATEGORY |package| (SIGNATURE |coerce| ((|None|) |#1|))) (|Type|)) (T |NoneFunctions1|)) │ │ │ -((|coerce| (*1 *2 *3) (AND (|isDomain| *2 (|None|)) (|isDomain| *1 (|NoneFunctions1| *3)) (|ofCategory| *3 (|Type|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |coerce| ((|None|) |#1|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|numericalIntegration| (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) 14) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) 12)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 15) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6))) │ │ │ -(((|NumericalIntegrationCategory|) (|Category|)) (T |NumericalIntegrationCategory|)) │ │ │ -((|measure| (*1 *2 *3 *4) (AND (|ofCategory| *1 (|NumericalIntegrationCategory|)) (|isDomain| *3 (|RoutinesTable|)) (|isDomain| *4 (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *2 (|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|)))))) (|numericalIntegration| (*1 *2 *3 *2) (AND (|ofCategory| *1 (|NumericalIntegrationCategory|)) (|isDomain| *2 (|Result|)) (|isDomain| *3 (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) (|measure| (*1 *2 *3 *4) (AND (|ofCategory| *1 (|NumericalIntegrationCategory|)) (|isDomain| *3 (|RoutinesTable|)) (|isDomain| *4 (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *2 (|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|)))))) (|numericalIntegration| (*1 *2 *3 *2) (AND (|ofCategory| *1 (|NumericalIntegrationCategory|)) (|isDomain| *2 (|Result|)) (|isDomain| *3 (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |package| (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |numericalIntegration| ((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|))) (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |numericalIntegration| ((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|))))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 12)) (= (((|Boolean|) $ $) 6))) │ │ │ -(((|OrdinaryDifferentialEquationsSolverCategory|) (|Category|)) (T |OrdinaryDifferentialEquationsSolverCategory|)) │ │ │ -((|measure| (*1 *2 *3 *4) (AND (|ofCategory| *1 (|OrdinaryDifferentialEquationsSolverCategory|)) (|isDomain| *3 (|RoutinesTable|)) (|isDomain| *4 (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *2 (|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)))))) (|ODESolve| (*1 *2 *3) (AND (|ofCategory| *1 (|OrdinaryDifferentialEquationsSolverCategory|)) (|isDomain| *3 (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *2 (|Result|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |package| (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |ODESolve| ((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) 9)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 11) (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 8)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|NumericalODEProblem|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE |retract| ((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $))))) (T |NumericalODEProblem|)) │ │ │ -((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|NumericalODEProblem|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *1 (|NumericalODEProblem|)))) (|retract| (*1 *2 *1) (AND (|isDomain| *2 (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *1 (|NumericalODEProblem|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE |retract| ((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 12)) (|OMencodingXML| (($) 15)) (|OMencodingUnknown| (($) 13)) (|OMencodingSGML| (($) 16)) (|OMencodingBinary| (($) 14)) (= (((|Boolean|) $ $) 8))) │ │ │ -(((|OpenMathEncoding|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |OMencodingUnknown| ($)) (SIGNATURE |OMencodingXML| ($)) (SIGNATURE |OMencodingSGML| ($)) (SIGNATURE |OMencodingBinary| ($))))) (T |OpenMathEncoding|)) │ │ │ -((|OMencodingUnknown| (*1 *1) (|isDomain| *1 (|OpenMathEncoding|))) (|OMencodingXML| (*1 *1) (|isDomain| *1 (|OpenMathEncoding|))) (|OMencodingSGML| (*1 *1) (|isDomain| *1 (|OpenMathEncoding|))) (|OMencodingBinary| (*1 *1) (|isDomain| *1 (|OpenMathEncoding|)))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |OMencodingUnknown| ($)) (SIGNATURE |OMencodingXML| ($)) (SIGNATURE |OMencodingSGML| ($)) (SIGNATURE |OMencodingBinary| ($)))) │ │ │ -((|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) 12) (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) 13))) │ │ │ -(((|OnePointCompletionFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|))) (SIGNATURE |map| ((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)))) (|SetCategory|) (|SetCategory|)) (T |OnePointCompletionFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|OnePointCompletion| *6)) (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|OnePointCompletion| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|isDomain| *1 (|OnePointCompletionFunctions2| *5 *6)))) (|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|OnePointCompletion| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|isDomain| *2 (|OnePointCompletion| *6)) (|isDomain| *1 (|OnePointCompletionFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|))) (SIGNATURE |map| ((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|numericalOptimization| (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) 13) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 12)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 15) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) 14)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6))) │ │ │ -(((|NumericalOptimizationCategory|) (|Category|)) (T |NumericalOptimizationCategory|)) │ │ │ -((|measure| (*1 *2 *3 *4) (AND (|ofCategory| *1 (|NumericalOptimizationCategory|)) (|isDomain| *3 (|RoutinesTable|)) (|isDomain| *4 (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|isDomain| *2 (|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)))))) (|measure| (*1 *2 *3 *4) (AND (|ofCategory| *1 (|NumericalOptimizationCategory|)) (|isDomain| *3 (|RoutinesTable|)) (|isDomain| *4 (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) (|isDomain| *2 (|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)))))) (|numericalOptimization| (*1 *2 *3) (AND (|ofCategory| *1 (|NumericalOptimizationCategory|)) (|isDomain| *3 (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) (|isDomain| *2 (|Result|)))) (|numericalOptimization| (*1 *2 *3) (AND (|ofCategory| *1 (|NumericalOptimizationCategory|)) (|isDomain| *3 (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|isDomain| *2 (|Result|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |package| (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))))) (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) (SIGNATURE |numericalOptimization| ((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) (SIGNATURE |numericalOptimization| ((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))))))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) 15)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 14) (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 8) (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) 10) (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) 12)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|NumericalOptimizationProblem|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))))) (SIGNATURE |coerce| ($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) (SIGNATURE |coerce| ($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))))) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE |retract| ((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $))))) (T |NumericalOptimizationProblem|)) │ │ │ -((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|NumericalOptimizationProblem|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|isDomain| *1 (|NumericalOptimizationProblem|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) (|isDomain| *1 (|NumericalOptimizationProblem|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) (|isDomain| *1 (|NumericalOptimizationProblem|)))) (|retract| (*1 *2 *1) (AND (|isDomain| *2 (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) (|isDomain| *1 (|NumericalOptimizationProblem|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))))) (SIGNATURE |coerce| ($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) (SIGNATURE |coerce| ($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))))) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE |retract| ((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $)))) │ │ │ -((|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) 13) (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) 14))) │ │ │ -(((|OrderedCompletionFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|))) (SIGNATURE |map| ((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)))) (|SetCategory|) (|SetCategory|)) (T |OrderedCompletionFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4 *2 *2) (AND (|isDomain| *2 (|OrderedCompletion| *6)) (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|OrderedCompletion| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|isDomain| *1 (|OrderedCompletionFunctions2| *5 *6)))) (|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|OrderedCompletion| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|isDomain| *2 (|OrderedCompletion| *6)) (|isDomain| *1 (|OrderedCompletionFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|))) (SIGNATURE |map| ((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)))) │ │ │ -((|min| (($ $ $) 10)) (|max| (($ $ $) 9)) (>= (((|Boolean|) $ $) 12)) (> (((|Boolean|) $ $) 11)) (<= (((|Boolean|) $ $) 13))) │ │ │ -(((|OrderedSet&| |#1|) (CATEGORY |domain| (SIGNATURE |min| (|#1| |#1| |#1|)) (SIGNATURE |max| (|#1| |#1| |#1|)) (SIGNATURE <= ((|Boolean|) |#1| |#1|)) (SIGNATURE >= ((|Boolean|) |#1| |#1|)) (SIGNATURE > ((|Boolean|) |#1| |#1|))) (|OrderedSet|)) (T |OrderedSet&|)) │ │ │ +(|NumericalOptimizationCategory|) │ │ │ +((|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) 30)) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) 26)) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) 39) (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) 38)) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) 40)) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) 22) (((|Stream| (|List| (|Integer|))) (|Integer|)) 16) (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) 12)) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) 24)) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) 23))) │ │ │ +(((|PartitionsAndPermutations|) (CATEGORY |package| (SIGNATURE |partitions| ((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |partitions| ((|Stream| (|List| (|Integer|))) (|Integer|))) (SIGNATURE |partitions| ((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|))) (SIGNATURE |conjugate| ((|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |conjugates| ((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|))))) (SIGNATURE |shuffle| ((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |shufflein| ((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|))))) (SIGNATURE |sequences| ((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |sequences| ((|Stream| (|List| (|Integer|))) (|List| (|Integer|)))) (SIGNATURE |permutations| ((|Stream| (|List| (|Integer|))) (|Integer|))))) (T |PartitionsAndPermutations|)) │ │ │ +((|permutations| (*1 *2 *3) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *1 (|PartitionsAndPermutations|)) (|isDomain| *3 (|Integer|)))) (|sequences| (*1 *2 *3) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *1 (|PartitionsAndPermutations|)) (|isDomain| *3 (|List| (|Integer|))))) (|sequences| (*1 *2 *3 *3) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *1 (|PartitionsAndPermutations|)) (|isDomain| *3 (|List| (|Integer|))))) (|shufflein| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *1 (|PartitionsAndPermutations|)))) (|shuffle| (*1 *2 *3 *3) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *1 (|PartitionsAndPermutations|)) (|isDomain| *3 (|List| (|Integer|))))) (|conjugates| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *1 (|PartitionsAndPermutations|)))) (|conjugate| (*1 *2 *2) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|PartitionsAndPermutations|)))) (|partitions| (*1 *2 *3 *3) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *1 (|PartitionsAndPermutations|)) (|isDomain| *3 (|Integer|)))) (|partitions| (*1 *2 *3) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *1 (|PartitionsAndPermutations|)) (|isDomain| *3 (|Integer|)))) (|partitions| (*1 *2 *3 *3 *3) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *1 (|PartitionsAndPermutations|)) (|isDomain| *3 (|Integer|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |partitions| ((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |partitions| ((|Stream| (|List| (|Integer|))) (|Integer|))) (SIGNATURE |partitions| ((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|))) (SIGNATURE |conjugate| ((|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |conjugates| ((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|))))) (SIGNATURE |shuffle| ((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |shufflein| ((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|))))) (SIGNATURE |sequences| ((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |sequences| ((|Stream| (|List| (|Integer|))) (|List| (|Integer|)))) (SIGNATURE |permutations| ((|Stream| (|List| (|Integer|))) (|Integer|)))) │ │ │ +((|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) 24))) │ │ │ +(((|EvaluateCycleIndicators| |#1|) (CATEGORY |package| (SIGNATURE |eval| (|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))))) (|Algebra| (|Fraction| (|Integer|)))) (T |EvaluateCycleIndicators|)) │ │ │ +((|eval| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *2 (|Integer|))) (|isDomain| *4 (|SymmetricPolynomial| (|Fraction| (|Integer|)))) (|isDomain| *1 (|EvaluateCycleIndicators| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ +(CATEGORY |package| (SIGNATURE |eval| (|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))))) │ │ │ +((|totalDegree| (((|NonNegativeInteger|) $) 69) (((|NonNegativeInteger|) $ (|List| |#4|)) 72)) (|squareFreePart| (($ $) 169)) (|squareFree| (((|Factored| $) $) 161)) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 112)) (|retractIfCan| (((|Union| |#2| "failed") $) NIL) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL) (((|Union| (|Integer|) "failed") $) NIL) (((|Union| |#4| "failed") $) 58)) (|retract| ((|#2| $) NIL) (((|Fraction| (|Integer|)) $) NIL) (((|Integer|) $) NIL) ((|#4| $) 57)) (|resultant| (($ $ $ |#4|) 74)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL) (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| $) (|Vector| $)) 102) (((|Matrix| |#2|) (|Matrix| $)) 95)) (|primitivePart| (($ $) 177) (($ $ |#4|) 180)) (|primitiveMonomials| (((|List| $) $) 61)) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) 195) (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) 189)) (|monomials| (((|List| $) $) 27)) (|monomial| (($ |#2| |#3|) NIL) (($ $ |#4| (|NonNegativeInteger|)) NIL) (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) 55)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) 158)) (|isTimes| (((|Union| (|List| $) "failed") $) 41)) (|isPlus| (((|Union| (|List| $) "failed") $) 30)) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) 45)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 105)) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 118)) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 116)) (|factor| (((|Factored| $) $) 136)) (|eval| (($ $ (|List| (|Equation| $))) 20) (($ $ (|Equation| $)) NIL) (($ $ $ $) NIL) (($ $ (|List| $) (|List| $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (|List| |#4|) (|List| |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (|List| |#4|) (|List| $)) NIL)) (|discriminant| (($ $ |#4|) 76)) (|convert| (((|Pattern| (|Float|)) $) 209) (((|Pattern| (|Integer|)) $) 202) (((|InputForm|) $) 217)) (|content| ((|#2| $) NIL) (($ $ |#4|) 171)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) 150)) (|coefficient| ((|#2| $ |#3|) NIL) (($ $ |#4| (|NonNegativeInteger|)) 50) (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) 53)) (|charthRoot| (((|Union| $ "failed") $) 152)) (< (((|Boolean|) $ $) 183))) │ │ │ +(((|PolynomialCategory&| |#1| |#2| |#3| |#4|) (CATEGORY |domain| (SIGNATURE |gcdPolynomial| ((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |squareFree| ((|Factored| |#1|) |#1|)) (SIGNATURE |squareFreePart| (|#1| |#1|)) (SIGNATURE |charthRoot| ((|Union| |#1| "failed") |#1|)) (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |convert| ((|InputForm|) |#1|)) (SIGNATURE |convert| ((|Pattern| (|Integer|)) |#1|)) (SIGNATURE |convert| ((|Pattern| (|Float|)) |#1|)) (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|))) (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Float|) |#1|) |#1| (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) |#1|))) (SIGNATURE |factor| ((|Factored| |#1|) |#1|)) (SIGNATURE |factorPolynomial| ((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |factorSquareFreePolynomial| ((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |solveLinearPolynomialEquation| ((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |conditionP| ((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|))) (SIGNATURE |primitivePart| (|#1| |#1| |#4|)) (SIGNATURE |content| (|#1| |#1| |#4|)) (SIGNATURE |discriminant| (|#1| |#1| |#4|)) (SIGNATURE |resultant| (|#1| |#1| |#1| |#4|)) (SIGNATURE |primitiveMonomials| ((|List| |#1|) |#1|)) (SIGNATURE |totalDegree| ((|NonNegativeInteger|) |#1| (|List| |#4|))) (SIGNATURE |totalDegree| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |isExpt| ((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") |#1|)) (SIGNATURE |isTimes| ((|Union| (|List| |#1|) "failed") |#1|)) (SIGNATURE |isPlus| ((|Union| (|List| |#1|) "failed") |#1|)) (SIGNATURE |monomial| (|#1| |#1| (|List| |#4|) (|List| (|NonNegativeInteger|)))) (SIGNATURE |monomial| (|#1| |#1| |#4| (|NonNegativeInteger|))) (SIGNATURE |monicDivide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1| |#4|)) (SIGNATURE |monomials| ((|List| |#1|) |#1|)) (SIGNATURE |coefficient| (|#1| |#1| (|List| |#4|) (|List| (|NonNegativeInteger|)))) (SIGNATURE |coefficient| (|#1| |#1| |#4| (|NonNegativeInteger|))) (SIGNATURE |reducedSystem| ((|Matrix| |#2|) (|Matrix| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Matrix| (|Integer|)) (|Matrix| |#1|))) (SIGNATURE |retract| (|#4| |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#4| "failed") |#1|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#4|) (|List| |#1|))) (SIGNATURE |eval| (|#1| |#1| |#4| |#1|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#4|) (|List| |#2|))) (SIGNATURE |eval| (|#1| |#1| |#4| |#2|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#1|) (|List| |#1|))) (SIGNATURE |eval| (|#1| |#1| |#1| |#1|)) (SIGNATURE |eval| (|#1| |#1| (|Equation| |#1|))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Equation| |#1|)))) (SIGNATURE |monomial| (|#1| |#2| |#3|)) (SIGNATURE |coefficient| (|#2| |#1| |#3|)) (SIGNATURE |retract| ((|Integer|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |retract| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |retract| (|#2| |#1|)) (SIGNATURE |content| (|#2| |#1|)) (SIGNATURE |primitivePart| (|#1| |#1|))) (|PolynomialCategory| |#2| |#3| |#4|) (|Ring|) (|OrderedAbelianMonoidSup|) (|OrderedSet|)) (T |PolynomialCategory&|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |min| (|#1| |#1| |#1|)) (SIGNATURE |max| (|#1| |#1| |#1|)) (SIGNATURE <= ((|Boolean|) |#1| |#1|)) (SIGNATURE >= ((|Boolean|) |#1| |#1|)) (SIGNATURE > ((|Boolean|) |#1| |#1|))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|shade| (((|Integer|) $) 15)) (|pastel| (($ (|Color|)) 11)) (|light| (($ (|Color|)) 12)) (|latex| (((|String|) $) NIL)) (|hue| (((|Color|) $) 13)) (|hash| (((|SingleInteger|) $) NIL)) (|dim| (($ (|Color|)) 9)) (|dark| (($ (|Color|)) 8)) (|coerce| (((|OutputForm|) $) 23) (($ (|Color|)) 16)) (|bright| (($ (|Color|)) 10)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|Palette|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |dark| ($ (|Color|))) (SIGNATURE |dim| ($ (|Color|))) (SIGNATURE |bright| ($ (|Color|))) (SIGNATURE |pastel| ($ (|Color|))) (SIGNATURE |light| ($ (|Color|))) (SIGNATURE |hue| ((|Color|) $)) (SIGNATURE |shade| ((|Integer|) $)) (SIGNATURE |coerce| ($ (|Color|)))))) (T |Palette|)) │ │ │ -((|dark| (*1 *1 *2) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|)))) (|dim| (*1 *1 *2) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|)))) (|bright| (*1 *1 *2) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|)))) (|pastel| (*1 *1 *2) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|)))) (|light| (*1 *1 *2) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|)))) (|hue| (*1 *2 *1) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|)))) (|shade| (*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Palette|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |dark| ($ (|Color|))) (SIGNATURE |dim| ($ (|Color|))) (SIGNATURE |bright| ($ (|Color|))) (SIGNATURE |pastel| ($ (|Color|))) (SIGNATURE |light| ($ (|Color|))) (SIGNATURE |hue| ((|Color|) $)) (SIGNATURE |shade| ((|Integer|) $)) (SIGNATURE |coerce| ($ (|Color|))))) │ │ │ -((|curve| (($ |#1| |#1|) 8)) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) 10))) │ │ │ -(((|ParametricPlaneCurve| |#1|) (CATEGORY |domain| (SIGNATURE |curve| ($ |#1| |#1|)) (SIGNATURE |coordinate| (|#1| $ (|NonNegativeInteger|)))) (|Type|)) (T |ParametricPlaneCurve|)) │ │ │ -((|coordinate| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|ParametricPlaneCurve| *2)) (|ofCategory| *2 (|Type|)))) (|curve| (*1 *1 *2 *2) (AND (|isDomain| *1 (|ParametricPlaneCurve| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ -(CATEGORY |domain| (SIGNATURE |curve| ($ |#1| |#1|)) (SIGNATURE |coordinate| (|#1| $ (|NonNegativeInteger|)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17))) │ │ │ -(((|OrderedSet|) (|Category|)) (T |OrderedSet|)) │ │ │ -((< (*1 *2 *1 *1) (AND (|ofCategory| *1 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (> (*1 *2 *1 *1) (AND (|ofCategory| *1 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (>= (*1 *2 *1 *1) (AND (|ofCategory| *1 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (<= (*1 *2 *1 *1) (AND (|ofCategory| *1 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|max| (*1 *1 *1 *1) (|ofCategory| *1 (|OrderedSet|))) (|min| (*1 *1 *1 *1) (|ofCategory| *1 (|OrderedSet|)))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE < ((|Boolean|) $ $)) (SIGNATURE > ((|Boolean|) $ $)) (SIGNATURE >= ((|Boolean|) $ $)) (SIGNATURE <= ((|Boolean|) $ $)) (SIGNATURE |max| ($ $ $)) (SIGNATURE |min| ($ $ $)))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) 14))) │ │ │ -(((|ParametricPlaneCurveFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)))) (|Type|) (|Type|)) (T |ParametricPlaneCurveFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|ParametricPlaneCurve| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|ParametricPlaneCurve| *6)) (|isDomain| *1 (|ParametricPlaneCurveFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)))) │ │ │ -((|curve| (($ |#1| |#1| |#1|) 8)) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) 10))) │ │ │ -(((|ParametricSpaceCurve| |#1|) (CATEGORY |domain| (SIGNATURE |curve| ($ |#1| |#1| |#1|)) (SIGNATURE |coordinate| (|#1| $ (|NonNegativeInteger|)))) (|Type|)) (T |ParametricSpaceCurve|)) │ │ │ -((|coordinate| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|ParametricSpaceCurve| *2)) (|ofCategory| *2 (|Type|)))) (|curve| (*1 *1 *2 *2 *2) (AND (|isDomain| *1 (|ParametricSpaceCurve| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ -(CATEGORY |domain| (SIGNATURE |curve| ($ |#1| |#1| |#1|)) (SIGNATURE |coordinate| (|#1| $ (|NonNegativeInteger|)))) │ │ │ -((|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) 14))) │ │ │ -(((|ParametricSpaceCurveFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)))) (|Type|) (|Type|)) (T |ParametricSpaceCurveFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|ParametricSpaceCurve| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|ParametricSpaceCurve| *6)) (|isDomain| *1 (|ParametricSpaceCurveFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)))) │ │ │ -((|surface| (($ |#1| |#1| |#1|) 8)) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) 10))) │ │ │ -(((|ParametricSurface| |#1|) (CATEGORY |domain| (SIGNATURE |surface| ($ |#1| |#1| |#1|)) (SIGNATURE |coordinate| (|#1| $ (|NonNegativeInteger|)))) (|Type|)) (T |ParametricSurface|)) │ │ │ -((|coordinate| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|ParametricSurface| *2)) (|ofCategory| *2 (|Type|)))) (|surface| (*1 *1 *2 *2 *2) (AND (|isDomain| *1 (|ParametricSurface| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ -(CATEGORY |domain| (SIGNATURE |surface| ($ |#1| |#1| |#1|)) (SIGNATURE |coordinate| (|#1| $ (|NonNegativeInteger|)))) │ │ │ -((|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) 14))) │ │ │ -(((|ParametricSurfaceFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)))) (|Type|) (|Type|)) (T |ParametricSurfaceFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|ParametricSurface| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|ParametricSurface| *6)) (|isDomain| *1 (|ParametricSurfaceFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)))) │ │ │ -((|convert| (((|Pattern| (|Float|)) $) 9 (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|))))) (((|Pattern| (|Integer|)) $) 8 (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|))))))) │ │ │ -(((|Patternable| |#1|) (|Category|) (|Type|)) (T |Patternable|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |gcdPolynomial| ((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |squareFree| ((|Factored| |#1|) |#1|)) (SIGNATURE |squareFreePart| (|#1| |#1|)) (SIGNATURE |charthRoot| ((|Union| |#1| "failed") |#1|)) (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |convert| ((|InputForm|) |#1|)) (SIGNATURE |convert| ((|Pattern| (|Integer|)) |#1|)) (SIGNATURE |convert| ((|Pattern| (|Float|)) |#1|)) (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|))) (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Float|) |#1|) |#1| (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) |#1|))) (SIGNATURE |factor| ((|Factored| |#1|) |#1|)) (SIGNATURE |factorPolynomial| ((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |factorSquareFreePolynomial| ((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |solveLinearPolynomialEquation| ((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |conditionP| ((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|))) (SIGNATURE |primitivePart| (|#1| |#1| |#4|)) (SIGNATURE |content| (|#1| |#1| |#4|)) (SIGNATURE |discriminant| (|#1| |#1| |#4|)) (SIGNATURE |resultant| (|#1| |#1| |#1| |#4|)) (SIGNATURE |primitiveMonomials| ((|List| |#1|) |#1|)) (SIGNATURE |totalDegree| ((|NonNegativeInteger|) |#1| (|List| |#4|))) (SIGNATURE |totalDegree| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |isExpt| ((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") |#1|)) (SIGNATURE |isTimes| ((|Union| (|List| |#1|) "failed") |#1|)) (SIGNATURE |isPlus| ((|Union| (|List| |#1|) "failed") |#1|)) (SIGNATURE |monomial| (|#1| |#1| (|List| |#4|) (|List| (|NonNegativeInteger|)))) (SIGNATURE |monomial| (|#1| |#1| |#4| (|NonNegativeInteger|))) (SIGNATURE |monicDivide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1| |#4|)) (SIGNATURE |monomials| ((|List| |#1|) |#1|)) (SIGNATURE |coefficient| (|#1| |#1| (|List| |#4|) (|List| (|NonNegativeInteger|)))) (SIGNATURE |coefficient| (|#1| |#1| |#4| (|NonNegativeInteger|))) (SIGNATURE |reducedSystem| ((|Matrix| |#2|) (|Matrix| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Matrix| (|Integer|)) (|Matrix| |#1|))) (SIGNATURE |retract| (|#4| |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#4| "failed") |#1|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#4|) (|List| |#1|))) (SIGNATURE |eval| (|#1| |#1| |#4| |#1|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#4|) (|List| |#2|))) (SIGNATURE |eval| (|#1| |#1| |#4| |#2|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#1|) (|List| |#1|))) (SIGNATURE |eval| (|#1| |#1| |#1| |#1|)) (SIGNATURE |eval| (|#1| |#1| (|Equation| |#1|))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Equation| |#1|)))) (SIGNATURE |monomial| (|#1| |#2| |#3|)) (SIGNATURE |coefficient| (|#2| |#1| |#3|)) (SIGNATURE |retract| ((|Integer|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |retract| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |retract| (|#2| |#1|)) (SIGNATURE |content| (|#2| |#1|)) (SIGNATURE |primitivePart| (|#1| |#1|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 40)) (|unitNormalize| (($ $) 55)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 142)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) 34)) (|unit| ((|#1| $) 12)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL (|has| |#1| (|UniqueFactorizationDomain|)))) (|squareFree| (((|Factored| $) $) NIL (|has| |#1| (|UniqueFactorizationDomain|)))) (|sqfrFactor| (($ |#1| (|Integer|)) 30)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#1| "failed") $) 112)) (|retract| (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1| $) 53)) (|recip| (((|Union| $ "failed") $) 127)) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) 61 (|has| |#1| (|IntegerNumberSystem|)))) (|rational?| (((|Boolean|) $) 57 (|has| |#1| (|IntegerNumberSystem|)))) (|rational| (((|Fraction| (|Integer|)) $) 59 (|has| |#1| (|IntegerNumberSystem|)))) (|primeFactor| (($ |#1| (|Integer|)) 32)) (|prime?| (((|Boolean|) $) 148 (|has| |#1| (|UniqueFactorizationDomain|)))) (|one?| (((|Boolean|) $) 41)) (|numberOfFactors| (((|NonNegativeInteger|) $) 36)) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) 133)) (|nthFactor| ((|#1| $ (|Integer|)) 132)) (|nthExponent| (((|Integer|) $ (|Integer|)) 131)) (|nilFactor| (($ |#1| (|Integer|)) 29)) (|map| (($ (|Mapping| |#1| |#1|) $) 139)) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) 56)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL (|has| |#1| (|GcdDomain|)))) (|lcm| (($ (|List| $)) NIL (|has| |#1| (|GcdDomain|))) (($ $ $) NIL (|has| |#1| (|GcdDomain|)))) (|latex| (((|String|) $) NIL)) (|irreducibleFactor| (($ |#1| (|Integer|)) 31)) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|GcdDomain|)))) (|gcd| (($ (|List| $)) NIL (|has| |#1| (|GcdDomain|))) (($ $ $) 143 (|has| |#1| (|GcdDomain|)))) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) 28)) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) 52)) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) 11)) (|factor| (((|Factored| $) $) NIL (|has| |#1| (|UniqueFactorizationDomain|)))) (|exquo| (((|Union| $ "failed") $ $) 134)) (|exponent| (((|Integer|) $) 128)) (|expand| ((|#1| $) 54)) (|eval| (($ $ (|List| |#1|) (|List| |#1|)) NIL (|has| |#1| (|Evalable| |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (|Evalable| |#1|))) (($ $ (|Equation| |#1|)) NIL (|has| |#1| (|Evalable| |#1|))) (($ $ (|List| (|Equation| |#1|))) 76 (|has| |#1| (|Evalable| |#1|))) (($ $ (|List| (|Symbol|)) (|List| |#1|)) 81 (|has| |#1| (|InnerEvalable| (|Symbol|) |#1|))) (($ $ (|Symbol|) |#1|) NIL (|has| |#1| (|InnerEvalable| (|Symbol|) |#1|))) (($ $ (|Symbol|) $) NIL (|has| |#1| (|InnerEvalable| (|Symbol|) $))) (($ $ (|List| (|Symbol|)) (|List| $)) 82 (|has| |#1| (|InnerEvalable| (|Symbol|) $))) (($ $ (|List| (|Equation| $))) 78 (|has| |#1| (|Evalable| $))) (($ $ (|Equation| $)) NIL (|has| |#1| (|Evalable| $))) (($ $ $ $) NIL (|has| |#1| (|Evalable| $))) (($ $ (|List| $) (|List| $)) NIL (|has| |#1| (|Evalable| $)))) (|elt| (($ $ |#1|) 68 (|has| |#1| (|Eltable| |#1| |#1|))) (($ $ $) 69 (|has| |#1| (|Eltable| $ $)))) (|differentiate| (($ $) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|Symbol|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#1| |#1|)) 138)) (|convert| (((|InputForm|) $) 26 (|has| |#1| (|ConvertibleTo| (|InputForm|)))) (((|Float|) $) 88 (|has| |#1| (|RealConstant|))) (((|DoubleFloat|) $) 91 (|has| |#1| (|RealConstant|)))) (|coerce| (((|OutputForm|) $) 110) (($ (|Integer|)) 44) (($ $) NIL) (($ |#1|) 43) (($ (|Fraction| (|Integer|))) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))) (|characteristic| (((|NonNegativeInteger|)) 46)) (|associates?| (((|Boolean|) $ $) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 38 T CONST)) (|One| (($) 37 T CONST)) (D (($ $) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|Symbol|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#1| |#1|)) NIL)) (= (((|Boolean|) $ $) 92)) (- (($ $) 124) (($ $ $) NIL)) (+ (($ $ $) 136)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) 98)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 48) (($ $ $) 47) (($ |#1| $) 49) (($ $ |#1|) NIL))) │ │ │ +(((|Factored| |#1|) (|Join| (|IntegralDomain|) (|DifferentialExtension| |#1|) (|Algebra| |#1|) (|FullyEvalableOver| |#1|) (|FullyRetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |expand| (|#1| $)) (SIGNATURE |exponent| ((|Integer|) $)) (SIGNATURE |makeFR| ($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))))) (SIGNATURE |factorList| ((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $)) (SIGNATURE |nilFactor| ($ |#1| (|Integer|))) (SIGNATURE |factors| ((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $)) (SIGNATURE |irreducibleFactor| ($ |#1| (|Integer|))) (SIGNATURE |nthExponent| ((|Integer|) $ (|Integer|))) (SIGNATURE |nthFactor| (|#1| $ (|Integer|))) (SIGNATURE |nthFlag| ((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|))) (SIGNATURE |numberOfFactors| ((|NonNegativeInteger|) $)) (SIGNATURE |primeFactor| ($ |#1| (|Integer|))) (SIGNATURE |sqfrFactor| ($ |#1| (|Integer|))) (SIGNATURE |flagFactor| ($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime"))) (SIGNATURE |unit| (|#1| $)) (SIGNATURE |unitNormalize| ($ $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (IF (|has| |#1| (|GcdDomain|)) (ATTRIBUTE (|GcdDomain|)) |noBranch|) (IF (|has| |#1| (|RealConstant|)) (ATTRIBUTE (|RealConstant|)) |noBranch|) (IF (|has| |#1| (|UniqueFactorizationDomain|)) (ATTRIBUTE (|UniqueFactorizationDomain|)) |noBranch|) (IF (|has| |#1| (|ConvertibleTo| (|InputForm|))) (ATTRIBUTE (|ConvertibleTo| (|InputForm|))) |noBranch|) (IF (|has| |#1| (|IntegerNumberSystem|)) (PROGN (SIGNATURE |rational?| ((|Boolean|) $)) (SIGNATURE |rational| ((|Fraction| (|Integer|)) $)) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") $))) |noBranch|) (IF (|has| |#1| (|Eltable| $ $)) (ATTRIBUTE (|Eltable| $ $)) |noBranch|) (IF (|has| |#1| (|Evalable| $)) (ATTRIBUTE (|Evalable| $)) |noBranch|) (IF (|has| |#1| (|InnerEvalable| (|Symbol|) $)) (ATTRIBUTE (|InnerEvalable| (|Symbol|) $)) |noBranch|))) (|IntegralDomain|)) (T |Factored|)) │ │ │ +((|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *1 (|Factored| *3)))) (|expand| (*1 *2 *1) (AND (|isDomain| *1 (|Factored| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|exponent| (*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Factored| *3)) (|ofCategory| *3 (|IntegralDomain|)))) (|makeFR| (*1 *1 *2 *3) (AND (|isDomain| *3 (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (|Integer|))))) (|ofCategory| *2 (|IntegralDomain|)) (|isDomain| *1 (|Factored| *2)))) (|factorList| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (|Integer|))))) (|isDomain| *1 (|Factored| *3)) (|ofCategory| *3 (|IntegralDomain|)))) (|nilFactor| (*1 *1 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|Factored| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|factors| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |factor| *3) (|:| |exponent| (|Integer|))))) (|isDomain| *1 (|Factored| *3)) (|ofCategory| *3 (|IntegralDomain|)))) (|irreducibleFactor| (*1 *1 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|Factored| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|nthExponent| (*1 *2 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Factored| *3)) (|ofCategory| *3 (|IntegralDomain|)))) (|nthFactor| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|Factored| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|nthFlag| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Union| "nil" "sqfr" "irred" "prime")) (|isDomain| *1 (|Factored| *4)) (|ofCategory| *4 (|IntegralDomain|)))) (|numberOfFactors| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Factored| *3)) (|ofCategory| *3 (|IntegralDomain|)))) (|primeFactor| (*1 *1 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|Factored| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|sqfrFactor| (*1 *1 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|Factored| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|flagFactor| (*1 *1 *2 *3 *4) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Union| "nil" "sqfr" "irred" "prime")) (|isDomain| *1 (|Factored| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|unit| (*1 *2 *1) (AND (|isDomain| *1 (|Factored| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|unitNormalize| (*1 *1 *1) (AND (|isDomain| *1 (|Factored| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|rational?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Factored| *3)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|ofCategory| *3 (|IntegralDomain|)))) (|rational| (*1 *2 *1) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|Factored| *3)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|ofCategory| *3 (|IntegralDomain|)))) (|rationalIfCan| (*1 *2 *1) (|partial| AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|Factored| *3)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|ofCategory| *3 (|IntegralDomain|))))) │ │ │ +(|Join| (|IntegralDomain|) (|DifferentialExtension| |#1|) (|Algebra| |#1|) (|FullyEvalableOver| |#1|) (|FullyRetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |expand| (|#1| $)) (SIGNATURE |exponent| ((|Integer|) $)) (SIGNATURE |makeFR| ($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))))) (SIGNATURE |factorList| ((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $)) (SIGNATURE |nilFactor| ($ |#1| (|Integer|))) (SIGNATURE |factors| ((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $)) (SIGNATURE |irreducibleFactor| ($ |#1| (|Integer|))) (SIGNATURE |nthExponent| ((|Integer|) $ (|Integer|))) (SIGNATURE |nthFactor| (|#1| $ (|Integer|))) (SIGNATURE |nthFlag| ((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|))) (SIGNATURE |numberOfFactors| ((|NonNegativeInteger|) $)) (SIGNATURE |primeFactor| ($ |#1| (|Integer|))) (SIGNATURE |sqfrFactor| ($ |#1| (|Integer|))) (SIGNATURE |flagFactor| ($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime"))) (SIGNATURE |unit| (|#1| $)) (SIGNATURE |unitNormalize| ($ $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (IF (|has| |#1| (|GcdDomain|)) (ATTRIBUTE (|GcdDomain|)) |noBranch|) (IF (|has| |#1| (|RealConstant|)) (ATTRIBUTE (|RealConstant|)) |noBranch|) (IF (|has| |#1| (|UniqueFactorizationDomain|)) (ATTRIBUTE (|UniqueFactorizationDomain|)) |noBranch|) (IF (|has| |#1| (|ConvertibleTo| (|InputForm|))) (ATTRIBUTE (|ConvertibleTo| (|InputForm|))) |noBranch|) (IF (|has| |#1| (|IntegerNumberSystem|)) (PROGN (SIGNATURE |rational?| ((|Boolean|) $)) (SIGNATURE |rational| ((|Fraction| (|Integer|)) $)) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") $))) |noBranch|) (IF (|has| |#1| (|Eltable| $ $)) (ATTRIBUTE (|Eltable| $ $)) |noBranch|) (IF (|has| |#1| (|Evalable| $)) (ATTRIBUTE (|Evalable| $)) |noBranch|) (IF (|has| |#1| (|InnerEvalable| (|Symbol|) $)) (ATTRIBUTE (|InnerEvalable| (|Symbol|) $)) |noBranch|))) │ │ │ +((|incrementBy| (((|Mapping| |#1| |#1|) |#1|) 11)) (|increment| (((|Mapping| |#1| |#1|)) 10))) │ │ │ +(((|IncrementingMaps| |#1|) (CATEGORY |package| (SIGNATURE |increment| ((|Mapping| |#1| |#1|))) (SIGNATURE |incrementBy| ((|Mapping| |#1| |#1|) |#1|))) (|Join| (|Monoid|) (|AbelianSemiGroup|))) (T |IncrementingMaps|)) │ │ │ +((|incrementBy| (*1 *2 *3) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|isDomain| *1 (|IncrementingMaps| *3)) (|ofCategory| *3 (|Join| (|Monoid|) (|AbelianSemiGroup|))))) (|increment| (*1 *2) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|isDomain| *1 (|IncrementingMaps| *3)) (|ofCategory| *3 (|Join| (|Monoid|) (|AbelianSemiGroup|)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |increment| ((|Mapping| |#1| |#1|))) (SIGNATURE |incrementBy| ((|Mapping| |#1| |#1|) |#1|))) │ │ │ +((|squareFreePart| (($ $) 16)) (|prime?| (((|Boolean|) $) 23))) │ │ │ +(((|UniqueFactorizationDomain&| |#1|) (CATEGORY |domain| (SIGNATURE |squareFreePart| (|#1| |#1|)) (SIGNATURE |prime?| ((|Boolean|) |#1|))) (|UniqueFactorizationDomain|)) (T |UniqueFactorizationDomain&|)) │ │ │ NIL │ │ │ -(|Join| (CATEGORY |package| (IF (|has| |t#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (ATTRIBUTE (|ConvertibleTo| (|Pattern| (|Integer|)))) |noBranch|) (IF (|has| |t#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (ATTRIBUTE (|ConvertibleTo| (|Pattern| (|Float|)))) |noBranch|))) │ │ │ -(((|ConvertibleTo| (|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) ((|ConvertibleTo| (|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|))))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) 12)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6))) │ │ │ -(((|PatternMatchable| |#1|) (|Category|) (|SetCategory|)) (T |PatternMatchable|)) │ │ │ -((|patternMatch| (*1 *2 *1 *3 *2) (AND (|isDomain| *2 (|PatternMatchResult| *4 *1)) (|isDomain| *3 (|Pattern| *4)) (|ofCategory| *1 (|PatternMatchable| *4)) (|ofCategory| *4 (|SetCategory|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |patternMatch| ((|PatternMatchResult| |t#1| $) $ (|Pattern| |t#1|) (|PatternMatchResult| |t#1| $))))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) 21))) │ │ │ -(((|PatternMatchResultFunctions2| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |map| ((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)))) (|SetCategory|) (|SetCategory|) (|SetCategory|)) (T |PatternMatchResultFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *7 *6)) (|isDomain| *4 (|PatternMatchResult| *5 *6)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|PatternMatchResult| *5 *7)) (|isDomain| *1 (|PatternMatchResultFunctions2| *5 *6 *7))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)))) │ │ │ +(CATEGORY |domain| (SIGNATURE |squareFreePart| (|#1| |#1|)) (SIGNATURE |prime?| ((|Boolean|) |#1|))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) 183)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 89 (|has| (|Fraction| |#2|) (|Field|)))) (|unitCanonical| (($ $) 90 (|has| (|Fraction| |#2|) (|Field|)))) (|unit?| (((|Boolean|) $) 92 (|has| (|Fraction| |#2|) (|Field|)))) (|traceMatrix| (((|Matrix| (|Fraction| |#2|)) (|Vector| $)) 44) (((|Matrix| (|Fraction| |#2|))) 55)) (|trace| (((|Fraction| |#2|) $) 50)) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) 144 (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 110 (|has| (|Fraction| |#2|) (|Field|)))) (|squareFree| (((|Factored| $) $) 111 (|has| (|Fraction| |#2|) (|Field|)))) (|sizeLess?| (((|Boolean|) $ $) 101 (|has| (|Fraction| |#2|) (|Field|)))) (|size| (((|NonNegativeInteger|)) 82 (|has| (|Fraction| |#2|) (|Finite|)))) (|singularAtInfinity?| (((|Boolean|)) 200)) (|singular?| (((|Boolean|) |#1|) 199) (((|Boolean|) |#2|) 198)) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 166 (|has| (|Fraction| |#2|) (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) 164 (|has| (|Fraction| |#2|) (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| (|Fraction| |#2|) "failed") $) 163)) (|retract| (((|Integer|) $) 167 (|has| (|Fraction| |#2|) (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) 165 (|has| (|Fraction| |#2|) (|RetractableTo| (|Fraction| (|Integer|))))) (((|Fraction| |#2|) $) 162)) (|represents| (($ (|Vector| (|Fraction| |#2|)) (|Vector| $)) 46) (($ (|Vector| (|Fraction| |#2|))) 58) (($ (|Vector| |#2|) |#2|) 176)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) 150 (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|rem| (($ $ $) 105 (|has| (|Fraction| |#2|) (|Field|)))) (|regularRepresentation| (((|Matrix| (|Fraction| |#2|)) $ (|Vector| $)) 51) (((|Matrix| (|Fraction| |#2|)) $) 53)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) 161 (|has| (|Fraction| |#2|) (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) 160 (|has| (|Fraction| |#2|) (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Fraction| |#2|))) (|:| |vec| (|Vector| (|Fraction| |#2|)))) (|Matrix| $) (|Vector| $)) 159) (((|Matrix| (|Fraction| |#2|)) (|Matrix| $)) 158)) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) 188)) (|reduce| (($ |#3|) 155) (((|Union| $ "failed") (|Fraction| |#3|)) 152 (|has| (|Fraction| |#2|) (|Field|)))) (|recip| (((|Union| $ "failed") $) 33)) (|rationalPoints| (((|List| (|List| |#1|))) 169 (|has| |#1| (|Finite|)))) (|rationalPoint?| (((|Boolean|) |#1| |#1|) 204)) (|rank| (((|PositiveInteger|)) 52)) (|random| (($) 85 (|has| (|Fraction| |#2|) (|Finite|)))) (|ramifiedAtInfinity?| (((|Boolean|)) 197)) (|ramified?| (((|Boolean|) |#1|) 196) (((|Boolean|) |#2|) 195)) (|quo| (($ $ $) 104 (|has| (|Fraction| |#2|) (|Field|)))) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 99 (|has| (|Fraction| |#2|) (|Field|)))) (|primitivePart| (($ $) 175)) (|primitiveElement| (($) 146 (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|primitive?| (((|Boolean|) $) 147 (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) 138 (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))) (($ $) 137 (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|prime?| (((|Boolean|) $) 112 (|has| (|Fraction| |#2|) (|Field|)))) (|order| (((|PositiveInteger|) $) 149 (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))) (((|OnePointCompletion| (|PositiveInteger|)) $) 135 (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|one?| (((|Boolean|) $) 30)) (|numberOfComponents| (((|NonNegativeInteger|)) 207)) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) 189)) (|norm| (((|Fraction| |#2|) $) 49)) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) 170 (|has| |#1| (|Field|)))) (|nextItem| (((|Union| $ "failed") $) 139 (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 108 (|has| (|Fraction| |#2|) (|Field|)))) (|minimalPolynomial| ((|#3| $) 42 (|has| (|Fraction| |#2|) (|Field|)))) (|lookup| (((|PositiveInteger|) $) 84 (|has| (|Fraction| |#2|) (|Finite|)))) (|lift| ((|#3| $) 153)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 93 (|has| (|Fraction| |#2|) (|Field|)))) (|lcm| (($ (|List| $)) 97 (|has| (|Fraction| |#2|) (|Field|))) (($ $ $) 96 (|has| (|Fraction| |#2|) (|Field|)))) (|latex| (((|String|) $) 9)) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) 184)) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) 186)) (|inv| (($ $) 113 (|has| (|Fraction| |#2|) (|Field|)))) (|integralRepresents| (($ (|Vector| |#2|) |#2|) 181)) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) 185)) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) 187)) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) 180)) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) 182)) (|integralBasisAtInfinity| (((|Vector| $)) 193)) (|integralBasis| (((|Vector| $)) 194)) (|integralAtInfinity?| (((|Boolean|) $) 192)) (|integral?| (((|Boolean|) $) 191) (((|Boolean|) $ |#1|) 179) (((|Boolean|) $ |#2|) 178)) (|init| (($) 140 (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) CONST)) (|index| (($ (|PositiveInteger|)) 83 (|has| (|Fraction| |#2|) (|Finite|)))) (|hyperelliptic| (((|Union| |#2| "failed")) 172)) (|hash| (((|SingleInteger|) $) 10)) (|genus| (((|NonNegativeInteger|)) 206)) (|generator| (($) 157)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 98 (|has| (|Fraction| |#2|) (|Field|)))) (|gcd| (($ (|List| $)) 95 (|has| (|Fraction| |#2|) (|Field|))) (($ $ $) 94 (|has| (|Fraction| |#2|) (|Field|)))) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) 143 (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|factor| (((|Factored| $) $) 109 (|has| (|Fraction| |#2|) (|Field|)))) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 107 (|has| (|Fraction| |#2|) (|Field|))) (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 106 (|has| (|Fraction| |#2|) (|Field|)))) (|exquo| (((|Union| $ "failed") $ $) 88 (|has| (|Fraction| |#2|) (|Field|)))) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 100 (|has| (|Fraction| |#2|) (|Field|)))) (|euclideanSize| (((|NonNegativeInteger|) $) 102 (|has| (|Fraction| |#2|) (|Field|)))) (|enumerate| (((|List| $)) 86 (|has| (|Fraction| |#2|) (|Finite|)))) (|elt| ((|#1| $ |#1| |#1|) 174)) (|elliptic| (((|Union| |#2| "failed")) 173)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 103 (|has| (|Fraction| |#2|) (|Field|)))) (|discriminant| (((|Fraction| |#2|) (|Vector| $)) 45) (((|Fraction| |#2|)) 54)) (|discreteLog| (((|NonNegativeInteger|) $) 148 (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))) (((|Union| (|NonNegativeInteger|) "failed") $ $) 136 (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|differentiate| (($ $ (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|)) (|NonNegativeInteger|)) 120 (|has| (|Fraction| |#2|) (|Field|))) (($ $ (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|))) 119 (|has| (|Fraction| |#2|) (|Field|))) (($ $ (|Mapping| |#2| |#2|)) 177) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 127 (OR (|and| (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|)))) (|and| (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))) (|has| (|Fraction| |#2|) (|Field|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 128 (OR (|and| (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|)))) (|and| (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))) (|has| (|Fraction| |#2|) (|Field|))))) (($ $ (|List| (|Symbol|))) 129 (OR (|and| (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|)))) (|and| (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))) (|has| (|Fraction| |#2|) (|Field|))))) (($ $ (|Symbol|)) 130 (OR (|and| (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|)))) (|and| (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))) (|has| (|Fraction| |#2|) (|Field|))))) (($ $ (|NonNegativeInteger|)) 132 (OR (|and| (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|DifferentialRing|))) (|and| (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|Field|))) (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (($ $) 134 (OR (|and| (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|DifferentialRing|))) (|and| (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|Field|))) (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))))) (|derivationCoordinates| (((|Matrix| (|Fraction| |#2|)) (|Vector| $) (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|))) 151 (|has| (|Fraction| |#2|) (|Field|)))) (|definingPolynomial| ((|#3|) 156)) (|createPrimitiveElement| (($) 145 (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|coordinates| (((|Vector| (|Fraction| |#2|)) $ (|Vector| $)) 48) (((|Matrix| (|Fraction| |#2|)) (|Vector| $) (|Vector| $)) 47) (((|Vector| (|Fraction| |#2|)) $) 60) (((|Matrix| (|Fraction| |#2|)) (|Vector| $)) 59)) (|convert| (((|Vector| (|Fraction| |#2|)) $) 57) (($ (|Vector| (|Fraction| |#2|))) 56) ((|#3| $) 168) (($ |#3|) 154)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) 142 (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|complementaryBasis| (((|Vector| $) (|Vector| $)) 190)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ (|Fraction| |#2|)) 36) (($ (|Fraction| (|Integer|))) 81 (OR (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|RetractableTo| (|Fraction| (|Integer|)))))) (($ $) 87 (|has| (|Fraction| |#2|) (|Field|)))) (|charthRoot| (($ $) 141 (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))) (((|Union| $ "failed") $) 41 (|has| (|Fraction| |#2|) (|CharacteristicNonZero|)))) (|characteristicPolynomial| ((|#3| $) 43)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|branchPointAtInfinity?| (((|Boolean|)) 203)) (|branchPoint?| (((|Boolean|) |#1|) 202) (((|Boolean|) |#2|) 201)) (|basis| (((|Vector| $)) 61)) (|associates?| (((|Boolean|) $ $) 91 (|has| (|Fraction| |#2|) (|Field|)))) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) 171)) (|absolutelyIrreducible?| (((|Boolean|)) 205)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 114 (|has| (|Fraction| |#2|) (|Field|)))) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $ (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|)) (|NonNegativeInteger|)) 122 (|has| (|Fraction| |#2|) (|Field|))) (($ $ (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|))) 121 (|has| (|Fraction| |#2|) (|Field|))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 123 (OR (|and| (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|)))) (|and| (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))) (|has| (|Fraction| |#2|) (|Field|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 124 (OR (|and| (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|)))) (|and| (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))) (|has| (|Fraction| |#2|) (|Field|))))) (($ $ (|List| (|Symbol|))) 125 (OR (|and| (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|)))) (|and| (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))) (|has| (|Fraction| |#2|) (|Field|))))) (($ $ (|Symbol|)) 126 (OR (|and| (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|)))) (|and| (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))) (|has| (|Fraction| |#2|) (|Field|))))) (($ $ (|NonNegativeInteger|)) 131 (OR (|and| (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|DifferentialRing|))) (|and| (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|Field|))) (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (($ $) 133 (OR (|and| (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|DifferentialRing|))) (|and| (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|Field|))) (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))))) (= (((|Boolean|) $ $) 6)) (/ (($ $ $) 118 (|has| (|Fraction| |#2|) (|Field|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 115 (|has| (|Fraction| |#2|) (|Field|)))) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| |#2|)) 38) (($ (|Fraction| |#2|) $) 37) (($ (|Fraction| (|Integer|)) $) 117 (|has| (|Fraction| |#2|) (|Field|))) (($ $ (|Fraction| (|Integer|))) 116 (|has| (|Fraction| |#2|) (|Field|))))) │ │ │ +(((|FunctionFieldCategory| |#1| |#2| |#3|) (|Category|) (|UniqueFactorizationDomain|) (|UnivariatePolynomialCategory| |t#1|) (|UnivariatePolynomialCategory| (|Fraction| |t#2|))) (T |FunctionFieldCategory|)) │ │ │ +((|numberOfComponents| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|NonNegativeInteger|)))) (|genus| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|NonNegativeInteger|)))) (|absolutelyIrreducible?| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|rationalPoint?| (*1 *2 *3 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|branchPointAtInfinity?| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|branchPoint?| (*1 *2 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|branchPoint?| (*1 *2 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3))) (|isDomain| *2 (|Boolean|)))) (|singularAtInfinity?| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|singular?| (*1 *2 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|singular?| (*1 *2 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3))) (|isDomain| *2 (|Boolean|)))) (|ramifiedAtInfinity?| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|ramified?| (*1 *2 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|ramified?| (*1 *2 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3))) (|isDomain| *2 (|Boolean|)))) (|integralBasis| (*1 *2) (AND (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)))) (|integralBasisAtInfinity| (*1 *2) (AND (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)))) (|integralAtInfinity?| (*1 *2 *1) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|integral?| (*1 *2 *1) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|complementaryBasis| (*1 *2 *2) (AND (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))))) (|normalizeAtInfinity| (*1 *2 *2) (AND (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))))) (|reduceBasisAtInfinity| (*1 *2 *2) (AND (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))))) (|integralMatrix| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Matrix| (|Fraction| *4))))) (|inverseIntegralMatrix| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Matrix| (|Fraction| *4))))) (|integralMatrixAtInfinity| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Matrix| (|Fraction| *4))))) (|inverseIntegralMatrixAtInfinity| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Matrix| (|Fraction| *4))))) (|yCoordinates| (*1 *2 *1) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Record| (|:| |num| (|Vector| *4)) (|:| |den| *4))))) (|integralCoordinates| (*1 *2 *1) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Record| (|:| |num| (|Vector| *4)) (|:| |den| *4))))) (|integralRepresents| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3))))) (|integralDerivationMatrix| (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| *5 *5)) (|ofCategory| *1 (|FunctionFieldCategory| *4 *5 *6)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5))) (|isDomain| *2 (|Record| (|:| |num| (|Matrix| *5)) (|:| |den| *5))))) (|integral?| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|isDomain| *2 (|Boolean|)))) (|integral?| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3))) (|isDomain| *2 (|Boolean|)))) (|differentiate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Mapping| *4 *4)) (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))))) (|represents| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Vector| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *1 (|FunctionFieldCategory| *4 *3 *5)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3))))) (|primitivePart| (*1 *1 *1) (AND (|ofCategory| *1 (|FunctionFieldCategory| *2 *3 *4)) (|ofCategory| *2 (|UniqueFactorizationDomain|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *3))))) (|elt| (*1 *2 *1 *2 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *2 *3 *4)) (|ofCategory| *2 (|UniqueFactorizationDomain|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *3))))) (|elliptic| (*1 *2) (|partial| AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *2 *4)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *2))) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|hyperelliptic| (*1 *2) (|partial| AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *2 *4)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *2))) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|algSplitSimple| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Mapping| *5 *5)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5))) (|isDomain| *2 (|Record| (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (|ofCategory| *1 (|FunctionFieldCategory| *4 *5 *6)))) (|nonSingularModel| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *1 (|FunctionFieldCategory| *4 *5 *6)) (|ofCategory| *4 (|UniqueFactorizationDomain|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5))) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|List| (|Polynomial| *4))))) (|rationalPoints| (*1 *2) (AND (|ofCategory| *1 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|UniqueFactorizationDomain|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|ofCategory| *3 (|Finite|)) (|isDomain| *2 (|List| (|List| *3)))))) │ │ │ +(|Join| (|MonogenicAlgebra| (|Fraction| |t#2|) |t#3|) (CATEGORY |domain| (SIGNATURE |numberOfComponents| ((|NonNegativeInteger|))) (SIGNATURE |genus| ((|NonNegativeInteger|))) (SIGNATURE |absolutelyIrreducible?| ((|Boolean|))) (SIGNATURE |rationalPoint?| ((|Boolean|) |t#1| |t#1|)) (SIGNATURE |branchPointAtInfinity?| ((|Boolean|))) (SIGNATURE |branchPoint?| ((|Boolean|) |t#1|)) (SIGNATURE |branchPoint?| ((|Boolean|) |t#2|)) (SIGNATURE |singularAtInfinity?| ((|Boolean|))) (SIGNATURE |singular?| ((|Boolean|) |t#1|)) (SIGNATURE |singular?| ((|Boolean|) |t#2|)) (SIGNATURE |ramifiedAtInfinity?| ((|Boolean|))) (SIGNATURE |ramified?| ((|Boolean|) |t#1|)) (SIGNATURE |ramified?| ((|Boolean|) |t#2|)) (SIGNATURE |integralBasis| ((|Vector| $))) (SIGNATURE |integralBasisAtInfinity| ((|Vector| $))) (SIGNATURE |integralAtInfinity?| ((|Boolean|) $)) (SIGNATURE |integral?| ((|Boolean|) $)) (SIGNATURE |complementaryBasis| ((|Vector| $) (|Vector| $))) (SIGNATURE |normalizeAtInfinity| ((|Vector| $) (|Vector| $))) (SIGNATURE |reduceBasisAtInfinity| ((|Vector| $) (|Vector| $))) (SIGNATURE |integralMatrix| ((|Matrix| (|Fraction| |t#2|)))) (SIGNATURE |inverseIntegralMatrix| ((|Matrix| (|Fraction| |t#2|)))) (SIGNATURE |integralMatrixAtInfinity| ((|Matrix| (|Fraction| |t#2|)))) (SIGNATURE |inverseIntegralMatrixAtInfinity| ((|Matrix| (|Fraction| |t#2|)))) (SIGNATURE |yCoordinates| ((|Record| (|:| |num| (|Vector| |t#2|)) (|:| |den| |t#2|)) $)) (SIGNATURE |represents| ($ (|Vector| |t#2|) |t#2|)) (SIGNATURE |integralCoordinates| ((|Record| (|:| |num| (|Vector| |t#2|)) (|:| |den| |t#2|)) $)) (SIGNATURE |integralRepresents| ($ (|Vector| |t#2|) |t#2|)) (SIGNATURE |integralDerivationMatrix| ((|Record| (|:| |num| (|Matrix| |t#2|)) (|:| |den| |t#2|)) (|Mapping| |t#2| |t#2|))) (SIGNATURE |integral?| ((|Boolean|) $ |t#1|)) (SIGNATURE |integral?| ((|Boolean|) $ |t#2|)) (SIGNATURE |differentiate| ($ $ (|Mapping| |t#2| |t#2|))) (SIGNATURE |represents| ($ (|Vector| |t#2|) |t#2|)) (SIGNATURE |primitivePart| ($ $)) (SIGNATURE |elt| (|t#1| $ |t#1| |t#1|)) (SIGNATURE |elliptic| ((|Union| |t#2| "failed"))) (SIGNATURE |hyperelliptic| ((|Union| |t#2| "failed"))) (SIGNATURE |algSplitSimple| ((|Record| (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (|Mapping| |t#2| |t#2|))) (IF (|has| |t#1| (|Field|)) (SIGNATURE |nonSingularModel| ((|List| (|Polynomial| |t#1|)) (|Symbol|))) |noBranch|) (IF (|has| |t#1| (|Finite|)) (SIGNATURE |rationalPoints| ((|List| (|List| |t#1|)))) |noBranch|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|Algebra| (|Fraction| |#2|)) . T) ((|Algebra| $) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|BiModule| (|Fraction| |#2|) (|Fraction| |#2|)) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|CharacteristicNonZero|))) ((|CharacteristicZero|) |has| (|Fraction| |#2|) (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|ConvertibleTo| |#3|) . T) ((|DifferentialExtension| (|Fraction| |#2|)) |has| (|Fraction| |#2|) (|Field|)) ((|DifferentialRing|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (AND (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|Field|)))) ((|DivisionRing|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|EntireRing|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|EuclideanDomain|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|Field|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|FieldOfPrimeCharacteristic|) |has| (|Fraction| |#2|) (|FiniteFieldCategory|)) ((|Finite|) OR (|has| (|Fraction| |#2|) (|Finite|)) (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))) ((|FiniteFieldCategory|) |has| (|Fraction| |#2|) (|FiniteFieldCategory|)) ((|FiniteRankAlgebra| (|Fraction| |#2|) |#3|) . T) ((|FramedAlgebra| (|Fraction| |#2|) |#3|) . T) ((|FullyLinearlyExplicitRingOver| (|Fraction| |#2|)) . T) ((|FullyRetractableTo| (|Fraction| |#2|)) . T) ((|GcdDomain|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|IntegralDomain|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|LeftModule| (|Fraction| (|Integer|))) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|LeftModule| (|Fraction| |#2|)) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|LinearlyExplicitRingOver| (|Fraction| |#2|)) . T) ((|LinearlyExplicitRingOver| (|Integer|)) |has| (|Fraction| |#2|) (|LinearlyExplicitRingOver| (|Integer|))) ((|Module| (|Fraction| (|Integer|))) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|Module| (|Fraction| |#2|)) . T) ((|Module| $) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|MonogenicAlgebra| (|Fraction| |#2|) |#3|) . T) ((|Monoid|) . T) ((|PartialDifferentialRing| (|Symbol|)) AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|)))) ((|PrincipalIdealDomain|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|RetractableTo| (|Fraction| (|Integer|))) |has| (|Fraction| |#2|) (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Fraction| |#2|)) . T) ((|RetractableTo| (|Integer|)) |has| (|Fraction| |#2|) (|RetractableTo| (|Integer|))) ((|RightModule| (|Fraction| (|Integer|))) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|))) ((|RightModule| (|Fraction| |#2|)) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|StepThrough|) |has| (|Fraction| |#2|) (|FiniteFieldCategory|)) ((|UniqueFactorizationDomain|) OR (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) (|has| (|Fraction| |#2|) (|Field|)))) │ │ │ +((|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) 62)) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) 61)) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) 60)) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) 59)) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) 58)) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) 57)) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) 56)) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) 55)) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) 54)) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) 53)) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) 52)) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) 51)) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) 50)) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) 49)) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) 48)) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) 47)) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) 46)) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) 45)) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) 44)) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) 43)) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) 42)) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) 39)) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) 38)) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) 37)) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) 36)) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) 35)) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) 34)) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) 33)) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) 32)) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) 31)) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) 30)) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) 29)) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) 28)) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) 27)) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) 26)) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) 25)) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) 24)) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) 20))) │ │ │ +(((|NagSpecialFunctionsPackage|) (CATEGORY |package| (SIGNATURE |s01eaf| ((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |s13aaf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s13acf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s13adf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s14aaf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s14abf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s14baf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s15adf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s15aef| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17acf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17adf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17aef| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17aff| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17agf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17ahf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17ajf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17akf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17dcf| ((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|))) (SIGNATURE |s17def| ((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|))) (SIGNATURE |s17dgf| ((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|))) (SIGNATURE |s17dhf| ((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|))) (SIGNATURE |s17dlf| ((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|))) (SIGNATURE |s18acf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s18adf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s18aef| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s18aff| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s18dcf| ((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|))) (SIGNATURE |s18def| ((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|))) (SIGNATURE |s19aaf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s19abf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s19acf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s19adf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s20acf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s20adf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s21baf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s21bbf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s21bcf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s21bdf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|))))) (T |NagSpecialFunctionsPackage|)) │ │ │ +((|s21bdf| (*1 *2 *3 *3 *3 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s21bcf| (*1 *2 *3 *3 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s21bbf| (*1 *2 *3 *3 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s21baf| (*1 *2 *3 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s20adf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s20acf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s19adf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s19acf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s19abf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s19aaf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s18def| (*1 *2 *3 *4 *5 *6 *5) (AND (|isDomain| *4 (|Complex| (|DoubleFloat|))) (|isDomain| *5 (|Integer|)) (|isDomain| *6 (|String|)) (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s18dcf| (*1 *2 *3 *4 *5 *6 *5) (AND (|isDomain| *4 (|Complex| (|DoubleFloat|))) (|isDomain| *5 (|Integer|)) (|isDomain| *6 (|String|)) (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s18aff| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s18aef| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s18adf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s18acf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s17dlf| (*1 *2 *3 *4 *5 *3 *6 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *5 (|Complex| (|DoubleFloat|))) (|isDomain| *6 (|String|)) (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s17dhf| (*1 *2 *3 *4 *3 *5) (AND (|isDomain| *3 (|String|)) (|isDomain| *4 (|Complex| (|DoubleFloat|))) (|isDomain| *5 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s17dgf| (*1 *2 *3 *4 *3 *5) (AND (|isDomain| *3 (|String|)) (|isDomain| *4 (|Complex| (|DoubleFloat|))) (|isDomain| *5 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s17def| (*1 *2 *3 *4 *5 *6 *5) (AND (|isDomain| *4 (|Complex| (|DoubleFloat|))) (|isDomain| *5 (|Integer|)) (|isDomain| *6 (|String|)) (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s17dcf| (*1 *2 *3 *4 *5 *6 *5) (AND (|isDomain| *4 (|Complex| (|DoubleFloat|))) (|isDomain| *5 (|Integer|)) (|isDomain| *6 (|String|)) (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s17akf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s17ajf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s17ahf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s17agf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s17aff| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s17aef| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s17adf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s17acf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s15aef| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s15adf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s14baf| (*1 *2 *3 *3 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s14abf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s14aaf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s13adf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s13acf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s13aaf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|)))) (|s01eaf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Complex| (|DoubleFloat|))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagSpecialFunctionsPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |s01eaf| ((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |s13aaf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s13acf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s13adf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s14aaf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s14abf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s14baf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s15adf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s15aef| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17acf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17adf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17aef| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17aff| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17agf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17ahf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17ajf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17akf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s17dcf| ((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|))) (SIGNATURE |s17def| ((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|))) (SIGNATURE |s17dgf| ((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|))) (SIGNATURE |s17dhf| ((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|))) (SIGNATURE |s17dlf| ((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|))) (SIGNATURE |s18acf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s18adf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s18aef| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s18aff| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s18dcf| ((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|))) (SIGNATURE |s18def| ((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|))) (SIGNATURE |s19aaf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s19abf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s19acf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s19adf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s20acf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s20adf| ((|Result|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s21baf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s21bbf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s21bcf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |s21bdf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)))) │ │ │ +((|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) 13))) │ │ │ +(((|ExpressionFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)))) (|OrderedSet|) (|OrderedSet|)) (T |ExpressionFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Expression| *5)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|Expression| *6)) (|isDomain| *1 (|ExpressionFunctions2| *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| ((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|zero| (($ (|NonNegativeInteger|)) NIL (|has| |#1| (|AbelianMonoid|)))) (|vector| (($ (|List| |#1|)) 9)) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (((|Boolean|) $) NIL (|has| |#1| (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| |#1| (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|remove| (($ |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) NIL)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) NIL) (((|Integer|) |#1| $) NIL (|has| |#1| (|SetCategory|))) (((|Integer|) |#1| $ (|Integer|)) NIL (|has| |#1| (|SetCategory|)))) (|parts| (((|List| |#1|) $) 15 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|outerProduct| (((|Matrix| |#1|) $ $) NIL (|has| |#1| (|Ring|)))) (|new| (($ (|NonNegativeInteger|) |#1|) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL)) (|magnitude| ((|#1| $) NIL (AND (|has| |#1| (|RadicalCategory|)) (|has| |#1| (|Ring|))))) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|length| ((|#1| $) NIL (AND (|has| |#1| (|RadicalCategory|)) (|has| |#1| (|Ring|))))) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|insert| (($ |#1| $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|first| ((|#1| $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) NIL)) (|fill!| (($ $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#1| $ (|Integer|) |#1|) NIL) ((|#1| $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|dot| ((|#1| $ $) NIL (|has| |#1| (|Ring|)))) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|cross| (($ $ $) NIL (|has| |#1| (|Ring|)))) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) 19 (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) 8)) (|concat| (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (|List| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (- (($ $) NIL (|has| |#1| (|AbelianGroup|))) (($ $ $) NIL (|has| |#1| (|AbelianGroup|)))) (+ (($ $ $) NIL (|has| |#1| (|AbelianSemiGroup|)))) (* (($ (|Integer|) $) NIL (|has| |#1| (|AbelianGroup|))) (($ |#1| $) NIL (|has| |#1| (|Monoid|))) (($ $ |#1|) NIL (|has| |#1| (|Monoid|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|Vector| |#1|) (|Join| (|VectorCategory| |#1|) (CATEGORY |domain| (SIGNATURE |vector| ($ (|List| |#1|))))) (|Type|)) (T |Vector|)) │ │ │ +((|vector| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|Vector| *3))))) │ │ │ +(|Join| (|VectorCategory| |#1|) (CATEGORY |domain| (SIGNATURE |vector| ($ (|List| |#1|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|transcendent?| (((|Boolean|) $) NIL)) (|transcendenceDegree| (((|NonNegativeInteger|)) NIL)) (|trace| (((|InnerPrimeField| |#1|) $) NIL) (($ $ (|PositiveInteger|)) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|size| (((|NonNegativeInteger|)) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|InnerPrimeField| |#1|) "failed") $) NIL)) (|retract| (((|InnerPrimeField| |#1|) $) NIL)) (|represents| (($ (|Vector| (|InnerPrimeField| |#1|))) NIL)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|rem| (($ $ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|random| (($) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|primitiveElement| (($) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|primitive?| (((|Boolean|) $) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) NIL (OR (|has| (|InnerPrimeField| |#1|) (|CharacteristicNonZero|)) (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (($ $) NIL (OR (|has| (|InnerPrimeField| |#1|) (|CharacteristicNonZero|)) (|has| (|InnerPrimeField| |#1|) (|Finite|))))) (|prime?| (((|Boolean|) $) NIL)) (|order| (((|PositiveInteger|) $) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|))) (((|OnePointCompletion| (|PositiveInteger|)) $) NIL (OR (|has| (|InnerPrimeField| |#1|) (|CharacteristicNonZero|)) (|has| (|InnerPrimeField| |#1|) (|Finite|))))) (|one?| (((|Boolean|) $) NIL)) (|normalElement| (($) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|normal?| (((|Boolean|) $) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|norm| (((|InnerPrimeField| |#1|) $) NIL) (($ $ (|PositiveInteger|)) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|nextItem| (((|Union| $ "failed") $) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|minimalPolynomial| (((|SparseUnivariatePolynomial| (|InnerPrimeField| |#1|)) $) NIL) (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|lookup| (((|PositiveInteger|) $) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| (|InnerPrimeField| |#1|)) $) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|linearAssociatedLog| (((|SparseUnivariatePolynomial| (|InnerPrimeField| |#1|)) $) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|))) (((|Union| (|SparseUnivariatePolynomial| (|InnerPrimeField| |#1|)) "failed") $ $) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| (|InnerPrimeField| |#1|))) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) NIL)) (|init| (($) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)) CONST)) (|index| (($ (|PositiveInteger|)) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|inGroundField?| (((|Boolean|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|generator| (($) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|factor| (((|Factored| $) $) NIL)) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) NIL) (((|PositiveInteger|)) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|enumerate| (((|List| $)) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|discreteLog| (((|NonNegativeInteger|) $) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|))) (((|Union| (|NonNegativeInteger|) "failed") $ $) NIL (OR (|has| (|InnerPrimeField| |#1|) (|CharacteristicNonZero|)) (|has| (|InnerPrimeField| |#1|) (|Finite|))))) (|dimension| (((|CardinalNumber|)) NIL)) (|differentiate| (($ $) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) NIL) (((|PositiveInteger|) $) NIL)) (|definingPolynomial| (((|SparseUnivariatePolynomial| (|InnerPrimeField| |#1|))) NIL)) (|createPrimitiveElement| (($) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|createNormalElement| (($) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|coordinates| (((|Vector| (|InnerPrimeField| |#1|)) $) NIL) (((|Matrix| (|InnerPrimeField| |#1|)) (|Vector| $)) NIL)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL) (($ (|Fraction| (|Integer|))) NIL) (($ (|InnerPrimeField| |#1|)) NIL)) (|charthRoot| (($ $) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|))) (((|Union| $ "failed") $) NIL (OR (|has| (|InnerPrimeField| |#1|) (|CharacteristicNonZero|)) (|has| (|InnerPrimeField| |#1|) (|Finite|))))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|basis| (((|Vector| $)) NIL) (((|Vector| $) (|PositiveInteger|)) NIL)) (|associates?| (((|Boolean|) $ $) NIL)) (|algebraic?| (((|Boolean|) $) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (|Frobenius| (($ $) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (D (($ $) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|InnerPrimeField| |#1|) (|Finite|)))) (= (((|Boolean|) $ $) NIL)) (/ (($ $ $) NIL) (($ $ (|InnerPrimeField| |#1|)) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|Fraction| (|Integer|))) NIL) (($ (|Fraction| (|Integer|)) $) NIL) (($ $ (|InnerPrimeField| |#1|)) NIL) (($ (|InnerPrimeField| |#1|) $) NIL))) │ │ │ +(((|InnerFiniteField| |#1| |#2|) (|FiniteAlgebraicExtensionField| (|InnerPrimeField| |#1|)) (|PositiveInteger|) (|PositiveInteger|)) (T |InnerFiniteField|)) │ │ │ +NIL │ │ │ +(|FiniteAlgebraicExtensionField| (|InnerPrimeField| |#1|)) │ │ │ +((|factorSquareFree| (((|Factored| |#1|) |#1|) 40)) (|factor| (((|Factored| |#1|) |#1|) 39))) │ │ │ +(((|RationalFactorize| |#1|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#1|) |#1|)) (SIGNATURE |factorSquareFree| ((|Factored| |#1|) |#1|))) (|UnivariatePolynomialCategory| (|Fraction| (|Integer|)))) (T |RationalFactorize|)) │ │ │ +((|factorSquareFree| (*1 *2 *3) (AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|RationalFactorize| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| (|Integer|)))))) (|factor| (*1 *2 *3) (AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|RationalFactorize| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| (|Integer|))))))) │ │ │ +(CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#1|) |#1|)) (SIGNATURE |factorSquareFree| ((|Factored| |#1|) |#1|))) │ │ │ +((|laplacian| ((|#2| |#2| |#4|) 25)) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) 31)) (|hessian| (((|Matrix| |#2|) |#2| |#4|) 30)) (|gradient| (((|Vector| |#2|) |#2| |#4|) 16)) (|divergence| ((|#2| |#3| |#4|) 24)) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) 38)) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) 37))) │ │ │ +(((|MultiVariableCalculusFunctions| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |gradient| ((|Vector| |#2|) |#2| |#4|)) (SIGNATURE |divergence| (|#2| |#3| |#4|)) (SIGNATURE |laplacian| (|#2| |#2| |#4|)) (SIGNATURE |hessian| ((|Matrix| |#2|) |#2| |#4|)) (SIGNATURE |bandedHessian| ((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|))) (SIGNATURE |jacobian| ((|Matrix| |#2|) |#3| |#4|)) (SIGNATURE |bandedJacobian| ((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)))) (|SetCategory|) (|PartialDifferentialRing| |#1|) (|FiniteLinearAggregate| |#2|) (|Join| (|FiniteLinearAggregate| |#1|) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|)))) (T |MultiVariableCalculusFunctions|)) │ │ │ +((|bandedJacobian| (*1 *2 *3 *4 *5 *5) (AND (|isDomain| *5 (|NonNegativeInteger|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|PartialDifferentialRing| *6)) (|isDomain| *2 (|Matrix| *7)) (|isDomain| *1 (|MultiVariableCalculusFunctions| *6 *7 *3 *4)) (|ofCategory| *3 (|FiniteLinearAggregate| *7)) (|ofCategory| *4 (|Join| (|FiniteLinearAggregate| *6) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|)))))) (|jacobian| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|PartialDifferentialRing| *5)) (|isDomain| *2 (|Matrix| *6)) (|isDomain| *1 (|MultiVariableCalculusFunctions| *5 *6 *3 *4)) (|ofCategory| *3 (|FiniteLinearAggregate| *6)) (|ofCategory| *4 (|Join| (|FiniteLinearAggregate| *5) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|)))))) (|bandedHessian| (*1 *2 *3 *4 *5) (AND (|isDomain| *5 (|NonNegativeInteger|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *3 (|PartialDifferentialRing| *6)) (|isDomain| *2 (|Matrix| *3)) (|isDomain| *1 (|MultiVariableCalculusFunctions| *6 *3 *7 *4)) (|ofCategory| *7 (|FiniteLinearAggregate| *3)) (|ofCategory| *4 (|Join| (|FiniteLinearAggregate| *6) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|)))))) (|hessian| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *3 (|PartialDifferentialRing| *5)) (|isDomain| *2 (|Matrix| *3)) (|isDomain| *1 (|MultiVariableCalculusFunctions| *5 *3 *6 *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *3)) (|ofCategory| *4 (|Join| (|FiniteLinearAggregate| *5) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|)))))) (|laplacian| (*1 *2 *2 *3) (AND (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *2 (|PartialDifferentialRing| *4)) (|isDomain| *1 (|MultiVariableCalculusFunctions| *4 *2 *5 *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)) (|ofCategory| *3 (|Join| (|FiniteLinearAggregate| *4) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|)))))) (|divergence| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *2 (|PartialDifferentialRing| *5)) (|isDomain| *1 (|MultiVariableCalculusFunctions| *5 *2 *3 *4)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|Join| (|FiniteLinearAggregate| *5) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|)))))) (|gradient| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *3 (|PartialDifferentialRing| *5)) (|isDomain| *2 (|Vector| *3)) (|isDomain| *1 (|MultiVariableCalculusFunctions| *5 *3 *6 *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *3)) (|ofCategory| *4 (|Join| (|FiniteLinearAggregate| *5) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|))))))) │ │ │ +(CATEGORY |package| (SIGNATURE |gradient| ((|Vector| |#2|) |#2| |#4|)) (SIGNATURE |divergence| (|#2| |#3| |#4|)) (SIGNATURE |laplacian| (|#2| |#2| |#4|)) (SIGNATURE |hessian| ((|Matrix| |#2|) |#2| |#4|)) (SIGNATURE |bandedHessian| ((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|))) (SIGNATURE |jacobian| ((|Matrix| |#2|) |#3| |#4|)) (SIGNATURE |bandedJacobian| ((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)))) │ │ │ +((|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 43)) (|lcm| (($ $ $) 14) (($ (|List| $)) 21)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 41)) (|gcd| (($ $ $) NIL) (($ (|List| $)) 22))) │ │ │ +(((|GcdDomain&| |#1|) (CATEGORY |domain| (SIGNATURE |gcdPolynomial| ((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |lcm| (|#1| (|List| |#1|))) (SIGNATURE |lcm| (|#1| |#1| |#1|)) (SIGNATURE |gcd| (|#1| (|List| |#1|))) (SIGNATURE |gcd| (|#1| |#1| |#1|)) (SIGNATURE |lcmCoef| ((|Record| (|:| |llcmres| |#1|) (|:| |coeff1| |#1|) (|:| |coeff2| |#1|)) |#1| |#1|))) (|GcdDomain|)) (T |GcdDomain&|)) │ │ │ +NIL │ │ │ +(CATEGORY |domain| (SIGNATURE |gcdPolynomial| ((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |lcm| (|#1| (|List| |#1|))) (SIGNATURE |lcm| (|#1| |#1| |#1|)) (SIGNATURE |gcd| (|#1| (|List| |#1|))) (SIGNATURE |gcd| (|#1| |#1| |#1|)) (SIGNATURE |lcmCoef| ((|Record| (|:| |llcmres| |#1|) (|:| |coeff1| |#1|) (|:| |coeff2| |#1|)) |#1| |#1|))) │ │ │ +((|stirling2| ((|#1| |#1| |#1|) 52)) (|stirling1| ((|#1| |#1| |#1|) 49)) (|permutation| ((|#1| |#1| |#1|) 43)) (|partition| ((|#1| |#1|) 34)) (|multinomial| ((|#1| |#1| (|List| |#1|)) 42)) (|factorial| ((|#1| |#1|) 36)) (|binomial| ((|#1| |#1| |#1|) 39))) │ │ │ +(((|IntegerCombinatoricFunctions| |#1|) (CATEGORY |package| (SIGNATURE |binomial| (|#1| |#1| |#1|)) (SIGNATURE |factorial| (|#1| |#1|)) (SIGNATURE |multinomial| (|#1| |#1| (|List| |#1|))) (SIGNATURE |partition| (|#1| |#1|)) (SIGNATURE |permutation| (|#1| |#1| |#1|)) (SIGNATURE |stirling1| (|#1| |#1| |#1|)) (SIGNATURE |stirling2| (|#1| |#1| |#1|))) (|IntegerNumberSystem|)) (T |IntegerCombinatoricFunctions|)) │ │ │ +((|stirling2| (*1 *2 *2 *2) (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)))) (|stirling1| (*1 *2 *2 *2) (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)))) (|permutation| (*1 *2 *2 *2) (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)))) (|partition| (*1 *2 *2) (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)))) (|multinomial| (*1 *2 *2 *3) (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)) (|isDomain| *1 (|IntegerCombinatoricFunctions| *2)))) (|factorial| (*1 *2 *2) (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)))) (|binomial| (*1 *2 *2 *2) (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2)) (|ofCategory| *2 (|IntegerNumberSystem|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |binomial| (|#1| |#1| |#1|)) (SIGNATURE |factorial| (|#1| |#1|)) (SIGNATURE |multinomial| (|#1| |#1| (|List| |#1|))) (SIGNATURE |partition| (|#1| |#1|)) (SIGNATURE |permutation| (|#1| |#1| |#1|)) (SIGNATURE |stirling1| (|#1| |#1| |#1|)) (SIGNATURE |stirling2| (|#1| |#1| |#1|))) │ │ │ +((|shiftHP| (((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|)) NIL (AND (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Symbol|))) (|has| (|Integer|) (|RetractableTo| (|Symbol|))))) (((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) NIL)) (|guessRec| (((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|)) NIL (AND (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Symbol|))) (|has| (|Integer|) (|RetractableTo| (|Symbol|))))) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|)))) NIL)) (|guessRat| (((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|)) NIL (AND (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Symbol|))) (|has| (|Integer|) (|RetractableTo| (|Symbol|))))) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|)))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) NIL)) (|guessPade| (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|)))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) NIL)) (|guessPRec| (((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|)) NIL (AND (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Symbol|))) (|has| (|Integer|) (|RetractableTo| (|Symbol|))))) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|)))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) NIL)) (|guessHolo| (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|)))) NIL)) (|guessHP| (((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) NIL)) (|guessExpRat| (((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|)) NIL (AND (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Symbol|))) (|has| (|Integer|) (|RetractableTo| (|Symbol|))))) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|)))) NIL)) (|guessBinRat| (((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|)) NIL (AND (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Symbol|))) (|has| (|Integer|) (|RetractableTo| (|Symbol|))))) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|)))) NIL)) (|guessAlg| (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|)))) NIL)) (|guessADE| (((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|)) NIL (AND (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Symbol|))) (|has| (|Integer|) (|RetractableTo| (|Symbol|))))) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|)))) NIL)) (|guess| (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (|List| (|Symbol|)) (|List| (|GuessOption|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (|List| (|Symbol|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|)))) NIL)) (|diffHP| (((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|)) NIL (AND (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Symbol|))) (|has| (|Integer|) (|RetractableTo| (|Symbol|))))) (((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) NIL))) │ │ │ +(((|GuessInteger|) (CATEGORY |package| (SIGNATURE |guess| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guess| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guess| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (|List| (|Symbol|)))) (SIGNATURE |guess| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (|List| (|Symbol|)) (|List| (|GuessOption|)))) (SIGNATURE |guessExpRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guessExpRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guessBinRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guessBinRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (IF (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Symbol|))) (IF (|has| (|Integer|) (|RetractableTo| (|Symbol|))) (PROGN (SIGNATURE |guessExpRat| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessBinRat| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|)))) |noBranch|) |noBranch|) (SIGNATURE |guessHP| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|))))) (SIGNATURE |guessADE| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guessADE| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guessAlg| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guessAlg| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guessHolo| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guessHolo| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guessPade| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guessPade| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guessRec| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guessRec| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guessPRec| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guessPRec| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guessRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guessRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |diffHP| ((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) (SIGNATURE |shiftHP| ((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) (IF (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Symbol|))) (IF (|has| (|Integer|) (|RetractableTo| (|Symbol|))) (PROGN (SIGNATURE |shiftHP| ((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |diffHP| ((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessRec| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessPRec| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessRat| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessADE| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|)))) |noBranch|) |noBranch|))) (T |GuessInteger|)) │ │ │ +((|guessADE| (*1 *2 *3) (AND (|ofCategory| (|Fraction| (|Integer|)) (|RetractableTo| *3)) (|ofCategory| (|Integer|) (|RetractableTo| *3)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessInteger|)))) (|guessRat| (*1 *2 *3) (AND (|ofCategory| (|Fraction| (|Integer|)) (|RetractableTo| *3)) (|ofCategory| (|Integer|) (|RetractableTo| *3)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessInteger|)))) (|guessPRec| (*1 *2 *3) (AND (|ofCategory| (|Fraction| (|Integer|)) (|RetractableTo| *3)) (|ofCategory| (|Integer|) (|RetractableTo| *3)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessInteger|)))) (|guessRec| (*1 *2 *3) (AND (|ofCategory| (|Fraction| (|Integer|)) (|RetractableTo| *3)) (|ofCategory| (|Integer|) (|RetractableTo| *3)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessInteger|)))) (|diffHP| (*1 *2 *3) (AND (|ofCategory| (|Fraction| (|Integer|)) (|RetractableTo| *3)) (|ofCategory| (|Integer|) (|RetractableTo| *3)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) *3)) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) *3 (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessInteger|)))) (|shiftHP| (*1 *2 *3) (AND (|ofCategory| (|Fraction| (|Integer|)) (|RetractableTo| *3)) (|ofCategory| (|Integer|) (|RetractableTo| *3)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) *3)) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) *3 (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessInteger|)))) (|shiftHP| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|GuessOption|))) (|isDomain| *2 (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|diffHP| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|GuessOption|))) (|isDomain| *2 (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessRat| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessRat| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessPRec| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessPRec| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessRec| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessRec| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessPade| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessPade| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessHolo| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessHolo| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessAlg| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessAlg| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessADE| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessADE| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessHP| (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) (|isDomain| *2 (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessInteger|)))) (|guessBinRat| (*1 *2 *3) (AND (|ofCategory| (|Fraction| (|Integer|)) (|RetractableTo| *3)) (|ofCategory| (|Integer|) (|RetractableTo| *3)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessInteger|)))) (|guessExpRat| (*1 *2 *3) (AND (|ofCategory| (|Fraction| (|Integer|)) (|RetractableTo| *3)) (|ofCategory| (|Integer|) (|RetractableTo| *3)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessInteger|)))) (|guessBinRat| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessBinRat| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessExpRat| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guessExpRat| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guess| (*1 *2 *3 *4 *5 *6) (AND (|isDomain| *4 (|List| (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))))) (|isDomain| *5 (|List| (|Symbol|))) (|isDomain| *6 (|List| (|GuessOption|))) (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guess| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|List| (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))))) (|isDomain| *5 (|List| (|Symbol|))) (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guess| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|)))) (|guess| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Integer|)))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessInteger|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |guess| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guess| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guess| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (|List| (|Symbol|)))) (SIGNATURE |guess| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (|List| (|Symbol|)) (|List| (|GuessOption|)))) (SIGNATURE |guessExpRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guessExpRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guessBinRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guessBinRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (IF (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Symbol|))) (IF (|has| (|Integer|) (|RetractableTo| (|Symbol|))) (PROGN (SIGNATURE |guessExpRat| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessBinRat| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|)))) |noBranch|) |noBranch|) (SIGNATURE |guessHP| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|))))) (SIGNATURE |guessADE| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guessADE| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guessAlg| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guessAlg| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guessHolo| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guessHolo| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guessPade| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guessPade| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guessRec| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guessRec| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guessPRec| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guessPRec| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |guessRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|)))) (SIGNATURE |guessRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))))) (SIGNATURE |diffHP| ((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) (SIGNATURE |shiftHP| ((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) (IF (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Symbol|))) (IF (|has| (|Integer|) (|RetractableTo| (|Symbol|))) (PROGN (SIGNATURE |shiftHP| ((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |diffHP| ((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|)))) (|UnivariateFormalPowerSeries| (|Fraction| (|Integer|))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Integer|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Integer|)))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Integer|)) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessRec| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessPRec| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessRat| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessADE| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Integer|))) (|List| (|GuessOption|))) (|Symbol|)))) |noBranch|) |noBranch|)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|symbNameV| (((|Symbol|) $) 20)) (|subMultV| (((|NonNegativeInteger|) $) 22)) (|setsymbName!| (((|Symbol|) $ (|Symbol|)) 23)) (|setsubmult!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) 28)) (|setpoint!| ((|#5| $ |#5|) 31)) (|setmult!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) 27)) (|setlocalPoint!| (((|AffinePlane| |#1|) $ (|AffinePlane| |#1|)) 29)) (|setlocalParam!| (((|List| |#6|) $ (|List| |#6|)) 24)) (|setexcpDiv!| ((DIVISOR $ DIVISOR) 25)) (|setcurve!| (((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) $ (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|)) 30)) (|setchart!| ((|#9| $ |#9|) 26)) (|pointV| ((|#5| $) 19)) (|multV| (((|NonNegativeInteger|) $) 16)) (|localPointV| (((|AffinePlane| |#1|) $) 17)) (|localParamV| (((|List| |#6|) $) 21)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|excpDivV| ((DIVISOR $) 14)) (|degree| (((|PositiveInteger|) $) 12)) (|curveV| (((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) $) 18)) (|create| (($ |#5| (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|AffinePlane| |#1|) (|NonNegativeInteger|) |#9| (|NonNegativeInteger|) DIVISOR |#1| (|Symbol|)) 33) (($ |#5| |#3|) 32)) (|coerce| (((|OutputForm|) $) 11)) (|chartV| ((|#9| $) 15)) (|actualExtensionV| ((|#1| $) 13)) (= (((|Boolean|) $ $) 6))) │ │ │ +(((|InfinitlyClosePointCategory| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9|) (|Category|) (|Field|) (|List| (|Symbol|)) (|PolynomialCategory| |t#1| |t#4| (|OrderedVariableList| |t#2|)) (|DirectProductCategory| (|#| |t#2|) (|NonNegativeInteger|)) (|ProjectiveSpaceCategory| |t#1|) (|LocalPowerSeriesCategory| |t#1|) (|PlacesCategory| |t#1| |t#6|) NIL (|BlowUpMethodCategory|)) (T |InfinitlyClosePointCategory|)) │ │ │ +((|create| (*1 *1 *2 *3 *4 *5 *6 *5 *7 *8 *9) (AND (|isDomain| *3 (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) *8)) (|isDomain| *4 (|AffinePlane| *8)) (|isDomain| *7 DIVISOR) (|isDomain| *9 (|Symbol|)) (|ofCategory| *8 (|Field|)) (|isDomain| *5 (|NonNegativeInteger|)) (|ofCategory| *12 (|DirectProductCategory| (|#| *10) *5)) (|ofCategory| *13 (|LocalPowerSeriesCategory| *8)) (|ofCategory| *1 (|InfinitlyClosePointCategory| *8 *10 *11 *12 *2 *13 *14 *15 *6)) (|ofCategory| *11 (|PolynomialCategory| *8 *12 (|OrderedVariableList| *10))) (|ofCategory| *2 (|ProjectiveSpaceCategory| *8)) (|ofCategory| *14 (|PlacesCategory| *8 *13)) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|create| (*1 *1 *2 *3) (AND (|ofCategory| *4 (|Field|)) (|ofCategory| *6 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *7 (|LocalPowerSeriesCategory| *4)) (|ofCategory| *1 (|InfinitlyClosePointCategory| *4 *5 *3 *6 *2 *7 *8 *9 *10)) (|ofCategory| *3 (|PolynomialCategory| *4 *6 (|OrderedVariableList| *5))) (|ofCategory| *2 (|ProjectiveSpaceCategory| *4)) (|ofCategory| *8 (|PlacesCategory| *4 *7)) (|ofCategory| *10 (|BlowUpMethodCategory|)))) (|setpoint!| (*1 *2 *1 *2) (AND (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *2 *7 *8 *9 *10)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *2 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *7 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *8 (|PlacesCategory| *3 *7)) (|ofCategory| *10 (|BlowUpMethodCategory|)))) (|setcurve!| (*1 *2 *1 *2) (AND (|isDomain| *2 (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) *3)) (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *11)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *11 (|BlowUpMethodCategory|)))) (|setlocalPoint!| (*1 *2 *1 *2) (AND (|isDomain| *2 (|AffinePlane| *3)) (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *11)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *11 (|BlowUpMethodCategory|)))) (|setsubmult!| (*1 *2 *1 *2) (AND (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *11)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) *2)) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *11 (|BlowUpMethodCategory|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|setmult!| (*1 *2 *1 *2) (AND (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *11)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) *2)) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *11 (|BlowUpMethodCategory|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|setchart!| (*1 *2 *1 *2) (AND (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *2)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *2 (|BlowUpMethodCategory|)))) (|setexcpDiv!| (*1 *2 *1 *2) (AND (|isDomain| *2 DIVISOR) (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *11)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *11 (|BlowUpMethodCategory|)))) (|setlocalParam!| (*1 *2 *1 *2) (AND (|isDomain| *2 (|List| *8)) (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *11)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *11 (|BlowUpMethodCategory|)))) (|setsymbName!| (*1 *2 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *11)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *11 (|BlowUpMethodCategory|)))) (|subMultV| (*1 *2 *1) (AND (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *11)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) *2)) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *11 (|BlowUpMethodCategory|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|localParamV| (*1 *2 *1) (AND (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *11)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *11 (|BlowUpMethodCategory|)) (|isDomain| *2 (|List| *8)))) (|symbNameV| (*1 *2 *1) (AND (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *11)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *11 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Symbol|)))) (|pointV| (*1 *2 *1) (AND (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *2 *7 *8 *9 *10)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *8 (|PlacesCategory| *3 *7)) (|ofCategory| *10 (|BlowUpMethodCategory|)) (|ofCategory| *2 (|ProjectiveSpaceCategory| *3)))) (|curveV| (*1 *2 *1) (AND (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *11)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *11 (|BlowUpMethodCategory|)) (|isDomain| *2 (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) *3)))) (|localPointV| (*1 *2 *1) (AND (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *11)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *11 (|BlowUpMethodCategory|)) (|isDomain| *2 (|AffinePlane| *3)))) (|multV| (*1 *2 *1) (AND (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *11)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) *2)) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *11 (|BlowUpMethodCategory|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|chartV| (*1 *2 *1) (AND (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *2)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *2 (|BlowUpMethodCategory|)))) (|excpDivV| (*1 *2 *1) (AND (|ofCategory| *1 (|InfinitlyClosePointCategory| *3 *4 *5 *6 *7 *8 *9 *10 *11)) (|ofCategory| *3 (|Field|)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)) (|ofCategory| *11 (|BlowUpMethodCategory|)) (|isDomain| *2 DIVISOR))) (|actualExtensionV| (*1 *2 *1) (AND (|ofCategory| *1 (|InfinitlyClosePointCategory| *2 *3 *4 *5 *6 *7 *8 *9 *10)) (|ofCategory| *4 (|PolynomialCategory| *2 *5 (|OrderedVariableList| *3))) (|ofCategory| *5 (|DirectProductCategory| (|#| *3) (|NonNegativeInteger|))) (|ofCategory| *6 (|ProjectiveSpaceCategory| *2)) (|ofCategory| *7 (|LocalPowerSeriesCategory| *2)) (|ofCategory| *8 (|PlacesCategory| *2 *7)) (|ofCategory| *10 (|BlowUpMethodCategory|)) (|ofCategory| *2 (|Field|))))) │ │ │ +(|Join| (|SetCategoryWithDegree|) (CATEGORY |domain| (SIGNATURE |create| ($ |t#5| (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |t#1|) (|AffinePlane| |t#1|) (|NonNegativeInteger|) |t#9| (|NonNegativeInteger|) DIVISOR |t#1| (|Symbol|))) (SIGNATURE |create| ($ |t#5| |t#3|)) (SIGNATURE |setpoint!| (|t#5| $ |t#5|)) (SIGNATURE |setcurve!| ((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |t#1|) $ (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |t#1|))) (SIGNATURE |setlocalPoint!| ((|AffinePlane| |t#1|) $ (|AffinePlane| |t#1|))) (SIGNATURE |setsubmult!| ((|NonNegativeInteger|) $ (|NonNegativeInteger|))) (SIGNATURE |setmult!| ((|NonNegativeInteger|) $ (|NonNegativeInteger|))) (SIGNATURE |setchart!| (|t#9| $ |t#9|)) (SIGNATURE |setexcpDiv!| (DIVISOR $ DIVISOR)) (SIGNATURE |setlocalParam!| ((|List| |t#6|) $ (|List| |t#6|))) (SIGNATURE |setsymbName!| ((|Symbol|) $ (|Symbol|))) (SIGNATURE |subMultV| ((|NonNegativeInteger|) $)) (SIGNATURE |localParamV| ((|List| |t#6|) $)) (SIGNATURE |symbNameV| ((|Symbol|) $)) (SIGNATURE |pointV| (|t#5| $)) (SIGNATURE |curveV| ((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |t#1|) $)) (SIGNATURE |localPointV| ((|AffinePlane| |t#1|) $)) (SIGNATURE |multV| ((|NonNegativeInteger|) $)) (SIGNATURE |chartV| (|t#9| $)) (SIGNATURE |excpDivV| (DIVISOR $)) (SIGNATURE |actualExtensionV| (|t#1| $)))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T) ((|SetCategoryWithDegree|) . T)) │ │ │ +((|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) 15)) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) 22)) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) 24)) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) 18)) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) 29) (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) 31) (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) 26) (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) 27)) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) 11))) │ │ │ +(((|RationalFunction| |#1|) (CATEGORY |package| (SIGNATURE |variables| ((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |mainVariable| ((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |univariate| ((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|))) (SIGNATURE |multivariate| ((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|))) (SIGNATURE |eval| ((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |eval| ((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |eval| ((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |eval| ((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))))) (SIGNATURE |coerce| ((|Fraction| (|Polynomial| |#1|)) |#1|))) (|IntegralDomain|)) (T |RationalFunction|)) │ │ │ +((|coerce| (*1 *2 *3) (AND (|isDomain| *2 (|Fraction| (|Polynomial| *3))) (|isDomain| *1 (|RationalFunction| *3)) (|ofCategory| *3 (|IntegralDomain|)))) (|eval| (*1 *2 *2 *3) (AND (|isDomain| *3 (|List| (|Equation| (|Fraction| (|Polynomial| *4))))) (|isDomain| *2 (|Fraction| (|Polynomial| *4))) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *1 (|RationalFunction| *4)))) (|eval| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Equation| (|Fraction| (|Polynomial| *4)))) (|isDomain| *2 (|Fraction| (|Polynomial| *4))) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *1 (|RationalFunction| *4)))) (|eval| (*1 *2 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Symbol|))) (|isDomain| *4 (|List| (|Fraction| (|Polynomial| *5)))) (|isDomain| *2 (|Fraction| (|Polynomial| *5))) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *1 (|RationalFunction| *5)))) (|eval| (*1 *2 *2 *3 *2) (AND (|isDomain| *2 (|Fraction| (|Polynomial| *4))) (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *1 (|RationalFunction| *4)))) (|multivariate| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| *5))))) (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Fraction| (|Polynomial| *5))) (|isDomain| *1 (|RationalFunction| *5)) (|ofCategory| *5 (|IntegralDomain|)))) (|univariate| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| *5))))) (|isDomain| *1 (|RationalFunction| *5)) (|isDomain| *3 (|Fraction| (|Polynomial| *5))))) (|mainVariable| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Fraction| (|Polynomial| *4))) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|RationalFunction| *4)))) (|variables| (*1 *2 *3) (AND (|isDomain| *3 (|Fraction| (|Polynomial| *4))) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *1 (|RationalFunction| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |variables| ((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |mainVariable| ((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |univariate| ((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|))) (SIGNATURE |multivariate| ((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|))) (SIGNATURE |eval| ((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |eval| ((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |eval| ((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |eval| ((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))))) (SIGNATURE |coerce| ((|Fraction| (|Polynomial| |#1|)) |#1|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL)) (|retract| (((|Integer|) $) NIL) (((|Fraction| (|Integer|)) $) NIL)) (|rem| (($ $ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|prime?| (((|Boolean|) $) NIL)) (|pi| (($) 18)) (|one?| (((|Boolean|) $) NIL)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|factor| (((|Factored| $) $) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|convert| (((|Float|) $) 22) (((|DoubleFloat|) $) 25) (((|Fraction| (|SparseUnivariatePolynomial| (|Integer|))) $) 19) (((|InputForm|) $) 52)) (|coerce| (((|OutputForm|) $) 50) (($ (|Integer|)) NIL) (($ $) NIL) (($ (|Fraction| (|Integer|))) NIL) (((|DoubleFloat|) $) 24) (((|Float|) $) 21)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|associates?| (((|Boolean|) $ $) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|Zero| (($) 36 T CONST)) (|One| (($) 11 T CONST)) (= (((|Boolean|) $ $) NIL)) (/ (($ $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|Fraction| (|Integer|))) NIL) (($ (|Fraction| (|Integer|)) $) NIL))) │ │ │ +(((|Pi|) (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|RetractableTo| (|Fraction| (|Integer|))) (|RealConstant|) (|CoercibleTo| (|DoubleFloat|)) (|CoercibleTo| (|Float|)) (|ConvertibleTo| (|Fraction| (|SparseUnivariatePolynomial| (|Integer|)))) (|ConvertibleTo| (|InputForm|)) (CATEGORY |domain| (SIGNATURE |pi| ($))))) (T |Pi|)) │ │ │ +((|pi| (*1 *1) (|isDomain| *1 (|Pi|)))) │ │ │ +(|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|RetractableTo| (|Fraction| (|Integer|))) (|RealConstant|) (|CoercibleTo| (|DoubleFloat|)) (|CoercibleTo| (|Float|)) (|ConvertibleTo| (|Fraction| (|SparseUnivariatePolynomial| (|Integer|)))) (|ConvertibleTo| (|InputForm|)) (CATEGORY |domain| (SIGNATURE |pi| ($)))) │ │ │ +((|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) 27) (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) 26)) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) 36))) │ │ │ +(((|RealSolvePackage|) (CATEGORY |package| (SIGNATURE |solve| ((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|))) (SIGNATURE |solve| ((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|))) (SIGNATURE |realSolve| ((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|))))) (T |RealSolvePackage|)) │ │ │ +((|realSolve| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|List| (|Polynomial| (|Integer|)))) (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *2 (|List| (|List| (|Float|)))) (|isDomain| *1 (|RealSolvePackage|)) (|isDomain| *5 (|Float|)))) (|solve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Polynomial| (|Integer|))) (|isDomain| *2 (|List| (|Float|))) (|isDomain| *1 (|RealSolvePackage|)) (|isDomain| *4 (|Float|)))) (|solve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Polynomial| (|Fraction| (|Integer|)))) (|isDomain| *2 (|List| (|Float|))) (|isDomain| *1 (|RealSolvePackage|)) (|isDomain| *4 (|Float|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |solve| ((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|))) (SIGNATURE |solve| ((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|))) (SIGNATURE |realSolve| ((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 36)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 64)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|d02cjfAnnaType|) (|OrdinaryDifferentialEquationsSolverCategory|)) (T |d02cjfAnnaType|)) │ │ │ +NIL │ │ │ +(|OrdinaryDifferentialEquationsSolverCategory|) │ │ │ +((|optional| (((|Expression| (|Integer|)) (|Symbol|)) 15)) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) 13)) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) 11)) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) 18))) │ │ │ +(((|PatternMatchAssertions|) (CATEGORY |package| (SIGNATURE |assert| ((|Expression| (|Integer|)) (|Symbol|) (|String|))) (SIGNATURE |constant| ((|Expression| (|Integer|)) (|Symbol|))) (SIGNATURE |optional| ((|Expression| (|Integer|)) (|Symbol|))) (SIGNATURE |multiple| ((|Expression| (|Integer|)) (|Symbol|))))) (T |PatternMatchAssertions|)) │ │ │ +((|multiple| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|PatternMatchAssertions|)))) (|optional| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|PatternMatchAssertions|)))) (|constant| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|PatternMatchAssertions|)))) (|assert| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *4 (|String|)) (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|PatternMatchAssertions|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |assert| ((|Expression| (|Integer|)) (|Symbol|) (|String|))) (SIGNATURE |constant| ((|Expression| (|Integer|)) (|Symbol|))) (SIGNATURE |optional| ((|Expression| (|Integer|)) (|Symbol|))) (SIGNATURE |multiple| ((|Expression| (|Integer|)) (|Symbol|)))) │ │ │ +((|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) 23) (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) 24) (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) 41))) │ │ │ +(((|PrimitiveElement| |#1|) (CATEGORY |package| (SIGNATURE |primitiveElement| ((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|))) (SIGNATURE |primitiveElement| ((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)))) (SIGNATURE |primitiveElement| ((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)))) (|Join| (|Field|) (|CharacteristicZero|))) (T |PrimitiveElement|)) │ │ │ +((|primitiveElement| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|List| (|Polynomial| *6))) (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *5 (|Symbol|)) (|ofCategory| *6 (|Join| (|Field|) (|CharacteristicZero|))) (|isDomain| *2 (|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| *6))) (|:| |prim| (|SparseUnivariatePolynomial| *6)))) (|isDomain| *1 (|PrimitiveElement| *6)))) (|primitiveElement| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Polynomial| *5))) (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|Join| (|Field|) (|CharacteristicZero|))) (|isDomain| *2 (|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| *5))) (|:| |prim| (|SparseUnivariatePolynomial| *5)))) (|isDomain| *1 (|PrimitiveElement| *5)))) (|primitiveElement| (*1 *2 *3 *4 *3 *4) (AND (|isDomain| *3 (|Polynomial| *5)) (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|Field|) (|CharacteristicZero|))) (|isDomain| *2 (|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| *5)))) (|isDomain| *1 (|PrimitiveElement| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |primitiveElement| ((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|))) (SIGNATURE |primitiveElement| ((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)))) (SIGNATURE |primitiveElement| ((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)))) │ │ │ +((|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) 45) (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) 46) (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) 42) (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) 43)) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) 44))) │ │ │ +(((|ExpressionTubePlot|) (CATEGORY |package| (SIGNATURE |constantToUnaryFunction| ((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|))) (SIGNATURE |tubePlot| ((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|))) (SIGNATURE |tubePlot| ((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|))) (SIGNATURE |tubePlot| ((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|))) (SIGNATURE |tubePlot| ((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|))))) (T |ExpressionTubePlot|)) │ │ │ +((|tubePlot| (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (AND (|isDomain| *3 (|Expression| (|Integer|))) (|isDomain| *4 (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *5 (|Segment| (|DoubleFloat|))) (|isDomain| *6 (|DoubleFloat|)) (|isDomain| *7 (|Integer|)) (|isDomain| *8 (|String|)) (|isDomain| *2 (|TubePlot| (|Plot3D|))) (|isDomain| *1 (|ExpressionTubePlot|)))) (|tubePlot| (*1 *2 *3 *3 *3 *4 *5 *6 *7) (AND (|isDomain| *3 (|Expression| (|Integer|))) (|isDomain| *4 (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *5 (|Segment| (|DoubleFloat|))) (|isDomain| *6 (|DoubleFloat|)) (|isDomain| *7 (|Integer|)) (|isDomain| *2 (|TubePlot| (|Plot3D|))) (|isDomain| *1 (|ExpressionTubePlot|)))) (|tubePlot| (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (AND (|isDomain| *3 (|Expression| (|Integer|))) (|isDomain| *4 (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *5 (|Segment| (|DoubleFloat|))) (|isDomain| *6 (|Integer|)) (|isDomain| *7 (|String|)) (|isDomain| *2 (|TubePlot| (|Plot3D|))) (|isDomain| *1 (|ExpressionTubePlot|)))) (|tubePlot| (*1 *2 *3 *3 *3 *4 *5 *4 *6) (AND (|isDomain| *3 (|Expression| (|Integer|))) (|isDomain| *4 (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *5 (|Segment| (|DoubleFloat|))) (|isDomain| *6 (|Integer|)) (|isDomain| *2 (|TubePlot| (|Plot3D|))) (|isDomain| *1 (|ExpressionTubePlot|)))) (|constantToUnaryFunction| (*1 *2 *3) (AND (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *1 (|ExpressionTubePlot|)) (|isDomain| *3 (|DoubleFloat|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |constantToUnaryFunction| ((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|))) (SIGNATURE |tubePlot| ((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|))) (SIGNATURE |tubePlot| ((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|))) (SIGNATURE |tubePlot| ((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|))) (SIGNATURE |tubePlot| ((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)))) │ │ │ +((|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) 13)) (|pushup| ((|#4| |#4| |#2|) 30)) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) 63)) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) 76)) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) 49)) (|pushdown| ((|#4| |#4| |#2|) 52)) (|factor| (((|Factored| |#4|) |#4|) 38))) │ │ │ +(((|MPolyCatRationalFunctionFactorizer| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |totalfract| ((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|)) (SIGNATURE |pushdown| (|#4| |#4| |#2|)) (SIGNATURE |pushdterm| (|#4| (|SparseUnivariatePolynomial| |#4|) |#2|)) (SIGNATURE |pushup| (|#4| |#4| |#2|)) (SIGNATURE |pushucoef| (|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|)) (SIGNATURE |pushuconst| (|#4| (|Fraction| (|Polynomial| |#3|)) |#2|)) (SIGNATURE |factor| ((|Factored| |#4|) |#4|))) (|OrderedAbelianMonoidSup|) (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $)))) (|IntegralDomain|) (|PolynomialCategory| (|Fraction| (|Polynomial| |#3|)) |#1| |#2|)) (T |MPolyCatRationalFunctionFactorizer|)) │ │ │ +((|factor| (*1 *2 *3) (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $))))) (|ofCategory| *6 (|IntegralDomain|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|MPolyCatRationalFunctionFactorizer| *4 *5 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| (|Fraction| (|Polynomial| *6)) *4 *5)))) (|pushuconst| (*1 *2 *3 *4) (AND (|ofCategory| *6 (|IntegralDomain|)) (|ofCategory| *2 (|PolynomialCategory| *3 *5 *4)) (|isDomain| *1 (|MPolyCatRationalFunctionFactorizer| *5 *4 *6 *2)) (|isDomain| *3 (|Fraction| (|Polynomial| *6))) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $))))))) (|pushucoef| (*1 *2 *3 *4) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| (|Polynomial| *6))) (|ofCategory| *6 (|IntegralDomain|)) (|ofCategory| *2 (|PolynomialCategory| (|Fraction| (|Polynomial| *6)) *5 *4)) (|isDomain| *1 (|MPolyCatRationalFunctionFactorizer| *5 *4 *6 *2)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $))))))) (|pushup| (*1 *2 *2 *3) (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $))))) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *1 (|MPolyCatRationalFunctionFactorizer| *4 *3 *5 *2)) (|ofCategory| *2 (|PolynomialCategory| (|Fraction| (|Polynomial| *5)) *4 *3)))) (|pushdterm| (*1 *2 *3 *4) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *2)) (|ofCategory| *2 (|PolynomialCategory| (|Fraction| (|Polynomial| *6)) *5 *4)) (|isDomain| *1 (|MPolyCatRationalFunctionFactorizer| *5 *4 *6 *2)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $))))) (|ofCategory| *6 (|IntegralDomain|)))) (|pushdown| (*1 *2 *2 *3) (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $))))) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *1 (|MPolyCatRationalFunctionFactorizer| *4 *3 *5 *2)) (|ofCategory| *2 (|PolynomialCategory| (|Fraction| (|Polynomial| *5)) *4 *3)))) (|totalfract| (*1 *2 *3) (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $))))) (|ofCategory| *6 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |sup| (|Polynomial| *6)) (|:| |inf| (|Polynomial| *6)))) (|isDomain| *1 (|MPolyCatRationalFunctionFactorizer| *4 *5 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| (|Fraction| (|Polynomial| *6)) *4 *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |totalfract| ((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|)) (SIGNATURE |pushdown| (|#4| |#4| |#2|)) (SIGNATURE |pushdterm| (|#4| (|SparseUnivariatePolynomial| |#4|) |#2|)) (SIGNATURE |pushup| (|#4| |#4| |#2|)) (SIGNATURE |pushucoef| (|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|)) (SIGNATURE |pushuconst| (|#4| (|Fraction| (|Polynomial| |#3|)) |#2|)) (SIGNATURE |factor| ((|Factored| |#4|) |#4|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) 37)) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) 38)) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) 39)) (|prologue| (((|List| (|String|)) $) 34)) (|new| (($) 23)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|formula| (((|List| (|String|)) $) 35)) (|epilogue| (((|List| (|String|)) $) 36)) (|display| (((|Void|) $ (|Integer|)) 32) (((|Void|) $) 33)) (|convert| (($ (|OutputForm|) (|Integer|)) 29)) (|coerce| (((|OutputForm|) $) 41) (($ (|OutputForm|)) 25)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|ScriptFormulaFormat|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|OutputForm|))) (SIGNATURE |convert| ($ (|OutputForm|) (|Integer|))) (SIGNATURE |display| ((|Void|) $ (|Integer|))) (SIGNATURE |display| ((|Void|) $)) (SIGNATURE |epilogue| ((|List| (|String|)) $)) (SIGNATURE |formula| ((|List| (|String|)) $)) (SIGNATURE |new| ($)) (SIGNATURE |prologue| ((|List| (|String|)) $)) (SIGNATURE |setEpilogue!| ((|List| (|String|)) $ (|List| (|String|)))) (SIGNATURE |setFormula!| ((|List| (|String|)) $ (|List| (|String|)))) (SIGNATURE |setPrologue!| ((|List| (|String|)) $ (|List| (|String|))))))) (T |ScriptFormulaFormat|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|ScriptFormulaFormat|)))) (|convert| (*1 *1 *2 *3) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|ScriptFormulaFormat|)))) (|display| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|ScriptFormulaFormat|)))) (|display| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|ScriptFormulaFormat|)))) (|epilogue| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|ScriptFormulaFormat|)))) (|formula| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|ScriptFormulaFormat|)))) (|new| (*1 *1) (|isDomain| *1 (|ScriptFormulaFormat|))) (|prologue| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|ScriptFormulaFormat|)))) (|setEpilogue!| (*1 *2 *1 *2) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|ScriptFormulaFormat|)))) (|setFormula!| (*1 *2 *1 *2) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|ScriptFormulaFormat|)))) (|setPrologue!| (*1 *2 *1 *2) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|ScriptFormulaFormat|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|OutputForm|))) (SIGNATURE |convert| ($ (|OutputForm|) (|Integer|))) (SIGNATURE |display| ((|Void|) $ (|Integer|))) (SIGNATURE |display| ((|Void|) $)) (SIGNATURE |epilogue| ((|List| (|String|)) $)) (SIGNATURE |formula| ((|List| (|String|)) $)) (SIGNATURE |new| ($)) (SIGNATURE |prologue| ((|List| (|String|)) $)) (SIGNATURE |setEpilogue!| ((|List| (|String|)) $ (|List| (|String|)))) (SIGNATURE |setFormula!| ((|List| (|String|)) $ (|List| (|String|)))) (SIGNATURE |setPrologue!| ((|List| (|String|)) $ (|List| (|String|)))))) │ │ │ +((- (($ $) NIL) (($ $ $) 11))) │ │ │ +(((|GradedModule&| |#1| |#2| |#3|) (CATEGORY |domain| (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|))) (|GradedModule| |#2| |#3|) (|CommutativeRing|) (|AbelianMonoid|)) (T |GradedModule&|)) │ │ │ +NIL │ │ │ +(CATEGORY |domain| (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|))) │ │ │ +((|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) 34)) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) 32))) │ │ │ +(((|RectangularMatrixCategoryFunctions2| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (CATEGORY |package| (SIGNATURE |map| (|#10| (|Mapping| |#7| |#3|) |#6|)) (SIGNATURE |reduce| (|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Ring|) (|DirectProductCategory| |#2| |#3|) (|DirectProductCategory| |#1| |#3|) (|RectangularMatrixCategory| |#1| |#2| |#3| |#4| |#5|) (|Ring|) (|DirectProductCategory| |#2| |#7|) (|DirectProductCategory| |#1| |#7|) (|RectangularMatrixCategory| |#1| |#2| |#7| |#8| |#9|)) (T |RectangularMatrixCategoryFunctions2|)) │ │ │ +((|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *7 *2)) (|ofCategory| *7 (|Ring|)) (|ofCategory| *2 (|Ring|)) (|ofType| *5 (|NonNegativeInteger|)) (|ofType| *6 (|NonNegativeInteger|)) (|ofCategory| *8 (|DirectProductCategory| *6 *7)) (|ofCategory| *9 (|DirectProductCategory| *5 *7)) (|ofCategory| *10 (|DirectProductCategory| *6 *2)) (|ofCategory| *11 (|DirectProductCategory| *5 *2)) (|isDomain| *1 (|RectangularMatrixCategoryFunctions2| *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (|ofCategory| *4 (|RectangularMatrixCategory| *5 *6 *7 *8 *9)) (|ofCategory| *12 (|RectangularMatrixCategory| *5 *6 *2 *10 *11)))) (|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *10 *7)) (|ofCategory| *7 (|Ring|)) (|ofCategory| *10 (|Ring|)) (|ofType| *5 (|NonNegativeInteger|)) (|ofType| *6 (|NonNegativeInteger|)) (|ofCategory| *8 (|DirectProductCategory| *6 *7)) (|ofCategory| *9 (|DirectProductCategory| *5 *7)) (|ofCategory| *2 (|RectangularMatrixCategory| *5 *6 *10 *11 *12)) (|isDomain| *1 (|RectangularMatrixCategoryFunctions2| *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (|ofCategory| *4 (|RectangularMatrixCategory| *5 *6 *7 *8 *9)) (|ofCategory| *11 (|DirectProductCategory| *6 *10)) (|ofCategory| *12 (|DirectProductCategory| *5 *10))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| (|#10| (|Mapping| |#7| |#3|) |#6|)) (SIGNATURE |reduce| (|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|))) │ │ │ ((|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) 30) (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) 42) (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) 33)) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) 39) (((|Boolean|) |#2| (|Pattern| |#1|)) 35)) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) 14)) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) 23)) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) 19))) │ │ │ (((|PatternFunctions1| |#1| |#2|) (CATEGORY |package| (SIGNATURE |suchThat| ((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|))) (SIGNATURE |suchThat| ((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|)))) (SIGNATURE |suchThat| ((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|)))) (SIGNATURE |predicate| ((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|))) (SIGNATURE |satisfy?| ((|Boolean|) |#2| (|Pattern| |#1|))) (SIGNATURE |satisfy?| ((|Boolean|) (|List| |#2|) (|Pattern| |#1|))) (SIGNATURE |addBadValue| ((|Pattern| |#1|) (|Pattern| |#1|) |#2|)) (SIGNATURE |badValues| ((|List| |#2|) (|Pattern| |#1|)))) (|SetCategory|) (|Type|)) (T |PatternFunctions1|)) │ │ │ ((|badValues| (*1 *2 *3) (AND (|isDomain| *3 (|Pattern| *4)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|List| *5)) (|isDomain| *1 (|PatternFunctions1| *4 *5)) (|ofCategory| *5 (|Type|)))) (|addBadValue| (*1 *2 *2 *3) (AND (|isDomain| *2 (|Pattern| *4)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *1 (|PatternFunctions1| *4 *3)) (|ofCategory| *3 (|Type|)))) (|satisfy?| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *6)) (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PatternFunctions1| *5 *6)))) (|satisfy?| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *5 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PatternFunctions1| *5 *3)) (|ofCategory| *3 (|Type|)))) (|predicate| (*1 *2 *3) (AND (|isDomain| *3 (|Pattern| *4)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Mapping| (|Boolean|) *5)) (|isDomain| *1 (|PatternFunctions1| *4 *5)) (|ofCategory| *5 (|Type|)))) (|suchThat| (*1 *2 *2 *3 *4) (AND (|isDomain| *2 (|Pattern| *5)) (|isDomain| *3 (|List| (|Symbol|))) (|isDomain| *4 (|Mapping| (|Boolean|) (|List| *6))) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|Type|)) (|isDomain| *1 (|PatternFunctions1| *5 *6)))) (|suchThat| (*1 *2 *2 *3) (AND (|isDomain| *2 (|Pattern| *4)) (|isDomain| *3 (|List| (|Mapping| (|Boolean|) *5))) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|Type|)) (|isDomain| *1 (|PatternFunctions1| *4 *5)))) (|suchThat| (*1 *2 *2 *3) (AND (|isDomain| *2 (|Pattern| *4)) (|isDomain| *3 (|Mapping| (|Boolean|) *5)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|Type|)) (|isDomain| *1 (|PatternFunctions1| *4 *5))))) │ │ │ (CATEGORY |package| (SIGNATURE |suchThat| ((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|))) (SIGNATURE |suchThat| ((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|)))) (SIGNATURE |suchThat| ((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|)))) (SIGNATURE |predicate| ((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|))) (SIGNATURE |satisfy?| ((|Boolean|) |#2| (|Pattern| |#1|))) (SIGNATURE |satisfy?| ((|Boolean|) (|List| |#2|) (|Pattern| |#1|))) (SIGNATURE |addBadValue| ((|Pattern| |#1|) (|Pattern| |#1|) |#2|)) (SIGNATURE |badValues| ((|List| |#2|) (|Pattern| |#1|)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) 12)) (= (((|Boolean|) $ $) 6))) │ │ │ -(((|PartialDifferentialEquationsSolverCategory|) (|Category|)) (T |PartialDifferentialEquationsSolverCategory|)) │ │ │ -((|measure| (*1 *2 *3 *4) (AND (|ofCategory| *1 (|PartialDifferentialEquationsSolverCategory|)) (|isDomain| *3 (|RoutinesTable|)) (|isDomain| *4 (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) (|isDomain| *2 (|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)))))) (|PDESolve| (*1 *2 *3) (AND (|ofCategory| *1 (|PartialDifferentialEquationsSolverCategory|)) (|isDomain| *3 (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) (|isDomain| *2 (|Result|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |package| (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))))) (SIGNATURE |PDESolve| ((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))))))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) 10)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 12) (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) 9)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|NumericalPDEProblem|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))))) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE |retract| ((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $))))) (T |NumericalPDEProblem|)) │ │ │ -((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|NumericalPDEProblem|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) (|isDomain| *1 (|NumericalPDEProblem|)))) (|retract| (*1 *2 *1) (AND (|isDomain| *2 (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) (|isDomain| *1 (|NumericalPDEProblem|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))))) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE |retract| ((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $)))) │ │ │ -((|plotPolar| (((|Plot|) |#1| (|Symbol|)) 16) (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) 20)) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) 18) (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) 14))) │ │ │ -(((|PlotFunctions1| |#1|) (CATEGORY |package| (SIGNATURE |plot| ((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plot| ((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plotPolar| ((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plotPolar| ((|Plot|) |#1| (|Symbol|)))) (|ConvertibleTo| (|InputForm|))) (T |PlotFunctions1|)) │ │ │ -((|plotPolar| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Plot|)) (|isDomain| *1 (|PlotFunctions1| *3)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))) (|plotPolar| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|Segment| (|DoubleFloat|))) (|isDomain| *2 (|Plot|)) (|isDomain| *1 (|PlotFunctions1| *3)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))) (|plot| (*1 *2 *3 *3 *4 *5) (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|Segment| (|DoubleFloat|))) (|isDomain| *2 (|Plot|)) (|isDomain| *1 (|PlotFunctions1| *3)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))) (|plot| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|Segment| (|DoubleFloat|))) (|isDomain| *2 (|Plot|)) (|isDomain| *1 (|PlotFunctions1| *3)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|)))))) │ │ │ -(CATEGORY |package| (SIGNATURE |plot| ((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plot| ((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plotPolar| ((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plotPolar| ((|Plot|) |#1| (|Symbol|)))) │ │ │ -((|yRange| (((|Segment| (|DoubleFloat|)) $) 7)) (|xRange| (((|Segment| (|DoubleFloat|)) $) 8)) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) 9)) (|coerce| (((|OutputForm|) $) 6))) │ │ │ -(((|PlottablePlaneCurveCategory|) (|Category|)) (T |PlottablePlaneCurveCategory|)) │ │ │ -((|listBranches| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottablePlaneCurveCategory|)) (|isDomain| *2 (|List| (|List| (|Point| (|DoubleFloat|))))))) (|xRange| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottablePlaneCurveCategory|)) (|isDomain| *2 (|Segment| (|DoubleFloat|))))) (|yRange| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottablePlaneCurveCategory|)) (|isDomain| *2 (|Segment| (|DoubleFloat|)))))) │ │ │ -(|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |listBranches| ((|List| (|List| (|Point| (|DoubleFloat|)))) $)) (SIGNATURE |xRange| ((|Segment| (|DoubleFloat|)) $)) (SIGNATURE |yRange| ((|Segment| (|DoubleFloat|)) $)))) │ │ │ -(((|CoercibleTo| (|OutputForm|)) . T)) │ │ │ -((|zRange| (((|Segment| (|DoubleFloat|)) $) 7)) (|yRange| (((|Segment| (|DoubleFloat|)) $) 8)) (|xRange| (((|Segment| (|DoubleFloat|)) $) 9)) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) 10)) (|coerce| (((|OutputForm|) $) 6))) │ │ │ -(((|PlottableSpaceCurveCategory|) (|Category|)) (T |PlottableSpaceCurveCategory|)) │ │ │ -((|listBranches| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottableSpaceCurveCategory|)) (|isDomain| *2 (|List| (|List| (|Point| (|DoubleFloat|))))))) (|xRange| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottableSpaceCurveCategory|)) (|isDomain| *2 (|Segment| (|DoubleFloat|))))) (|yRange| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottableSpaceCurveCategory|)) (|isDomain| *2 (|Segment| (|DoubleFloat|))))) (|zRange| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottableSpaceCurveCategory|)) (|isDomain| *2 (|Segment| (|DoubleFloat|)))))) │ │ │ -(|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |listBranches| ((|List| (|List| (|Point| (|DoubleFloat|)))) $)) (SIGNATURE |xRange| ((|Segment| (|DoubleFloat|)) $)) (SIGNATURE |yRange| ((|Segment| (|DoubleFloat|)) $)) (SIGNATURE |zRange| ((|Segment| (|DoubleFloat|)) $)))) │ │ │ -(((|CoercibleTo| (|OutputForm|)) . T)) │ │ │ -((|convert| (((|DoubleFloat|) $) 6) (((|Float|) $) 8))) │ │ │ -(((|RealConstant|) (|Category|)) (T |RealConstant|)) │ │ │ +((|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) NIL) (((|Boolean|) $) 18)) (|sort!| (($ (|Mapping| (|Boolean|) |#2| |#2|) $) NIL) (($ $) 28)) (|sort| (($ (|Mapping| (|Boolean|) |#2| |#2|) $) 27) (($ $) 22)) (|reverse| (($ $) 25)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) NIL) (((|Integer|) |#2| $) 11) (((|Integer|) |#2| $ (|Integer|)) NIL)) (|merge| (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) NIL) (($ $ $) 20))) │ │ │ +(((|FiniteLinearAggregate&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |sort!| (|#1| |#1|)) (SIGNATURE |sort!| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |sorted?| ((|Boolean|) |#1|)) (SIGNATURE |sort| (|#1| |#1|)) (SIGNATURE |merge| (|#1| |#1| |#1|)) (SIGNATURE |position| ((|Integer|) |#2| |#1| (|Integer|))) (SIGNATURE |position| ((|Integer|) |#2| |#1|)) (SIGNATURE |position| ((|Integer|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |sorted?| ((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |sort| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |reverse| (|#1| |#1|)) (SIGNATURE |merge| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1| |#1|))) (|FiniteLinearAggregate| |#2|) (|Type|)) (T |FiniteLinearAggregate&|)) │ │ │ NIL │ │ │ -(|Join| (|ConvertibleTo| (|DoubleFloat|)) (|ConvertibleTo| (|Float|))) │ │ │ -(((|ConvertibleTo| (|DoubleFloat|)) . T) ((|ConvertibleTo| (|Float|)) . T)) │ │ │ -((|expt| ((|#1| |#1| (|PositiveInteger|)) 9))) │ │ │ -(((|RepeatedSquaring| |#1|) (CATEGORY |package| (SIGNATURE |expt| (|#1| |#1| (|PositiveInteger|)))) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE * ($ $ $))))) (T |RepeatedSquaring|)) │ │ │ -((|expt| (*1 *2 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *1 (|RepeatedSquaring| *2)) (|ofCategory| *2 (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE * ($ $ $)))))))) │ │ │ -(CATEGORY |package| (SIGNATURE |expt| (|#1| |#1| (|PositiveInteger|)))) │ │ │ +(CATEGORY |domain| (SIGNATURE |sort!| (|#1| |#1|)) (SIGNATURE |sort!| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |sorted?| ((|Boolean|) |#1|)) (SIGNATURE |sort| (|#1| |#1|)) (SIGNATURE |merge| (|#1| |#1| |#1|)) (SIGNATURE |position| ((|Integer|) |#2| |#1| (|Integer|))) (SIGNATURE |position| ((|Integer|) |#2| |#1|)) (SIGNATURE |position| ((|Integer|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |sorted?| ((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |sort| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |reverse| (|#1| |#1|)) (SIGNATURE |merge| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1| |#1|))) │ │ │ +((|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) 93))) │ │ │ +(((|TopLevelDrawFunctionsForAlgebraicCurves| |#1| |#2|) (CATEGORY |package| (SIGNATURE |draw| ((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))))) (|Join| (|IntegralDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|))) (|FunctionSpace| |#1|)) (T |TopLevelDrawFunctionsForAlgebraicCurves|)) │ │ │ +((|draw| (*1 *2 *3 *4 *4 *5) (AND (|isDomain| *3 (|Equation| *7)) (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|List| (|DrawOption|))) (|ofCategory| *7 (|FunctionSpace| *6)) (|ofCategory| *6 (|Join| (|IntegralDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)))) (|isDomain| *2 (|TwoDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctionsForAlgebraicCurves| *6 *7))))) │ │ │ +(CATEGORY |package| (SIGNATURE |draw| ((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))))) │ │ │ +((|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) 52)) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) 51)) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) 50)) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 46)) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) 45)) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) 44)) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) 43)) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) 42)) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) 38)) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) 37)) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) 33)) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) 32))) │ │ │ +(((|NagIntegrationPackage|) (CATEGORY |package| (SIGNATURE |d01ajf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F))))) (SIGNATURE |d01akf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F))))) (SIGNATURE |d01alf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F))))) (SIGNATURE |d01amf| ((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F))))) (SIGNATURE |d01anf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G))))) (SIGNATURE |d01apf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G))))) (SIGNATURE |d01aqf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G))))) (SIGNATURE |d01asf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G))))) (SIGNATURE |d01bbf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |d01fcf| ((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN))))) (SIGNATURE |d01gaf| ((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|))) (SIGNATURE |d01gbf| ((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN))))))) (T |NagIntegrationPackage|)) │ │ │ +((|d01gbf| (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *5 (|DoubleFloat|)) (|isDomain| *6 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagIntegrationPackage|)))) (|d01gaf| (*1 *2 *3 *3 *4 *4) (AND (|isDomain| *3 (|Matrix| (|DoubleFloat|))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagIntegrationPackage|)))) (|d01fcf| (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *5 (|DoubleFloat|)) (|isDomain| *6 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagIntegrationPackage|)))) (|d01bbf| (*1 *2 *3 *3 *4 *4 *4 *4) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagIntegrationPackage|)))) (|d01asf| (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagIntegrationPackage|)))) (|d01aqf| (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagIntegrationPackage|)))) (|d01apf| (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagIntegrationPackage|)))) (|d01anf| (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagIntegrationPackage|)))) (|d01amf| (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagIntegrationPackage|)))) (|d01alf| (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (AND (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *6 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagIntegrationPackage|)))) (|d01akf| (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagIntegrationPackage|)))) (|d01ajf| (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagIntegrationPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |d01ajf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F))))) (SIGNATURE |d01akf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F))))) (SIGNATURE |d01alf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F))))) (SIGNATURE |d01amf| ((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F))))) (SIGNATURE |d01anf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G))))) (SIGNATURE |d01apf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G))))) (SIGNATURE |d01aqf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G))))) (SIGNATURE |d01asf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G))))) (SIGNATURE |d01bbf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |d01fcf| ((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN))))) (SIGNATURE |d01gaf| ((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|))) (SIGNATURE |d01gbf| ((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sqrt| (($ $ (|Integer|)) NIL)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|sample| (($) NIL T CONST)) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) NIL)) (|rem| (($ $ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|quotientByP| (($ $) NIL)) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|order| (((|NonNegativeInteger|) $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|modulus| (((|Integer|)) NIL)) (|moduloP| (((|Integer|) $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|extend| (($ $ (|Integer|)) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|digits| (((|Stream| (|Integer|)) $) NIL)) (|complete| (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|associates?| (((|Boolean|) $ $) NIL)) (|approximate| (((|Integer|) $ (|Integer|)) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL))) │ │ │ +(((|PAdicInteger| |#1|) (|PAdicIntegerCategory| |#1|) (|Integer|)) (T |PAdicInteger|)) │ │ │ +NIL │ │ │ +(|PAdicIntegerCategory| |#1|) │ │ │ ((|double| ((|#1| (|PositiveInteger|) |#1|) 9))) │ │ │ (((|RepeatedDoubling| |#1|) (CATEGORY |package| (SIGNATURE |double| (|#1| (|PositiveInteger|) |#1|))) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE + ($ $ $))))) (T |RepeatedDoubling|)) │ │ │ ((|double| (*1 *2 *3 *2) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *1 (|RepeatedDoubling| *2)) (|ofCategory| *2 (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE + ($ $ $)))))))) │ │ │ (CATEGORY |package| (SIGNATURE |double| (|#1| (|PositiveInteger|) |#1|))) │ │ │ -((|coerce| ((|#1| (|Exit|)) 11) (((|Void|) |#1|) 9))) │ │ │ -(((|ResolveLatticeCompletion| |#1|) (CATEGORY |package| (SIGNATURE |coerce| ((|Void|) |#1|)) (SIGNATURE |coerce| (|#1| (|Exit|)))) (|Type|)) (T |ResolveLatticeCompletion|)) │ │ │ -((|coerce| (*1 *2 *3) (AND (|isDomain| *3 (|Exit|)) (|isDomain| *1 (|ResolveLatticeCompletion| *2)) (|ofCategory| *2 (|Type|)))) (|coerce| (*1 *2 *3) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|ResolveLatticeCompletion| *3)) (|ofCategory| *3 (|Type|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |coerce| ((|Void|) |#1|)) (SIGNATURE |coerce| (|#1| (|Exit|)))) │ │ │ -((|retract| ((|#2| $) 10))) │ │ │ -(((|RetractableTo&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |retract| (|#2| |#1|))) (|RetractableTo| |#2|) (|Type|)) (T |RetractableTo&|)) │ │ │ +((|value| ((|#2| $) 76)) (|tail| (($ $) 96)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 26)) (|rest| (($ $) 85) (($ $ (|NonNegativeInteger|)) 88)) (|possiblyInfinite?| (((|Boolean|) $) 97)) (|nodes| (((|List| $) $) 72)) (|node?| (((|Boolean|) $ $) 71)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 24)) (|minIndex| (((|Integer|) $) 46)) (|maxIndex| (((|Integer|) $) 45)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 22)) (|leaf?| (((|Boolean|) $) 74)) (|last| ((|#2| $) 89) (($ $ (|NonNegativeInteger|)) 92)) (|insert| (($ $ $ (|Integer|)) 62) (($ |#2| $ (|Integer|)) 61)) (|indices| (((|List| (|Integer|)) $) 44)) (|index?| (((|Boolean|) (|Integer|) $) 42)) (|first| ((|#2| $) NIL) (($ $ (|NonNegativeInteger|)) 84)) (|extend| (($ $ (|Integer|)) 99)) (|explicitlyFinite?| (((|Boolean|) $) 98)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 32)) (|entries| (((|List| |#2|) $) 33)) (|elt| ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (|UniversalSegment| (|Integer|))) 58) ((|#2| $ (|Integer|)) 40) ((|#2| $ (|Integer|) |#2|) 41)) (|distance| (((|Integer|) $ $) 70)) (|delete| (($ $ (|UniversalSegment| (|Integer|))) 57) (($ $ (|Integer|)) 51)) (|cyclic?| (((|Boolean|) $) 66)) (|cycleTail| (($ $) 81)) (|cycleLength| (((|NonNegativeInteger|) $) 80)) (|cycleEntry| (($ $) 79)) (|construct| (($ (|List| |#2|)) 37)) (|complete| (($ $) 100)) (|children| (((|List| $) $) 69)) (|child?| (((|Boolean|) $ $) 68)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 31)) (= (((|Boolean|) $ $) 18)) (|#| (((|NonNegativeInteger|) $) 29))) │ │ │ +(((|LazyStreamAggregate&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |complete| (|#1| |#1|)) (SIGNATURE |extend| (|#1| |#1| (|Integer|))) (SIGNATURE |possiblyInfinite?| ((|Boolean|) |#1|)) (SIGNATURE |explicitlyFinite?| ((|Boolean|) |#1|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|))) (SIGNATURE |entries| ((|List| |#2|) |#1|)) (SIGNATURE |index?| ((|Boolean|) (|Integer|) |#1|)) (SIGNATURE |indices| ((|List| (|Integer|)) |#1|)) (SIGNATURE |maxIndex| ((|Integer|) |#1|)) (SIGNATURE |minIndex| ((|Integer|) |#1|)) (SIGNATURE |construct| (|#1| (|List| |#2|))) (SIGNATURE |elt| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |delete| (|#1| |#1| (|Integer|))) (SIGNATURE |delete| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |insert| (|#1| |#2| |#1| (|Integer|))) (SIGNATURE |insert| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |cycleTail| (|#1| |#1|)) (SIGNATURE |cycleLength| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |cycleEntry| (|#1| |#1|)) (SIGNATURE |tail| (|#1| |#1|)) (SIGNATURE |last| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#2| |#1| "last")) (SIGNATURE |last| (|#2| |#1|)) (SIGNATURE |rest| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#1| |#1| "rest")) (SIGNATURE |rest| (|#1| |#1|)) (SIGNATURE |first| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#2| |#1| "first")) (SIGNATURE |first| (|#2| |#1|)) (SIGNATURE |node?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |child?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |distance| ((|Integer|) |#1| |#1|)) (SIGNATURE |cyclic?| ((|Boolean|) |#1|)) (SIGNATURE |elt| (|#2| |#1| "value")) (SIGNATURE |value| (|#2| |#1|)) (SIGNATURE |leaf?| ((|Boolean|) |#1|)) (SIGNATURE |nodes| ((|List| |#1|) |#1|)) (SIGNATURE |children| ((|List| |#1|) |#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |size?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |less?| ((|Boolean|) |#1| (|NonNegativeInteger|)))) (|LazyStreamAggregate| |#2|) (|Type|)) (T |LazyStreamAggregate&|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |retract| (|#2| |#1|))) │ │ │ -((|retractIfCan| (((|Union| |#1| "failed") $) 7)) (|retract| ((|#1| $) 8)) (|coerce| (($ |#1|) 6))) │ │ │ -(((|RetractableTo| |#1|) (|Category|) (|Type|)) (T |RetractableTo|)) │ │ │ -((|retract| (*1 *2 *1) (AND (|ofCategory| *1 (|RetractableTo| *2)) (|ofCategory| *2 (|Type|)))) (|retractIfCan| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|RetractableTo| *2)) (|ofCategory| *2 (|Type|)))) (|coerce| (*1 *1 *2) (AND (|ofCategory| *1 (|RetractableTo| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ -(|Join| (CATEGORY |domain| (SIGNATURE |coerce| ($ |t#1|)) (SIGNATURE |retractIfCan| ((|Union| |t#1| "failed") $)) (SIGNATURE |retract| (|t#1| $)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ |#1|) 22))) │ │ │ -(((|RightModule| |#1|) (|Category|) (|Rng|)) (T |RightModule|)) │ │ │ -((* (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RightModule| *2)) (|ofCategory| *2 (|Rng|))))) │ │ │ -(|Join| (|AbelianGroup|) (CATEGORY |domain| (SIGNATURE * ($ $ |t#1|)))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) 19))) │ │ │ -(((|SegmentBindingFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)))) (|Type|) (|Type|)) (T |SegmentBindingFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|SegmentBinding| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|SegmentBinding| *6)) (|isDomain| *1 (|SegmentBindingFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)))) │ │ │ -((|segment| (($ |#1| |#1|) 7)) (|low| ((|#1| $) 10)) (|lo| ((|#1| $) 12)) (|incr| (((|Integer|) $) 8)) (|high| ((|#1| $) 9)) (|hi| ((|#1| $) 11)) (|convert| (($ |#1|) 6)) (SEGMENT (($ |#1| |#1|) 14)) (BY (($ $ (|Integer|)) 13))) │ │ │ -(((|SegmentCategory| |#1|) (|Category|) (|Type|)) (T |SegmentCategory|)) │ │ │ -((SEGMENT (*1 *1 *2 *2) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))) (BY (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|SegmentCategory| *3)) (|ofCategory| *3 (|Type|)))) (|lo| (*1 *2 *1) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))) (|hi| (*1 *2 *1) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))) (|low| (*1 *2 *1) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))) (|high| (*1 *2 *1) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))) (|incr| (*1 *2 *1) (AND (|ofCategory| *1 (|SegmentCategory| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Integer|)))) (|segment| (*1 *1 *2 *2) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))) (|convert| (*1 *1 *2) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ -(|Join| (|Type|) (CATEGORY |domain| (SIGNATURE SEGMENT ($ |t#1| |t#1|)) (SIGNATURE BY ($ $ (|Integer|))) (SIGNATURE |lo| (|t#1| $)) (SIGNATURE |hi| (|t#1| $)) (SIGNATURE |low| (|t#1| $)) (SIGNATURE |high| (|t#1| $)) (SIGNATURE |incr| ((|Integer|) $)) (SIGNATURE |segment| ($ |t#1| |t#1|)) (SIGNATURE |convert| ($ |t#1|)))) │ │ │ -(((|Type|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|degree| (((|PositiveInteger|) $) 12)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6))) │ │ │ -(((|SetCategoryWithDegree|) (|Category|)) (T |SetCategoryWithDegree|)) │ │ │ -((|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|SetCategoryWithDegree|)) (|isDomain| *2 (|PositiveInteger|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |degree| ((|PositiveInteger|) $)))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|symbol?| (((|Boolean|) $) 31)) (|symbol| ((|#2| $) 26)) (|string?| (((|Boolean|) $) 32)) (|string| ((|#1| $) 27)) (|pair?| (((|Boolean|) $) 34)) (|null?| (((|Boolean|) $) 36)) (|list?| (((|Boolean|) $) 33)) (|latex| (((|String|) $) 9)) (|integer?| (((|Boolean|) $) 30)) (|integer| ((|#3| $) 25)) (|hash| (((|SingleInteger|) $) 10)) (|float?| (((|Boolean|) $) 29)) (|float| ((|#4| $) 24)) (|expr| ((|#5| $) 23)) (|eq| (((|Boolean|) $ $) 37)) (|elt| (($ $ (|Integer|)) 13) (($ $ (|List| (|Integer|))) 12)) (|destruct| (((|List| $) $) 28)) (|convert| (($ (|List| $)) 22) (($ |#1|) 21) (($ |#2|) 20) (($ |#3|) 19) (($ |#4|) 18) (($ |#5|) 17)) (|coerce| (((|OutputForm|) $) 11)) (|cdr| (($ $) 15)) (|car| (($ $) 16)) (|atom?| (((|Boolean|) $) 35)) (= (((|Boolean|) $ $) 6)) (|#| (((|Integer|) $) 14))) │ │ │ -(((|SExpressionCategory| |#1| |#2| |#3| |#4| |#5|) (|Category|) (|SetCategory|) (|SetCategory|) (|SetCategory|) (|SetCategory|) (|SetCategory|)) (T |SExpressionCategory|)) │ │ │ -((|eq| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|null?| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|atom?| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|pair?| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|list?| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|string?| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|symbol?| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|integer?| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|float?| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|destruct| (*1 *2 *1) (AND (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)))) (|string| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *2 *3 *4 *5 *6)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|symbol| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *2 *4 *5 *6)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|integer| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *2 *5 *6)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|float| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *2 *6)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|expr| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|convert| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)))) (|convert| (*1 *1 *2) (AND (|ofCategory| *1 (|SExpressionCategory| *2 *3 *4 *5 *6)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)))) (|convert| (*1 *1 *2) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *2 *4 *5 *6)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)))) (|convert| (*1 *1 *2) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *2 *5 *6)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)))) (|convert| (*1 *1 *2) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *2 *6)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)))) (|convert| (*1 *1 *2) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)))) (|car| (*1 *1 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *2 *3 *4 *5 *6)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)))) (|cdr| (*1 *1 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *2 *3 *4 *5 *6)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)))) (|#| (*1 *2 *1) (AND (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Integer|)))) (|elt| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)))) (|elt| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Integer|))) (|ofCategory| *1 (|SExpressionCategory| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |eq| ((|Boolean|) $ $)) (SIGNATURE |null?| ((|Boolean|) $)) (SIGNATURE |atom?| ((|Boolean|) $)) (SIGNATURE |pair?| ((|Boolean|) $)) (SIGNATURE |list?| ((|Boolean|) $)) (SIGNATURE |string?| ((|Boolean|) $)) (SIGNATURE |symbol?| ((|Boolean|) $)) (SIGNATURE |integer?| ((|Boolean|) $)) (SIGNATURE |float?| ((|Boolean|) $)) (SIGNATURE |destruct| ((|List| $) $)) (SIGNATURE |string| (|t#1| $)) (SIGNATURE |symbol| (|t#2| $)) (SIGNATURE |integer| (|t#3| $)) (SIGNATURE |float| (|t#4| $)) (SIGNATURE |expr| (|t#5| $)) (SIGNATURE |convert| ($ (|List| $))) (SIGNATURE |convert| ($ |t#1|)) (SIGNATURE |convert| ($ |t#2|)) (SIGNATURE |convert| ($ |t#3|)) (SIGNATURE |convert| ($ |t#4|)) (SIGNATURE |convert| ($ |t#5|)) (SIGNATURE |car| ($ $)) (SIGNATURE |cdr| ($ $)) (SIGNATURE |#| ((|Integer|) $)) (SIGNATURE |elt| ($ $ (|Integer|))) (SIGNATURE |elt| ($ $ (|List| (|Integer|)))))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((^ (($ $ (|PositiveInteger|)) 12)) (** (($ $ (|PositiveInteger|)) 10))) │ │ │ -(((|SemiGroup&| |#1|) (CATEGORY |domain| (SIGNATURE ^ (|#1| |#1| (|PositiveInteger|))) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|)))) (|SemiGroup|)) (T |SemiGroup&|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |complete| (|#1| |#1|)) (SIGNATURE |extend| (|#1| |#1| (|Integer|))) (SIGNATURE |possiblyInfinite?| ((|Boolean|) |#1|)) (SIGNATURE |explicitlyFinite?| ((|Boolean|) |#1|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|))) (SIGNATURE |entries| ((|List| |#2|) |#1|)) (SIGNATURE |index?| ((|Boolean|) (|Integer|) |#1|)) (SIGNATURE |indices| ((|List| (|Integer|)) |#1|)) (SIGNATURE |maxIndex| ((|Integer|) |#1|)) (SIGNATURE |minIndex| ((|Integer|) |#1|)) (SIGNATURE |construct| (|#1| (|List| |#2|))) (SIGNATURE |elt| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |delete| (|#1| |#1| (|Integer|))) (SIGNATURE |delete| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |insert| (|#1| |#2| |#1| (|Integer|))) (SIGNATURE |insert| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |cycleTail| (|#1| |#1|)) (SIGNATURE |cycleLength| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |cycleEntry| (|#1| |#1|)) (SIGNATURE |tail| (|#1| |#1|)) (SIGNATURE |last| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#2| |#1| "last")) (SIGNATURE |last| (|#2| |#1|)) (SIGNATURE |rest| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#1| |#1| "rest")) (SIGNATURE |rest| (|#1| |#1|)) (SIGNATURE |first| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#2| |#1| "first")) (SIGNATURE |first| (|#2| |#1|)) (SIGNATURE |node?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |child?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |distance| ((|Integer|) |#1| |#1|)) (SIGNATURE |cyclic?| ((|Boolean|) |#1|)) (SIGNATURE |elt| (|#2| |#1| "value")) (SIGNATURE |value| (|#2| |#1|)) (SIGNATURE |leaf?| ((|Boolean|) |#1|)) (SIGNATURE |nodes| ((|List| |#1|) |#1|)) (SIGNATURE |children| ((|List| |#1|) |#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |size?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |less?| ((|Boolean|) |#1| (|NonNegativeInteger|)))) │ │ │ +((|translateToOrigin| ((|#2| |#2| |#5|) 39) ((|#2| |#2| |#5| (|Integer|)) 20)) (|pointInIdeal?| (((|Boolean|) (|List| |#2|) |#5|) 23)) (|multiplicity| (((|NonNegativeInteger|) |#2| |#5| (|Integer|)) 42) (((|NonNegativeInteger|) |#2| |#5|) 41)) (|minimalForm| ((|#2| |#2| |#5| (|Integer|)) 45) ((|#2| |#2| |#5|) 44)) (|eval| ((|#1| |#2| |#5|) 21))) │ │ │ +(((|PolynomialPackageForCurve| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |pointInIdeal?| ((|Boolean|) (|List| |#2|) |#5|)) (SIGNATURE |eval| (|#1| |#2| |#5|)) (SIGNATURE |translateToOrigin| (|#2| |#2| |#5| (|Integer|))) (SIGNATURE |translateToOrigin| (|#2| |#2| |#5|)) (SIGNATURE |minimalForm| (|#2| |#2| |#5|)) (SIGNATURE |minimalForm| (|#2| |#2| |#5| (|Integer|))) (SIGNATURE |multiplicity| ((|NonNegativeInteger|) |#2| |#5|)) (SIGNATURE |multiplicity| ((|NonNegativeInteger|) |#2| |#5| (|Integer|)))) (|Field|) (|FiniteAbelianMonoidRing| |#1| |#3|) (|DirectProductCategory| |#4| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|ProjectiveSpaceCategory| |#1|)) (T |PolynomialPackageForCurve|)) │ │ │ +((|multiplicity| (*1 *2 *3 *4 *5) (AND (|isDomain| *5 (|Integer|)) (|ofCategory| *6 (|Field|)) (|ofCategory| *7 (|DirectProductCategory| *8 *2)) (|ofType| *8 *2) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|PolynomialPackageForCurve| *6 *3 *7 *8 *4)) (|ofCategory| *3 (|FiniteAbelianMonoidRing| *6 *7)) (|ofCategory| *4 (|ProjectiveSpaceCategory| *6)))) (|multiplicity| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|DirectProductCategory| *7 *2)) (|ofType| *7 *2) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|PolynomialPackageForCurve| *5 *3 *6 *7 *4)) (|ofCategory| *3 (|FiniteAbelianMonoidRing| *5 *6)) (|ofCategory| *4 (|ProjectiveSpaceCategory| *5)))) (|minimalForm| (*1 *2 *2 *3 *4) (AND (|isDomain| *4 (|Integer|)) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|DirectProductCategory| *7 (|NonNegativeInteger|))) (|ofType| *7 (|NonNegativeInteger|)) (|isDomain| *1 (|PolynomialPackageForCurve| *5 *2 *6 *7 *3)) (|ofCategory| *2 (|FiniteAbelianMonoidRing| *5 *6)) (|ofCategory| *3 (|ProjectiveSpaceCategory| *5)))) (|minimalForm| (*1 *2 *2 *3) (AND (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|DirectProductCategory| *6 (|NonNegativeInteger|))) (|ofType| *6 (|NonNegativeInteger|)) (|isDomain| *1 (|PolynomialPackageForCurve| *4 *2 *5 *6 *3)) (|ofCategory| *2 (|FiniteAbelianMonoidRing| *4 *5)) (|ofCategory| *3 (|ProjectiveSpaceCategory| *4)))) (|translateToOrigin| (*1 *2 *2 *3) (AND (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|DirectProductCategory| *6 (|NonNegativeInteger|))) (|ofType| *6 (|NonNegativeInteger|)) (|isDomain| *1 (|PolynomialPackageForCurve| *4 *2 *5 *6 *3)) (|ofCategory| *2 (|FiniteAbelianMonoidRing| *4 *5)) (|ofCategory| *3 (|ProjectiveSpaceCategory| *4)))) (|translateToOrigin| (*1 *2 *2 *3 *4) (AND (|isDomain| *4 (|Integer|)) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|DirectProductCategory| *7 (|NonNegativeInteger|))) (|ofType| *7 (|NonNegativeInteger|)) (|isDomain| *1 (|PolynomialPackageForCurve| *5 *2 *6 *7 *3)) (|ofCategory| *2 (|FiniteAbelianMonoidRing| *5 *6)) (|ofCategory| *3 (|ProjectiveSpaceCategory| *5)))) (|eval| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|DirectProductCategory| *6 (|NonNegativeInteger|))) (|ofType| *6 (|NonNegativeInteger|)) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|PolynomialPackageForCurve| *2 *3 *5 *6 *4)) (|ofCategory| *3 (|FiniteAbelianMonoidRing| *2 *5)) (|ofCategory| *4 (|ProjectiveSpaceCategory| *2)))) (|pointInIdeal?| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *6)) (|ofCategory| *6 (|FiniteAbelianMonoidRing| *5 *7)) (|ofCategory| *7 (|DirectProductCategory| *8 (|NonNegativeInteger|))) (|ofType| *8 (|NonNegativeInteger|)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PolynomialPackageForCurve| *5 *6 *7 *8 *4)) (|ofCategory| *4 (|ProjectiveSpaceCategory| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |pointInIdeal?| ((|Boolean|) (|List| |#2|) |#5|)) (SIGNATURE |eval| (|#1| |#2| |#5|)) (SIGNATURE |translateToOrigin| (|#2| |#2| |#5| (|Integer|))) (SIGNATURE |translateToOrigin| (|#2| |#2| |#5|)) (SIGNATURE |minimalForm| (|#2| |#2| |#5|)) (SIGNATURE |minimalForm| (|#2| |#2| |#5| (|Integer|))) (SIGNATURE |multiplicity| ((|NonNegativeInteger|) |#2| |#5|)) (SIGNATURE |multiplicity| ((|NonNegativeInteger|) |#2| |#5| (|Integer|)))) │ │ │ +((|map!| (($ (|Mapping| |#2| |#2|) $) 22)) (|copy| (($ $) 16)) (|#| (((|NonNegativeInteger|) $) 24))) │ │ │ +(((|BinaryTreeCategory&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |map!| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |copy| (|#1| |#1|))) (|BinaryTreeCategory| |#2|) (|SetCategory|)) (T |BinaryTreeCategory&|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE ^ (|#1| |#1| (|PositiveInteger|))) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (^ (($ $ (|PositiveInteger|)) 12)) (= (((|Boolean|) $ $) 6)) (** (($ $ (|PositiveInteger|)) 13)) (* (($ $ $) 14))) │ │ │ -(((|SemiGroup|) (|Category|)) (T |SemiGroup|)) │ │ │ -((* (*1 *1 *1 *1) (|ofCategory| *1 (|SemiGroup|))) (** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|SemiGroup|)) (|isDomain| *2 (|PositiveInteger|)))) (^ (*1 *1 *1 *2) (AND (|ofCategory| *1 (|SemiGroup|)) (|isDomain| *2 (|PositiveInteger|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE * ($ $ $)) (SIGNATURE ** ($ $ (|PositiveInteger|))) (SIGNATURE ^ ($ $ (|PositiveInteger|))))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|nextItem| (((|Union| $ "failed") $) 12)) (|latex| (((|String|) $) 9)) (|init| (($) 13 T CONST)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6))) │ │ │ -(((|StepThrough|) (|Category|)) (T |StepThrough|)) │ │ │ -((|init| (*1 *1) (|ofCategory| *1 (|StepThrough|))) (|nextItem| (*1 *1 *1) (|partial| |ofCategory| *1 (|StepThrough|)))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |init| ($) |constant|) (SIGNATURE |nextItem| ((|Union| $ "failed") $)))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|subspace| (((|SubSpace| 3 |#1|) $) 12)) (|polygon?| (((|Boolean|) $) 28)) (|polygon| (($ $ (|List| (|Point| |#1|))) 32) (($ $ (|List| (|List| |#1|))) 31) (($ (|List| (|Point| |#1|))) 30) (((|List| (|Point| |#1|)) $) 29)) (|point?| (((|Boolean|) $) 43)) (|point| (($ $ (|Point| |#1|)) 48) (($ $ (|List| |#1|)) 47) (($ $ (|NonNegativeInteger|)) 46) (($ (|Point| |#1|)) 45) (((|Point| |#1|) $) 44)) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) 14)) (|numberOfComposites| (((|NonNegativeInteger|) $) 57)) (|numberOfComponents| (((|NonNegativeInteger|) $) 58)) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) 49)) (|mesh?| (((|Boolean|) $) 20)) (|mesh| (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) 27) (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) 26) (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) 25) (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) 24) (($ (|List| (|List| (|Point| |#1|)))) 23) (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) 22) (((|List| (|List| (|Point| |#1|))) $) 21)) (|merge| (($ (|List| $)) 56) (($ $ $) 55)) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) 15)) (|lp| (((|List| (|Point| |#1|)) $) 19)) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) 16)) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) 17)) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) 18)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) 50)) (|curve?| (((|Boolean|) $) 38)) (|curve| (($ $ (|List| (|Point| |#1|))) 42) (($ $ (|List| (|List| |#1|))) 41) (($ (|List| (|Point| |#1|))) 40) (((|List| (|Point| |#1|)) $) 39)) (|create3Space| (($) 60) (($ (|SubSpace| 3 |#1|)) 59)) (|copy| (($ $) 51)) (|composites| (((|List| $) $) 52)) (|composite| (($ (|List| $)) 54)) (|components| (((|List| $) $) 53)) (|coerce| (((|OutputForm|) $) 11)) (|closedCurve?| (((|Boolean|) $) 33)) (|closedCurve| (($ $ (|List| (|Point| |#1|))) 37) (($ $ (|List| (|List| |#1|))) 36) (($ (|List| (|Point| |#1|))) 35) (((|List| (|Point| |#1|)) $) 34)) (|check| (($ $) 13)) (= (((|Boolean|) $ $) 6))) │ │ │ -(((|ThreeSpaceCategory| |#1|) (|Category|) (|Ring|)) (T |ThreeSpaceCategory|)) │ │ │ -((|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|OutputForm|)))) (|create3Space| (*1 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|create3Space| (*1 *1 *2) (AND (|isDomain| *2 (|SubSpace| 3 *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|numberOfComponents| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|numberOfComposites| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|merge| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|merge| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|composite| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|components| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|composites| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|copy| (*1 *1 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|enterPointData| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| (|Point| *4))) (|ofCategory| *1 (|ThreeSpaceCategory| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|modifyPointData| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *3 (|Point| *4)) (|ofCategory| *1 (|ThreeSpaceCategory| *4)) (|ofCategory| *4 (|Ring|)))) (|point| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Point| *3)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|point| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|point| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|point| (*1 *1 *2) (AND (|isDomain| *2 (|Point| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|point| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Point| *3)))) (|point?| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|curve| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|curve| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|curve| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|curve| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|Point| *3))))) (|curve?| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|closedCurve| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|closedCurve| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|closedCurve| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|closedCurve| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|Point| *3))))) (|closedCurve?| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|polygon| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|polygon| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|polygon| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Point| *3))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|polygon| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|Point| *3))))) (|polygon?| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|mesh| (*1 *1 *1 *2 *3 *4) (AND (|isDomain| *2 (|List| (|List| (|Point| *5)))) (|isDomain| *3 (|List| (|SubSpaceComponentProperty|))) (|isDomain| *4 (|SubSpaceComponentProperty|)) (|ofCategory| *1 (|ThreeSpaceCategory| *5)) (|ofCategory| *5 (|Ring|)))) (|mesh| (*1 *1 *1 *2 *3 *4) (AND (|isDomain| *2 (|List| (|List| (|List| *5)))) (|isDomain| *3 (|List| (|SubSpaceComponentProperty|))) (|isDomain| *4 (|SubSpaceComponentProperty|)) (|ofCategory| *1 (|ThreeSpaceCategory| *5)) (|ofCategory| *5 (|Ring|)))) (|mesh| (*1 *1 *1 *2 *3 *3) (AND (|isDomain| *2 (|List| (|List| (|Point| *4)))) (|isDomain| *3 (|Boolean|)) (|ofCategory| *1 (|ThreeSpaceCategory| *4)) (|ofCategory| *4 (|Ring|)))) (|mesh| (*1 *1 *1 *2 *3 *3) (AND (|isDomain| *2 (|List| (|List| (|List| *4)))) (|isDomain| *3 (|Boolean|)) (|ofCategory| *1 (|ThreeSpaceCategory| *4)) (|ofCategory| *4 (|Ring|)))) (|mesh| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|List| (|Point| *3)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *3)))) (|mesh| (*1 *1 *2 *3 *3) (AND (|isDomain| *2 (|List| (|List| (|Point| *4)))) (|isDomain| *3 (|Boolean|)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *1 (|ThreeSpaceCategory| *4)))) (|mesh| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|List| (|Point| *3)))))) (|mesh?| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|lp| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|Point| *3))))) (|lllip| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|List| (|List| (|NonNegativeInteger|))))))) (|lllp| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|List| (|List| (|Point| *3))))))) (|llprop| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|List| (|SubSpaceComponentProperty|)))))) (|lprop| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| (|SubSpaceComponentProperty|))))) (|objects| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|)))))) (|check| (*1 *1 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|subspace| (*1 *2 *1) (AND (|ofCategory| *1 (|ThreeSpaceCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|SubSpace| 3 *3))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |create3Space| ($)) (SIGNATURE |create3Space| ($ (|SubSpace| 3 |t#1|))) (SIGNATURE |numberOfComponents| ((|NonNegativeInteger|) $)) (SIGNATURE |numberOfComposites| ((|NonNegativeInteger|) $)) (SIGNATURE |merge| ($ (|List| $))) (SIGNATURE |merge| ($ $ $)) (SIGNATURE |composite| ($ (|List| $))) (SIGNATURE |components| ((|List| $) $)) (SIGNATURE |composites| ((|List| $) $)) (SIGNATURE |copy| ($ $)) (SIGNATURE |enterPointData| ((|NonNegativeInteger|) $ (|List| (|Point| |t#1|)))) (SIGNATURE |modifyPointData| ($ $ (|NonNegativeInteger|) (|Point| |t#1|))) (SIGNATURE |point| ($ $ (|Point| |t#1|))) (SIGNATURE |point| ($ $ (|List| |t#1|))) (SIGNATURE |point| ($ $ (|NonNegativeInteger|))) (SIGNATURE |point| ($ (|Point| |t#1|))) (SIGNATURE |point| ((|Point| |t#1|) $)) (SIGNATURE |point?| ((|Boolean|) $)) (SIGNATURE |curve| ($ $ (|List| (|Point| |t#1|)))) (SIGNATURE |curve| ($ $ (|List| (|List| |t#1|)))) (SIGNATURE |curve| ($ (|List| (|Point| |t#1|)))) (SIGNATURE |curve| ((|List| (|Point| |t#1|)) $)) (SIGNATURE |curve?| ((|Boolean|) $)) (SIGNATURE |closedCurve| ($ $ (|List| (|Point| |t#1|)))) (SIGNATURE |closedCurve| ($ $ (|List| (|List| |t#1|)))) (SIGNATURE |closedCurve| ($ (|List| (|Point| |t#1|)))) (SIGNATURE |closedCurve| ((|List| (|Point| |t#1|)) $)) (SIGNATURE |closedCurve?| ((|Boolean|) $)) (SIGNATURE |polygon| ($ $ (|List| (|Point| |t#1|)))) (SIGNATURE |polygon| ($ $ (|List| (|List| |t#1|)))) (SIGNATURE |polygon| ($ (|List| (|Point| |t#1|)))) (SIGNATURE |polygon| ((|List| (|Point| |t#1|)) $)) (SIGNATURE |polygon?| ((|Boolean|) $)) (SIGNATURE |mesh| ($ $ (|List| (|List| (|Point| |t#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|))) (SIGNATURE |mesh| ($ $ (|List| (|List| (|List| |t#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|))) (SIGNATURE |mesh| ($ $ (|List| (|List| (|Point| |t#1|))) (|Boolean|) (|Boolean|))) (SIGNATURE |mesh| ($ $ (|List| (|List| (|List| |t#1|))) (|Boolean|) (|Boolean|))) (SIGNATURE |mesh| ($ (|List| (|List| (|Point| |t#1|))))) (SIGNATURE |mesh| ($ (|List| (|List| (|Point| |t#1|))) (|Boolean|) (|Boolean|))) (SIGNATURE |mesh| ((|List| (|List| (|Point| |t#1|))) $)) (SIGNATURE |mesh?| ((|Boolean|) $)) (SIGNATURE |lp| ((|List| (|Point| |t#1|)) $)) (SIGNATURE |lllip| ((|List| (|List| (|List| (|NonNegativeInteger|)))) $)) (SIGNATURE |lllp| ((|List| (|List| (|List| (|Point| |t#1|)))) $)) (SIGNATURE |llprop| ((|List| (|List| (|SubSpaceComponentProperty|))) $)) (SIGNATURE |lprop| ((|List| (|SubSpaceComponentProperty|)) $)) (SIGNATURE |objects| ((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $)) (SIGNATURE |check| ($ $)) (SIGNATURE |subspace| ((|SubSpace| 3 |t#1|) $)) (SIGNATURE |coerce| ((|OutputForm|) $)))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((|tensorMap| (((|Stream| |#1|) (|Stream| |#1|) (|Mapping| (|List| |#1|) |#1|)) 16))) │ │ │ -(((|StreamTensor| |#1|) (CATEGORY |package| (SIGNATURE |tensorMap| ((|Stream| |#1|) (|Stream| |#1|) (|Mapping| (|List| |#1|) |#1|)))) (|Type|)) (T |StreamTensor|)) │ │ │ -((|tensorMap| (*1 *2 *2 *3) (AND (|isDomain| *2 (|Stream| *4)) (|isDomain| *3 (|Mapping| (|List| *4) *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *1 (|StreamTensor| *4))))) │ │ │ -(CATEGORY |package| (SIGNATURE |tensorMap| ((|Stream| |#1|) (|Stream| |#1|) (|Mapping| (|List| |#1|) |#1|)))) │ │ │ -((|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) 25)) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) 26)) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) 16))) │ │ │ -(((|StreamFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|))) (SIGNATURE |scan| ((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|))) (SIGNATURE |reduce| (|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)))) (|Type|) (|Type|)) (T |StreamFunctions2|)) │ │ │ -((|reduce| (*1 *2 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) (|isDomain| *4 (|Stream| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|StreamFunctions2| *5 *2)))) (|scan| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|Mapping| *3 *6 *3)) (|isDomain| *5 (|Stream| *6)) (|ofCategory| *6 (|Type|)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|StreamFunctions2| *6 *3)))) (|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Stream| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|Stream| *6)) (|isDomain| *1 (|StreamFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|))) (SIGNATURE |scan| ((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|))) (SIGNATURE |reduce| (|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)))) │ │ │ -((|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) 15))) │ │ │ -(((|StreamFunctions1| |#1|) (CATEGORY |package| (SIGNATURE |concat| ((|Stream| |#1|) (|Stream| (|Stream| |#1|))))) (|Type|)) (T |StreamFunctions1|)) │ │ │ -((|concat| (*1 *2 *3) (AND (|isDomain| *3 (|Stream| (|Stream| *4))) (|isDomain| *2 (|Stream| *4)) (|isDomain| *1 (|StreamFunctions1| *4)) (|ofCategory| *4 (|Type|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |concat| ((|Stream| |#1|) (|Stream| (|Stream| |#1|))))) │ │ │ -((|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) 21))) │ │ │ -(((|StreamFunctions3| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |map| ((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)))) (|Type|) (|Type|) (|Type|)) (T |StreamFunctions3|)) │ │ │ -((|map| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *8 *6 *7)) (|isDomain| *4 (|Stream| *6)) (|isDomain| *5 (|Stream| *7)) (|ofCategory| *6 (|Type|)) (|ofCategory| *7 (|Type|)) (|ofCategory| *8 (|Type|)) (|isDomain| *2 (|Stream| *8)) (|isDomain| *1 (|StreamFunctions3| *6 *7 *8))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|rhs| ((|#2| $) 11)) (|lhs| ((|#1| $) 10)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|construct| (($ |#1| |#2|) 9)) (|coerce| (((|OutputForm|) $) 16)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|SuchThat| |#1| |#2|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |construct| ($ |#1| |#2|)) (SIGNATURE |lhs| (|#1| $)) (SIGNATURE |rhs| (|#2| $)))) (|SetCategory|) (|SetCategory|)) (T |SuchThat|)) │ │ │ -((|construct| (*1 *1 *2 *3) (AND (|isDomain| *1 (|SuchThat| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|lhs| (*1 *2 *1) (AND (|ofCategory| *2 (|SetCategory|)) (|isDomain| *1 (|SuchThat| *2 *3)) (|ofCategory| *3 (|SetCategory|)))) (|rhs| (*1 *2 *1) (AND (|ofCategory| *2 (|SetCategory|)) (|isDomain| *1 (|SuchThat| *3 *2)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |construct| ($ |#1| |#2|)) (SIGNATURE |lhs| (|#1| $)) (SIGNATURE |rhs| (|#2| $)))) │ │ │ -((|coerce| (((|TexFormat|) |#1|) 11))) │ │ │ -(((|TexFormat1| |#1|) (CATEGORY |package| (SIGNATURE |coerce| ((|TexFormat|) |#1|))) (|SetCategory|)) (T |TexFormat1|)) │ │ │ -((|coerce| (*1 *2 *3) (AND (|isDomain| *2 (|TexFormat|)) (|isDomain| *1 (|TexFormat1| *3)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |coerce| ((|TexFormat|) |#1|))) │ │ │ -((Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) 15) (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) 11))) │ │ │ -(((|ParadoxicalCombinatorsForStreams| |#1|) (CATEGORY |package| (SIGNATURE Y ((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|)))) (SIGNATURE Y ((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)))) (|Type|)) (T |ParadoxicalCombinatorsForStreams|)) │ │ │ -((Y (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| (|List| (|Stream| *5)) (|List| (|Stream| *5)))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|List| (|Stream| *5))) (|isDomain| *1 (|ParadoxicalCombinatorsForStreams| *5)) (|ofCategory| *5 (|Type|)))) (Y (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| (|Stream| *4) (|Stream| *4))) (|isDomain| *2 (|Stream| *4)) (|isDomain| *1 (|ParadoxicalCombinatorsForStreams| *4)) (|ofCategory| *4 (|Type|))))) │ │ │ -(CATEGORY |package| (SIGNATURE Y ((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|)))) (SIGNATURE Y ((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|setelt| ((|#1| $ (|Integer|) |#1|) 14)) (|removeConjugate| (((|List| $) (|List| $) (|NonNegativeInteger|)) 20) (((|List| $) (|List| $)) 19)) (|rational?| (((|Boolean|) $ (|NonNegativeInteger|)) 18) (((|Boolean|) $) 17)) (|pointValue| (((|List| |#1|) $) 13)) (|origin| (($) 29)) (|orbit| (((|List| $) $) 24) (((|List| $) $ (|NonNegativeInteger|)) 23)) (|list| (((|List| |#1|) $) 16)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|elt| ((|#1| $ (|Integer|)) 15)) (|degree| (((|PositiveInteger|) $) 12)) (|definingField| ((|#1| $) 27)) (|conjugate| (($ $ (|NonNegativeInteger|)) 22) (($ $) 21)) (|coerce| (((|OutputForm|) $) 11) (((|List| |#1|) $) 26) (($ (|List| |#1|)) 25)) (|affinePoint| (($ (|List| |#1|)) 28)) (= (((|Boolean|) $ $) 6))) │ │ │ -(((|AffineSpaceCategory| |#1|) (|Category|) (|Field|)) (T |AffineSpaceCategory|)) │ │ │ -((|origin| (*1 *1) (AND (|ofCategory| *1 (|AffineSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|affinePoint| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *1 (|AffineSpaceCategory| *3)))) (|definingField| (*1 *2 *1) (AND (|ofCategory| *1 (|AffineSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|AffineSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|List| *3)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *1 (|AffineSpaceCategory| *3)))) (|orbit| (*1 *2 *1) (AND (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|AffineSpaceCategory| *3)))) (|orbit| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|AffineSpaceCategory| *4)))) (|conjugate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|AffineSpaceCategory| *3)) (|ofCategory| *3 (|Field|)))) (|conjugate| (*1 *1 *1) (AND (|ofCategory| *1 (|AffineSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|removeConjugate| (*1 *2 *2 *3) (AND (|isDomain| *2 (|List| *1)) (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|AffineSpaceCategory| *4)) (|ofCategory| *4 (|Field|)))) (|removeConjugate| (*1 *2 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|AffineSpaceCategory| *3)) (|ofCategory| *3 (|Field|)))) (|rational?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|AffineSpaceCategory| *4)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|Boolean|)))) (|rational?| (*1 *2 *1) (AND (|ofCategory| *1 (|AffineSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Boolean|)))) (|list| (*1 *2 *1) (AND (|ofCategory| *1 (|AffineSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|List| *3)))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|AffineSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|setelt| (*1 *2 *1 *3 *2) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|AffineSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|pointValue| (*1 *2 *1) (AND (|ofCategory| *1 (|AffineSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|List| *3))))) │ │ │ -(|Join| (|SetCategoryWithDegree|) (CATEGORY |domain| (SIGNATURE |origin| ($)) (SIGNATURE |affinePoint| ($ (|List| |t#1|))) (SIGNATURE |definingField| (|t#1| $)) (SIGNATURE |coerce| ((|List| |t#1|) $)) (SIGNATURE |coerce| ($ (|List| |t#1|))) (SIGNATURE |orbit| ((|List| $) $)) (SIGNATURE |orbit| ((|List| $) $ (|NonNegativeInteger|))) (SIGNATURE |conjugate| ($ $ (|NonNegativeInteger|))) (SIGNATURE |conjugate| ($ $)) (SIGNATURE |removeConjugate| ((|List| $) (|List| $) (|NonNegativeInteger|))) (SIGNATURE |removeConjugate| ((|List| $) (|List| $))) (SIGNATURE |rational?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |rational?| ((|Boolean|) $)) (SIGNATURE |list| ((|List| |t#1|) $)) (SIGNATURE |elt| (|t#1| $ (|Integer|))) (SIGNATURE |setelt| (|t#1| $ (|Integer|) |t#1|)) (SIGNATURE |pointValue| ((|List| |t#1|) $)))) │ │ │ +(CATEGORY |domain| (SIGNATURE |map!| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |copy| (|#1| |#1|))) │ │ │ +((|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) 61)) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) 42)) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) 63))) │ │ │ +(((|LinearOrdinaryDifferentialOperatorsOps| |#1| |#2|) (CATEGORY |package| (SIGNATURE |symmetricProduct| (|#2| |#2| |#2| (|Mapping| |#1| |#1|))) (SIGNATURE |symmetricPower| (|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|))) (SIGNATURE |directSum| (|#2| |#2| |#2| (|Mapping| |#1| |#1|)))) (|Field|) (|LinearOrdinaryDifferentialOperatorCategory| |#1|)) (T |LinearOrdinaryDifferentialOperatorsOps|)) │ │ │ +((|directSum| (*1 *2 *2 *2 *3) (AND (|isDomain| *3 (|Mapping| *4 *4)) (|ofCategory| *4 (|Field|)) (|isDomain| *1 (|LinearOrdinaryDifferentialOperatorsOps| *4 *2)) (|ofCategory| *2 (|LinearOrdinaryDifferentialOperatorCategory| *4)))) (|symmetricPower| (*1 *2 *2 *3 *4) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *4 (|Mapping| *5 *5)) (|ofCategory| *5 (|Field|)) (|isDomain| *1 (|LinearOrdinaryDifferentialOperatorsOps| *5 *2)) (|ofCategory| *2 (|LinearOrdinaryDifferentialOperatorCategory| *5)))) (|symmetricProduct| (*1 *2 *2 *2 *3) (AND (|isDomain| *3 (|Mapping| *4 *4)) (|ofCategory| *4 (|Field|)) (|isDomain| *1 (|LinearOrdinaryDifferentialOperatorsOps| *4 *2)) (|ofCategory| *2 (|LinearOrdinaryDifferentialOperatorCategory| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |symmetricProduct| (|#2| |#2| |#2| (|Mapping| |#1| |#1|))) (SIGNATURE |symmetricPower| (|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|))) (SIGNATURE |directSum| (|#2| |#2| |#2| (|Mapping| |#1| |#1|)))) │ │ │ +((|convert| (((|DoubleFloat|) $) 6) (((|Float|) $) 8))) │ │ │ +(((|RealConstant|) (|Category|)) (T |RealConstant|)) │ │ │ +NIL │ │ │ +(|Join| (|ConvertibleTo| (|DoubleFloat|)) (|ConvertibleTo| (|Float|))) │ │ │ +(((|ConvertibleTo| (|DoubleFloat|)) . T) ((|ConvertibleTo| (|Float|)) . T)) │ │ │ +((|generalInterpolation| (((|Stream| (|Matrix| (|SparseUnivariatePolynomial| |#1|))) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#3|) (|NonNegativeInteger|) (|NonNegativeInteger|)) 54) (((|Matrix| (|SparseUnivariatePolynomial| |#1|)) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#3|) (|List| (|NonNegativeInteger|))) 42))) │ │ │ +(((|FractionFreeFastGaussianFractions| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |generalInterpolation| ((|Matrix| (|SparseUnivariatePolynomial| |#1|)) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#3|) (|List| (|NonNegativeInteger|)))) (SIGNATURE |generalInterpolation| ((|Stream| (|Matrix| (|SparseUnivariatePolynomial| |#1|))) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#3|) (|NonNegativeInteger|) (|NonNegativeInteger|)))) (|Join| (|IntegralDomain|) (|GcdDomain|)) (|FiniteAbelianMonoidRing| |#1| (|NonNegativeInteger|)) (|FiniteAbelianMonoidRing| (|Fraction| |#1|) (|NonNegativeInteger|))) (T |FractionFreeFastGaussianFractions|)) │ │ │ +((|generalInterpolation| (*1 *2 *3 *4 *5 *6 *6) (AND (|isDomain| *3 (|List| *7)) (|isDomain| *4 (|Mapping| *7 (|NonNegativeInteger|) (|NonNegativeInteger|) *8)) (|isDomain| *5 (|Vector| *9)) (|isDomain| *6 (|NonNegativeInteger|)) (|ofCategory| *7 (|Join| (|IntegralDomain|) (|GcdDomain|))) (|ofCategory| *8 (|FiniteAbelianMonoidRing| *7 *6)) (|ofCategory| *9 (|FiniteAbelianMonoidRing| (|Fraction| *7) *6)) (|isDomain| *2 (|Stream| (|Matrix| (|SparseUnivariatePolynomial| *7)))) (|isDomain| *1 (|FractionFreeFastGaussianFractions| *7 *8 *9)))) (|generalInterpolation| (*1 *2 *3 *4 *5 *6) (AND (|isDomain| *3 (|List| *7)) (|isDomain| *4 (|Mapping| *7 (|NonNegativeInteger|) (|NonNegativeInteger|) *8)) (|isDomain| *5 (|Vector| *9)) (|isDomain| *6 (|List| (|NonNegativeInteger|))) (|ofCategory| *7 (|Join| (|IntegralDomain|) (|GcdDomain|))) (|ofCategory| *8 (|FiniteAbelianMonoidRing| *7 (|NonNegativeInteger|))) (|ofCategory| *9 (|FiniteAbelianMonoidRing| (|Fraction| *7) (|NonNegativeInteger|))) (|isDomain| *2 (|Matrix| (|SparseUnivariatePolynomial| *7))) (|isDomain| *1 (|FractionFreeFastGaussianFractions| *7 *8 *9))))) │ │ │ +(CATEGORY |package| (SIGNATURE |generalInterpolation| ((|Matrix| (|SparseUnivariatePolynomial| |#1|)) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#3|) (|List| (|NonNegativeInteger|)))) (SIGNATURE |generalInterpolation| ((|Stream| (|Matrix| (|SparseUnivariatePolynomial| |#1|))) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#3|) (|NonNegativeInteger|) (|NonNegativeInteger|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) 85)) (|one?| (((|Boolean|) $) NIL)) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) 56)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|e| (($ (|PositiveInteger|)) 48)) (|dimension| (((|CardinalNumber|)) 23)) (|coerce| (((|OutputForm|) $) 68) (($ (|Integer|)) 46) (($ |#2|) 47)) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) 58)) (|characteristic| (((|NonNegativeInteger|)) 20)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 40 T CONST)) (|One| (($) 44 T CONST)) (= (((|Boolean|) $ $) 26)) (/ (($ $ |#2|) NIL)) (- (($ $) 34) (($ $ $) 32)) (+ (($ $ $) 30)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL))) │ │ │ +(((|CliffordAlgebra| |#1| |#2| |#3|) (|Join| (|Ring|) (|Algebra| |#2|) (|VectorSpace| |#2|) (CATEGORY |domain| (SIGNATURE |e| ($ (|PositiveInteger|))) (SIGNATURE |monomial| ($ |#2| (|List| (|PositiveInteger|)))) (SIGNATURE |coefficient| (|#2| $ (|List| (|PositiveInteger|)))) (SIGNATURE |recip| ((|Union| $ "failed") $)))) (|PositiveInteger|) (|Field|) (|QuadraticForm| |#1| |#2|)) (T |CliffordAlgebra|)) │ │ │ +((|recip| (*1 *1 *1) (|partial| AND (|isDomain| *1 (|CliffordAlgebra| *2 *3 *4)) (|ofType| *2 (|PositiveInteger|)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|QuadraticForm| *2 *3)))) (|e| (*1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|CliffordAlgebra| *3 *4 *5)) (|ofType| *3 *2) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|QuadraticForm| *3 *4)))) (|monomial| (*1 *1 *2 *3) (AND (|isDomain| *3 (|List| (|PositiveInteger|))) (|isDomain| *1 (|CliffordAlgebra| *4 *2 *5)) (|ofType| *4 (|PositiveInteger|)) (|ofCategory| *2 (|Field|)) (|ofType| *5 (|QuadraticForm| *4 *2)))) (|coefficient| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| (|PositiveInteger|))) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|CliffordAlgebra| *4 *2 *5)) (|ofType| *4 (|PositiveInteger|)) (|ofType| *5 (|QuadraticForm| *4 *2))))) │ │ │ +(|Join| (|Ring|) (|Algebra| |#2|) (|VectorSpace| |#2|) (CATEGORY |domain| (SIGNATURE |e| ($ (|PositiveInteger|))) (SIGNATURE |monomial| ($ |#2| (|List| (|PositiveInteger|)))) (SIGNATURE |coefficient| (|#2| $ (|List| (|PositiveInteger|)))) (SIGNATURE |recip| ((|Union| $ "failed") $)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|size| (((|NonNegativeInteger|) $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL)) (|retract| ((|#1| $) NIL)) (|nthFactor| ((|#1| $ (|Integer|)) NIL)) (|nthCoef| (((|NonNegativeInteger|) $ (|Integer|)) NIL)) (|mapGen| (($ (|Mapping| |#1| |#1|) $) NIL)) (|mapCoef| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) NIL)) (|latex| (((|String|) $) NIL)) (|highCommonTerms| (($ $ $) NIL (|has| (|NonNegativeInteger|) (|OrderedAbelianMonoid|)))) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ |#1|) NIL)) (|coefficient| (((|NonNegativeInteger|) |#1| $) NIL)) (|Zero| (($) NIL T CONST)) (= (((|Boolean|) $ $) NIL)) (+ (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|NonNegativeInteger|) |#1|) NIL))) │ │ │ +(((|FreeAbelianMonoid| |#1|) (|FreeAbelianMonoidCategory| |#1| (|NonNegativeInteger|)) (|SetCategory|)) (T |FreeAbelianMonoid|)) │ │ │ +NIL │ │ │ +(|FreeAbelianMonoidCategory| |#1| (|NonNegativeInteger|)) │ │ │ +((|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) 23)) (|nullary| (((|Mapping| |#1|) |#1|) 8)) (|id| ((|#1| |#1|) 16)) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) 15) ((|#1| (|Mapping| |#1| |#1|)) 11)) (|coerce| (((|Mapping| |#1|) |#1|) 9)) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) 20))) │ │ │ +(((|MappingPackage1| |#1|) (CATEGORY |package| (SIGNATURE |nullary| ((|Mapping| |#1|) |#1|)) (SIGNATURE |coerce| ((|Mapping| |#1|) |#1|)) (SIGNATURE |fixedPoint| (|#1| (|Mapping| |#1| |#1|))) (SIGNATURE |fixedPoint| ((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|))) (SIGNATURE |id| (|#1| |#1|)) (SIGNATURE ** ((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|))) (SIGNATURE |recur| ((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)))) (|SetCategory|)) (T |MappingPackage1|)) │ │ │ +((|recur| (*1 *2 *2) (AND (|isDomain| *2 (|Mapping| *3 (|NonNegativeInteger|) *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|MappingPackage1| *3)))) (** (*1 *2 *2 *3) (AND (|isDomain| *2 (|Mapping| *4 *4)) (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *1 (|MappingPackage1| *4)))) (|id| (*1 *2 *2) (AND (|isDomain| *1 (|MappingPackage1| *2)) (|ofCategory| *2 (|SetCategory|)))) (|fixedPoint| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| (|List| *5) (|List| *5))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|List| *5)) (|isDomain| *1 (|MappingPackage1| *5)) (|ofCategory| *5 (|SetCategory|)))) (|fixedPoint| (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| *2 *2)) (|isDomain| *1 (|MappingPackage1| *2)) (|ofCategory| *2 (|SetCategory|)))) (|coerce| (*1 *2 *3) (AND (|isDomain| *2 (|Mapping| *3)) (|isDomain| *1 (|MappingPackage1| *3)) (|ofCategory| *3 (|SetCategory|)))) (|nullary| (*1 *2 *3) (AND (|isDomain| *2 (|Mapping| *3)) (|isDomain| *1 (|MappingPackage1| *3)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |nullary| ((|Mapping| |#1|) |#1|)) (SIGNATURE |coerce| ((|Mapping| |#1|) |#1|)) (SIGNATURE |fixedPoint| (|#1| (|Mapping| |#1| |#1|))) (SIGNATURE |fixedPoint| ((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|))) (SIGNATURE |id| (|#1| |#1|)) (SIGNATURE ** ((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|))) (SIGNATURE |recur| ((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)))) │ │ │ +((|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) 28)) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) 96) (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) 106)) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) 78) (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) 50)) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) 85) (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) 105)) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) 101) (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) 107)) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) 124 (|has| |#3| (|LinearOrdinaryDifferentialOperatorCategory| |#2|))) (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) 123 (|has| |#3| (|LinearOrdinaryDifferentialOperatorCategory| |#2|)))) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) 48)) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) 27))) │ │ │ +(((|GenusZeroIntegration| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |palgint0| ((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |palgint0| ((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|)))) (SIGNATURE |palgextint0| ((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |palgextint0| ((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|)))) (SIGNATURE |palglimint0| ((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |palglimint0| ((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|)))) (SIGNATURE |palgRDE0| ((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |palgRDE0| ((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|)))) (SIGNATURE |univariate| ((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |multivariate| (|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|)) (SIGNATURE |lift| ((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|))) (IF (|has| |#3| (|LinearOrdinaryDifferentialOperatorCategory| |#2|)) (PROGN (SIGNATURE |palgLODE0| ((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |palgLODE0| ((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))))) |noBranch|)) (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|))) (|Join| (|FunctionSpace| |#1|) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|)) (|SetCategory|)) (T |GenusZeroIntegration|)) │ │ │ +((|palgLODE0| (*1 *2 *3 *4 *5 *5 *5 *4 *6) (AND (|isDomain| *5 (|Kernel| *4)) (|isDomain| *6 (|Fraction| (|SparseUnivariatePolynomial| *4))) (|ofCategory| *4 (|Join| (|FunctionSpace| *7) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *7 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |particular| (|Union| *4 "failed")) (|:| |basis| (|List| *4)))) (|isDomain| *1 (|GenusZeroIntegration| *7 *4 *3)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4)) (|ofCategory| *3 (|SetCategory|)))) (|palgLODE0| (*1 *2 *3 *4 *5 *5 *4 *6) (AND (|isDomain| *5 (|Kernel| *4)) (|isDomain| *6 (|SparseUnivariatePolynomial| *4)) (|ofCategory| *4 (|Join| (|FunctionSpace| *7) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *7 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |particular| (|Union| *4 "failed")) (|:| |basis| (|List| *4)))) (|isDomain| *1 (|GenusZeroIntegration| *7 *4 *3)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4)) (|ofCategory| *3 (|SetCategory|)))) (|lift| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Kernel| *6)) (|ofCategory| *6 (|Join| (|FunctionSpace| *5) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *5 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| *6)))) (|isDomain| *1 (|GenusZeroIntegration| *5 *6 *7)) (|isDomain| *3 (|SparseUnivariatePolynomial| *6)) (|ofCategory| *7 (|SetCategory|)))) (|multivariate| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| *2)))) (|isDomain| *4 (|Kernel| *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *5) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *5 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *1 (|GenusZeroIntegration| *5 *2 *6)) (|ofCategory| *6 (|SetCategory|)))) (|univariate| (*1 *2 *3 *4 *4 *5) (AND (|isDomain| *4 (|Kernel| *3)) (|ofCategory| *3 (|Join| (|FunctionSpace| *6) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *6 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| *3)))) (|isDomain| *1 (|GenusZeroIntegration| *6 *3 *7)) (|isDomain| *5 (|SparseUnivariatePolynomial| *3)) (|ofCategory| *7 (|SetCategory|)))) (|palgRDE0| (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| AND (|isDomain| *3 (|Kernel| *2)) (|isDomain| *4 (|Mapping| (|Union| *2 "failed") *2 *2 (|Symbol|))) (|isDomain| *5 (|Fraction| (|SparseUnivariatePolynomial| *2))) (|ofCategory| *2 (|Join| (|FunctionSpace| *6) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *6 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *1 (|GenusZeroIntegration| *6 *2 *7)) (|ofCategory| *7 (|SetCategory|)))) (|palgRDE0| (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| AND (|isDomain| *3 (|Kernel| *2)) (|isDomain| *4 (|Mapping| (|Union| *2 "failed") *2 *2 (|Symbol|))) (|isDomain| *5 (|SparseUnivariatePolynomial| *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *6) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *6 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *1 (|GenusZeroIntegration| *6 *2 *7)) (|ofCategory| *7 (|SetCategory|)))) (|palglimint0| (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| AND (|isDomain| *4 (|Kernel| *3)) (|isDomain| *5 (|List| *3)) (|isDomain| *6 (|Fraction| (|SparseUnivariatePolynomial| *3))) (|ofCategory| *3 (|Join| (|FunctionSpace| *7) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *7 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |mainpart| *3) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| *3) (|:| |logand| *3)))))) (|isDomain| *1 (|GenusZeroIntegration| *7 *3 *8)) (|ofCategory| *8 (|SetCategory|)))) (|palglimint0| (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| AND (|isDomain| *4 (|Kernel| *3)) (|isDomain| *5 (|List| *3)) (|isDomain| *6 (|SparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|Join| (|FunctionSpace| *7) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *7 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |mainpart| *3) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| *3) (|:| |logand| *3)))))) (|isDomain| *1 (|GenusZeroIntegration| *7 *3 *8)) (|ofCategory| *8 (|SetCategory|)))) (|palgextint0| (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| AND (|isDomain| *4 (|Kernel| *3)) (|isDomain| *5 (|Fraction| (|SparseUnivariatePolynomial| *3))) (|ofCategory| *3 (|Join| (|FunctionSpace| *6) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *6 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |ratpart| *3) (|:| |coeff| *3))) (|isDomain| *1 (|GenusZeroIntegration| *6 *3 *7)) (|ofCategory| *7 (|SetCategory|)))) (|palgextint0| (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| AND (|isDomain| *4 (|Kernel| *3)) (|isDomain| *5 (|SparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|Join| (|FunctionSpace| *6) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *6 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Record| (|:| |ratpart| *3) (|:| |coeff| *3))) (|isDomain| *1 (|GenusZeroIntegration| *6 *3 *7)) (|ofCategory| *7 (|SetCategory|)))) (|palgint0| (*1 *2 *3 *4 *4 *4 *3 *5) (AND (|isDomain| *4 (|Kernel| *3)) (|isDomain| *5 (|Fraction| (|SparseUnivariatePolynomial| *3))) (|ofCategory| *3 (|Join| (|FunctionSpace| *6) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *6 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|IntegrationResult| *3)) (|isDomain| *1 (|GenusZeroIntegration| *6 *3 *7)) (|ofCategory| *7 (|SetCategory|)))) (|palgint0| (*1 *2 *3 *4 *4 *3 *5) (AND (|isDomain| *4 (|Kernel| *3)) (|isDomain| *5 (|SparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|Join| (|FunctionSpace| *6) (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|))) (|ofCategory| *6 (|Join| (|GcdDomain|) (|RetractableTo| (|Integer|)) (|OrderedSet|) (|CharacteristicZero|) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|IntegrationResult| *3)) (|isDomain| *1 (|GenusZeroIntegration| *6 *3 *7)) (|ofCategory| *7 (|SetCategory|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |palgint0| ((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |palgint0| ((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|)))) (SIGNATURE |palgextint0| ((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |palgextint0| ((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|)))) (SIGNATURE |palglimint0| ((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |palglimint0| ((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|)))) (SIGNATURE |palgRDE0| ((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |palgRDE0| ((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|)))) (SIGNATURE |univariate| ((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |multivariate| (|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|)) (SIGNATURE |lift| ((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|))) (IF (|has| |#3| (|LinearOrdinaryDifferentialOperatorCategory| |#2|)) (PROGN (SIGNATURE |palgLODE0| ((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |palgLODE0| ((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))))) |noBranch|)) │ │ │ +((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|sample| (($) 7 T CONST)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|inspect| ((|#1| $) 36)) (|insert!| (($ |#1| $) 37)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|extract!| ((|#1| $) 38)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|bag| (($ (|List| |#1|)) 39)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|BagAggregate| |#1|) (|Category|) (|Type|)) (T |BagAggregate|)) │ │ │ +((|bag| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *1 (|BagAggregate| *3)))) (|extract!| (*1 *2 *1) (AND (|ofCategory| *1 (|BagAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|insert!| (*1 *1 *2 *1) (AND (|ofCategory| *1 (|BagAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|inspect| (*1 *2 *1) (AND (|ofCategory| *1 (|BagAggregate| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ +(|Join| (|HomogeneousAggregate| |t#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (SIGNATURE |bag| ($ (|List| |t#1|))) (SIGNATURE |extract!| (|t#1| $)) (SIGNATURE |insert!| ($ |t#1| $)) (SIGNATURE |inspect| (|t#1| $)))) │ │ │ +(((|Aggregate|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|segment| (($ |#1| |#1|) 9) (($ |#1|) 8)) (|map| (((|Stream| |#1|) (|Mapping| |#1| |#1|) $) 41 (|has| |#1| (|OrderedRing|)))) (|low| ((|#1| $) 14)) (|lo| ((|#1| $) 10)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|incr| (((|Integer|) $) 18)) (|high| ((|#1| $) 17)) (|hi| ((|#1| $) 11)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|hasHi| (((|Boolean|) $) 16)) (|expand| (((|Stream| |#1|) $) 38 (|has| |#1| (|OrderedRing|))) (((|Stream| |#1|) (|List| $)) 37 (|has| |#1| (|OrderedRing|)))) (|convert| (($ |#1|) 25)) (|coerce| (($ (|Segment| |#1|)) 24) (((|OutputForm|) $) 34 (|has| |#1| (|SetCategory|)))) (SEGMENT (($ |#1| |#1|) 20) (($ |#1|) 19)) (BY (($ $ (|Integer|)) 13)) (= (((|Boolean|) $ $) 27 (|has| |#1| (|SetCategory|))))) │ │ │ +(((|UniversalSegment| |#1|) (|Join| (|SegmentCategory| |#1|) (CATEGORY |domain| (SIGNATURE SEGMENT ($ |#1|)) (SIGNATURE |segment| ($ |#1|)) (SIGNATURE |coerce| ($ (|Segment| |#1|))) (SIGNATURE |hasHi| ((|Boolean|) $)) (IF (|has| |#1| (|SetCategory|)) (ATTRIBUTE (|SetCategory|)) |noBranch|) (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|SegmentExpansionCategory| |#1| (|Stream| |#1|))) |noBranch|))) (|Type|)) (T |UniversalSegment|)) │ │ │ +((SEGMENT (*1 *1 *2) (AND (|isDomain| *1 (|UniversalSegment| *2)) (|ofCategory| *2 (|Type|)))) (|segment| (*1 *1 *2) (AND (|isDomain| *1 (|UniversalSegment| *2)) (|ofCategory| *2 (|Type|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Segment| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|UniversalSegment| *3)))) (|hasHi| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|UniversalSegment| *3)) (|ofCategory| *3 (|Type|))))) │ │ │ +(|Join| (|SegmentCategory| |#1|) (CATEGORY |domain| (SIGNATURE SEGMENT ($ |#1|)) (SIGNATURE |segment| ($ |#1|)) (SIGNATURE |coerce| ($ (|Segment| |#1|))) (SIGNATURE |hasHi| ((|Boolean|) $)) (IF (|has| |#1| (|SetCategory|)) (ATTRIBUTE (|SetCategory|)) |noBranch|) (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|SegmentExpansionCategory| |#1| (|Stream| |#1|))) |noBranch|))) │ │ │ +((|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) 24)) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) 28))) │ │ │ +(((|FactoredFunctions| |#1|) (CATEGORY |package| (SIGNATURE |nthRoot| ((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|))) (SIGNATURE |log| ((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)))) (|IntegralDomain|)) (T |FactoredFunctions|)) │ │ │ +((|log| (*1 *2 *3) (AND (|isDomain| *3 (|Factored| *4)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| *4)))) (|isDomain| *1 (|FactoredFunctions| *4)))) (|nthRoot| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Factored| *5)) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| *5) (|:| |radicand| (|List| *5)))) (|isDomain| *1 (|FactoredFunctions| *5)) (|isDomain| *4 (|NonNegativeInteger|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |nthRoot| ((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|))) (SIGNATURE |log| ((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|setParam!| (((|Void|) $ (|List| |#2|)) 19)) (|setFoundPlacesToEmpty| (((|List| $)) 14)) (|setDegree!| (((|Void|) $ (|PositiveInteger|)) 18)) (|reduce| (((|Divisor| $) (|List| $)) 23)) (|localParam| (((|List| |#2|) $) 20)) (|leaf?| (((|Boolean|) $) 17)) (|latex| (((|String|) $) 9)) (|itsALeaf!| (((|Void|) $) 16)) (|hash| (((|SingleInteger|) $) 10)) (|foundPlaces| (((|List| $)) 15)) (|elt| ((|#1| $ (|Integer|)) 13)) (|degree| (((|PositiveInteger|) $) 12)) (|create| (($ (|List| |#1|)) 22) (($ (|Symbol|)) 21)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6)) (- (((|Divisor| $) $ $) 28) (((|Divisor| $) (|Divisor| $) $) 27) (((|Divisor| $) $ (|Divisor| $)) 26) (((|Divisor| $) $) 25)) (+ (((|Divisor| $) $ $) 31) (((|Divisor| $) (|Divisor| $) $) 30) (((|Divisor| $) $ (|Divisor| $)) 29)) (* (((|Divisor| $) (|Integer|) $) 24))) │ │ │ +(((|PlacesCategory| |#1| |#2|) (|Category|) (|Field|) (|LocalPowerSeriesCategory| |t#1|)) (T |PlacesCategory|)) │ │ │ +((+ (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)) (|isDomain| *2 (|Divisor| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)))) (+ (*1 *2 *2 *1) (AND (|isDomain| *2 (|Divisor| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)))) (+ (*1 *2 *1 *2) (AND (|isDomain| *2 (|Divisor| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)))) (- (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)) (|isDomain| *2 (|Divisor| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)))) (- (*1 *2 *2 *1) (AND (|isDomain| *2 (|Divisor| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)))) (- (*1 *2 *1 *2) (AND (|isDomain| *2 (|Divisor| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)))) (- (*1 *2 *1) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)) (|isDomain| *2 (|Divisor| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)))) (* (*1 *2 *3 *1) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|LocalPowerSeriesCategory| *4)) (|isDomain| *2 (|Divisor| *1)) (|ofCategory| *1 (|PlacesCategory| *4 *5)))) (|reduce| (*1 *2 *3) (AND (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|PlacesCategory| *4 *5)) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|LocalPowerSeriesCategory| *4)) (|isDomain| *2 (|Divisor| *1)))) (|create| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)))) (|create| (*1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *3 (|Field|)) (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)))) (|localParam| (*1 *2 *1) (AND (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)) (|isDomain| *2 (|List| *4)))) (|setParam!| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| *5)) (|ofCategory| *1 (|PlacesCategory| *4 *5)) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|LocalPowerSeriesCategory| *4)) (|isDomain| *2 (|Void|)))) (|setDegree!| (*1 *2 *1 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *1 (|PlacesCategory| *4 *5)) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|LocalPowerSeriesCategory| *4)) (|isDomain| *2 (|Void|)))) (|leaf?| (*1 *2 *1) (AND (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)) (|isDomain| *2 (|Boolean|)))) (|itsALeaf!| (*1 *2 *1) (AND (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)) (|isDomain| *2 (|Void|)))) (|foundPlaces| (*1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)))) (|setFoundPlacesToEmpty| (*1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|PlacesCategory| *2 *4)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *2)) (|ofCategory| *2 (|Field|))))) │ │ │ +(|Join| (|SetCategoryWithDegree|) (CATEGORY |domain| (SIGNATURE + ((|Divisor| $) $ $)) (SIGNATURE + ((|Divisor| $) (|Divisor| $) $)) (SIGNATURE + ((|Divisor| $) $ (|Divisor| $))) (SIGNATURE - ((|Divisor| $) $ $)) (SIGNATURE - ((|Divisor| $) (|Divisor| $) $)) (SIGNATURE - ((|Divisor| $) $ (|Divisor| $))) (SIGNATURE - ((|Divisor| $) $)) (SIGNATURE * ((|Divisor| $) (|Integer|) $)) (SIGNATURE |reduce| ((|Divisor| $) (|List| $))) (SIGNATURE |create| ($ (|List| |t#1|))) (SIGNATURE |create| ($ (|Symbol|))) (SIGNATURE |localParam| ((|List| |t#2|) $)) (SIGNATURE |setParam!| ((|Void|) $ (|List| |t#2|))) (SIGNATURE |setDegree!| ((|Void|) $ (|PositiveInteger|))) (SIGNATURE |leaf?| ((|Boolean|) $)) (SIGNATURE |itsALeaf!| ((|Void|) $)) (SIGNATURE |foundPlaces| ((|List| $))) (SIGNATURE |setFoundPlacesToEmpty| ((|List| $))) (SIGNATURE |elt| (|t#1| $ (|Integer|))))) │ │ │ (((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T) ((|SetCategoryWithDegree|) . T)) │ │ │ +((|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) 23)) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) 22)) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) 26) (((|List| |#1|) |#1|) 28))) │ │ │ +(((|PolynomialDecomposition| |#1| |#2|) (CATEGORY |package| (SIGNATURE |decompose| ((|List| |#1|) |#1|)) (SIGNATURE |decompose| ((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |leftFactor| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |rightFactorCandidate| (|#1| |#1| (|NonNegativeInteger|)))) (|UnivariatePolynomialCategory| |#2|) (|Field|)) (T |PolynomialDecomposition|)) │ │ │ +((|rightFactorCandidate| (*1 *2 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Field|)) (|isDomain| *1 (|PolynomialDecomposition| *2 *4)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))) (|leftFactor| (*1 *2 *2 *2) (|partial| AND (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|PolynomialDecomposition| *2 *3)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|decompose| (*1 *2 *3 *4 *4) (|partial| AND (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Record| (|:| |left| *3) (|:| |right| *3))) (|isDomain| *1 (|PolynomialDecomposition| *3 *5)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))) (|decompose| (*1 *2 *3) (AND (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|PolynomialDecomposition| *3 *4)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |decompose| ((|List| |#1|) |#1|)) (SIGNATURE |decompose| ((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |leftFactor| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |rightFactorCandidate| (|#1| |#1| (|NonNegativeInteger|)))) │ │ │ ((|summary| (((|Void|)) 20)) (|reportInstantiations| (((|Void|) (|Boolean|)) 22)) (|getDomains| (((|Set| (|Symbol|)) (|Symbol|)) 15)) (|getAncestors| (((|Set| (|Symbol|)) (|Symbol|)) 16)) (|credits| (((|Void|)) 19))) │ │ │ (((|ApplicationProgramInterface|) (CATEGORY |package| (SIGNATURE |getDomains| ((|Set| (|Symbol|)) (|Symbol|))) (SIGNATURE |getAncestors| ((|Set| (|Symbol|)) (|Symbol|))) (SIGNATURE |credits| ((|Void|))) (SIGNATURE |summary| ((|Void|))) (SIGNATURE |reportInstantiations| ((|Void|) (|Boolean|))))) (T |ApplicationProgramInterface|)) │ │ │ ((|reportInstantiations| (*1 *2 *3) (AND (|isDomain| *3 (|Boolean|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|ApplicationProgramInterface|)))) (|summary| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|ApplicationProgramInterface|)))) (|credits| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|ApplicationProgramInterface|)))) (|getAncestors| (*1 *2 *3) (AND (|isDomain| *2 (|Set| (|Symbol|))) (|isDomain| *1 (|ApplicationProgramInterface|)) (|isDomain| *3 (|Symbol|)))) (|getDomains| (*1 *2 *3) (AND (|isDomain| *2 (|Set| (|Symbol|))) (|isDomain| *1 (|ApplicationProgramInterface|)) (|isDomain| *3 (|Symbol|))))) │ │ │ (CATEGORY |package| (SIGNATURE |getDomains| ((|Set| (|Symbol|)) (|Symbol|))) (SIGNATURE |getAncestors| ((|Set| (|Symbol|)) (|Symbol|))) (SIGNATURE |credits| ((|Void|))) (SIGNATURE |summary| ((|Void|))) (SIGNATURE |reportInstantiations| ((|Void|) (|Boolean|)))) │ │ │ -((|asec| (($ $) 10)) (|acsc| (($ $) 12))) │ │ │ -(((|ArcTrigonometricFunctionCategory&| |#1|) (CATEGORY |domain| (SIGNATURE |acsc| (|#1| |#1|)) (SIGNATURE |asec| (|#1| |#1|))) (|ArcTrigonometricFunctionCategory|)) (T |ArcTrigonometricFunctionCategory&|)) │ │ │ -NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |acsc| (|#1| |#1|)) (SIGNATURE |asec| (|#1| |#1|))) │ │ │ -((|outputAsFortran| (((|Void|) $) NIL) (((|Void|)) 32)) (|coerce| (((|OutputForm|) $) NIL))) │ │ │ -(((|Asp29| |#1|) (|Join| (|FortranProgramCategory|) (CATEGORY |package| (SIGNATURE |outputAsFortran| ((|Void|))))) (|Symbol|)) (T |Asp29|)) │ │ │ -((|outputAsFortran| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Asp29| *3)) (|ofType| *3 (|Symbol|))))) │ │ │ -(|Join| (|FortranProgramCategory|) (CATEGORY |package| (SIGNATURE |outputAsFortran| ((|Void|))))) │ │ │ -((|atan| (($ $) 11)) (|asin| (($ $) 10)) (|asec| (($ $) 9)) (|acsc| (($ $) 8)) (|acot| (($ $) 7)) (|acos| (($ $) 6))) │ │ │ -(((|ArcTrigonometricFunctionCategory|) (|Category|)) (T |ArcTrigonometricFunctionCategory|)) │ │ │ -((|atan| (*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|))) (|asin| (*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|))) (|asec| (*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|))) (|acsc| (*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|))) (|acot| (*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|))) (|acos| (*1 *1 *1) (|ofCategory| *1 (|ArcTrigonometricFunctionCategory|)))) │ │ │ -(|Join| (CATEGORY |domain| (SIGNATURE |acos| ($ $)) (SIGNATURE |acot| ($ $)) (SIGNATURE |acsc| ($ $)) (SIGNATURE |asec| ($ $)) (SIGNATURE |asin| ($ $)) (SIGNATURE |atan| ($ $)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|type| (((|Union| "left" "center" "right" "vertical" "horizontal") $) 17)) (|transCoord| (((|Integer|) $) 14)) (|ramifMult| (((|Integer|) $) 15)) (|quotValuation| (((|Integer|) $) 16)) (|latex| (((|String|) $) NIL)) (|infClsPt?| (((|Boolean|) $) 8)) (|hash| (((|SingleInteger|) $) NIL)) (|excepCoord| (((|Integer|) $) 12)) (|createHN| (($ (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Union| "left" "center" "right" "vertical" "horizontal")) 11)) (|coerce| (((|OutputForm|) $) 19) (($ (|List| (|Integer|))) NIL)) (|chartCoord| (((|Integer|) $) 13)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|BlowUpWithHamburgerNoether|) (|Join| (|BlowUpMethodCategory|) (CATEGORY |package| (ATTRIBUTE |HamburgerNoether|)))) (T |BlowUpWithHamburgerNoether|)) │ │ │ -NIL │ │ │ -(|Join| (|BlowUpMethodCategory|) (CATEGORY |package| (ATTRIBUTE |HamburgerNoether|))) │ │ │ -((|quadraticBezier| (((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|)) 20)) (|linearBezier| (((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|)) 17)) (|cubicBezier| (((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|)) 21))) │ │ │ -(((|Bezier| |#1|) (CATEGORY |package| (SIGNATURE |linearBezier| ((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|))) (SIGNATURE |quadraticBezier| ((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|))) (SIGNATURE |cubicBezier| ((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|)))) (|Ring|)) (T |Bezier|)) │ │ │ -((|cubicBezier| (*1 *2 *3 *3 *3 *3) (AND (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Mapping| (|List| *4) *4)) (|isDomain| *1 (|Bezier| *4)) (|isDomain| *3 (|List| *4)))) (|quadraticBezier| (*1 *2 *3 *3 *3) (AND (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Mapping| (|List| *4) *4)) (|isDomain| *1 (|Bezier| *4)) (|isDomain| *3 (|List| *4)))) (|linearBezier| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Mapping| (|List| *4) *4)) (|isDomain| *1 (|Bezier| *4)) (|isDomain| *3 (|List| *4))))) │ │ │ -(CATEGORY |package| (SIGNATURE |linearBezier| ((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|))) (SIGNATURE |quadraticBezier| ((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|))) (SIGNATURE |cubicBezier| ((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ |#1| $) 22) (($ $ |#2|) 24))) │ │ │ -(((|BiModule| |#1| |#2|) (|Category|) (|Ring|) (|Ring|)) (T |BiModule|)) │ │ │ -NIL │ │ │ -(|Join| (|LeftModule| |t#1|) (|RightModule| |t#2|) (CATEGORY |package| (ATTRIBUTE |leftUnitary|) (ATTRIBUTE |rightUnitary|))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#1|) . T) ((|RightModule| |#2|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|type| (((|Union| "left" "center" "right" "vertical" "horizontal") $) NIL)) (|transCoord| (((|Integer|) $) 14)) (|ramifMult| (((|Integer|) $) 11)) (|quotValuation| (((|Integer|) $) 15)) (|latex| (((|String|) $) NIL)) (|infClsPt?| (((|Boolean|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|excepCoord| (((|Integer|) $) 12)) (|createHN| (($ (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Union| "left" "center" "right" "vertical" "horizontal")) NIL)) (|coerce| (((|OutputForm|) $) 17) (($ (|List| (|Integer|))) 10)) (|chartCoord| (((|Integer|) $) 13)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|BlowUpWithQuadTrans|) (|Join| (|BlowUpMethodCategory|) (CATEGORY |package| (ATTRIBUTE |QuadraticTransform|)))) (T |BlowUpWithQuadTrans|)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 46)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|transcendent?| (((|Boolean|) $) NIL)) (|transcendenceDegree| (((|NonNegativeInteger|)) NIL)) (|trace| ((|#1| $) NIL) (($ $ (|PositiveInteger|)) NIL (|has| |#1| (|Finite|)))) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) 43 (|has| |#1| (|Finite|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|size| (((|NonNegativeInteger|)) NIL (|has| |#1| (|Finite|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) 113)) (|retract| ((|#1| $) 84)) (|represents| (($ (|Vector| |#1|)) 102)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) 93 (|has| |#1| (|Finite|)))) (|rem| (($ $ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|random| (($) 96 (|has| |#1| (|Finite|)))) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|primitiveElement| (($) 128 (|has| |#1| (|Finite|)))) (|primitive?| (((|Boolean|) $) 49 (|has| |#1| (|Finite|)))) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) NIL (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|)))) (($ $) NIL (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|prime?| (((|Boolean|) $) NIL)) (|order| (((|PositiveInteger|) $) 47 (|has| |#1| (|Finite|))) (((|OnePointCompletion| (|PositiveInteger|)) $) NIL (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|one?| (((|Boolean|) $) NIL)) (|normalElement| (($) 130 (|has| |#1| (|Finite|)))) (|normal?| (((|Boolean|) $) NIL (|has| |#1| (|Finite|)))) (|norm| ((|#1| $) NIL) (($ $ (|PositiveInteger|)) NIL (|has| |#1| (|Finite|)))) (|nextItem| (((|Union| $ "failed") $) NIL (|has| |#1| (|Finite|)))) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) 88) (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) NIL (|has| |#1| (|Finite|)))) (|lookup| (((|PositiveInteger|) $) 138 (|has| |#1| (|Finite|)))) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) NIL (|has| |#1| (|Finite|)))) (|linearAssociatedLog| (((|SparseUnivariatePolynomial| |#1|) $) NIL (|has| |#1| (|Finite|))) (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) NIL (|has| |#1| (|Finite|)))) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) NIL (|has| |#1| (|Finite|)))) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) 145)) (|init| (($) NIL (|has| |#1| (|Finite|)) CONST)) (|index| (($ (|PositiveInteger|)) 70 (|has| |#1| (|Finite|)))) (|inGroundField?| (((|Boolean|) $) 116)) (|hash| (((|SingleInteger|) $) NIL)) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) 44)) (|generator| (($) 126 (|has| |#1| (|Finite|)))) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) 91 (|has| |#1| (|Finite|)))) (|factor| (((|Factored| $) $) NIL)) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) 67) (((|PositiveInteger|)) 68)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|enumerate| (((|List| $)) NIL (|has| |#1| (|Finite|)))) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|discreteLog| (((|NonNegativeInteger|) $) 129 (|has| |#1| (|Finite|))) (((|Union| (|NonNegativeInteger|) "failed") $ $) 123 (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|dimension| (((|CardinalNumber|)) NIL)) (|differentiate| (($ $) NIL (|has| |#1| (|Finite|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|Finite|)))) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) NIL) (((|PositiveInteger|) $) NIL)) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) 94)) (|createPrimitiveElement| (($) 127 (|has| |#1| (|Finite|)))) (|createNormalElement| (($) 135 (|has| |#1| (|Finite|)))) (|coordinates| (((|Vector| |#1|) $) 59) (((|Matrix| |#1|) (|Vector| $)) NIL)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (|has| |#1| (|Finite|)))) (|coerce| (((|OutputForm|) $) 141) (($ (|Integer|)) NIL) (($ $) NIL) (($ (|Fraction| (|Integer|))) NIL) (($ |#1|) 74)) (|charthRoot| (($ $) NIL (|has| |#1| (|Finite|))) (((|Union| $ "failed") $) NIL (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|characteristic| (((|NonNegativeInteger|)) 137)) (|basis| (((|Vector| $)) 115) (((|Vector| $) (|PositiveInteger|)) 72)) (|associates?| (((|Boolean|) $ $) NIL)) (|algebraic?| (((|Boolean|) $) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|Zero| (($) 32 T CONST)) (|One| (($) 19 T CONST)) (|Frobenius| (($ $) 80 (|has| |#1| (|Finite|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|Finite|)))) (D (($ $) NIL (|has| |#1| (|Finite|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|Finite|)))) (= (((|Boolean|) $ $) 48)) (/ (($ $ $) 143) (($ $ |#1|) 144)) (- (($ $) 125) (($ $ $) NIL)) (+ (($ $ $) 61)) (** (($ $ (|PositiveInteger|)) 147) (($ $ (|NonNegativeInteger|)) 148) (($ $ (|Integer|)) 146)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 76) (($ $ $) 75) (($ $ (|Fraction| (|Integer|))) NIL) (($ (|Fraction| (|Integer|)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142))) │ │ │ +(((|FiniteFieldCyclicGroupExtensionByPolynomial| |#1| |#2|) (|Join| (|FiniteAlgebraicExtensionField| |#1|) (CATEGORY |package| (SIGNATURE |getZechTable| ((|PrimitiveArray| (|SingleInteger|)))))) (|FiniteFieldCategory|) (|SparseUnivariatePolynomial| |#1|)) (T |FiniteFieldCyclicGroupExtensionByPolynomial|)) │ │ │ +((|getZechTable| (*1 *2) (AND (|isDomain| *2 (|PrimitiveArray| (|SingleInteger|))) (|isDomain| *1 (|FiniteFieldCyclicGroupExtensionByPolynomial| *3 *4)) (|ofCategory| *3 (|FiniteFieldCategory|)) (|ofType| *4 (|SparseUnivariatePolynomial| *3))))) │ │ │ +(|Join| (|FiniteAlgebraicExtensionField| |#1|) (CATEGORY |package| (SIGNATURE |getZechTable| ((|PrimitiveArray| (|SingleInteger|)))))) │ │ │ +((|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) 93 (|has| |#2| (|AlgebraicallyClosedField|))) (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) 58))) │ │ │ +(((|FunctionSpacePrimitiveElement| |#1| |#2|) (CATEGORY |package| (SIGNATURE |primitiveElement| ((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|))) (IF (|has| |#2| (|AlgebraicallyClosedField|)) (SIGNATURE |primitiveElement| ((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|)) |noBranch|)) (|Join| (|IntegralDomain|) (|OrderedSet|) (|CharacteristicZero|)) (|FunctionSpace| |#1|)) (T |FunctionSpacePrimitiveElement|)) │ │ │ +((|primitiveElement| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|Join| (|IntegralDomain|) (|OrderedSet|) (|CharacteristicZero|))) (|isDomain| *2 (|Record| (|:| |primelt| *3) (|:| |pol1| (|SparseUnivariatePolynomial| *3)) (|:| |pol2| (|SparseUnivariatePolynomial| *3)) (|:| |prim| (|SparseUnivariatePolynomial| *3)))) (|isDomain| *1 (|FunctionSpacePrimitiveElement| *4 *3)) (|ofCategory| *3 (|AlgebraicallyClosedField|)) (|ofCategory| *3 (|FunctionSpace| *4)))) (|primitiveElement| (*1 *2 *3) (AND (|isDomain| *3 (|List| *5)) (|ofCategory| *5 (|FunctionSpace| *4)) (|ofCategory| *4 (|Join| (|IntegralDomain|) (|OrderedSet|) (|CharacteristicZero|))) (|isDomain| *2 (|Record| (|:| |primelt| *5) (|:| |poly| (|List| (|SparseUnivariatePolynomial| *5))) (|:| |prim| (|SparseUnivariatePolynomial| *5)))) (|isDomain| *1 (|FunctionSpacePrimitiveElement| *4 *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |primitiveElement| ((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|))) (IF (|has| |#2| (|AlgebraicallyClosedField|)) (SIGNATURE |primitiveElement| ((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|)) |noBranch|)) │ │ │ +((|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) 31))) │ │ │ +(((|FiniteDivisorFunctions2| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (CATEGORY |package| (SIGNATURE |map| ((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)))) (|Field|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| (|Fraction| |#2|)) (|FunctionFieldCategory| |#1| |#2| |#3|) (|Field|) (|UnivariatePolynomialCategory| |#5|) (|UnivariatePolynomialCategory| (|Fraction| |#6|)) (|FunctionFieldCategory| |#5| |#6| |#7|)) (T |FiniteDivisorFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *9 *5)) (|isDomain| *4 (|FiniteDivisor| *5 *6 *7 *8)) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6))) (|ofCategory| *8 (|FunctionFieldCategory| *5 *6 *7)) (|ofCategory| *9 (|Field|)) (|ofCategory| *10 (|UnivariatePolynomialCategory| *9)) (|ofCategory| *11 (|UnivariatePolynomialCategory| (|Fraction| *10))) (|isDomain| *2 (|FiniteDivisor| *9 *10 *11 *12)) (|isDomain| *1 (|FiniteDivisorFunctions2| *5 *6 *7 *8 *9 *10 *11 *12)) (|ofCategory| *12 (|FunctionFieldCategory| *9 *10 *11))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| ((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL (OR (|has| (|Any|) (|SetCategory|)) (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|SetCategory|))))) (|table| (($) NIL) (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))))) NIL)) (|swap!| (((|Void|) $ (|Symbol|) (|Symbol|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|showTheRoutinesTable| (($) 9)) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) NIL)) (|selectSumOfSquaresRoutines| (($ $) 23)) (|selectPDERoutines| (($ $) 21)) (|selectOptimizationRoutines| (($ $) 20)) (|selectODEIVPRoutines| (($ $) 22)) (|selectNonFiniteRoutines| (($ $) 25)) (|selectMultiDimensionalRoutines| (($ $) 26)) (|selectIntegrationRoutines| (($ $) 19)) (|selectFiniteRoutines| (($ $) 24)) (|select!| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|select| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) $) 18 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|search| (((|Union| (|Any|) "failed") (|Symbol|) $) 34)) (|sample| (($) NIL T CONST)) (|routines| (($) 7)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|SetCategory|))))) (|remove!| (($ (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) $) 46 (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Union| (|Any|) "failed") (|Symbol|) $) NIL)) (|remove| (($ (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|SetCategory|)))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| (((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Mapping| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) $ (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|SetCategory|)))) (((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Mapping| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) $ (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Mapping| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) 59)) (|qsetelt!| (((|Any|) $ (|Symbol|) (|Any|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| (((|Any|) $ (|Symbol|)) NIL)) (|parts| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| (|Any|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Symbol|) $) NIL (|has| (|Symbol|) (|OrderedSet|)))) (|members| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) $) 28 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| (|Any|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|SetCategory|)))) (((|Boolean|) (|Any|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Any|) (|SetCategory|))))) (|maxIndex| (((|Symbol|) $) NIL (|has| (|Symbol|) (|OrderedSet|)))) (|map!| (($ (|Mapping| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ (|Mapping| (|Any|) (|Any|)) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) $) NIL) (($ (|Mapping| (|Any|) (|Any|)) $) NIL) (($ (|Mapping| (|Any|) (|Any|) (|Any|)) $ $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (OR (|has| (|Any|) (|SetCategory|)) (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|SetCategory|))))) (|keys| (((|List| (|Symbol|)) $) NIL)) (|key?| (((|Boolean|) (|Symbol|) $) NIL)) (|inspect| (((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) $) NIL)) (|insert!| (($ (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) $) 37)) (|indices| (((|List| (|Symbol|)) $) NIL)) (|index?| (((|Boolean|) (|Symbol|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (OR (|has| (|Any|) (|SetCategory|)) (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|SetCategory|))))) (|getMeasure| (((|Float|) $ (|Symbol|)) 45)) (|getExplanations| (((|List| (|String|)) $ (|String|)) 60)) (|first| (((|Any|) $) NIL (|has| (|Symbol|) (|OrderedSet|)))) (|find| (((|Union| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) "failed") (|Mapping| (|Boolean|) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) $) NIL)) (|fill!| (($ $ (|Any|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|extract!| (((|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) $) NIL)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Any|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))))) NIL (AND (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Evalable| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))))) (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|SetCategory|)))) (($ $ (|Equation| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))))) NIL (AND (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Evalable| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))))) (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|SetCategory|)))) (($ $ (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) NIL (AND (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Evalable| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))))) (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|SetCategory|)))) (($ $ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))))) NIL (AND (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|Evalable| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))))) (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|SetCategory|)))) (($ $ (|List| (|Any|)) (|List| (|Any|))) NIL (AND (|has| (|Any|) (|Evalable| (|Any|))) (|has| (|Any|) (|SetCategory|)))) (($ $ (|Any|) (|Any|)) NIL (AND (|has| (|Any|) (|Evalable| (|Any|))) (|has| (|Any|) (|SetCategory|)))) (($ $ (|Equation| (|Any|))) NIL (AND (|has| (|Any|) (|Evalable| (|Any|))) (|has| (|Any|) (|SetCategory|)))) (($ $ (|List| (|Equation| (|Any|)))) NIL (AND (|has| (|Any|) (|Evalable| (|Any|))) (|has| (|Any|) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) (|Any|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Any|) (|SetCategory|))))) (|entries| (((|List| (|Any|)) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| (((|Any|) $ (|Symbol|)) NIL) (((|Any|) $ (|Symbol|) (|Any|)) NIL)) (|dictionary| (($) NIL) (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))))) NIL)) (|deleteRoutine!| (($ $ (|Symbol|)) 47)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|SetCategory|)))) (((|NonNegativeInteger|) (|Any|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Any|) (|SetCategory|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Any|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))))) 30)) (|concat| (($ $ $) 31)) (|coerce| (((|OutputForm|) $) NIL (OR (|has| (|Any|) (|SetCategory|)) (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|SetCategory|))))) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) 43)) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) 44)) (|bag| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))))) NIL)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|)))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Any|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) NIL (OR (|has| (|Any|) (|SetCategory|)) (|has| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|Any|))) (|SetCategory|))))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|RoutinesTable|) (|Join| (|TableAggregate| (|Symbol|) (|Any|)) (CATEGORY |domain| (SIGNATURE |concat| ($ $ $)) (SIGNATURE |routines| ($)) (SIGNATURE |selectIntegrationRoutines| ($ $)) (SIGNATURE |selectOptimizationRoutines| ($ $)) (SIGNATURE |selectPDERoutines| ($ $)) (SIGNATURE |selectODEIVPRoutines| ($ $)) (SIGNATURE |selectFiniteRoutines| ($ $)) (SIGNATURE |selectSumOfSquaresRoutines| ($ $)) (SIGNATURE |selectNonFiniteRoutines| ($ $)) (SIGNATURE |selectMultiDimensionalRoutines| ($ $)) (SIGNATURE |changeThreshhold| ($ $ (|Symbol|) (|Float|))) (SIGNATURE |changeMeasure| ($ $ (|Symbol|) (|Float|))) (SIGNATURE |getMeasure| ((|Float|) $ (|Symbol|))) (SIGNATURE |getExplanations| ((|List| (|String|)) $ (|String|))) (SIGNATURE |deleteRoutine!| ($ $ (|Symbol|))) (SIGNATURE |showTheRoutinesTable| ($)) (SIGNATURE |recoverAfterFail| ((|Union| (|String|) "failed") $ (|String|) (|Integer|))) (ATTRIBUTE |finiteAggregate|)))) (T |RoutinesTable|)) │ │ │ +((|concat| (*1 *1 *1 *1) (|isDomain| *1 (|RoutinesTable|))) (|routines| (*1 *1) (|isDomain| *1 (|RoutinesTable|))) (|selectIntegrationRoutines| (*1 *1 *1) (|isDomain| *1 (|RoutinesTable|))) (|selectOptimizationRoutines| (*1 *1 *1) (|isDomain| *1 (|RoutinesTable|))) (|selectPDERoutines| (*1 *1 *1) (|isDomain| *1 (|RoutinesTable|))) (|selectODEIVPRoutines| (*1 *1 *1) (|isDomain| *1 (|RoutinesTable|))) (|selectFiniteRoutines| (*1 *1 *1) (|isDomain| *1 (|RoutinesTable|))) (|selectSumOfSquaresRoutines| (*1 *1 *1) (|isDomain| *1 (|RoutinesTable|))) (|selectNonFiniteRoutines| (*1 *1 *1) (|isDomain| *1 (|RoutinesTable|))) (|selectMultiDimensionalRoutines| (*1 *1 *1) (|isDomain| *1 (|RoutinesTable|))) (|changeThreshhold| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Float|)) (|isDomain| *1 (|RoutinesTable|)))) (|changeMeasure| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Float|)) (|isDomain| *1 (|RoutinesTable|)))) (|getMeasure| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|RoutinesTable|)))) (|getExplanations| (*1 *2 *1 *3) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|RoutinesTable|)) (|isDomain| *3 (|String|)))) (|deleteRoutine!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|RoutinesTable|)))) (|showTheRoutinesTable| (*1 *1) (|isDomain| *1 (|RoutinesTable|))) (|recoverAfterFail| (*1 *2 *1 *2 *3) (|partial| AND (|isDomain| *2 (|String|)) (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|RoutinesTable|))))) │ │ │ +(|Join| (|TableAggregate| (|Symbol|) (|Any|)) (CATEGORY |domain| (SIGNATURE |concat| ($ $ $)) (SIGNATURE |routines| ($)) (SIGNATURE |selectIntegrationRoutines| ($ $)) (SIGNATURE |selectOptimizationRoutines| ($ $)) (SIGNATURE |selectPDERoutines| ($ $)) (SIGNATURE |selectODEIVPRoutines| ($ $)) (SIGNATURE |selectFiniteRoutines| ($ $)) (SIGNATURE |selectSumOfSquaresRoutines| ($ $)) (SIGNATURE |selectNonFiniteRoutines| ($ $)) (SIGNATURE |selectMultiDimensionalRoutines| ($ $)) (SIGNATURE |changeThreshhold| ($ $ (|Symbol|) (|Float|))) (SIGNATURE |changeMeasure| ($ $ (|Symbol|) (|Float|))) (SIGNATURE |getMeasure| ((|Float|) $ (|Symbol|))) (SIGNATURE |getExplanations| ((|List| (|String|)) $ (|String|))) (SIGNATURE |deleteRoutine!| ($ $ (|Symbol|))) (SIGNATURE |showTheRoutinesTable| ($)) (SIGNATURE |recoverAfterFail| ((|Union| (|String|) "failed") $ (|String|) (|Integer|))) (ATTRIBUTE |finiteAggregate|))) │ │ │ +((|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) 17))) │ │ │ +(((|ExpressionSpaceFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| (|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)))) (|ExpressionSpace|) (|ExpressionSpace|)) (T |ExpressionSpaceFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *2 *5)) (|isDomain| *4 (|Kernel| *5)) (|ofCategory| *5 (|ExpressionSpace|)) (|ofCategory| *2 (|ExpressionSpace|)) (|isDomain| *1 (|ExpressionSpaceFunctions2| *5 *2))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| (|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)))) │ │ │ +((|latex| (((|String|) $) 10)) (|hash| (((|SingleInteger|) $) 8))) │ │ │ +(((|SetCategory&| |#1|) (CATEGORY |domain| (SIGNATURE |latex| ((|String|) |#1|)) (SIGNATURE |hash| ((|SingleInteger|) |#1|))) (|SetCategory|)) (T |SetCategory&|)) │ │ │ NIL │ │ │ -(|Join| (|BlowUpMethodCategory|) (CATEGORY |package| (ATTRIBUTE |QuadraticTransform|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) 18)) (|position| (((|NonNegativeInteger|) $) 19)) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17))) │ │ │ -(((|CachableSet|) (|Category|)) (T |CachableSet|)) │ │ │ -((|position| (*1 *2 *1) (AND (|ofCategory| *1 (|CachableSet|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|setPosition| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|CachableSet|)) (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Void|))))) │ │ │ -(|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |position| ((|NonNegativeInteger|) $)) (SIGNATURE |setPosition| ((|Void|) $ (|NonNegativeInteger|))))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|OrderedSet|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27)) (|charthRoot| (((|Union| $ "failed") $) 34)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ -(((|CharacteristicNonZero|) (|Category|)) (T |CharacteristicNonZero|)) │ │ │ -((|charthRoot| (*1 *1 *1) (|partial| |ofCategory| *1 (|CharacteristicNonZero|)))) │ │ │ -(|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |charthRoot| ((|Union| $ "failed") $)))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ -(((|CharacteristicZero|) (|Category|)) (T |CharacteristicZero|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |latex| ((|String|) |#1|)) (SIGNATURE |hash| ((|SingleInteger|) |#1|))) │ │ │ +((|differentiate| (($ $ (|Mapping| |#2| |#2|)) NIL) (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) 11) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|))) NIL) (($ $ (|Symbol|)) 19) (($ $ (|NonNegativeInteger|)) NIL) (($ $) 16)) (D (($ $ (|Mapping| |#2| |#2|)) 12) (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) 14) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|))) NIL) (($ $ (|Symbol|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL))) │ │ │ +(((|DifferentialExtension&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE D (|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE D (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE D (|#1| |#1| (|Symbol|))) (SIGNATURE D (|#1| |#1| (|List| (|Symbol|)))) (SIGNATURE D (|#1| |#1| (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE D (|#1| |#1| (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE D (|#1| |#1| (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) (SIGNATURE D (|#1| |#1| (|Mapping| |#2| |#2|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|)))) (|DifferentialExtension| |#2|) (|Ring|)) (T |DifferentialExtension&|)) │ │ │ NIL │ │ │ -(|Join| (|Ring|)) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((|weight| (((|NonNegativeInteger|) $) 30)) (|retractIfCan| (((|Union| |#2| "failed") $) 17)) (|retract| ((|#2| $) 27)) (|differentiate| (($ $) 12) (($ $ (|NonNegativeInteger|)) 15)) (|coerce| (((|OutputForm|) $) 26) (($ |#2|) 10)) (= (((|Boolean|) $ $) 20)) (< (((|Boolean|) $ $) 29))) │ │ │ -(((|DifferentialVariableCategory&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |differentiate| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE |weight| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |retract| (|#2| |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|))) (|DifferentialVariableCategory| |#2|) (|OrderedSet|)) (T |DifferentialVariableCategory&|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE D (|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE D (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE D (|#1| |#1| (|Symbol|))) (SIGNATURE D (|#1| |#1| (|List| (|Symbol|)))) (SIGNATURE D (|#1| |#1| (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE D (|#1| |#1| (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE D (|#1| |#1| (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) (SIGNATURE D (|#1| |#1| (|Mapping| |#2| |#2|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|)))) │ │ │ +((|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) 15))) │ │ │ +(((|StreamFunctions1| |#1|) (CATEGORY |package| (SIGNATURE |concat| ((|Stream| |#1|) (|Stream| (|Stream| |#1|))))) (|Type|)) (T |StreamFunctions1|)) │ │ │ +((|concat| (*1 *2 *3) (AND (|isDomain| *3 (|Stream| (|Stream| *4))) (|isDomain| *2 (|Stream| *4)) (|isDomain| *1 (|StreamFunctions1| *4)) (|ofCategory| *4 (|Type|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |concat| ((|Stream| |#1|) (|Stream| (|Stream| |#1|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|shade| (((|Integer|) $) 15)) (|pastel| (($ (|Color|)) 11)) (|light| (($ (|Color|)) 12)) (|latex| (((|String|) $) NIL)) (|hue| (((|Color|) $) 13)) (|hash| (((|SingleInteger|) $) NIL)) (|dim| (($ (|Color|)) 9)) (|dark| (($ (|Color|)) 8)) (|coerce| (((|OutputForm|) $) 23) (($ (|Color|)) 16)) (|bright| (($ (|Color|)) 10)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|Palette|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |dark| ($ (|Color|))) (SIGNATURE |dim| ($ (|Color|))) (SIGNATURE |bright| ($ (|Color|))) (SIGNATURE |pastel| ($ (|Color|))) (SIGNATURE |light| ($ (|Color|))) (SIGNATURE |hue| ((|Color|) $)) (SIGNATURE |shade| ((|Integer|) $)) (SIGNATURE |coerce| ($ (|Color|)))))) (T |Palette|)) │ │ │ +((|dark| (*1 *1 *2) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|)))) (|dim| (*1 *1 *2) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|)))) (|bright| (*1 *1 *2) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|)))) (|pastel| (*1 *1 *2) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|)))) (|light| (*1 *1 *2) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|)))) (|hue| (*1 *2 *1) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|)))) (|shade| (*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Palette|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Color|)) (|isDomain| *1 (|Palette|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |dark| ($ (|Color|))) (SIGNATURE |dim| ($ (|Color|))) (SIGNATURE |bright| ($ (|Color|))) (SIGNATURE |pastel| ($ (|Color|))) (SIGNATURE |light| ($ (|Color|))) (SIGNATURE |hue| ((|Color|) $)) (SIGNATURE |shade| ((|Integer|) $)) (SIGNATURE |coerce| ($ (|Color|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|traceMatrix| (((|Matrix| (|MachineFloat|))) NIL) (((|Matrix| (|MachineFloat|)) (|Vector| $)) NIL)) (|trace| (((|MachineFloat|) $) NIL)) (|tanh| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|tan| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) NIL (|has| (|MachineFloat|) (|FiniteFieldCategory|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (AND (|has| (|MachineFloat|) (|EuclideanDomain|)) (|has| (|MachineFloat|) (|PolynomialFactorizationExplicit|))))) (|squareFreePart| (($ $) NIL (OR (AND (|has| (|MachineFloat|) (|EuclideanDomain|)) (|has| (|MachineFloat|) (|PolynomialFactorizationExplicit|))) (|has| (|MachineFloat|) (|Field|))))) (|squareFree| (((|Factored| $) $) NIL (OR (AND (|has| (|MachineFloat|) (|EuclideanDomain|)) (|has| (|MachineFloat|) (|PolynomialFactorizationExplicit|))) (|has| (|MachineFloat|) (|Field|))))) (|sqrt| (($ $) NIL (AND (|has| (|MachineFloat|) (|RadicalCategory|)) (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|))))) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (AND (|has| (|MachineFloat|) (|EuclideanDomain|)) (|has| (|MachineFloat|) (|PolynomialFactorizationExplicit|))))) (|sizeLess?| (((|Boolean|) $ $) NIL (|has| (|MachineFloat|) (|EuclideanDomain|)))) (|size| (((|NonNegativeInteger|)) NIL (|has| (|MachineFloat|) (|Finite|)))) (|sinh| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|sin| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|sech| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|sec| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL) (((|Union| (|MachineFloat|) "failed") $) NIL) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| (|MachineFloat|) (|RetractableTo| (|Fraction| (|Integer|)))))) (|retract| (((|Integer|) $) NIL) (((|MachineFloat|) $) NIL) (((|Fraction| (|Integer|)) $) NIL (|has| (|MachineFloat|) (|RetractableTo| (|Fraction| (|Integer|)))))) (|represents| (($ (|Vector| (|MachineFloat|))) NIL) (($ (|Vector| (|MachineFloat|)) (|Vector| $)) NIL)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL (|has| (|MachineFloat|) (|FiniteFieldCategory|)))) (|rem| (($ $ $) NIL (|has| (|MachineFloat|) (|EuclideanDomain|)))) (|regularRepresentation| (((|Matrix| (|MachineFloat|)) $) NIL) (((|Matrix| (|MachineFloat|)) $ (|Vector| $)) NIL)) (|reducedSystem| (((|Matrix| (|MachineFloat|)) (|Matrix| $)) NIL) (((|Record| (|:| |mat| (|Matrix| (|MachineFloat|))) (|:| |vec| (|Vector| (|MachineFloat|)))) (|Matrix| $) (|Vector| $)) NIL) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (|has| (|MachineFloat|) (|LinearlyExplicitRingOver| (|Integer|)))) (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (|has| (|MachineFloat|) (|LinearlyExplicitRingOver| (|Integer|))))) (|reduce| (((|Union| $ "failed") (|Fraction| (|SparseUnivariatePolynomial| (|MachineFloat|)))) NIL (|has| (|MachineFloat|) (|Field|))) (($ (|SparseUnivariatePolynomial| (|MachineFloat|))) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|real| (((|MachineFloat|) $) 29)) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| (|MachineFloat|) (|IntegerNumberSystem|)))) (|rational?| (((|Boolean|) $) NIL (|has| (|MachineFloat|) (|IntegerNumberSystem|)))) (|rational| (((|Fraction| (|Integer|)) $) NIL (|has| (|MachineFloat|) (|IntegerNumberSystem|)))) (|rank| (((|PositiveInteger|)) NIL)) (|random| (($) NIL (|has| (|MachineFloat|) (|Finite|)))) (|quo| (($ $ $) NIL (|has| (|MachineFloat|) (|EuclideanDomain|)))) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL (|has| (|MachineFloat|) (|EuclideanDomain|)))) (|primitiveElement| (($) NIL (|has| (|MachineFloat|) (|FiniteFieldCategory|)))) (|primitive?| (((|Boolean|) $) NIL (|has| (|MachineFloat|) (|FiniteFieldCategory|)))) (|primeFrobenius| (($ $) NIL (|has| (|MachineFloat|) (|FiniteFieldCategory|))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|MachineFloat|) (|FiniteFieldCategory|)))) (|prime?| (((|Boolean|) $) NIL (OR (AND (|has| (|MachineFloat|) (|EuclideanDomain|)) (|has| (|MachineFloat|) (|PolynomialFactorizationExplicit|))) (|has| (|MachineFloat|) (|Field|))))) (|polarCoordinates| (((|Record| (|:| |r| (|MachineFloat|)) (|:| |phi| (|MachineFloat|))) $) NIL (AND (|has| (|MachineFloat|) (|RealNumberSystem|)) (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|))))) (|pi| (($) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) NIL (|has| (|MachineFloat|) (|PatternMatchable| (|Float|)))) (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) NIL (|has| (|MachineFloat|) (|PatternMatchable| (|Integer|))))) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) NIL (|has| (|MachineFloat|) (|FiniteFieldCategory|))) (((|PositiveInteger|) $) NIL (|has| (|MachineFloat|) (|FiniteFieldCategory|)))) (|one?| (((|Boolean|) $) NIL)) (|nthRoot| (($ $ (|Integer|)) NIL (AND (|has| (|MachineFloat|) (|RadicalCategory|)) (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|))))) (|norm| (((|MachineFloat|) $) NIL)) (|nextItem| (((|Union| $ "failed") $) NIL (|has| (|MachineFloat|) (|FiniteFieldCategory|)))) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| (|MachineFloat|) (|EuclideanDomain|)))) (|minimalPolynomial| (((|SparseUnivariatePolynomial| (|MachineFloat|)) $) NIL (|has| (|MachineFloat|) (|Field|)))) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|map| (($ (|Mapping| (|MachineFloat|) (|MachineFloat|)) $) NIL)) (|lookup| (((|PositiveInteger|) $) NIL (|has| (|MachineFloat|) (|Finite|)))) (|log| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|lift| (((|SparseUnivariatePolynomial| (|MachineFloat|)) $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL (|has| (|MachineFloat|) (|EuclideanDomain|)))) (|lcm| (($ (|List| $)) NIL (|has| (|MachineFloat|) (|EuclideanDomain|))) (($ $ $) NIL (|has| (|MachineFloat|) (|EuclideanDomain|)))) (|latex| (((|String|) $) NIL)) (|inv| (($ $) NIL (|has| (|MachineFloat|) (|Field|)))) (|init| (($) NIL (|has| (|MachineFloat|) (|FiniteFieldCategory|)) CONST)) (|index| (($ (|PositiveInteger|)) NIL (|has| (|MachineFloat|) (|Finite|)))) (|imaginary| (($) NIL)) (|imag| (((|MachineFloat|) $) 31)) (|hash| (((|SingleInteger|) $) NIL)) (|generator| (($) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL (|has| (|MachineFloat|) (|EuclideanDomain|)))) (|gcd| (($ (|List| $)) NIL (|has| (|MachineFloat|) (|EuclideanDomain|))) (($ $ $) NIL (|has| (|MachineFloat|) (|EuclideanDomain|)))) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) NIL (|has| (|MachineFloat|) (|FiniteFieldCategory|)))) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (AND (|has| (|MachineFloat|) (|EuclideanDomain|)) (|has| (|MachineFloat|) (|PolynomialFactorizationExplicit|))))) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (AND (|has| (|MachineFloat|) (|EuclideanDomain|)) (|has| (|MachineFloat|) (|PolynomialFactorizationExplicit|))))) (|factor| (((|Factored| $) $) NIL (OR (AND (|has| (|MachineFloat|) (|EuclideanDomain|)) (|has| (|MachineFloat|) (|PolynomialFactorizationExplicit|))) (|has| (|MachineFloat|) (|Field|))))) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (|MachineFloat|) (|EuclideanDomain|))) (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| (|MachineFloat|) (|EuclideanDomain|)))) (|exquo| (((|Union| $ "failed") $ $) NIL) (((|Union| $ "failed") $ (|MachineFloat|)) NIL (|has| (|MachineFloat|) (|IntegralDomain|)))) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| (|MachineFloat|) (|EuclideanDomain|)))) (|exp| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|eval| (($ $ (|Symbol|) (|MachineFloat|)) NIL (|has| (|MachineFloat|) (|InnerEvalable| (|Symbol|) (|MachineFloat|)))) (($ $ (|List| (|Symbol|)) (|List| (|MachineFloat|))) NIL (|has| (|MachineFloat|) (|InnerEvalable| (|Symbol|) (|MachineFloat|)))) (($ $ (|List| (|Equation| (|MachineFloat|)))) NIL (|has| (|MachineFloat|) (|Evalable| (|MachineFloat|)))) (($ $ (|Equation| (|MachineFloat|))) NIL (|has| (|MachineFloat|) (|Evalable| (|MachineFloat|)))) (($ $ (|MachineFloat|) (|MachineFloat|)) NIL (|has| (|MachineFloat|) (|Evalable| (|MachineFloat|)))) (($ $ (|List| (|MachineFloat|)) (|List| (|MachineFloat|))) NIL (|has| (|MachineFloat|) (|Evalable| (|MachineFloat|))))) (|euclideanSize| (((|NonNegativeInteger|) $) NIL (|has| (|MachineFloat|) (|EuclideanDomain|)))) (|enumerate| (((|List| $)) NIL (|has| (|MachineFloat|) (|Finite|)))) (|elt| (($ $ (|MachineFloat|)) NIL (|has| (|MachineFloat|) (|Eltable| (|MachineFloat|) (|MachineFloat|))))) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| (|MachineFloat|) (|EuclideanDomain|)))) (|discriminant| (((|MachineFloat|)) NIL) (((|MachineFloat|) (|Vector| $)) NIL)) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) NIL (|has| (|MachineFloat|) (|FiniteFieldCategory|))) (((|NonNegativeInteger|) $) NIL (|has| (|MachineFloat|) (|FiniteFieldCategory|)))) (|differentiate| (($ $ (|Mapping| (|MachineFloat|) (|MachineFloat|))) NIL) (($ $ (|Mapping| (|MachineFloat|) (|MachineFloat|)) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| (|MachineFloat|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| (|MachineFloat|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| (|MachineFloat|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|)) NIL (|has| (|MachineFloat|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|MachineFloat|) (|DifferentialRing|))) (($ $) NIL (|has| (|MachineFloat|) (|DifferentialRing|)))) (|derivationCoordinates| (((|Matrix| (|MachineFloat|)) (|Vector| $) (|Mapping| (|MachineFloat|) (|MachineFloat|))) NIL (|has| (|MachineFloat|) (|Field|)))) (|definingPolynomial| (((|SparseUnivariatePolynomial| (|MachineFloat|))) NIL)) (|csch| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|csc| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|createPrimitiveElement| (($) NIL (|has| (|MachineFloat|) (|FiniteFieldCategory|)))) (|coth| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|cot| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|cosh| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|cos| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|coordinates| (((|Matrix| (|MachineFloat|)) (|Vector| $)) NIL) (((|Vector| (|MachineFloat|)) $) NIL) (((|Matrix| (|MachineFloat|)) (|Vector| $) (|Vector| $)) NIL) (((|Vector| (|MachineFloat|)) $ (|Vector| $)) NIL)) (|convert| (((|InputForm|) $) NIL (|has| (|MachineFloat|) (|ConvertibleTo| (|InputForm|)))) (((|Complex| (|DoubleFloat|)) $) NIL (|has| (|MachineFloat|) (|RealConstant|))) (((|Complex| (|Float|)) $) NIL (|has| (|MachineFloat|) (|RealConstant|))) (((|Pattern| (|Float|)) $) NIL (|has| (|MachineFloat|) (|ConvertibleTo| (|Pattern| (|Float|))))) (((|Pattern| (|Integer|)) $) NIL (|has| (|MachineFloat|) (|ConvertibleTo| (|Pattern| (|Integer|))))) (($ (|SparseUnivariatePolynomial| (|MachineFloat|))) NIL) (((|SparseUnivariatePolynomial| (|MachineFloat|)) $) NIL) (($ (|Vector| (|MachineFloat|))) NIL) (((|Vector| (|MachineFloat|)) $) NIL)) (|conjugate| (($ $) NIL)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (OR (AND (|has| $ (|CharacteristicNonZero|)) (|has| (|MachineFloat|) (|EuclideanDomain|)) (|has| (|MachineFloat|) (|PolynomialFactorizationExplicit|))) (|has| (|MachineFloat|) (|FiniteFieldCategory|))))) (|complex| (($ (|MachineFloat|) (|MachineFloat|)) 12)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL) (($ (|Integer|)) NIL) (($ (|MachineFloat|)) NIL) (($ (|Complex| (|Float|))) 13) (($ (|Complex| (|Integer|))) 19) (($ (|Complex| (|MachineFloat|))) 28) (($ (|Complex| (|MachineInteger|))) 25) (((|Complex| (|Float|)) $) 33) (($ (|Fraction| (|Integer|))) NIL (OR (|has| (|MachineFloat|) (|Field|)) (|has| (|MachineFloat|) (|RetractableTo| (|Fraction| (|Integer|))))))) (|charthRoot| (($ $) NIL (|has| (|MachineFloat|) (|FiniteFieldCategory|))) (((|Union| $ "failed") $) NIL (OR (AND (|has| $ (|CharacteristicNonZero|)) (|has| (|MachineFloat|) (|EuclideanDomain|)) (|has| (|MachineFloat|) (|PolynomialFactorizationExplicit|))) (|has| (|MachineFloat|) (|CharacteristicNonZero|))))) (|characteristicPolynomial| (((|SparseUnivariatePolynomial| (|MachineFloat|)) $) NIL)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|basis| (((|Vector| $)) NIL)) (|atanh| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|atan| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|associates?| (((|Boolean|) $ $) NIL)) (|asinh| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|asin| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|asech| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|asec| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|argument| (((|MachineFloat|) $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|acsch| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|acsc| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|acoth| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|acot| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|acosh| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|acos| (($ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (|abs| (($ $) NIL (|has| (|MachineFloat|) (|RealNumberSystem|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL (|has| (|MachineFloat|) (|Field|)))) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (D (($ $ (|Mapping| (|MachineFloat|) (|MachineFloat|))) NIL) (($ $ (|Mapping| (|MachineFloat|) (|MachineFloat|)) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| (|MachineFloat|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| (|MachineFloat|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| (|MachineFloat|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|)) NIL (|has| (|MachineFloat|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|MachineFloat|) (|DifferentialRing|))) (($ $) NIL (|has| (|MachineFloat|) (|DifferentialRing|)))) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) NIL)) (/ (($ $ $) NIL (|has| (|MachineFloat|) (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ $) NIL (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|))) (($ $ (|Fraction| (|Integer|))) NIL (AND (|has| (|MachineFloat|) (|RadicalCategory|)) (|has| (|MachineFloat|) (|TranscendentalFunctionCategory|)))) (($ $ (|Integer|)) NIL (|has| (|MachineFloat|) (|Field|)))) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ (|MachineFloat|) $) NIL) (($ $ (|MachineFloat|)) NIL) (($ (|Fraction| (|Integer|)) $) NIL (|has| (|MachineFloat|) (|Field|))) (($ $ (|Fraction| (|Integer|))) NIL (|has| (|MachineFloat|) (|Field|))))) │ │ │ +(((|MachineComplex|) (|Join| (|FortranMachineTypeCategory|) (|ComplexCategory| (|MachineFloat|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Complex| (|Float|)))) (SIGNATURE |coerce| ($ (|Complex| (|Integer|)))) (SIGNATURE |coerce| ($ (|Complex| (|MachineFloat|)))) (SIGNATURE |coerce| ($ (|Complex| (|MachineInteger|)))) (SIGNATURE |coerce| ((|Complex| (|Float|)) $))))) (T |MachineComplex|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|MachineComplex|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Complex| (|Integer|))) (|isDomain| *1 (|MachineComplex|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Complex| (|MachineFloat|))) (|isDomain| *1 (|MachineComplex|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Complex| (|MachineInteger|))) (|isDomain| *1 (|MachineComplex|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|MachineComplex|))))) │ │ │ +(|Join| (|FortranMachineTypeCategory|) (|ComplexCategory| (|MachineFloat|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Complex| (|Float|)))) (SIGNATURE |coerce| ($ (|Complex| (|Integer|)))) (SIGNATURE |coerce| ($ (|Complex| (|MachineFloat|)))) (SIGNATURE |coerce| ($ (|Complex| (|MachineInteger|)))) (SIGNATURE |coerce| ((|Complex| (|Float|)) $)))) │ │ │ +((|screenResolution| (((|Integer|) (|Integer|)) 30) (((|Integer|)) 22)) (|minPoints| (((|Integer|) (|Integer|)) 26) (((|Integer|)) 18)) (|maxPoints| (((|Integer|) (|Integer|)) 28) (((|Integer|)) 20)) (|drawToScale| (((|Boolean|) (|Boolean|)) 12) (((|Boolean|)) 10)) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) 11) (((|Boolean|)) 9)) (|adaptive| (((|Boolean|) (|Boolean|)) 24) (((|Boolean|)) 15))) │ │ │ +(((|GraphicsDefaults|) (CATEGORY |package| (SIGNATURE |clipPointsDefault| ((|Boolean|))) (SIGNATURE |drawToScale| ((|Boolean|))) (SIGNATURE |clipPointsDefault| ((|Boolean|) (|Boolean|))) (SIGNATURE |drawToScale| ((|Boolean|) (|Boolean|))) (SIGNATURE |adaptive| ((|Boolean|))) (SIGNATURE |maxPoints| ((|Integer|))) (SIGNATURE |minPoints| ((|Integer|))) (SIGNATURE |screenResolution| ((|Integer|))) (SIGNATURE |adaptive| ((|Boolean|) (|Boolean|))) (SIGNATURE |maxPoints| ((|Integer|) (|Integer|))) (SIGNATURE |minPoints| ((|Integer|) (|Integer|))) (SIGNATURE |screenResolution| ((|Integer|) (|Integer|))))) (T |GraphicsDefaults|)) │ │ │ +((|screenResolution| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|minPoints| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|maxPoints| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|adaptive| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|screenResolution| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|minPoints| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|maxPoints| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|adaptive| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|drawToScale| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|clipPointsDefault| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|drawToScale| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|)))) (|clipPointsDefault| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GraphicsDefaults|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |clipPointsDefault| ((|Boolean|))) (SIGNATURE |drawToScale| ((|Boolean|))) (SIGNATURE |clipPointsDefault| ((|Boolean|) (|Boolean|))) (SIGNATURE |drawToScale| ((|Boolean|) (|Boolean|))) (SIGNATURE |adaptive| ((|Boolean|))) (SIGNATURE |maxPoints| ((|Integer|))) (SIGNATURE |minPoints| ((|Integer|))) (SIGNATURE |screenResolution| ((|Integer|))) (SIGNATURE |adaptive| ((|Boolean|) (|Boolean|))) (SIGNATURE |maxPoints| ((|Integer|) (|Integer|))) (SIGNATURE |minPoints| ((|Integer|) (|Integer|))) (SIGNATURE |screenResolution| ((|Integer|) (|Integer|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|symbNameV| (((|Symbol|) $) NIL)) (|subMultV| (((|NonNegativeInteger|) $) NIL)) (|setsymbName!| (((|Symbol|) $ (|Symbol|)) NIL)) (|setsubmult!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) NIL)) (|setpoint!| (((|ProjectivePlane| |#1|) $ (|ProjectivePlane| |#1|)) NIL)) (|setmult!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) NIL)) (|setlocalPoint!| (((|AffinePlane| |#1|) $ (|AffinePlane| |#1|)) NIL)) (|setlocalParam!| (((|List| (|NeitherSparseOrDensePowerSeries| |#1|)) $ (|List| (|NeitherSparseOrDensePowerSeries| |#1|))) NIL)) (|setexcpDiv!| ((DIVISOR $ DIVISOR) NIL)) (|setcurve!| (((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) $ (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|)) NIL)) (|setchart!| ((|#3| $ |#3|) NIL)) (|pointV| (((|ProjectivePlane| |#1|) $) NIL)) (|multV| (((|NonNegativeInteger|) $) NIL)) (|localPointV| (((|AffinePlane| |#1|) $) NIL)) (|localParamV| (((|List| (|NeitherSparseOrDensePowerSeries| |#1|)) $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|fullOutput| (((|Boolean|) (|Boolean|)) NIL) (((|Boolean|)) NIL)) (|fullOut| (((|OutputForm|) $) NIL)) (|excpDivV| ((DIVISOR $) NIL)) (|degree| (((|PositiveInteger|) $) NIL)) (|curveV| (((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) $) NIL)) (|create| (($ (|ProjectivePlane| |#1|) (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|AffinePlane| |#1|) (|NonNegativeInteger|) |#3| (|NonNegativeInteger|) DIVISOR |#1| (|Symbol|)) NIL) (($ (|ProjectivePlane| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|)) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (|chartV| ((|#3| $) NIL)) (|actualExtensionV| ((|#1| $) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|InfClsPt| |#1| |#2| |#3|) (|Join| (|InfinitlyClosePointCategory| |#1| |#2| (|DistributedMultivariatePolynomial| |#2| |#1|) (|DirectProduct| (|#| |#2|) (|NonNegativeInteger|)) (|ProjectivePlane| |#1|) (|NeitherSparseOrDensePowerSeries| |#1|) (|Places| |#1|) (|Divisor| (|Places| |#1|)) |#3|) (CATEGORY |domain| (SIGNATURE |fullOut| ((|OutputForm|) $)) (SIGNATURE |fullOutput| ((|Boolean|) (|Boolean|))) (SIGNATURE |fullOutput| ((|Boolean|))))) (|Field|) (|List| (|Symbol|)) (|BlowUpMethodCategory|)) (T |InfClsPt|)) │ │ │ +((|fullOut| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|InfClsPt| *3 *4 *5)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|fullOutput| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|InfClsPt| *3 *4 *5)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|fullOutput| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|InfClsPt| *3 *4 *5)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|))))) │ │ │ +(|Join| (|InfinitlyClosePointCategory| |#1| |#2| (|DistributedMultivariatePolynomial| |#2| |#1|) (|DirectProduct| (|#| |#2|) (|NonNegativeInteger|)) (|ProjectivePlane| |#1|) (|NeitherSparseOrDensePowerSeries| |#1|) (|Places| |#1|) (|Divisor| (|Places| |#1|)) |#3|) (CATEGORY |domain| (SIGNATURE |fullOut| ((|OutputForm|) $)) (SIGNATURE |fullOutput| ((|Boolean|) (|Boolean|))) (SIGNATURE |fullOutput| ((|Boolean|))))) │ │ │ +((|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) 23))) │ │ │ +(((|UnivariateLaurentSeriesFunctions2| |#1| |#2| |#3| |#4| |#5| |#6|) (CATEGORY |package| (SIGNATURE |map| ((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)))) (|Ring|) (|Ring|) (|Symbol|) (|Symbol|) |#1| |#2|) (T |UnivariateLaurentSeriesFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|UnivariateLaurentSeries| *5 *7 *9)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|)) (|ofType| *7 (|Symbol|)) (|ofType| *9 *5) (|ofType| *10 *6) (|isDomain| *2 (|UnivariateLaurentSeries| *6 *8 *10)) (|isDomain| *1 (|UnivariateLaurentSeriesFunctions2| *5 *6 *7 *8 *9 *10)) (|ofType| *8 (|Symbol|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| ((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)))) │ │ │ +((|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 101)) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) NIL)) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 77)) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) NIL)) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) NIL)) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) 22)) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) 23)) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 93)) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 40)) (|df2st| (((|String|) (|DoubleFloat|)) NIL)) (|commaSeparate| (((|String|) (|List| (|String|))) 19)) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) 12))) │ │ │ +(((|d01AgentsPackage|) (CATEGORY |package| (SIGNATURE |rangeIsFinite| ((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |functionIsContinuousAtEndPoints| ((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |getlo| ((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |gethi| ((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |functionIsOscillatory| ((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |problemPoints| ((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |singularitiesOf| ((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |df2st| ((|String|) (|DoubleFloat|))) (SIGNATURE |ldf2lst| ((|List| (|String|)) (|List| (|DoubleFloat|)))) (SIGNATURE |sdf2lst| ((|List| (|String|)) (|Stream| (|DoubleFloat|)))) (SIGNATURE |commaSeparate| ((|String|) (|List| (|String|)))) (SIGNATURE |changeName| ((|Result|) (|Symbol|) (|Symbol|) (|Result|))))) (T |d01AgentsPackage|)) │ │ │ +((|changeName| (*1 *2 *3 *3 *2) (AND (|isDomain| *2 (|Result|)) (|isDomain| *3 (|Symbol|)) (|isDomain| *1 (|d01AgentsPackage|)))) (|commaSeparate| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|String|))) (|isDomain| *2 (|String|)) (|isDomain| *1 (|d01AgentsPackage|)))) (|sdf2lst| (*1 *2 *3) (AND (|isDomain| *3 (|Stream| (|DoubleFloat|))) (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|d01AgentsPackage|)))) (|ldf2lst| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|DoubleFloat|))) (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|d01AgentsPackage|)))) (|df2st| (*1 *2 *3) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *2 (|String|)) (|isDomain| *1 (|d01AgentsPackage|)))) (|singularitiesOf| (*1 *2 *3) (AND (|isDomain| *3 (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *2 (|Stream| (|DoubleFloat|))) (|isDomain| *1 (|d01AgentsPackage|)))) (|problemPoints| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Expression| (|DoubleFloat|))) (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|isDomain| *2 (|List| (|DoubleFloat|))) (|isDomain| *1 (|d01AgentsPackage|)))) (|functionIsOscillatory| (*1 *2 *3) (AND (|isDomain| *3 (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|d01AgentsPackage|)))) (|gethi| (*1 *2 *3) (AND (|isDomain| *3 (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|d01AgentsPackage|)))) (|getlo| (*1 *2 *3) (AND (|isDomain| *3 (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|d01AgentsPackage|)))) (|functionIsContinuousAtEndPoints| (*1 *2 *3) (AND (|isDomain| *3 (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *2 (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|isDomain| *1 (|d01AgentsPackage|)))) (|rangeIsFinite| (*1 *2 *3) (AND (|isDomain| *3 (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *2 (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (|isDomain| *1 (|d01AgentsPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |rangeIsFinite| ((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |functionIsContinuousAtEndPoints| ((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |getlo| ((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |gethi| ((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |functionIsOscillatory| ((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |problemPoints| ((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |singularitiesOf| ((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |df2st| ((|String|) (|DoubleFloat|))) (SIGNATURE |ldf2lst| ((|List| (|String|)) (|List| (|DoubleFloat|)))) (SIGNATURE |sdf2lst| ((|List| (|String|)) (|Stream| (|DoubleFloat|)))) (SIGNATURE |commaSeparate| ((|String|) (|List| (|String|)))) (SIGNATURE |changeName| ((|Result|) (|Symbol|) (|Symbol|) (|Result|)))) │ │ │ +((|primitive?| (((|Boolean|) $) 50)) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) 21) (((|PositiveInteger|) $) 51)) (|nextItem| (((|Union| $ "failed") $) 16)) (|init| (($) 9)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 91)) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) 70) (((|NonNegativeInteger|) $) 59)) (|differentiate| (($ $ (|NonNegativeInteger|)) NIL) (($ $) 8)) (|createPrimitiveElement| (($) 44)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) 33)) (|charthRoot| (((|Union| $ "failed") $) 39) (($ $) 38))) │ │ │ +(((|FiniteFieldCategory&| |#1|) (CATEGORY |domain| (SIGNATURE |order| ((|PositiveInteger|) |#1|)) (SIGNATURE |discreteLog| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |primitive?| ((|Boolean|) |#1|)) (SIGNATURE |createPrimitiveElement| (|#1|)) (SIGNATURE |conditionP| ((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|))) (SIGNATURE |charthRoot| (|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |init| (|#1|)) (SIGNATURE |nextItem| ((|Union| |#1| "failed") |#1|)) (SIGNATURE |discreteLog| ((|Union| (|NonNegativeInteger|) "failed") |#1| |#1|)) (SIGNATURE |order| ((|OnePointCompletion| (|PositiveInteger|)) |#1|)) (SIGNATURE |charthRoot| ((|Union| |#1| "failed") |#1|)) (SIGNATURE |gcdPolynomial| ((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)))) (|FiniteFieldCategory|)) (T |FiniteFieldCategory&|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |differentiate| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE |weight| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |retract| (|#2| |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|))) │ │ │ -((** (($ $ $) 10))) │ │ │ -(((|ElementaryFunctionCategory&| |#1|) (CATEGORY |domain| (SIGNATURE ** (|#1| |#1| |#1|))) (|ElementaryFunctionCategory|)) (T |ElementaryFunctionCategory&|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |order| ((|PositiveInteger|) |#1|)) (SIGNATURE |discreteLog| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |primitive?| ((|Boolean|) |#1|)) (SIGNATURE |createPrimitiveElement| (|#1|)) (SIGNATURE |conditionP| ((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|))) (SIGNATURE |charthRoot| (|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |init| (|#1|)) (SIGNATURE |nextItem| ((|Union| |#1| "failed") |#1|)) (SIGNATURE |discreteLog| ((|Union| (|NonNegativeInteger|) "failed") |#1| |#1|)) (SIGNATURE |order| ((|OnePointCompletion| (|PositiveInteger|)) |#1|)) (SIGNATURE |charthRoot| ((|Union| |#1| "failed") |#1|)) (SIGNATURE |gcdPolynomial| ((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) 12)) (= (((|Boolean|) $ $) 6))) │ │ │ +(((|PartialDifferentialEquationsSolverCategory|) (|Category|)) (T |PartialDifferentialEquationsSolverCategory|)) │ │ │ +((|measure| (*1 *2 *3 *4) (AND (|ofCategory| *1 (|PartialDifferentialEquationsSolverCategory|)) (|isDomain| *3 (|RoutinesTable|)) (|isDomain| *4 (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) (|isDomain| *2 (|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)))))) (|PDESolve| (*1 *2 *3) (AND (|ofCategory| *1 (|PartialDifferentialEquationsSolverCategory|)) (|isDomain| *3 (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) (|isDomain| *2 (|Result|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |package| (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))))) (SIGNATURE |PDESolve| ((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))))))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ +((|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) 33)) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) 32))) │ │ │ +(((|PatternMatchTools| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)))) (SIGNATURE |patternMatchTimes| ((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))))) (|SetCategory|) (|Join| (|Ring|) (|OrderedSet|)) (|Join| (|Ring|) (|ConvertibleTo| (|Pattern| |#1|)) (|RetractableTo| |#2|))) (T |PatternMatchTools|)) │ │ │ +((|patternMatchTimes| (*1 *2 *3 *4 *2 *5) (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|List| (|Pattern| *6))) (|isDomain| *5 (|Mapping| (|PatternMatchResult| *6 *8) *8 (|Pattern| *6) (|PatternMatchResult| *6 *8))) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *8 (|Join| (|Ring|) (|ConvertibleTo| (|Pattern| *6)) (|RetractableTo| *7))) (|isDomain| *2 (|PatternMatchResult| *6 *8)) (|ofCategory| *7 (|Join| (|Ring|) (|OrderedSet|))) (|isDomain| *1 (|PatternMatchTools| *6 *7 *8)))) (|patternMatch| (*1 *2 *3 *4 *5 *2 *6) (AND (|isDomain| *4 (|List| (|Pattern| *7))) (|isDomain| *5 (|Mapping| *9 (|List| *9))) (|isDomain| *6 (|Mapping| (|PatternMatchResult| *7 *9) *9 (|Pattern| *7) (|PatternMatchResult| *7 *9))) (|ofCategory| *7 (|SetCategory|)) (|ofCategory| *9 (|Join| (|Ring|) (|ConvertibleTo| (|Pattern| *7)) (|RetractableTo| *8))) (|isDomain| *2 (|PatternMatchResult| *7 *9)) (|isDomain| *3 (|List| *9)) (|ofCategory| *8 (|Join| (|Ring|) (|OrderedSet|))) (|isDomain| *1 (|PatternMatchTools| *7 *8 *9))))) │ │ │ +(CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)))) (SIGNATURE |patternMatchTimes| ((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))))) │ │ │ +((* (($ (|PositiveInteger|) $) 10))) │ │ │ +(((|AbelianSemiGroup&| |#1|) (CATEGORY |domain| (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) (|AbelianSemiGroup|)) (T |AbelianSemiGroup&|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE ** (|#1| |#1| |#1|))) │ │ │ -((|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) 15))) │ │ │ -(((|ExpertSystemToolsPackage2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)))) (|Ring|) (|Ring|)) (T |ExpertSystemToolsPackage2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Matrix| *5)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|)) (|isDomain| *2 (|Matrix| *6)) (|isDomain| *1 (|ExpertSystemToolsPackage2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)))) │ │ │ -((|eval| (($ $ (|List| |#2|) (|List| |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (|Equation| |#2|)) 11) (($ $ (|List| (|Equation| |#2|))) NIL))) │ │ │ -(((|Evalable&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |eval| (|#1| |#1| (|List| (|Equation| |#2|)))) (SIGNATURE |eval| (|#1| |#1| (|Equation| |#2|))) (SIGNATURE |eval| (|#1| |#1| |#2| |#2|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#2|) (|List| |#2|)))) (|Evalable| |#2|) (|SetCategory|)) (T |Evalable&|)) │ │ │ +(CATEGORY |domain| (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) │ │ │ +((|writeObj| (((|Void|) (|SubSpace| 3 (|DoubleFloat|)) (|String|)) 38))) │ │ │ +(((|Export3D|) (CATEGORY |package| (SIGNATURE |writeObj| ((|Void|) (|SubSpace| 3 (|DoubleFloat|)) (|String|))))) (T |Export3D|)) │ │ │ +((|writeObj| (*1 *2 *3 *4) (AND (|isDomain| *3 (|SubSpace| 3 (|DoubleFloat|))) (|isDomain| *4 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Export3D|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |writeObj| ((|Void|) (|SubSpace| 3 (|DoubleFloat|)) (|String|)))) │ │ │ +((|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) 33))) │ │ │ +(((|FiniteFieldSolveLinearPolynomialEquation| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |solveLinearPolynomialEquation| ((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|))) (|FiniteFieldCategory|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| |#2|)) (T |FiniteFieldSolveLinearPolynomialEquation|)) │ │ │ +((|solveLinearPolynomialEquation| (*1 *2 *2 *3) (|partial| AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)) (|isDomain| *1 (|FiniteFieldSolveLinearPolynomialEquation| *4 *5 *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |solveLinearPolynomialEquation| ((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|))) │ │ │ +((|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) 12) (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) 13))) │ │ │ +(((|OnePointCompletionFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|))) (SIGNATURE |map| ((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)))) (|SetCategory|) (|SetCategory|)) (T |OnePointCompletionFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|OnePointCompletion| *6)) (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|OnePointCompletion| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|isDomain| *1 (|OnePointCompletionFunctions2| *5 *6)))) (|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|OnePointCompletion| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|isDomain| *2 (|OnePointCompletion| *6)) (|isDomain| *1 (|OnePointCompletionFunctions2| *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| ((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|))) (SIGNATURE |map| ((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)))) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |eval| (|#1| |#1| (|List| (|Equation| |#2|)))) (SIGNATURE |eval| (|#1| |#1| (|Equation| |#2|))) (SIGNATURE |eval| (|#1| |#1| |#2| |#2|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#2|) (|List| |#2|)))) │ │ │ -((|log| (($ $) 6)) (|exp| (($ $) 7)) (** (($ $ $) 8))) │ │ │ -(((|ElementaryFunctionCategory|) (|Category|)) (T |ElementaryFunctionCategory|)) │ │ │ -((** (*1 *1 *1 *1) (|ofCategory| *1 (|ElementaryFunctionCategory|))) (|exp| (*1 *1 *1) (|ofCategory| *1 (|ElementaryFunctionCategory|))) (|log| (*1 *1 *1) (|ofCategory| *1 (|ElementaryFunctionCategory|)))) │ │ │ -(|Join| (CATEGORY |domain| (SIGNATURE |log| ($ $)) (SIGNATURE |exp| ($ $)) (SIGNATURE ** ($ $ $)))) │ │ │ -((|eval| (($ $ (|List| |#1|) (|List| |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (|Equation| |#1|)) 9) (($ $ (|List| (|Equation| |#1|))) 8))) │ │ │ -(((|Evalable| |#1|) (|Category|) (|SetCategory|)) (T |Evalable|)) │ │ │ -((|eval| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Equation| *3)) (|ofCategory| *1 (|Evalable| *3)) (|ofCategory| *3 (|SetCategory|)))) (|eval| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Equation| *3))) (|ofCategory| *1 (|Evalable| *3)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ -(|Join| (|InnerEvalable| |t#1| |t#1|) (CATEGORY |domain| (SIGNATURE |eval| ($ $ (|Equation| |t#1|))) (SIGNATURE |eval| ($ $ (|List| (|Equation| |t#1|)))))) │ │ │ -(((|InnerEvalable| |#1| |#1|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) 26)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|size| (((|NonNegativeInteger|) $) 27)) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) 31)) (|retract| ((|#1| $) 30)) (|nthFactor| ((|#1| $ (|Integer|)) 24)) (|nthCoef| ((|#2| $ (|Integer|)) 25)) (|mapGen| (($ (|Mapping| |#1| |#1|) $) 21)) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) 22)) (|latex| (((|String|) $) 9)) (|highCommonTerms| (($ $ $) 20 (|has| |#2| (|OrderedAbelianMonoid|)))) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11) (($ |#1|) 32)) (|coefficient| ((|#2| |#1| $) 23)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (+ (($ $ $) 13) (($ |#1| $) 29)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ |#2| |#1|) 28))) │ │ │ -(((|FreeAbelianMonoidCategory| |#1| |#2|) (|Category|) (|SetCategory|) (|CancellationAbelianMonoid|)) (T |FreeAbelianMonoidCategory|)) │ │ │ -((+ (*1 *1 *2 *1) (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|CancellationAbelianMonoid|)))) (* (*1 *1 *2 *3) (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|CancellationAbelianMonoid|)))) (|size| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|CancellationAbelianMonoid|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|terms| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|CancellationAbelianMonoid|)) (|isDomain| *2 (|List| (|Record| (|:| |gen| *3) (|:| |exp| *4)))))) (|nthCoef| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|FreeAbelianMonoidCategory| *4 *2)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *2 (|CancellationAbelianMonoid|)))) (|nthFactor| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|FreeAbelianMonoidCategory| *2 *4)) (|ofCategory| *4 (|CancellationAbelianMonoid|)) (|ofCategory| *2 (|SetCategory|)))) (|coefficient| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|CancellationAbelianMonoid|)))) (|mapCoef| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *4 *4)) (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|CancellationAbelianMonoid|)))) (|mapGen| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|FreeAbelianMonoidCategory| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|CancellationAbelianMonoid|)))) (|highCommonTerms| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|FreeAbelianMonoidCategory| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|CancellationAbelianMonoid|)) (|ofCategory| *3 (|OrderedAbelianMonoid|))))) │ │ │ -(|Join| (|CancellationAbelianMonoid|) (|RetractableTo| |t#1|) (CATEGORY |domain| (SIGNATURE + ($ |t#1| $)) (SIGNATURE * ($ |t#2| |t#1|)) (SIGNATURE |size| ((|NonNegativeInteger|) $)) (SIGNATURE |terms| ((|List| (|Record| (|:| |gen| |t#1|) (|:| |exp| |t#2|))) $)) (SIGNATURE |nthCoef| (|t#2| $ (|Integer|))) (SIGNATURE |nthFactor| (|t#1| $ (|Integer|))) (SIGNATURE |coefficient| (|t#2| |t#1| $)) (SIGNATURE |mapCoef| ($ (|Mapping| |t#2| |t#2|) $)) (SIGNATURE |mapGen| ($ (|Mapping| |t#1| |t#1|) $)) (IF (|has| |t#2| (|OrderedAbelianMonoid|)) (SIGNATURE |highCommonTerms| ($ $ $)) |noBranch|))) │ │ │ -(((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|RetractableTo| |#1|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|weight| (((|NonNegativeInteger|) $) 21)) (|variable| ((|#1| $) 22)) (|retractIfCan| (((|Union| |#1| "failed") $) 26)) (|retract| ((|#1| $) 25)) (|order| (((|NonNegativeInteger|) $) 23)) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) 24)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|differentiate| (($ $) 20) (($ $ (|NonNegativeInteger|)) 19)) (|coerce| (((|OutputForm|) $) 11) (($ |#1|) 27)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17))) │ │ │ -(((|DifferentialVariableCategory| |#1|) (|Category|) (|OrderedSet|)) (T |DifferentialVariableCategory|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|ofCategory| *1 (|DifferentialVariableCategory| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|makeVariable| (*1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|DifferentialVariableCategory| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|order| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialVariableCategory| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|variable| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialVariableCategory| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|weight| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialVariableCategory| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|differentiate| (*1 *1 *1) (AND (|ofCategory| *1 (|DifferentialVariableCategory| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|differentiate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|DifferentialVariableCategory| *3)) (|ofCategory| *3 (|OrderedSet|))))) │ │ │ -(|Join| (|OrderedSet|) (|RetractableTo| |t#1|) (CATEGORY |domain| (SIGNATURE |makeVariable| ($ |t#1| (|NonNegativeInteger|))) (SIGNATURE |order| ((|NonNegativeInteger|) $)) (SIGNATURE |variable| (|t#1| $)) (SIGNATURE |weight| ((|NonNegativeInteger|) $)) (SIGNATURE |differentiate| ($ $)) (SIGNATURE |differentiate| ($ $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ |t#1|)))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|OrderedSet|) . T) ((|RetractableTo| |#1|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|sin?| (((|Boolean|) $) 11)) (|sin| (($ |#1|) 8)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|cos| (($ |#1|) 9)) (|coerce| (((|OutputForm|) $) 17)) (|argument| ((|#1| $) 12)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 19))) │ │ │ -(((|FourierComponent| |#1|) (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |sin| ($ |#1|)) (SIGNATURE |cos| ($ |#1|)) (SIGNATURE |sin?| ((|Boolean|) $)) (SIGNATURE |argument| (|#1| $)))) (|OrderedSet|)) (T |FourierComponent|)) │ │ │ -((|sin| (*1 *1 *2) (AND (|isDomain| *1 (|FourierComponent| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|cos| (*1 *1 *2) (AND (|isDomain| *1 (|FourierComponent| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|sin?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FourierComponent| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|argument| (*1 *2 *1) (AND (|isDomain| *1 (|FourierComponent| *2)) (|ofCategory| *2 (|OrderedSet|))))) │ │ │ -(|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |sin| ($ |#1|)) (SIGNATURE |cos| ($ |#1|)) (SIGNATURE |sin?| ((|Boolean|) $)) (SIGNATURE |argument| (|#1| $)))) │ │ │ -((|outputAsFortran| (((|Void|) $) 7)) (|coerce| (((|OutputForm|) $) 8) (($ (|Matrix| (|MachineFloat|))) 12) (($ (|List| (|FortranCode|))) 11) (($ (|FortranCode|)) 10) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 9))) │ │ │ -(((|FortranMatrixCategory|) (|Category|)) (T |FortranMatrixCategory|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Matrix| (|MachineFloat|))) (|ofCategory| *1 (|FortranMatrixCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|FortranCode|))) (|ofCategory| *1 (|FortranMatrixCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|FortranCode|)) (|ofCategory| *1 (|FortranMatrixCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) (|ofCategory| *1 (|FortranMatrixCategory|))))) │ │ │ -(|Join| (|FortranProgramCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Matrix| (|MachineFloat|)))) (SIGNATURE |coerce| ($ (|List| (|FortranCode|)))) (SIGNATURE |coerce| ($ (|FortranCode|))) (SIGNATURE |coerce| ($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|)))))))) │ │ │ -(((|CoercibleTo| (|OutputForm|)) . T) ((|FortranProgramCategory|) . T) ((|Type|) . T)) │ │ │ -((|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) 19) (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) 17) (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) 15) (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) 13) (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) 11) (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) 9)) (|retract| (($ (|Matrix| (|Expression| (|Float|)))) 20) (($ (|Matrix| (|Expression| (|Integer|)))) 18) (($ (|Matrix| (|Polynomial| (|Float|)))) 16) (($ (|Matrix| (|Polynomial| (|Integer|)))) 14) (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) 12) (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) 10)) (|outputAsFortran| (((|Void|) $) 7)) (|coerce| (((|OutputForm|) $) 8) (($ (|List| (|FortranCode|))) 23) (($ (|FortranCode|)) 22) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 21))) │ │ │ -(((|FortranMatrixFunctionCategory|) (|Category|)) (T |FortranMatrixFunctionCategory|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|FortranCode|))) (|ofCategory| *1 (|FortranMatrixFunctionCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|FortranCode|)) (|ofCategory| *1 (|FortranMatrixFunctionCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) (|ofCategory| *1 (|FortranMatrixFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Matrix| (|Expression| (|Float|)))) (|ofCategory| *1 (|FortranMatrixFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Matrix| (|Expression| (|Float|)))) (|ofCategory| *1 (|FortranMatrixFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Matrix| (|Expression| (|Integer|)))) (|ofCategory| *1 (|FortranMatrixFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Matrix| (|Expression| (|Integer|)))) (|ofCategory| *1 (|FortranMatrixFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Matrix| (|Polynomial| (|Float|)))) (|ofCategory| *1 (|FortranMatrixFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Matrix| (|Polynomial| (|Float|)))) (|ofCategory| *1 (|FortranMatrixFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Matrix| (|Polynomial| (|Integer|)))) (|ofCategory| *1 (|FortranMatrixFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Matrix| (|Polynomial| (|Integer|)))) (|ofCategory| *1 (|FortranMatrixFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) (|ofCategory| *1 (|FortranMatrixFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) (|ofCategory| *1 (|FortranMatrixFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) (|ofCategory| *1 (|FortranMatrixFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) (|ofCategory| *1 (|FortranMatrixFunctionCategory|))))) │ │ │ -(|Join| (|FortranProgramCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|List| (|FortranCode|)))) (SIGNATURE |coerce| ($ (|FortranCode|))) (SIGNATURE |coerce| ($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|)))))) (SIGNATURE |retract| ($ (|Matrix| (|Expression| (|Float|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Matrix| (|Expression| (|Float|))))) (SIGNATURE |retract| ($ (|Matrix| (|Expression| (|Integer|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|))))) (SIGNATURE |retract| ($ (|Matrix| (|Polynomial| (|Float|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|))))) (SIGNATURE |retract| ($ (|Matrix| (|Polynomial| (|Integer|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|))))) (SIGNATURE |retract| ($ (|Matrix| (|Fraction| (|Polynomial| (|Float|)))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|)))))) (SIGNATURE |retract| ($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|)))))))) │ │ │ -(((|CoercibleTo| (|OutputForm|)) . T) ((|FortranProgramCategory|) . T) ((|Type|) . T)) │ │ │ -((|retractIfCan| (((|Union| $ "failed") (|Expression| (|Float|))) 19) (((|Union| $ "failed") (|Expression| (|Integer|))) 17) (((|Union| $ "failed") (|Polynomial| (|Float|))) 15) (((|Union| $ "failed") (|Polynomial| (|Integer|))) 13) (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) 11) (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) 9)) (|retract| (($ (|Expression| (|Float|))) 20) (($ (|Expression| (|Integer|))) 18) (($ (|Polynomial| (|Float|))) 16) (($ (|Polynomial| (|Integer|))) 14) (($ (|Fraction| (|Polynomial| (|Float|)))) 12) (($ (|Fraction| (|Polynomial| (|Integer|)))) 10)) (|outputAsFortran| (((|Void|) $) 7)) (|coerce| (((|OutputForm|) $) 8) (($ (|List| (|FortranCode|))) 23) (($ (|FortranCode|)) 22) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 21))) │ │ │ -(((|FortranFunctionCategory|) (|Category|)) (T |FortranFunctionCategory|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|FortranCode|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|FortranCode|)) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|Float|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Expression| (|Float|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|Integer|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Expression| (|Integer|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| (|Float|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Polynomial| (|Float|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| (|Integer|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Polynomial| (|Integer|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| (|Polynomial| (|Float|)))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Fraction| (|Polynomial| (|Float|)))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| (|Polynomial| (|Integer|)))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Fraction| (|Polynomial| (|Integer|)))) (|ofCategory| *1 (|FortranFunctionCategory|))))) │ │ │ -(|Join| (|FortranProgramCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|List| (|FortranCode|)))) (SIGNATURE |coerce| ($ (|FortranCode|))) (SIGNATURE |coerce| ($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|)))))) (SIGNATURE |retract| ($ (|Expression| (|Float|)))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Expression| (|Float|)))) (SIGNATURE |retract| ($ (|Expression| (|Integer|)))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Expression| (|Integer|)))) (SIGNATURE |retract| ($ (|Polynomial| (|Float|)))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| (|Float|)))) (SIGNATURE |retract| ($ (|Polynomial| (|Integer|)))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| (|Integer|)))) (SIGNATURE |retract| ($ (|Fraction| (|Polynomial| (|Float|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|))))) (SIGNATURE |retract| ($ (|Fraction| (|Polynomial| (|Integer|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|))))))) │ │ │ -(((|CoercibleTo| (|OutputForm|)) . T) ((|FortranProgramCategory|) . T) ((|Type|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 9 (OR (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Float|)))))) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) 15 (|has| |#1| (|PatternMatchable| (|Float|)))) (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) 14 (|has| |#1| (|PatternMatchable| (|Integer|))))) (|latex| (((|String|) $) 13 (OR (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Float|)))))) (|hash| (((|SingleInteger|) $) 12 (OR (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Float|)))))) (|coerce| (((|OutputForm|) $) 11 (OR (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Float|)))))) (= (((|Boolean|) $ $) 10 (OR (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Float|))))))) │ │ │ -(((|FullyPatternMatchable| |#1|) (|Category|) (|Type|)) (T |FullyPatternMatchable|)) │ │ │ +(((|NotherianAttribute|) (|Category|)) (T |NotherianAttribute|)) │ │ │ NIL │ │ │ -(|Join| (|Type|) (CATEGORY |package| (IF (|has| |t#1| (|PatternMatchable| (|Integer|))) (ATTRIBUTE (|PatternMatchable| (|Integer|))) |noBranch|) (IF (|has| |t#1| (|PatternMatchable| (|Float|))) (ATTRIBUTE (|PatternMatchable| (|Float|))) |noBranch|))) │ │ │ -(((|BasicType|) OR (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Float|)))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Float|)))) ((|PatternMatchable| (|Float|)) |has| |#1| (|PatternMatchable| (|Float|))) ((|PatternMatchable| (|Integer|)) |has| |#1| (|PatternMatchable| (|Integer|))) ((|SetCategory|) OR (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Float|)))) ((|Type|) . T)) │ │ │ -((|outputAsFortran| (((|Void|) $) 7)) (|coerce| (((|OutputForm|) $) 8) (($ (|Vector| (|MachineFloat|))) 12) (($ (|List| (|FortranCode|))) 11) (($ (|FortranCode|)) 10) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 9))) │ │ │ -(((|FortranVectorCategory|) (|Category|)) (T |FortranVectorCategory|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| (|MachineFloat|))) (|ofCategory| *1 (|FortranVectorCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|FortranCode|))) (|ofCategory| *1 (|FortranVectorCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|FortranCode|)) (|ofCategory| *1 (|FortranVectorCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) (|ofCategory| *1 (|FortranVectorCategory|))))) │ │ │ -(|Join| (|FortranProgramCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|MachineFloat|)))) (SIGNATURE |coerce| ($ (|List| (|FortranCode|)))) (SIGNATURE |coerce| ($ (|FortranCode|))) (SIGNATURE |coerce| ($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|)))))))) │ │ │ -(((|CoercibleTo| (|OutputForm|)) . T) ((|FortranProgramCategory|) . T) ((|Type|) . T)) │ │ │ -((|retractIfCan| (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) 19) (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) 17) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) 15) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) 13) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 11) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 9)) (|retract| (($ (|Vector| (|Expression| (|Float|)))) 20) (($ (|Vector| (|Expression| (|Integer|)))) 18) (($ (|Vector| (|Polynomial| (|Float|)))) 16) (($ (|Vector| (|Polynomial| (|Integer|)))) 14) (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 12) (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 10)) (|outputAsFortran| (((|Void|) $) 7)) (|coerce| (((|OutputForm|) $) 8) (($ (|List| (|FortranCode|))) 23) (($ (|FortranCode|)) 22) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 21))) │ │ │ -(((|FortranVectorFunctionCategory|) (|Category|)) (T |FortranVectorFunctionCategory|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|FortranCode|))) (|ofCategory| *1 (|FortranVectorFunctionCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|FortranCode|)) (|ofCategory| *1 (|FortranVectorFunctionCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) (|ofCategory| *1 (|FortranVectorFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| (|Expression| (|Float|)))) (|ofCategory| *1 (|FortranVectorFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Vector| (|Expression| (|Float|)))) (|ofCategory| *1 (|FortranVectorFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| (|Expression| (|Integer|)))) (|ofCategory| *1 (|FortranVectorFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Vector| (|Expression| (|Integer|)))) (|ofCategory| *1 (|FortranVectorFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| (|Polynomial| (|Float|)))) (|ofCategory| *1 (|FortranVectorFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Vector| (|Polynomial| (|Float|)))) (|ofCategory| *1 (|FortranVectorFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| (|Polynomial| (|Integer|)))) (|ofCategory| *1 (|FortranVectorFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Vector| (|Polynomial| (|Integer|)))) (|ofCategory| *1 (|FortranVectorFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| (|Fraction| (|Polynomial| (|Float|))))) (|ofCategory| *1 (|FortranVectorFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Vector| (|Fraction| (|Polynomial| (|Float|))))) (|ofCategory| *1 (|FortranVectorFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) (|ofCategory| *1 (|FortranVectorFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) (|ofCategory| *1 (|FortranVectorFunctionCategory|))))) │ │ │ -(|Join| (|FortranProgramCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|List| (|FortranCode|)))) (SIGNATURE |coerce| ($ (|FortranCode|))) (SIGNATURE |coerce| ($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|)))))) (SIGNATURE |retract| ($ (|Vector| (|Expression| (|Float|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Vector| (|Expression| (|Float|))))) (SIGNATURE |retract| ($ (|Vector| (|Expression| (|Integer|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Vector| (|Expression| (|Integer|))))) (SIGNATURE |retract| ($ (|Vector| (|Polynomial| (|Float|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|))))) (SIGNATURE |retract| ($ (|Vector| (|Polynomial| (|Integer|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|))))) (SIGNATURE |retract| ($ (|Vector| (|Fraction| (|Polynomial| (|Float|)))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|)))))) (SIGNATURE |retract| ($ (|Vector| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|)))))))) │ │ │ -(((|CoercibleTo| (|OutputForm|)) . T) ((|FortranProgramCategory|) . T) ((|Type|) . T)) │ │ │ -((|recip| (((|Union| $ "failed") $) 11)) (|conjugate| (($ $ $) 20)) (|commutator| (($ $ $) 21)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) 14)) (/ (($ $ $) 9)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) 19))) │ │ │ -(((|Group&| |#1|) (CATEGORY |domain| (SIGNATURE |commutator| (|#1| |#1| |#1|)) (SIGNATURE |conjugate| (|#1| |#1| |#1|)) (SIGNATURE ^ (|#1| |#1| (|Integer|))) (SIGNATURE ** (|#1| |#1| (|Integer|))) (SIGNATURE / (|#1| |#1| |#1|)) (SIGNATURE |recip| ((|Union| |#1| "failed") |#1|)) (SIGNATURE ^ (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE ^ (|#1| |#1| (|PositiveInteger|))) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|)))) (|Group|)) (T |Group&|)) │ │ │ +(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 30)) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) NIL)) (|variables| (((|List| (|SingletonAsOrderedSet|)) $) NIL)) (|unvectorise| (($ (|Vector| |#1|)) NIL)) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) NIL)) (|univariate| (((|SparseUnivariatePolynomial| $) $ (|SingletonAsOrderedSet|)) 59) (((|SparseUnivariatePolynomial| |#1|) $) 48)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) 132 (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|totalDegree| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|List| (|SingletonAsOrderedSet|))) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|subResultantGcd| (($ $ $) 126 (|has| |#1| (|IntegralDomain|)))) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 72 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|squareFreePart| (($ $) NIL (|has| |#1| (|GcdDomain|)))) (|squareFree| (((|Factored| $) $) NIL (|has| |#1| (|GcdDomain|)))) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 92 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|sizeLess?| (((|Boolean|) $ $) NIL (|has| |#1| (|Field|)))) (|shiftRight| (($ $ (|NonNegativeInteger|)) 42)) (|shiftLeft| (($ $ (|NonNegativeInteger|)) 43)) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (|GcdDomain|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|SingletonAsOrderedSet|) "failed") $) NIL)) (|retract| ((|#1| $) NIL) (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|SingletonAsOrderedSet|) $) NIL)) (|resultant| (($ $ $ (|SingletonAsOrderedSet|)) NIL (|has| |#1| (|CommutativeRing|))) ((|#1| $ $) 128 (|has| |#1| (|CommutativeRing|)))) (|rem| (($ $ $) NIL (|has| |#1| (|Field|)))) (|reductum| (($ $) 57)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| |#1|) (|Matrix| $)) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|quo| (($ $ $) NIL (|has| |#1| (|Field|)))) (|pseudoRemainder| (($ $ $) 104)) (|pseudoQuotient| (($ $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL (|has| |#1| (|Field|)))) (|primitivePart| (($ $) 133 (|has| |#1| (|GcdDomain|))) (($ $ (|SingletonAsOrderedSet|)) NIL (|has| |#1| (|GcdDomain|)))) (|primitiveMonomials| (((|List| $) $) NIL)) (|prime?| (((|Boolean|) $) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|pomopo!| (($ $ |#1| (|NonNegativeInteger|) $) 46)) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) NIL (AND (|has| (|SingletonAsOrderedSet|) (|PatternMatchable| (|Float|))) (|has| |#1| (|PatternMatchable| (|Float|))))) (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) NIL (AND (|has| (|SingletonAsOrderedSet|) (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Integer|)))))) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) 117)) (|order| (((|NonNegativeInteger|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|one?| (((|Boolean|) $) 32)) (|numberOfMonomials| (((|NonNegativeInteger|) $) NIL)) (|nextItem| (((|Union| $ "failed") $) NIL (|has| |#1| (|StepThrough|)))) (|multivariate| (($ (|SparseUnivariatePolynomial| |#1|) (|SingletonAsOrderedSet|)) 50) (($ (|SparseUnivariatePolynomial| $) (|SingletonAsOrderedSet|)) 66)) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) 34)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| |#1| (|Field|)))) (|monomials| (((|List| $) $) NIL)) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| (|NonNegativeInteger|)) 64) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ (|SingletonAsOrderedSet|)) NIL) (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 121)) (|minimumDegree| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|SingletonAsOrderedSet|)) NIL) (((|List| (|NonNegativeInteger|)) $ (|List| (|SingletonAsOrderedSet|))) NIL)) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|mapExponents| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) NIL)) (|mainVariable| (((|Union| (|SingletonAsOrderedSet|) "failed") $) NIL)) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#1| $) 53)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL (|has| |#1| (|GcdDomain|)))) (|lcm| (($ (|List| $)) NIL (|has| |#1| (|GcdDomain|))) (($ $ $) NIL (|has| |#1| (|GcdDomain|)))) (|latex| (((|String|) $) NIL)) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) 41)) (|isTimes| (((|Union| (|List| $) "failed") $) NIL)) (|isPlus| (((|Union| (|List| $) "failed") $) NIL)) (|isExpt| (((|Union| (|Record| (|:| |var| (|SingletonAsOrderedSet|)) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) NIL)) (|integrate| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|init| (($) NIL (|has| |#1| (|StepThrough|)) CONST)) (|hash| (((|SingleInteger|) $) NIL)) (|ground?| (((|Boolean|) $) 33)) (|ground| ((|#1| $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 80 (|has| |#1| (|GcdDomain|)))) (|gcd| (($ (|List| $)) NIL (|has| |#1| (|GcdDomain|))) (($ $ $) 135 (|has| |#1| (|GcdDomain|)))) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) 99)) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 78 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 77 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factor| (((|Factored| $) $) 85 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (|Field|))) (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| |#1| (|Field|)))) (|exquo| (((|Union| $ "failed") $ |#1|) 131 (|has| |#1| (|IntegralDomain|))) (((|Union| $ "failed") $ $) 100 (|has| |#1| (|IntegralDomain|)))) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| |#1| (|Field|)))) (|eval| (($ $ (|List| (|Equation| $))) NIL) (($ $ (|Equation| $)) NIL) (($ $ $ $) NIL) (($ $ (|List| $) (|List| $)) NIL) (($ $ (|SingletonAsOrderedSet|) |#1|) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| |#1|)) NIL) (($ $ (|SingletonAsOrderedSet|) $) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| $)) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL (|has| |#1| (|Field|)))) (|elt| ((|#1| $ |#1|) 119) (($ $ $) 120) (((|Fraction| $) (|Fraction| $) (|Fraction| $)) NIL (|has| |#1| (|IntegralDomain|))) ((|#1| (|Fraction| $) |#1|) NIL (|has| |#1| (|Field|))) (((|Fraction| $) $ (|Fraction| $)) NIL (|has| |#1| (|IntegralDomain|)))) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) 37)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 137 (|has| |#1| (|Field|)))) (|discriminant| (($ $ (|SingletonAsOrderedSet|)) NIL (|has| |#1| (|CommutativeRing|))) ((|#1| $) 124 (|has| |#1| (|CommutativeRing|)))) (|differentiate| (($ $ (|SingletonAsOrderedSet|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|))) NIL) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL) (($ $ (|Symbol|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#1| |#1|)) NIL) (($ $ (|Mapping| |#1| |#1|) $) NIL)) (|degree| (((|NonNegativeInteger|) $) 55) (((|NonNegativeInteger|) $ (|SingletonAsOrderedSet|)) NIL) (((|List| (|NonNegativeInteger|)) $ (|List| (|SingletonAsOrderedSet|))) NIL)) (|convert| (((|Pattern| (|Float|)) $) NIL (AND (|has| (|SingletonAsOrderedSet|) (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))))) (((|Pattern| (|Integer|)) $) NIL (AND (|has| (|SingletonAsOrderedSet|) (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))))) (((|InputForm|) $) NIL (AND (|has| (|SingletonAsOrderedSet|) (|ConvertibleTo| (|InputForm|))) (|has| |#1| (|ConvertibleTo| (|InputForm|)))))) (|content| ((|#1| $) 130 (|has| |#1| (|GcdDomain|))) (($ $ (|SingletonAsOrderedSet|)) NIL (|has| |#1| (|GcdDomain|)))) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))) (|composite| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|IntegralDomain|))) (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) NIL (|has| |#1| (|IntegralDomain|)))) (|coerce| (((|OutputForm|) $) 118) (($ (|Integer|)) NIL) (($ |#1|) 54) (($ (|SingletonAsOrderedSet|)) NIL) (($ (|Fraction| (|Integer|))) NIL (OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))) (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|coefficients| (((|List| |#1|) $) NIL)) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) NIL) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL)) (|charthRoot| (((|Union| $ "failed") $) NIL (OR (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) (|has| |#1| (|CharacteristicNonZero|))))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) 28 (|has| |#1| (|CommutativeRing|)))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) 15) (($ $ (|NonNegativeInteger|)) 16)) (|Zero| (($) 17 T CONST)) (|One| (($) 18 T CONST)) (D (($ $ (|SingletonAsOrderedSet|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|))) NIL) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL) (($ $ (|Symbol|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#1| |#1|)) NIL)) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) 97)) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (/ (($ $ |#1|) 138 (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) 67)) (** (($ $ (|PositiveInteger|)) 14) (($ $ (|NonNegativeInteger|)) 12)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 27) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) │ │ │ +(((|SparseUnivariatePolynomial| |#1|) (|Join| (|UnivariatePolynomialCategory| |#1|) (CATEGORY |domain| (SIGNATURE |outputForm| ((|OutputForm|) $ (|OutputForm|))) (SIGNATURE |fmecg| ($ $ (|NonNegativeInteger|) |#1| $)))) (|Ring|)) (T |SparseUnivariatePolynomial|)) │ │ │ +((|outputForm| (*1 *2 *1 *2) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|SparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|Ring|)))) (|fmecg| (*1 *1 *1 *2 *3 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|SparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|Ring|))))) │ │ │ +(|Join| (|UnivariatePolynomialCategory| |#1|) (CATEGORY |domain| (SIGNATURE |outputForm| ((|OutputForm|) $ (|OutputForm|))) (SIGNATURE |fmecg| ($ $ (|NonNegativeInteger|) |#1| $)))) │ │ │ +((|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) 12)) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) 33)) (|OMsupportsCD?| (((|Boolean|) (|String|)) 32)) (|OMreadStr| (((|Any|) (|String|)) 25)) (|OMreadFile| (((|Any|) (|String|)) 23)) (|OMread| (((|Any|) (|OpenMathDevice|)) 17)) (|OMlistSymbols| (((|List| (|String|)) (|String|)) 28)) (|OMlistCDs| (((|List| (|String|))) 27))) │ │ │ +(((|OpenMathPackage|) (CATEGORY |package| (SIGNATURE |OMread| ((|Any|) (|OpenMathDevice|))) (SIGNATURE |OMreadFile| ((|Any|) (|String|))) (SIGNATURE |OMreadStr| ((|Any|) (|String|))) (SIGNATURE |OMlistCDs| ((|List| (|String|)))) (SIGNATURE |OMlistSymbols| ((|List| (|String|)) (|String|))) (SIGNATURE |OMsupportsCD?| ((|Boolean|) (|String|))) (SIGNATURE |OMsupportsSymbol?| ((|Boolean|) (|String|) (|String|))) (SIGNATURE |OMunhandledSymbol| ((|Exit|) (|String|) (|String|))))) (T |OpenMathPackage|)) │ │ │ +((|OMunhandledSymbol| (*1 *2 *3 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Exit|)) (|isDomain| *1 (|OpenMathPackage|)))) (|OMsupportsSymbol?| (*1 *2 *3 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OpenMathPackage|)))) (|OMsupportsCD?| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OpenMathPackage|)))) (|OMlistSymbols| (*1 *2 *3) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|OpenMathPackage|)) (|isDomain| *3 (|String|)))) (|OMlistCDs| (*1 *2) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|OpenMathPackage|)))) (|OMreadStr| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|OpenMathPackage|)))) (|OMreadFile| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|OpenMathPackage|)))) (|OMread| (*1 *2 *3) (AND (|isDomain| *3 (|OpenMathDevice|)) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|OpenMathPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |OMread| ((|Any|) (|OpenMathDevice|))) (SIGNATURE |OMreadFile| ((|Any|) (|String|))) (SIGNATURE |OMreadStr| ((|Any|) (|String|))) (SIGNATURE |OMlistCDs| ((|List| (|String|)))) (SIGNATURE |OMlistSymbols| ((|List| (|String|)) (|String|))) (SIGNATURE |OMsupportsCD?| ((|Boolean|) (|String|))) (SIGNATURE |OMsupportsSymbol?| ((|Boolean|) (|String|) (|String|))) (SIGNATURE |OMunhandledSymbol| ((|Exit|) (|String|) (|String|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|numericalOptimization| (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) NIL) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 39)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 20) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|e04dgfAnnaType|) (|NumericalOptimizationCategory|)) (T |e04dgfAnnaType|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |commutator| (|#1| |#1| |#1|)) (SIGNATURE |conjugate| (|#1| |#1| |#1|)) (SIGNATURE ^ (|#1| |#1| (|Integer|))) (SIGNATURE ** (|#1| |#1| (|Integer|))) (SIGNATURE / (|#1| |#1| |#1|)) (SIGNATURE |recip| ((|Union| |#1| "failed") |#1|)) (SIGNATURE ^ (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE ^ (|#1| |#1| (|PositiveInteger|))) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|reductum| (($ $) NIL)) (|monomial| (($ |#1| |#2|) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|leadingSupport| ((|#2| $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (|Zero| (($) 12 T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) 11) (($ $ $) 23)) (+ (($ $ $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 18))) │ │ │ -(((|IndexedDirectProductAbelianGroup| |#1| |#2|) (|Join| (|AbelianGroup|) (|IndexedDirectProductCategory| |#1| |#2|)) (|AbelianGroup|) (|OrderedSet|)) (T |IndexedDirectProductAbelianGroup|)) │ │ │ +(|NumericalOptimizationCategory|) │ │ │ +((|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) 45) (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) 46) (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) 41)) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) 39))) │ │ │ +(((|IrrRepSymNatPackage|) (CATEGORY |package| (SIGNATURE |dimensionOfIrreducibleRepresentation| ((|NonNegativeInteger|) (|List| (|Integer|)))) (SIGNATURE |irreducibleRepresentation| ((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|)))) (SIGNATURE |irreducibleRepresentation| ((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)))) (SIGNATURE |irreducibleRepresentation| ((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|))))))) (T |IrrRepSymNatPackage|)) │ │ │ +((|irreducibleRepresentation| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *4 (|List| (|Permutation| (|Integer|)))) (|isDomain| *2 (|List| (|Matrix| (|Integer|)))) (|isDomain| *1 (|IrrRepSymNatPackage|)))) (|irreducibleRepresentation| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|List| (|Matrix| (|Integer|)))) (|isDomain| *1 (|IrrRepSymNatPackage|)))) (|irreducibleRepresentation| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *4 (|Permutation| (|Integer|))) (|isDomain| *2 (|Matrix| (|Integer|))) (|isDomain| *1 (|IrrRepSymNatPackage|)))) (|dimensionOfIrreducibleRepresentation| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|IrrRepSymNatPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |dimensionOfIrreducibleRepresentation| ((|NonNegativeInteger|) (|List| (|Integer|)))) (SIGNATURE |irreducibleRepresentation| ((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|)))) (SIGNATURE |irreducibleRepresentation| ((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)))) (SIGNATURE |irreducibleRepresentation| ((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))))) │ │ │ +((|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) 40)) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) 84)) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) 77)) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) 85)) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) 10)) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) 15))) │ │ │ +(((|FiniteFieldFunctions| |#1|) (CATEGORY |package| (SIGNATURE |createZechTable| ((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |createMultiplicationTable| ((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |createMultiplicationMatrix| ((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))))) (SIGNATURE |sizeMultiplication| ((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))))) (SIGNATURE |createLowComplexityTable| ((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|))) (SIGNATURE |createLowComplexityNormalBasis| ((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)))) (|FiniteFieldCategory|)) (T |FiniteFieldFunctions|)) │ │ │ +((|createLowComplexityNormalBasis| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Union| (|SparseUnivariatePolynomial| *4) (|Vector| (|List| (|Record| (|:| |value| *4) (|:| |index| (|SingleInteger|))))))) (|isDomain| *1 (|FiniteFieldFunctions| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)))) (|createLowComplexityTable| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Vector| (|List| (|Record| (|:| |value| *4) (|:| |index| (|SingleInteger|)))))) (|isDomain| *1 (|FiniteFieldFunctions| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)))) (|sizeMultiplication| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| (|List| (|Record| (|:| |value| *4) (|:| |index| (|SingleInteger|)))))) (|ofCategory| *4 (|FiniteFieldCategory|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|FiniteFieldFunctions| *4)))) (|createMultiplicationMatrix| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| (|List| (|Record| (|:| |value| *4) (|:| |index| (|SingleInteger|)))))) (|ofCategory| *4 (|FiniteFieldCategory|)) (|isDomain| *2 (|Matrix| *4)) (|isDomain| *1 (|FiniteFieldFunctions| *4)))) (|createMultiplicationTable| (*1 *2 *3) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)) (|isDomain| *2 (|Vector| (|List| (|Record| (|:| |value| *4) (|:| |index| (|SingleInteger|)))))) (|isDomain| *1 (|FiniteFieldFunctions| *4)))) (|createZechTable| (*1 *2 *3) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)) (|isDomain| *2 (|PrimitiveArray| (|SingleInteger|))) (|isDomain| *1 (|FiniteFieldFunctions| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |createZechTable| ((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |createMultiplicationTable| ((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |createMultiplicationMatrix| ((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))))) (SIGNATURE |sizeMultiplication| ((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))))) (SIGNATURE |createLowComplexityTable| ((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|))) (SIGNATURE |createLowComplexityNormalBasis| ((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|transcendent?| (((|Boolean|) $) NIL)) (|transcendenceDegree| (((|NonNegativeInteger|)) NIL)) (|trace| (((|PrimeField| |#1|) $) NIL) (($ $ (|PositiveInteger|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|size| (((|NonNegativeInteger|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|PrimeField| |#1|) "failed") $) NIL)) (|retract| (((|PrimeField| |#1|) $) NIL)) (|represents| (($ (|Vector| (|PrimeField| |#1|))) NIL)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|rem| (($ $ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|random| (($) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|primitiveElement| (($) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|primitive?| (((|Boolean|) $) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) NIL (OR (|has| (|PrimeField| |#1|) (|CharacteristicNonZero|)) (|has| (|PrimeField| |#1|) (|Finite|)))) (($ $) NIL (OR (|has| (|PrimeField| |#1|) (|CharacteristicNonZero|)) (|has| (|PrimeField| |#1|) (|Finite|))))) (|prime?| (((|Boolean|) $) NIL)) (|order| (((|PositiveInteger|) $) NIL (|has| (|PrimeField| |#1|) (|Finite|))) (((|OnePointCompletion| (|PositiveInteger|)) $) NIL (OR (|has| (|PrimeField| |#1|) (|CharacteristicNonZero|)) (|has| (|PrimeField| |#1|) (|Finite|))))) (|one?| (((|Boolean|) $) NIL)) (|normalElement| (($) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|normal?| (((|Boolean|) $) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|norm| (((|PrimeField| |#1|) $) NIL) (($ $ (|PositiveInteger|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|nextItem| (((|Union| $ "failed") $) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|minimalPolynomial| (((|SparseUnivariatePolynomial| (|PrimeField| |#1|)) $) NIL) (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|lookup| (((|PositiveInteger|) $) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| (|PrimeField| |#1|)) $) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|linearAssociatedLog| (((|SparseUnivariatePolynomial| (|PrimeField| |#1|)) $) NIL (|has| (|PrimeField| |#1|) (|Finite|))) (((|Union| (|SparseUnivariatePolynomial| (|PrimeField| |#1|)) "failed") $ $) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| (|PrimeField| |#1|))) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) NIL)) (|init| (($) NIL (|has| (|PrimeField| |#1|) (|Finite|)) CONST)) (|index| (($ (|PositiveInteger|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|inGroundField?| (((|Boolean|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|generator| (($) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|factor| (((|Factored| $) $) NIL)) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) NIL) (((|PositiveInteger|)) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|enumerate| (((|List| $)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|discreteLog| (((|NonNegativeInteger|) $) NIL (|has| (|PrimeField| |#1|) (|Finite|))) (((|Union| (|NonNegativeInteger|) "failed") $ $) NIL (OR (|has| (|PrimeField| |#1|) (|CharacteristicNonZero|)) (|has| (|PrimeField| |#1|) (|Finite|))))) (|dimension| (((|CardinalNumber|)) NIL)) (|differentiate| (($ $) NIL (|has| (|PrimeField| |#1|) (|Finite|))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) NIL) (((|PositiveInteger|) $) NIL)) (|definingPolynomial| (((|SparseUnivariatePolynomial| (|PrimeField| |#1|))) NIL)) (|createPrimitiveElement| (($) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|createNormalElement| (($) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|coordinates| (((|Vector| (|PrimeField| |#1|)) $) NIL) (((|Matrix| (|PrimeField| |#1|)) (|Vector| $)) NIL)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL) (($ (|Fraction| (|Integer|))) NIL) (($ (|PrimeField| |#1|)) NIL)) (|charthRoot| (($ $) NIL (|has| (|PrimeField| |#1|) (|Finite|))) (((|Union| $ "failed") $) NIL (OR (|has| (|PrimeField| |#1|) (|CharacteristicNonZero|)) (|has| (|PrimeField| |#1|) (|Finite|))))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|basis| (((|Vector| $)) NIL) (((|Vector| $) (|PositiveInteger|)) NIL)) (|associates?| (((|Boolean|) $ $) NIL)) (|algebraic?| (((|Boolean|) $) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (|Frobenius| (($ $) NIL (|has| (|PrimeField| |#1|) (|Finite|))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (D (($ $) NIL (|has| (|PrimeField| |#1|) (|Finite|))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|PrimeField| |#1|) (|Finite|)))) (= (((|Boolean|) $ $) NIL)) (/ (($ $ $) NIL) (($ $ (|PrimeField| |#1|)) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|Fraction| (|Integer|))) NIL) (($ (|Fraction| (|Integer|)) $) NIL) (($ $ (|PrimeField| |#1|)) NIL) (($ (|PrimeField| |#1|) $) NIL))) │ │ │ +(((|FiniteField| |#1| |#2|) (|FiniteAlgebraicExtensionField| (|PrimeField| |#1|)) (|PositiveInteger|) (|PositiveInteger|)) (T |FiniteField|)) │ │ │ NIL │ │ │ -(|Join| (|AbelianGroup|) (|IndexedDirectProductCategory| |#1| |#2|)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 12)) (|sample| (($) NIL T CONST)) (|reductum| (($ $) 26)) (|monomial| (($ |#1| |#2|) 23)) (|map| (($ (|Mapping| |#1| |#1|) $) 25)) (|leadingSupport| ((|#2| $) NIL)) (|leadingCoefficient| ((|#1| $) 27)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (|Zero| (($) 10 T CONST)) (= (((|Boolean|) $ $) NIL)) (+ (($ $ $) 17)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) 22))) │ │ │ -(((|IndexedDirectProductAbelianMonoid| |#1| |#2|) (|Join| (|AbelianMonoid|) (|IndexedDirectProductCategory| |#1| |#2|)) (|AbelianMonoid|) (|OrderedSet|)) (T |IndexedDirectProductAbelianMonoid|)) │ │ │ +(|FiniteAlgebraicExtensionField| (|PrimeField| |#1|)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) 14)) (|position| (((|NonNegativeInteger|) $) 12)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 25)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 24))) │ │ │ +(((|MakeCachableSet| |#1|) (|Join| (|CachableSet|) (|CoercibleTo| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ |#1|)))) (|SetCategory|)) (T |MakeCachableSet|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *1 (|MakeCachableSet| *2)) (|ofCategory| *2 (|SetCategory|))))) │ │ │ +(|Join| (|CachableSet|) (|CoercibleTo| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ |#1|)))) │ │ │ +((|retractIfCan| (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) 69) (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) 58) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) 91) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) 80) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 47) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 36)) (|retract| (($ (|Vector| (|Expression| (|Float|)))) 65) (($ (|Vector| (|Expression| (|Integer|)))) 54) (($ (|Vector| (|Polynomial| (|Float|)))) 87) (($ (|Vector| (|Polynomial| (|Integer|)))) 76) (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 43) (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 29)) (|outputAsFortran| (((|Void|) $) 118)) (|coerce| (((|OutputForm|) $) 111) (($ (|List| (|FortranCode|))) 100) (($ (|FortranCode|)) 94) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 97) (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) 28))) │ │ │ +(((|Asp10| |#1|) (|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|))))))) (|Symbol|)) (T |Asp10|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) (|isDomain| *1 (|Asp10| *3)) (|ofType| *3 (|Symbol|))))) │ │ │ +(|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|))))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|symmetricRemainder| (($ $ $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|submod| (($ $ $ $) NIL)) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|sign| (((|Integer|) $) NIL)) (|shift| (($ $ $) NIL)) (|sample| (($) NIL T CONST)) (|roman| (($ (|Symbol|)) 10) (($ (|Integer|)) 7)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL)) (|retract| (((|Integer|) $) NIL)) (|rem| (($ $ $) NIL)) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| (|Integer|)) (|Matrix| $)) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL)) (|rational?| (((|Boolean|) $) NIL)) (|rational| (((|Fraction| (|Integer|)) $) NIL)) (|random| (($) NIL) (($ $) NIL)) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|prime?| (((|Boolean|) $) NIL)) (|powmod| (($ $ $ $) NIL)) (|positiveRemainder| (($ $ $) NIL)) (|positive?| (((|Boolean|) $) NIL)) (|permutation| (($ $ $) NIL)) (|patternMatch| (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) NIL)) (|one?| (((|Boolean|) $) NIL)) (|odd?| (((|Boolean|) $) NIL)) (|nextItem| (((|Union| $ "failed") $) NIL)) (|negative?| (((|Boolean|) $) NIL)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|mulmod| (($ $ $ $) NIL)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|mask| (($ $) NIL)) (|length| (($ $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|invmod| (($ $ $) NIL)) (|init| (($) NIL T CONST)) (|inc| (($ $) NIL)) (|hash| (((|SingleInteger|) $) NIL) (($ $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|factorial| (($ $) NIL)) (|factor| (((|Factored| $) $) NIL)) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|even?| (((|Boolean|) $) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|differentiate| (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL)) (|dec| (($ $) NIL)) (|copy| (($ $) NIL)) (|convert| (((|Integer|) $) 16) (((|InputForm|) $) NIL) (((|Pattern| (|Integer|)) $) NIL) (((|Float|) $) NIL) (((|DoubleFloat|) $) NIL) (($ (|Symbol|)) 9)) (|coerce| (((|OutputForm|) $) 20) (($ (|Integer|)) 6) (($ $) NIL) (($ (|Integer|)) 6)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|bit?| (((|Boolean|) $ $) NIL)) (|binomial| (($ $ $) NIL)) (|base| (($) NIL)) (|associates?| (((|Boolean|) $ $) NIL)) (|addmod| (($ $ $ $) NIL)) (|abs| (($ $) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (D (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) NIL)) (- (($ $) 19) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL))) │ │ │ +(((|RomanNumeral|) (|Join| (|IntegerNumberSystem|) (CATEGORY |domain| (ATTRIBUTE |canonical|) (ATTRIBUTE |canonicalsClosed|) (ATTRIBUTE |noetherian|) (SIGNATURE |convert| ($ (|Symbol|))) (SIGNATURE |roman| ($ (|Symbol|))) (SIGNATURE |roman| ($ (|Integer|)))))) (T |RomanNumeral|)) │ │ │ +((|convert| (*1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|RomanNumeral|)))) (|roman| (*1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|RomanNumeral|)))) (|roman| (*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|RomanNumeral|))))) │ │ │ +(|Join| (|IntegerNumberSystem|) (CATEGORY |domain| (ATTRIBUTE |canonical|) (ATTRIBUTE |canonicalsClosed|) (ATTRIBUTE |noetherian|) (SIGNATURE |convert| ($ (|Symbol|))) (SIGNATURE |roman| ($ (|Symbol|))) (SIGNATURE |roman| ($ (|Integer|))))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|sample| (($) 16 T CONST)) (|rem| (($ $ $) 54)) (|recip| (((|Union| $ "failed") $) 33)) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|one?| (((|Boolean|) $) 30)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 38)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ +(((|EuclideanDomain|) (|Category|)) (T |EuclideanDomain|)) │ │ │ +((|sizeLess?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|EuclideanDomain|)) (|isDomain| *2 (|Boolean|)))) (|euclideanSize| (*1 *2 *1) (AND (|ofCategory| *1 (|EuclideanDomain|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|divide| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|EuclideanDomain|)))) (|quo| (*1 *1 *1 *1) (|ofCategory| *1 (|EuclideanDomain|))) (|rem| (*1 *1 *1 *1) (|ofCategory| *1 (|EuclideanDomain|))) (|extendedEuclidean| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Record| (|:| |coef1| *1) (|:| |coef2| *1) (|:| |generator| *1))) (|ofCategory| *1 (|EuclideanDomain|)))) (|extendedEuclidean| (*1 *2 *1 *1 *1) (|partial| AND (|isDomain| *2 (|Record| (|:| |coef1| *1) (|:| |coef2| *1))) (|ofCategory| *1 (|EuclideanDomain|)))) (|multiEuclidean| (*1 *2 *2 *1) (|partial| AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|EuclideanDomain|))))) │ │ │ +(|Join| (|PrincipalIdealDomain|) (CATEGORY |domain| (SIGNATURE |sizeLess?| ((|Boolean|) $ $)) (SIGNATURE |euclideanSize| ((|NonNegativeInteger|) $)) (SIGNATURE |divide| ((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $)) (SIGNATURE |quo| ($ $ $)) (SIGNATURE |rem| ($ $ $)) (SIGNATURE |extendedEuclidean| ((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $)) (SIGNATURE |extendedEuclidean| ((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (SIGNATURE |multiEuclidean| ((|Union| (|List| $) "failed") (|List| $) $)))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|EntireRing|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +((|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) 46)) (|normalizeIfCan| ((|#6| |#6|) 39))) │ │ │ +(((|LazardSetSolvingPackage| |#1| |#2| |#3| |#4| |#5| |#6|) (CATEGORY |package| (SIGNATURE |normalizeIfCan| (|#6| |#6|)) (SIGNATURE |zeroSetSplit| ((|List| |#6|) (|List| |#4|) (|Boolean|)))) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|) (|RegularTriangularSetCategory| |#1| |#2| |#3| |#4|) (|SquareFreeRegularTriangularSetCategory| |#1| |#2| |#3| |#4|)) (T |LazardSetSolvingPackage|)) │ │ │ +((|zeroSetSplit| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|Boolean|)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *5 (|GcdDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *2 (|List| *10)) (|isDomain| *1 (|LazardSetSolvingPackage| *5 *6 *7 *8 *9 *10)) (|ofCategory| *9 (|RegularTriangularSetCategory| *5 *6 *7 *8)) (|ofCategory| *10 (|SquareFreeRegularTriangularSetCategory| *5 *6 *7 *8)))) (|normalizeIfCan| (*1 *2 *2) (AND (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *1 (|LazardSetSolvingPackage| *3 *4 *5 *6 *7 *2)) (|ofCategory| *7 (|RegularTriangularSetCategory| *3 *4 *5 *6)) (|ofCategory| *2 (|SquareFreeRegularTriangularSetCategory| *3 *4 *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |normalizeIfCan| (|#6| |#6|)) (SIGNATURE |zeroSetSplit| ((|List| |#6|) (|List| |#4|) (|Boolean|)))) │ │ │ +((|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) 35))) │ │ │ +(((|GosperSummationMethod| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |GospersMethod| ((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|IntegralDomain|) (|PolynomialCategory| |#3| |#1| |#2|) (|Join| (|RetractableTo| (|Fraction| (|Integer|))) (|Field|) (CATEGORY |domain| (SIGNATURE |coerce| ($ |#4|)) (SIGNATURE |numer| (|#4| $)) (SIGNATURE |denom| (|#4| $))))) (T |GosperSummationMethod|)) │ │ │ +((|GospersMethod| (*1 *2 *2 *3 *4) (|partial| AND (|isDomain| *4 (|Mapping| *3)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|IntegralDomain|)) (|ofCategory| *7 (|PolynomialCategory| *6 *5 *3)) (|isDomain| *1 (|GosperSummationMethod| *5 *3 *6 *7 *2)) (|ofCategory| *2 (|Join| (|RetractableTo| (|Fraction| (|Integer|))) (|Field|) (CATEGORY |domain| (SIGNATURE |coerce| ($ *7)) (SIGNATURE |numer| (*7 $)) (SIGNATURE |denom| (*7 $)))))))) │ │ │ +(CATEGORY |package| (SIGNATURE |GospersMethod| ((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) 14)) (|var2Steps| (($ (|PositiveInteger|)) 70)) (|var1Steps| (($ (|PositiveInteger|)) 69)) (|unit| (($ (|List| (|Float|))) 76)) (|tubeRadius| (($ (|Float|)) 55)) (|tubePoints| (($ (|PositiveInteger|)) 71)) (|toScale| (($ (|Boolean|)) 22)) (|title| (($ (|String|)) 17)) (|style| (($ (|String|)) 18)) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) 65)) (|ranges| (($ (|List| (|Segment| (|Float|)))) 61)) (|range| (($ (|List| (|Segment| (|Float|)))) 56) (($ (|List| (|Segment| (|Fraction| (|Integer|))))) 60)) (|pointColor| (($ (|Float|)) 28) (($ (|Palette|)) 32)) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) 85)) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) 87)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|curveColor| (($ (|Float|)) 33) (($ (|Palette|)) 34)) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) 54)) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) 72)) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) 38) (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) 42) (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) 46)) (|coerce| (((|OutputForm|) $) 81)) (|clip| (($ (|Boolean|)) 23) (($ (|List| (|Segment| (|Float|)))) 50)) (|adaptive| (($ (|Boolean|)) 24)) (= (((|Boolean|) $ $) 83))) │ │ │ +(((|DrawOption|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |adaptive| ($ (|Boolean|))) (SIGNATURE |clip| ($ (|Boolean|))) (SIGNATURE |viewpoint| ($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))))) (SIGNATURE |title| ($ (|String|))) (SIGNATURE |style| ($ (|String|))) (SIGNATURE |toScale| ($ (|Boolean|))) (SIGNATURE |clip| ($ (|List| (|Segment| (|Float|))))) (SIGNATURE |coordinates| ($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))))) (SIGNATURE |pointColor| ($ (|Float|))) (SIGNATURE |pointColor| ($ (|Palette|))) (SIGNATURE |curveColor| ($ (|Float|))) (SIGNATURE |curveColor| ($ (|Palette|))) (SIGNATURE |colorFunction| ($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)))) (SIGNATURE |colorFunction| ($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)))) (SIGNATURE |colorFunction| ($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)))) (SIGNATURE |tubeRadius| ($ (|Float|))) (SIGNATURE |range| ($ (|List| (|Segment| (|Float|))))) (SIGNATURE |range| ($ (|List| (|Segment| (|Fraction| (|Integer|)))))) (SIGNATURE |ranges| ($ (|List| (|Segment| (|Float|))))) (SIGNATURE |space| ($ (|ThreeSpace| (|DoubleFloat|)))) (SIGNATURE |var1Steps| ($ (|PositiveInteger|))) (SIGNATURE |var2Steps| ($ (|PositiveInteger|))) (SIGNATURE |tubePoints| ($ (|PositiveInteger|))) (SIGNATURE |coord| ($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))))) (SIGNATURE |unit| ($ (|List| (|Float|)))) (SIGNATURE |option| ((|Union| (|Any|) "failed") (|List| $) (|Symbol|))) (SIGNATURE |option?| ((|Boolean|) (|List| $) (|Symbol|)))))) (T |DrawOption|)) │ │ │ +((|adaptive| (*1 *1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DrawOption|)))) (|clip| (*1 *1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DrawOption|)))) (|viewpoint| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) (|isDomain| *1 (|DrawOption|)))) (|title| (*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|DrawOption|)))) (|style| (*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|DrawOption|)))) (|toScale| (*1 *1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DrawOption|)))) (|clip| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Segment| (|Float|)))) (|isDomain| *1 (|DrawOption|)))) (|coordinates| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) (|isDomain| *1 (|DrawOption|)))) (|pointColor| (*1 *1 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|DrawOption|)))) (|pointColor| (*1 *1 *2) (AND (|isDomain| *2 (|Palette|)) (|isDomain| *1 (|DrawOption|)))) (|curveColor| (*1 *1 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|DrawOption|)))) (|curveColor| (*1 *1 *2) (AND (|isDomain| *2 (|Palette|)) (|isDomain| *1 (|DrawOption|)))) (|colorFunction| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *1 (|DrawOption|)))) (|colorFunction| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *1 (|DrawOption|)))) (|colorFunction| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *1 (|DrawOption|)))) (|tubeRadius| (*1 *1 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|DrawOption|)))) (|range| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Segment| (|Float|)))) (|isDomain| *1 (|DrawOption|)))) (|range| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Segment| (|Fraction| (|Integer|))))) (|isDomain| *1 (|DrawOption|)))) (|ranges| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Segment| (|Float|)))) (|isDomain| *1 (|DrawOption|)))) (|space| (*1 *1 *2) (AND (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|))) (|isDomain| *1 (|DrawOption|)))) (|var1Steps| (*1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|DrawOption|)))) (|var2Steps| (*1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|DrawOption|)))) (|tubePoints| (*1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|DrawOption|)))) (|coord| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) (|isDomain| *1 (|DrawOption|)))) (|unit| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Float|))) (|isDomain| *1 (|DrawOption|)))) (|option| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|DrawOption|)))) (|option?| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|DrawOption|))) (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DrawOption|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |adaptive| ($ (|Boolean|))) (SIGNATURE |clip| ($ (|Boolean|))) (SIGNATURE |viewpoint| ($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))))) (SIGNATURE |title| ($ (|String|))) (SIGNATURE |style| ($ (|String|))) (SIGNATURE |toScale| ($ (|Boolean|))) (SIGNATURE |clip| ($ (|List| (|Segment| (|Float|))))) (SIGNATURE |coordinates| ($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))))) (SIGNATURE |pointColor| ($ (|Float|))) (SIGNATURE |pointColor| ($ (|Palette|))) (SIGNATURE |curveColor| ($ (|Float|))) (SIGNATURE |curveColor| ($ (|Palette|))) (SIGNATURE |colorFunction| ($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)))) (SIGNATURE |colorFunction| ($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)))) (SIGNATURE |colorFunction| ($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)))) (SIGNATURE |tubeRadius| ($ (|Float|))) (SIGNATURE |range| ($ (|List| (|Segment| (|Float|))))) (SIGNATURE |range| ($ (|List| (|Segment| (|Fraction| (|Integer|)))))) (SIGNATURE |ranges| ($ (|List| (|Segment| (|Float|))))) (SIGNATURE |space| ($ (|ThreeSpace| (|DoubleFloat|)))) (SIGNATURE |var1Steps| ($ (|PositiveInteger|))) (SIGNATURE |var2Steps| ($ (|PositiveInteger|))) (SIGNATURE |tubePoints| ($ (|PositiveInteger|))) (SIGNATURE |coord| ($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))))) (SIGNATURE |unit| ($ (|List| (|Float|)))) (SIGNATURE |option| ((|Union| (|Any|) "failed") (|List| $) (|Symbol|))) (SIGNATURE |option?| ((|Boolean|) (|List| $) (|Symbol|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zag| (($ $ $) 115)) (|width| (((|Integer|) $) 30) (((|Integer|)) 35)) (|vspace| (($ (|Integer|)) 44)) (|vconcat| (($ $ $) 45) (($ (|List| $)) 76)) (|supersub| (($ $ (|List| $)) 74)) (|superHeight| (((|Integer|) $) 33)) (|super| (($ $ $) 63)) (|sum| (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (|subHeight| (((|Integer|) $) 32)) (|sub| (($ $ $) 62)) (|string| (($ $) 105)) (|slash| (($ $ $) 119)) (|semicolonSeparate| (($ (|List| $)) 52)) (|scripts| (($ $ (|List| $)) 69)) (|rspace| (($ (|Integer|) (|Integer|)) 46)) (|root| (($ $) 116) (($ $ $) 117)) (|right| (($ $ (|Integer|)) 40) (($ $) 43)) (|rem| (($ $ $) 89)) (|rarrow| (($ $ $) 122)) (|quote| (($ $) 106)) (|quo| (($ $ $) 90)) (|prod| (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (|print| (((|Void|) $) 8)) (|prime| (($ $) 109) (($ $ (|NonNegativeInteger|)) 112)) (|presuper| (($ $ $) 65)) (|presub| (($ $ $) 64)) (|prefix| (($ $ (|List| $)) 100)) (|postfix| (($ $ $) 104)) (|pile| (($ (|List| $)) 50)) (|paren| (($ $) 60) (($ (|List| $)) 61)) (|overlabel| (($ $ $) 113)) (|overbar| (($ $) 107)) (|over| (($ $ $) 118)) (|outputForm| (($ (|Integer|)) 20) (($ (|Symbol|)) 22) (($ (|String|)) 29) (($ (|DoubleFloat|)) 24)) (|or| (($ $ $) 93)) (|not| (($ $) 94)) (|messagePrint| (((|Void|) (|String|)) 14)) (|message| (($ (|String|)) 13)) (|matrix| (($ (|List| (|List| $))) 48)) (|left| (($ $ (|Integer|)) 39) (($ $) 42)) (|latex| (((|String|) $) NIL)) (|label| (($ $ $) 121)) (|int| (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (|infix?| (((|Boolean|) $) 98)) (|infix| (($ $ (|List| $)) 102) (($ $ $ $) 103)) (|hspace| (($ (|Integer|)) 36)) (|height| (((|Integer|) $) 31) (((|Integer|)) 34)) (|hconcat| (($ $ $) 37) (($ (|List| $)) 75)) (|hash| (((|SingleInteger|) $) NIL)) (|exquo| (($ $ $) 91)) (|empty| (($) 12)) (|elt| (($ $ (|List| $)) 99)) (|dot| (($ $) 108) (($ $ (|NonNegativeInteger|)) 111)) (|div| (($ $ $) 88)) (|differentiate| (($ $ (|NonNegativeInteger|)) 127)) (|commaSeparate| (($ (|List| $)) 51)) (|coerce| (((|OutputForm|) $) 18)) (|center| (($ $ (|Integer|)) 38) (($ $) 41)) (|bracket| (($ $) 58) (($ (|List| $)) 59)) (|brace| (($ $) 56) (($ (|List| $)) 57)) (|box| (($ $) 114)) (|blankSeparate| (($ (|List| $)) 55)) (|binomial| (($ $ $) 97)) (|assign| (($ $ $) 120)) (|and| (($ $ $) 92)) (^= (($ $ $) 77)) (SEGMENT (($ $ $) 95) (($ $) 96)) (>= (($ $ $) 81)) (> (($ $ $) 79)) (= (((|Boolean|) $ $) 15) (($ $ $) 16)) (<= (($ $ $) 80)) (< (($ $ $) 78)) (/ (($ $ $) 86)) (- (($ $ $) 83) (($ $) 84)) (+ (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) │ │ │ +(((|OutputForm|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |print| ((|Void|) $)) (SIGNATURE |message| ($ (|String|))) (SIGNATURE |messagePrint| ((|Void|) (|String|))) (SIGNATURE |outputForm| ($ (|Integer|))) (SIGNATURE |outputForm| ($ (|Symbol|))) (SIGNATURE |outputForm| ($ (|String|))) (SIGNATURE |outputForm| ($ (|DoubleFloat|))) (SIGNATURE |empty| ($)) (SIGNATURE |width| ((|Integer|) $)) (SIGNATURE |height| ((|Integer|) $)) (SIGNATURE |width| ((|Integer|))) (SIGNATURE |height| ((|Integer|))) (SIGNATURE |subHeight| ((|Integer|) $)) (SIGNATURE |superHeight| ((|Integer|) $)) (SIGNATURE |hspace| ($ (|Integer|))) (SIGNATURE |vspace| ($ (|Integer|))) (SIGNATURE |rspace| ($ (|Integer|) (|Integer|))) (SIGNATURE |left| ($ $ (|Integer|))) (SIGNATURE |right| ($ $ (|Integer|))) (SIGNATURE |center| ($ $ (|Integer|))) (SIGNATURE |left| ($ $)) (SIGNATURE |right| ($ $)) (SIGNATURE |center| ($ $)) (SIGNATURE |hconcat| ($ $ $)) (SIGNATURE |vconcat| ($ $ $)) (SIGNATURE |hconcat| ($ (|List| $))) (SIGNATURE |vconcat| ($ (|List| $))) (SIGNATURE |prefix| ($ $ (|List| $))) (SIGNATURE |infix| ($ $ (|List| $))) (SIGNATURE |infix| ($ $ $ $)) (SIGNATURE |postfix| ($ $ $)) (SIGNATURE |infix?| ((|Boolean|) $)) (SIGNATURE |elt| ($ $ (|List| $))) (SIGNATURE |string| ($ $)) (SIGNATURE |label| ($ $ $)) (SIGNATURE |box| ($ $)) (SIGNATURE |matrix| ($ (|List| (|List| $)))) (SIGNATURE |zag| ($ $ $)) (SIGNATURE |root| ($ $)) (SIGNATURE |root| ($ $ $)) (SIGNATURE |over| ($ $ $)) (SIGNATURE |slash| ($ $ $)) (SIGNATURE |assign| ($ $ $)) (SIGNATURE |rarrow| ($ $ $)) (SIGNATURE |differentiate| ($ $ (|NonNegativeInteger|))) (SIGNATURE |binomial| ($ $ $)) (SIGNATURE |sub| ($ $ $)) (SIGNATURE |super| ($ $ $)) (SIGNATURE |presub| ($ $ $)) (SIGNATURE |presuper| ($ $ $)) (SIGNATURE |scripts| ($ $ (|List| $))) (SIGNATURE |supersub| ($ $ (|List| $))) (SIGNATURE |quote| ($ $)) (SIGNATURE |dot| ($ $)) (SIGNATURE |dot| ($ $ (|NonNegativeInteger|))) (SIGNATURE |prime| ($ $)) (SIGNATURE |prime| ($ $ (|NonNegativeInteger|))) (SIGNATURE |overbar| ($ $)) (SIGNATURE |overlabel| ($ $ $)) (SIGNATURE |sum| ($ $)) (SIGNATURE |sum| ($ $ $)) (SIGNATURE |sum| ($ $ $ $)) (SIGNATURE |prod| ($ $)) (SIGNATURE |prod| ($ $ $)) (SIGNATURE |prod| ($ $ $ $)) (SIGNATURE |int| ($ $)) (SIGNATURE |int| ($ $ $)) (SIGNATURE |int| ($ $ $ $)) (SIGNATURE |brace| ($ $)) (SIGNATURE |brace| ($ (|List| $))) (SIGNATURE |bracket| ($ $)) (SIGNATURE |bracket| ($ (|List| $))) (SIGNATURE |paren| ($ $)) (SIGNATURE |paren| ($ (|List| $))) (SIGNATURE |pile| ($ (|List| $))) (SIGNATURE |commaSeparate| ($ (|List| $))) (SIGNATURE |semicolonSeparate| ($ (|List| $))) (SIGNATURE |blankSeparate| ($ (|List| $))) (SIGNATURE = ($ $ $)) (SIGNATURE ^= ($ $ $)) (SIGNATURE < ($ $ $)) (SIGNATURE > ($ $ $)) (SIGNATURE <= ($ $ $)) (SIGNATURE >= ($ $ $)) (SIGNATURE + ($ $ $)) (SIGNATURE - ($ $ $)) (SIGNATURE - ($ $)) (SIGNATURE * ($ $ $)) (SIGNATURE / ($ $ $)) (SIGNATURE ** ($ $ $)) (SIGNATURE |div| ($ $ $)) (SIGNATURE |rem| ($ $ $)) (SIGNATURE |quo| ($ $ $)) (SIGNATURE |exquo| ($ $ $)) (SIGNATURE |and| ($ $ $)) (SIGNATURE |or| ($ $ $)) (SIGNATURE |not| ($ $)) (SIGNATURE SEGMENT ($ $ $)) (SIGNATURE SEGMENT ($ $))))) (T |OutputForm|)) │ │ │ +((|print| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OutputForm|)))) (|message| (*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|OutputForm|)))) (|messagePrint| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OutputForm|)))) (|outputForm| (*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))) (|outputForm| (*1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|OutputForm|)))) (|outputForm| (*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|OutputForm|)))) (|outputForm| (*1 *1 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|OutputForm|)))) (|empty| (*1 *1) (|isDomain| *1 (|OutputForm|))) (|width| (*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))) (|height| (*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))) (|width| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))) (|height| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))) (|subHeight| (*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))) (|superHeight| (*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))) (|hspace| (*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))) (|vspace| (*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))) (|rspace| (*1 *1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))) (|left| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))) (|right| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))) (|center| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|OutputForm|)))) (|left| (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|right| (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|center| (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|hconcat| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|vconcat| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|hconcat| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))) (|vconcat| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))) (|prefix| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))) (|infix| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))) (|infix| (*1 *1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|postfix| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|infix?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OutputForm|)))) (|elt| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))) (|string| (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|label| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|box| (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|matrix| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|List| (|OutputForm|)))) (|isDomain| *1 (|OutputForm|)))) (|zag| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|root| (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|root| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|over| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|slash| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|assign| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|rarrow| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|differentiate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|OutputForm|)))) (|binomial| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|sub| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|super| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|presub| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|presuper| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|scripts| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))) (|supersub| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))) (|quote| (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|dot| (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|dot| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|OutputForm|)))) (|prime| (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|prime| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|OutputForm|)))) (|overbar| (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|overlabel| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|sum| (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|sum| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|sum| (*1 *1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|prod| (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|prod| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|prod| (*1 *1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|int| (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|int| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|int| (*1 *1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|brace| (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|brace| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))) (|bracket| (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|bracket| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))) (|paren| (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|paren| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))) (|pile| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))) (|commaSeparate| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))) (|semicolonSeparate| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))) (|blankSeparate| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|OutputForm|)))) (= (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (^= (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (< (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (> (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (<= (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (>= (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (+ (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (- (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (- (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (* (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (/ (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (** (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|div| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|rem| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|quo| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|exquo| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|and| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|or| (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (|not| (*1 *1 *1) (|isDomain| *1 (|OutputForm|))) (SEGMENT (*1 *1 *1 *1) (|isDomain| *1 (|OutputForm|))) (SEGMENT (*1 *1 *1) (|isDomain| *1 (|OutputForm|)))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |print| ((|Void|) $)) (SIGNATURE |message| ($ (|String|))) (SIGNATURE |messagePrint| ((|Void|) (|String|))) (SIGNATURE |outputForm| ($ (|Integer|))) (SIGNATURE |outputForm| ($ (|Symbol|))) (SIGNATURE |outputForm| ($ (|String|))) (SIGNATURE |outputForm| ($ (|DoubleFloat|))) (SIGNATURE |empty| ($)) (SIGNATURE |width| ((|Integer|) $)) (SIGNATURE |height| ((|Integer|) $)) (SIGNATURE |width| ((|Integer|))) (SIGNATURE |height| ((|Integer|))) (SIGNATURE |subHeight| ((|Integer|) $)) (SIGNATURE |superHeight| ((|Integer|) $)) (SIGNATURE |hspace| ($ (|Integer|))) (SIGNATURE |vspace| ($ (|Integer|))) (SIGNATURE |rspace| ($ (|Integer|) (|Integer|))) (SIGNATURE |left| ($ $ (|Integer|))) (SIGNATURE |right| ($ $ (|Integer|))) (SIGNATURE |center| ($ $ (|Integer|))) (SIGNATURE |left| ($ $)) (SIGNATURE |right| ($ $)) (SIGNATURE |center| ($ $)) (SIGNATURE |hconcat| ($ $ $)) (SIGNATURE |vconcat| ($ $ $)) (SIGNATURE |hconcat| ($ (|List| $))) (SIGNATURE |vconcat| ($ (|List| $))) (SIGNATURE |prefix| ($ $ (|List| $))) (SIGNATURE |infix| ($ $ (|List| $))) (SIGNATURE |infix| ($ $ $ $)) (SIGNATURE |postfix| ($ $ $)) (SIGNATURE |infix?| ((|Boolean|) $)) (SIGNATURE |elt| ($ $ (|List| $))) (SIGNATURE |string| ($ $)) (SIGNATURE |label| ($ $ $)) (SIGNATURE |box| ($ $)) (SIGNATURE |matrix| ($ (|List| (|List| $)))) (SIGNATURE |zag| ($ $ $)) (SIGNATURE |root| ($ $)) (SIGNATURE |root| ($ $ $)) (SIGNATURE |over| ($ $ $)) (SIGNATURE |slash| ($ $ $)) (SIGNATURE |assign| ($ $ $)) (SIGNATURE |rarrow| ($ $ $)) (SIGNATURE |differentiate| ($ $ (|NonNegativeInteger|))) (SIGNATURE |binomial| ($ $ $)) (SIGNATURE |sub| ($ $ $)) (SIGNATURE |super| ($ $ $)) (SIGNATURE |presub| ($ $ $)) (SIGNATURE |presuper| ($ $ $)) (SIGNATURE |scripts| ($ $ (|List| $))) (SIGNATURE |supersub| ($ $ (|List| $))) (SIGNATURE |quote| ($ $)) (SIGNATURE |dot| ($ $)) (SIGNATURE |dot| ($ $ (|NonNegativeInteger|))) (SIGNATURE |prime| ($ $)) (SIGNATURE |prime| ($ $ (|NonNegativeInteger|))) (SIGNATURE |overbar| ($ $)) (SIGNATURE |overlabel| ($ $ $)) (SIGNATURE |sum| ($ $)) (SIGNATURE |sum| ($ $ $)) (SIGNATURE |sum| ($ $ $ $)) (SIGNATURE |prod| ($ $)) (SIGNATURE |prod| ($ $ $)) (SIGNATURE |prod| ($ $ $ $)) (SIGNATURE |int| ($ $)) (SIGNATURE |int| ($ $ $)) (SIGNATURE |int| ($ $ $ $)) (SIGNATURE |brace| ($ $)) (SIGNATURE |brace| ($ (|List| $))) (SIGNATURE |bracket| ($ $)) (SIGNATURE |bracket| ($ (|List| $))) (SIGNATURE |paren| ($ $)) (SIGNATURE |paren| ($ (|List| $))) (SIGNATURE |pile| ($ (|List| $))) (SIGNATURE |commaSeparate| ($ (|List| $))) (SIGNATURE |semicolonSeparate| ($ (|List| $))) (SIGNATURE |blankSeparate| ($ (|List| $))) (SIGNATURE = ($ $ $)) (SIGNATURE ^= ($ $ $)) (SIGNATURE < ($ $ $)) (SIGNATURE > ($ $ $)) (SIGNATURE <= ($ $ $)) (SIGNATURE >= ($ $ $)) (SIGNATURE + ($ $ $)) (SIGNATURE - ($ $ $)) (SIGNATURE - ($ $)) (SIGNATURE * ($ $ $)) (SIGNATURE / ($ $ $)) (SIGNATURE ** ($ $ $)) (SIGNATURE |div| ($ $ $)) (SIGNATURE |rem| ($ $ $)) (SIGNATURE |quo| ($ $ $)) (SIGNATURE |exquo| ($ $ $)) (SIGNATURE |and| ($ $ $)) (SIGNATURE |or| ($ $ $)) (SIGNATURE |not| ($ $)) (SIGNATURE SEGMENT ($ $ $)) (SIGNATURE SEGMENT ($ $)))) │ │ │ +((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) 45))) │ │ │ +(((|ComplexRootPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |complexZeros| ((|List| (|Complex| |#2|)) |#1| |#2|))) (|UnivariatePolynomialCategory| (|Complex| (|Integer|))) (|Join| (|Field|) (|OrderedRing|))) (T |ComplexRootPackage|)) │ │ │ +((|complexZeros| (*1 *2 *3 *4) (AND (|isDomain| *2 (|List| (|Complex| *4))) (|isDomain| *1 (|ComplexRootPackage| *3 *4)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| (|Integer|)))) (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |complexZeros| ((|List| (|Complex| |#2|)) |#1| |#2|))) │ │ │ +((~= (((|Boolean|) $ $) 41)) (|value| ((|#1| $) 15)) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) 36)) (|status| (((|Boolean|) $) 17)) (|setValue!| (($ $ |#1|) 28)) (|setStatus!| (($ $ (|Boolean|)) 30)) (|setEmpty!| (($ $) 31)) (|setCondition!| (($ $ |#2|) 29)) (|latex| (((|String|) $) NIL)) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) 35)) (|hash| (((|SingleInteger|) $) NIL)) (|empty?| (((|Boolean|) $) 14)) (|empty| (($) 10)) (|copy| (($ $) 27)) (|construct| (($ |#1| |#2| (|Boolean|)) 18) (($ |#1| |#2|) 19) (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) 21) (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) 24) (((|List| $) |#1| (|List| |#2|)) 26)) (|condition| ((|#2| $) 16)) (|coerce| (((|OutputForm|) $) 50)) (= (((|Boolean|) $ $) 39))) │ │ │ +(((|SplittingNode| |#1| |#2|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |empty| ($)) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |value| (|#1| $)) (SIGNATURE |condition| (|#2| $)) (SIGNATURE |status| ((|Boolean|) $)) (SIGNATURE |construct| ($ |#1| |#2| (|Boolean|))) (SIGNATURE |construct| ($ |#1| |#2|)) (SIGNATURE |construct| ($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) (SIGNATURE |construct| ((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))))) (SIGNATURE |construct| ((|List| $) |#1| (|List| |#2|))) (SIGNATURE |copy| ($ $)) (SIGNATURE |setValue!| ($ $ |#1|)) (SIGNATURE |setCondition!| ($ $ |#2|)) (SIGNATURE |setStatus!| ($ $ (|Boolean|))) (SIGNATURE |setEmpty!| ($ $)) (SIGNATURE |infLex?| ((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|))) (SIGNATURE |subNode?| ((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|))))) (|Join| (|SetCategory|) (|Aggregate|)) (|Join| (|SetCategory|) (|Aggregate|))) (T |SplittingNode|)) │ │ │ +((|empty| (*1 *1) (AND (|isDomain| *1 (|SplittingNode| *2 *3)) (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|empty?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *3 *4)) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|))))) (|value| (*1 *2 *1) (AND (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))) (|isDomain| *1 (|SplittingNode| *2 *3)) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|condition| (*1 *2 *1) (AND (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))) (|isDomain| *1 (|SplittingNode| *3 *2)) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|status| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *3 *4)) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|))))) (|construct| (*1 *1 *2 *3 *4) (AND (|isDomain| *4 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *2 *3)) (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|construct| (*1 *1 *2 *3) (AND (|isDomain| *1 (|SplittingNode| *2 *3)) (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|construct| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |val| *3) (|:| |tower| *4))) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|))) (|isDomain| *1 (|SplittingNode| *3 *4)))) (|construct| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Record| (|:| |val| *4) (|:| |tower| *5)))) (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *5 (|Join| (|SetCategory|) (|Aggregate|))) (|isDomain| *2 (|List| (|SplittingNode| *4 *5))) (|isDomain| *1 (|SplittingNode| *4 *5)))) (|construct| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| *5)) (|ofCategory| *5 (|Join| (|SetCategory|) (|Aggregate|))) (|isDomain| *2 (|List| (|SplittingNode| *3 *5))) (|isDomain| *1 (|SplittingNode| *3 *5)) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|copy| (*1 *1 *1) (AND (|isDomain| *1 (|SplittingNode| *2 *3)) (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|setValue!| (*1 *1 *1 *2) (AND (|isDomain| *1 (|SplittingNode| *2 *3)) (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|setCondition!| (*1 *1 *1 *2) (AND (|isDomain| *1 (|SplittingNode| *3 *2)) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))))) (|setStatus!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *3 *4)) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|))))) (|setEmpty!| (*1 *1 *1) (AND (|isDomain| *1 (|SplittingNode| *2 *3)) (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|infLex?| (*1 *2 *1 *1 *3 *4) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *5 *5)) (|isDomain| *4 (|Mapping| (|Boolean|) *6 *6)) (|ofCategory| *5 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *6 (|Join| (|SetCategory|) (|Aggregate|))) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *5 *6)))) (|subNode?| (*1 *2 *1 *1 *3) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *5 *5)) (|ofCategory| *5 (|Join| (|SetCategory|) (|Aggregate|))) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *4 *5)) (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|)))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |empty| ($)) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |value| (|#1| $)) (SIGNATURE |condition| (|#2| $)) (SIGNATURE |status| ((|Boolean|) $)) (SIGNATURE |construct| ($ |#1| |#2| (|Boolean|))) (SIGNATURE |construct| ($ |#1| |#2|)) (SIGNATURE |construct| ($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) (SIGNATURE |construct| ((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))))) (SIGNATURE |construct| ((|List| $) |#1| (|List| |#2|))) (SIGNATURE |copy| ($ $)) (SIGNATURE |setValue!| ($ $ |#1|)) (SIGNATURE |setCondition!| ($ $ |#2|)) (SIGNATURE |setStatus!| ($ $ (|Boolean|))) (SIGNATURE |setEmpty!| ($ $)) (SIGNATURE |infLex?| ((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|))) (SIGNATURE |subNode?| ((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|))))) │ │ │ +((|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) 65)) (|sumOfDivisors| (((|Integer|) (|Integer|)) 64)) (|numberOfDivisors| (((|Integer|) (|Integer|)) 63)) (|moebiusMu| (((|Integer|) (|Integer|)) 68)) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) 48)) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) 45)) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) 20)) (|fibonacci| (((|Integer|) (|Integer|)) 21)) (|eulerPhi| (((|Integer|) (|Integer|)) 57)) (|euler| (((|Integer|) (|Integer|)) 32)) (|divisors| (((|List| (|Integer|)) (|Integer|)) 62)) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 43)) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) 41))) │ │ │ +(((|IntegerNumberTheoryFunctions|) (CATEGORY |package| (SIGNATURE |bernoulli| ((|Fraction| (|Integer|)) (|Integer|))) (SIGNATURE |chineseRemainder| ((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |divisors| ((|List| (|Integer|)) (|Integer|))) (SIGNATURE |euler| ((|Integer|) (|Integer|))) (SIGNATURE |eulerPhi| ((|Integer|) (|Integer|))) (SIGNATURE |fibonacci| ((|Integer|) (|Integer|))) (SIGNATURE |harmonic| ((|Fraction| (|Integer|)) (|Integer|))) (SIGNATURE |jacobi| ((|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |legendre| ((|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |moebiusMu| ((|Integer|) (|Integer|))) (SIGNATURE |numberOfDivisors| ((|Integer|) (|Integer|))) (SIGNATURE |sumOfDivisors| ((|Integer|) (|Integer|))) (SIGNATURE |sumOfKthPowerDivisors| ((|Integer|) (|Integer|) (|NonNegativeInteger|))))) (T |IntegerNumberTheoryFunctions|)) │ │ │ +((|sumOfKthPowerDivisors| (*1 *2 *2 *3) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|sumOfDivisors| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|numberOfDivisors| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|moebiusMu| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|legendre| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|jacobi| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|harmonic| (*1 *2 *3) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)) (|isDomain| *3 (|Integer|)))) (|fibonacci| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|eulerPhi| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|euler| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|divisors| (*1 *2 *3) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)) (|isDomain| *3 (|Integer|)))) (|chineseRemainder| (*1 *2 *2 *2 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|bernoulli| (*1 *2 *3) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)) (|isDomain| *3 (|Integer|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |bernoulli| ((|Fraction| (|Integer|)) (|Integer|))) (SIGNATURE |chineseRemainder| ((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |divisors| ((|List| (|Integer|)) (|Integer|))) (SIGNATURE |euler| ((|Integer|) (|Integer|))) (SIGNATURE |eulerPhi| ((|Integer|) (|Integer|))) (SIGNATURE |fibonacci| ((|Integer|) (|Integer|))) (SIGNATURE |harmonic| ((|Fraction| (|Integer|)) (|Integer|))) (SIGNATURE |jacobi| ((|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |legendre| ((|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |moebiusMu| ((|Integer|) (|Integer|))) (SIGNATURE |numberOfDivisors| ((|Integer|) (|Integer|))) (SIGNATURE |sumOfDivisors| ((|Integer|) (|Integer|))) (SIGNATURE |sumOfKthPowerDivisors| ((|Integer|) (|Integer|) (|NonNegativeInteger|)))) │ │ │ +((|retractIfCan| (((|Union| |#2| "failed") $) NIL) (((|Union| (|Fraction| (|Integer|)) "failed") $) 27) (((|Union| (|Integer|) "failed") $) 19)) (|retract| ((|#2| $) NIL) (((|Fraction| (|Integer|)) $) 24) (((|Integer|) $) 14)) (|coerce| (($ |#2|) NIL) (($ (|Fraction| (|Integer|))) 22) (($ (|Integer|)) 11))) │ │ │ +(((|FullyRetractableTo&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |retract| ((|Integer|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |retract| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |retract| (|#2| |#1|))) (|FullyRetractableTo| |#2|) (|Type|)) (T |FullyRetractableTo&|)) │ │ │ NIL │ │ │ -(|Join| (|AbelianMonoid|) (|IndexedDirectProductCategory| |#1| |#2|)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|reductum| (($ $) 24)) (|monomial| (($ |#1| |#2|) 21)) (|map| (($ (|Mapping| |#1| |#1|) $) 23)) (|leadingSupport| ((|#2| $) 26)) (|leadingCoefficient| ((|#1| $) 25)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 20)) (= (((|Boolean|) $ $) 13))) │ │ │ -(((|IndexedDirectProductObject| |#1| |#2|) (|IndexedDirectProductCategory| |#1| |#2|) (|SetCategory|) (|OrderedSet|)) (T |IndexedDirectProductObject|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |retract| ((|Integer|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |retract| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |retract| (|#2| |#1|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|numericalIntegration| (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) 65) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) NIL)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 35) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|d01anfAnnaType|) (|NumericalIntegrationCategory|)) (T |d01anfAnnaType|)) │ │ │ NIL │ │ │ -(|IndexedDirectProductCategory| |#1| |#2|) │ │ │ -((|incrementBy| (((|Mapping| |#1| |#1|) |#1|) 11)) (|increment| (((|Mapping| |#1| |#1|)) 10))) │ │ │ -(((|IncrementingMaps| |#1|) (CATEGORY |package| (SIGNATURE |increment| ((|Mapping| |#1| |#1|))) (SIGNATURE |incrementBy| ((|Mapping| |#1| |#1|) |#1|))) (|Join| (|Monoid|) (|AbelianSemiGroup|))) (T |IncrementingMaps|)) │ │ │ -((|incrementBy| (*1 *2 *3) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|isDomain| *1 (|IncrementingMaps| *3)) (|ofCategory| *3 (|Join| (|Monoid|) (|AbelianSemiGroup|))))) (|increment| (*1 *2) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|isDomain| *1 (|IncrementingMaps| *3)) (|ofCategory| *3 (|Join| (|Monoid|) (|AbelianSemiGroup|)))))) │ │ │ -(CATEGORY |package| (SIGNATURE |increment| ((|Mapping| |#1| |#1|))) (SIGNATURE |incrementBy| ((|Mapping| |#1| |#1|) |#1|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|sample| (($) 19 T CONST)) (|recip| (((|Union| $ "failed") $) 15)) (|one?| (((|Boolean|) $) 18)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 26)) (|hash| (((|SingleInteger|) $) 10)) (|conjugate| (($ $ $) 22)) (|commutator| (($ $ $) 21)) (|coerce| (((|OutputForm|) $) 11)) (^ (($ $ (|PositiveInteger|)) 12) (($ $ (|NonNegativeInteger|)) 16) (($ $ (|Integer|)) 23)) (|One| (($) 20 T CONST)) (= (((|Boolean|) $ $) 6)) (/ (($ $ $) 25)) (** (($ $ (|PositiveInteger|)) 13) (($ $ (|NonNegativeInteger|)) 17) (($ $ (|Integer|)) 24)) (* (($ $ $) 14))) │ │ │ -(((|Group|) (|Category|)) (T |Group|)) │ │ │ -((|inv| (*1 *1 *1) (|ofCategory| *1 (|Group|))) (/ (*1 *1 *1 *1) (|ofCategory| *1 (|Group|))) (** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|Group|)) (|isDomain| *2 (|Integer|)))) (^ (*1 *1 *1 *2) (AND (|ofCategory| *1 (|Group|)) (|isDomain| *2 (|Integer|)))) (|conjugate| (*1 *1 *1 *1) (|ofCategory| *1 (|Group|))) (|commutator| (*1 *1 *1 *1) (|ofCategory| *1 (|Group|)))) │ │ │ -(|Join| (|Monoid|) (CATEGORY |domain| (SIGNATURE |inv| ($ $)) (SIGNATURE / ($ $ $)) (SIGNATURE ** ($ $ (|Integer|))) (SIGNATURE ^ ($ $ (|Integer|))) (ATTRIBUTE |unitsKnown|) (SIGNATURE |conjugate| ($ $ $)) (SIGNATURE |commutator| ($ $ $)))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Monoid|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) 14)) (|integer?| (((|Boolean|) |#1|) 13)) (|integer| (((|Integer|) |#1|) 9))) │ │ │ -(((|IntegerRetractions| |#1|) (CATEGORY |package| (SIGNATURE |integer| ((|Integer|) |#1|)) (SIGNATURE |integer?| ((|Boolean|) |#1|)) (SIGNATURE |integerIfCan| ((|Union| (|Integer|) "failed") |#1|))) (|RetractableTo| (|Integer|))) (T |IntegerRetractions|)) │ │ │ -((|integerIfCan| (*1 *2 *3) (|partial| AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerRetractions| *3)) (|ofCategory| *3 (|RetractableTo| *2)))) (|integer?| (*1 *2 *3) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IntegerRetractions| *3)) (|ofCategory| *3 (|RetractableTo| (|Integer|))))) (|integer| (*1 *2 *3) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerRetractions| *3)) (|ofCategory| *3 (|RetractableTo| *2))))) │ │ │ -(CATEGORY |package| (SIGNATURE |integer| ((|Integer|) |#1|)) (SIGNATURE |integer?| ((|Boolean|) |#1|)) (SIGNATURE |integerIfCan| ((|Union| (|Integer|) "failed") |#1|))) │ │ │ -((|constantKernel| (((|Kernel| |#2|) |#1|) 15)) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) 19))) │ │ │ -(((|KernelFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |constantKernel| ((|Kernel| |#2|) |#1|)) (SIGNATURE |constantIfCan| ((|Union| |#1| "failed") (|Kernel| |#2|)))) (|OrderedSet|) (|OrderedSet|)) (T |KernelFunctions2|)) │ │ │ -((|constantIfCan| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Kernel| *4)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|OrderedSet|)) (|isDomain| *1 (|KernelFunctions2| *2 *4)))) (|constantKernel| (*1 *2 *3) (AND (|isDomain| *2 (|Kernel| *4)) (|isDomain| *1 (|KernelFunctions2| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|OrderedSet|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |constantKernel| ((|Kernel| |#2|) |#1|)) (SIGNATURE |constantIfCan| ((|Union| |#1| "failed") (|Kernel| |#2|)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|reducedSystem| (((|Matrix| |#1|) (|Matrix| $)) 35) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) 34)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ -(((|LinearlyExplicitRingOver| |#1|) (|Category|) (|Ring|)) (T |LinearlyExplicitRingOver|)) │ │ │ -((|reducedSystem| (*1 *2 *3) (AND (|isDomain| *3 (|Matrix| *1)) (|ofCategory| *1 (|LinearlyExplicitRingOver| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Matrix| *4)))) (|reducedSystem| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Matrix| *1)) (|isDomain| *4 (|Vector| *1)) (|ofCategory| *1 (|LinearlyExplicitRingOver| *5)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Record| (|:| |mat| (|Matrix| *5)) (|:| |vec| (|Vector| *5))))))) │ │ │ -(|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |reducedSystem| ((|Matrix| |t#1|) (|Matrix| $))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| |t#1|)) (|:| |vec| (|Vector| |t#1|))) (|Matrix| $) (|Vector| $))))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#2|) 10))) │ │ │ -(((|LeftAlgebra&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|LeftAlgebra| |#2|) (|Ring|)) (T |LeftAlgebra&|)) │ │ │ +(|NumericalIntegrationCategory|) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 46)) (|retract| (((|Integer|) $) 45)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|min| (($ $ $) 53)) (|max| (($ $ $) 52)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Integer|)) 47)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 38)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (>= (((|Boolean|) $ $) 50)) (> (((|Boolean|) $ $) 49)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 51)) (< (((|Boolean|) $ $) 48)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ +(((|FortranMachineTypeCategory|) (|Category|)) (T |FortranMachineTypeCategory|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) │ │ │ +(|Join| (|IntegralDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|EntireRing|) . T) ((|IntegralDomain|) . T) ((|LeftModule| $) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|OrderedSet|) . T) ((|RetractableTo| (|Integer|)) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ ((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ |#1|) 35)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ |#1| $) 36))) │ │ │ (((|LeftAlgebra| |#1|) (|Category|) (|Ring|)) (T |LeftAlgebra|)) │ │ │ ((|coerce| (*1 *1 *2) (AND (|ofCategory| *1 (|LeftAlgebra| *2)) (|ofCategory| *2 (|Ring|))))) │ │ │ (|Join| (|Ring|) (|LeftModule| |t#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ |t#1|)))) │ │ │ (((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|latex| (((|String|) $) NIL)) (|index| ((|#1| $) 13)) (|hash| (((|SingleInteger|) $) NIL)) (|exponent| ((|#2| $) 12)) (|construct| (($ |#1| |#2|) 16)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) 15) (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) 14)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 11))) │ │ │ -(((|ModuleMonomial| |#1| |#2| |#3|) (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |exponent| (|#2| $)) (SIGNATURE |index| (|#1| $)) (SIGNATURE |coerce| ($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)))) (SIGNATURE |coerce| ((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $)) (SIGNATURE |construct| ($ |#1| |#2|)))) (|OrderedSet|) (|SetCategory|) (|Mapping| (|Boolean|) (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)))) (T |ModuleMonomial|)) │ │ │ -((|exponent| (*1 *2 *1) (AND (|ofCategory| *2 (|SetCategory|)) (|isDomain| *1 (|ModuleMonomial| *3 *2 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofType| *4 (|Mapping| (|Boolean|) (|Record| (|:| |index| *3) (|:| |exponent| *2)) (|Record| (|:| |index| *3) (|:| |exponent| *2)))))) (|index| (*1 *2 *1) (AND (|ofCategory| *2 (|OrderedSet|)) (|isDomain| *1 (|ModuleMonomial| *2 *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofType| *4 (|Mapping| (|Boolean|) (|Record| (|:| |index| *2) (|:| |exponent| *3)) (|Record| (|:| |index| *2) (|:| |exponent| *3)))))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |index| *3) (|:| |exponent| *4))) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *1 (|ModuleMonomial| *3 *4 *5)) (|ofType| *5 (|Mapping| (|Boolean|) *2 *2)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Record| (|:| |index| *3) (|:| |exponent| *4))) (|isDomain| *1 (|ModuleMonomial| *3 *4 *5)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|SetCategory|)) (|ofType| *5 (|Mapping| (|Boolean|) *2 *2)))) (|construct| (*1 *1 *2 *3) (AND (|isDomain| *1 (|ModuleMonomial| *2 *3 *4)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|SetCategory|)) (|ofType| *4 (|Mapping| (|Boolean|) (|Record| (|:| |index| *2) (|:| |exponent| *3)) (|Record| (|:| |index| *2) (|:| |exponent| *3))))))) │ │ │ -(|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |exponent| (|#2| $)) (SIGNATURE |index| (|#1| $)) (SIGNATURE |coerce| ($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)))) (SIGNATURE |coerce| ((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $)) (SIGNATURE |construct| ($ |#1| |#2|)))) │ │ │ -((|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) 18))) │ │ │ -(((|MonoidRingFunctions2| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |map| ((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)))) (|Ring|) (|Ring|) (|Monoid|)) (T |MonoidRingFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|MonoidRing| *5 *7)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|)) (|ofCategory| *7 (|Monoid|)) (|isDomain| *2 (|MonoidRing| *6 *7)) (|isDomain| *1 (|MonoidRingFunctions2| *5 *6 *7))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) NIL)) (|variables| (((|List| (|SingletonAsOrderedSet|)) $) NIL)) (|unvectorise| (($ (|Vector| |#1|)) NIL)) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) NIL)) (|univariate| (((|SparseUnivariatePolynomial| $) $ (|SingletonAsOrderedSet|)) NIL) (((|SparseUnivariatePolynomial| |#1|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|totalDegree| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|List| (|SingletonAsOrderedSet|))) NIL)) (|tanh| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|tan| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|subResultantGcd| (($ $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|squareFreePart| (($ $) NIL (|has| |#1| (|GcdDomain|)))) (|squareFree| (((|Factored| $) $) NIL (|has| |#1| (|GcdDomain|)))) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|sizeLess?| (((|Boolean|) $ $) NIL (|has| |#1| (|Field|)))) (|sinh| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|sin| (($ $) 22 (|has| |#1| (|TranscendentalFunctionCategory|)))) (|shiftRight| (($ $ (|NonNegativeInteger|)) NIL)) (|shiftLeft| (($ $ (|NonNegativeInteger|)) NIL)) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (|GcdDomain|)))) (|sech| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|sec| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|SingletonAsOrderedSet|) "failed") $) NIL)) (|retract| ((|#1| $) NIL) (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|SingletonAsOrderedSet|) $) NIL)) (|resultant| (($ $ $ (|SingletonAsOrderedSet|)) NIL (|has| |#1| (|CommutativeRing|))) ((|#1| $ $) NIL (|has| |#1| (|CommutativeRing|)))) (|rem| (($ $ $) NIL (|has| |#1| (|Field|)))) (|reductum| (($ $) NIL)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| |#1|) (|Matrix| $)) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|quo| (($ $ $) NIL (|has| |#1| (|Field|)))) (|pseudoRemainder| (($ $ $) NIL)) (|pseudoQuotient| (($ $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL (|has| |#1| (|Field|)))) (|primitivePart| (($ $) NIL (|has| |#1| (|GcdDomain|))) (($ $ (|SingletonAsOrderedSet|)) NIL (|has| |#1| (|GcdDomain|)))) (|primitiveMonomials| (((|List| $) $) NIL)) (|prime?| (((|Boolean|) $) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|pomopo!| (($ $ |#1| (|NonNegativeInteger|) $) NIL)) (|pi| (($) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) NIL (AND (|has| (|SingletonAsOrderedSet|) (|PatternMatchable| (|Float|))) (|has| |#1| (|PatternMatchable| (|Float|))))) (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) NIL (AND (|has| (|SingletonAsOrderedSet|) (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Integer|)))))) (|order| (((|NonNegativeInteger|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|one?| (((|Boolean|) $) NIL)) (|numberOfMonomials| (((|NonNegativeInteger|) $) NIL)) (|nextItem| (((|Union| $ "failed") $) NIL (|has| |#1| (|StepThrough|)))) (|multivariate| (($ (|SparseUnivariatePolynomial| |#1|) (|SingletonAsOrderedSet|)) NIL) (($ (|SparseUnivariatePolynomial| $) (|SingletonAsOrderedSet|)) NIL)) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) NIL)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| |#1| (|Field|)))) (|monomials| (((|List| $) $) NIL)) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| (|NonNegativeInteger|)) NIL) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ (|SingletonAsOrderedSet|)) NIL) (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|minimumDegree| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|SingletonAsOrderedSet|)) NIL) (((|List| (|NonNegativeInteger|)) $ (|List| (|SingletonAsOrderedSet|))) NIL)) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|mapExponents| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) NIL)) (|mainVariable| (((|Union| (|SingletonAsOrderedSet|) "failed") $) NIL)) (|log| (($ $) 18 (|has| |#1| (|TranscendentalFunctionCategory|)))) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL (|has| |#1| (|GcdDomain|)))) (|lcm| (($ (|List| $)) NIL (|has| |#1| (|GcdDomain|))) (($ $ $) NIL (|has| |#1| (|GcdDomain|)))) (|latex| (((|String|) $) NIL)) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) NIL)) (|isTimes| (((|Union| (|List| $) "failed") $) NIL)) (|isPlus| (((|Union| (|List| $) "failed") $) NIL)) (|isExpt| (((|Union| (|Record| (|:| |var| (|SingletonAsOrderedSet|)) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) NIL)) (|integrate| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|init| (($) NIL (|has| |#1| (|StepThrough|)) CONST)) (|hash| (((|SingleInteger|) $) NIL)) (|ground?| (((|Boolean|) $) 8)) (|ground| ((|#1| $) 9)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|GcdDomain|)))) (|gcd| (($ (|List| $)) NIL (|has| |#1| (|GcdDomain|))) (($ $ $) NIL (|has| |#1| (|GcdDomain|)))) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factor| (((|Factored| $) $) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (|Field|))) (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| |#1| (|Field|)))) (|exquo| (((|Union| $ "failed") $ |#1|) NIL (|has| |#1| (|IntegralDomain|))) (((|Union| $ "failed") $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| |#1| (|Field|)))) (|exp| (($ $) 20 (|has| |#1| (|TranscendentalFunctionCategory|)))) (|eval| (($ $ (|List| (|Equation| $))) NIL) (($ $ (|Equation| $)) NIL) (($ $ $ $) NIL) (($ $ (|List| $) (|List| $)) NIL) (($ $ (|SingletonAsOrderedSet|) |#1|) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| |#1|)) NIL) (($ $ (|SingletonAsOrderedSet|) $) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| $)) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL (|has| |#1| (|Field|)))) (|elt| ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((|Fraction| $) (|Fraction| $) (|Fraction| $)) NIL (|has| |#1| (|IntegralDomain|))) ((|#1| (|Fraction| $) |#1|) NIL (|has| |#1| (|Field|))) (((|Fraction| $) $ (|Fraction| $)) NIL (|has| |#1| (|IntegralDomain|)))) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) NIL)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#1| (|Field|)))) (|discriminant| (($ $ (|SingletonAsOrderedSet|)) NIL (|has| |#1| (|CommutativeRing|))) ((|#1| $) NIL (|has| |#1| (|CommutativeRing|)))) (|differentiate| (($ $ (|SingletonAsOrderedSet|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|))) NIL) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL) (($ $ (|Symbol|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#1| |#1|)) NIL) (($ $ (|Mapping| |#1| |#1|) $) NIL)) (|degree| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|SingletonAsOrderedSet|)) NIL) (((|List| (|NonNegativeInteger|)) $ (|List| (|SingletonAsOrderedSet|))) NIL)) (|csch| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|csc| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|coth| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|cot| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|cosh| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|cos| (($ $) 26 (|has| |#1| (|TranscendentalFunctionCategory|)))) (|convert| (((|Pattern| (|Float|)) $) NIL (AND (|has| (|SingletonAsOrderedSet|) (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))))) (((|Pattern| (|Integer|)) $) NIL (AND (|has| (|SingletonAsOrderedSet|) (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))))) (((|InputForm|) $) NIL (AND (|has| (|SingletonAsOrderedSet|) (|ConvertibleTo| (|InputForm|))) (|has| |#1| (|ConvertibleTo| (|InputForm|)))))) (|content| ((|#1| $) NIL (|has| |#1| (|GcdDomain|))) (($ $ (|SingletonAsOrderedSet|)) NIL (|has| |#1| (|GcdDomain|)))) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))) (|composite| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|IntegralDomain|))) (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) NIL (|has| |#1| (|IntegralDomain|)))) (|coerce| (((|OutputForm|) $) 13) (($ (|Integer|)) NIL) (($ |#1|) 11) (($ (|SingletonAsOrderedSet|)) NIL) (($ (|Fraction| (|Integer|))) NIL (OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))) (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|coefficients| (((|List| |#1|) $) NIL)) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) NIL) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL)) (|charthRoot| (((|Union| $ "failed") $) NIL (OR (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) (|has| |#1| (|CharacteristicNonZero|))))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|CommutativeRing|)))) (|atanh| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|atan| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|asinh| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|asin| (($ $) 24 (|has| |#1| (|TranscendentalFunctionCategory|)))) (|asech| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|asec| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|acsch| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|acsc| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|acoth| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|acot| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|acosh| (($ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (|acos| (($ $) 28 (|has| |#1| (|TranscendentalFunctionCategory|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (D (($ $ (|SingletonAsOrderedSet|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|))) NIL) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL) (($ $ (|Symbol|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#1| |#1|)) NIL)) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (/ (($ $ |#1|) NIL (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ $) NIL (|has| |#1| (|TranscendentalFunctionCategory|)))) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) │ │ │ +(((|SparseUnivariatePolynomialExpressions| |#1|) (|Join| (|UnivariatePolynomialCategory| |#1|) (CATEGORY |package| (IF (|has| |#1| (|TranscendentalFunctionCategory|)) (ATTRIBUTE (|TranscendentalFunctionCategory|)) |noBranch|))) (|Ring|)) (T |SparseUnivariatePolynomialExpressions|)) │ │ │ +NIL │ │ │ +(|Join| (|UnivariatePolynomialCategory| |#1|) (CATEGORY |package| (IF (|has| |#1| (|TranscendentalFunctionCategory|)) (ATTRIBUTE (|TranscendentalFunctionCategory|)) |noBranch|))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|symmetricRemainder| (($ $ $) 83)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|submod| (($ $ $ $) 71)) (|squareFreePart| (($ $) 50)) (|squareFree| (((|Factored| $) $) 51)) (|sizeLess?| (((|Boolean|) $ $) 123)) (|sign| (((|Integer|) $) 112)) (|shift| (($ $ $) 86)) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 104)) (|retract| (((|Integer|) $) 103)) (|rem| (($ $ $) 127)) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) 102) (((|Matrix| (|Integer|)) (|Matrix| $)) 101)) (|recip| (((|Union| $ "failed") $) 33)) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) 80)) (|rational?| (((|Boolean|) $) 82)) (|rational| (((|Fraction| (|Integer|)) $) 81)) (|random| (($) 79) (($ $) 78)) (|quo| (($ $ $) 126)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 121)) (|prime?| (((|Boolean|) $) 52)) (|powmod| (($ $ $ $) 69)) (|positiveRemainder| (($ $ $) 84)) (|positive?| (((|Boolean|) $) 114)) (|permutation| (($ $ $) 95)) (|patternMatch| (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) 98)) (|one?| (((|Boolean|) $) 30)) (|odd?| (((|Boolean|) $) 90)) (|nextItem| (((|Union| $ "failed") $) 92)) (|negative?| (((|Boolean|) $) 113)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 130)) (|mulmod| (($ $ $ $) 70)) (|min| (($ $ $) 115)) (|max| (($ $ $) 116)) (|mask| (($ $) 73)) (|length| (($ $) 87)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|invmod| (($ $ $) 68)) (|init| (($) 91 T CONST)) (|inc| (($ $) 75)) (|hash| (((|SingleInteger|) $) 10) (($ $) 77)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|factorial| (($ $) 96)) (|factor| (((|Factored| $) $) 49)) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 129) (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 128)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 122)) (|even?| (((|Boolean|) $) 89)) (|euclideanSize| (((|NonNegativeInteger|) $) 124)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 125)) (|differentiate| (($ $ (|NonNegativeInteger|)) 109) (($ $) 107)) (|dec| (($ $) 74)) (|copy| (($ $) 76)) (|convert| (((|Integer|) $) 106) (((|InputForm|) $) 100) (((|Pattern| (|Integer|)) $) 99) (((|Float|) $) 94) (((|DoubleFloat|) $) 93)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Integer|)) 105)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|bit?| (((|Boolean|) $ $) 85)) (|binomial| (($ $ $) 97)) (|base| (($) 88)) (|associates?| (((|Boolean|) $ $) 38)) (|addmod| (($ $ $ $) 72)) (|abs| (($ $) 111)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $ (|NonNegativeInteger|)) 110) (($ $) 108)) (>= (((|Boolean|) $ $) 118)) (> (((|Boolean|) $ $) 119)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 117)) (< (((|Boolean|) $ $) 120)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ +(((|IntegerNumberSystem|) (|Category|)) (T |IntegerNumberSystem|)) │ │ │ +((|odd?| (*1 *2 *1) (AND (|ofCategory| *1 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|)))) (|even?| (*1 *2 *1) (AND (|ofCategory| *1 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|)))) (|base| (*1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|length| (*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|shift| (*1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|bit?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|)))) (|positiveRemainder| (*1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|symmetricRemainder| (*1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|rational?| (*1 *2 *1) (AND (|ofCategory| *1 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|)))) (|rational| (*1 *2 *1) (AND (|ofCategory| *1 (|IntegerNumberSystem|)) (|isDomain| *2 (|Fraction| (|Integer|))))) (|rationalIfCan| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|IntegerNumberSystem|)) (|isDomain| *2 (|Fraction| (|Integer|))))) (|random| (*1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|random| (*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|hash| (*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|copy| (*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|inc| (*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|dec| (*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|mask| (*1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|addmod| (*1 *1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|submod| (*1 *1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|mulmod| (*1 *1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|powmod| (*1 *1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|))) (|invmod| (*1 *1 *1 *1) (|ofCategory| *1 (|IntegerNumberSystem|)))) │ │ │ +(|Join| (|UniqueFactorizationDomain|) (|EuclideanDomain|) (|OrderedIntegralDomain|) (|DifferentialRing|) (|ConvertibleTo| (|Integer|)) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|ConvertibleTo| (|InputForm|)) (|ConvertibleTo| (|Pattern| (|Integer|))) (|PatternMatchable| (|Integer|)) (|CombinatorialFunctionCategory|) (|RealConstant|) (|CharacteristicZero|) (|StepThrough|) (CATEGORY |domain| (SIGNATURE |odd?| ((|Boolean|) $)) (SIGNATURE |even?| ((|Boolean|) $)) (ATTRIBUTE |multiplicativeValuation|) (SIGNATURE |base| ($)) (SIGNATURE |length| ($ $)) (SIGNATURE |shift| ($ $ $)) (SIGNATURE |bit?| ((|Boolean|) $ $)) (SIGNATURE |positiveRemainder| ($ $ $)) (SIGNATURE |symmetricRemainder| ($ $ $)) (SIGNATURE |rational?| ((|Boolean|) $)) (SIGNATURE |rational| ((|Fraction| (|Integer|)) $)) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") $)) (SIGNATURE |random| ($)) (SIGNATURE |random| ($ $)) (SIGNATURE |hash| ($ $)) (SIGNATURE |copy| ($ $)) (SIGNATURE |inc| ($ $)) (SIGNATURE |dec| ($ $)) (SIGNATURE |mask| ($ $)) (SIGNATURE |addmod| ($ $ $ $)) (SIGNATURE |submod| ($ $ $ $)) (SIGNATURE |mulmod| ($ $ $ $)) (SIGNATURE |powmod| ($ $ $ $)) (SIGNATURE |invmod| ($ $ $)) (ATTRIBUTE |canonicalUnitNormal|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicZero|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CombinatorialFunctionCategory|) . T) ((|CommutativeRing|) . T) ((|ConvertibleTo| (|DoubleFloat|)) . T) ((|ConvertibleTo| (|Float|)) . T) ((|ConvertibleTo| (|InputForm|)) . T) ((|ConvertibleTo| (|Integer|)) . T) ((|ConvertibleTo| (|Pattern| (|Integer|))) . T) ((|DifferentialRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|LinearlyExplicitRingOver| (|Integer|)) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|OrderedAbelianGroup|) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedCancellationAbelianMonoid|) . T) ((|OrderedIntegralDomain|) . T) ((|OrderedRing|) . T) ((|OrderedSet|) . T) ((|PatternMatchable| (|Integer|)) . T) ((|PrincipalIdealDomain|) . T) ((|RealConstant|) . T) ((|RetractableTo| (|Integer|)) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|StepThrough|) . T) ((|UniqueFactorizationDomain|) . T)) │ │ │ +((|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) 64)) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) 60)) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) 56) (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) 55)) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) 37)) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) 33)) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 29)) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) 28)) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) 27)) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) 26)) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) 25)) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) 24)) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) 23)) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) 22)) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 21)) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) 20))) │ │ │ +(((|NagEigenPackage|) (CATEGORY |package| (SIGNATURE |f02aaf| ((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02abf| ((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |f02adf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02aef| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02aff| ((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02agf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02ajf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02akf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02awf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02axf| ((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |f02bbf| ((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02bjf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02fjf| ((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))))) (SIGNATURE |f02fjf| ((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|))) (SIGNATURE |f02wef| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02xef| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|))))) (T |NagEigenPackage|)) │ │ │ +((|f02xef| (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Boolean|)) (|isDomain| *5 (|Matrix| (|Complex| (|DoubleFloat|)))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagEigenPackage|)))) (|f02wef| (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Boolean|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagEigenPackage|)))) (|f02fjf| (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *6 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT)))) (|isDomain| *7 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) (|isDomain| *8 (|FileName|)) (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagEigenPackage|)))) (|f02fjf| (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *6 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT)))) (|isDomain| *7 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagEigenPackage|)))) (|f02bjf| (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *5 (|Boolean|)) (|isDomain| *6 (|Matrix| (|DoubleFloat|))) (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagEigenPackage|)))) (|f02bbf| (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagEigenPackage|)))) (|f02axf| (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (AND (|isDomain| *3 (|Matrix| (|DoubleFloat|))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagEigenPackage|)))) (|f02awf| (*1 *2 *3 *3 *3 *4 *4 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagEigenPackage|)))) (|f02akf| (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagEigenPackage|)))) (|f02ajf| (*1 *2 *3 *3 *3 *4 *4 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagEigenPackage|)))) (|f02agf| (*1 *2 *3 *3 *3 *3 *4 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagEigenPackage|)))) (|f02aff| (*1 *2 *3 *3 *4 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagEigenPackage|)))) (|f02aef| (*1 *2 *3 *3 *3 *3 *4 *4 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagEigenPackage|)))) (|f02adf| (*1 *2 *3 *3 *3 *4 *4 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagEigenPackage|)))) (|f02abf| (*1 *2 *3 *4 *4 *4 *4) (AND (|isDomain| *3 (|Matrix| (|DoubleFloat|))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagEigenPackage|)))) (|f02aaf| (*1 *2 *3 *3 *4 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagEigenPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |f02aaf| ((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02abf| ((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |f02adf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02aef| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02aff| ((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02agf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02ajf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02akf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02awf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02axf| ((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |f02bbf| ((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02bjf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02fjf| ((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))))) (SIGNATURE |f02fjf| ((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|))) (SIGNATURE |f02wef| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |f02xef| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)))) │ │ │ +((|eval| (($ $ (|List| |#1|) (|List| |#2|)) 7) (($ $ |#1| |#2|) 6))) │ │ │ +(((|InnerEvalable| |#1| |#2|) (|Category|) (|SetCategory|) (|Type|)) (T |InnerEvalable|)) │ │ │ +((|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *4)) (|isDomain| *3 (|List| *5)) (|ofCategory| *1 (|InnerEvalable| *4 *5)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|Type|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|ofCategory| *1 (|InnerEvalable| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|Type|))))) │ │ │ +(|Join| (CATEGORY |domain| (SIGNATURE |eval| ($ $ |t#1| |t#2|)) (SIGNATURE |eval| ($ $ (|List| |t#1|) (|List| |t#2|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|reduce| (($ |#4|) 25)) (|recip| (((|Union| $ "failed") $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|lift| ((|#4| $) 27)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 46) (($ (|Integer|)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (|characteristic| (((|NonNegativeInteger|)) 43)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 21 T CONST)) (|One| (($) 23 T CONST)) (= (((|Boolean|) $ $) 40)) (- (($ $) 31) (($ $ $) NIL)) (+ (($ $ $) 29)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) │ │ │ +(((|ResidueRing| |#1| |#2| |#3| |#4| |#5|) (|Join| (|CommutativeRing|) (|Algebra| |#1|) (CATEGORY |domain| (SIGNATURE |reduce| ($ |#4|)) (SIGNATURE |coerce| ($ |#4|)) (SIGNATURE |lift| (|#4| $)))) (|Field|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|PolynomialCategory| |#1| |#2| |#3|) (|List| |#4|)) (T |ResidueRing|)) │ │ │ +((|reduce| (*1 *1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|ResidueRing| *3 *4 *5 *2 *6)) (|ofCategory| *2 (|PolynomialCategory| *3 *4 *5)) (|ofType| *6 (|List| *2)))) (|coerce| (*1 *1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|ResidueRing| *3 *4 *5 *2 *6)) (|ofCategory| *2 (|PolynomialCategory| *3 *4 *5)) (|ofType| *6 (|List| *2)))) (|lift| (*1 *2 *1) (AND (|ofCategory| *2 (|PolynomialCategory| *3 *4 *5)) (|isDomain| *1 (|ResidueRing| *3 *4 *5 *2 *6)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofType| *6 (|List| *2))))) │ │ │ +(|Join| (|CommutativeRing|) (|Algebra| |#1|) (CATEGORY |domain| (SIGNATURE |reduce| ($ |#4|)) (SIGNATURE |coerce| ($ |#4|)) (SIGNATURE |lift| (|#4| $)))) │ │ │ +((|retractIfCan| (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) 74) (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) 63) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) 96) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) 85) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 52) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 41)) (|retract| (($ (|Vector| (|Expression| (|Float|)))) 70) (($ (|Vector| (|Expression| (|Integer|)))) 59) (($ (|Vector| (|Polynomial| (|Float|)))) 92) (($ (|Vector| (|Polynomial| (|Integer|)))) 81) (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 48) (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 34)) (|outputAsFortran| (((|Void|) $) 122)) (|coerce| (((|OutputForm|) $) 116) (($ (|List| (|FortranCode|))) 107) (($ (|FortranCode|)) 113) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 111) (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) 33))) │ │ │ +(((|Asp7| |#1|) (|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))))))) (|Symbol|)) (T |Asp7|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) (|isDomain| *1 (|Asp7| *3)) (|ofType| *3 (|Symbol|))))) │ │ │ +(|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))))))) │ │ │ +((|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) 35) (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) 32)) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) 30) (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) 26) (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) 28) (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) 24))) │ │ │ +(((|RealZeroPackageQ| |#1|) (CATEGORY |package| (SIGNATURE |realZeros| ((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|)) (SIGNATURE |realZeros| ((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) (SIGNATURE |realZeros| ((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|)))) (SIGNATURE |realZeros| ((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|)))) (SIGNATURE |refine| ((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|)))) (SIGNATURE |refine| ((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))))) (|UnivariatePolynomialCategory| (|Fraction| (|Integer|)))) (T |RealZeroPackageQ|)) │ │ │ +((|refine| (*1 *2 *3 *2 *2) (|partial| AND (|isDomain| *2 (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) (|isDomain| *1 (|RealZeroPackageQ| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| (|Integer|)))))) (|refine| (*1 *2 *3 *2 *4) (AND (|isDomain| *2 (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) (|isDomain| *4 (|Fraction| (|Integer|))) (|isDomain| *1 (|RealZeroPackageQ| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|realZeros| (*1 *2 *3 *4 *5) (AND (|isDomain| *5 (|Fraction| (|Integer|))) (|isDomain| *2 (|List| (|Record| (|:| |left| *5) (|:| |right| *5)))) (|isDomain| *1 (|RealZeroPackageQ| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)) (|isDomain| *4 (|Record| (|:| |left| *5) (|:| |right| *5))))) (|realZeros| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Fraction| (|Integer|))) (|isDomain| *2 (|List| (|Record| (|:| |left| *4) (|:| |right| *4)))) (|isDomain| *1 (|RealZeroPackageQ| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|realZeros| (*1 *2 *3 *4) (AND (|isDomain| *2 (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) (|isDomain| *1 (|RealZeroPackageQ| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| (|Integer|)))) (|isDomain| *4 (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))))) (|realZeros| (*1 *2 *3) (AND (|isDomain| *2 (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) (|isDomain| *1 (|RealZeroPackageQ| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Fraction| (|Integer|))))))) │ │ │ +(CATEGORY |package| (SIGNATURE |realZeros| ((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|)) (SIGNATURE |realZeros| ((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) (SIGNATURE |realZeros| ((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|)))) (SIGNATURE |realZeros| ((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|)))) (SIGNATURE |refine| ((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|)))) (SIGNATURE |refine| ((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))))) │ │ │ +((|OMwrite| (((|Void|) (|OpenMathDevice|) (|Expression| |#1|) (|Boolean|)) 22) (((|Void|) (|OpenMathDevice|) (|Expression| |#1|)) 76) (((|String|) (|Expression| |#1|) (|Boolean|)) 75) (((|String|) (|Expression| |#1|)) 74))) │ │ │ +(((|ExpressionToOpenMath| |#1|) (CATEGORY |package| (SIGNATURE |OMwrite| ((|String|) (|Expression| |#1|))) (SIGNATURE |OMwrite| ((|String|) (|Expression| |#1|) (|Boolean|))) (SIGNATURE |OMwrite| ((|Void|) (|OpenMathDevice|) (|Expression| |#1|))) (SIGNATURE |OMwrite| ((|Void|) (|OpenMathDevice|) (|Expression| |#1|) (|Boolean|)))) (|Join| (|OpenMath|) (|OrderedSet|) (|Ring|))) (T |ExpressionToOpenMath|)) │ │ │ +((|OMwrite| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|OpenMathDevice|)) (|isDomain| *4 (|Expression| *6)) (|isDomain| *5 (|Boolean|)) (|ofCategory| *6 (|Join| (|OpenMath|) (|OrderedSet|) (|Ring|))) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|ExpressionToOpenMath| *6)))) (|OMwrite| (*1 *2 *3 *4) (AND (|isDomain| *3 (|OpenMathDevice|)) (|isDomain| *4 (|Expression| *5)) (|ofCategory| *5 (|Join| (|OpenMath|) (|OrderedSet|) (|Ring|))) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|ExpressionToOpenMath| *5)))) (|OMwrite| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Expression| *5)) (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|Join| (|OpenMath|) (|OrderedSet|) (|Ring|))) (|isDomain| *2 (|String|)) (|isDomain| *1 (|ExpressionToOpenMath| *5)))) (|OMwrite| (*1 *2 *3) (AND (|isDomain| *3 (|Expression| *4)) (|ofCategory| *4 (|Join| (|OpenMath|) (|OrderedSet|) (|Ring|))) (|isDomain| *2 (|String|)) (|isDomain| *1 (|ExpressionToOpenMath| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |OMwrite| ((|String|) (|Expression| |#1|))) (SIGNATURE |OMwrite| ((|String|) (|Expression| |#1|) (|Boolean|))) (SIGNATURE |OMwrite| ((|Void|) (|OpenMathDevice|) (|Expression| |#1|))) (SIGNATURE |OMwrite| ((|Void|) (|OpenMathDevice|) (|Expression| |#1|) (|Boolean|)))) │ │ │ +((|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) 19)) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) 12))) │ │ │ +(((|MakeBinaryCompiledFunction| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |binaryFunction| ((|Mapping| |#4| |#2| |#3|) (|Symbol|))) (SIGNATURE |compiledFunction| ((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)))) (|ConvertibleTo| (|InputForm|)) (|Type|) (|Type|) (|Type|)) (T |MakeBinaryCompiledFunction|)) │ │ │ +((|compiledFunction| (*1 *2 *3 *4 *4) (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Mapping| *7 *5 *6)) (|isDomain| *1 (|MakeBinaryCompiledFunction| *3 *5 *6 *7)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|ofCategory| *7 (|Type|)))) (|binaryFunction| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| *7 *5 *6)) (|isDomain| *1 (|MakeBinaryCompiledFunction| *4 *5 *6 *7)) (|ofCategory| *4 (|ConvertibleTo| (|InputForm|))) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|ofCategory| *7 (|Type|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |binaryFunction| ((|Mapping| |#4| |#2| |#3|) (|Symbol|))) (SIGNATURE |compiledFunction| ((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|varList| (((|List| |#1|) $) 119)) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) 43)) (|trunc| (($ $ (|NonNegativeInteger|)) 31)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sh| (($ $ $) 47 (|has| |#2| (|CommutativeRing|))) (($ $ (|NonNegativeInteger|)) 45 (|has| |#2| (|CommutativeRing|)))) (|sample| (($) NIL T CONST)) (|rquo| (($ $ |#1|) 101) (($ $ (|OrderedFreeMonoid| |#1|)) 102) (($ $ $) 25)) (|retractIfCan| (((|Union| (|OrderedFreeMonoid| |#1|) "failed") $) NIL)) (|retract| (((|OrderedFreeMonoid| |#1|) $) NIL)) (|recip| (((|Union| $ "failed") $) 109)) (|quasiRegular?| (((|Boolean|) $) 104)) (|quasiRegular| (($ $) 105)) (|one?| (((|Boolean|) $) NIL)) (|monomial?| (((|Boolean|) $) NIL)) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) 19)) (|mirror| (($ $) NIL)) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) NIL)) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) 110)) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) 113)) (|map| (($ (|Mapping| |#2| |#2|) $) 118)) (|lquo| (($ $ |#1|) 99) (($ $ (|OrderedFreeMonoid| |#1|)) 100) (($ $ $) 55)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) 83)) (|degree| (((|NonNegativeInteger|) $) 116)) (|constant?| (((|Boolean|) $) 69)) (|constant| ((|#2| $) 27)) (|coerce| (((|OutputForm|) $) 62) (($ (|Integer|)) 76) (($ |#2|) 73) (($ (|OrderedFreeMonoid| |#1|)) 17) (($ |#1|) 72)) (|coef| ((|#2| $ (|OrderedFreeMonoid| |#1|)) 103) ((|#2| $ $) 26)) (|characteristic| (((|NonNegativeInteger|)) 107)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 14 T CONST)) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) 52)) (|One| (($) 28 T CONST)) (= (((|Boolean|) $ $) 13)) (- (($ $) 87) (($ $ $) 90)) (+ (($ $ $) 54)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) 48)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) 46) (($ (|Integer|) $) 93) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 81))) │ │ │ +(((|XRecursivePolynomial| |#1| |#2|) (|Join| (|XPolynomialsCat| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |expand| ((|XDistributedPolynomial| |#1| |#2|) $)) (SIGNATURE |unexpand| ($ (|XDistributedPolynomial| |#1| |#2|))) (SIGNATURE |RemainderList| ((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $)))) (|OrderedSet|) (|Ring|)) (T |XRecursivePolynomial|)) │ │ │ +((|expand| (*1 *2 *1) (AND (|isDomain| *2 (|XDistributedPolynomial| *3 *4)) (|isDomain| *1 (|XRecursivePolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))) (|unexpand| (*1 *1 *2) (AND (|isDomain| *2 (|XDistributedPolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|XRecursivePolynomial| *3 *4)))) (|RemainderList| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |k| *3) (|:| |c| (|XRecursivePolynomial| *3 *4))))) (|isDomain| *1 (|XRecursivePolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|))))) │ │ │ +(|Join| (|XPolynomialsCat| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |expand| ((|XDistributedPolynomial| |#1| |#2|) $)) (SIGNATURE |unexpand| ($ (|XDistributedPolynomial| |#1| |#2|))) (SIGNATURE |RemainderList| ((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $)))) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (((|Boolean|) $) NIL (|has| |#1| (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| |#1| (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|shrinkable| (((|Boolean|) (|Boolean|)) NIL)) (|setelt| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) NIL)) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates!| (($ $) NIL (|has| |#1| (|SetCategory|)))) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|remove!| (($ |#1| $) NIL (|has| |#1| (|SetCategory|))) (($ (|Mapping| (|Boolean|) |#1|) $) NIL)) (|remove| (($ |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) NIL)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) NIL) (((|Integer|) |#1| $) NIL (|has| |#1| (|SetCategory|))) (((|Integer|) |#1| $ (|Integer|)) NIL (|has| |#1| (|SetCategory|)))) (|physicalLength!| (($ $ (|Integer|)) NIL)) (|physicalLength| (((|NonNegativeInteger|) $) NIL)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|new| (($ (|NonNegativeInteger|) |#1|) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|merge!| (($ $ $) NIL (|has| |#1| (|OrderedSet|))) (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) NIL)) (|merge| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|insert!| (($ $ $ (|Integer|)) NIL) (($ |#1| $ (|Integer|)) NIL)) (|insert| (($ |#1| $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|flexibleArray| (($ (|List| |#1|)) NIL)) (|first| ((|#1| $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) NIL)) (|fill!| (($ $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#1| $ (|Integer|) |#1|) NIL) ((|#1| $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) NIL) (($ $ (|Integer|)) NIL)) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) NIL)) (|concat!| (($ $ $) NIL) (($ $ |#1|) NIL)) (|concat| (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (|List| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|FlexibleArray| |#1|) (|Join| (|OneDimensionalArrayAggregate| |#1|) (|ExtensibleLinearAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |flexibleArray| ($ (|List| |#1|))) (SIGNATURE |physicalLength| ((|NonNegativeInteger|) $)) (SIGNATURE |physicalLength!| ($ $ (|Integer|))) (SIGNATURE |shrinkable| ((|Boolean|) (|Boolean|))))) (|Type|)) (T |FlexibleArray|)) │ │ │ +((|flexibleArray| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|FlexibleArray| *3)))) (|physicalLength| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|FlexibleArray| *3)) (|ofCategory| *3 (|Type|)))) (|physicalLength!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|FlexibleArray| *3)) (|ofCategory| *3 (|Type|)))) (|shrinkable| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FlexibleArray| *3)) (|ofCategory| *3 (|Type|))))) │ │ │ +(|Join| (|OneDimensionalArrayAggregate| |#1|) (|ExtensibleLinearAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |flexibleArray| ($ (|List| |#1|))) (SIGNATURE |physicalLength| ((|NonNegativeInteger|) $)) (SIGNATURE |physicalLength!| ($ $ (|Integer|))) (SIGNATURE |shrinkable| ((|Boolean|) (|Boolean|))))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|type| (((|Union| "left" "center" "right" "vertical" "horizontal") $) 12)) (|transCoord| (((|Integer|) $) 17)) (|ramifMult| (((|Integer|) $) 15)) (|quotValuation| (((|Integer|) $) 13)) (|latex| (((|String|) $) 9)) (|infClsPt?| (((|Boolean|) $) 14)) (|hash| (((|SingleInteger|) $) 10)) (|excepCoord| (((|Integer|) $) 19)) (|createHN| (($ (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Union| "left" "center" "right" "vertical" "horizontal")) 16)) (|coerce| (((|OutputForm|) $) 11) (($ (|List| (|Integer|))) 20)) (|chartCoord| (((|Integer|) $) 18)) (= (((|Boolean|) $ $) 6))) │ │ │ +(((|BlowUpMethodCategory|) (|Category|)) (T |BlowUpMethodCategory|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Integer|))) (|ofCategory| *1 (|BlowUpMethodCategory|)))) (|excepCoord| (*1 *2 *1) (AND (|ofCategory| *1 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Integer|)))) (|chartCoord| (*1 *2 *1) (AND (|ofCategory| *1 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Integer|)))) (|transCoord| (*1 *2 *1) (AND (|ofCategory| *1 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Integer|)))) (|createHN| (*1 *1 *2 *2 *2 *2 *2 *3 *4) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|Boolean|)) (|isDomain| *4 (|Union| "left" "center" "right" "vertical" "horizontal")) (|ofCategory| *1 (|BlowUpMethodCategory|)))) (|ramifMult| (*1 *2 *1) (AND (|ofCategory| *1 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Integer|)))) (|infClsPt?| (*1 *2 *1) (AND (|ofCategory| *1 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Boolean|)))) (|quotValuation| (*1 *2 *1) (AND (|ofCategory| *1 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Integer|)))) (|type| (*1 *2 *1) (AND (|ofCategory| *1 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Union| "left" "center" "right" "vertical" "horizontal"))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|List| (|Integer|)))) (SIGNATURE |excepCoord| ((|Integer|) $)) (SIGNATURE |chartCoord| ((|Integer|) $)) (SIGNATURE |transCoord| ((|Integer|) $)) (SIGNATURE |createHN| ($ (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Union| "left" "center" "right" "vertical" "horizontal"))) (SIGNATURE |ramifMult| ((|Integer|) $)) (SIGNATURE |infClsPt?| ((|Boolean|) $)) (SIGNATURE |quotValuation| ((|Integer|) $)) (SIGNATURE |type| ((|Union| "left" "center" "right" "vertical" "horizontal") $)))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ +((|shiftInfoRec| (((|Record| (|:| |max| (|Union| (|Integer|) "failed")) (|:| |ord| (|Union| (|Integer|) "failed")) (|:| |ker| (|Kernel| |#2|))) (|BasicOperator|) (|Symbol|) |#2|) 59 (|has| |#1| (|Ring|)))) (|numberOfValuesNeeded| (((|Integer|) (|Integer|) (|BasicOperator|) (|Symbol|) |#2|) 76)) (|getShiftRec| (((|Union| (|Integer|) "failed") (|BasicOperator|) (|Kernel| |#2|) (|Symbol|)) 56 (|has| |#1| (|Ring|)))) (|getOp| (((|BasicOperator|) |#2|) 103)) (|getEq| ((|#2| |#2|) 102)) (|evalRec| ((|#2| (|BasicOperator|) (|Symbol|) |#2| |#2| |#2| (|List| |#2|)) 72)) (|evalADE| ((|#2| (|BasicOperator|) (|Symbol|) |#2| |#2| |#2| (|List| |#2|)) 100))) │ │ │ +(((|RecurrenceOperator| |#1| |#2|) (CATEGORY |package| (SIGNATURE |evalRec| (|#2| (|BasicOperator|) (|Symbol|) |#2| |#2| |#2| (|List| |#2|))) (SIGNATURE |evalADE| (|#2| (|BasicOperator|) (|Symbol|) |#2| |#2| |#2| (|List| |#2|))) (SIGNATURE |getEq| (|#2| |#2|)) (SIGNATURE |getOp| ((|BasicOperator|) |#2|)) (SIGNATURE |numberOfValuesNeeded| ((|Integer|) (|Integer|) (|BasicOperator|) (|Symbol|) |#2|)) (IF (|has| |#1| (|Ring|)) (PROGN (SIGNATURE |getShiftRec| ((|Union| (|Integer|) "failed") (|BasicOperator|) (|Kernel| |#2|) (|Symbol|))) (SIGNATURE |shiftInfoRec| ((|Record| (|:| |max| (|Union| (|Integer|) "failed")) (|:| |ord| (|Union| (|Integer|) "failed")) (|:| |ker| (|Kernel| |#2|))) (|BasicOperator|) (|Symbol|) |#2|))) |noBranch|)) (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|))) (|Join| (|FunctionSpace| |#1|) (|AbelianMonoid|) (|RetractableTo| (|Integer|)) (|RetractableTo| (|Symbol|)) (|PartialDifferentialRing| (|Symbol|)) (|CombinatorialOpsCategory|))) (T |RecurrenceOperator|)) │ │ │ +((|shiftInfoRec| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|BasicOperator|)) (|isDomain| *4 (|Symbol|)) (|ofCategory| *6 (|Ring|)) (|ofCategory| *6 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) (|isDomain| *2 (|Record| (|:| |max| (|Union| (|Integer|) "failed")) (|:| |ord| (|Union| (|Integer|) "failed")) (|:| |ker| (|Kernel| *5)))) (|isDomain| *1 (|RecurrenceOperator| *6 *5)) (|ofCategory| *5 (|Join| (|FunctionSpace| *6) (|AbelianMonoid|) (|RetractableTo| (|Integer|)) (|RetractableTo| *4) (|PartialDifferentialRing| *4) (|CombinatorialOpsCategory|))))) (|getShiftRec| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *3 (|BasicOperator|)) (|isDomain| *4 (|Kernel| *7)) (|ofCategory| *7 (|Join| (|FunctionSpace| *6) (|AbelianMonoid|) (|RetractableTo| *2) (|RetractableTo| *5) (|PartialDifferentialRing| *5) (|CombinatorialOpsCategory|))) (|isDomain| *5 (|Symbol|)) (|ofCategory| *6 (|Ring|)) (|ofCategory| *6 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|RecurrenceOperator| *6 *7)))) (|numberOfValuesNeeded| (*1 *2 *2 *3 *4 *5) (AND (|isDomain| *3 (|BasicOperator|)) (|isDomain| *2 (|Integer|)) (|isDomain| *4 (|Symbol|)) (|ofCategory| *6 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) (|isDomain| *1 (|RecurrenceOperator| *6 *5)) (|ofCategory| *5 (|Join| (|FunctionSpace| *6) (|AbelianMonoid|) (|RetractableTo| *2) (|RetractableTo| *4) (|PartialDifferentialRing| *4) (|CombinatorialOpsCategory|))))) (|getOp| (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) (|isDomain| *2 (|BasicOperator|)) (|isDomain| *1 (|RecurrenceOperator| *4 *3)) (|ofCategory| *3 (|Join| (|FunctionSpace| *4) (|AbelianMonoid|) (|RetractableTo| (|Integer|)) (|RetractableTo| (|Symbol|)) (|PartialDifferentialRing| (|Symbol|)) (|CombinatorialOpsCategory|))))) (|getEq| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) (|isDomain| *1 (|RecurrenceOperator| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|AbelianMonoid|) (|RetractableTo| (|Integer|)) (|RetractableTo| (|Symbol|)) (|PartialDifferentialRing| (|Symbol|)) (|CombinatorialOpsCategory|))))) (|evalADE| (*1 *2 *3 *4 *2 *2 *2 *5) (AND (|isDomain| *3 (|BasicOperator|)) (|isDomain| *5 (|List| *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *6) (|AbelianMonoid|) (|RetractableTo| (|Integer|)) (|RetractableTo| *4) (|PartialDifferentialRing| *4) (|CombinatorialOpsCategory|))) (|isDomain| *4 (|Symbol|)) (|ofCategory| *6 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) (|isDomain| *1 (|RecurrenceOperator| *6 *2)))) (|evalRec| (*1 *2 *3 *4 *2 *2 *2 *5) (AND (|isDomain| *3 (|BasicOperator|)) (|isDomain| *5 (|List| *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *6) (|AbelianMonoid|) (|RetractableTo| (|Integer|)) (|RetractableTo| *4) (|PartialDifferentialRing| *4) (|CombinatorialOpsCategory|))) (|isDomain| *4 (|Symbol|)) (|ofCategory| *6 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) (|isDomain| *1 (|RecurrenceOperator| *6 *2))))) │ │ │ +(CATEGORY |package| (SIGNATURE |evalRec| (|#2| (|BasicOperator|) (|Symbol|) |#2| |#2| |#2| (|List| |#2|))) (SIGNATURE |evalADE| (|#2| (|BasicOperator|) (|Symbol|) |#2| |#2| |#2| (|List| |#2|))) (SIGNATURE |getEq| (|#2| |#2|)) (SIGNATURE |getOp| ((|BasicOperator|) |#2|)) (SIGNATURE |numberOfValuesNeeded| ((|Integer|) (|Integer|) (|BasicOperator|) (|Symbol|) |#2|)) (IF (|has| |#1| (|Ring|)) (PROGN (SIGNATURE |getShiftRec| ((|Union| (|Integer|) "failed") (|BasicOperator|) (|Kernel| |#2|) (|Symbol|))) (SIGNATURE |shiftInfoRec| ((|Record| (|:| |max| (|Union| (|Integer|) "failed")) (|:| |ord| (|Union| (|Integer|) "failed")) (|:| |ker| (|Kernel| |#2|))) (|BasicOperator|) (|Symbol|) |#2|))) |noBranch|)) │ │ │ +((|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) 33)) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 30)) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) NIL)) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) NIL)) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) NIL))) │ │ │ +(((|RandomIntegerDistributions|) (CATEGORY |package| (SIGNATURE |uniform| ((|Mapping| (|Integer|)) (|Segment| (|Integer|)))) (SIGNATURE |binomial| ((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|)) (SIGNATURE |poisson| ((|Mapping| (|Integer|)) |RationalNumber|)) (SIGNATURE |geometric| ((|Mapping| (|Integer|)) |RationalNumber|)) (SIGNATURE |ridHack1| ((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))))) (T |RandomIntegerDistributions|)) │ │ │ +((|ridHack1| (*1 *2 *2 *2 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|RandomIntegerDistributions|)))) (|geometric| (*1 *2 *3) (AND (|isDomain| *3 |RationalNumber|) (|isDomain| *2 (|Mapping| (|Integer|))) (|isDomain| *1 (|RandomIntegerDistributions|)))) (|poisson| (*1 *2 *3) (AND (|isDomain| *3 |RationalNumber|) (|isDomain| *2 (|Mapping| (|Integer|))) (|isDomain| *1 (|RandomIntegerDistributions|)))) (|binomial| (*1 *2 *3 *4) (AND (|isDomain| *4 |RationalNumber|) (|isDomain| *2 (|Mapping| (|Integer|))) (|isDomain| *1 (|RandomIntegerDistributions|)) (|isDomain| *3 (|Integer|)))) (|uniform| (*1 *2 *3) (AND (|isDomain| *3 (|Segment| (|Integer|))) (|isDomain| *2 (|Mapping| (|Integer|))) (|isDomain| *1 (|RandomIntegerDistributions|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |uniform| ((|Mapping| (|Integer|)) (|Segment| (|Integer|)))) (SIGNATURE |binomial| ((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|)) (SIGNATURE |poisson| ((|Mapping| (|Integer|)) |RationalNumber|)) (SIGNATURE |geometric| ((|Mapping| (|Integer|)) |RationalNumber|)) (SIGNATURE |ridHack1| ((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)))) │ │ │ +((|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) 17)) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) 11)) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) 13)) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) 14)) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) 15)) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) 21))) │ │ │ +(((|MappingPackage3| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |curryRight| ((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|)) (SIGNATURE |curryLeft| ((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|)) (SIGNATURE |constantRight| ((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|))) (SIGNATURE |constantLeft| ((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|))) (SIGNATURE |twist| ((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|))) (SIGNATURE * ((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)))) (|SetCategory|) (|SetCategory|) (|SetCategory|)) (T |MappingPackage3|)) │ │ │ +((* (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *7 *6)) (|isDomain| *4 (|Mapping| *6 *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *7 (|SetCategory|)) (|isDomain| *2 (|Mapping| *7 *5)) (|isDomain| *1 (|MappingPackage3| *5 *6 *7)))) (|twist| (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| *6 *4 *5)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|isDomain| *2 (|Mapping| *6 *5 *4)) (|isDomain| *1 (|MappingPackage3| *4 *5 *6)))) (|constantLeft| (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|isDomain| *2 (|Mapping| *6 *4 *5)) (|isDomain| *1 (|MappingPackage3| *4 *5 *6)) (|ofCategory| *4 (|SetCategory|)))) (|constantRight| (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| *6 *4)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|isDomain| *2 (|Mapping| *6 *4 *5)) (|isDomain| *1 (|MappingPackage3| *4 *5 *6)) (|ofCategory| *5 (|SetCategory|)))) (|curryLeft| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *4 *5)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|isDomain| *2 (|Mapping| *6 *5)) (|isDomain| *1 (|MappingPackage3| *4 *5 *6)))) (|curryRight| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5 *4)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|isDomain| *2 (|Mapping| *6 *5)) (|isDomain| *1 (|MappingPackage3| *5 *4 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |curryRight| ((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|)) (SIGNATURE |curryLeft| ((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|)) (SIGNATURE |constantRight| ((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|))) (SIGNATURE |constantLeft| ((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|))) (SIGNATURE |twist| ((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|))) (SIGNATURE * ((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|transcendent?| (((|Boolean|) $) NIL)) (|transcendenceDegree| (((|NonNegativeInteger|)) NIL)) (|trace| ((|#1| $) NIL) (($ $ (|PositiveInteger|)) NIL (|has| |#1| (|Finite|)))) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) NIL (|has| |#1| (|Finite|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|size| (((|NonNegativeInteger|)) NIL (|has| |#1| (|Finite|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL)) (|retract| ((|#1| $) NIL)) (|represents| (($ (|Vector| |#1|)) NIL)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (|Finite|)))) (|rem| (($ $ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|random| (($) NIL (|has| |#1| (|Finite|)))) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|primitiveElement| (($) NIL (|has| |#1| (|Finite|)))) (|primitive?| (((|Boolean|) $) NIL (|has| |#1| (|Finite|)))) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) NIL (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|)))) (($ $) NIL (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|prime?| (((|Boolean|) $) NIL)) (|order| (((|PositiveInteger|) $) NIL (|has| |#1| (|Finite|))) (((|OnePointCompletion| (|PositiveInteger|)) $) NIL (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|one?| (((|Boolean|) $) NIL)) (|normalElement| (($) NIL (|has| |#1| (|Finite|)))) (|normal?| (((|Boolean|) $) NIL (|has| |#1| (|Finite|)))) (|norm| ((|#1| $) NIL) (($ $ (|PositiveInteger|)) NIL (|has| |#1| (|Finite|)))) (|nextItem| (((|Union| $ "failed") $) NIL (|has| |#1| (|Finite|)))) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) NIL) (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) NIL (|has| |#1| (|Finite|)))) (|lookup| (((|PositiveInteger|) $) NIL (|has| |#1| (|Finite|)))) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) NIL (|has| |#1| (|Finite|)))) (|linearAssociatedLog| (((|SparseUnivariatePolynomial| |#1|) $) NIL (|has| |#1| (|Finite|))) (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) NIL (|has| |#1| (|Finite|)))) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) NIL (|has| |#1| (|Finite|)))) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) NIL)) (|init| (($) NIL (|has| |#1| (|Finite|)) CONST)) (|index| (($ (|PositiveInteger|)) NIL (|has| |#1| (|Finite|)))) (|inGroundField?| (((|Boolean|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|generator| (($) NIL (|has| |#1| (|Finite|)))) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) NIL (|has| |#1| (|Finite|)))) (|factor| (((|Factored| $) $) NIL)) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) NIL) (((|PositiveInteger|)) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|enumerate| (((|List| $)) NIL (|has| |#1| (|Finite|)))) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|discreteLog| (((|NonNegativeInteger|) $) NIL (|has| |#1| (|Finite|))) (((|Union| (|NonNegativeInteger|) "failed") $ $) NIL (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|dimension| (((|CardinalNumber|)) NIL)) (|differentiate| (($ $) NIL (|has| |#1| (|Finite|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|Finite|)))) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) NIL) (((|PositiveInteger|) $) NIL)) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) NIL)) (|createPrimitiveElement| (($) NIL (|has| |#1| (|Finite|)))) (|createNormalElement| (($) NIL (|has| |#1| (|Finite|)))) (|coordinates| (((|Vector| |#1|) $) NIL) (((|Matrix| |#1|) (|Vector| $)) NIL)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (|has| |#1| (|Finite|)))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL) (($ (|Fraction| (|Integer|))) NIL) (($ |#1|) NIL)) (|charthRoot| (($ $) NIL (|has| |#1| (|Finite|))) (((|Union| $ "failed") $) NIL (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|basis| (((|Vector| $)) NIL) (((|Vector| $) (|PositiveInteger|)) NIL)) (|associates?| (((|Boolean|) $ $) NIL)) (|algebraic?| (((|Boolean|) $) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (|Frobenius| (($ $) NIL (|has| |#1| (|Finite|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|Finite|)))) (D (($ $) NIL (|has| |#1| (|Finite|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|Finite|)))) (= (((|Boolean|) $ $) NIL)) (/ (($ $ $) NIL) (($ $ |#1|) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|Fraction| (|Integer|))) NIL) (($ (|Fraction| (|Integer|)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) │ │ │ +(((|FiniteFieldExtension| |#1| |#2|) (|FiniteAlgebraicExtensionField| |#1|) (|FiniteFieldCategory|) (|PositiveInteger|)) (T |FiniteFieldExtension|)) │ │ │ +NIL │ │ │ +(|FiniteAlgebraicExtensionField| |#1|) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|transcendent?| (((|Boolean|) $) 92)) (|transcendenceDegree| (((|NonNegativeInteger|)) 88)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 73)) (|squareFree| (((|Factored| $) $) 72)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) 99)) (|retract| ((|#1| $) 98)) (|rem| (($ $ $) 54)) (|recip| (((|Union| $ "failed") $) 33)) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) 85 (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|)))) (($ $) 84 (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|prime?| (((|Boolean|) $) 71)) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) 82 (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|one?| (((|Boolean|) $) 30)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 70)) (|inGroundField?| (((|Boolean|) $) 91)) (|hash| (((|SingleInteger|) $) 10)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|factor| (((|Factored| $) $) 74)) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) 89)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) 83 (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|dimension| (((|CardinalNumber|)) 97)) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) 90)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Fraction| (|Integer|))) 65) (($ |#1|) 100)) (|charthRoot| (((|Union| $ "failed") $) 81 (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 38)) (|algebraic?| (((|Boolean|) $) 93)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 69)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (|Frobenius| (($ $) 87 (|has| |#1| (|Finite|))) (($ $ (|NonNegativeInteger|)) 86 (|has| |#1| (|Finite|)))) (= (((|Boolean|) $ $) 6)) (/ (($ $ $) 64) (($ $ |#1|) 96)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 68)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 67) (($ (|Fraction| (|Integer|)) $) 66) (($ $ |#1|) 95) (($ |#1| $) 94))) │ │ │ +(((|ExtensionField| |#1|) (|Category|) (|Field|)) (T |ExtensionField|)) │ │ │ +((|algebraic?| (*1 *2 *1) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Boolean|)))) (|transcendent?| (*1 *2 *1) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Boolean|)))) (|inGroundField?| (*1 *2 *1) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Boolean|)))) (|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|OnePointCompletion| (|PositiveInteger|))))) (|extensionDegree| (*1 *2) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|OnePointCompletion| (|PositiveInteger|))))) (|transcendenceDegree| (*1 *2) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|Frobenius| (*1 *1 *1) (AND (|ofCategory| *1 (|ExtensionField| *2)) (|ofCategory| *2 (|Field|)) (|ofCategory| *2 (|Finite|)))) (|Frobenius| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|))))) │ │ │ +(|Join| (|Field|) (|RetractableTo| |t#1|) (|VectorSpace| |t#1|) (CATEGORY |domain| (IF (|has| |t#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |noBranch|) (IF (|has| |t#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|FieldOfPrimeCharacteristic|)) |noBranch|) (SIGNATURE |algebraic?| ((|Boolean|) $)) (SIGNATURE |transcendent?| ((|Boolean|) $)) (SIGNATURE |inGroundField?| ((|Boolean|) $)) (SIGNATURE |degree| ((|OnePointCompletion| (|PositiveInteger|)) $)) (SIGNATURE |extensionDegree| ((|OnePointCompletion| (|PositiveInteger|)))) (SIGNATURE |transcendenceDegree| ((|NonNegativeInteger|))) (IF (|has| |t#1| (|Finite|)) (PROGN (ATTRIBUTE (|FieldOfPrimeCharacteristic|)) (SIGNATURE |Frobenius| ($ $)) (SIGNATURE |Frobenius| ($ $ (|NonNegativeInteger|)))) |noBranch|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) OR (|has| |#1| (|Finite|)) (|has| |#1| (|CharacteristicNonZero|))) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|FieldOfPrimeCharacteristic|) OR (|has| |#1| (|Finite|)) (|has| |#1| (|CharacteristicNonZero|))) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| |#1|) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RetractableTo| |#1|) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| |#1|) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|UniqueFactorizationDomain|) . T) ((|VectorSpace| |#1|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#2| (|SetCategory|)))) (|zero?| (((|Boolean|) $) NIL (|has| |#2| (|CancellationAbelianMonoid|)))) (|unitVector| (($ (|PositiveInteger|)) NIL (|has| |#2| (|Ring|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sup| (($ $ $) NIL (|has| |#2| (|OrderedAbelianMonoidSup|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL (|has| |#2| (|CancellationAbelianMonoid|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|size| (((|NonNegativeInteger|)) NIL (|has| |#2| (|Finite|)))) (|sign| (((|Integer|) $) NIL (|has| |#2| (|OrderedRing|)))) (|setelt| ((|#2| $ (|Integer|) |#2|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|)))) (((|Union| |#2| "failed") $) NIL (|has| |#2| (|SetCategory|)))) (|retract| (((|Integer|) $) NIL (AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|)))) (((|Fraction| (|Integer|)) $) NIL (AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|)))) ((|#2| $) NIL (|has| |#2| (|SetCategory|)))) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|)))) (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| $) (|Vector| $)) NIL (|has| |#2| (|Ring|))) (((|Matrix| |#2|) (|Matrix| $)) NIL (|has| |#2| (|Ring|)))) (|recip| (((|Union| $ "failed") $) NIL (|has| |#2| (|Monoid|)))) (|random| (($) NIL (|has| |#2| (|Finite|)))) (|qsetelt!| ((|#2| $ (|Integer|) |#2|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#2| $ (|Integer|)) 11)) (|positive?| (((|Boolean|) $) NIL (|has| |#2| (|OrderedRing|)))) (|parts| (((|List| |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|one?| (((|Boolean|) $) NIL (|has| |#2| (|Monoid|)))) (|negative?| (((|Boolean|) $) NIL (|has| |#2| (|OrderedRing|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))))) (|members| (((|List| |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#2| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))))) (|map!| (($ (|Mapping| |#2| |#2|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#2| |#2|) $) NIL)) (|lookup| (((|PositiveInteger|) $) NIL (|has| |#2| (|Finite|)))) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| |#2| (|SetCategory|)))) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|index| (($ (|PositiveInteger|)) NIL (|has| |#2| (|Finite|)))) (|hash| (((|SingleInteger|) $) NIL (|has| |#2| (|SetCategory|)))) (|first| ((|#2| $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|fill!| (($ $ |#2|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#2|))) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|Equation| |#2|)) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ |#2| |#2|) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|List| |#2|) (|List| |#2|)) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|enumerate| (((|List| $)) NIL (|has| |#2| (|Finite|)))) (|entry?| (((|Boolean|) |#2| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|))))) (|entries| (((|List| |#2|) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#2| $ (|Integer|) |#2|) NIL) ((|#2| $ (|Integer|)) NIL)) (|dot| ((|#2| $ $) NIL (|has| |#2| (|Ring|)))) (|directProduct| (($ (|Vector| |#2|)) NIL)) (|dimension| (((|CardinalNumber|)) NIL (|has| |#2| (|Field|)))) (|differentiate| (($ $) NIL (AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|)))) (($ $ (|NonNegativeInteger|)) NIL (AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|)))) (($ $ (|Symbol|)) NIL (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) NIL (|has| |#2| (|Ring|))) (($ $ (|Mapping| |#2| |#2|)) NIL (|has| |#2| (|Ring|)))) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#2| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|))))) (|copy| (($ $) NIL)) (|coerce| (((|Vector| |#2|) $) NIL) (((|OutputForm|) $) NIL (|has| |#2| (|SetCategory|))) (($ (|Integer|)) NIL (OR (AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|))) (|has| |#2| (|Ring|)))) (($ (|Fraction| (|Integer|))) NIL (AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|)))) (($ |#2|) NIL (|has| |#2| (|SetCategory|)))) (|characteristic| (((|NonNegativeInteger|)) NIL (|has| |#2| (|Ring|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|abs| (($ $) NIL (|has| |#2| (|OrderedRing|)))) (^ (($ $ (|NonNegativeInteger|)) NIL (|has| |#2| (|Monoid|))) (($ $ (|PositiveInteger|)) NIL (|has| |#2| (|Monoid|)))) (|Zero| (($) NIL (|has| |#2| (|CancellationAbelianMonoid|)) CONST)) (|One| (($) NIL (|has| |#2| (|Monoid|)) CONST)) (D (($ $) NIL (AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|)))) (($ $ (|NonNegativeInteger|)) NIL (AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|)))) (($ $ (|Symbol|)) NIL (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) NIL (|has| |#2| (|Ring|))) (($ $ (|Mapping| |#2| |#2|)) NIL (|has| |#2| (|Ring|)))) (>= (((|Boolean|) $ $) NIL (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))))) (> (((|Boolean|) $ $) NIL (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))))) (= (((|Boolean|) $ $) NIL (|has| |#2| (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))))) (< (((|Boolean|) $ $) 15 (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))))) (/ (($ $ |#2|) NIL (|has| |#2| (|Field|)))) (- (($ $ $) NIL (|has| |#2| (|Ring|))) (($ $) NIL (|has| |#2| (|Ring|)))) (+ (($ $ $) NIL (|has| |#2| (|AbelianSemiGroup|)))) (** (($ $ (|NonNegativeInteger|)) NIL (|has| |#2| (|Monoid|))) (($ $ (|PositiveInteger|)) NIL (|has| |#2| (|Monoid|)))) (* (($ (|Integer|) $) NIL (|has| |#2| (|Ring|))) (($ $ $) NIL (|has| |#2| (|Monoid|))) (($ $ |#2|) NIL (|has| |#2| (|Monoid|))) (($ |#2| $) NIL (|has| |#2| (|Monoid|))) (($ (|NonNegativeInteger|) $) NIL (|has| |#2| (|CancellationAbelianMonoid|))) (($ (|PositiveInteger|) $) NIL (|has| |#2| (|AbelianSemiGroup|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|HomogeneousDirectProduct| |#1| |#2|) (|DirectProductCategory| |#1| |#2|) (|NonNegativeInteger|) (|OrderedAbelianMonoidSup|)) (T |HomogeneousDirectProduct|)) │ │ │ +NIL │ │ │ +(|DirectProductCategory| |#1| |#2|) │ │ │ +((|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) 105) (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) 94) (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) 127) (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) 116) (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) 83) (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) 72)) (|retract| (($ (|Matrix| (|Expression| (|Float|)))) 101) (($ (|Matrix| (|Expression| (|Integer|)))) 90) (($ (|Matrix| (|Polynomial| (|Float|)))) 123) (($ (|Matrix| (|Polynomial| (|Integer|)))) 112) (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) 79) (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) 65)) (|outputAsFortran| (((|Void|) $) 58)) (|coerce| (((|OutputForm|) $) 52) (($ (|List| (|FortranCode|))) 42) (($ (|FortranCode|)) 49) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 47) (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) 43))) │ │ │ +(((|Asp80| |#1|) (|Join| (|FortranMatrixFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|))))))) (|Symbol|)) (T |Asp80|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) (|isDomain| *1 (|Asp80| *3)) (|ofType| *3 (|Symbol|))))) │ │ │ +(|Join| (|FortranMatrixFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|))))))) │ │ │ ((|rightPower| (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) 17)) (|one?| (((|Boolean|) $) 10)) (|leftPower| (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) 18)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) 15))) │ │ │ (((|MonadWithUnit&| |#1|) (CATEGORY |domain| (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |leftPower| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |rightPower| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |one?| ((|Boolean|) |#1|)) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|))) (SIGNATURE |leftPower| (|#1| |#1| (|PositiveInteger|))) (SIGNATURE |rightPower| (|#1| |#1| (|PositiveInteger|)))) (|MonadWithUnit|)) (T |MonadWithUnit&|)) │ │ │ NIL │ │ │ (CATEGORY |domain| (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |leftPower| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |rightPower| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |one?| ((|Boolean|) |#1|)) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|))) (SIGNATURE |leftPower| (|#1| |#1| (|PositiveInteger|))) (SIGNATURE |rightPower| (|#1| |#1| (|PositiveInteger|)))) │ │ │ -((|commutator| (($ $ $) 10)) (|associator| (($ $ $ $) 9)) (|antiCommutator| (($ $ $) 12))) │ │ │ -(((|NonAssociativeRng&| |#1|) (CATEGORY |domain| (SIGNATURE |antiCommutator| (|#1| |#1| |#1|)) (SIGNATURE |commutator| (|#1| |#1| |#1|)) (SIGNATURE |associator| (|#1| |#1| |#1| |#1|))) (|NonAssociativeRng|)) (T |NonAssociativeRng&|)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 23)) (|subtractIfCan| (((|Union| $ "failed") $ $) 25)) (|sample| (($) 22 T CONST)) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 21 T CONST)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17)) (- (($ $ $) 27) (($ $) 26)) (+ (($ $ $) 19)) (* (($ (|PositiveInteger|) $) 20) (($ (|NonNegativeInteger|) $) 24) (($ (|Integer|) $) 28))) │ │ │ +(((|OrderedAbelianGroup|) (|Category|)) (T |OrderedAbelianGroup|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |antiCommutator| (|#1| |#1| |#1|)) (SIGNATURE |commutator| (|#1| |#1| |#1|)) (SIGNATURE |associator| (|#1| |#1| |#1| |#1|))) │ │ │ -((|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) 13))) │ │ │ -(((|NewSparseUnivariatePolynomialFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)))) (|Ring|) (|Ring|)) (T |NewSparseUnivariatePolynomialFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|NewSparseUnivariatePolynomial| *5)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|)) (|isDomain| *2 (|NewSparseUnivariatePolynomial| *6)) (|isDomain| *1 (|NewSparseUnivariatePolynomialFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17)) (+ (($ $ $) 19)) (* (($ (|PositiveInteger|) $) 20))) │ │ │ -(((|OrderedAbelianSemiGroup|) (|Category|)) (T |OrderedAbelianSemiGroup|)) │ │ │ +(|Join| (|OrderedCancellationAbelianMonoid|) (|AbelianGroup|)) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedCancellationAbelianMonoid|) . T) ((|OrderedSet|) . T) ((|SetCategory|) . T)) │ │ │ +((|members| (((|List| |#2|) $) 22)) (|member?| (((|Boolean|) |#2| $) 27)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 20)) (|eval| (($ $ (|List| (|Equation| |#2|))) 12) (($ $ (|Equation| |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (|List| |#2|) (|List| |#2|)) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) 21) (((|NonNegativeInteger|) |#2| $) 25)) (|coerce| (((|OutputForm|) $) 36)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 19)) (= (((|Boolean|) $ $) 30)) (|#| (((|NonNegativeInteger|) $) 16))) │ │ │ +(((|HomogeneousAggregate&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#2|) (|List| |#2|))) (SIGNATURE |eval| (|#1| |#1| |#2| |#2|)) (SIGNATURE |eval| (|#1| |#1| (|Equation| |#2|))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Equation| |#2|)))) (SIGNATURE |member?| ((|Boolean|) |#2| |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) |#2| |#1|)) (SIGNATURE |members| ((|List| |#2|) |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) |#1|))) (|HomogeneousAggregate| |#2|) (|Type|)) (T |HomogeneousAggregate&|)) │ │ │ NIL │ │ │ -(|Join| (|OrderedSet|) (|AbelianSemiGroup|)) │ │ │ -(((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|OrderedSet|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|rightPower| (($ $ (|PositiveInteger|)) 27)) (|leftPower| (($ $ (|PositiveInteger|)) 28)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|commutator| (($ $ $) 24)) (|coerce| (((|OutputForm|) $) 11)) (|associator| (($ $ $ $) 25)) (|antiCommutator| (($ $ $) 23)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 29)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 26))) │ │ │ -(((|NonAssociativeRng|) (|Category|)) (T |NonAssociativeRng|)) │ │ │ -((|associator| (*1 *1 *1 *1 *1) (|ofCategory| *1 (|NonAssociativeRng|))) (|commutator| (*1 *1 *1 *1) (|ofCategory| *1 (|NonAssociativeRng|))) (|antiCommutator| (*1 *1 *1 *1) (|ofCategory| *1 (|NonAssociativeRng|)))) │ │ │ -(|Join| (|AbelianGroup|) (|Monad|) (CATEGORY |domain| (SIGNATURE |associator| ($ $ $ $)) (SIGNATURE |commutator| ($ $ $)) (SIGNATURE |antiCommutator| ($ $ $)))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Monad|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|rightRecip| (((|Union| $ "failed") $) 16)) (|rightPower| (($ $ (|PositiveInteger|)) 14) (($ $ (|NonNegativeInteger|)) 21)) (|recip| (((|Union| $ "failed") $) 18)) (|one?| (((|Boolean|) $) 22)) (|leftRecip| (((|Union| $ "failed") $) 17)) (|leftPower| (($ $ (|PositiveInteger|)) 13) (($ $ (|NonNegativeInteger|)) 20)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|One| (($) 23 T CONST)) (= (((|Boolean|) $ $) 6)) (** (($ $ (|PositiveInteger|)) 12) (($ $ (|NonNegativeInteger|)) 19)) (* (($ $ $) 15))) │ │ │ -(((|MonadWithUnit|) (|Category|)) (T |MonadWithUnit|)) │ │ │ -((|One| (*1 *1) (|ofCategory| *1 (|MonadWithUnit|))) (|one?| (*1 *2 *1) (AND (|ofCategory| *1 (|MonadWithUnit|)) (|isDomain| *2 (|Boolean|)))) (|rightPower| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|MonadWithUnit|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|leftPower| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|MonadWithUnit|)) (|isDomain| *2 (|NonNegativeInteger|)))) (** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|MonadWithUnit|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|recip| (*1 *1 *1) (|partial| |ofCategory| *1 (|MonadWithUnit|))) (|leftRecip| (*1 *1 *1) (|partial| |ofCategory| *1 (|MonadWithUnit|))) (|rightRecip| (*1 *1 *1) (|partial| |ofCategory| *1 (|MonadWithUnit|)))) │ │ │ -(|Join| (|Monad|) (CATEGORY |domain| (SIGNATURE (|One|) ($) |constant|) (SIGNATURE |one?| ((|Boolean|) $)) (SIGNATURE |rightPower| ($ $ (|NonNegativeInteger|))) (SIGNATURE |leftPower| ($ $ (|NonNegativeInteger|))) (SIGNATURE ** ($ $ (|NonNegativeInteger|))) (SIGNATURE |recip| ((|Union| $ "failed") $)) (SIGNATURE |leftRecip| ((|Union| $ "failed") $)) (SIGNATURE |rightRecip| ((|Union| $ "failed") $)))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Monad|) . T) ((|SetCategory|) . T)) │ │ │ -((|getDatabase| (((|Database| (|IndexCard|)) (|String|)) 8))) │ │ │ -(((|OperationsQuery|) (CATEGORY |package| (SIGNATURE |getDatabase| ((|Database| (|IndexCard|)) (|String|))))) (T |OperationsQuery|)) │ │ │ -((|getDatabase| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Database| (|IndexCard|))) (|isDomain| *1 (|OperationsQuery|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |getDatabase| ((|Database| (|IndexCard|)) (|String|)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|size| (((|NonNegativeInteger|)) 19)) (|random| (($) 22)) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|lookup| (((|PositiveInteger|) $) 21)) (|latex| (((|String|) $) 9)) (|index| (($ (|PositiveInteger|)) 20)) (|hash| (((|SingleInteger|) $) 10)) (|enumerate| (((|List| $)) 23)) (|coerce| (((|OutputForm|) $) 11)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17))) │ │ │ -(((|OrderedFinite|) (|Category|)) (T |OrderedFinite|)) │ │ │ +(CATEGORY |domain| (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#2|) (|List| |#2|))) (SIGNATURE |eval| (|#1| |#1| |#2| |#2|)) (SIGNATURE |eval| (|#1| |#1| (|Equation| |#2|))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Equation| |#2|)))) (SIGNATURE |member?| ((|Boolean|) |#2| |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) |#2| |#1|)) (SIGNATURE |members| ((|List| |#2|) |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) |#1|))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|vectorise| (((|Vector| $) $ $) 80)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|transcendent?| (((|Boolean|) $) 113)) (|transcendenceDegree| (((|NonNegativeInteger|)) 117)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 73)) (|squareFree| (((|Factored| $) $) 72)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|setTower!| (((|Void|) $) 76)) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 124) (((|Union| (|Fraction| (|Integer|)) "failed") $) 121) (((|Union| (|Fraction| (|Integer|)) "failed") $) 106) (((|Union| (|PseudoAlgebraicClosureOfRationalNumber|) "failed") $) 138) (((|Union| (|PseudoAlgebraicClosureOfRationalNumber|) "failed") $) 132)) (|retract| (((|Integer|) $) 123) (((|Fraction| (|Integer|)) $) 120) (((|Fraction| (|Integer|)) $) 107) (((|PseudoAlgebraicClosureOfRationalNumber|) $) 137) (((|PseudoAlgebraicClosureOfRationalNumber|) $) 133)) (|rem| (($ $ $) 54)) (|reduce| (($ (|SparseUnivariatePolynomial| $)) 86)) (|recip| (((|Union| $ "failed") $) 33)) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) 104 (OR (|has| (|PseudoAlgebraicClosureOfRationalNumber|) (|CharacteristicNonZero|)) (|has| (|PseudoAlgebraicClosureOfRationalNumber|) (|Finite|)) (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|)) (|has| (|Fraction| (|Integer|)) (|Finite|)))) (($ $) 103 (OR (|has| (|PseudoAlgebraicClosureOfRationalNumber|) (|CharacteristicNonZero|)) (|has| (|PseudoAlgebraicClosureOfRationalNumber|) (|Finite|)) (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|)) (|has| (|Fraction| (|Integer|)) (|Finite|))))) (|prime?| (((|Boolean|) $) 71)) (|previousTower| (($ $) 81)) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) 101 (OR (|has| (|PseudoAlgebraicClosureOfRationalNumber|) (|CharacteristicNonZero|)) (|has| (|PseudoAlgebraicClosureOfRationalNumber|) (|Finite|)) (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|)) (|has| (|Fraction| (|Integer|)) (|Finite|))))) (|one?| (((|Boolean|) $) 30)) (|newElement| (($ (|SparseUnivariatePolynomial| $) $ (|Symbol|)) 78) (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) 77)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|maxTower| (($ (|List| $)) 83)) (|lift| (((|SparseUnivariatePolynomial| $) $) 88) (((|SparseUnivariatePolynomial| $) $ $) 87)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 70)) (|inGroundField?| (((|Boolean|) $) 114)) (|hash| (((|SingleInteger|) $) 10)) (|ground?| (((|Boolean|) $) 84)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|fullOutput| (((|OutputForm|) $) 75)) (|factor| (((|Factored| $) $) 74)) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) 116)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|extDegree| (((|PositiveInteger|) $) 82)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|distinguishedRootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) $) 85)) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) 102 (OR (|has| (|PseudoAlgebraicClosureOfRationalNumber|) (|CharacteristicNonZero|)) (|has| (|PseudoAlgebraicClosureOfRationalNumber|) (|Finite|)) (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|)) (|has| (|Fraction| (|Integer|)) (|Finite|))))) (|dimension| (((|CardinalNumber|)) 108)) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) 115)) (|definingPolynomial| (((|SparseUnivariatePolynomial| $)) 90) (((|SparseUnivariatePolynomial| $) $) 89)) (|conjugate| (($ $) 79)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Fraction| (|Integer|))) 65) (($ (|Integer|)) 125) (($ (|Fraction| (|Integer|))) 122) (($ (|Fraction| (|Integer|))) 105) (($ (|PseudoAlgebraicClosureOfRationalNumber|)) 139) (($ (|PseudoAlgebraicClosureOfRationalNumber|)) 131)) (|charthRoot| (((|Union| $ "failed") $) 100 (OR (|has| (|PseudoAlgebraicClosureOfRationalNumber|) (|CharacteristicNonZero|)) (|has| (|PseudoAlgebraicClosureOfRationalNumber|) (|Finite|)) (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|)) (|has| (|Fraction| (|Integer|)) (|Finite|))))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 38)) (|algebraic?| (((|Boolean|) $) 112)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 69)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (|Frobenius| (($ $ (|NonNegativeInteger|)) 119 (OR (|has| (|PseudoAlgebraicClosureOfRationalNumber|) (|Finite|)) (|has| (|Fraction| (|Integer|)) (|Finite|)))) (($ $) 118 (OR (|has| (|PseudoAlgebraicClosureOfRationalNumber|) (|Finite|)) (|has| (|Fraction| (|Integer|)) (|Finite|))))) (= (((|Boolean|) $ $) 6)) (/ (($ $ $) 64) (($ $ (|Fraction| (|Integer|))) 109) (($ $ (|PseudoAlgebraicClosureOfRationalNumber|)) 134)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 68)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 67) (($ (|Fraction| (|Integer|)) $) 66) (($ (|Fraction| (|Integer|)) $) 111) (($ $ (|Fraction| (|Integer|))) 110) (($ (|PseudoAlgebraicClosureOfRationalNumber|) $) 136) (($ $ (|PseudoAlgebraicClosureOfRationalNumber|)) 135))) │ │ │ +(((|PseudoAlgebraicClosureOfAlgExtOfRationalNumberCategory|) (|Category|)) (T |PseudoAlgebraicClosureOfAlgExtOfRationalNumberCategory|)) │ │ │ NIL │ │ │ -(|Join| (|OrderedSet|) (|Finite|)) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Finite|) . T) ((|OrderedSet|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|sample| (($) 23 T CONST)) (|recip| (((|Union| $ "failed") $) 27)) (|one?| (((|Boolean|) $) 24)) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (^ (($ $ (|NonNegativeInteger|)) 26) (($ $ (|PositiveInteger|)) 21)) (|One| (($) 22 T CONST)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17)) (** (($ $ (|NonNegativeInteger|)) 25) (($ $ (|PositiveInteger|)) 20)) (* (($ $ $) 19))) │ │ │ -(((|OrderedMonoid|) (|Category|)) (T |OrderedMonoid|)) │ │ │ +(|Join| (|PseudoAlgebraicClosureOfRationalNumberCategory|) (|RetractableTo| (|PseudoAlgebraicClosureOfRationalNumber|)) (|ExtensionField| (|PseudoAlgebraicClosureOfRationalNumber|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| (|PseudoAlgebraicClosureOfRationalNumber|) (|PseudoAlgebraicClosureOfRationalNumber|)) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) OR (|has| (|PseudoAlgebraicClosureOfRationalNumber|) (|Finite|)) (|has| (|PseudoAlgebraicClosureOfRationalNumber|) (|CharacteristicNonZero|)) (|has| (|Fraction| (|Integer|)) (|Finite|)) (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|))) ((|CharacteristicZero|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|ExtensionField| (|Fraction| (|Integer|))) . T) ((|ExtensionField| (|PseudoAlgebraicClosureOfRationalNumber|)) . T) ((|Field|) . T) ((|FieldOfPrimeCharacteristic|) OR (|has| (|PseudoAlgebraicClosureOfRationalNumber|) (|Finite|)) (|has| (|PseudoAlgebraicClosureOfRationalNumber|) (|CharacteristicNonZero|)) (|has| (|Fraction| (|Integer|)) (|Finite|)) (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|))) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| (|PseudoAlgebraicClosureOfRationalNumber|)) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| (|PseudoAlgebraicClosureOfRationalNumber|)) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|PseudoAlgebraicClosureOfPerfectFieldCategory|) . T) ((|PseudoAlgebraicClosureOfRationalNumberCategory|) . T) ((|RetractableTo| (|Fraction| (|Integer|))) . T) ((|RetractableTo| (|Integer|)) . T) ((|RetractableTo| (|PseudoAlgebraicClosureOfRationalNumber|)) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| (|PseudoAlgebraicClosureOfRationalNumber|)) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|UniqueFactorizationDomain|) . T) ((|VectorSpace| (|Fraction| (|Integer|))) . T) ((|VectorSpace| (|PseudoAlgebraicClosureOfRationalNumber|)) . T)) │ │ │ +((|elt| ((|#2| $ |#1|) 6))) │ │ │ +(((|Eltable| |#1| |#2|) (|Category|) (|SetCategory|) (|Type|)) (T |Eltable|)) │ │ │ +((|elt| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|Eltable| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Type|))))) │ │ │ +(|Join| (CATEGORY |domain| (SIGNATURE |elt| (|t#2| $ |t#1|)))) │ │ │ +((|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) 51)) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) 12))) │ │ │ +(((|NPCoef| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |npcoef| ((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|))) (SIGNATURE |listexp| ((|List| (|NonNegativeInteger|)) |#1|))) (|UnivariatePolynomialCategory| |#4|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|EuclideanDomain|) (|PolynomialCategory| |#4| |#2| |#3|)) (T |NPCoef|)) │ │ │ +((|listexp| (*1 *2 *3) (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|EuclideanDomain|)) (|isDomain| *2 (|List| (|NonNegativeInteger|))) (|isDomain| *1 (|NPCoef| *3 *4 *5 *6 *7)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *6)) (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5)))) (|npcoef| (*1 *2 *3 *4 *5) (AND (|ofCategory| *6 (|UnivariatePolynomialCategory| *9)) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|ofCategory| *8 (|OrderedSet|)) (|ofCategory| *9 (|EuclideanDomain|)) (|ofCategory| *10 (|PolynomialCategory| *9 *7 *8)) (|isDomain| *2 (|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| *10))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| *10))))) (|:| |nfacts| (|List| *6)) (|:| |nlead| (|List| *10)))) (|isDomain| *1 (|NPCoef| *6 *7 *8 *9 *10)) (|isDomain| *3 (|SparseUnivariatePolynomial| *10)) (|isDomain| *4 (|List| *6)) (|isDomain| *5 (|List| *10))))) │ │ │ +(CATEGORY |package| (SIGNATURE |npcoef| ((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|))) (SIGNATURE |listexp| ((|List| (|NonNegativeInteger|)) |#1|))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|reducedSystem| (((|Matrix| |#1|) (|Matrix| $)) 35) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) 34)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ +(((|LinearlyExplicitRingOver| |#1|) (|Category|) (|Ring|)) (T |LinearlyExplicitRingOver|)) │ │ │ +((|reducedSystem| (*1 *2 *3) (AND (|isDomain| *3 (|Matrix| *1)) (|ofCategory| *1 (|LinearlyExplicitRingOver| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Matrix| *4)))) (|reducedSystem| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Matrix| *1)) (|isDomain| *4 (|Vector| *1)) (|ofCategory| *1 (|LinearlyExplicitRingOver| *5)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Record| (|:| |mat| (|Matrix| *5)) (|:| |vec| (|Vector| *5))))))) │ │ │ +(|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |reducedSystem| ((|Matrix| |t#1|) (|Matrix| $))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| |t#1|)) (|:| |vec| (|Vector| |t#1|))) (|Matrix| $) (|Vector| $))))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +((|slope| (((|Record| (|:| |height| (|Integer|)) (|:| |base| (|Integer|)) (|:| |quotient| (|Integer|)) (|:| |reste| (|Integer|)) (|:| |type| (|Union| "left" "center" "right" "vertical" "horizontal"))) (|List| |#2|)) 18) (((|Record| (|:| |height| (|Integer|)) (|:| |base| (|Integer|)) (|:| |quotient| (|Integer|)) (|:| |reste| (|Integer|)) (|:| |type| (|Union| "left" "center" "right" "vertical" "horizontal"))) |#2| |#2|) 16)) (|newtonPolygon| (((|List| (|List| |#2|)) |#2| (|Integer|) (|Integer|) (|Union| "left" "center" "right" "vertical" "horizontal")) 32)) (|negAndPosEdge| (((|List| (|List| |#2|)) |#2| (|List| (|List| |#2|))) 24)) (|multiplicity| (((|NonNegativeInteger|) (|List| (|List| |#2|))) 27))) │ │ │ +(((|NewtonPolygon| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |newtonPolygon| ((|List| (|List| |#2|)) |#2| (|Integer|) (|Integer|) (|Union| "left" "center" "right" "vertical" "horizontal"))) (SIGNATURE |multiplicity| ((|NonNegativeInteger|) (|List| (|List| |#2|)))) (SIGNATURE |negAndPosEdge| ((|List| (|List| |#2|)) |#2| (|List| (|List| |#2|)))) (SIGNATURE |slope| ((|Record| (|:| |height| (|Integer|)) (|:| |base| (|Integer|)) (|:| |quotient| (|Integer|)) (|:| |reste| (|Integer|)) (|:| |type| (|Union| "left" "center" "right" "vertical" "horizontal"))) |#2| |#2|)) (SIGNATURE |slope| ((|Record| (|:| |height| (|Integer|)) (|:| |base| (|Integer|)) (|:| |quotient| (|Integer|)) (|:| |reste| (|Integer|)) (|:| |type| (|Union| "left" "center" "right" "vertical" "horizontal"))) (|List| |#2|)))) (|Ring|) (|FiniteAbelianMonoidRing| |#1| |#3|) (|DirectProductCategory| |#4| (|NonNegativeInteger|)) (|NonNegativeInteger|)) (T |NewtonPolygon|)) │ │ │ +((|slope| (*1 *2 *3) (AND (|isDomain| *3 (|List| *5)) (|ofCategory| *5 (|FiniteAbelianMonoidRing| *4 *6)) (|ofCategory| *6 (|DirectProductCategory| *7 (|NonNegativeInteger|))) (|ofType| *7 (|NonNegativeInteger|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Record| (|:| |height| (|Integer|)) (|:| |base| (|Integer|)) (|:| |quotient| (|Integer|)) (|:| |reste| (|Integer|)) (|:| |type| (|Union| "left" "center" "right" "vertical" "horizontal")))) (|isDomain| *1 (|NewtonPolygon| *4 *5 *6 *7)))) (|slope| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|DirectProductCategory| *6 (|NonNegativeInteger|))) (|ofType| *6 (|NonNegativeInteger|)) (|isDomain| *2 (|Record| (|:| |height| (|Integer|)) (|:| |base| (|Integer|)) (|:| |quotient| (|Integer|)) (|:| |reste| (|Integer|)) (|:| |type| (|Union| "left" "center" "right" "vertical" "horizontal")))) (|isDomain| *1 (|NewtonPolygon| *4 *3 *5 *6)) (|ofCategory| *3 (|FiniteAbelianMonoidRing| *4 *5)))) (|negAndPosEdge| (*1 *2 *3 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|FiniteAbelianMonoidRing| *4 *5)) (|ofCategory| *5 (|DirectProductCategory| *6 (|NonNegativeInteger|))) (|ofType| *6 (|NonNegativeInteger|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|NewtonPolygon| *4 *3 *5 *6)))) (|multiplicity| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|List| *5))) (|ofCategory| *5 (|FiniteAbelianMonoidRing| *4 *6)) (|ofCategory| *6 (|DirectProductCategory| *7 *2)) (|ofType| *7 *2) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|NewtonPolygon| *4 *5 *6 *7)))) (|newtonPolygon| (*1 *2 *3 *4 *4 *5) (AND (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|Union| "left" "center" "right" "vertical" "horizontal")) (|ofCategory| *6 (|Ring|)) (|ofCategory| *7 (|DirectProductCategory| *8 (|NonNegativeInteger|))) (|ofType| *8 (|NonNegativeInteger|)) (|isDomain| *2 (|List| (|List| *3))) (|isDomain| *1 (|NewtonPolygon| *6 *3 *7 *8)) (|ofCategory| *3 (|FiniteAbelianMonoidRing| *6 *7))))) │ │ │ +(CATEGORY |package| (SIGNATURE |newtonPolygon| ((|List| (|List| |#2|)) |#2| (|Integer|) (|Integer|) (|Union| "left" "center" "right" "vertical" "horizontal"))) (SIGNATURE |multiplicity| ((|NonNegativeInteger|) (|List| (|List| |#2|)))) (SIGNATURE |negAndPosEdge| ((|List| (|List| |#2|)) |#2| (|List| (|List| |#2|)))) (SIGNATURE |slope| ((|Record| (|:| |height| (|Integer|)) (|:| |base| (|Integer|)) (|:| |quotient| (|Integer|)) (|:| |reste| (|Integer|)) (|:| |type| (|Union| "left" "center" "right" "vertical" "horizontal"))) |#2| |#2|)) (SIGNATURE |slope| ((|Record| (|:| |height| (|Integer|)) (|:| |base| (|Integer|)) (|:| |quotient| (|Integer|)) (|:| |reste| (|Integer|)) (|:| |type| (|Union| "left" "center" "right" "vertical" "horizontal"))) (|List| |#2|)))) │ │ │ +((|int| ((|#2| |#2| (|Symbol|)) 15)) (|expint| ((|#2| |#2| (|Symbol|)) 47)) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) 11))) │ │ │ +(((|ODEIntegration| |#1| |#2|) (CATEGORY |package| (SIGNATURE |int| (|#2| |#2| (|Symbol|))) (SIGNATURE |expint| (|#2| |#2| (|Symbol|))) (SIGNATURE |diff| ((|Mapping| |#2| |#2|) (|Symbol|)))) (|Join| (|OrderedSet|) (|EuclideanDomain|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|CharacteristicZero|)) (|Join| (|AlgebraicallyClosedFunctionSpace| |#1|) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|))) (T |ODEIntegration|)) │ │ │ +((|diff| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|Join| (|OrderedSet|) (|EuclideanDomain|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|CharacteristicZero|))) (|isDomain| *2 (|Mapping| *5 *5)) (|isDomain| *1 (|ODEIntegration| *4 *5)) (|ofCategory| *5 (|Join| (|AlgebraicallyClosedFunctionSpace| *4) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|))))) (|expint| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|Join| (|OrderedSet|) (|EuclideanDomain|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|CharacteristicZero|))) (|isDomain| *1 (|ODEIntegration| *4 *2)) (|ofCategory| *2 (|Join| (|AlgebraicallyClosedFunctionSpace| *4) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|))))) (|int| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|Join| (|OrderedSet|) (|EuclideanDomain|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|CharacteristicZero|))) (|isDomain| *1 (|ODEIntegration| *4 *2)) (|ofCategory| *2 (|Join| (|AlgebraicallyClosedFunctionSpace| *4) (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |int| (|#2| |#2| (|Symbol|))) (SIGNATURE |expint| (|#2| |#2| (|Symbol|))) (SIGNATURE |diff| ((|Mapping| |#2| |#2|) (|Symbol|)))) │ │ │ +((|tanh| (($ $) 11)) (|sinh| (($ $) 10)) (|sech| (($ $) 9)) (|csch| (($ $) 8)) (|coth| (($ $) 7)) (|cosh| (($ $) 6))) │ │ │ +(((|HyperbolicFunctionCategory|) (|Category|)) (T |HyperbolicFunctionCategory|)) │ │ │ +((|tanh| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|))) (|sinh| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|))) (|sech| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|))) (|csch| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|))) (|coth| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|))) (|cosh| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|)))) │ │ │ +(|Join| (CATEGORY |domain| (SIGNATURE |cosh| ($ $)) (SIGNATURE |coth| ($ $)) (SIGNATURE |csch| ($ $)) (SIGNATURE |sech| ($ $)) (SIGNATURE |sinh| ($ $)) (SIGNATURE |tanh| ($ $)))) │ │ │ NIL │ │ │ -(|Join| (|OrderedSet|) (|Monoid|)) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Monoid|) . T) ((|OrderedSet|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +(((|CentralAttribute|) (|Category|)) (T |CentralAttribute|)) │ │ │ +NIL │ │ │ +(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +((|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) 41))) │ │ │ +(((|GenUFactorize| |#1|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)))) (|EuclideanDomain|)) (T |GenUFactorize|)) │ │ │ +((|factor| (*1 *2 *3) (AND (|ofCategory| *4 (|EuclideanDomain|)) (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *4))) (|isDomain| *1 (|GenUFactorize| *4)) (|isDomain| *3 (|SparseUnivariatePolynomial| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |factor| ((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)))) │ │ │ +((|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) 17) (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) 16) (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) 15)) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) 23) (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) 22)) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) 34))) │ │ │ +(((|ViewportPackage|) (CATEGORY |package| (SIGNATURE |graphCurves| ((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|)))) (SIGNATURE |graphCurves| ((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))))) (SIGNATURE |graphCurves| ((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|)))) (SIGNATURE |drawCurves| ((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|)))) (SIGNATURE |drawCurves| ((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|)))) (SIGNATURE |coerce| ((|TwoDimensionalViewport|) (|GraphImage|))))) (T |ViewportPackage|)) │ │ │ +((|coerce| (*1 *2 *3) (AND (|isDomain| *3 (|GraphImage|)) (|isDomain| *2 (|TwoDimensionalViewport|)) (|isDomain| *1 (|ViewportPackage|)))) (|drawCurves| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|))))) (|isDomain| *4 (|List| (|DrawOption|))) (|isDomain| *2 (|TwoDimensionalViewport|)) (|isDomain| *1 (|ViewportPackage|)))) (|drawCurves| (*1 *2 *3 *4 *4 *5 *6) (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|))))) (|isDomain| *4 (|Palette|)) (|isDomain| *5 (|PositiveInteger|)) (|isDomain| *6 (|List| (|DrawOption|))) (|isDomain| *2 (|TwoDimensionalViewport|)) (|isDomain| *1 (|ViewportPackage|)))) (|graphCurves| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|))))) (|isDomain| *4 (|List| (|DrawOption|))) (|isDomain| *2 (|GraphImage|)) (|isDomain| *1 (|ViewportPackage|)))) (|graphCurves| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|))))) (|isDomain| *2 (|GraphImage|)) (|isDomain| *1 (|ViewportPackage|)))) (|graphCurves| (*1 *2 *3 *4 *4 *5 *6) (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|))))) (|isDomain| *4 (|Palette|)) (|isDomain| *5 (|PositiveInteger|)) (|isDomain| *6 (|List| (|DrawOption|))) (|isDomain| *2 (|GraphImage|)) (|isDomain| *1 (|ViewportPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |graphCurves| ((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|)))) (SIGNATURE |graphCurves| ((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))))) (SIGNATURE |graphCurves| ((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|)))) (SIGNATURE |drawCurves| ((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|)))) (SIGNATURE |drawCurves| ((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|)))) (SIGNATURE |coerce| ((|TwoDimensionalViewport|) (|GraphImage|)))) │ │ │ +((|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) 16)) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) 18)) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) 13))) │ │ │ +(((|PrimitiveArrayFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |scan| ((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|)) (SIGNATURE |map| ((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)))) (|Type|) (|Type|)) (T |PrimitiveArrayFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|PrimitiveArray| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|PrimitiveArray| *6)) (|isDomain| *1 (|PrimitiveArrayFunctions2| *5 *6)))) (|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) (|isDomain| *4 (|PrimitiveArray| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|PrimitiveArrayFunctions2| *5 *2)))) (|scan| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *5 *6 *5)) (|isDomain| *4 (|PrimitiveArray| *6)) (|ofCategory| *6 (|Type|)) (|ofCategory| *5 (|Type|)) (|isDomain| *2 (|PrimitiveArray| *5)) (|isDomain| *1 (|PrimitiveArrayFunctions2| *6 *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |scan| ((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|)) (SIGNATURE |map| ((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)))) │ │ │ +((|retractIfCan| (((|Union| |#1| "failed") $) 7) (((|Union| (|Fraction| (|Integer|)) "failed") $) 15 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| (|Integer|) "failed") $) 12 (|has| |#1| (|RetractableTo| (|Integer|))))) (|retract| ((|#1| $) 8) (((|Fraction| (|Integer|)) $) 14 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Integer|) $) 11 (|has| |#1| (|RetractableTo| (|Integer|))))) (|coerce| (($ |#1|) 6) (($ (|Fraction| (|Integer|))) 16 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (($ (|Integer|)) 13 (|has| |#1| (|RetractableTo| (|Integer|)))))) │ │ │ +(((|FullyRetractableTo| |#1|) (|Category|) (|Type|)) (T |FullyRetractableTo|)) │ │ │ +NIL │ │ │ +(|Join| (|RetractableTo| |t#1|) (CATEGORY |package| (IF (|has| |t#1| (|RetractableTo| (|Integer|))) (ATTRIBUTE (|RetractableTo| (|Integer|))) |noBranch|) (IF (|has| |t#1| (|RetractableTo| (|Fraction| (|Integer|)))) (ATTRIBUTE (|RetractableTo| (|Fraction| (|Integer|)))) |noBranch|))) │ │ │ +(((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T)) │ │ │ +((|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) 27)) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) 19)) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) 16) (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) 15))) │ │ │ +(((|NumericComplexEigenPackage| |#1|) (CATEGORY |package| (SIGNATURE |characteristicPolynomial| ((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))))) (SIGNATURE |characteristicPolynomial| ((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|))) (SIGNATURE |complexEigenvalues| ((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|)) (SIGNATURE |complexEigenvectors| ((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|))) (|Join| (|Field|) (|OrderedRing|))) (T |NumericComplexEigenPackage|)) │ │ │ +((|complexEigenvectors| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Matrix| (|Complex| (|Fraction| (|Integer|))))) (|isDomain| *2 (|List| (|Record| (|:| |outval| (|Complex| *4)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| *4))))))) (|isDomain| *1 (|NumericComplexEigenPackage| *4)) (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))))) (|complexEigenvalues| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Matrix| (|Complex| (|Fraction| (|Integer|))))) (|isDomain| *2 (|List| (|Complex| *4))) (|isDomain| *1 (|NumericComplexEigenPackage| *4)) (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))))) (|characteristicPolynomial| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Matrix| (|Complex| (|Fraction| (|Integer|))))) (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Polynomial| (|Complex| (|Fraction| (|Integer|))))) (|isDomain| *1 (|NumericComplexEigenPackage| *5)) (|ofCategory| *5 (|Join| (|Field|) (|OrderedRing|))))) (|characteristicPolynomial| (*1 *2 *3) (AND (|isDomain| *3 (|Matrix| (|Complex| (|Fraction| (|Integer|))))) (|isDomain| *2 (|Polynomial| (|Complex| (|Fraction| (|Integer|))))) (|isDomain| *1 (|NumericComplexEigenPackage| *4)) (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |characteristicPolynomial| ((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))))) (SIGNATURE |characteristicPolynomial| ((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|))) (SIGNATURE |complexEigenvalues| ((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|)) (SIGNATURE |complexEigenvectors| ((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|))) │ │ │ +((|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) 21) (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) 20) (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) 16) (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) 13)) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) 29)) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) 23)) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) 26))) │ │ │ +(((|LinearSystemMatrixPackage1| |#1|) (CATEGORY |package| (SIGNATURE |solve| ((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |solve| ((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|))) (SIGNATURE |solve| ((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|)))) (SIGNATURE |solve| ((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|)))) (SIGNATURE |particularSolution| ((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |hasSolution?| ((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |rank| ((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)))) (|Field|)) (T |LinearSystemMatrixPackage1|)) │ │ │ +((|rank| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Matrix| *5)) (|isDomain| *4 (|Vector| *5)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|LinearSystemMatrixPackage1| *5)))) (|hasSolution?| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Matrix| *5)) (|isDomain| *4 (|Vector| *5)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|LinearSystemMatrixPackage1| *5)))) (|particularSolution| (*1 *2 *3 *2) (|partial| AND (|isDomain| *2 (|Vector| *4)) (|isDomain| *3 (|Matrix| *4)) (|ofCategory| *4 (|Field|)) (|isDomain| *1 (|LinearSystemMatrixPackage1| *4)))) (|solve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|List| *5))) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|List| (|Record| (|:| |particular| (|Union| (|Vector| *5) "failed")) (|:| |basis| (|List| (|Vector| *5)))))) (|isDomain| *1 (|LinearSystemMatrixPackage1| *5)) (|isDomain| *4 (|List| (|Vector| *5))))) (|solve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Matrix| *5)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|List| (|Record| (|:| |particular| (|Union| (|Vector| *5) "failed")) (|:| |basis| (|List| (|Vector| *5)))))) (|isDomain| *1 (|LinearSystemMatrixPackage1| *5)) (|isDomain| *4 (|List| (|Vector| *5))))) (|solve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|List| *5))) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Record| (|:| |particular| (|Union| (|Vector| *5) "failed")) (|:| |basis| (|List| (|Vector| *5))))) (|isDomain| *1 (|LinearSystemMatrixPackage1| *5)) (|isDomain| *4 (|Vector| *5)))) (|solve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Matrix| *5)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Record| (|:| |particular| (|Union| (|Vector| *5) "failed")) (|:| |basis| (|List| (|Vector| *5))))) (|isDomain| *1 (|LinearSystemMatrixPackage1| *5)) (|isDomain| *4 (|Vector| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |solve| ((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |solve| ((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|))) (SIGNATURE |solve| ((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|)))) (SIGNATURE |solve| ((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|)))) (SIGNATURE |particularSolution| ((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |hasSolution?| ((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |rank| ((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 37)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 60)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|d02bhfAnnaType|) (|OrdinaryDifferentialEquationsSolverCategory|)) (T |d02bhfAnnaType|)) │ │ │ +NIL │ │ │ +(|OrdinaryDifferentialEquationsSolverCategory|) │ │ │ +((|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) 73) (((|Factored| |#4|) |#4|) 215))) │ │ │ +(((|MultFiniteFactorize| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#4|) |#4|)) (SIGNATURE |factor| ((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)))) (|OrderedSet|) (|OrderedAbelianMonoidSup|) (|FiniteFieldCategory|) (|PolynomialCategory| |#3| |#2| |#1|)) (T |MultFiniteFactorize|)) │ │ │ +((|factor| (*1 *2 *3) (AND (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|FiniteFieldCategory|)) (|ofCategory| *7 (|PolynomialCategory| *6 *5 *4)) (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *7))) (|isDomain| *1 (|MultFiniteFactorize| *4 *5 *6 *7)) (|isDomain| *3 (|SparseUnivariatePolynomial| *7)))) (|factor| (*1 *2 *3) (AND (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|FiniteFieldCategory|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|MultFiniteFactorize| *4 *5 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| *6 *5 *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#4|) |#4|)) (SIGNATURE |factor| ((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)))) │ │ │ ((|is?| (((|Boolean|) (|List| |#2|) |#3|) 22) (((|Boolean|) |#2| |#3|) 17)) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) 42 (AND (|not| (|has| |#2| (|RetractableTo| (|Symbol|)))) (|not| (|has| |#2| (|Ring|))))) (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) 41 (AND (|has| |#2| (|Ring|)) (|not| (|has| |#2| (|RetractableTo| (|Symbol|)))))) (((|List| (|Equation| |#2|)) |#2| |#3|) 34 (|has| |#2| (|RetractableTo| (|Symbol|)))) (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) 20))) │ │ │ (((|PatternMatch| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |is?| ((|Boolean|) |#2| |#3|)) (SIGNATURE |is?| ((|Boolean|) (|List| |#2|) |#3|)) (SIGNATURE |Is| ((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|)) (IF (|has| |#2| (|RetractableTo| (|Symbol|))) (SIGNATURE |Is| ((|List| (|Equation| |#2|)) |#2| |#3|)) (IF (|has| |#2| (|Ring|)) (SIGNATURE |Is| ((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|)) (SIGNATURE |Is| ((|PatternMatchResult| |#1| |#2|) |#2| |#3|))))) (|SetCategory|) (|PatternMatchable| |#1|) (|ConvertibleTo| (|Pattern| |#1|))) (T |PatternMatch|)) │ │ │ ((|Is| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|SetCategory|)) (|isDomain| *2 (|PatternMatchResult| *5 *3)) (|isDomain| *1 (|PatternMatch| *5 *3 *4)) (|not| (|ofCategory| *3 (|RetractableTo| (|Symbol|)))) (|not| (|ofCategory| *3 (|Ring|))) (|ofCategory| *3 (|PatternMatchable| *5)) (|ofCategory| *4 (|ConvertibleTo| (|Pattern| *5))))) (|Is| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|SetCategory|)) (|isDomain| *2 (|List| (|Equation| (|Polynomial| *3)))) (|isDomain| *1 (|PatternMatch| *5 *3 *4)) (|ofCategory| *3 (|Ring|)) (|not| (|ofCategory| *3 (|RetractableTo| (|Symbol|)))) (|ofCategory| *3 (|PatternMatchable| *5)) (|ofCategory| *4 (|ConvertibleTo| (|Pattern| *5))))) (|Is| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|SetCategory|)) (|isDomain| *2 (|List| (|Equation| *3))) (|isDomain| *1 (|PatternMatch| *5 *3 *4)) (|ofCategory| *3 (|RetractableTo| (|Symbol|))) (|ofCategory| *3 (|PatternMatchable| *5)) (|ofCategory| *4 (|ConvertibleTo| (|Pattern| *5))))) (|Is| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|PatternMatchable| *5)) (|isDomain| *2 (|PatternMatchListResult| *5 *6 (|List| *6))) (|isDomain| *1 (|PatternMatch| *5 *6 *4)) (|isDomain| *3 (|List| *6)) (|ofCategory| *4 (|ConvertibleTo| (|Pattern| *5))))) (|is?| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *6)) (|ofCategory| *6 (|PatternMatchable| *5)) (|ofCategory| *5 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PatternMatch| *5 *6 *4)) (|ofCategory| *4 (|ConvertibleTo| (|Pattern| *5))))) (|is?| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PatternMatch| *5 *3 *4)) (|ofCategory| *3 (|PatternMatchable| *5)) (|ofCategory| *4 (|ConvertibleTo| (|Pattern| *5)))))) │ │ │ (CATEGORY |package| (SIGNATURE |is?| ((|Boolean|) |#2| |#3|)) (SIGNATURE |is?| ((|Boolean|) (|List| |#2|) |#3|)) (SIGNATURE |Is| ((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|)) (IF (|has| |#2| (|RetractableTo| (|Symbol|))) (SIGNATURE |Is| ((|List| (|Equation| |#2|)) |#2| |#3|)) (IF (|has| |#2| (|Ring|)) (SIGNATURE |Is| ((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|)) (SIGNATURE |Is| ((|PatternMatchResult| |#1| |#2|) |#2| |#3|))))) │ │ │ -((|differentiate| (($ $ |#2|) NIL) (($ $ (|List| |#2|)) 10) (($ $ |#2| (|NonNegativeInteger|)) 12) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) 15)) (D (($ $ |#2|) 16) (($ $ (|List| |#2|)) 18) (($ $ |#2| (|NonNegativeInteger|)) 19) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) 21))) │ │ │ -(((|PartialDifferentialRing&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE D (|#1| |#1| (|List| |#2|) (|List| (|NonNegativeInteger|)))) (SIGNATURE D (|#1| |#1| |#2| (|NonNegativeInteger|))) (SIGNATURE D (|#1| |#1| (|List| |#2|))) (SIGNATURE D (|#1| |#1| |#2|)) (SIGNATURE |differentiate| (|#1| |#1| (|List| |#2|) (|List| (|NonNegativeInteger|)))) (SIGNATURE |differentiate| (|#1| |#1| |#2| (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| |#2|))) (SIGNATURE |differentiate| (|#1| |#1| |#2|))) (|PartialDifferentialRing| |#2|) (|SetCategory|)) (T |PartialDifferentialRing&|)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (~ (($ $) 103)) (|xor| (($ $ $) 24)) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) 66 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) $) 98 (|has| (|Boolean|) (|OrderedSet|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $) 92)) (|sort!| (($ $) 102 (AND (|has| (|Boolean|) (|OrderedSet|)) (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (($ (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $) 101 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sort| (($ $) 97 (|has| (|Boolean|) (|OrderedSet|))) (($ (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $) 91)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 37)) (|setelt| (((|Boolean|) $ (|UniversalSegment| (|Integer|)) (|Boolean|)) 88 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Boolean|) $ (|Integer|) (|Boolean|)) 54 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) (|Boolean|)) $) 71 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) 38 T CONST)) (|reverse!| (($ $) 100 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) 90)) (|removeDuplicates| (($ $) 68 (AND (|has| (|Boolean|) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|remove| (($ (|Mapping| (|Boolean|) (|Boolean|)) $) 72 (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Boolean|) $) 69 (AND (|has| (|Boolean|) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|reduce| (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $) 74 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $ (|Boolean|)) 73 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $ (|Boolean|) (|Boolean|)) 70 (AND (|has| (|Boolean|) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|qsetelt!| (((|Boolean|) $ (|Integer|) (|Boolean|)) 53 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| (((|Boolean|) $ (|Integer|)) 55)) (|position| (((|Integer|) (|Boolean|) $ (|Integer|)) 95 (|has| (|Boolean|) (|SetCategory|))) (((|Integer|) (|Boolean|) $) 94 (|has| (|Boolean|) (|SetCategory|))) (((|Integer|) (|Mapping| (|Boolean|) (|Boolean|)) $) 93)) (|parts| (((|List| (|Boolean|)) $) 45 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|or| (($ $ $) 25)) (|not| (($ $) 30)) (|nor| (($ $ $) 27)) (|new| (($ (|NonNegativeInteger|) (|Boolean|)) 77)) (|nand| (($ $ $) 28)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 36)) (|minIndex| (((|Integer|) $) 63 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) 12)) (|merge| (($ $ $) 96 (|has| (|Boolean|) (|OrderedSet|))) (($ (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $ $) 89)) (|members| (((|List| (|Boolean|)) $) 46 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Boolean|) $) 48 (AND (|has| (|Boolean|) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxIndex| (((|Integer|) $) 62 (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) 13)) (|map!| (($ (|Mapping| (|Boolean|) (|Boolean|)) $) 41 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $ $) 82) (($ (|Mapping| (|Boolean|) (|Boolean|)) $) 40)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 35)) (|latex| (((|String|) $) 9)) (|insert| (($ $ $ (|Integer|)) 87) (($ (|Boolean|) $ (|Integer|)) 86)) (|indices| (((|List| (|Integer|)) $) 60)) (|index?| (((|Boolean|) (|Integer|) $) 59)) (|hash| (((|SingleInteger|) $) 10)) (|first| (((|Boolean|) $) 64 (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| (|Boolean|) "failed") (|Mapping| (|Boolean|) (|Boolean|)) $) 75)) (|fill!| (($ $ (|Boolean|)) 65 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|)) $) 43 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Boolean|)) (|List| (|Boolean|))) 52 (AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|)))) (($ $ (|Boolean|) (|Boolean|)) 51 (AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|)))) (($ $ (|Equation| (|Boolean|))) 50 (AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|)))) (($ $ (|List| (|Equation| (|Boolean|)))) 49 (AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 31)) (|entry?| (((|Boolean|) (|Boolean|) $) 61 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Boolean|) (|SetCategory|))))) (|entries| (((|List| (|Boolean|)) $) 58)) (|empty?| (((|Boolean|) $) 34)) (|empty| (($) 33)) (|elt| (($ $ (|UniversalSegment| (|Integer|))) 83) (((|Boolean|) $ (|Integer|)) 57) (((|Boolean|) $ (|Integer|) (|Boolean|)) 56)) (|delete| (($ $ (|UniversalSegment| (|Integer|))) 85) (($ $ (|Integer|)) 84)) (|count| (((|NonNegativeInteger|) (|Boolean|) $) 47 (AND (|has| (|Boolean|) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Boolean|)) $) 44 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|copyInto!| (($ $ $ (|Integer|)) 99 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) 32)) (|convert| (((|InputForm|) $) 67 (|has| (|Boolean|) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|Boolean|))) 76)) (|concat| (($ (|List| $)) 81) (($ $ $) 80) (($ (|Boolean|) $) 79) (($ $ (|Boolean|)) 78)) (|coerce| (((|OutputForm|) $) 11)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|)) $) 42 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|and| (($ $ $) 26)) (^ (($ $) 29)) (|\\/| (($ $ $) 105)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17)) (|/\\| (($ $ $) 104)) (|#| (((|NonNegativeInteger|) $) 39 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|BitAggregate|) (|Category|)) (T |BitAggregate|)) │ │ │ +((|not| (*1 *1 *1) (|ofCategory| *1 (|BitAggregate|))) (^ (*1 *1 *1) (|ofCategory| *1 (|BitAggregate|))) (|nand| (*1 *1 *1 *1) (|ofCategory| *1 (|BitAggregate|))) (|nor| (*1 *1 *1 *1) (|ofCategory| *1 (|BitAggregate|))) (|and| (*1 *1 *1 *1) (|ofCategory| *1 (|BitAggregate|))) (|or| (*1 *1 *1 *1) (|ofCategory| *1 (|BitAggregate|))) (|xor| (*1 *1 *1 *1) (|ofCategory| *1 (|BitAggregate|)))) │ │ │ +(|Join| (|OrderedSet|) (|Logic|) (|OneDimensionalArrayAggregate| (|Boolean|)) (CATEGORY |domain| (SIGNATURE |not| ($ $)) (SIGNATURE ^ ($ $)) (SIGNATURE |nand| ($ $ $)) (SIGNATURE |nor| ($ $ $)) (SIGNATURE |and| ($ $ $)) (SIGNATURE |or| ($ $ $)) (SIGNATURE |xor| ($ $ $)))) │ │ │ +(((|Aggregate|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| (|Boolean|)) . T) ((|ConvertibleTo| (|InputForm|)) |has| (|Boolean|) (|ConvertibleTo| (|InputForm|))) ((|Eltable| (|Integer|) (|Boolean|)) . T) ((|EltableAggregate| (|Integer|) (|Boolean|)) . T) ((|Evalable| (|Boolean|)) AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|))) ((|FiniteLinearAggregate| (|Boolean|)) . T) ((|HomogeneousAggregate| (|Boolean|)) . T) ((|IndexedAggregate| (|Integer|) (|Boolean|)) . T) ((|InnerEvalable| (|Boolean|) (|Boolean|)) AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|))) ((|LinearAggregate| (|Boolean|)) . T) ((|Logic|) . T) ((|OneDimensionalArrayAggregate| (|Boolean|)) . T) ((|OrderedSet|) . T) ((|SetCategory|) . T) ((|Type|) . T)) │ │ │ +((|retractIfCan| (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) 137) (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) 126) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) 158) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) 147) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 116) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 105)) (|retract| (($ (|Vector| (|Expression| (|Float|)))) 133) (($ (|Vector| (|Expression| (|Integer|)))) 122) (($ (|Vector| (|Polynomial| (|Float|)))) 154) (($ (|Vector| (|Polynomial| (|Integer|)))) 143) (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 112) (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 98)) (|outputAsFortran| (((|Void|) $) 91)) (|coerce| (((|OutputForm|) $) 85) (($ (|List| (|FortranCode|))) 76) (($ (|FortranCode|)) 83) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 81) (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) 77))) │ │ │ +(((|Asp55| |#1|) (|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))))))) (|Symbol|)) (T |Asp55|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) (|isDomain| *1 (|Asp55| *3)) (|ofType| *3 (|Symbol|))))) │ │ │ +(|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))))))) │ │ │ +((|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) 17)) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) 11)) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) 14))) │ │ │ +(((|IntegerLinearDependence| |#1|) (CATEGORY |package| (SIGNATURE |linearlyDependentOverZ?| ((|Boolean|) (|Vector| |#1|))) (SIGNATURE |linearDependenceOverZ| ((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|))) (SIGNATURE |solveLinearlyOverQ| ((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|))) (|LinearlyExplicitRingOver| (|Integer|))) (T |IntegerLinearDependence|)) │ │ │ +((|solveLinearlyOverQ| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Vector| *4)) (|ofCategory| *4 (|LinearlyExplicitRingOver| (|Integer|))) (|isDomain| *2 (|Vector| (|Fraction| (|Integer|)))) (|isDomain| *1 (|IntegerLinearDependence| *4)))) (|linearDependenceOverZ| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Vector| *4)) (|ofCategory| *4 (|LinearlyExplicitRingOver| (|Integer|))) (|isDomain| *2 (|Vector| (|Integer|))) (|isDomain| *1 (|IntegerLinearDependence| *4)))) (|linearlyDependentOverZ?| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *4)) (|ofCategory| *4 (|LinearlyExplicitRingOver| (|Integer|))) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IntegerLinearDependence| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |linearlyDependentOverZ?| ((|Boolean|) (|Vector| |#1|))) (SIGNATURE |linearDependenceOverZ| ((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|))) (SIGNATURE |solveLinearlyOverQ| ((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|))) │ │ │ +((|parametrize| ((|#6| |#3| |#7| (|Integer|)) 36) ((|#6| |#3| |#3| |#7|) 33) ((|#6| |#3| |#7|) 31) ((|#6| |#3| (|List| |#6|)) 28))) │ │ │ +(((|ParametrizationPackage| |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (CATEGORY |package| (SIGNATURE |parametrize| (|#6| |#3| (|List| |#6|))) (SIGNATURE |parametrize| (|#6| |#3| |#7|)) (SIGNATURE |parametrize| (|#6| |#3| |#3| |#7|)) (SIGNATURE |parametrize| (|#6| |#3| |#7| (|Integer|)))) (|Field|) (|List| (|Symbol|)) (|PolynomialCategory| |#1| |#4| (|OrderedVariableList| |#2|)) (|DirectProductCategory| (|#| |#2|) (|NonNegativeInteger|)) (|ProjectiveSpaceCategory| |#1|) (|LocalPowerSeriesCategory| |#1|) (|PlacesCategory| |#1| |#6|)) (T |ParametrizationPackage|)) │ │ │ +((|parametrize| (*1 *2 *3 *4 *5) (AND (|isDomain| *5 (|Integer|)) (|ofCategory| *6 (|Field|)) (|ofType| *7 (|List| (|Symbol|))) (|ofCategory| *8 (|DirectProductCategory| (|#| *7) (|NonNegativeInteger|))) (|ofCategory| *2 (|LocalPowerSeriesCategory| *6)) (|isDomain| *1 (|ParametrizationPackage| *6 *7 *3 *8 *9 *2 *4)) (|ofCategory| *3 (|PolynomialCategory| *6 *8 (|OrderedVariableList| *7))) (|ofCategory| *9 (|ProjectiveSpaceCategory| *6)) (|ofCategory| *4 (|PlacesCategory| *6 *2)))) (|parametrize| (*1 *2 *3 *3 *4) (AND (|ofCategory| *5 (|Field|)) (|ofType| *6 (|List| (|Symbol|))) (|ofCategory| *7 (|DirectProductCategory| (|#| *6) (|NonNegativeInteger|))) (|ofCategory| *2 (|LocalPowerSeriesCategory| *5)) (|isDomain| *1 (|ParametrizationPackage| *5 *6 *3 *7 *8 *2 *4)) (|ofCategory| *3 (|PolynomialCategory| *5 *7 (|OrderedVariableList| *6))) (|ofCategory| *8 (|ProjectiveSpaceCategory| *5)) (|ofCategory| *4 (|PlacesCategory| *5 *2)))) (|parametrize| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|Field|)) (|ofType| *6 (|List| (|Symbol|))) (|ofCategory| *7 (|DirectProductCategory| (|#| *6) (|NonNegativeInteger|))) (|ofCategory| *2 (|LocalPowerSeriesCategory| *5)) (|isDomain| *1 (|ParametrizationPackage| *5 *6 *3 *7 *8 *2 *4)) (|ofCategory| *3 (|PolynomialCategory| *5 *7 (|OrderedVariableList| *6))) (|ofCategory| *8 (|ProjectiveSpaceCategory| *5)) (|ofCategory| *4 (|PlacesCategory| *5 *2)))) (|parametrize| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| *2)) (|ofCategory| *5 (|Field|)) (|ofType| *6 (|List| (|Symbol|))) (|ofCategory| *7 (|DirectProductCategory| (|#| *6) (|NonNegativeInteger|))) (|ofCategory| *2 (|LocalPowerSeriesCategory| *5)) (|isDomain| *1 (|ParametrizationPackage| *5 *6 *3 *7 *8 *2 *9)) (|ofCategory| *3 (|PolynomialCategory| *5 *7 (|OrderedVariableList| *6))) (|ofCategory| *8 (|ProjectiveSpaceCategory| *5)) (|ofCategory| *9 (|PlacesCategory| *5 *2))))) │ │ │ +(CATEGORY |package| (SIGNATURE |parametrize| (|#6| |#3| (|List| |#6|))) (SIGNATURE |parametrize| (|#6| |#3| |#7|)) (SIGNATURE |parametrize| (|#6| |#3| |#3| |#7|)) (SIGNATURE |parametrize| (|#6| |#3| |#7| (|Integer|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|variables| (((|List| |#2|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|tanh| (($ $) 155 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|tan| (($ $) 131 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sqrt| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sinh| (($ $) 151 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sin| (($ $) 127 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|series| (($ (|Stream| |#3|)) 11)) (|sech| (($ $) 159 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sec| (($ $) 135 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sample| (($) NIL T CONST)) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) NIL) (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) NIL)) (|pole?| (((|Boolean|) $) NIL)) (|pi| (($) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|order| (((|NonNegativeInteger|) $ |#2|) NIL) (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) NIL)) (|one?| (((|Boolean|) $) NIL)) (|nthRoot| (($ $ (|Integer|)) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ $ (|List| |#2|) (|List| (|IndexedExponents| |#2|))) NIL) (($ $ |#2| (|IndexedExponents| |#2|)) NIL) (($ |#1| (|IndexedExponents| |#2|)) NIL) (($ $ |#2| (|NonNegativeInteger|)) 72) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|log| (($ $) 125 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|integrate| (($ $ |#2|) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ |#2| |#1|) 178 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|hash| (((|SingleInteger|) $) NIL)) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) 177 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|extend| (($ $ (|NonNegativeInteger|)) 17)) (|exquo| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|exp| (($ $) 123 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|eval| (($ $ |#2| $) 110) (($ $ (|List| |#2|) (|List| $)) 103) (($ $ (|List| (|Equation| $))) NIL) (($ $ (|Equation| $)) NIL) (($ $ $ $) NIL) (($ $ (|List| $) (|List| $)) NIL)) (|differentiate| (($ $ |#2|) 112) (($ $ (|List| |#2|)) NIL) (($ $ |#2| (|NonNegativeInteger|)) NIL) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) NIL)) (|degree| (((|IndexedExponents| |#2|) $) NIL)) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) 93)) (|csch| (($ $) 161 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|csc| (($ $) 137 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|coth| (($ $) 157 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cot| (($ $) 133 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cosh| (($ $) 153 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cos| (($ $) 129 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|complete| (($ $) 19)) (|coerce| (((|OutputForm|) $) 193) (($ (|Integer|)) NIL) (($ |#1|) 60 (|has| |#1| (|CommutativeRing|))) (($ $) NIL (|has| |#1| (|IntegralDomain|))) (($ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ |#2|) 79) (($ |#3|) 77)) (|coefficients| (((|Stream| |#3|) $) NIL)) (|coefficient| ((|#1| $ (|IndexedExponents| |#2|)) 58) (($ $ |#2| (|NonNegativeInteger|)) NIL) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) 51) ((|#3| $ (|NonNegativeInteger|)) 43)) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|atanh| (($ $) 167 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|atan| (($ $) 143 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|asinh| (($ $) 163 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asin| (($ $) 139 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asech| (($ $) 171 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asec| (($ $) 147 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acsch| (($ $) 173 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acsc| (($ $) 149 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acoth| (($ $) 169 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acot| (($ $) 145 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acosh| (($ $) 165 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acos| (($ $) 141 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 20 T CONST)) (|One| (($) 12 T CONST)) (D (($ $ |#2|) NIL) (($ $ (|List| |#2|)) NIL) (($ $ |#2| (|NonNegativeInteger|)) NIL) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) NIL)) (= (((|Boolean|) $ $) NIL)) (/ (($ $ |#1|) 195 (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) 75)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) 84) (($ $ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) 115 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 74) (($ $ (|Fraction| (|Integer|))) 120 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ (|Fraction| (|Integer|)) $) 118 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ |#1| $) 63) (($ $ |#1|) 64) (($ |#3| $) 62))) │ │ │ +(((|SparseMultivariateTaylorSeries| |#1| |#2| |#3|) (|Join| (|MultivariateTaylorSeriesCategory| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |coefficient| (|#3| $ (|NonNegativeInteger|))) (SIGNATURE |coefficients| ((|Stream| |#3|) $)) (SIGNATURE |series| ($ (|Stream| |#3|))) (SIGNATURE |coerce| ($ |#2|)) (SIGNATURE |coerce| ($ |#3|)) (SIGNATURE * ($ |#3| $)) (SIGNATURE |csubst| ((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|)))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ($ $ |#2| |#1|)) (SIGNATURE |fintegrate| ($ (|Mapping| $) |#2| |#1|))) |noBranch|))) (|Ring|) (|OrderedSet|) (|PolynomialCategory| |#1| (|IndexedExponents| |#2|) |#2|)) (T |SparseMultivariateTaylorSeries|)) │ │ │ +((|coefficient| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *2 (|PolynomialCategory| *4 (|IndexedExponents| *5) *5)) (|isDomain| *1 (|SparseMultivariateTaylorSeries| *4 *5 *2)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedSet|)))) (|coefficients| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|Stream| *5)) (|isDomain| *1 (|SparseMultivariateTaylorSeries| *3 *4 *5)) (|ofCategory| *5 (|PolynomialCategory| *3 (|IndexedExponents| *4) *4)))) (|series| (*1 *1 *2) (AND (|isDomain| *2 (|Stream| *5)) (|ofCategory| *5 (|PolynomialCategory| *3 (|IndexedExponents| *4) *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *1 (|SparseMultivariateTaylorSeries| *3 *4 *5)))) (|coerce| (*1 *1 *2) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedSet|)) (|isDomain| *1 (|SparseMultivariateTaylorSeries| *3 *2 *4)) (|ofCategory| *4 (|PolynomialCategory| *3 (|IndexedExponents| *2) *2)))) (|coerce| (*1 *1 *2) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *1 (|SparseMultivariateTaylorSeries| *3 *4 *2)) (|ofCategory| *2 (|PolynomialCategory| *3 (|IndexedExponents| *4) *4)))) (* (*1 *1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *1 (|SparseMultivariateTaylorSeries| *3 *4 *2)) (|ofCategory| *2 (|PolynomialCategory| *3 (|IndexedExponents| *4) *4)))) (|csubst| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *6)) (|isDomain| *4 (|List| (|Stream| *7))) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|PolynomialCategory| *5 (|IndexedExponents| *6) *6)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Mapping| (|Stream| *7) *7)) (|isDomain| *1 (|SparseMultivariateTaylorSeries| *5 *6 *7)))) (|integrate| (*1 *1 *1 *2 *3) (AND (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedSet|)) (|isDomain| *1 (|SparseMultivariateTaylorSeries| *3 *2 *4)) (|ofCategory| *4 (|PolynomialCategory| *3 (|IndexedExponents| *2) *2)))) (|fintegrate| (*1 *1 *2 *3 *4) (AND (|isDomain| *2 (|Mapping| (|SparseMultivariateTaylorSeries| *4 *3 *5))) (|ofCategory| *4 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|SparseMultivariateTaylorSeries| *4 *3 *5)) (|ofCategory| *5 (|PolynomialCategory| *4 (|IndexedExponents| *3) *3))))) │ │ │ +(|Join| (|MultivariateTaylorSeriesCategory| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |coefficient| (|#3| $ (|NonNegativeInteger|))) (SIGNATURE |coefficients| ((|Stream| |#3|) $)) (SIGNATURE |series| ($ (|Stream| |#3|))) (SIGNATURE |coerce| ($ |#2|)) (SIGNATURE |coerce| ($ |#3|)) (SIGNATURE * ($ |#3| $)) (SIGNATURE |csubst| ((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|)))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ($ $ |#2| |#1|)) (SIGNATURE |fintegrate| ($ (|Mapping| $) |#2| |#1|))) |noBranch|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|variables| (((|List| (|SingletonAsOrderedSet|)) $) NIL)) (|variable| (((|Symbol|) $) 79)) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) 68)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) 128 (|has| |#1| (|IntegralDomain|)))) (|truncate| (($ $ (|NonNegativeInteger|)) 113) (($ $ (|NonNegativeInteger|) (|NonNegativeInteger|)) 115)) (|terms| (((|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|))) $) 38)) (|tanh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|tan| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sqrt| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sinh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sin| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|series| (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) 51) (($ (|Stream| |#1|)) NIL)) (|sech| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sec| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sample| (($) NIL T CONST)) (|revert| (($ $) 119)) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|quoByVar| (($ $) 126)) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) 59) (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) 61)) (|pole?| (((|Boolean|) $) NIL)) (|pi| (($) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|order| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) NIL)) (|one?| (((|Boolean|) $) NIL)) (|oddlambert| (($ $) 103)) (|nthRoot| (($ $ (|Integer|)) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|multisect| (($ (|Integer|) (|Integer|) $) 121)) (|multiplyExponents| (($ $ (|PositiveInteger|)) 125)) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) 97)) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| (|NonNegativeInteger|)) 12) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) 85)) (|log| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|lambert| (($ $) 101)) (|lagrange| (($ $) 99)) (|invmultisect| (($ (|Integer|) (|Integer|) $) 123)) (|integrate| (($ $) 136 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Symbol|)) 139 (OR (AND (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| (|Symbol|)))) (|has| |#1| (SIGNATURE |variables| ((|List| (|Symbol|)) |#1|))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (AND (|has| |#1| (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|))))) (($ $ (|Variable| |#2|)) 137 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|hash| (((|SingleInteger|) $) NIL)) (|generalLambert| (($ $ (|Integer|) (|Integer|)) 107)) (|extend| (($ $ (|NonNegativeInteger|)) 109)) (|exquo| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|exp| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|evenlambert| (($ $) 105)) (|eval| (((|Stream| |#1|) $ |#1|) 87 (|has| |#1| (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|)))))) (|elt| ((|#1| $ (|NonNegativeInteger|)) 82) (($ $ $) 117 (|has| (|NonNegativeInteger|) (|SemiGroup|)))) (|differentiate| (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) 92 (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))) (($ $) 89 (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))) (($ $ (|Variable| |#2|)) 90)) (|degree| (((|NonNegativeInteger|) $) NIL)) (|csch| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|csc| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|coth| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cot| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cosh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cos| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|complete| (($ $) 111)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) 18) (($ (|Fraction| (|Integer|))) 134 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $) NIL (|has| |#1| (|IntegralDomain|))) (($ |#1|) 17 (|has| |#1| (|CommutativeRing|))) (($ (|UnivariatePolynomial| |#2| |#1|)) 73) (($ (|Variable| |#2|)) 14)) (|coefficients| (((|Stream| |#1|) $) NIL)) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) 81)) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|center| ((|#1| $) 80)) (|atanh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|atan| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|asinh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asin| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asech| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asec| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|approximate| ((|#1| $ (|NonNegativeInteger|)) 78 (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|)))) (|has| |#1| (SIGNATURE |coerce| (|#1| (|Symbol|))))))) (|acsch| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acsc| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acoth| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acot| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acosh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acos| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 44 T CONST)) (|One| (($) 9 T CONST)) (D (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))) (($ $) NIL (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))))) (= (((|Boolean|) $ $) NIL)) (/ (($ $ |#1|) NIL (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) 94)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ |#1|) 131 (|has| |#1| (|Field|))) (($ $ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 93) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ +(((|UnivariateTaylorSeriesCZero| |#1| |#2|) (|Join| (|UnivariateTaylorSeriesCategory| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |univariatePolynomial| ((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ (|Variable| |#2|))) (SIGNATURE |differentiate| ($ $ (|Variable| |#2|))) (SIGNATURE |lagrange| ($ $)) (SIGNATURE |lambert| ($ $)) (SIGNATURE |oddlambert| ($ $)) (SIGNATURE |evenlambert| ($ $)) (SIGNATURE |generalLambert| ($ $ (|Integer|) (|Integer|))) (SIGNATURE |revert| ($ $)) (SIGNATURE |multisect| ($ (|Integer|) (|Integer|) $)) (SIGNATURE |invmultisect| ($ (|Integer|) (|Integer|) $)) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ (|Variable| |#2|))) |noBranch|))) (|Ring|) (|Symbol|)) (T |UnivariateTaylorSeriesCZero|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|UnivariatePolynomial| *4 *3)) (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|UnivariateTaylorSeriesCZero| *3 *4)))) (|univariatePolynomial| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|UnivariatePolynomial| *5 *4)) (|isDomain| *1 (|UnivariateTaylorSeriesCZero| *4 *5)) (|ofCategory| *4 (|Ring|)) (|ofType| *5 (|Symbol|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|UnivariateTaylorSeriesCZero| *3 *4)) (|ofCategory| *3 (|Ring|)))) (|differentiate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|UnivariateTaylorSeriesCZero| *3 *4)) (|ofCategory| *3 (|Ring|)))) (|lagrange| (*1 *1 *1) (AND (|isDomain| *1 (|UnivariateTaylorSeriesCZero| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofType| *3 (|Symbol|)))) (|lambert| (*1 *1 *1) (AND (|isDomain| *1 (|UnivariateTaylorSeriesCZero| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofType| *3 (|Symbol|)))) (|oddlambert| (*1 *1 *1) (AND (|isDomain| *1 (|UnivariateTaylorSeriesCZero| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofType| *3 (|Symbol|)))) (|evenlambert| (*1 *1 *1) (AND (|isDomain| *1 (|UnivariateTaylorSeriesCZero| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofType| *3 (|Symbol|)))) (|generalLambert| (*1 *1 *1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|UnivariateTaylorSeriesCZero| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Symbol|)))) (|revert| (*1 *1 *1) (AND (|isDomain| *1 (|UnivariateTaylorSeriesCZero| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofType| *3 (|Symbol|)))) (|multisect| (*1 *1 *2 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|UnivariateTaylorSeriesCZero| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Symbol|)))) (|invmultisect| (*1 *1 *2 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|UnivariateTaylorSeriesCZero| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Symbol|)))) (|integrate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|UnivariateTaylorSeriesCZero| *3 *4)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|Ring|))))) │ │ │ +(|Join| (|UnivariateTaylorSeriesCategory| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |univariatePolynomial| ((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ (|Variable| |#2|))) (SIGNATURE |differentiate| ($ $ (|Variable| |#2|))) (SIGNATURE |lagrange| ($ $)) (SIGNATURE |lambert| ($ $)) (SIGNATURE |oddlambert| ($ $)) (SIGNATURE |evenlambert| ($ $)) (SIGNATURE |generalLambert| ($ $ (|Integer|) (|Integer|))) (SIGNATURE |revert| ($ $)) (SIGNATURE |multisect| ($ (|Integer|) (|Integer|) $)) (SIGNATURE |invmultisect| ($ (|Integer|) (|Integer|) $)) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ (|Variable| |#2|))) |noBranch|))) │ │ │ +((|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) 58)) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) 71)) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) 32))) │ │ │ +(((|MultivariateLifting| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |corrPoly| ((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|)) (SIGNATURE |lifting| ((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|)) (SIGNATURE |lifting1| ((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|EuclideanDomain|) (|PolynomialCategory| |#3| |#1| |#2|)) (T |MultivariateLifting|)) │ │ │ +((|lifting1| (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| AND (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *13))) (|isDomain| *3 (|SparseUnivariatePolynomial| *13)) (|isDomain| *4 (|List| *12)) (|isDomain| *5 (|List| *10)) (|isDomain| *6 (|List| *13)) (|isDomain| *7 (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| *13))))) (|isDomain| *8 (|List| (|NonNegativeInteger|))) (|isDomain| *9 (|Vector| (|List| (|SparseUnivariatePolynomial| *10)))) (|ofCategory| *12 (|OrderedSet|)) (|ofCategory| *10 (|EuclideanDomain|)) (|ofCategory| *13 (|PolynomialCategory| *10 *11 *12)) (|ofCategory| *11 (|OrderedAbelianMonoidSup|)) (|isDomain| *1 (|MultivariateLifting| *11 *12 *10 *13)))) (|lifting| (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| AND (|isDomain| *4 (|List| *11)) (|isDomain| *5 (|List| (|SparseUnivariatePolynomial| *9))) (|isDomain| *6 (|List| *9)) (|isDomain| *7 (|List| *12)) (|isDomain| *8 (|List| (|NonNegativeInteger|))) (|ofCategory| *11 (|OrderedSet|)) (|ofCategory| *9 (|EuclideanDomain|)) (|ofCategory| *12 (|PolynomialCategory| *9 *10 *11)) (|ofCategory| *10 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *12))) (|isDomain| *1 (|MultivariateLifting| *10 *11 *9 *12)) (|isDomain| *3 (|SparseUnivariatePolynomial| *12)))) (|corrPoly| (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| AND (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *11))) (|isDomain| *3 (|SparseUnivariatePolynomial| *11)) (|isDomain| *4 (|List| *10)) (|isDomain| *5 (|List| *8)) (|isDomain| *6 (|List| (|NonNegativeInteger|))) (|isDomain| *7 (|Vector| (|List| (|SparseUnivariatePolynomial| *8)))) (|ofCategory| *10 (|OrderedSet|)) (|ofCategory| *8 (|EuclideanDomain|)) (|ofCategory| *11 (|PolynomialCategory| *8 *9 *10)) (|ofCategory| *9 (|OrderedAbelianMonoidSup|)) (|isDomain| *1 (|MultivariateLifting| *9 *10 *8 *11))))) │ │ │ +(CATEGORY |package| (SIGNATURE |corrPoly| ((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|)) (SIGNATURE |lifting| ((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|)) (SIGNATURE |lifting1| ((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|shift| (($ |#1|) 17) (($ $ |#1|) 20)) (|scale| (($ |#1|) 18) (($ $ |#1|) 21)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL) (($) 19) (($ $) 22)) (|one?| (((|Boolean|) $) NIL)) (|moebius| (($ |#1| |#1| |#1| |#1|) 8)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) 16)) (|hash| (((|SingleInteger|) $) NIL)) (|eval| ((|#1| $ |#1|) 24) (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) 32)) (|conjugate| (($ $ $) NIL)) (|commutator| (($ $ $) NIL)) (|coerce| (((|OutputForm|) $) 39)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|One| (($) 9 T CONST)) (= (((|Boolean|) $ $) 44)) (/ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ $ $) 14))) │ │ │ +(((|MoebiusTransform| |#1|) (|Join| (|Group|) (CATEGORY |domain| (SIGNATURE |moebius| ($ |#1| |#1| |#1| |#1|)) (SIGNATURE |shift| ($ |#1|)) (SIGNATURE |scale| ($ |#1|)) (SIGNATURE |recip| ($)) (SIGNATURE |shift| ($ $ |#1|)) (SIGNATURE |scale| ($ $ |#1|)) (SIGNATURE |recip| ($ $)) (SIGNATURE |eval| (|#1| $ |#1|)) (SIGNATURE |eval| ((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|))))) (|Field|)) (T |MoebiusTransform|)) │ │ │ +((|moebius| (*1 *1 *2 *2 *2 *2) (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|)))) (|shift| (*1 *1 *2) (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|)))) (|scale| (*1 *1 *2) (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|)))) (|recip| (*1 *1) (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|)))) (|shift| (*1 *1 *1 *2) (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|)))) (|scale| (*1 *1 *1 *2) (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|)))) (|recip| (*1 *1 *1) (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|)))) (|eval| (*1 *2 *1 *2) (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|)))) (|eval| (*1 *2 *1 *2) (AND (|isDomain| *2 (|OnePointCompletion| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|MoebiusTransform| *3))))) │ │ │ +(|Join| (|Group|) (CATEGORY |domain| (SIGNATURE |moebius| ($ |#1| |#1| |#1| |#1|)) (SIGNATURE |shift| ($ |#1|)) (SIGNATURE |scale| ($ |#1|)) (SIGNATURE |recip| ($)) (SIGNATURE |shift| ($ $ |#1|)) (SIGNATURE |scale| ($ $ |#1|)) (SIGNATURE |recip| ($ $)) (SIGNATURE |eval| (|#1| $ |#1|)) (SIGNATURE |eval| ((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|))))) │ │ │ +((|restorePrecision| (((|Void|)) 18)) (|fortranLinkerArgs| (((|String|)) 22)) (|fortranCompilerName| (((|String|)) 21)) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) 35) (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) 31)) (|checkPrecision| (((|Boolean|)) 16)) (|aspFilename| (((|String|) (|String|)) 25))) │ │ │ +(((|NAGLinkSupportPackage|) (CATEGORY |package| (SIGNATURE |fortranCompilerName| ((|String|))) (SIGNATURE |fortranLinkerArgs| ((|String|))) (SIGNATURE |aspFilename| ((|String|) (|String|))) (SIGNATURE |dimensionsOf| ((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|)))) (SIGNATURE |dimensionsOf| ((|SExpression|) (|Symbol|) (|Matrix| (|Integer|)))) (SIGNATURE |checkPrecision| ((|Boolean|))) (SIGNATURE |restorePrecision| ((|Void|))))) (T |NAGLinkSupportPackage|)) │ │ │ +((|restorePrecision| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|NAGLinkSupportPackage|)))) (|checkPrecision| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|NAGLinkSupportPackage|)))) (|dimensionsOf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *4 (|Matrix| (|Integer|))) (|isDomain| *2 (|SExpression|)) (|isDomain| *1 (|NAGLinkSupportPackage|)))) (|dimensionsOf| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *2 (|SExpression|)) (|isDomain| *1 (|NAGLinkSupportPackage|)))) (|aspFilename| (*1 *2 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|NAGLinkSupportPackage|)))) (|fortranLinkerArgs| (*1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|NAGLinkSupportPackage|)))) (|fortranCompilerName| (*1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|NAGLinkSupportPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |fortranCompilerName| ((|String|))) (SIGNATURE |fortranLinkerArgs| ((|String|))) (SIGNATURE |aspFilename| ((|String|) (|String|))) (SIGNATURE |dimensionsOf| ((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|)))) (SIGNATURE |dimensionsOf| ((|SExpression|) (|Symbol|) (|Matrix| (|Integer|)))) (SIGNATURE |checkPrecision| ((|Boolean|))) (SIGNATURE |restorePrecision| ((|Void|)))) │ │ │ +((|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) 10)) (|factorSquareFree| (((|Factored| |#1|) |#1|) 21)) (|factor| (((|Factored| |#1|) |#1|) 20))) │ │ │ +(((|UnivariateFactorize| |#1|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#1|) |#1|)) (SIGNATURE |factorSquareFree| ((|Factored| |#1|) |#1|)) (SIGNATURE |henselFact| ((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)))) (|UnivariatePolynomialCategory| (|Integer|))) (T |UnivariateFactorize|)) │ │ │ +((|henselFact| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Boolean|)) (|isDomain| *2 (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| *3) (|:| |pow| (|Integer|))))))) (|isDomain| *1 (|UnivariateFactorize| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|factorSquareFree| (*1 *2 *3) (AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|UnivariateFactorize| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|))))) (|factor| (*1 *2 *3) (AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|UnivariateFactorize| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Integer|)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#1|) |#1|)) (SIGNATURE |factorSquareFree| ((|Factored| |#1|) |#1|)) (SIGNATURE |henselFact| ((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)))) │ │ │ +((|stripCommentsAndBlanks| (((|String|) (|String|)) 18)) (|interpretString| (((|Any|) (|String|)) 21))) │ │ │ +(((|TemplateUtilities|) (CATEGORY |package| (SIGNATURE |interpretString| ((|Any|) (|String|))) (SIGNATURE |stripCommentsAndBlanks| ((|String|) (|String|))))) (T |TemplateUtilities|)) │ │ │ +((|stripCommentsAndBlanks| (*1 *2 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|TemplateUtilities|)))) (|interpretString| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|TemplateUtilities|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |interpretString| ((|Any|) (|String|))) (SIGNATURE |stripCommentsAndBlanks| ((|String|) (|String|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| (|Complex| (|DoubleFloat|)) (|SetCategory|)))) (|zero| (($ (|NonNegativeInteger|)) NIL (|has| (|Complex| (|DoubleFloat|)) (|AbelianMonoid|)))) (|vector| (($ (|List| (|Complex| (|DoubleFloat|)))) NIL)) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) $) NIL) (((|Boolean|) $) NIL (|has| (|Complex| (|DoubleFloat|)) (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| (|Complex| (|DoubleFloat|)) (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) $) NIL) (($ $) NIL (|has| (|Complex| (|DoubleFloat|)) (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| (((|Complex| (|DoubleFloat|)) $ (|Integer|) (|Complex| (|DoubleFloat|))) 18 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Complex| (|DoubleFloat|)) $ (|UniversalSegment| (|Integer|)) (|Complex| (|DoubleFloat|))) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) (|Complex| (|DoubleFloat|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Complex| (|DoubleFloat|)) (|SetCategory|))))) (|remove| (($ (|Complex| (|DoubleFloat|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Complex| (|DoubleFloat|)) (|SetCategory|)))) (($ (|Mapping| (|Boolean|) (|Complex| (|DoubleFloat|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| (((|Complex| (|DoubleFloat|)) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) $ (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Complex| (|DoubleFloat|)) (|SetCategory|)))) (((|Complex| (|DoubleFloat|)) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) $ (|Complex| (|DoubleFloat|))) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Complex| (|DoubleFloat|)) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| (((|Complex| (|DoubleFloat|)) $ (|Integer|) (|Complex| (|DoubleFloat|))) 9 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qnew| (($ (|Integer|)) 14)) (|qelt| (((|Complex| (|DoubleFloat|)) $ (|Integer|)) 8)) (|position| (((|Integer|) (|Mapping| (|Boolean|) (|Complex| (|DoubleFloat|))) $) NIL) (((|Integer|) (|Complex| (|DoubleFloat|)) $) NIL (|has| (|Complex| (|DoubleFloat|)) (|SetCategory|))) (((|Integer|) (|Complex| (|DoubleFloat|)) $ (|Integer|)) NIL (|has| (|Complex| (|DoubleFloat|)) (|SetCategory|)))) (|parts| (((|List| (|Complex| (|DoubleFloat|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|outerProduct| (((|Matrix| (|Complex| (|DoubleFloat|))) $ $) NIL (|has| (|Complex| (|DoubleFloat|)) (|Ring|)))) (|new| (($ (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) 16)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) 12 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| (|Complex| (|DoubleFloat|)) (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) $ $) NIL) (($ $ $) NIL (|has| (|Complex| (|DoubleFloat|)) (|OrderedSet|)))) (|members| (((|List| (|Complex| (|DoubleFloat|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Complex| (|DoubleFloat|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Complex| (|DoubleFloat|)) (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| (|Complex| (|DoubleFloat|)) (|OrderedSet|)))) (|map!| (($ (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) $) NIL) (($ (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) $ $) NIL)) (|magnitude| (((|Complex| (|DoubleFloat|)) $) NIL (AND (|has| (|Complex| (|DoubleFloat|)) (|RadicalCategory|)) (|has| (|Complex| (|DoubleFloat|)) (|Ring|))))) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|length| (((|Complex| (|DoubleFloat|)) $) NIL (AND (|has| (|Complex| (|DoubleFloat|)) (|RadicalCategory|)) (|has| (|Complex| (|DoubleFloat|)) (|Ring|))))) (|latex| (((|String|) $) NIL (|has| (|Complex| (|DoubleFloat|)) (|SetCategory|)))) (|insert| (($ (|Complex| (|DoubleFloat|)) $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| (|Complex| (|DoubleFloat|)) (|SetCategory|)))) (|first| (((|Complex| (|DoubleFloat|)) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| (|Complex| (|DoubleFloat|)) "failed") (|Mapping| (|Boolean|) (|Complex| (|DoubleFloat|))) $) NIL)) (|fill!| (($ $ (|Complex| (|DoubleFloat|))) 15 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Complex| (|DoubleFloat|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|Complex| (|DoubleFloat|))))) NIL (AND (|has| (|Complex| (|DoubleFloat|)) (|Evalable| (|Complex| (|DoubleFloat|)))) (|has| (|Complex| (|DoubleFloat|)) (|SetCategory|)))) (($ $ (|Equation| (|Complex| (|DoubleFloat|)))) NIL (AND (|has| (|Complex| (|DoubleFloat|)) (|Evalable| (|Complex| (|DoubleFloat|)))) (|has| (|Complex| (|DoubleFloat|)) (|SetCategory|)))) (($ $ (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) NIL (AND (|has| (|Complex| (|DoubleFloat|)) (|Evalable| (|Complex| (|DoubleFloat|)))) (|has| (|Complex| (|DoubleFloat|)) (|SetCategory|)))) (($ $ (|List| (|Complex| (|DoubleFloat|))) (|List| (|Complex| (|DoubleFloat|)))) NIL (AND (|has| (|Complex| (|DoubleFloat|)) (|Evalable| (|Complex| (|DoubleFloat|)))) (|has| (|Complex| (|DoubleFloat|)) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) (|Complex| (|DoubleFloat|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Complex| (|DoubleFloat|)) (|SetCategory|))))) (|entries| (((|List| (|Complex| (|DoubleFloat|))) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) 13)) (|elt| (((|Complex| (|DoubleFloat|)) $ (|Integer|) (|Complex| (|DoubleFloat|))) NIL) (((|Complex| (|DoubleFloat|)) $ (|Integer|)) 17) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|dot| (((|Complex| (|DoubleFloat|)) $ $) NIL (|has| (|Complex| (|DoubleFloat|)) (|Ring|)))) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|cross| (($ $ $) NIL (|has| (|Complex| (|DoubleFloat|)) (|Ring|)))) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Complex| (|DoubleFloat|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Complex| (|DoubleFloat|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Complex| (|DoubleFloat|)) (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| (|Complex| (|DoubleFloat|)) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|Complex| (|DoubleFloat|)))) NIL)) (|concat| (($ $ (|Complex| (|DoubleFloat|))) NIL) (($ (|Complex| (|DoubleFloat|)) $) NIL) (($ $ $) NIL) (($ (|List| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| (|Complex| (|DoubleFloat|)) (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Complex| (|DoubleFloat|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| (|Complex| (|DoubleFloat|)) (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| (|Complex| (|DoubleFloat|)) (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| (|Complex| (|DoubleFloat|)) (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| (|Complex| (|DoubleFloat|)) (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| (|Complex| (|DoubleFloat|)) (|OrderedSet|)))) (- (($ $) NIL (|has| (|Complex| (|DoubleFloat|)) (|AbelianGroup|))) (($ $ $) NIL (|has| (|Complex| (|DoubleFloat|)) (|AbelianGroup|)))) (+ (($ $ $) NIL (|has| (|Complex| (|DoubleFloat|)) (|AbelianSemiGroup|)))) (* (($ (|Integer|) $) NIL (|has| (|Complex| (|DoubleFloat|)) (|AbelianGroup|))) (($ (|Complex| (|DoubleFloat|)) $) NIL (|has| (|Complex| (|DoubleFloat|)) (|Monoid|))) (($ $ (|Complex| (|DoubleFloat|))) NIL (|has| (|Complex| (|DoubleFloat|)) (|Monoid|)))) (|#| (((|NonNegativeInteger|) $) 11 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|ComplexDoubleFloatVector|) (|Join| (|VectorCategory| (|Complex| (|DoubleFloat|))) (CATEGORY |domain| (SIGNATURE |qnew| ($ (|Integer|))) (SIGNATURE |vector| ($ (|List| (|Complex| (|DoubleFloat|)))))))) (T |ComplexDoubleFloatVector|)) │ │ │ +((|qnew| (*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|ComplexDoubleFloatVector|)))) (|vector| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Complex| (|DoubleFloat|)))) (|isDomain| *1 (|ComplexDoubleFloatVector|))))) │ │ │ +(|Join| (|VectorCategory| (|Complex| (|DoubleFloat|))) (CATEGORY |domain| (SIGNATURE |qnew| ($ (|Integer|))) (SIGNATURE |vector| ($ (|List| (|Complex| (|DoubleFloat|))))))) │ │ │ +((|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (|commonDenominator| ((|#1| |#4|) 10)) (|clearDenominator| ((|#3| |#4|) 17))) │ │ │ +(((|InnerCommonDenominator| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |commonDenominator| (|#1| |#4|)) (SIGNATURE |clearDenominator| (|#3| |#4|)) (SIGNATURE |splitDenominator| ((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (|IntegralDomain|) (|QuotientFieldCategory| |#1|) (|FiniteLinearAggregate| |#1|) (|FiniteLinearAggregate| |#2|)) (T |InnerCommonDenominator|)) │ │ │ +((|splitDenominator| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|QuotientFieldCategory| *4)) (|isDomain| *2 (|Record| (|:| |num| *6) (|:| |den| *4))) (|isDomain| *1 (|InnerCommonDenominator| *4 *5 *6 *3)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)) (|ofCategory| *3 (|FiniteLinearAggregate| *5)))) (|clearDenominator| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|QuotientFieldCategory| *4)) (|ofCategory| *2 (|FiniteLinearAggregate| *4)) (|isDomain| *1 (|InnerCommonDenominator| *4 *5 *2 *3)) (|ofCategory| *3 (|FiniteLinearAggregate| *5)))) (|commonDenominator| (*1 *2 *3) (AND (|ofCategory| *4 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|isDomain| *1 (|InnerCommonDenominator| *2 *4 *5 *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)) (|ofCategory| *3 (|FiniteLinearAggregate| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |commonDenominator| (|#1| |#4|)) (SIGNATURE |clearDenominator| (|#3| |#4|)) (SIGNATURE |splitDenominator| ((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) │ │ │ +((|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) 60 (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|OrderedSet|)))) (((|Union| (|Float|) "failed") (|Expression| |#1|)) 52 (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|OrderedSet|)))) (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) 39 (|has| |#1| (|IntegralDomain|))) (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) 35 (|has| |#1| (|IntegralDomain|))) (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) 30 (|has| |#1| (|Ring|))) (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) 24 (|has| |#1| (|Ring|)))) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) 92 (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|OrderedSet|)))) (((|Float|) (|Expression| |#1|)) 87 (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|OrderedSet|)))) (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) 84 (|has| |#1| (|IntegralDomain|))) (((|Float|) (|Fraction| (|Polynomial| |#1|))) 81 (|has| |#1| (|IntegralDomain|))) (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) 80 (|has| |#1| (|Ring|))) (((|Float|) (|Polynomial| |#1|)) 77 (|has| |#1| (|Ring|))) (((|Float|) |#1| (|PositiveInteger|)) 73) (((|Float|) |#1|) 22)) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) 68 (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|OrderedSet|)))) (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) 58 (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|OrderedSet|)))) (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) 61 (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|OrderedSet|)))) (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) 59 (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|OrderedSet|)))) (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) 44 (|has| |#1| (|IntegralDomain|))) (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) 43 (|has| |#1| (|IntegralDomain|))) (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) 38 (|has| |#1| (|IntegralDomain|))) (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) 37 (|has| |#1| (|IntegralDomain|))) (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) 28 (|has| |#1| (|Ring|))) (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) 26 (|has| |#1| (|Ring|))) (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) 17 (|has| |#1| (|CommutativeRing|))) (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) 14 (|has| |#1| (|CommutativeRing|)))) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) 95 (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|OrderedSet|)))) (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) 94 (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|OrderedSet|)))) (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) 93 (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|OrderedSet|)))) (((|Complex| (|Float|)) (|Expression| |#1|)) 91 (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|OrderedSet|)))) (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) 86 (|has| |#1| (|IntegralDomain|))) (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) 85 (|has| |#1| (|IntegralDomain|))) (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) 83 (|has| |#1| (|IntegralDomain|))) (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) 82 (|has| |#1| (|IntegralDomain|))) (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) 79 (|has| |#1| (|Ring|))) (((|Complex| (|Float|)) (|Polynomial| |#1|)) 78 (|has| |#1| (|Ring|))) (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) 75 (|has| |#1| (|CommutativeRing|))) (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) 74 (|has| |#1| (|CommutativeRing|))) (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) 16 (|has| |#1| (|CommutativeRing|))) (((|Complex| (|Float|)) (|Complex| |#1|)) 12 (|has| |#1| (|CommutativeRing|))) (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) 27) (((|Complex| (|Float|)) |#1|) 25))) │ │ │ +(((|Numeric| |#1|) (CATEGORY |package| (SIGNATURE |numeric| ((|Float|) |#1|)) (SIGNATURE |numeric| ((|Float|) |#1| (|PositiveInteger|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) |#1|)) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) |#1| (|PositiveInteger|))) (IF (|has| |#1| (|CommutativeRing|)) (PROGN (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Complex| |#1|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)))) |noBranch|) (IF (|has| |#1| (|Ring|)) (PROGN (SIGNATURE |numeric| ((|Float|) (|Polynomial| |#1|))) (SIGNATURE |numeric| ((|Float|) (|Polynomial| |#1|) (|PositiveInteger|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Polynomial| |#1|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)))) |noBranch|) (IF (|has| |#1| (|IntegralDomain|)) (PROGN (SIGNATURE |numeric| ((|Float|) (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |numeric| ((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|))) (IF (|has| |#1| (|OrderedSet|)) (PROGN (SIGNATURE |numeric| ((|Float|) (|Expression| |#1|))) (SIGNATURE |numeric| ((|Float|) (|Expression| |#1|) (|PositiveInteger|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Expression| |#1|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (|CommutativeRing|)) (PROGN (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)))) |noBranch|) (IF (|has| |#1| (|Ring|)) (PROGN (SIGNATURE |numericIfCan| ((|Union| (|Float|) "failed") (|Polynomial| |#1|))) (SIGNATURE |numericIfCan| ((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)))) |noBranch|) (IF (|has| |#1| (|IntegralDomain|)) (PROGN (SIGNATURE |numericIfCan| ((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |numericIfCan| ((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|))) (IF (|has| |#1| (|OrderedSet|)) (PROGN (SIGNATURE |numericIfCan| ((|Union| (|Float|) "failed") (|Expression| |#1|))) (SIGNATURE |numericIfCan| ((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)))) |noBranch|)) |noBranch|)) (|ConvertibleTo| (|Float|))) (T |Numeric|)) │ │ │ +((|complexNumericIfCan| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Expression| (|Complex| *5))) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *5 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5)))) (|complexNumericIfCan| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Expression| (|Complex| *4))) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *4 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4)))) (|complexNumericIfCan| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Expression| *5)) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *5 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5)))) (|complexNumericIfCan| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Expression| *4)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *4 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4)))) (|numericIfCan| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Expression| *5)) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *5 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *5)))) (|numericIfCan| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Expression| *4)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *4 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *4)))) (|complexNumericIfCan| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Fraction| (|Polynomial| (|Complex| *5)))) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5)))) (|complexNumericIfCan| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Fraction| (|Polynomial| (|Complex| *4)))) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4)))) (|complexNumericIfCan| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Fraction| (|Polynomial| *5))) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5)))) (|complexNumericIfCan| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Fraction| (|Polynomial| *4))) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4)))) (|numericIfCan| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Fraction| (|Polynomial| *5))) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *5)))) (|numericIfCan| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Fraction| (|Polynomial| *4))) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *4)))) (|complexNumericIfCan| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Polynomial| *5)) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *5 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5)))) (|complexNumericIfCan| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Polynomial| *4)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *4 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4)))) (|numericIfCan| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Polynomial| *5)) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *5 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *5)))) (|numericIfCan| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Polynomial| *4)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *4 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *4)))) (|complexNumericIfCan| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Polynomial| (|Complex| *5))) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|CommutativeRing|)) (|ofCategory| *5 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5)))) (|complexNumericIfCan| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Polynomial| (|Complex| *4))) (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *4 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4)))) (|complexNumeric| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Expression| (|Complex| *5))) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *5 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5)))) (|complexNumeric| (*1 *2 *3) (AND (|isDomain| *3 (|Expression| (|Complex| *4))) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *4 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4)))) (|complexNumeric| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Expression| *5)) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *5 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5)))) (|complexNumeric| (*1 *2 *3) (AND (|isDomain| *3 (|Expression| *4)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *4 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4)))) (|numeric| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Expression| *5)) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *5 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *5)))) (|numeric| (*1 *2 *3) (AND (|isDomain| *3 (|Expression| *4)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *4 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *4)))) (|complexNumeric| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| (|Polynomial| (|Complex| *5)))) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5)))) (|complexNumeric| (*1 *2 *3) (AND (|isDomain| *3 (|Fraction| (|Polynomial| (|Complex| *4)))) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4)))) (|complexNumeric| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5))) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5)))) (|complexNumeric| (*1 *2 *3) (AND (|isDomain| *3 (|Fraction| (|Polynomial| *4))) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4)))) (|numeric| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5))) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *5)))) (|numeric| (*1 *2 *3) (AND (|isDomain| *3 (|Fraction| (|Polynomial| *4))) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *4)))) (|complexNumeric| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Polynomial| *5)) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *5 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5)))) (|complexNumeric| (*1 *2 *3) (AND (|isDomain| *3 (|Polynomial| *4)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *4 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4)))) (|numeric| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Polynomial| *5)) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *5 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *5)))) (|numeric| (*1 *2 *3) (AND (|isDomain| *3 (|Polynomial| *4)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *4 (|ConvertibleTo| *2)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *4)))) (|complexNumeric| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Polynomial| (|Complex| *5))) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|CommutativeRing|)) (|ofCategory| *5 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5)))) (|complexNumeric| (*1 *2 *3) (AND (|isDomain| *3 (|Polynomial| (|Complex| *4))) (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *4 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4)))) (|complexNumeric| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Complex| *5)) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|CommutativeRing|)) (|ofCategory| *5 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *5)))) (|complexNumeric| (*1 *2 *3) (AND (|isDomain| *3 (|Complex| *4)) (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *4 (|ConvertibleTo| (|Float|))) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *4)))) (|complexNumeric| (*1 *2 *3 *4) (AND (|isDomain| *4 (|PositiveInteger|)) (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *3)) (|ofCategory| *3 (|ConvertibleTo| (|Float|))))) (|complexNumeric| (*1 *2 *3) (AND (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|Numeric| *3)) (|ofCategory| *3 (|ConvertibleTo| (|Float|))))) (|numeric| (*1 *2 *3 *4) (AND (|isDomain| *4 (|PositiveInteger|)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *3)) (|ofCategory| *3 (|ConvertibleTo| *2)))) (|numeric| (*1 *2 *3) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|Numeric| *3)) (|ofCategory| *3 (|ConvertibleTo| *2))))) │ │ │ +(CATEGORY |package| (SIGNATURE |numeric| ((|Float|) |#1|)) (SIGNATURE |numeric| ((|Float|) |#1| (|PositiveInteger|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) |#1|)) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) |#1| (|PositiveInteger|))) (IF (|has| |#1| (|CommutativeRing|)) (PROGN (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Complex| |#1|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)))) |noBranch|) (IF (|has| |#1| (|Ring|)) (PROGN (SIGNATURE |numeric| ((|Float|) (|Polynomial| |#1|))) (SIGNATURE |numeric| ((|Float|) (|Polynomial| |#1|) (|PositiveInteger|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Polynomial| |#1|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)))) |noBranch|) (IF (|has| |#1| (|IntegralDomain|)) (PROGN (SIGNATURE |numeric| ((|Float|) (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |numeric| ((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|))) (IF (|has| |#1| (|OrderedSet|)) (PROGN (SIGNATURE |numeric| ((|Float|) (|Expression| |#1|))) (SIGNATURE |numeric| ((|Float|) (|Expression| |#1|) (|PositiveInteger|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Expression| |#1|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)))) (SIGNATURE |complexNumeric| ((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (|CommutativeRing|)) (PROGN (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)))) |noBranch|) (IF (|has| |#1| (|Ring|)) (PROGN (SIGNATURE |numericIfCan| ((|Union| (|Float|) "failed") (|Polynomial| |#1|))) (SIGNATURE |numericIfCan| ((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)))) |noBranch|) (IF (|has| |#1| (|IntegralDomain|)) (PROGN (SIGNATURE |numericIfCan| ((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |numericIfCan| ((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|))) (IF (|has| |#1| (|OrderedSet|)) (PROGN (SIGNATURE |numericIfCan| ((|Union| (|Float|) "failed") (|Expression| |#1|))) (SIGNATURE |numericIfCan| ((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)))) (SIGNATURE |complexNumericIfCan| ((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)))) |noBranch|)) |noBranch|)) │ │ │ +((|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) 195)) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) 191)) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) 198))) │ │ │ +(((|AlgebraicIntegrate| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |algintegrate| ((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|))) (SIGNATURE |palgintegrate| ((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|))) (SIGNATURE |palginfieldint| ((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)))) (|Join| (|OrderedSet|) (|IntegralDomain|) (|RetractableTo| (|Integer|))) (|Join| (|AlgebraicallyClosedField|) (|FunctionSpace| |#1|)) (|UnivariatePolynomialCategory| |#2|) (|UnivariatePolynomialCategory| (|Fraction| |#3|)) (|FunctionFieldCategory| |#2| |#3| |#4|)) (T |AlgebraicIntegrate|)) │ │ │ +((|palginfieldint| (*1 *2 *2 *3) (|partial| AND (|isDomain| *3 (|Mapping| *6 *6)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 (|Join| (|AlgebraicallyClosedField|) (|FunctionSpace| *4))) (|ofCategory| *4 (|Join| (|OrderedSet|) (|IntegralDomain|) (|RetractableTo| (|Integer|)))) (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6))) (|isDomain| *1 (|AlgebraicIntegrate| *4 *5 *6 *7 *2)) (|ofCategory| *2 (|FunctionFieldCategory| *5 *6 *7)))) (|palgintegrate| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| *7 *7)) (|ofCategory| *7 (|UnivariatePolynomialCategory| *6)) (|ofCategory| *6 (|Join| (|AlgebraicallyClosedField|) (|FunctionSpace| *5))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|IntegralDomain|) (|RetractableTo| (|Integer|)))) (|ofCategory| *8 (|UnivariatePolynomialCategory| (|Fraction| *7))) (|isDomain| *2 (|IntegrationResult| *3)) (|isDomain| *1 (|AlgebraicIntegrate| *5 *6 *7 *8 *3)) (|ofCategory| *3 (|FunctionFieldCategory| *6 *7 *8)))) (|algintegrate| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| *7 *7)) (|ofCategory| *7 (|UnivariatePolynomialCategory| *6)) (|ofCategory| *6 (|Join| (|AlgebraicallyClosedField|) (|FunctionSpace| *5))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|IntegralDomain|) (|RetractableTo| (|Integer|)))) (|ofCategory| *8 (|UnivariatePolynomialCategory| (|Fraction| *7))) (|isDomain| *2 (|IntegrationResult| *3)) (|isDomain| *1 (|AlgebraicIntegrate| *5 *6 *7 *8 *3)) (|ofCategory| *3 (|FunctionFieldCategory| *6 *7 *8))))) │ │ │ +(CATEGORY |package| (SIGNATURE |algintegrate| ((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|))) (SIGNATURE |palgintegrate| ((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|))) (SIGNATURE |palginfieldint| ((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 18)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|transcendent?| (((|Boolean|) $) NIL)) (|transcendenceDegree| (((|NonNegativeInteger|)) NIL)) (|trace| (($ $ (|PositiveInteger|)) NIL (|has| $ (|Finite|))) (($ $) NIL)) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) 47)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|size| (((|NonNegativeInteger|)) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| $ "failed") $) 75)) (|retract| (($ $) 74)) (|represents| (($ (|Vector| $)) 73)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) 42)) (|rem| (($ $ $) NIL)) (|recip| (((|Union| $ "failed") $) 30)) (|random| (($) NIL)) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|primitiveElement| (($) 49)) (|primitive?| (((|Boolean|) $) NIL)) (|primeFrobenius| (($ $) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|prime?| (((|Boolean|) $) NIL)) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) NIL) (((|PositiveInteger|) $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|normalElement| (($) 35 (|has| $ (|Finite|)))) (|normal?| (((|Boolean|) $) NIL (|has| $ (|Finite|)))) (|norm| (($ $ (|PositiveInteger|)) NIL (|has| $ (|Finite|))) (($ $) NIL)) (|nextItem| (((|Union| $ "failed") $) NIL)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) NIL (|has| $ (|Finite|))) (((|SparseUnivariatePolynomial| $) $) 83)) (|lookup| (((|PositiveInteger|) $) 55)) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| $) $) NIL (|has| $ (|Finite|)))) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $ $) NIL (|has| $ (|Finite|))) (((|SparseUnivariatePolynomial| $) $) NIL (|has| $ (|Finite|)))) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| $)) NIL (|has| $ (|Finite|)))) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) NIL)) (|init| (($) NIL T CONST)) (|index| (($ (|PositiveInteger|)) 48)) (|inGroundField?| (((|Boolean|) $) 67)) (|hash| (((|SingleInteger|) $) NIL)) (|generator| (($) 16 (|has| $ (|Finite|)))) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) 40)) (|factor| (((|Factored| $) $) NIL)) (|extensionDegree| (((|PositiveInteger|)) 66) (((|OnePointCompletion| (|PositiveInteger|))) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|enumerate| (((|List| $)) NIL)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) NIL) (((|NonNegativeInteger|) $) NIL)) (|dimension| (((|CardinalNumber|)) NIL)) (|differentiate| (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL)) (|degree| (((|PositiveInteger|) $) 65) (((|OnePointCompletion| (|PositiveInteger|)) $) NIL)) (|definingPolynomial| (((|SparseUnivariatePolynomial| $)) 82)) (|createPrimitiveElement| (($) 54)) (|createNormalElement| (($) 36 (|has| $ (|Finite|)))) (|coordinates| (((|Matrix| $) (|Vector| $)) NIL) (((|Vector| $) $) 71)) (|convert| (((|Integer|) $) 26)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) 28) (($ $) NIL) (($ (|Fraction| (|Integer|))) NIL)) (|charthRoot| (((|Union| $ "failed") $) NIL) (($ $) 84)) (|characteristic| (((|NonNegativeInteger|)) 37)) (|basis| (((|Vector| $) (|PositiveInteger|)) 77) (((|Vector| $)) 76)) (|associates?| (((|Boolean|) $ $) NIL)) (|algebraic?| (((|Boolean|) $) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|Zero| (($) 19 T CONST)) (|One| (($) 15 T CONST)) (|Frobenius| (($ $ (|NonNegativeInteger|)) NIL (|has| $ (|Finite|))) (($ $) NIL (|has| $ (|Finite|)))) (D (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL)) (= (((|Boolean|) $ $) NIL)) (/ (($ $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) 24)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 61) (($ $ (|Fraction| (|Integer|))) NIL) (($ (|Fraction| (|Integer|)) $) NIL))) │ │ │ +(((|InnerPrimeField| |#1|) (|Join| (|FiniteFieldCategory|) (|FiniteAlgebraicExtensionField| $) (|ConvertibleTo| (|Integer|))) (|PositiveInteger|)) (T |InnerPrimeField|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE D (|#1| |#1| (|List| |#2|) (|List| (|NonNegativeInteger|)))) (SIGNATURE D (|#1| |#1| |#2| (|NonNegativeInteger|))) (SIGNATURE D (|#1| |#1| (|List| |#2|))) (SIGNATURE D (|#1| |#1| |#2|)) (SIGNATURE |differentiate| (|#1| |#1| (|List| |#2|) (|List| (|NonNegativeInteger|)))) (SIGNATURE |differentiate| (|#1| |#1| |#2| (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| |#2|))) (SIGNATURE |differentiate| (|#1| |#1| |#2|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|setParam!| (((|Void|) $ (|List| |#2|)) 19)) (|setFoundPlacesToEmpty| (((|List| $)) 14)) (|setDegree!| (((|Void|) $ (|PositiveInteger|)) 18)) (|reduce| (((|Divisor| $) (|List| $)) 23)) (|localParam| (((|List| |#2|) $) 20)) (|leaf?| (((|Boolean|) $) 17)) (|latex| (((|String|) $) 9)) (|itsALeaf!| (((|Void|) $) 16)) (|hash| (((|SingleInteger|) $) 10)) (|foundPlaces| (((|List| $)) 15)) (|elt| ((|#1| $ (|Integer|)) 13)) (|degree| (((|PositiveInteger|) $) 12)) (|create| (($ (|List| |#1|)) 22) (($ (|Symbol|)) 21)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6)) (- (((|Divisor| $) $ $) 28) (((|Divisor| $) (|Divisor| $) $) 27) (((|Divisor| $) $ (|Divisor| $)) 26) (((|Divisor| $) $) 25)) (+ (((|Divisor| $) $ $) 31) (((|Divisor| $) (|Divisor| $) $) 30) (((|Divisor| $) $ (|Divisor| $)) 29)) (* (((|Divisor| $) (|Integer|) $) 24))) │ │ │ -(((|PlacesCategory| |#1| |#2|) (|Category|) (|Field|) (|LocalPowerSeriesCategory| |t#1|)) (T |PlacesCategory|)) │ │ │ -((+ (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)) (|isDomain| *2 (|Divisor| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)))) (+ (*1 *2 *2 *1) (AND (|isDomain| *2 (|Divisor| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)))) (+ (*1 *2 *1 *2) (AND (|isDomain| *2 (|Divisor| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)))) (- (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)) (|isDomain| *2 (|Divisor| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)))) (- (*1 *2 *2 *1) (AND (|isDomain| *2 (|Divisor| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)))) (- (*1 *2 *1 *2) (AND (|isDomain| *2 (|Divisor| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)))) (- (*1 *2 *1) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)) (|isDomain| *2 (|Divisor| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)))) (* (*1 *2 *3 *1) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|LocalPowerSeriesCategory| *4)) (|isDomain| *2 (|Divisor| *1)) (|ofCategory| *1 (|PlacesCategory| *4 *5)))) (|reduce| (*1 *2 *3) (AND (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|PlacesCategory| *4 *5)) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|LocalPowerSeriesCategory| *4)) (|isDomain| *2 (|Divisor| *1)))) (|create| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)))) (|create| (*1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *3 (|Field|)) (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)))) (|localParam| (*1 *2 *1) (AND (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)) (|isDomain| *2 (|List| *4)))) (|setParam!| (*1 *2 *1 *3) (AND (|isDomain| *3 (|List| *5)) (|ofCategory| *1 (|PlacesCategory| *4 *5)) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|LocalPowerSeriesCategory| *4)) (|isDomain| *2 (|Void|)))) (|setDegree!| (*1 *2 *1 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *1 (|PlacesCategory| *4 *5)) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|LocalPowerSeriesCategory| *4)) (|isDomain| *2 (|Void|)))) (|leaf?| (*1 *2 *1) (AND (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)) (|isDomain| *2 (|Boolean|)))) (|itsALeaf!| (*1 *2 *1) (AND (|ofCategory| *1 (|PlacesCategory| *3 *4)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)) (|isDomain| *2 (|Void|)))) (|foundPlaces| (*1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)))) (|setFoundPlacesToEmpty| (*1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *3)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|PlacesCategory| *3 *4)))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|PlacesCategory| *2 *4)) (|ofCategory| *4 (|LocalPowerSeriesCategory| *2)) (|ofCategory| *2 (|Field|))))) │ │ │ -(|Join| (|SetCategoryWithDegree|) (CATEGORY |domain| (SIGNATURE + ((|Divisor| $) $ $)) (SIGNATURE + ((|Divisor| $) (|Divisor| $) $)) (SIGNATURE + ((|Divisor| $) $ (|Divisor| $))) (SIGNATURE - ((|Divisor| $) $ $)) (SIGNATURE - ((|Divisor| $) (|Divisor| $) $)) (SIGNATURE - ((|Divisor| $) $ (|Divisor| $))) (SIGNATURE - ((|Divisor| $) $)) (SIGNATURE * ((|Divisor| $) (|Integer|) $)) (SIGNATURE |reduce| ((|Divisor| $) (|List| $))) (SIGNATURE |create| ($ (|List| |t#1|))) (SIGNATURE |create| ($ (|Symbol|))) (SIGNATURE |localParam| ((|List| |t#2|) $)) (SIGNATURE |setParam!| ((|Void|) $ (|List| |t#2|))) (SIGNATURE |setDegree!| ((|Void|) $ (|PositiveInteger|))) (SIGNATURE |leaf?| ((|Boolean|) $)) (SIGNATURE |itsALeaf!| ((|Void|) $)) (SIGNATURE |foundPlaces| ((|List| $))) (SIGNATURE |setFoundPlacesToEmpty| ((|List| $))) (SIGNATURE |elt| (|t#1| $ (|Integer|))))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T) ((|SetCategoryWithDegree|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|setelt| ((|#1| $ (|Integer|) |#1|) 14)) (|removeConjugate| (((|List| $) (|List| $) (|NonNegativeInteger|)) 22) (((|List| $) (|List| $)) 21)) (|rational?| (((|Boolean|) $ (|NonNegativeInteger|)) 20) (((|Boolean|) $) 19)) (|projectivePoint| (($ (|List| |#1|)) 30)) (|pointValue| (((|List| |#1|) $) 13)) (|orbit| (((|List| $) $) 26) (((|List| $) $ (|NonNegativeInteger|)) 25)) (|list| (((|List| |#1|) $) 16)) (|latex| (((|String|) $) 9)) (|lastNonNull| (((|Integer|) $) 17)) (|lastNonNul| (((|Integer|) $) 32)) (|homogenize| (($ $ (|Integer|)) 31) (($ $) 18)) (|hash| (((|SingleInteger|) $) 10)) (|elt| ((|#1| $ (|Integer|)) 15)) (|degree| (((|PositiveInteger|) $) 12)) (|definingField| ((|#1| $) 29)) (|conjugate| (($ $ (|NonNegativeInteger|)) 24) (($ $) 23)) (|coerce| (((|OutputForm|) $) 11) (((|List| |#1|) $) 28) (($ (|List| |#1|)) 27)) (= (((|Boolean|) $ $) 6))) │ │ │ -(((|ProjectiveSpaceCategory| |#1|) (|Category|) (|Field|)) (T |ProjectiveSpaceCategory|)) │ │ │ -((|lastNonNul| (*1 *2 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Integer|)))) (|homogenize| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)))) (|projectivePoint| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)))) (|definingField| (*1 *2 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|List| *3)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)))) (|orbit| (*1 *2 *1) (AND (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)))) (|orbit| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *4)))) (|conjugate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)))) (|conjugate| (*1 *1 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|removeConjugate| (*1 *2 *2 *3) (AND (|isDomain| *2 (|List| *1)) (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *4)) (|ofCategory| *4 (|Field|)))) (|removeConjugate| (*1 *2 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)))) (|rational?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *4)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|Boolean|)))) (|rational?| (*1 *2 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Boolean|)))) (|homogenize| (*1 *1 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|lastNonNull| (*1 *2 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Integer|)))) (|list| (*1 *2 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|List| *3)))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|setelt| (*1 *2 *1 *3 *2) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|pointValue| (*1 *2 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|List| *3))))) │ │ │ -(|Join| (|SetCategoryWithDegree|) (CATEGORY |domain| (SIGNATURE |lastNonNul| ((|Integer|) $)) (SIGNATURE |homogenize| ($ $ (|Integer|))) (SIGNATURE |projectivePoint| ($ (|List| |t#1|))) (SIGNATURE |definingField| (|t#1| $)) (SIGNATURE |coerce| ((|List| |t#1|) $)) (SIGNATURE |coerce| ($ (|List| |t#1|))) (SIGNATURE |orbit| ((|List| $) $)) (SIGNATURE |orbit| ((|List| $) $ (|NonNegativeInteger|))) (SIGNATURE |conjugate| ($ $ (|NonNegativeInteger|))) (SIGNATURE |conjugate| ($ $)) (SIGNATURE |removeConjugate| ((|List| $) (|List| $) (|NonNegativeInteger|))) (SIGNATURE |removeConjugate| ((|List| $) (|List| $))) (SIGNATURE |rational?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |rational?| ((|Boolean|) $)) (SIGNATURE |homogenize| ($ $)) (SIGNATURE |lastNonNull| ((|Integer|) $)) (SIGNATURE |list| ((|List| |t#1|) $)) (SIGNATURE |elt| (|t#1| $ (|Integer|))) (SIGNATURE |setelt| (|t#1| $ (|Integer|) |t#1|)) (SIGNATURE |pointValue| ((|List| |t#1|) $)))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T) ((|SetCategoryWithDegree|) . T)) │ │ │ -((|segment| (($ |#1| |#1|) 7)) (|map| ((|#2| (|Mapping| |#1| |#1|) $) 15)) (|low| ((|#1| $) 10)) (|lo| ((|#1| $) 12)) (|incr| (((|Integer|) $) 8)) (|high| ((|#1| $) 9)) (|hi| ((|#1| $) 11)) (|expand| ((|#2| (|List| $)) 17) ((|#2| $) 16)) (|convert| (($ |#1|) 6)) (SEGMENT (($ |#1| |#1|) 14)) (BY (($ $ (|Integer|)) 13))) │ │ │ -(((|SegmentExpansionCategory| |#1| |#2|) (|Category|) (|OrderedRing|) (|StreamAggregate| |t#1|)) (T |SegmentExpansionCategory|)) │ │ │ -((|expand| (*1 *2 *3) (AND (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|SegmentExpansionCategory| *4 *2)) (|ofCategory| *4 (|OrderedRing|)) (|ofCategory| *2 (|StreamAggregate| *4)))) (|expand| (*1 *2 *1) (AND (|ofCategory| *1 (|SegmentExpansionCategory| *3 *2)) (|ofCategory| *3 (|OrderedRing|)) (|ofCategory| *2 (|StreamAggregate| *3)))) (|map| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| *4 *4)) (|ofCategory| *1 (|SegmentExpansionCategory| *4 *2)) (|ofCategory| *4 (|OrderedRing|)) (|ofCategory| *2 (|StreamAggregate| *4))))) │ │ │ -(|Join| (|SegmentCategory| |t#1|) (CATEGORY |domain| (SIGNATURE |expand| (|t#2| (|List| $))) (SIGNATURE |expand| (|t#2| $)) (SIGNATURE |map| (|t#2| (|Mapping| |t#1| |t#1|) $)))) │ │ │ -(((|SegmentCategory| |#1|) . T) ((|Type|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|differentiate| (($ $ |#1|) 41) (($ $ (|List| |#1|)) 40) (($ $ |#1| (|NonNegativeInteger|)) 39) (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) 38)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $ |#1|) 37) (($ $ (|List| |#1|)) 36) (($ $ |#1| (|NonNegativeInteger|)) 35) (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) 34)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ -(((|PartialDifferentialRing| |#1|) (|Category|) (|SetCategory|)) (T |PartialDifferentialRing|)) │ │ │ -((|differentiate| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PartialDifferentialRing| *2)) (|ofCategory| *2 (|SetCategory|)))) (|differentiate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *1 (|PartialDifferentialRing| *3)) (|ofCategory| *3 (|SetCategory|)))) (|differentiate| (*1 *1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|PartialDifferentialRing| *2)) (|ofCategory| *2 (|SetCategory|)))) (|differentiate| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *4)) (|isDomain| *3 (|List| (|NonNegativeInteger|))) (|ofCategory| *1 (|PartialDifferentialRing| *4)) (|ofCategory| *4 (|SetCategory|)))) (D (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PartialDifferentialRing| *2)) (|ofCategory| *2 (|SetCategory|)))) (D (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *1 (|PartialDifferentialRing| *3)) (|ofCategory| *3 (|SetCategory|)))) (D (*1 *1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|PartialDifferentialRing| *2)) (|ofCategory| *2 (|SetCategory|)))) (D (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *4)) (|isDomain| *3 (|List| (|NonNegativeInteger|))) (|ofCategory| *1 (|PartialDifferentialRing| *4)) (|ofCategory| *4 (|SetCategory|))))) │ │ │ -(|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |differentiate| ($ $ |t#1|)) (SIGNATURE |differentiate| ($ $ (|List| |t#1|))) (SIGNATURE |differentiate| ($ $ |t#1| (|NonNegativeInteger|))) (SIGNATURE |differentiate| ($ $ (|List| |t#1|) (|List| (|NonNegativeInteger|)))) (SIGNATURE D ($ $ |t#1|)) (SIGNATURE D ($ $ (|List| |t#1|))) (SIGNATURE D ($ $ |t#1| (|NonNegativeInteger|))) (SIGNATURE D ($ $ (|List| |t#1|) (|List| (|NonNegativeInteger|)))))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 41)) (|value| ((|#1| $) 15)) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) 36)) (|status| (((|Boolean|) $) 17)) (|setValue!| (($ $ |#1|) 28)) (|setStatus!| (($ $ (|Boolean|)) 30)) (|setEmpty!| (($ $) 31)) (|setCondition!| (($ $ |#2|) 29)) (|latex| (((|String|) $) NIL)) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) 35)) (|hash| (((|SingleInteger|) $) NIL)) (|empty?| (((|Boolean|) $) 14)) (|empty| (($) 10)) (|copy| (($ $) 27)) (|construct| (($ |#1| |#2| (|Boolean|)) 18) (($ |#1| |#2|) 19) (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) 21) (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) 24) (((|List| $) |#1| (|List| |#2|)) 26)) (|condition| ((|#2| $) 16)) (|coerce| (((|OutputForm|) $) 50)) (= (((|Boolean|) $ $) 39))) │ │ │ -(((|SplittingNode| |#1| |#2|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |empty| ($)) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |value| (|#1| $)) (SIGNATURE |condition| (|#2| $)) (SIGNATURE |status| ((|Boolean|) $)) (SIGNATURE |construct| ($ |#1| |#2| (|Boolean|))) (SIGNATURE |construct| ($ |#1| |#2|)) (SIGNATURE |construct| ($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) (SIGNATURE |construct| ((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))))) (SIGNATURE |construct| ((|List| $) |#1| (|List| |#2|))) (SIGNATURE |copy| ($ $)) (SIGNATURE |setValue!| ($ $ |#1|)) (SIGNATURE |setCondition!| ($ $ |#2|)) (SIGNATURE |setStatus!| ($ $ (|Boolean|))) (SIGNATURE |setEmpty!| ($ $)) (SIGNATURE |infLex?| ((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|))) (SIGNATURE |subNode?| ((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|))))) (|Join| (|SetCategory|) (|Aggregate|)) (|Join| (|SetCategory|) (|Aggregate|))) (T |SplittingNode|)) │ │ │ -((|empty| (*1 *1) (AND (|isDomain| *1 (|SplittingNode| *2 *3)) (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|empty?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *3 *4)) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|))))) (|value| (*1 *2 *1) (AND (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))) (|isDomain| *1 (|SplittingNode| *2 *3)) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|condition| (*1 *2 *1) (AND (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))) (|isDomain| *1 (|SplittingNode| *3 *2)) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|status| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *3 *4)) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|))))) (|construct| (*1 *1 *2 *3 *4) (AND (|isDomain| *4 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *2 *3)) (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|construct| (*1 *1 *2 *3) (AND (|isDomain| *1 (|SplittingNode| *2 *3)) (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|construct| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |val| *3) (|:| |tower| *4))) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|))) (|isDomain| *1 (|SplittingNode| *3 *4)))) (|construct| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Record| (|:| |val| *4) (|:| |tower| *5)))) (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *5 (|Join| (|SetCategory|) (|Aggregate|))) (|isDomain| *2 (|List| (|SplittingNode| *4 *5))) (|isDomain| *1 (|SplittingNode| *4 *5)))) (|construct| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| *5)) (|ofCategory| *5 (|Join| (|SetCategory|) (|Aggregate|))) (|isDomain| *2 (|List| (|SplittingNode| *3 *5))) (|isDomain| *1 (|SplittingNode| *3 *5)) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|copy| (*1 *1 *1) (AND (|isDomain| *1 (|SplittingNode| *2 *3)) (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|setValue!| (*1 *1 *1 *2) (AND (|isDomain| *1 (|SplittingNode| *2 *3)) (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|setCondition!| (*1 *1 *1 *2) (AND (|isDomain| *1 (|SplittingNode| *3 *2)) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))))) (|setStatus!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *3 *4)) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|))))) (|setEmpty!| (*1 *1 *1) (AND (|isDomain| *1 (|SplittingNode| *2 *3)) (|ofCategory| *2 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *3 (|Join| (|SetCategory|) (|Aggregate|))))) (|infLex?| (*1 *2 *1 *1 *3 *4) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *5 *5)) (|isDomain| *4 (|Mapping| (|Boolean|) *6 *6)) (|ofCategory| *5 (|Join| (|SetCategory|) (|Aggregate|))) (|ofCategory| *6 (|Join| (|SetCategory|) (|Aggregate|))) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *5 *6)))) (|subNode?| (*1 *2 *1 *1 *3) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *5 *5)) (|ofCategory| *5 (|Join| (|SetCategory|) (|Aggregate|))) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|SplittingNode| *4 *5)) (|ofCategory| *4 (|Join| (|SetCategory|) (|Aggregate|)))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |empty| ($)) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |value| (|#1| $)) (SIGNATURE |condition| (|#2| $)) (SIGNATURE |status| ((|Boolean|) $)) (SIGNATURE |construct| ($ |#1| |#2| (|Boolean|))) (SIGNATURE |construct| ($ |#1| |#2|)) (SIGNATURE |construct| ($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) (SIGNATURE |construct| ((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))))) (SIGNATURE |construct| ((|List| $) |#1| (|List| |#2|))) (SIGNATURE |copy| ($ $)) (SIGNATURE |setValue!| ($ $ |#1|)) (SIGNATURE |setCondition!| ($ $ |#2|)) (SIGNATURE |setStatus!| ($ $ (|Boolean|))) (SIGNATURE |setEmpty!| ($ $)) (SIGNATURE |infLex?| ((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|))) (SIGNATURE |subNode?| ((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|))))) │ │ │ -((|tan| (($ $) 15)) (|sec| (($ $) 12)) (|csc| (($ $) 10)) (|cot| (($ $) 17))) │ │ │ -(((|TrigonometricFunctionCategory&| |#1|) (CATEGORY |domain| (SIGNATURE |cot| (|#1| |#1|)) (SIGNATURE |csc| (|#1| |#1|)) (SIGNATURE |sec| (|#1| |#1|)) (SIGNATURE |tan| (|#1| |#1|))) (|TrigonometricFunctionCategory|)) (T |TrigonometricFunctionCategory&|)) │ │ │ +(|Join| (|FiniteFieldCategory|) (|FiniteAlgebraicExtensionField| $) (|ConvertibleTo| (|Integer|))) │ │ │ +((|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) 43)) (|normFactors| (((|List| |#4|) |#4|) 15)) (|Frobenius| ((|#4| |#4|) 11))) │ │ │ +(((|NormRetractPackage| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |normFactors| ((|List| |#4|) |#4|)) (SIGNATURE |retractIfCan| ((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|)) (SIGNATURE |Frobenius| (|#4| |#4|))) (|FiniteFieldCategory|) (|FiniteAlgebraicExtensionField| |#1|) (|UnivariatePolynomialCategory| |#2|) (|UnivariatePolynomialCategory| |#3|) (|PositiveInteger|)) (T |NormRetractPackage|)) │ │ │ +((|Frobenius| (*1 *2 *2) (AND (|ofCategory| *3 (|FiniteFieldCategory|)) (|ofCategory| *4 (|FiniteAlgebraicExtensionField| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *1 (|NormRetractPackage| *3 *4 *5 *2 *6)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *5)) (|ofType| *6 (|PositiveInteger|)))) (|retractIfCan| (*1 *2 *3) (|partial| AND (|ofCategory| *4 (|FiniteFieldCategory|)) (|ofCategory| *5 (|FiniteAlgebraicExtensionField| *4)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|isDomain| *2 (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| *4))) (|isDomain| *1 (|NormRetractPackage| *4 *5 *6 *3 *7)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *6)) (|ofType| *7 (|PositiveInteger|)))) (|normFactors| (*1 *2 *3) (AND (|ofCategory| *4 (|FiniteFieldCategory|)) (|ofCategory| *5 (|FiniteAlgebraicExtensionField| *4)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|NormRetractPackage| *4 *5 *6 *3 *7)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *6)) (|ofType| *7 (|PositiveInteger|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |normFactors| ((|List| |#4|) |#4|)) (SIGNATURE |retractIfCan| ((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|)) (SIGNATURE |Frobenius| (|#4| |#4|))) │ │ │ +((|printInfo| (((|Boolean|)) 46) (((|Boolean|) (|Boolean|)) 47)) (|pointToPlace| ((|#7| |#5| |#3|) 44)) (|pointDominateBy| ((|#5| |#7|) 29)) (|localize| (((|Record| (|:| |fnc| |#3|) (|:| |crv| |#3|) (|:| |chart| (|List| (|Integer|)))) |#3| |#5| |#3| (|Integer|)) 99)) (|localParamOfSimplePt| (((|List| |#6|) |#5| |#3| (|Integer|)) 35))) │ │ │ +(((|LocalParametrizationOfSimplePointPackage| |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (CATEGORY |package| (SIGNATURE |printInfo| ((|Boolean|) (|Boolean|))) (SIGNATURE |printInfo| ((|Boolean|))) (SIGNATURE |pointToPlace| (|#7| |#5| |#3|)) (SIGNATURE |localParamOfSimplePt| ((|List| |#6|) |#5| |#3| (|Integer|))) (SIGNATURE |pointDominateBy| (|#5| |#7|)) (SIGNATURE |localize| ((|Record| (|:| |fnc| |#3|) (|:| |crv| |#3|) (|:| |chart| (|List| (|Integer|)))) |#3| |#5| |#3| (|Integer|)))) (|Field|) (|List| (|Symbol|)) (|PolynomialCategory| |#1| |#4| (|OrderedVariableList| |#2|)) (|DirectProductCategory| (|#| |#2|) (|NonNegativeInteger|)) (|ProjectiveSpaceCategory| |#1|) (|LocalPowerSeriesCategory| |#1|) (|PlacesCategory| |#1| |#6|)) (T |LocalParametrizationOfSimplePointPackage|)) │ │ │ +((|localize| (*1 *2 *3 *4 *3 *5) (AND (|ofCategory| *6 (|Field|)) (|ofType| *7 (|List| (|Symbol|))) (|ofCategory| *8 (|DirectProductCategory| (|#| *7) (|NonNegativeInteger|))) (|ofCategory| *9 (|LocalPowerSeriesCategory| *6)) (|isDomain| *2 (|Record| (|:| |fnc| *3) (|:| |crv| *3) (|:| |chart| (|List| (|Integer|))))) (|isDomain| *1 (|LocalParametrizationOfSimplePointPackage| *6 *7 *3 *8 *4 *9 *10)) (|isDomain| *5 (|Integer|)) (|ofCategory| *3 (|PolynomialCategory| *6 *8 (|OrderedVariableList| *7))) (|ofCategory| *4 (|ProjectiveSpaceCategory| *6)) (|ofCategory| *10 (|PlacesCategory| *6 *9)))) (|pointDominateBy| (*1 *2 *3) (AND (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *7 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|ofCategory| *8 (|LocalPowerSeriesCategory| *4)) (|ofCategory| *2 (|ProjectiveSpaceCategory| *4)) (|isDomain| *1 (|LocalParametrizationOfSimplePointPackage| *4 *5 *6 *7 *2 *8 *3)) (|ofCategory| *6 (|PolynomialCategory| *4 *7 (|OrderedVariableList| *5))) (|ofCategory| *3 (|PlacesCategory| *4 *8)))) (|localParamOfSimplePt| (*1 *2 *3 *4 *5) (AND (|isDomain| *5 (|Integer|)) (|ofCategory| *6 (|Field|)) (|ofType| *7 (|List| (|Symbol|))) (|ofCategory| *8 (|DirectProductCategory| (|#| *7) (|NonNegativeInteger|))) (|ofCategory| *9 (|LocalPowerSeriesCategory| *6)) (|isDomain| *2 (|List| *9)) (|isDomain| *1 (|LocalParametrizationOfSimplePointPackage| *6 *7 *4 *8 *3 *9 *10)) (|ofCategory| *4 (|PolynomialCategory| *6 *8 (|OrderedVariableList| *7))) (|ofCategory| *3 (|ProjectiveSpaceCategory| *6)) (|ofCategory| *10 (|PlacesCategory| *6 *9)))) (|pointToPlace| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|Field|)) (|ofType| *6 (|List| (|Symbol|))) (|ofCategory| *7 (|DirectProductCategory| (|#| *6) (|NonNegativeInteger|))) (|ofCategory| *2 (|PlacesCategory| *5 *8)) (|isDomain| *1 (|LocalParametrizationOfSimplePointPackage| *5 *6 *4 *7 *3 *8 *2)) (|ofCategory| *4 (|PolynomialCategory| *5 *7 (|OrderedVariableList| *6))) (|ofCategory| *3 (|ProjectiveSpaceCategory| *5)) (|ofCategory| *8 (|LocalPowerSeriesCategory| *5)))) (|printInfo| (*1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|LocalParametrizationOfSimplePointPackage| *3 *4 *5 *6 *7 *8 *9)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8)))) (|printInfo| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *6 (|DirectProductCategory| (|#| *4) (|NonNegativeInteger|))) (|ofCategory| *8 (|LocalPowerSeriesCategory| *3)) (|isDomain| *1 (|LocalParametrizationOfSimplePointPackage| *3 *4 *5 *6 *7 *8 *9)) (|ofCategory| *5 (|PolynomialCategory| *3 *6 (|OrderedVariableList| *4))) (|ofCategory| *7 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *9 (|PlacesCategory| *3 *8))))) │ │ │ +(CATEGORY |package| (SIGNATURE |printInfo| ((|Boolean|) (|Boolean|))) (SIGNATURE |printInfo| ((|Boolean|))) (SIGNATURE |pointToPlace| (|#7| |#5| |#3|)) (SIGNATURE |localParamOfSimplePt| ((|List| |#6|) |#5| |#3| (|Integer|))) (SIGNATURE |pointDominateBy| (|#5| |#7|)) (SIGNATURE |localize| ((|Record| (|:| |fnc| |#3|) (|:| |crv| |#3|) (|:| |chart| (|List| (|Integer|)))) |#3| |#5| |#3| (|Integer|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#1| "failed") $) NIL)) (|retract| (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1| $) NIL)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| |#1|) (|Matrix| $)) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|real| ((|#1| $) 12)) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|IntegerNumberSystem|)))) (|rational?| (((|Boolean|) $) NIL (|has| |#1| (|IntegerNumberSystem|)))) (|rational| (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|IntegerNumberSystem|)))) (|quatern| (($ |#1| |#1| |#1| |#1|) 16)) (|one?| (((|Boolean|) $) NIL)) (|norm| ((|#1| $) NIL)) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) NIL (|has| |#1| (|Field|)))) (|imagK| ((|#1| $) 15)) (|imagJ| ((|#1| $) 14)) (|imagI| ((|#1| $) 13)) (|hash| (((|SingleInteger|) $) NIL)) (|eval| (($ $ (|List| |#1|) (|List| |#1|)) NIL (|has| |#1| (|Evalable| |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (|Evalable| |#1|))) (($ $ (|Equation| |#1|)) NIL (|has| |#1| (|Evalable| |#1|))) (($ $ (|List| (|Equation| |#1|))) NIL (|has| |#1| (|Evalable| |#1|))) (($ $ (|List| (|Symbol|)) (|List| |#1|)) NIL (|has| |#1| (|InnerEvalable| (|Symbol|) |#1|))) (($ $ (|Symbol|) |#1|) NIL (|has| |#1| (|InnerEvalable| (|Symbol|) |#1|)))) (|elt| (($ $ |#1|) NIL (|has| |#1| (|Eltable| |#1| |#1|)))) (|differentiate| (($ $) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|Symbol|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#1| |#1|)) NIL)) (|convert| (((|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|conjugate| (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#1|) NIL) (($ (|Fraction| (|Integer|))) NIL (OR (|has| |#1| (|Field|)) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))))) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|abs| ((|#1| $) NIL (|has| |#1| (|RealNumberSystem|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL (|has| |#1| (|Field|)))) (|Zero| (($) 8 T CONST)) (|One| (($) 10 T CONST)) (D (($ $) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|Symbol|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#1| |#1|)) NIL)) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL (|has| |#1| (|Field|)))) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Field|))) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Field|))))) │ │ │ +(((|Quaternion| |#1|) (|QuaternionCategory| |#1|) (|CommutativeRing|)) (T |Quaternion|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |cot| (|#1| |#1|)) (SIGNATURE |csc| (|#1| |#1|)) (SIGNATURE |sec| (|#1| |#1|)) (SIGNATURE |tan| (|#1| |#1|))) │ │ │ -((|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) 13))) │ │ │ -(((|SparseUnivariatePolynomialFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)))) (|Ring|) (|Ring|)) (T |SparseUnivariatePolynomialFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|SparseUnivariatePolynomial| *5)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *6)) (|isDomain| *1 (|SparseUnivariatePolynomialFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)))) │ │ │ -((|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) 12) (((|Void|) (|List| (|Symbol|))) 10)) (|resetVariableOrder| (((|Void|)) 13)) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) 17))) │ │ │ -(((|UserDefinedVariableOrdering|) (CATEGORY |package| (SIGNATURE |setVariableOrder| ((|Void|) (|List| (|Symbol|)))) (SIGNATURE |setVariableOrder| ((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|)))) (SIGNATURE |getVariableOrder| ((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|)))))) (SIGNATURE |resetVariableOrder| ((|Void|))))) (T |UserDefinedVariableOrdering|)) │ │ │ -((|resetVariableOrder| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|UserDefinedVariableOrdering|)))) (|getVariableOrder| (*1 *2) (AND (|isDomain| *2 (|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) (|isDomain| *1 (|UserDefinedVariableOrdering|)))) (|setVariableOrder| (*1 *2 *3 *3) (AND (|isDomain| *3 (|List| (|Symbol|))) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|UserDefinedVariableOrdering|)))) (|setVariableOrder| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Symbol|))) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|UserDefinedVariableOrdering|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |setVariableOrder| ((|Void|) (|List| (|Symbol|)))) (SIGNATURE |setVariableOrder| ((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|)))) (SIGNATURE |getVariableOrder| ((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|)))))) (SIGNATURE |resetVariableOrder| ((|Void|)))) │ │ │ -((|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) 23))) │ │ │ -(((|UnivariateLaurentSeriesFunctions2| |#1| |#2| |#3| |#4| |#5| |#6|) (CATEGORY |package| (SIGNATURE |map| ((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)))) (|Ring|) (|Ring|) (|Symbol|) (|Symbol|) |#1| |#2|) (T |UnivariateLaurentSeriesFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|UnivariateLaurentSeries| *5 *7 *9)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|)) (|ofType| *7 (|Symbol|)) (|ofType| *9 *5) (|ofType| *10 *6) (|isDomain| *2 (|UnivariateLaurentSeries| *6 *8 *10)) (|isDomain| *1 (|UnivariateLaurentSeriesFunctions2| *5 *6 *7 *8 *9 *10)) (|ofType| *8 (|Symbol|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)))) │ │ │ -((|tan| (($ $) 11)) (|sin| (($ $) 10)) (|sec| (($ $) 9)) (|csc| (($ $) 8)) (|cot| (($ $) 7)) (|cos| (($ $) 6))) │ │ │ -(((|TrigonometricFunctionCategory|) (|Category|)) (T |TrigonometricFunctionCategory|)) │ │ │ -((|tan| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))) (|sin| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))) (|sec| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))) (|csc| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))) (|cot| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|))) (|cos| (*1 *1 *1) (|ofCategory| *1 (|TrigonometricFunctionCategory|)))) │ │ │ -(|Join| (CATEGORY |domain| (SIGNATURE |cos| ($ $)) (SIGNATURE |cot| ($ $)) (SIGNATURE |csc| ($ $)) (SIGNATURE |sec| ($ $)) (SIGNATURE |sin| ($ $)) (SIGNATURE |tan| ($ $)))) │ │ │ -((|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) 15))) │ │ │ -(((|UnivariatePolynomialFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |map| ((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)))) (|Symbol|) (|Ring|) (|Symbol|) (|Ring|)) (T |UnivariatePolynomialFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *8 *6)) (|isDomain| *4 (|UnivariatePolynomial| *5 *6)) (|ofType| *5 (|Symbol|)) (|ofCategory| *6 (|Ring|)) (|ofCategory| *8 (|Ring|)) (|isDomain| *2 (|UnivariatePolynomial| *7 *8)) (|isDomain| *1 (|UnivariatePolynomialFunctions2| *5 *6 *7 *8)) (|ofType| *7 (|Symbol|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|morphism| (($ (|Mapping| |#1| |#1|)) 25) (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) 24) (($ (|Mapping| |#1| |#1| (|Integer|))) 22)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) 14)) (|hash| (((|SingleInteger|) $) NIL)) (|elt| ((|#1| $ |#1|) 11)) (|conjugate| (($ $ $) NIL)) (|commutator| (($ $ $) NIL)) (|coerce| (((|OutputForm|) $) 20)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|One| (($) 8 T CONST)) (= (((|Boolean|) $ $) 10)) (/ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) 28) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) 16)) (* (($ $ $) 29))) │ │ │ -(((|Automorphism| |#1|) (|Join| (|Group|) (|Eltable| |#1| |#1|) (CATEGORY |domain| (SIGNATURE |morphism| ($ (|Mapping| |#1| |#1|))) (SIGNATURE |morphism| ($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|))) (SIGNATURE |morphism| ($ (|Mapping| |#1| |#1| (|Integer|)))))) (|Ring|)) (T |Automorphism|)) │ │ │ -((|morphism| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|Automorphism| *3)))) (|morphism| (*1 *1 *2 *2) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|Automorphism| *3)))) (|morphism| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3 *3 (|Integer|))) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|Automorphism| *3))))) │ │ │ -(|Join| (|Group|) (|Eltable| |#1| |#1|) (CATEGORY |domain| (SIGNATURE |morphism| ($ (|Mapping| |#1| |#1|))) (SIGNATURE |morphism| ($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|))) (SIGNATURE |morphism| ($ (|Mapping| |#1| |#1| (|Integer|)))))) │ │ │ -((|bag| (($ (|List| |#2|)) 11))) │ │ │ -(((|BagAggregate&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |bag| (|#1| (|List| |#2|)))) (|BagAggregate| |#2|) (|Type|)) (T |BagAggregate&|)) │ │ │ +(|QuaternionCategory| |#1|) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ +(((|CommutativeRing|) (|Category|)) (T |CommutativeRing|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |bag| (|#1| (|List| |#2|)))) │ │ │ -((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|sample| (($) 7 T CONST)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|inspect| ((|#1| $) 36)) (|insert!| (($ |#1| $) 37)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|extract!| ((|#1| $) 38)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|bag| (($ (|List| |#1|)) 39)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|BagAggregate| |#1|) (|Category|) (|Type|)) (T |BagAggregate|)) │ │ │ -((|bag| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *1 (|BagAggregate| *3)))) (|extract!| (*1 *2 *1) (AND (|ofCategory| *1 (|BagAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|insert!| (*1 *1 *2 *1) (AND (|ofCategory| *1 (|BagAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|inspect| (*1 *2 *1) (AND (|ofCategory| *1 (|BagAggregate| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ -(|Join| (|HomogeneousAggregate| |t#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (SIGNATURE |bag| ($ (|List| |t#1|))) (SIGNATURE |extract!| (|t#1| $)) (SIGNATURE |insert!| ($ |t#1| $)) (SIGNATURE |inspect| (|t#1| $)))) │ │ │ -(((|Aggregate|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ -((|setelt| ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (|nodes| (((|List| $) $) 27)) (|node?| (((|Boolean|) $ $) 32)) (|member?| (((|Boolean|) |#2| $) 36)) (|leaves| (((|List| |#2|) $) 22)) (|leaf?| (((|Boolean|) $) 16)) (|elt| ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (|cyclic?| (((|Boolean|) $) 45)) (|coerce| (((|OutputForm|) $) 41)) (|children| (((|List| $) $) 28)) (= (((|Boolean|) $ $) 34)) (|#| (((|NonNegativeInteger|) $) 43))) │ │ │ -(((|BinaryRecursiveAggregate&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |setelt| (|#1| |#1| "right" |#1|)) (SIGNATURE |setelt| (|#1| |#1| "left" |#1|)) (SIGNATURE |elt| (|#1| |#1| "right")) (SIGNATURE |elt| (|#1| |#1| "left")) (SIGNATURE |setelt| (|#2| |#1| "value" |#2|)) (SIGNATURE |node?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |leaves| ((|List| |#2|) |#1|)) (SIGNATURE |cyclic?| ((|Boolean|) |#1|)) (SIGNATURE |elt| (|#2| |#1| "value")) (SIGNATURE |leaf?| ((|Boolean|) |#1|)) (SIGNATURE |nodes| ((|List| |#1|) |#1|)) (SIGNATURE |children| ((|List| |#1|) |#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |member?| ((|Boolean|) |#2| |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) |#1|))) (|BinaryRecursiveAggregate| |#2|) (|Type|)) (T |BinaryRecursiveAggregate&|)) │ │ │ +(|Join| (|Ring|) (|BiModule| $ $) (CATEGORY |package| (ATTRIBUTE (|commutative| "*")))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +((|coerce| ((|#1| $) 6))) │ │ │ +(((|CoercibleTo| |#1|) (|Category|) (|Type|)) (T |CoercibleTo|)) │ │ │ +((|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|CoercibleTo| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ +(|Join| (CATEGORY |domain| (SIGNATURE |coerce| (|t#1| $)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (~ (($ $) NIL)) (|xor| (($ $ $) 35)) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) $) NIL (|has| (|Boolean|) (|OrderedSet|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $) NIL)) (|sort!| (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| (|Boolean|) (|OrderedSet|)))) (($ (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sort| (($ $) NIL (|has| (|Boolean|) (|OrderedSet|))) (($ (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $) NIL)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| (((|Boolean|) $ (|UniversalSegment| (|Integer|)) (|Boolean|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Boolean|) $ (|Integer|) (|Boolean|)) 36 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Boolean|) (|SetCategory|))))) (|remove| (($ (|Mapping| (|Boolean|) (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Boolean|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Boolean|) (|SetCategory|))))) (|reduce| (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $ (|Boolean|)) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $ (|Boolean|) (|Boolean|)) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Boolean|) (|SetCategory|))))) (|qsetelt!| (((|Boolean|) $ (|Integer|) (|Boolean|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| (((|Boolean|) $ (|Integer|)) NIL)) (|position| (((|Integer|) (|Boolean|) $ (|Integer|)) NIL (|has| (|Boolean|) (|SetCategory|))) (((|Integer|) (|Boolean|) $) NIL (|has| (|Boolean|) (|SetCategory|))) (((|Integer|) (|Mapping| (|Boolean|) (|Boolean|)) $) NIL)) (|parts| (((|List| (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|or| (($ $ $) 33)) (|not| (($ $) NIL)) (|nor| (($ $ $) NIL)) (|new| (($ (|NonNegativeInteger|) (|Boolean|)) 23)) (|nand| (($ $ $) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) 8 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL)) (|merge| (($ $ $) NIL (|has| (|Boolean|) (|OrderedSet|))) (($ (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $ $) NIL)) (|members| (((|List| (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Boolean|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Boolean|) (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL)) (|map!| (($ (|Mapping| (|Boolean|) (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $ $) 30) (($ (|Mapping| (|Boolean|) (|Boolean|)) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL)) (|insert| (($ $ $ (|Integer|)) NIL) (($ (|Boolean|) $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|first| (((|Boolean|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| (|Boolean|) "failed") (|Mapping| (|Boolean|) (|Boolean|)) $) NIL)) (|fill!| (($ $ (|Boolean|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Boolean|)) (|List| (|Boolean|))) NIL (AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|)))) (($ $ (|Boolean|) (|Boolean|)) NIL (AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|)))) (($ $ (|Equation| (|Boolean|))) NIL (AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|)))) (($ $ (|List| (|Equation| (|Boolean|)))) NIL (AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) (|Boolean|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Boolean|) (|SetCategory|))))) (|entries| (((|List| (|Boolean|)) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) 24)) (|elt| (($ $ (|UniversalSegment| (|Integer|))) NIL) (((|Boolean|) $ (|Integer|)) 18) (((|Boolean|) $ (|Integer|) (|Boolean|)) NIL)) (|delete| (($ $ (|UniversalSegment| (|Integer|))) NIL) (($ $ (|Integer|)) NIL)) (|count| (((|NonNegativeInteger|) (|Boolean|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Boolean|) (|SetCategory|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) 25)) (|convert| (((|InputForm|) $) NIL (|has| (|Boolean|) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|Boolean|))) NIL)) (|concat| (($ (|List| $)) NIL) (($ $ $) NIL) (($ (|Boolean|) $) NIL) (($ $ (|Boolean|)) NIL)) (|coerce| (((|OutputForm|) $) 22)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|and| (($ $ $) 31)) (^ (($ $) NIL)) (|\\/| (($ $ $) NIL)) (|Or| (($ $ $) 39)) (|Not| (($ $) 37)) (|And| (($ $ $) 38)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 26)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 27)) (|/\\| (($ $ $) NIL)) (|#| (((|NonNegativeInteger|) $) 10 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|IndexedBits| |#1|) (|Join| (|BitAggregate|) (CATEGORY |domain| (SIGNATURE |Not| ($ $)) (SIGNATURE |Or| ($ $ $)) (SIGNATURE |And| ($ $ $)))) (|Integer|)) (T |IndexedBits|)) │ │ │ +((|Not| (*1 *1 *1) (AND (|isDomain| *1 (|IndexedBits| *2)) (|ofType| *2 (|Integer|)))) (|Or| (*1 *1 *1 *1) (AND (|isDomain| *1 (|IndexedBits| *2)) (|ofType| *2 (|Integer|)))) (|And| (*1 *1 *1 *1) (AND (|isDomain| *1 (|IndexedBits| *2)) (|ofType| *2 (|Integer|))))) │ │ │ +(|Join| (|BitAggregate|) (CATEGORY |domain| (SIGNATURE |Not| ($ $)) (SIGNATURE |Or| ($ $ $)) (SIGNATURE |And| ($ $ $)))) │ │ │ +((|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) 22)) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) 12)) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) 21))) │ │ │ +(((|FiniteLinearAggregateSort| |#1| |#2|) (CATEGORY |package| (SIGNATURE |quickSort| (|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|)) (SIGNATURE |heapSort| (|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|)) (SIGNATURE |shellSort| (|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|))) (|Type|) (|Join| (|FiniteLinearAggregate| |#1|) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|)))) (T |FiniteLinearAggregateSort|)) │ │ │ +((|shellSort| (*1 *2 *3 *2) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *1 (|FiniteLinearAggregateSort| *4 *2)) (|ofCategory| *2 (|Join| (|FiniteLinearAggregate| *4) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|)))))) (|heapSort| (*1 *2 *3 *2) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *1 (|FiniteLinearAggregateSort| *4 *2)) (|ofCategory| *2 (|Join| (|FiniteLinearAggregate| *4) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|)))))) (|quickSort| (*1 *2 *3 *2) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *1 (|FiniteLinearAggregateSort| *4 *2)) (|ofCategory| *2 (|Join| (|FiniteLinearAggregate| *4) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|))))))) │ │ │ +(CATEGORY |package| (SIGNATURE |quickSort| (|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|)) (SIGNATURE |heapSort| (|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|)) (SIGNATURE |shellSort| (|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|construct| (($ $ $) 26)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (/ (($ $ |#1|) 25 (|has| |#1| (|Field|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ |#1| $) 22) (($ $ |#1|) 24))) │ │ │ +(((|LieAlgebra| |#1|) (|Category|) (|CommutativeRing|)) (T |LieAlgebra|)) │ │ │ +((|construct| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|LieAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (/ (*1 *1 *1 *2) (AND (|ofCategory| *1 (|LieAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|Field|))))) │ │ │ +(|Join| (|Module| |t#1|) (CATEGORY |domain| (SIGNATURE |construct| ($ $ $)) (ATTRIBUTE |NullSquare|) (ATTRIBUTE |JacobiIdentity|) (IF (|has| |t#1| (|Field|)) (SIGNATURE / ($ $ |t#1|)) |noBranch|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#1|) . T) ((|Module| |#1|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T)) │ │ │ +((|stepBlowUp| (((|Record| (|:| |mult| (|NonNegativeInteger|)) (|:| |subMult| (|NonNegativeInteger|)) (|:| |blUpRec| (|List| (|Record| (|:| |recTransStr| (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|)) (|:| |recPoint| (|AffinePlane| |#1|)) (|:| |recChart| |#5|) (|:| |definingExtension| |#1|))))) (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|AffinePlane| |#1|) |#5| |#1|) 70)) (|quadTransform| (((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|NonNegativeInteger|) |#5|) 54)) (|polyRingToBlUpRing| (((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) |#3| |#5|) 99)) (|newtonPolySlope| (((|List| (|List| (|NonNegativeInteger|))) (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|)) NIL)) (|biringToPolyRing| ((|#3| (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) |#5|) 105)) (|applyTransform| ((|#3| |#3| |#5|) 107))) │ │ │ +(((|BlowUpPackage| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |applyTransform| (|#3| |#3| |#5|)) (SIGNATURE |quadTransform| ((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|NonNegativeInteger|) |#5|)) (SIGNATURE |stepBlowUp| ((|Record| (|:| |mult| (|NonNegativeInteger|)) (|:| |subMult| (|NonNegativeInteger|)) (|:| |blUpRec| (|List| (|Record| (|:| |recTransStr| (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|)) (|:| |recPoint| (|AffinePlane| |#1|)) (|:| |recChart| |#5|) (|:| |definingExtension| |#1|))))) (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|AffinePlane| |#1|) |#5| |#1|)) (SIGNATURE |newtonPolySlope| ((|List| (|List| (|NonNegativeInteger|))) (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|))) (SIGNATURE |polyRingToBlUpRing| ((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) |#3| |#5|)) (SIGNATURE |biringToPolyRing| (|#3| (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) |#5|))) (|Field|) (|List| (|Symbol|)) (|FiniteAbelianMonoidRing| |#1| |#4|) (|DirectProductCategory| (|#| |#2|) (|NonNegativeInteger|)) (|BlowUpMethodCategory|)) (T |BlowUpPackage|)) │ │ │ +((|biringToPolyRing| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) *5)) (|ofCategory| *5 (|Field|)) (|ofType| *6 (|List| (|Symbol|))) (|ofCategory| *2 (|FiniteAbelianMonoidRing| *5 *7)) (|isDomain| *1 (|BlowUpPackage| *5 *6 *2 *7 *4)) (|ofCategory| *7 (|DirectProductCategory| (|#| *6) (|NonNegativeInteger|))) (|ofCategory| *4 (|BlowUpMethodCategory|)))) (|polyRingToBlUpRing| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|Field|)) (|ofType| *6 (|List| (|Symbol|))) (|ofCategory| *7 (|DirectProductCategory| (|#| *6) (|NonNegativeInteger|))) (|isDomain| *2 (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) *5)) (|isDomain| *1 (|BlowUpPackage| *5 *6 *3 *7 *4)) (|ofCategory| *3 (|FiniteAbelianMonoidRing| *5 *7)) (|ofCategory| *4 (|BlowUpMethodCategory|)))) (|newtonPolySlope| (*1 *2 *3) (AND (|isDomain| *3 (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) *4)) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *7 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|isDomain| *2 (|List| (|List| (|NonNegativeInteger|)))) (|isDomain| *1 (|BlowUpPackage| *4 *5 *6 *7 *8)) (|ofCategory| *6 (|FiniteAbelianMonoidRing| *4 *7)) (|ofCategory| *8 (|BlowUpMethodCategory|)))) (|stepBlowUp| (*1 *2 *3 *4 *5 *6) (AND (|ofCategory| *6 (|Field|)) (|ofType| *7 (|List| (|Symbol|))) (|ofCategory| *9 (|DirectProductCategory| (|#| *7) (|NonNegativeInteger|))) (|isDomain| *2 (|Record| (|:| |mult| (|NonNegativeInteger|)) (|:| |subMult| (|NonNegativeInteger|)) (|:| |blUpRec| (|List| (|Record| (|:| |recTransStr| (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) *6)) (|:| |recPoint| (|AffinePlane| *6)) (|:| |recChart| *5) (|:| |definingExtension| *6)))))) (|isDomain| *1 (|BlowUpPackage| *6 *7 *8 *9 *5)) (|isDomain| *3 (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) *6)) (|isDomain| *4 (|AffinePlane| *6)) (|ofCategory| *8 (|FiniteAbelianMonoidRing| *6 *9)) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|quadTransform| (*1 *2 *2 *3 *4) (AND (|isDomain| *2 (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) *5)) (|ofCategory| *5 (|Field|)) (|isDomain| *3 (|NonNegativeInteger|)) (|ofType| *6 (|List| (|Symbol|))) (|ofCategory| *8 (|DirectProductCategory| (|#| *6) *3)) (|isDomain| *1 (|BlowUpPackage| *5 *6 *7 *8 *4)) (|ofCategory| *7 (|FiniteAbelianMonoidRing| *5 *8)) (|ofCategory| *4 (|BlowUpMethodCategory|)))) (|applyTransform| (*1 *2 *2 *3) (AND (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|DirectProductCategory| (|#| *5) (|NonNegativeInteger|))) (|isDomain| *1 (|BlowUpPackage| *4 *5 *2 *6 *3)) (|ofCategory| *2 (|FiniteAbelianMonoidRing| *4 *6)) (|ofCategory| *3 (|BlowUpMethodCategory|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |applyTransform| (|#3| |#3| |#5|)) (SIGNATURE |quadTransform| ((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|NonNegativeInteger|) |#5|)) (SIGNATURE |stepBlowUp| ((|Record| (|:| |mult| (|NonNegativeInteger|)) (|:| |subMult| (|NonNegativeInteger|)) (|:| |blUpRec| (|List| (|Record| (|:| |recTransStr| (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|)) (|:| |recPoint| (|AffinePlane| |#1|)) (|:| |recChart| |#5|) (|:| |definingExtension| |#1|))))) (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|AffinePlane| |#1|) |#5| |#1|)) (SIGNATURE |newtonPolySlope| ((|List| (|List| (|NonNegativeInteger|))) (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|))) (SIGNATURE |polyRingToBlUpRing| ((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) |#3| |#5|)) (SIGNATURE |biringToPolyRing| (|#3| (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) |#5|))) │ │ │ +((|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) 68)) (|zRange| (((|Segment| (|DoubleFloat|)) $) 40)) (|yRange| (((|Segment| (|DoubleFloat|)) $) 39)) (|xRange| (((|Segment| (|DoubleFloat|)) $) 38)) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) 43)) (|tRange| (((|Segment| (|DoubleFloat|)) $) 41)) (|setScreenResolution3D| (((|Integer|) (|Integer|)) 32)) (|setMinPoints3D| (((|Integer|) (|Integer|)) 28)) (|setMaxPoints3D| (((|Integer|) (|Integer|)) 30)) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) 35)) (|screenResolution3D| (((|Integer|)) 31)) (|refine| (($ $ (|Segment| (|DoubleFloat|))) 71) (($ $) 72)) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) 76) (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) 77)) (|plot| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) 79) (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) 80) (($ $ (|Segment| (|DoubleFloat|))) 74)) (|numFunEvals3D| (((|Integer|)) 36)) (|minPoints3D| (((|Integer|)) 27)) (|maxPoints3D| (((|Integer|)) 29)) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) 92)) (|debug3D| (((|Boolean|) (|Boolean|)) 37)) (|coerce| (((|OutputForm|) $) 91)) (|adaptive3D?| (((|Boolean|)) 34))) │ │ │ +(((|Plot3D|) (|Join| (|PlottableSpaceCurveCategory|) (CATEGORY |domain| (SIGNATURE |pointPlot| ($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |pointPlot| ($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plot| ($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plot| ($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plot| ($ $ (|Segment| (|DoubleFloat|)))) (SIGNATURE |zoom| ($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |refine| ($ $ (|Segment| (|DoubleFloat|)))) (SIGNATURE |refine| ($ $)) (SIGNATURE |tRange| ((|Segment| (|DoubleFloat|)) $)) (SIGNATURE |tValues| ((|List| (|List| (|DoubleFloat|))) $)) (SIGNATURE |minPoints3D| ((|Integer|))) (SIGNATURE |setMinPoints3D| ((|Integer|) (|Integer|))) (SIGNATURE |maxPoints3D| ((|Integer|))) (SIGNATURE |setMaxPoints3D| ((|Integer|) (|Integer|))) (SIGNATURE |screenResolution3D| ((|Integer|))) (SIGNATURE |setScreenResolution3D| ((|Integer|) (|Integer|))) (SIGNATURE |adaptive3D?| ((|Boolean|))) (SIGNATURE |setAdaptive3D| ((|Boolean|) (|Boolean|))) (SIGNATURE |numFunEvals3D| ((|Integer|))) (SIGNATURE |debug3D| ((|Boolean|) (|Boolean|)))))) (T |Plot3D|)) │ │ │ +((|pointPlot| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|))) (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))) (|pointPlot| (*1 *1 *2 *3 *3 *3 *3) (AND (|isDomain| *2 (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|))) (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))) (|plot| (*1 *1 *2 *2 *2 *2 *3) (AND (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))) (|plot| (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (AND (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))) (|plot| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))) (|zoom| (*1 *1 *1 *2 *2 *2) (AND (|isDomain| *2 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))) (|refine| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))) (|refine| (*1 *1 *1) (|isDomain| *1 (|Plot3D|))) (|tRange| (*1 *2 *1) (AND (|isDomain| *2 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))) (|tValues| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|List| (|DoubleFloat|)))) (|isDomain| *1 (|Plot3D|)))) (|minPoints3D| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))) (|setMinPoints3D| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))) (|maxPoints3D| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))) (|setMaxPoints3D| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))) (|screenResolution3D| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))) (|setScreenResolution3D| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))) (|adaptive3D?| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Plot3D|)))) (|setAdaptive3D| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Plot3D|)))) (|numFunEvals3D| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))) (|debug3D| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Plot3D|))))) │ │ │ +(|Join| (|PlottableSpaceCurveCategory|) (CATEGORY |domain| (SIGNATURE |pointPlot| ($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |pointPlot| ($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plot| ($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plot| ($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plot| ($ $ (|Segment| (|DoubleFloat|)))) (SIGNATURE |zoom| ($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |refine| ($ $ (|Segment| (|DoubleFloat|)))) (SIGNATURE |refine| ($ $)) (SIGNATURE |tRange| ((|Segment| (|DoubleFloat|)) $)) (SIGNATURE |tValues| ((|List| (|List| (|DoubleFloat|))) $)) (SIGNATURE |minPoints3D| ((|Integer|))) (SIGNATURE |setMinPoints3D| ((|Integer|) (|Integer|))) (SIGNATURE |maxPoints3D| ((|Integer|))) (SIGNATURE |setMaxPoints3D| ((|Integer|) (|Integer|))) (SIGNATURE |screenResolution3D| ((|Integer|))) (SIGNATURE |setScreenResolution3D| ((|Integer|) (|Integer|))) (SIGNATURE |adaptive3D?| ((|Boolean|))) (SIGNATURE |setAdaptive3D| ((|Boolean|) (|Boolean|))) (SIGNATURE |numFunEvals3D| ((|Integer|))) (SIGNATURE |debug3D| ((|Boolean|) (|Boolean|))))) │ │ │ +((|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) 17)) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) 29)) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) 22)) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) 53)) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) 26)) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) 44))) │ │ │ +(((|PolToPol| |#1| |#2|) (CATEGORY |package| (SIGNATURE |dmpToHdmp| ((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|))) (SIGNATURE |hdmpToDmp| ((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) (SIGNATURE |pToHdmp| ((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|))) (SIGNATURE |hdmpToP| ((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) (SIGNATURE |dmpToP| ((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|))) (SIGNATURE |pToDmp| ((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)))) (|List| (|Symbol|)) (|Ring|)) (T |PolToPol|)) │ │ │ +((|pToDmp| (*1 *2 *3) (AND (|isDomain| *3 (|Polynomial| *5)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|DistributedMultivariatePolynomial| *4 *5)) (|isDomain| *1 (|PolToPol| *4 *5)) (|ofType| *4 (|List| (|Symbol|))))) (|dmpToP| (*1 *2 *3) (AND (|isDomain| *3 (|DistributedMultivariatePolynomial| *4 *5)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Polynomial| *5)) (|isDomain| *1 (|PolToPol| *4 *5)))) (|hdmpToP| (*1 *2 *3) (AND (|isDomain| *3 (|HomogeneousDistributedMultivariatePolynomial| *4 *5)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Polynomial| *5)) (|isDomain| *1 (|PolToPol| *4 *5)))) (|pToHdmp| (*1 *2 *3) (AND (|isDomain| *3 (|Polynomial| *5)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|HomogeneousDistributedMultivariatePolynomial| *4 *5)) (|isDomain| *1 (|PolToPol| *4 *5)) (|ofType| *4 (|List| (|Symbol|))))) (|hdmpToDmp| (*1 *2 *3) (AND (|isDomain| *3 (|HomogeneousDistributedMultivariatePolynomial| *4 *5)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|DistributedMultivariatePolynomial| *4 *5)) (|isDomain| *1 (|PolToPol| *4 *5)))) (|dmpToHdmp| (*1 *2 *3) (AND (|isDomain| *3 (|DistributedMultivariatePolynomial| *4 *5)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|HomogeneousDistributedMultivariatePolynomial| *4 *5)) (|isDomain| *1 (|PolToPol| *4 *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |dmpToHdmp| ((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|))) (SIGNATURE |hdmpToDmp| ((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) (SIGNATURE |pToHdmp| ((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|))) (SIGNATURE |hdmpToP| ((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) (SIGNATURE |dmpToP| ((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|))) (SIGNATURE |pToDmp| ((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|))))) (|table| (($) NIL) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL)) (|swap!| (((|Void|) $ |#1| |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| ((|#2| $ |#1| |#2|) 18)) (|select!| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|select| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|search| (((|Union| |#2| "failed") |#1| $) 19)) (|sample| (($) NIL T CONST)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (|remove!| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Union| |#2| "failed") |#1| $) 16)) (|remove| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#2| $ |#1| |#2|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#2| $ |#1|) NIL)) (|parts| (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| ((|#1| $) NIL (|has| |#1| (|OrderedSet|)))) (|members| (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (((|Boolean|) |#2| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|))))) (|maxIndex| ((|#1| $) NIL (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ (|Mapping| |#2| |#2|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL) (($ (|Mapping| |#2| |#2|) $) NIL) (($ (|Mapping| |#2| |#2| |#2|) $ $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|))))) (|keys| (((|List| |#1|) $) NIL)) (|key?| (((|Boolean|) |#1| $) NIL)) (|inspect| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL)) (|insert!| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL)) (|indices| (((|List| |#1|) $) NIL)) (|index?| (((|Boolean|) |#1| $) NIL)) (|hash| (((|SingleInteger|) $) NIL (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|))))) (|first| ((|#2| $) NIL (|has| |#1| (|OrderedSet|)))) (|find| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL)) (|fill!| (($ $ |#2|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|extract!| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) NIL (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|List| |#2|) (|List| |#2|)) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ |#2| |#2|) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|Equation| |#2|)) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|List| (|Equation| |#2|))) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) |#2| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|))))) (|entries| (((|List| |#2|) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (|dictionary| (($) NIL) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (((|NonNegativeInteger|) |#2| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL)) (|coerce| (((|OutputForm|) $) NIL (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|))))) (|bag| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) NIL (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|))))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|GeneralSparseTable| |#1| |#2| |#3| |#4|) (|TableAggregate| |#1| |#2|) (|SetCategory|) (|SetCategory|) (|TableAggregate| |#1| |#2|) |#2|) (T |GeneralSparseTable|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |setelt| (|#1| |#1| "right" |#1|)) (SIGNATURE |setelt| (|#1| |#1| "left" |#1|)) (SIGNATURE |elt| (|#1| |#1| "right")) (SIGNATURE |elt| (|#1| |#1| "left")) (SIGNATURE |setelt| (|#2| |#1| "value" |#2|)) (SIGNATURE |node?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |leaves| ((|List| |#2|) |#1|)) (SIGNATURE |cyclic?| ((|Boolean|) |#1|)) (SIGNATURE |elt| (|#2| |#1| "value")) (SIGNATURE |leaf?| ((|Boolean|) |#1|)) (SIGNATURE |nodes| ((|List| |#1|) |#1|)) (SIGNATURE |children| ((|List| |#1|) |#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |member?| ((|Boolean|) |#2| |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) |#1|))) │ │ │ -((|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) 14)) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) 18))) │ │ │ -(((|CartesianTensorFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |reshape| ((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|))) (SIGNATURE |map| ((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)))) (|Integer|) (|NonNegativeInteger|) (|CommutativeRing|) (|CommutativeRing|)) (T |CartesianTensorFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *8 *7)) (|isDomain| *4 (|CartesianTensor| *5 *6 *7)) (|ofType| *5 (|Integer|)) (|ofType| *6 (|NonNegativeInteger|)) (|ofCategory| *7 (|CommutativeRing|)) (|ofCategory| *8 (|CommutativeRing|)) (|isDomain| *2 (|CartesianTensor| *5 *6 *8)) (|isDomain| *1 (|CartesianTensorFunctions2| *5 *6 *7 *8)))) (|reshape| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|CartesianTensor| *5 *6 *7)) (|ofType| *5 (|Integer|)) (|ofType| *6 (|NonNegativeInteger|)) (|ofCategory| *7 (|CommutativeRing|)) (|ofCategory| *8 (|CommutativeRing|)) (|isDomain| *2 (|CartesianTensor| *5 *6 *8)) (|isDomain| *1 (|CartesianTensorFunctions2| *5 *6 *7 *8))))) │ │ │ -(CATEGORY |package| (SIGNATURE |reshape| ((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|))) (SIGNATURE |map| ((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)))) │ │ │ -((|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) 17))) │ │ │ -(((|CharacteristicPolynomialPackage| |#1|) (CATEGORY |package| (SIGNATURE |characteristicPolynomial| (|#1| (|Matrix| |#1|) |#1|))) (|CommutativeRing|)) (T |CharacteristicPolynomialPackage|)) │ │ │ -((|characteristicPolynomial| (*1 *2 *3 *2) (AND (|isDomain| *3 (|Matrix| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|isDomain| *1 (|CharacteristicPolynomialPackage| *2))))) │ │ │ -(CATEGORY |package| (SIGNATURE |characteristicPolynomial| (|#1| (|Matrix| |#1|) |#1|))) │ │ │ -((|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) 14))) │ │ │ -(((|ComplexFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)))) (|CommutativeRing|) (|CommutativeRing|)) (T |ComplexFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Complex| *5)) (|ofCategory| *5 (|CommutativeRing|)) (|ofCategory| *6 (|CommutativeRing|)) (|isDomain| *2 (|Complex| *6)) (|isDomain| *1 (|ComplexFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)))) │ │ │ -((|differentiate| (($ $ (|Mapping| |#2| |#2|)) NIL) (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) 11) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|))) NIL) (($ $ (|Symbol|)) 19) (($ $ (|NonNegativeInteger|)) NIL) (($ $) 16)) (D (($ $ (|Mapping| |#2| |#2|)) 12) (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) 14) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|))) NIL) (($ $ (|Symbol|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL))) │ │ │ -(((|DifferentialExtension&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE D (|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE D (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE D (|#1| |#1| (|Symbol|))) (SIGNATURE D (|#1| |#1| (|List| (|Symbol|)))) (SIGNATURE D (|#1| |#1| (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE D (|#1| |#1| (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE D (|#1| |#1| (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) (SIGNATURE D (|#1| |#1| (|Mapping| |#2| |#2|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|)))) (|DifferentialExtension| |#2|) (|Ring|)) (T |DifferentialExtension&|)) │ │ │ +(|TableAggregate| |#1| |#2|) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|variables| (((|List| (|SingletonAsOrderedSet|)) $) 70)) (|variable| (((|Symbol|) $) 98)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 50 (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) 51 (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) 53 (|has| |#1| (|IntegralDomain|)))) (|truncate| (($ $ (|NonNegativeInteger|)) 93) (($ $ (|NonNegativeInteger|) (|NonNegativeInteger|)) 92)) (|terms| (((|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|))) $) 100)) (|tanh| (($ $) 127 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|tan| (($ $) 110 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sqrt| (($ $) 109 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sinh| (($ $) 126 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sin| (($ $) 111 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|series| (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) 147) (($ (|Stream| |#1|)) 145)) (|sech| (($ $) 125 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sec| (($ $) 112 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sample| (($) 16 T CONST)) (|reductum| (($ $) 59)) (|recip| (((|Union| $ "failed") $) 33)) (|quoByVar| (($ $) 144)) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) 142) (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) 141)) (|pole?| (((|Boolean|) $) 69)) (|pi| (($) 137 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|order| (((|NonNegativeInteger|) $) 95) (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) 94)) (|one?| (((|Boolean|) $) 30)) (|nthRoot| (($ $ (|Integer|)) 108 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|multiplyExponents| (($ $ (|PositiveInteger|)) 96)) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) 143)) (|monomial?| (((|Boolean|) $) 61)) (|monomial| (($ |#1| (|NonNegativeInteger|)) 60) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) 72) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) 71)) (|map| (($ (|Mapping| |#1| |#1|) $) 62)) (|log| (($ $) 134 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|leadingMonomial| (($ $) 64)) (|leadingCoefficient| ((|#1| $) 65)) (|latex| (((|String|) $) 9)) (|integrate| (($ $) 139 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Symbol|)) 138 (OR (AND (|has| |#1| (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (AND (|has| |#1| (SIGNATURE |variables| ((|List| (|Symbol|)) |#1|))) (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| (|Symbol|)))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))))) (|hash| (((|SingleInteger|) $) 10)) (|extend| (($ $ (|NonNegativeInteger|)) 90)) (|exquo| (((|Union| $ "failed") $ $) 49 (|has| |#1| (|IntegralDomain|)))) (|exp| (($ $) 135 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|eval| (((|Stream| |#1|) $ |#1|) 89 (|has| |#1| (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|)))))) (|elt| ((|#1| $ (|NonNegativeInteger|)) 99) (($ $ $) 76 (|has| (|NonNegativeInteger|) (|SemiGroup|)))) (|differentiate| (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 84 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 83 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))))) (($ $ (|List| (|Symbol|))) 82 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))))) (($ $ (|Symbol|)) 81 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))))) (($ $ (|NonNegativeInteger|)) 79 (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))) (($ $) 77 (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))))) (|degree| (((|NonNegativeInteger|) $) 63)) (|csch| (($ $) 124 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|csc| (($ $) 113 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|coth| (($ $) 123 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cot| (($ $) 114 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cosh| (($ $) 122 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cos| (($ $) 115 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|complete| (($ $) 68)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ (|Fraction| (|Integer|))) 56 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $) 48 (|has| |#1| (|IntegralDomain|))) (($ |#1|) 46 (|has| |#1| (|CommutativeRing|)))) (|coefficients| (((|Stream| |#1|) $) 146)) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) 58)) (|charthRoot| (((|Union| $ "failed") $) 47 (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|center| ((|#1| $) 97)) (|atanh| (($ $) 133 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|atan| (($ $) 121 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|associates?| (((|Boolean|) $ $) 52 (|has| |#1| (|IntegralDomain|)))) (|asinh| (($ $) 132 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asin| (($ $) 120 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asech| (($ $) 131 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asec| (($ $) 119 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|approximate| ((|#1| $ (|NonNegativeInteger|)) 91 (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|)))) (|has| |#1| (SIGNATURE |coerce| (|#1| (|Symbol|))))))) (|acsch| (($ $) 130 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acsc| (($ $) 118 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acoth| (($ $) 129 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acot| (($ $) 117 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acosh| (($ $) 128 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acos| (($ $) 116 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 88 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 87 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))))) (($ $ (|List| (|Symbol|))) 86 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))))) (($ $ (|Symbol|)) 85 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))))) (($ $ (|NonNegativeInteger|)) 80 (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))) (($ $) 78 (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))))) (= (((|Boolean|) $ $) 6)) (/ (($ $ |#1|) 57 (|has| |#1| (|Field|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ |#1|) 140 (|has| |#1| (|Field|))) (($ $ $) 136 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) 107 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (|Fraction| (|Integer|)) $) 55 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) 54 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ +(((|UnivariateTaylorSeriesCategory| |#1|) (|Category|) (|Ring|)) (T |UnivariateTaylorSeriesCategory|)) │ │ │ +((|series| (*1 *1 *2) (AND (|isDomain| *2 (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| *3)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *3)))) (|coefficients| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Stream| *3)))) (|series| (*1 *1 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *3)))) (|quoByVar| (*1 *1 *1) (AND (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|multiplyCoefficients| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 (|Integer|))) (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *3)) (|ofCategory| *3 (|Ring|)))) (|polynomial| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Polynomial| *4)))) (|polynomial| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Polynomial| *4)))) (** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|integrate| (*1 *1 *1) (AND (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))))) (|integrate| (*1 *1 *1 *2) (OR (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *3)) (|ofCategory| *3 (|Ring|)) (AND (|ofCategory| *3 (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (|ofCategory| *3 (|PrimitiveFunctionCategory|)) (|ofCategory| *3 (|TranscendentalFunctionCategory|)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))))) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|UnivariateTaylorSeriesCategory| *3)) (|ofCategory| *3 (|Ring|)) (AND (|has| *3 (SIGNATURE |variables| ((|List| *2) *3))) (|has| *3 (SIGNATURE |integrate| (*3 *3 *2))) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|))))))))) │ │ │ +(|Join| (|UnivariatePowerSeriesCategory| |t#1| (|NonNegativeInteger|)) (CATEGORY |domain| (SIGNATURE |series| ($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |t#1|))))) (SIGNATURE |coefficients| ((|Stream| |t#1|) $)) (SIGNATURE |series| ($ (|Stream| |t#1|))) (SIGNATURE |quoByVar| ($ $)) (SIGNATURE |multiplyCoefficients| ($ (|Mapping| |t#1| (|Integer|)) $)) (SIGNATURE |polynomial| ((|Polynomial| |t#1|) $ (|NonNegativeInteger|))) (SIGNATURE |polynomial| ((|Polynomial| |t#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|))) (IF (|has| |t#1| (|Field|)) (SIGNATURE ** ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ($ $)) (IF (|has| |t#1| (SIGNATURE |integrate| (|t#1| |t#1| (|Symbol|)))) (IF (|has| |t#1| (SIGNATURE |variables| ((|List| (|Symbol|)) |t#1|))) (SIGNATURE |integrate| ($ $ (|Symbol|))) |noBranch|) |noBranch|) (IF (|has| |t#1| (|TranscendentalFunctionCategory|)) (IF (|has| |t#1| (|PrimitiveFunctionCategory|)) (IF (|has| |t#1| (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (SIGNATURE |integrate| ($ $ (|Symbol|))) |noBranch|) |noBranch|) |noBranch|) (ATTRIBUTE (|RadicalCategory|)) (ATTRIBUTE (|TranscendentalFunctionCategory|))) |noBranch|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| (|NonNegativeInteger|)) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) |has| |#1| (|IntegralDomain|)) ((|ArcHyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|ArcTrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|DifferentialRing|) |has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) ((|ElementaryFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Eltable| $ $) |has| (|NonNegativeInteger|) (|SemiGroup|)) ((|EntireRing|) |has| |#1| (|IntegralDomain|)) ((|HyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|IntegralDomain|) |has| |#1| (|IntegralDomain|)) ((|LeftModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Module| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) |has| |#1| (|IntegralDomain|)) ((|Monoid|) . T) ((|PartialDifferentialRing| (|Symbol|)) AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|PowerSeriesCategory| |#1| (|NonNegativeInteger|) (|SingletonAsOrderedSet|)) . T) ((|RadicalCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|TranscendentalFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|TrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|UnivariatePowerSeriesCategory| |#1| (|NonNegativeInteger|)) . T)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|wholePart| ((|#1| $) 137 (|has| |#1| (|EuclideanDomain|)))) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 128 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|squareFreePart| (($ $) 73)) (|squareFree| (((|Factored| $) $) 72)) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 131 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|sizeLess?| (((|Boolean|) $ $) 58)) (|sign| (((|Integer|) $) 118 (|has| |#1| (|OrderedIntegralDomain|)))) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) 176) (((|Union| (|Symbol|) "failed") $) 126 (|has| |#1| (|RetractableTo| (|Symbol|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) 110 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Integer|) "failed") $) 108 (|has| |#1| (|RetractableTo| (|Integer|))))) (|retract| ((|#1| $) 175) (((|Symbol|) $) 125 (|has| |#1| (|RetractableTo| (|Symbol|)))) (((|Fraction| (|Integer|)) $) 109 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Integer|) $) 107 (|has| |#1| (|RetractableTo| (|Integer|))))) (|rem| (($ $ $) 54)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) 150 (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) 149 (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) 148) (((|Matrix| |#1|) (|Matrix| $)) 147)) (|recip| (((|Union| $ "failed") $) 33)) (|random| (($) 135 (|has| |#1| (|IntegerNumberSystem|)))) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|prime?| (((|Boolean|) $) 71)) (|positive?| (((|Boolean|) $) 120 (|has| |#1| (|OrderedIntegralDomain|)))) (|patternMatch| (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) 144 (|has| |#1| (|PatternMatchable| (|Integer|)))) (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) 143 (|has| |#1| (|PatternMatchable| (|Float|))))) (|one?| (((|Boolean|) $) 30)) (|numerator| (($ $) 139)) (|numer| ((|#1| $) 141)) (|nextItem| (((|Union| $ "failed") $) 106 (|has| |#1| (|StepThrough|)))) (|negative?| (((|Boolean|) $) 119 (|has| |#1| (|OrderedIntegralDomain|)))) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|min| (($ $ $) 116 (|has| |#1| (|OrderedSet|)))) (|max| (($ $ $) 115 (|has| |#1| (|OrderedSet|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 167)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 70)) (|init| (($) 105 (|has| |#1| (|StepThrough|)) CONST)) (|hash| (((|SingleInteger|) $) 10)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|fractionPart| (($ $) 136 (|has| |#1| (|EuclideanDomain|)))) (|floor| ((|#1| $) 133 (|has| |#1| (|IntegerNumberSystem|)))) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 130 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 129 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factor| (((|Factored| $) $) 74)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|eval| (($ $ (|List| |#1|) (|List| |#1|)) 173 (|has| |#1| (|Evalable| |#1|))) (($ $ |#1| |#1|) 172 (|has| |#1| (|Evalable| |#1|))) (($ $ (|Equation| |#1|)) 171 (|has| |#1| (|Evalable| |#1|))) (($ $ (|List| (|Equation| |#1|))) 170 (|has| |#1| (|Evalable| |#1|))) (($ $ (|List| (|Symbol|)) (|List| |#1|)) 169 (|has| |#1| (|InnerEvalable| (|Symbol|) |#1|))) (($ $ (|Symbol|) |#1|) 168 (|has| |#1| (|InnerEvalable| (|Symbol|) |#1|)))) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|elt| (($ $ |#1|) 174 (|has| |#1| (|Eltable| |#1| |#1|)))) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|differentiate| (($ $) 166 (|has| |#1| (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) 164 (|has| |#1| (|DifferentialRing|))) (($ $ (|Symbol|)) 162 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) 161 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 160 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 159 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) 152) (($ $ (|Mapping| |#1| |#1|)) 151)) (|denominator| (($ $) 138)) (|denom| ((|#1| $) 140)) (|convert| (((|Pattern| (|Integer|)) $) 146 (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|))))) (((|Pattern| (|Float|)) $) 145 (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|))))) (((|InputForm|) $) 123 (|has| |#1| (|ConvertibleTo| (|InputForm|)))) (((|Float|) $) 122 (|has| |#1| (|RealConstant|))) (((|DoubleFloat|) $) 121 (|has| |#1| (|RealConstant|)))) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) 132 (|and| (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Fraction| (|Integer|))) 65) (($ |#1|) 179) (($ (|Symbol|)) 127 (|has| |#1| (|RetractableTo| (|Symbol|))))) (|charthRoot| (((|Union| $ "failed") $) 124 (OR (|has| |#1| (|CharacteristicNonZero|)) (|and| (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|)))))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|ceiling| ((|#1| $) 134 (|has| |#1| (|IntegerNumberSystem|)))) (|associates?| (((|Boolean|) $ $) 38)) (|abs| (($ $) 117 (|has| |#1| (|OrderedIntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 69)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $) 165 (|has| |#1| (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) 163 (|has| |#1| (|DifferentialRing|))) (($ $ (|Symbol|)) 158 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) 157 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 156 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 155 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) 154) (($ $ (|Mapping| |#1| |#1|)) 153)) (>= (((|Boolean|) $ $) 113 (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) 112 (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 114 (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) 111 (|has| |#1| (|OrderedSet|)))) (/ (($ $ $) 64) (($ |#1| |#1|) 142)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 68)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 67) (($ (|Fraction| (|Integer|)) $) 66) (($ |#1| $) 178) (($ $ |#1|) 177))) │ │ │ +(((|QuotientFieldCategory| |#1|) (|Category|) (|IntegralDomain|)) (T |QuotientFieldCategory|)) │ │ │ +((/ (*1 *1 *2 *2) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|numer| (*1 *2 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|denom| (*1 *2 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|numerator| (*1 *1 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|denominator| (*1 *1 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (|wholePart| (*1 *2 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|EuclideanDomain|)))) (|fractionPart| (*1 *1 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|EuclideanDomain|)))) (|random| (*1 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)) (|ofCategory| *2 (|IntegralDomain|)))) (|ceiling| (*1 *2 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|IntegerNumberSystem|)))) (|floor| (*1 *2 *1) (AND (|ofCategory| *1 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|IntegerNumberSystem|))))) │ │ │ +(|Join| (|Field|) (|Algebra| |t#1|) (|RetractableTo| |t#1|) (|FullyEvalableOver| |t#1|) (|DifferentialExtension| |t#1|) (|FullyLinearlyExplicitRingOver| |t#1|) (|Patternable| |t#1|) (|FullyPatternMatchable| |t#1|) (CATEGORY |domain| (SIGNATURE / ($ |t#1| |t#1|)) (SIGNATURE |numer| (|t#1| $)) (SIGNATURE |denom| (|t#1| $)) (SIGNATURE |numerator| ($ $)) (SIGNATURE |denominator| ($ $)) (IF (|has| |t#1| (|StepThrough|)) (ATTRIBUTE (|StepThrough|)) |noBranch|) (IF (|has| |t#1| (|RetractableTo| (|Integer|))) (PROGN (ATTRIBUTE (|RetractableTo| (|Integer|))) (ATTRIBUTE (|RetractableTo| (|Fraction| (|Integer|))))) |noBranch|) (IF (|has| |t#1| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |noBranch|) (IF (|has| |t#1| (|OrderedIntegralDomain|)) (ATTRIBUTE (|OrderedIntegralDomain|)) |noBranch|) (IF (|has| |t#1| (|RealConstant|)) (ATTRIBUTE (|RealConstant|)) |noBranch|) (IF (|has| |t#1| (|ConvertibleTo| (|InputForm|))) (ATTRIBUTE (|ConvertibleTo| (|InputForm|))) |noBranch|) (IF (|has| |t#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |noBranch|) (IF (|has| |t#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |noBranch|) (IF (|has| |t#1| (|RetractableTo| (|Symbol|))) (ATTRIBUTE (|RetractableTo| (|Symbol|))) |noBranch|) (IF (|has| |t#1| (|EuclideanDomain|)) (PROGN (SIGNATURE |wholePart| (|t#1| $)) (SIGNATURE |fractionPart| ($ $))) |noBranch|) (IF (|has| |t#1| (|IntegerNumberSystem|)) (PROGN (SIGNATURE |random| ($)) (SIGNATURE |ceiling| (|t#1| $)) (SIGNATURE |floor| (|t#1| $))) |noBranch|) (IF (|has| |t#1| (|PolynomialFactorizationExplicit|)) (ATTRIBUTE (|PolynomialFactorizationExplicit|)) |noBranch|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| |#1|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|ConvertibleTo| (|DoubleFloat|)) |has| |#1| (|RealConstant|)) ((|ConvertibleTo| (|Float|)) |has| |#1| (|RealConstant|)) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|ConvertibleTo| (|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) ((|ConvertibleTo| (|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) ((|DifferentialExtension| |#1|) . T) ((|DifferentialRing|) |has| |#1| (|DifferentialRing|)) ((|DivisionRing|) . T) ((|Eltable| |#1| $) |has| |#1| (|Eltable| |#1| |#1|)) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Evalable| |#1|) |has| |#1| (|Evalable| |#1|)) ((|Field|) . T) ((|FullyEvalableOver| |#1|) . T) ((|FullyLinearlyExplicitRingOver| |#1|) . T) ((|FullyPatternMatchable| |#1|) . T) ((|GcdDomain|) . T) ((|InnerEvalable| (|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|)) ((|InnerEvalable| |#1| |#1|) |has| |#1| (|Evalable| |#1|)) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|LinearlyExplicitRingOver| (|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LinearlyExplicitRingOver| |#1|) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| |#1|) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|OrderedAbelianGroup|) |has| |#1| (|OrderedIntegralDomain|)) ((|OrderedAbelianMonoid|) |has| |#1| (|OrderedIntegralDomain|)) ((|OrderedAbelianSemiGroup|) |has| |#1| (|OrderedIntegralDomain|)) ((|OrderedCancellationAbelianMonoid|) |has| |#1| (|OrderedIntegralDomain|)) ((|OrderedIntegralDomain|) |has| |#1| (|OrderedIntegralDomain|)) ((|OrderedRing|) |has| |#1| (|OrderedIntegralDomain|)) ((|OrderedSet|) OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|OrderedIntegralDomain|))) ((|PartialDifferentialRing| (|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) ((|PatternMatchable| (|Float|)) |has| |#1| (|PatternMatchable| (|Float|))) ((|PatternMatchable| (|Integer|)) |has| |#1| (|PatternMatchable| (|Integer|))) ((|Patternable| |#1|) . T) ((|PolynomialFactorizationExplicit|) |has| |#1| (|PolynomialFactorizationExplicit|)) ((|PrincipalIdealDomain|) . T) ((|RealConstant|) |has| |#1| (|RealConstant|)) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| (|Symbol|)) |has| |#1| (|RetractableTo| (|Symbol|))) ((|RetractableTo| |#1|) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| |#1|) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|StepThrough|) |has| |#1| (|StepThrough|)) ((|Type|) . T) ((|UniqueFactorizationDomain|) . T)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE D (|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE D (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE D (|#1| |#1| (|Symbol|))) (SIGNATURE D (|#1| |#1| (|List| (|Symbol|)))) (SIGNATURE D (|#1| |#1| (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE D (|#1| |#1| (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE D (|#1| |#1| (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) (SIGNATURE D (|#1| |#1| (|Mapping| |#2| |#2|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|)))) │ │ │ -((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 45)) (|tail| (($ $) 54)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setvalue!| ((|#1| $ |#1|) 36 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setprevious!| (($ $ $) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setnext!| (($ $ $) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) 7 T CONST)) (|previous| (($ $) 53)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) 47)) (|node?| (((|Boolean|) $ $) 39 (|has| |#1| (|SetCategory|)))) (|next| (($ $) 52)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|leaves| (((|List| |#1|) $) 42)) (|leaf?| (((|Boolean|) $) 46)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|last| ((|#1| $) 56)) (|head| (($ $) 55)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ "value") 44)) (|distance| (((|Integer|) $ $) 41)) (|cyclic?| (((|Boolean|) $) 43)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|concat!| (($ $ $) 51 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) 48)) (|child?| (((|Boolean|) $ $) 40 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|DoublyLinkedAggregate| |#1|) (|Category|) (|Type|)) (T |DoublyLinkedAggregate|)) │ │ │ -((|last| (*1 *2 *1) (AND (|ofCategory| *1 (|DoublyLinkedAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|head| (*1 *1 *1) (AND (|ofCategory| *1 (|DoublyLinkedAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|tail| (*1 *1 *1) (AND (|ofCategory| *1 (|DoublyLinkedAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|previous| (*1 *1 *1) (AND (|ofCategory| *1 (|DoublyLinkedAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|next| (*1 *1 *1) (AND (|ofCategory| *1 (|DoublyLinkedAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|concat!| (*1 *1 *1 *1) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|DoublyLinkedAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setprevious!| (*1 *1 *1 *1) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|DoublyLinkedAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setnext!| (*1 *1 *1 *1) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|DoublyLinkedAggregate| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ -(|Join| (|RecursiveAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |last| (|t#1| $)) (SIGNATURE |head| ($ $)) (SIGNATURE |tail| ($ $)) (SIGNATURE |previous| ($ $)) (SIGNATURE |next| ($ $)) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (PROGN (SIGNATURE |concat!| ($ $ $)) (SIGNATURE |setprevious!| ($ $ $)) (SIGNATURE |setnext!| ($ $ $))) |noBranch|))) │ │ │ -(((|Aggregate|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|RecursiveAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 45)) (|tree| (($ |#1| (|List| $)) 51) (($ |#1|) 50) (($ (|List| |#1|)) 49)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setvalue!| ((|#1| $ |#1|) 36 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) 7 T CONST)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) 47)) (|node?| (((|Boolean|) $ $) 39 (|has| |#1| (|SetCategory|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|leaves| (((|List| |#1|) $) 42)) (|leaf?| (((|Boolean|) $) 46)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ "value") 44)) (|distance| (((|Integer|) $ $) 41)) (|cyclic?| (((|Boolean|) $) 43)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) 48)) (|child?| (((|Boolean|) $ $) 40 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|DesingTreeCategory| |#1|) (|Category|) (|SetCategory|)) (T |DesingTreeCategory|)) │ │ │ -((|tree| (*1 *1 *2 *3) (AND (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|DesingTreeCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (|tree| (*1 *1 *2) (AND (|ofCategory| *1 (|DesingTreeCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (|tree| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *1 (|DesingTreeCategory| *3))))) │ │ │ -(|Join| (|RecursiveAggregate| |t#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (ATTRIBUTE |finiteAggregate|) (SIGNATURE |tree| ($ |t#1| (|List| $))) (SIGNATURE |tree| ($ |t#1|)) (SIGNATURE |tree| ($ (|List| |t#1|))))) │ │ │ -(((|Aggregate|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|RecursiveAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ -((|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) 17))) │ │ │ -(((|ExpressionSpaceFunctions1| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| (|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)))) (|ExpressionSpace|) (|Type|)) (T |ExpressionSpaceFunctions1|)) │ │ │ -((|map| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *2 *6)) (|isDomain| *4 (|String|)) (|isDomain| *5 (|Kernel| *6)) (|ofCategory| *6 (|ExpressionSpace|)) (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|ExpressionSpaceFunctions1| *6 *2))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| (|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|differentiate| (($ $ (|Mapping| |#1| |#1|)) 51) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) 50) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 43 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 42 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) 41 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|)) 40 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|NonNegativeInteger|)) 38 (|has| |#1| (|DifferentialRing|))) (($ $) 36 (|has| |#1| (|DifferentialRing|)))) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $ (|Mapping| |#1| |#1|)) 49) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) 48) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 47 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 46 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) 45 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|)) 44 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|NonNegativeInteger|)) 39 (|has| |#1| (|DifferentialRing|))) (($ $) 37 (|has| |#1| (|DifferentialRing|)))) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ -(((|DifferentialExtension| |#1|) (|Category|) (|Ring|)) (T |DifferentialExtension|)) │ │ │ -((|differentiate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|DifferentialExtension| *3)) (|ofCategory| *3 (|Ring|)))) (|differentiate| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Mapping| *4 *4)) (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|DifferentialExtension| *4)) (|ofCategory| *4 (|Ring|)))) (D (*1 *1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|DifferentialExtension| *3)) (|ofCategory| *3 (|Ring|)))) (D (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Mapping| *4 *4)) (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|DifferentialExtension| *4)) (|ofCategory| *4 (|Ring|))))) │ │ │ -(|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |differentiate| ($ $ (|Mapping| |t#1| |t#1|))) (SIGNATURE |differentiate| ($ $ (|Mapping| |t#1| |t#1|) (|NonNegativeInteger|))) (SIGNATURE D ($ $ (|Mapping| |t#1| |t#1|))) (SIGNATURE D ($ $ (|Mapping| |t#1| |t#1|) (|NonNegativeInteger|))) (IF (|has| |t#1| (|DifferentialRing|)) (ATTRIBUTE (|DifferentialRing|)) |noBranch|) (IF (|has| |t#1| (|PartialDifferentialRing| (|Symbol|))) (ATTRIBUTE (|PartialDifferentialRing| (|Symbol|))) |noBranch|))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|DifferentialRing|) |has| |#1| (|DifferentialRing|)) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|PartialDifferentialRing| (|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) 17))) │ │ │ -(((|ExpressionSpaceFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| (|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)))) (|ExpressionSpace|) (|ExpressionSpace|)) (T |ExpressionSpaceFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *2 *5)) (|isDomain| *4 (|Kernel| *5)) (|ofCategory| *5 (|ExpressionSpace|)) (|ofCategory| *2 (|ExpressionSpace|)) (|isDomain| *1 (|ExpressionSpaceFunctions2| *5 *2))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| (|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)))) │ │ │ -((|eval| (($ $ (|Symbol|) |#2|) NIL) (($ $ (|List| (|Symbol|)) (|List| |#2|)) 18) (($ $ (|List| (|Equation| |#2|))) 14) (($ $ (|Equation| |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (|List| |#2|) (|List| |#2|)) NIL)) (|elt| (($ $ |#2|) 11))) │ │ │ -(((|FullyEvalableOver&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |elt| (|#1| |#1| |#2|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#2|) (|List| |#2|))) (SIGNATURE |eval| (|#1| |#1| |#2| |#2|)) (SIGNATURE |eval| (|#1| |#1| (|Equation| |#2|))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Equation| |#2|)))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Symbol|)) (|List| |#2|))) (SIGNATURE |eval| (|#1| |#1| (|Symbol|) |#2|))) (|FullyEvalableOver| |#2|) (|SetCategory|)) (T |FullyEvalableOver&|)) │ │ │ +(((|MultiplicativeValuationAttribute|) (|Category|)) (T |MultiplicativeValuationAttribute|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |elt| (|#1| |#1| |#2|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#2|) (|List| |#2|))) (SIGNATURE |eval| (|#1| |#1| |#2| |#2|)) (SIGNATURE |eval| (|#1| |#1| (|Equation| |#2|))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Equation| |#2|)))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Symbol|)) (|List| |#2|))) (SIGNATURE |eval| (|#1| |#1| (|Symbol|) |#2|))) │ │ │ -((- (($ $) NIL) (($ $ $) 11))) │ │ │ -(((|GradedModule&| |#1| |#2| |#3|) (CATEGORY |domain| (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|))) (|GradedModule| |#2| |#3|) (|CommutativeRing|) (|AbelianMonoid|)) (T |GradedModule&|)) │ │ │ +(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 15)) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setvalue!| ((|#1| $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setright!| (($ $ $) 18 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setleft!| (($ $ $) 20 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "left" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "right" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) NIL T CONST)) (|right| (($ $) 17)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) NIL)) (|node?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|node| (($ $ |#1| $) 23)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|left| (($ $) 19)) (|leaves| (((|List| |#1|) $) NIL)) (|leaf?| (((|Boolean|) $) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|insertRoot!| (($ |#1| $) 24)) (|insert!| (($ |#1| $) 10)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) 14)) (|empty| (($) 8)) (|elt| ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (|distance| (((|Integer|) $ $) NIL)) (|cyclic?| (((|Boolean|) $) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) NIL)) (|child?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|binarySearchTree| (($ (|List| |#1|)) 12)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|BinarySearchTree| |#1|) (|Join| (|BinaryTreeCategory| |#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (ATTRIBUTE |finiteAggregate|) (SIGNATURE |binarySearchTree| ($ (|List| |#1|))) (SIGNATURE |insert!| ($ |#1| $)) (SIGNATURE |insertRoot!| ($ |#1| $)) (SIGNATURE |split| ((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $)))) (|OrderedSet|)) (T |BinarySearchTree|)) │ │ │ +((|binarySearchTree| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|BinarySearchTree| *3)))) (|insert!| (*1 *1 *2 *1) (AND (|isDomain| *1 (|BinarySearchTree| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|insertRoot!| (*1 *1 *2 *1) (AND (|isDomain| *1 (|BinarySearchTree| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|split| (*1 *2 *3 *1) (AND (|isDomain| *2 (|Record| (|:| |less| (|BinarySearchTree| *3)) (|:| |greater| (|BinarySearchTree| *3)))) (|isDomain| *1 (|BinarySearchTree| *3)) (|ofCategory| *3 (|OrderedSet|))))) │ │ │ +(|Join| (|BinaryTreeCategory| |#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (ATTRIBUTE |finiteAggregate|) (SIGNATURE |binarySearchTree| ($ (|List| |#1|))) (SIGNATURE |insert!| ($ |#1| $)) (SIGNATURE |insertRoot!| ($ |#1| $)) (SIGNATURE |split| ((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL)) (|qcoerce| (($ (|Integer|)) 7)) (|one?| (((|Boolean|) $) NIL)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|gcd| (($ $ $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (^ (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|PositiveInteger|)) NIL)) (|One| (($) NIL T CONST)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|PositiveInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ $ $) NIL))) │ │ │ +(((|PositiveInteger|) (|Join| (|AbelianSemiGroup|) (|OrderedSet|) (|Monoid|) (CATEGORY |domain| (SIGNATURE |gcd| ($ $ $)) (ATTRIBUTE (|commutative| "*")) (SIGNATURE |qcoerce| ($ (|Integer|)))))) (T |PositiveInteger|)) │ │ │ +((|gcd| (*1 *1 *1 *1) (|isDomain| *1 (|PositiveInteger|))) (|qcoerce| (*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|PositiveInteger|))))) │ │ │ +(|Join| (|AbelianSemiGroup|) (|OrderedSet|) (|Monoid|) (CATEGORY |domain| (SIGNATURE |gcd| ($ $ $)) (ATTRIBUTE (|commutative| "*")) (SIGNATURE |qcoerce| ($ (|Integer|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|zero?| (((|Boolean|) $) NIL)) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) NIL)) (|vertConcat| (($ $ $) NIL)) (|transpose| (($ (|IndexedVector| |#1| |#3|)) NIL) (($ $) NIL)) (|symmetric?| (((|Boolean|) $) NIL)) (|swapRows!| (($ $ (|Integer|) (|Integer|)) 12)) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) NIL)) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) NIL)) (|squareTop| (($ $) NIL)) (|square?| (((|Boolean|) $) NIL)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) NIL)) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) NIL) (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) NIL)) (|setRow!| (($ $ (|Integer|) (|IndexedVector| |#1| |#3|)) NIL)) (|setColumn!| (($ $ (|Integer|) (|IndexedVector| |#1| |#2|)) NIL)) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) NIL)) (|sample| (($) NIL T CONST)) (|rowEchelon| (($ $) 19 (|has| |#1| (|EuclideanDomain|)))) (|row| (((|IndexedVector| |#1| |#3|) $ (|Integer|)) NIL)) (|rank| (((|NonNegativeInteger|) $) 22 (|has| |#1| (|IntegralDomain|)))) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) NIL)) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) NIL)) (|pfaffian| ((|#1| $) NIL (|has| |#1| (|CommutativeRing|)))) (|parts| (((|List| |#1|) $) NIL)) (|nullity| (((|NonNegativeInteger|) $) 24 (|has| |#1| (|IntegralDomain|)))) (|nullSpace| (((|List| (|IndexedVector| |#1| |#2|)) $) 27 (|has| |#1| (|IntegralDomain|)))) (|nrows| (((|NonNegativeInteger|) $) NIL)) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) NIL)) (|ncols| (((|NonNegativeInteger|) $) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minordet| ((|#1| $) 17 (|has| |#1| (ATTRIBUTE (|commutative| "*"))))) (|minRowIndex| (((|Integer|) $) 10)) (|minColIndex| (((|Integer|) $) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxRowIndex| (((|Integer|) $) 11)) (|maxColIndex| (((|Integer|) $) NIL)) (|matrix| (($ (|List| (|List| |#1|))) NIL) (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) NIL)) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) NIL)) (|listOfLists| (((|List| (|List| |#1|)) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|inverse| (((|Union| $ "failed") $) 31 (|has| |#1| (|Field|)))) (|horizConcat| (($ $ $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|fill!| (($ $ |#1|) NIL)) (|exquo| (((|Union| $ "failed") $ |#1|) NIL (|has| |#1| (|IntegralDomain|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#1| $ (|Integer|) (|Integer|)) NIL) ((|#1| $ (|Integer|) (|Integer|) |#1|) NIL) (($ $ (|List| (|Integer|)) (|List| (|Integer|))) NIL)) (|diagonalMatrix| (($ (|List| |#1|)) NIL) (($ (|List| $)) NIL)) (|diagonal?| (((|Boolean|) $) NIL)) (|determinant| ((|#1| $) 15 (|has| |#1| (ATTRIBUTE (|commutative| "*"))))) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) NIL)) (|columnSpace| (((|List| (|IndexedVector| |#1| |#2|)) $) NIL (|has| |#1| (|EuclideanDomain|)))) (|column| (((|IndexedVector| |#1| |#2|) $ (|Integer|)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|))) (($ (|IndexedVector| |#1| |#2|)) NIL)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|antisymmetric?| (((|Boolean|) $) NIL)) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (/ (($ $ |#1|) NIL (|has| |#1| (|Field|)))) (- (($ $ $) NIL) (($ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL (|has| |#1| (|Field|)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (|Integer|) $) NIL) (((|IndexedVector| |#1| |#2|) $ (|IndexedVector| |#1| |#2|)) NIL) (((|IndexedVector| |#1| |#3|) (|IndexedVector| |#1| |#3|) $) NIL)) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|IndexedMatrix| |#1| |#2| |#3|) (|MatrixCategory| |#1| (|IndexedVector| |#1| |#3|) (|IndexedVector| |#1| |#2|)) (|Ring|) (|Integer|) (|Integer|)) (T |IndexedMatrix|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|))) │ │ │ -((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 45)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setvalue!| ((|#1| $ |#1|) 36 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setright!| (($ $ $) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setleft!| (($ $ $) 51 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "left" $) 52 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "right" $) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) 7 T CONST)) (|right| (($ $) 54)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) 47)) (|node?| (((|Boolean|) $ $) 39 (|has| |#1| (|SetCategory|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|left| (($ $) 56)) (|leaves| (((|List| |#1|) $) 42)) (|leaf?| (((|Boolean|) $) 46)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ "value") 44) (($ $ "left") 55) (($ $ "right") 53)) (|distance| (((|Integer|) $ $) 41)) (|cyclic?| (((|Boolean|) $) 43)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) 48)) (|child?| (((|Boolean|) $ $) 40 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|BinaryRecursiveAggregate| |#1|) (|Category|) (|Type|)) (T |BinaryRecursiveAggregate|)) │ │ │ -((|left| (*1 *1 *1) (AND (|ofCategory| *1 (|BinaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|elt| (*1 *1 *1 *2) (AND (|isDomain| *2 "left") (|ofCategory| *1 (|BinaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|right| (*1 *1 *1) (AND (|ofCategory| *1 (|BinaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|elt| (*1 *1 *1 *2) (AND (|isDomain| *2 "right") (|ofCategory| *1 (|BinaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|setelt| (*1 *1 *1 *2 *1) (AND (|isDomain| *2 "left") (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|BinaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|setleft!| (*1 *1 *1 *1) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|BinaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setelt| (*1 *1 *1 *2 *1) (AND (|isDomain| *2 "right") (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|BinaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|setright!| (*1 *1 *1 *1) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|BinaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ -(|Join| (|RecursiveAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |left| ($ $)) (SIGNATURE |elt| ($ $ "left")) (SIGNATURE |right| ($ $)) (SIGNATURE |elt| ($ $ "right")) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (PROGN (SIGNATURE |setelt| ($ $ "left" $)) (SIGNATURE |setleft!| ($ $ $)) (SIGNATURE |setelt| ($ $ "right" $)) (SIGNATURE |setright!| ($ $ $))) |noBranch|))) │ │ │ -(((|Aggregate|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|RecursiveAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ -((|tanh| (($ $) 15)) (|sinh| (($ $) 24)) (|sech| (($ $) 12)) (|csch| (($ $) 10)) (|coth| (($ $) 17)) (|cosh| (($ $) 22))) │ │ │ -(((|HyperbolicFunctionCategory&| |#1|) (CATEGORY |domain| (SIGNATURE |cosh| (|#1| |#1|)) (SIGNATURE |coth| (|#1| |#1|)) (SIGNATURE |csch| (|#1| |#1|)) (SIGNATURE |sech| (|#1| |#1|)) (SIGNATURE |sinh| (|#1| |#1|)) (SIGNATURE |tanh| (|#1| |#1|))) (|HyperbolicFunctionCategory|)) (T |HyperbolicFunctionCategory&|)) │ │ │ +(|MatrixCategory| |#1| (|IndexedVector| |#1| |#3|) (|IndexedVector| |#1| |#2|)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|variables| (((|List| (|OrderedVariableList| |#1|)) $) NIL)) (|univariate| (((|SparseUnivariatePolynomial| $) $ (|OrderedVariableList| |#1|)) NIL) (((|SparseUnivariatePolynomial| |#2|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#2| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#2| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#2| (|IntegralDomain|)))) (|totalDegree| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|List| (|OrderedVariableList| |#1|))) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#2| (|PolynomialFactorizationExplicit|)))) (|squareFreePart| (($ $) NIL (|has| |#2| (|GcdDomain|)))) (|squareFree| (((|Factored| $) $) NIL (|has| |#2| (|GcdDomain|)))) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#2| (|PolynomialFactorizationExplicit|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#2| "failed") $) NIL) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| (|Integer|) "failed") $) NIL (|has| |#2| (|RetractableTo| (|Integer|)))) (((|Union| (|OrderedVariableList| |#1|) "failed") $) NIL)) (|retract| ((|#2| $) NIL) (((|Fraction| (|Integer|)) $) NIL (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Integer|) $) NIL (|has| |#2| (|RetractableTo| (|Integer|)))) (((|OrderedVariableList| |#1|) $) NIL)) (|resultant| (($ $ $ (|OrderedVariableList| |#1|)) NIL (|has| |#2| (|CommutativeRing|)))) (|reorder| (($ $ (|List| (|Integer|))) NIL)) (|reductum| (($ $) NIL)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| |#2|) (|Matrix| $)) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|primitivePart| (($ $) NIL (|has| |#2| (|GcdDomain|))) (($ $ (|OrderedVariableList| |#1|)) NIL (|has| |#2| (|GcdDomain|)))) (|primitiveMonomials| (((|List| $) $) NIL)) (|prime?| (((|Boolean|) $) NIL (|has| |#2| (|PolynomialFactorizationExplicit|)))) (|pomopo!| (($ $ |#2| (|DirectProduct| (|#| |#1|) (|NonNegativeInteger|)) $) NIL)) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) NIL (AND (|has| (|OrderedVariableList| |#1|) (|PatternMatchable| (|Float|))) (|has| |#2| (|PatternMatchable| (|Float|))))) (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) NIL (AND (|has| (|OrderedVariableList| |#1|) (|PatternMatchable| (|Integer|))) (|has| |#2| (|PatternMatchable| (|Integer|)))))) (|one?| (((|Boolean|) $) NIL)) (|numberOfMonomials| (((|NonNegativeInteger|) $) NIL)) (|multivariate| (($ (|SparseUnivariatePolynomial| |#2|) (|OrderedVariableList| |#1|)) NIL) (($ (|SparseUnivariatePolynomial| $) (|OrderedVariableList| |#1|)) NIL)) (|monomials| (((|List| $) $) NIL)) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ |#2| (|DirectProduct| (|#| |#1|) (|NonNegativeInteger|))) NIL) (($ $ (|OrderedVariableList| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|OrderedVariableList| |#1|)) (|List| (|NonNegativeInteger|))) NIL)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ (|OrderedVariableList| |#1|)) NIL)) (|minimumDegree| (((|DirectProduct| (|#| |#1|) (|NonNegativeInteger|)) $) NIL) (((|NonNegativeInteger|) $ (|OrderedVariableList| |#1|)) NIL) (((|List| (|NonNegativeInteger|)) $ (|List| (|OrderedVariableList| |#1|))) NIL)) (|min| (($ $ $) NIL (|has| |#2| (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#2| (|OrderedSet|)))) (|mapExponents| (($ (|Mapping| (|DirectProduct| (|#| |#1|) (|NonNegativeInteger|)) (|DirectProduct| (|#| |#1|) (|NonNegativeInteger|))) $) NIL)) (|map| (($ (|Mapping| |#2| |#2|) $) NIL)) (|mainVariable| (((|Union| (|OrderedVariableList| |#1|) "failed") $) NIL)) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#2| $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL (|has| |#2| (|GcdDomain|)))) (|lcm| (($ (|List| $)) NIL (|has| |#2| (|GcdDomain|))) (($ $ $) NIL (|has| |#2| (|GcdDomain|)))) (|latex| (((|String|) $) NIL)) (|isTimes| (((|Union| (|List| $) "failed") $) NIL)) (|isPlus| (((|Union| (|List| $) "failed") $) NIL)) (|isExpt| (((|Union| (|Record| (|:| |var| (|OrderedVariableList| |#1|)) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|ground?| (((|Boolean|) $) NIL)) (|ground| ((|#2| $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL (|has| |#2| (|GcdDomain|)))) (|gcd| (($ (|List| $)) NIL (|has| |#2| (|GcdDomain|))) (($ $ $) NIL (|has| |#2| (|GcdDomain|)))) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#2| (|PolynomialFactorizationExplicit|)))) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#2| (|PolynomialFactorizationExplicit|)))) (|factor| (((|Factored| $) $) NIL (|has| |#2| (|PolynomialFactorizationExplicit|)))) (|exquo| (((|Union| $ "failed") $ |#2|) NIL (|has| |#2| (|IntegralDomain|))) (((|Union| $ "failed") $ $) NIL (|has| |#2| (|IntegralDomain|)))) (|eval| (($ $ (|List| (|Equation| $))) NIL) (($ $ (|Equation| $)) NIL) (($ $ $ $) NIL) (($ $ (|List| $) (|List| $)) NIL) (($ $ (|OrderedVariableList| |#1|) |#2|) NIL) (($ $ (|List| (|OrderedVariableList| |#1|)) (|List| |#2|)) NIL) (($ $ (|OrderedVariableList| |#1|) $) NIL) (($ $ (|List| (|OrderedVariableList| |#1|)) (|List| $)) NIL)) (|discriminant| (($ $ (|OrderedVariableList| |#1|)) NIL (|has| |#2| (|CommutativeRing|)))) (|differentiate| (($ $ (|OrderedVariableList| |#1|)) NIL) (($ $ (|List| (|OrderedVariableList| |#1|))) NIL) (($ $ (|OrderedVariableList| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|OrderedVariableList| |#1|)) (|List| (|NonNegativeInteger|))) NIL)) (|degree| (((|DirectProduct| (|#| |#1|) (|NonNegativeInteger|)) $) NIL) (((|NonNegativeInteger|) $ (|OrderedVariableList| |#1|)) NIL) (((|List| (|NonNegativeInteger|)) $ (|List| (|OrderedVariableList| |#1|))) NIL)) (|convert| (((|Pattern| (|Float|)) $) NIL (AND (|has| (|OrderedVariableList| |#1|) (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Float|)))))) (((|Pattern| (|Integer|)) $) NIL (AND (|has| (|OrderedVariableList| |#1|) (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|)))))) (((|InputForm|) $) NIL (AND (|has| (|OrderedVariableList| |#1|) (|ConvertibleTo| (|InputForm|))) (|has| |#2| (|ConvertibleTo| (|InputForm|)))))) (|content| ((|#2| $) NIL (|has| |#2| (|GcdDomain|))) (($ $ (|OrderedVariableList| |#1|)) NIL (|has| |#2| (|GcdDomain|)))) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#2|) NIL) (($ (|OrderedVariableList| |#1|)) NIL) (($ (|Fraction| (|Integer|))) NIL (OR (|has| |#2| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))))) (($ $) NIL (|has| |#2| (|IntegralDomain|)))) (|coefficients| (((|List| |#2|) $) NIL)) (|coefficient| ((|#2| $ (|DirectProduct| (|#| |#1|) (|NonNegativeInteger|))) NIL) (($ $ (|OrderedVariableList| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|OrderedVariableList| |#1|)) (|List| (|NonNegativeInteger|))) NIL)) (|charthRoot| (((|Union| $ "failed") $) NIL (OR (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) (|has| |#2| (|CharacteristicNonZero|))))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) NIL (|has| |#2| (|CommutativeRing|)))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#2| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (D (($ $ (|OrderedVariableList| |#1|)) NIL) (($ $ (|List| (|OrderedVariableList| |#1|))) NIL) (($ $ (|OrderedVariableList| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|OrderedVariableList| |#1|)) (|List| (|NonNegativeInteger|))) NIL)) (>= (((|Boolean|) $ $) NIL (|has| |#2| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#2| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL (|has| |#2| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#2| (|OrderedSet|)))) (/ (($ $ |#2|) NIL (|has| |#2| (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#2| (|Algebra| (|Fraction| (|Integer|))))) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#2| (|Algebra| (|Fraction| (|Integer|))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) │ │ │ +(((|DistributedMultivariatePolynomial| |#1| |#2|) (|Join| (|PolynomialCategory| |#2| (|DirectProduct| (|#| |#1|) (|NonNegativeInteger|)) (|OrderedVariableList| |#1|)) (CATEGORY |domain| (SIGNATURE |reorder| ($ $ (|List| (|Integer|)))))) (|List| (|Symbol|)) (|Ring|)) (T |DistributedMultivariatePolynomial|)) │ │ │ +((|reorder| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|DistributedMultivariatePolynomial| *3 *4)) (|ofType| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|Ring|))))) │ │ │ +(|Join| (|PolynomialCategory| |#2| (|DirectProduct| (|#| |#1|) (|NonNegativeInteger|)) (|OrderedVariableList| |#1|)) (CATEGORY |domain| (SIGNATURE |reorder| ($ $ (|List| (|Integer|)))))) │ │ │ +((|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) 62) (((|Boolean|) $) NIL)) (|sort!| (($ (|Mapping| (|Boolean|) |#2| |#2|) $) 17) (($ $) NIL)) (|setelt| ((|#2| $ (|Integer|) |#2|) NIL) ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) 34)) (|reverse!| (($ $) 58)) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (|Mapping| |#2| |#2| |#2|) $) 37)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) 22) (((|Integer|) |#2| $) NIL) (((|Integer|) |#2| $ (|Integer|)) 70)) (|parts| (((|List| |#2|) $) 13)) (|merge| (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (|map!| (($ (|Mapping| |#2| |#2|) $) 29)) (|map| (($ (|Mapping| |#2| |#2|) $) NIL) (($ (|Mapping| |#2| |#2| |#2|) $ $) 44)) (|insert| (($ |#2| $ (|Integer|)) NIL) (($ $ $ (|Integer|)) 49)) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) 24)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 21)) (|elt| ((|#2| $ (|Integer|) |#2|) NIL) ((|#2| $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) 48)) (|delete| (($ $ (|Integer|)) 55) (($ $ (|UniversalSegment| (|Integer|))) 54)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) 26) (((|NonNegativeInteger|) |#2| $) NIL)) (|copyInto!| (($ $ $ (|Integer|)) 51)) (|copy| (($ $) 50)) (|construct| (($ (|List| |#2|)) 52)) (|concat| (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 63) (($ (|List| $)) 61)) (|coerce| (((|OutputForm|) $) 69)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 20)) (= (((|Boolean|) $ $) 64)) (< (((|Boolean|) $ $) 72))) │ │ │ +(((|OneDimensionalArrayAggregate&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |sort!| (|#1| |#1|)) (SIGNATURE |sort!| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |reverse!| (|#1| |#1|)) (SIGNATURE |copyInto!| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |sorted?| ((|Boolean|) |#1|)) (SIGNATURE |merge| (|#1| |#1| |#1|)) (SIGNATURE |position| ((|Integer|) |#2| |#1| (|Integer|))) (SIGNATURE |position| ((|Integer|) |#2| |#1|)) (SIGNATURE |position| ((|Integer|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |sorted?| ((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |merge| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1| |#1|)) (SIGNATURE |setelt| (|#2| |#1| (|UniversalSegment| (|Integer|)) |#2|)) (SIGNATURE |insert| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |insert| (|#1| |#2| |#1| (|Integer|))) (SIGNATURE |delete| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |delete| (|#1| |#1| (|Integer|))) (SIGNATURE |elt| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2| |#2|) |#1| |#1|)) (SIGNATURE |concat| (|#1| (|List| |#1|))) (SIGNATURE |concat| (|#1| |#1| |#1|)) (SIGNATURE |concat| (|#1| |#2| |#1|)) (SIGNATURE |concat| (|#1| |#1| |#2|)) (SIGNATURE |construct| (|#1| (|List| |#2|))) (SIGNATURE |find| ((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#2|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#2| |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|))) (SIGNATURE |elt| (|#2| |#1| (|Integer|) |#2|)) (SIGNATURE |setelt| (|#2| |#1| (|Integer|) |#2|)) (SIGNATURE |count| ((|NonNegativeInteger|) |#2| |#1|)) (SIGNATURE |parts| ((|List| |#2|) |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |map!| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |copy| (|#1| |#1|))) (|OneDimensionalArrayAggregate| |#2|) (|Type|)) (T |OneDimensionalArrayAggregate&|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |cosh| (|#1| |#1|)) (SIGNATURE |coth| (|#1| |#1|)) (SIGNATURE |csch| (|#1| |#1|)) (SIGNATURE |sech| (|#1| |#1|)) (SIGNATURE |sinh| (|#1| |#1|)) (SIGNATURE |tanh| (|#1| |#1|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|degree| ((|#2| $) 18)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 14) (($ $ $) 12)) (+ (($ $ $) 13)) (* (($ |#1| $) 16) (($ $ |#1|) 15))) │ │ │ -(((|GradedModule| |#1| |#2|) (|Category|) (|CommutativeRing|) (|AbelianMonoid|)) (T |GradedModule|)) │ │ │ -((|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|GradedModule| *3 *2)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *2 (|AbelianMonoid|)))) (|Zero| (*1 *1) (AND (|ofCategory| *1 (|GradedModule| *2 *3)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)))) (* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|GradedModule| *2 *3)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)))) (* (*1 *1 *1 *2) (AND (|ofCategory| *1 (|GradedModule| *2 *3)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)))) (- (*1 *1 *1) (AND (|ofCategory| *1 (|GradedModule| *2 *3)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)))) (+ (*1 *1 *1 *1) (AND (|ofCategory| *1 (|GradedModule| *2 *3)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)))) (- (*1 *1 *1 *1) (AND (|ofCategory| *1 (|GradedModule| *2 *3)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |degree| (|t#2| $)) (SIGNATURE (|Zero|) ($) |constant|) (SIGNATURE * ($ |t#1| $)) (SIGNATURE * ($ $ |t#1|)) (SIGNATURE - ($ $)) (SIGNATURE + ($ $ $)) (SIGNATURE - ($ $ $)))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ -((|map| (($ (|Mapping| |#1| |#1|) $) 6)) (|eval| (($ $ (|Symbol|) |#1|) 16 (|has| |#1| (|InnerEvalable| (|Symbol|) |#1|))) (($ $ (|List| (|Symbol|)) (|List| |#1|)) 15 (|has| |#1| (|InnerEvalable| (|Symbol|) |#1|))) (($ $ (|List| (|Equation| |#1|))) 14 (|has| |#1| (|Evalable| |#1|))) (($ $ (|Equation| |#1|)) 13 (|has| |#1| (|Evalable| |#1|))) (($ $ |#1| |#1|) 12 (|has| |#1| (|Evalable| |#1|))) (($ $ (|List| |#1|) (|List| |#1|)) 11 (|has| |#1| (|Evalable| |#1|)))) (|elt| (($ $ |#1|) 10 (|has| |#1| (|Eltable| |#1| |#1|))))) │ │ │ -(((|FullyEvalableOver| |#1|) (|Category|) (|SetCategory|)) (T |FullyEvalableOver|)) │ │ │ -((|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|FullyEvalableOver| *3)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ -(|Join| (CATEGORY |domain| (SIGNATURE |map| ($ (|Mapping| |t#1| |t#1|) $)) (IF (|has| |t#1| (|Eltable| |t#1| |t#1|)) (ATTRIBUTE (|Eltable| |t#1| $)) |noBranch|) (IF (|has| |t#1| (|Evalable| |t#1|)) (ATTRIBUTE (|Evalable| |t#1|)) |noBranch|) (IF (|has| |t#1| (|InnerEvalable| (|Symbol|) |t#1|)) (ATTRIBUTE (|InnerEvalable| (|Symbol|) |t#1|)) |noBranch|))) │ │ │ -(((|Eltable| |#1| $) |has| |#1| (|Eltable| |#1| |#1|)) ((|Evalable| |#1|) |has| |#1| (|Evalable| |#1|)) ((|InnerEvalable| (|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|)) ((|InnerEvalable| |#1| |#1|) |has| |#1| (|Evalable| |#1|))) │ │ │ -((|swap!| (((|Void|) $ |#2| |#2|) 36)) (|minIndex| ((|#2| $) 23)) (|maxIndex| ((|#2| $) 21)) (|map!| (($ (|Mapping| |#3| |#3|) $) 32)) (|map| (($ (|Mapping| |#3| |#3|) $) 30)) (|first| ((|#3| $) 26)) (|fill!| (($ $ |#3|) 33)) (|entry?| (((|Boolean|) |#3| $) 17)) (|entries| (((|List| |#3|) $) 15)) (|elt| ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) │ │ │ -(((|IndexedAggregate&| |#1| |#2| |#3|) (CATEGORY |domain| (SIGNATURE |swap!| ((|Void|) |#1| |#2| |#2|)) (SIGNATURE |fill!| (|#1| |#1| |#3|)) (SIGNATURE |first| (|#3| |#1|)) (SIGNATURE |minIndex| (|#2| |#1|)) (SIGNATURE |maxIndex| (|#2| |#1|)) (SIGNATURE |entry?| ((|Boolean|) |#3| |#1|)) (SIGNATURE |entries| ((|List| |#3|) |#1|)) (SIGNATURE |elt| (|#3| |#1| |#2|)) (SIGNATURE |elt| (|#3| |#1| |#2| |#3|)) (SIGNATURE |map!| (|#1| (|Mapping| |#3| |#3|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#3| |#3|) |#1|))) (|IndexedAggregate| |#2| |#3|) (|SetCategory|) (|Type|)) (T |IndexedAggregate&|)) │ │ │ +(CATEGORY |domain| (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |sort!| (|#1| |#1|)) (SIGNATURE |sort!| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |reverse!| (|#1| |#1|)) (SIGNATURE |copyInto!| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |sorted?| ((|Boolean|) |#1|)) (SIGNATURE |merge| (|#1| |#1| |#1|)) (SIGNATURE |position| ((|Integer|) |#2| |#1| (|Integer|))) (SIGNATURE |position| ((|Integer|) |#2| |#1|)) (SIGNATURE |position| ((|Integer|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |sorted?| ((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |merge| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1| |#1|)) (SIGNATURE |setelt| (|#2| |#1| (|UniversalSegment| (|Integer|)) |#2|)) (SIGNATURE |insert| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |insert| (|#1| |#2| |#1| (|Integer|))) (SIGNATURE |delete| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |delete| (|#1| |#1| (|Integer|))) (SIGNATURE |elt| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2| |#2|) |#1| |#1|)) (SIGNATURE |concat| (|#1| (|List| |#1|))) (SIGNATURE |concat| (|#1| |#1| |#1|)) (SIGNATURE |concat| (|#1| |#2| |#1|)) (SIGNATURE |concat| (|#1| |#1| |#2|)) (SIGNATURE |construct| (|#1| (|List| |#2|))) (SIGNATURE |find| ((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#2|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#2| |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|))) (SIGNATURE |elt| (|#2| |#1| (|Integer|) |#2|)) (SIGNATURE |setelt| (|#2| |#1| (|Integer|) |#2|)) (SIGNATURE |count| ((|NonNegativeInteger|) |#2| |#1|)) (SIGNATURE |parts| ((|List| |#2|) |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |map!| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |copy| (|#1| |#1|))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|vectorise| (((|Vector| $) $ $) 80)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|transcendent?| (((|Boolean|) $) 113)) (|transcendenceDegree| (((|NonNegativeInteger|)) 117)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 73)) (|squareFree| (((|Factored| $) $) 72)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|setTower!| (((|Void|) $) 76)) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 124) (((|Union| (|Fraction| (|Integer|)) "failed") $) 121) (((|Union| (|Fraction| (|Integer|)) "failed") $) 106)) (|retract| (((|Integer|) $) 123) (((|Fraction| (|Integer|)) $) 120) (((|Fraction| (|Integer|)) $) 107)) (|rem| (($ $ $) 54)) (|reduce| (($ (|SparseUnivariatePolynomial| $)) 86)) (|recip| (((|Union| $ "failed") $) 33)) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) 104 (OR (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|)) (|has| (|Fraction| (|Integer|)) (|Finite|)))) (($ $) 103 (OR (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|)) (|has| (|Fraction| (|Integer|)) (|Finite|))))) (|prime?| (((|Boolean|) $) 71)) (|previousTower| (($ $) 81)) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) 101 (OR (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|)) (|has| (|Fraction| (|Integer|)) (|Finite|))))) (|one?| (((|Boolean|) $) 30)) (|newElement| (($ (|SparseUnivariatePolynomial| $) $ (|Symbol|)) 78) (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) 77)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|maxTower| (($ (|List| $)) 83)) (|lift| (((|SparseUnivariatePolynomial| $) $) 88) (((|SparseUnivariatePolynomial| $) $ $) 87)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 70)) (|inGroundField?| (((|Boolean|) $) 114)) (|hash| (((|SingleInteger|) $) 10)) (|ground?| (((|Boolean|) $) 84)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|fullOutput| (((|OutputForm|) $) 75)) (|factor| (((|Factored| $) $) 74)) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) 116)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|extDegree| (((|PositiveInteger|) $) 82)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|distinguishedRootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) $) 85)) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) 102 (OR (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|)) (|has| (|Fraction| (|Integer|)) (|Finite|))))) (|dimension| (((|CardinalNumber|)) 108)) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) 115)) (|definingPolynomial| (((|SparseUnivariatePolynomial| $)) 90) (((|SparseUnivariatePolynomial| $) $) 89)) (|conjugate| (($ $) 79)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Fraction| (|Integer|))) 65) (($ (|Integer|)) 125) (($ (|Fraction| (|Integer|))) 122) (($ (|Fraction| (|Integer|))) 105)) (|charthRoot| (((|Union| $ "failed") $) 100 (OR (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|)) (|has| (|Fraction| (|Integer|)) (|Finite|))))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 38)) (|algebraic?| (((|Boolean|) $) 112)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 69)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (|Frobenius| (($ $ (|NonNegativeInteger|)) 119 (|has| (|Fraction| (|Integer|)) (|Finite|))) (($ $) 118 (|has| (|Fraction| (|Integer|)) (|Finite|)))) (= (((|Boolean|) $ $) 6)) (/ (($ $ $) 64) (($ $ (|Fraction| (|Integer|))) 109)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 68)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 67) (($ (|Fraction| (|Integer|)) $) 66) (($ (|Fraction| (|Integer|)) $) 111) (($ $ (|Fraction| (|Integer|))) 110))) │ │ │ +(((|PseudoAlgebraicClosureOfRationalNumberCategory|) (|Category|)) (T |PseudoAlgebraicClosureOfRationalNumberCategory|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |swap!| ((|Void|) |#1| |#2| |#2|)) (SIGNATURE |fill!| (|#1| |#1| |#3|)) (SIGNATURE |first| (|#3| |#1|)) (SIGNATURE |minIndex| (|#2| |#1|)) (SIGNATURE |maxIndex| (|#2| |#1|)) (SIGNATURE |entry?| ((|Boolean|) |#3| |#1|)) (SIGNATURE |entries| ((|List| |#3|) |#1|)) (SIGNATURE |elt| (|#3| |#1| |#2|)) (SIGNATURE |elt| (|#3| |#1| |#2| |#3|)) (SIGNATURE |map!| (|#1| (|Mapping| |#3| |#3|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#3| |#3|) |#1|))) │ │ │ +(|Join| (|PseudoAlgebraicClosureOfPerfectFieldCategory|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|RetractableTo| (|Fraction| (|Integer|))) (|ExtensionField| (|Fraction| (|Integer|)))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) OR (|has| (|Fraction| (|Integer|)) (|Finite|)) (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|))) ((|CharacteristicZero|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|ExtensionField| (|Fraction| (|Integer|))) . T) ((|Field|) . T) ((|FieldOfPrimeCharacteristic|) OR (|has| (|Fraction| (|Integer|)) (|Finite|)) (|has| (|Fraction| (|Integer|)) (|CharacteristicNonZero|))) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|PseudoAlgebraicClosureOfPerfectFieldCategory|) . T) ((|RetractableTo| (|Fraction| (|Integer|))) . T) ((|RetractableTo| (|Integer|)) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|UniqueFactorizationDomain|) . T) ((|VectorSpace| (|Fraction| (|Integer|))) . T)) │ │ │ +((|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) 44))) │ │ │ +(((|LinearSystemPolynomialPackage| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |linSolve| ((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)))) (|IntegralDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|PolynomialCategory| |#1| |#2| |#3|)) (T |LinearSystemPolynomialPackage|)) │ │ │ +((|linSolve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|List| *7)) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *8 (|PolynomialCategory| *5 *6 *7)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| *8)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| *8)))))) (|isDomain| *1 (|LinearSystemPolynomialPackage| *5 *6 *7 *8))))) │ │ │ +(CATEGORY |package| (SIGNATURE |linSolve| ((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)))) │ │ │ +((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) 55)) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) 66) (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) 62) (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) 67) (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) 61) (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) 91) (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) 90) (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) 92) (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) 89))) │ │ │ +(((|SystemSolvePackage| |#1|) (CATEGORY |package| (SIGNATURE |solve| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|)))) (SIGNATURE |solve| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)))) (SIGNATURE |solve| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |solve| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))))) (SIGNATURE |solve| ((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|))) (SIGNATURE |solve| ((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|))) (SIGNATURE |solve| ((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |solve| ((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |triangularSystems| ((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))))) (|IntegralDomain|)) (T |SystemSolvePackage|)) │ │ │ +((|triangularSystems| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| *5)))) (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|List| (|List| (|Polynomial| *5)))) (|isDomain| *1 (|SystemSolvePackage| *5)))) (|solve| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| (|Equation| (|Fraction| (|Polynomial| *4))))) (|isDomain| *1 (|SystemSolvePackage| *4)) (|isDomain| *3 (|Equation| (|Fraction| (|Polynomial| *4)))))) (|solve| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| (|Equation| (|Fraction| (|Polynomial| *4))))) (|isDomain| *1 (|SystemSolvePackage| *4)) (|isDomain| *3 (|Fraction| (|Polynomial| *4))))) (|solve| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|List| (|Equation| (|Fraction| (|Polynomial| *5))))) (|isDomain| *1 (|SystemSolvePackage| *5)) (|isDomain| *3 (|Equation| (|Fraction| (|Polynomial| *5)))))) (|solve| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|List| (|Equation| (|Fraction| (|Polynomial| *5))))) (|isDomain| *1 (|SystemSolvePackage| *5)) (|isDomain| *3 (|Fraction| (|Polynomial| *5))))) (|solve| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *4)))))) (|isDomain| *1 (|SystemSolvePackage| *4)) (|isDomain| *3 (|List| (|Equation| (|Fraction| (|Polynomial| *4))))))) (|solve| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| *4)))) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *4)))))) (|isDomain| *1 (|SystemSolvePackage| *4)))) (|solve| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *5)))))) (|isDomain| *1 (|SystemSolvePackage| *5)) (|isDomain| *3 (|List| (|Equation| (|Fraction| (|Polynomial| *5))))))) (|solve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| *5)))) (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *5)))))) (|isDomain| *1 (|SystemSolvePackage| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |solve| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|)))) (SIGNATURE |solve| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)))) (SIGNATURE |solve| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |solve| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))))) (SIGNATURE |solve| ((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|))) (SIGNATURE |solve| ((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|))) (SIGNATURE |solve| ((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |solve| ((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |triangularSystems| ((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))))) │ │ │ ((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 35)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ (((|LeftOreRing|) (|Category|)) (T |LeftOreRing|)) │ │ │ ((|lcmCoef| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Record| (|:| |llcmres| *1) (|:| |coeff1| *1) (|:| |coeff2| *1))) (|ofCategory| *1 (|LeftOreRing|))))) │ │ │ (|Join| (|EntireRing|) (CATEGORY |domain| (SIGNATURE |lcmCoef| ((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $)))) │ │ │ (((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|EntireRing|) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((|tanh| (($ $) 11)) (|sinh| (($ $) 10)) (|sech| (($ $) 9)) (|csch| (($ $) 8)) (|coth| (($ $) 7)) (|cosh| (($ $) 6))) │ │ │ -(((|HyperbolicFunctionCategory|) (|Category|)) (T |HyperbolicFunctionCategory|)) │ │ │ -((|tanh| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|))) (|sinh| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|))) (|sech| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|))) (|csch| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|))) (|coth| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|))) (|cosh| (*1 *1 *1) (|ofCategory| *1 (|HyperbolicFunctionCategory|)))) │ │ │ -(|Join| (CATEGORY |domain| (SIGNATURE |cosh| ($ $)) (SIGNATURE |coth| ($ $)) (SIGNATURE |csch| ($ $)) (SIGNATURE |sech| ($ $)) (SIGNATURE |sinh| ($ $)) (SIGNATURE |tanh| ($ $)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) 14)) (|position| (((|NonNegativeInteger|) $) 12)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 25)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 24))) │ │ │ -(((|MakeCachableSet| |#1|) (|Join| (|CachableSet|) (|CoercibleTo| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ |#1|)))) (|SetCategory|)) (T |MakeCachableSet|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|isDomain| *1 (|MakeCachableSet| *2)) (|ofCategory| *2 (|SetCategory|))))) │ │ │ -(|Join| (|CachableSet|) (|CoercibleTo| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ |#1|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 33)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|reduce| (($ |#1| |#2|) 25)) (|recip| (((|Union| $ "failed") $) 47)) (|one?| (((|Boolean|) $) 35)) (|modulus| ((|#2| $) 12)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) 48)) (|hash| (((|SingleInteger|) $) NIL)) (|exQuo| (((|Union| $ "failed") $ $) 46)) (|coerce| (((|OutputForm|) $) 24) (($ (|Integer|)) 19) ((|#1| $) 13)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 16 T CONST)) (|One| (($) 30 T CONST)) (= (((|Boolean|) $ $) 38)) (- (($ $) 43) (($ $ $) 37)) (+ (($ $ $) 40)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 21) (($ $ $) 20))) │ │ │ -(((|ModularRing| |#1| |#2| |#3| |#4| |#5|) (|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |modulus| (|#2| $)) (SIGNATURE |coerce| (|#1| $)) (SIGNATURE |reduce| ($ |#1| |#2|)) (SIGNATURE |exQuo| ((|Union| $ "failed") $ $)) (SIGNATURE |recip| ((|Union| $ "failed") $)) (SIGNATURE |inv| ($ $)))) (|CommutativeRing|) (|AbelianMonoid|) (|Mapping| |#1| |#1| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2|) (|Mapping| (|Union| |#1| "failed") |#1| |#1| |#2|)) (T |ModularRing|)) │ │ │ -((|recip| (*1 *1 *1) (|partial| AND (|isDomain| *1 (|ModularRing| *2 *3 *4 *5 *6)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3)) (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3)) (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3)))) (|modulus| (*1 *2 *1) (AND (|ofCategory| *2 (|AbelianMonoid|)) (|isDomain| *1 (|ModularRing| *3 *2 *4 *5 *6)) (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|Mapping| *3 *3 *2)) (|ofType| *5 (|Mapping| (|Union| *2 "failed") *2 *2)) (|ofType| *6 (|Mapping| (|Union| *3 "failed") *3 *3 *2)))) (|coerce| (*1 *2 *1) (AND (|ofCategory| *2 (|CommutativeRing|)) (|isDomain| *1 (|ModularRing| *2 *3 *4 *5 *6)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3)) (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3)) (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3)))) (|reduce| (*1 *1 *2 *3) (AND (|isDomain| *1 (|ModularRing| *2 *3 *4 *5 *6)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3)) (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3)) (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3)))) (|exQuo| (*1 *1 *1 *1) (|partial| AND (|isDomain| *1 (|ModularRing| *2 *3 *4 *5 *6)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3)) (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3)) (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3)))) (|inv| (*1 *1 *1) (AND (|isDomain| *1 (|ModularRing| *2 *3 *4 *5 *6)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3)) (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3)) (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3))))) │ │ │ -(|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |modulus| (|#2| $)) (SIGNATURE |coerce| (|#1| $)) (SIGNATURE |reduce| ($ |#1| |#2|)) (SIGNATURE |exQuo| ((|Union| $ "failed") $ $)) (SIGNATURE |recip| ((|Union| $ "failed") $)) (SIGNATURE |inv| ($ $)))) │ │ │ -((* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) │ │ │ -(((|Module&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) (|Module| |#2|) (|CommutativeRing|)) (T |Module&|)) │ │ │ -NIL │ │ │ -(CATEGORY |domain| (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) │ │ │ -((~= (((|Boolean|) $ $) 18 (|has| |#2| (|SetCategory|)))) (|swap!| (((|Void|) $ |#1| |#1|) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setelt| ((|#2| $ |#1| |#2|) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) 7 T CONST)) (|qsetelt!| ((|#2| $ |#1| |#2|) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#2| $ |#1|) 48)) (|parts| (((|List| |#2|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|minIndex| ((|#1| $) 40 (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#2|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#2| $) 27 (AND (|has| |#2| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxIndex| ((|#1| $) 41 (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#2| |#2|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#2| |#2|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|latex| (((|String|) $) 22 (|has| |#2| (|SetCategory|)))) (|indices| (((|List| |#1|) $) 43)) (|index?| (((|Boolean|) |#1| $) 44)) (|hash| (((|SingleInteger|) $) 21 (|has| |#2| (|SetCategory|)))) (|first| ((|#2| $) 39 (|has| |#1| (|OrderedSet|)))) (|fill!| (($ $ |#2|) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#2|))) 26 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|Equation| |#2|)) 25 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ |#2| |#2|) 24 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|List| |#2|) (|List| |#2|)) 23 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|entry?| (((|Boolean|) |#2| $) 42 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|))))) (|entries| (((|List| |#2|) $) 45)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#2| $ |#1| |#2|) 47) ((|#2| $ |#1|) 46)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#2| $) 28 (AND (|has| |#2| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|coerce| (((|OutputForm|) $) 20 (|has| |#2| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#2| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|IndexedAggregate| |#1| |#2|) (|Category|) (|SetCategory|) (|Type|)) (T |IndexedAggregate|)) │ │ │ -((|entries| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|List| *4)))) (|index?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|indices| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|List| *3)))) (|entry?| (*1 *2 *3 *1) (AND (|has| *1 (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *1 (|IndexedAggregate| *4 *3)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|maxIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *2 *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|OrderedSet|)))) (|minIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *2 *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|OrderedSet|)))) (|first| (*1 *2 *1) (AND (|ofCategory| *1 (|IndexedAggregate| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *2 (|Type|)))) (|fill!| (*1 *1 *1 *2) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|IndexedAggregate| *3 *2)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Type|)))) (|swap!| (*1 *2 *1 *3 *3) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|IndexedAggregate| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Void|))))) │ │ │ -(|Join| (|HomogeneousAggregate| |t#2|) (|EltableAggregate| |t#1| |t#2|) (CATEGORY |domain| (SIGNATURE |entries| ((|List| |t#2|) $)) (SIGNATURE |index?| ((|Boolean|) |t#1| $)) (SIGNATURE |indices| ((|List| |t#1|) $)) (IF (|has| |t#2| (|SetCategory|)) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (SIGNATURE |entry?| ((|Boolean|) |t#2| $)) |noBranch|) |noBranch|) (IF (|has| |t#1| (|OrderedSet|)) (PROGN (SIGNATURE |maxIndex| (|t#1| $)) (SIGNATURE |minIndex| (|t#1| $)) (SIGNATURE |first| (|t#2| $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (PROGN (SIGNATURE |fill!| ($ $ |t#2|)) (SIGNATURE |swap!| ((|Void|) $ |t#1| |t#1|))) |noBranch|))) │ │ │ -(((|Aggregate|) . T) ((|BasicType|) |has| |#2| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#2| (|SetCategory|)) ((|Eltable| |#1| |#2|) . T) ((|EltableAggregate| |#1| |#2|) . T) ((|Evalable| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|HomogeneousAggregate| |#2|) . T) ((|InnerEvalable| |#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|SetCategory|) |has| |#2| (|SetCategory|)) ((|Type|) . T)) │ │ │ -((|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) 10))) │ │ │ -(((|NonAssociativeRing&| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|NonAssociativeRing|)) (T |NonAssociativeRing&|)) │ │ │ -NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ |#1| $) 22) (($ $ |#1|) 24))) │ │ │ -(((|Module| |#1|) (|Category|) (|CommutativeRing|)) (T |Module|)) │ │ │ -NIL │ │ │ -(|Join| (|BiModule| |t#1| |t#1|)) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#1|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|rightRecip| (((|Union| $ "failed") $) 39)) (|rightPower| (($ $ (|PositiveInteger|)) 27) (($ $ (|NonNegativeInteger|)) 34)) (|recip| (((|Union| $ "failed") $) 37)) (|one?| (((|Boolean|) $) 33)) (|leftRecip| (((|Union| $ "failed") $) 38)) (|leftPower| (($ $ (|PositiveInteger|)) 28) (($ $ (|NonNegativeInteger|)) 35)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|commutator| (($ $ $) 24)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 30)) (|characteristic| (((|NonNegativeInteger|)) 31)) (|associator| (($ $ $ $) 25)) (|antiCommutator| (($ $ $) 23)) (|Zero| (($) 17 T CONST)) (|One| (($) 32 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 29) (($ $ (|NonNegativeInteger|)) 36)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 26))) │ │ │ -(((|NonAssociativeRing|) (|Category|)) (T |NonAssociativeRing|)) │ │ │ -((|characteristic| (*1 *2) (AND (|ofCategory| *1 (|NonAssociativeRing|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|NonAssociativeRing|))))) │ │ │ -(|Join| (|NonAssociativeRng|) (|MonadWithUnit|) (CATEGORY |domain| (SIGNATURE |characteristic| ((|NonNegativeInteger|))) (SIGNATURE |coerce| ($ (|Integer|))))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Monad|) . T) ((|MonadWithUnit|) . T) ((|NonAssociativeRng|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 23)) (|sample| (($) 22 T CONST)) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 21 T CONST)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17)) (+ (($ $ $) 19)) (* (($ (|PositiveInteger|) $) 20) (($ (|NonNegativeInteger|) $) 24))) │ │ │ -(((|OrderedAbelianMonoid|) (|Category|)) (T |OrderedAbelianMonoid|)) │ │ │ -NIL │ │ │ -(|Join| (|OrderedAbelianSemiGroup|) (|AbelianMonoid|)) │ │ │ -(((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedSet|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|weight| (((|NonNegativeInteger|) $) NIL)) (|variable| ((|#1| $) 10)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL)) (|retract| ((|#1| $) NIL)) (|order| (((|NonNegativeInteger|) $) 11)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) 9)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|differentiate| (($ $) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ |#1|) NIL)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) NIL))) │ │ │ -(((|OrderlyDifferentialVariable| |#1|) (|DifferentialVariableCategory| |#1|) (|OrderedSet|)) (T |OrderlyDifferentialVariable|)) │ │ │ -NIL │ │ │ -(|DifferentialVariableCategory| |#1|) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|sample| (($) 19 T CONST)) (|recip| (((|Union| $ "failed") $) 15)) (|orbit| (((|Set| |#1|) $ |#1|) 34)) (|one?| (((|Boolean|) $) 18)) (|min| (($ $ $) 32 (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|Finite|))))) (|max| (($ $ $) 31 (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|Finite|))))) (|latex| (((|String|) $) 9)) (|inv| (($ $) 26)) (|hash| (((|SingleInteger|) $) 10)) (|eval| ((|#1| $ |#1|) 36)) (|elt| ((|#1| $ |#1|) 35)) (|cycles| (($ (|List| (|List| |#1|))) 37)) (|cycle| (($ (|List| |#1|)) 38)) (|conjugate| (($ $ $) 22)) (|commutator| (($ $ $) 21)) (|coerce| (((|OutputForm|) $) 11)) (^ (($ $ (|PositiveInteger|)) 12) (($ $ (|NonNegativeInteger|)) 16) (($ $ (|Integer|)) 23)) (|One| (($) 20 T CONST)) (>= (((|Boolean|) $ $) 29 (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|Finite|))))) (> (((|Boolean|) $ $) 28 (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|Finite|))))) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 30 (OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|Finite|))))) (< (((|Boolean|) $ $) 33)) (/ (($ $ $) 25)) (** (($ $ (|PositiveInteger|)) 13) (($ $ (|NonNegativeInteger|)) 17) (($ $ (|Integer|)) 24)) (* (($ $ $) 14))) │ │ │ -(((|PermutationCategory| |#1|) (|Category|) (|SetCategory|)) (T |PermutationCategory|)) │ │ │ -((|cycle| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *1 (|PermutationCategory| *3)))) (|cycles| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *1 (|PermutationCategory| *3)))) (|eval| (*1 *2 *1 *2) (AND (|ofCategory| *1 (|PermutationCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (|elt| (*1 *2 *1 *2) (AND (|ofCategory| *1 (|PermutationCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (|orbit| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|PermutationCategory| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Set| *3)))) (< (*1 *2 *1 *1) (AND (|ofCategory| *1 (|PermutationCategory| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Boolean|))))) │ │ │ -(|Join| (|Group|) (CATEGORY |domain| (SIGNATURE |cycle| ($ (|List| |t#1|))) (SIGNATURE |cycles| ($ (|List| (|List| |t#1|)))) (SIGNATURE |eval| (|t#1| $ |t#1|)) (SIGNATURE |elt| (|t#1| $ |t#1|)) (SIGNATURE |orbit| ((|Set| |t#1|) $ |t#1|)) (SIGNATURE < ((|Boolean|) $ $)) (IF (|has| |t#1| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |noBranch|) (IF (|has| |t#1| (|Finite|)) (ATTRIBUTE (|OrderedSet|)) |noBranch|))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Group|) . T) ((|Monoid|) . T) ((|OrderedSet|) OR (|has| |#1| (|OrderedSet|)) (|has| |#1| (|Finite|))) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|weight| (((|NonNegativeInteger|) $) NIL)) (|variable| ((|#1| $) 10)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL)) (|retract| ((|#1| $) NIL)) (|order| (((|NonNegativeInteger|) $) 11)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) 9)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|differentiate| (($ $) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ |#1|) NIL)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 15))) │ │ │ -(((|SequentialDifferentialVariable| |#1|) (|DifferentialVariableCategory| |#1|) (|OrderedSet|)) (T |SequentialDifferentialVariable|)) │ │ │ -NIL │ │ │ -(|DifferentialVariableCategory| |#1|) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 11)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|size| (((|NonNegativeInteger|)) 8)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) 43)) (|random| (($) 36)) (|one?| (((|Boolean|) $) NIL)) (|nextItem| (((|Union| $ "failed") $) 29)) (|lookup| (((|PositiveInteger|) $) 15)) (|latex| (((|String|) $) NIL)) (|init| (($) 25 T CONST)) (|index| (($ (|PositiveInteger|)) 37)) (|hash| (((|SingleInteger|) $) NIL)) (|enumerate| (((|List| $)) NIL)) (|convert| (((|Integer|) $) 13)) (|coerce| (((|OutputForm|) $) 22) (($ (|Integer|)) 19)) (|characteristic| (((|NonNegativeInteger|)) 9)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 23 T CONST)) (|One| (($) 24 T CONST)) (= (((|Boolean|) $ $) 27)) (- (($ $) 38) (($ $ $) 35)) (+ (($ $ $) 26)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) 40)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 32) (($ $ $) 31))) │ │ │ -(((|IntegerMod| |#1|) (|Join| (|CommutativeRing|) (|Finite|) (|ConvertibleTo| (|Integer|)) (|StepThrough|)) (|PositiveInteger|)) (T |IntegerMod|)) │ │ │ NIL │ │ │ -(|Join| (|CommutativeRing|) (|Finite|) (|ConvertibleTo| (|Integer|)) (|StepThrough|)) │ │ │ -((|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#2|) 10))) │ │ │ -(((|Algebra&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|Algebra| |#2|) (|CommutativeRing|)) (T |Algebra&|)) │ │ │ +(((|CommutativeStarAttribute|) (|Category|)) (T |CommutativeStarAttribute|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ |#1|) 36)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 38) (($ |#1| $) 37))) │ │ │ -(((|Algebra| |#1|) (|Category|) (|CommutativeRing|)) (T |Algebra|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|ofCategory| *1 (|Algebra| *2)) (|ofCategory| *2 (|CommutativeRing|))))) │ │ │ -(|Join| (|Ring|) (|Module| |t#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ |t#1|)))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Module| |#1|) . T) ((|Monoid|) . T) ((|RightModule| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((|map!| (($ (|Mapping| |#2| |#2|) $) 22)) (|copy| (($ $) 16)) (|#| (((|NonNegativeInteger|) $) 24))) │ │ │ -(((|BinaryTreeCategory&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |map!| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |copy| (|#1| |#1|))) (|BinaryTreeCategory| |#2|) (|SetCategory|)) (T |BinaryTreeCategory&|)) │ │ │ +(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|numer| ((|#1| $) 21)) (|min| (($ $ $) NIL (|has| |#1| (|OrderedAbelianGroup|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedAbelianGroup|)))) (|latex| (((|String|) $) 46)) (|hash| (((|SingleInteger|) $) NIL)) (|denom| ((|#3| $) 22)) (|coerce| (((|OutputForm|) $) 42)) (|Zero| (($) 10 T CONST)) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedAbelianGroup|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedAbelianGroup|)))) (= (((|Boolean|) $ $) 20)) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedAbelianGroup|)))) (< (((|Boolean|) $ $) 24 (|has| |#1| (|OrderedAbelianGroup|)))) (/ (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (- (($ $) 17) (($ $ $) NIL)) (+ (($ $ $) 27)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) │ │ │ +(((|Localize| |#1| |#2| |#3|) (|Join| (|Module| |#2|) (CATEGORY |domain| (IF (|has| |#1| (|OrderedAbelianGroup|)) (ATTRIBUTE (|OrderedAbelianGroup|)) |noBranch|) (SIGNATURE / ($ $ |#3|)) (SIGNATURE / ($ |#1| |#3|)) (SIGNATURE |numer| (|#1| $)) (SIGNATURE |denom| (|#3| $)))) (|Module| |#2|) (|CommutativeRing|) (|SubsetCategory| (|Monoid|) |#2|)) (T |Localize|)) │ │ │ +((/ (*1 *1 *1 *2) (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *1 (|Localize| *3 *4 *2)) (|ofCategory| *3 (|Module| *4)) (|ofCategory| *2 (|SubsetCategory| (|Monoid|) *4)))) (/ (*1 *1 *2 *3) (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *1 (|Localize| *2 *4 *3)) (|ofCategory| *2 (|Module| *4)) (|ofCategory| *3 (|SubsetCategory| (|Monoid|) *4)))) (|numer| (*1 *2 *1) (AND (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *2 (|Module| *3)) (|isDomain| *1 (|Localize| *2 *3 *4)) (|ofCategory| *4 (|SubsetCategory| (|Monoid|) *3)))) (|denom| (*1 *2 *1) (AND (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *2 (|SubsetCategory| (|Monoid|) *4)) (|isDomain| *1 (|Localize| *3 *4 *2)) (|ofCategory| *3 (|Module| *4))))) │ │ │ +(|Join| (|Module| |#2|) (CATEGORY |domain| (IF (|has| |#1| (|OrderedAbelianGroup|)) (ATTRIBUTE (|OrderedAbelianGroup|)) |noBranch|) (SIGNATURE / ($ $ |#3|)) (SIGNATURE / ($ |#1| |#3|)) (SIGNATURE |numer| (|#1| $)) (SIGNATURE |denom| (|#3| $)))) │ │ │ +((|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) 22)) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) 30))) │ │ │ +(((|CoerceVectorMatrixPackage| |#1|) (CATEGORY |package| (SIGNATURE |coerceP| ((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|)))) (SIGNATURE |coerce| ((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))))) (|CommutativeRing|)) (T |CoerceVectorMatrixPackage|)) │ │ │ +((|coerce| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| (|Matrix| *4))) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Vector| (|Matrix| (|Fraction| (|Polynomial| *4))))) (|isDomain| *1 (|CoerceVectorMatrixPackage| *4)))) (|coerceP| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| (|Matrix| *4))) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|Vector| (|Matrix| (|Polynomial| *4)))) (|isDomain| *1 (|CoerceVectorMatrixPackage| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |coerceP| ((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|)))) (SIGNATURE |coerce| ((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))))) │ │ │ +((|pushup| ((|#4| |#4| (|List| |#3|)) 55) ((|#4| |#4| |#3|) 54)) (|pushdown| ((|#4| |#4| (|List| |#3|)) 23) ((|#4| |#4| |#3|) 19)) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) 30))) │ │ │ +(((|PushVariables| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |pushdown| (|#4| |#4| |#3|)) (SIGNATURE |pushdown| (|#4| |#4| (|List| |#3|))) (SIGNATURE |pushup| (|#4| |#4| |#3|)) (SIGNATURE |pushup| (|#4| |#4| (|List| |#3|))) (SIGNATURE |map| (|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|))) (|Ring|) (|OrderedAbelianMonoidSup|) (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $)) (SIGNATURE |variable| ((|Union| $ "failed") (|Symbol|))))) (|PolynomialCategory| (|Polynomial| |#1|) |#2| |#3|)) (T |PushVariables|)) │ │ │ +((|map| (*1 *2 *3 *2) (AND (|isDomain| *3 (|Mapping| *2 (|Polynomial| *4))) (|ofCategory| *4 (|Ring|)) (|ofCategory| *2 (|PolynomialCategory| (|Polynomial| *4) *5 *6)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $)) (SIGNATURE |variable| ((|Union| $ "failed") (|Symbol|)))))) (|isDomain| *1 (|PushVariables| *4 *5 *6 *2)))) (|pushup| (*1 *2 *2 *3) (AND (|isDomain| *3 (|List| *6)) (|ofCategory| *6 (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $)) (SIGNATURE |variable| ((|Union| $ "failed") (|Symbol|)))))) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|isDomain| *1 (|PushVariables| *4 *5 *6 *2)) (|ofCategory| *2 (|PolynomialCategory| (|Polynomial| *4) *5 *6)))) (|pushup| (*1 *2 *2 *3) (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $)) (SIGNATURE |variable| ((|Union| $ "failed") (|Symbol|)))))) (|isDomain| *1 (|PushVariables| *4 *5 *3 *2)) (|ofCategory| *2 (|PolynomialCategory| (|Polynomial| *4) *5 *3)))) (|pushdown| (*1 *2 *2 *3) (AND (|isDomain| *3 (|List| *6)) (|ofCategory| *6 (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $)) (SIGNATURE |variable| ((|Union| $ "failed") (|Symbol|)))))) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|isDomain| *1 (|PushVariables| *4 *5 *6 *2)) (|ofCategory| *2 (|PolynomialCategory| (|Polynomial| *4) *5 *6)))) (|pushdown| (*1 *2 *2 *3) (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |convert| ((|Symbol|) $)) (SIGNATURE |variable| ((|Union| $ "failed") (|Symbol|)))))) (|isDomain| *1 (|PushVariables| *4 *5 *3 *2)) (|ofCategory| *2 (|PolynomialCategory| (|Polynomial| *4) *5 *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |pushdown| (|#4| |#4| |#3|)) (SIGNATURE |pushdown| (|#4| |#4| (|List| |#3|))) (SIGNATURE |pushup| (|#4| |#4| |#3|)) (SIGNATURE |pushup| (|#4| |#4| (|List| |#3|))) (SIGNATURE |map| (|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|))) │ │ │ +((|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 80)) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 39)) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 69))) │ │ │ +(((|d01WeightsPackage|) (CATEGORY |package| (SIGNATURE |exprHasWeightCosWXorSinWX| ((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |exprHasAlgebraicWeight| ((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |exprHasLogarithmicWeights| ((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))))) (T |d01WeightsPackage|)) │ │ │ +((|exprHasLogarithmicWeights| (*1 *2 *3) (AND (|isDomain| *3 (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|d01WeightsPackage|)))) (|exprHasAlgebraicWeight| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *2 (|List| (|DoubleFloat|))) (|isDomain| *1 (|d01WeightsPackage|)))) (|exprHasWeightCosWXorSinWX| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *2 (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|)))) (|isDomain| *1 (|d01WeightsPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |exprHasWeightCosWXorSinWX| ((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |exprHasAlgebraicWeight| ((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |exprHasLogarithmicWeights| ((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 108 (|has| |#1| (|AbelianSemiGroup|)))) (|variables| (((|List| (|Symbol|)) $) 196)) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) 164 (|has| |#1| (|IntegralDomain|)))) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 135 (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) 136 (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) 138 (|has| |#1| (|IntegralDomain|)))) (|tower| (((|List| (|Kernel| $)) $) 43)) (|subtractIfCan| (((|Union| $ "failed") $ $) 110 (|has| |#1| (|AbelianGroup|)))) (|subst| (($ $ (|Equation| $)) 55) (($ $ (|List| (|Equation| $))) 54) (($ $ (|List| (|Kernel| $)) (|List| $)) 53)) (|squareFreePart| (($ $) 156 (|has| |#1| (|IntegralDomain|)))) (|squareFree| (((|Factored| $) $) 157 (|has| |#1| (|IntegralDomain|)))) (|sizeLess?| (((|Boolean|) $ $) 147 (|has| |#1| (|IntegralDomain|)))) (|sample| (($) 94 (OR (|has| |#1| (|SemiGroup|)) (|has| |#1| (|AbelianSemiGroup|))) CONST)) (|retractIfCan| (((|Union| (|Kernel| $) "failed") $) 68) (((|Union| (|Symbol|) "failed") $) 209) (((|Union| (|Integer|) "failed") $) 202 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| |#1| "failed") $) 200) (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") $) 162 (|has| |#1| (|IntegralDomain|))) (((|Union| (|Polynomial| |#1|) "failed") $) 115 (|has| |#1| (|Ring|))) (((|Union| (|Fraction| (|Integer|)) "failed") $) 87 (OR (AND (|has| |#1| (|RetractableTo| (|Integer|))) (|has| |#1| (|IntegralDomain|))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))))) (|retract| (((|Kernel| $) $) 67) (((|Symbol|) $) 208) (((|Integer|) $) 203 (|has| |#1| (|RetractableTo| (|Integer|)))) ((|#1| $) 199) (((|Fraction| (|Polynomial| |#1|)) $) 161 (|has| |#1| (|IntegralDomain|))) (((|Polynomial| |#1|) $) 114 (|has| |#1| (|Ring|))) (((|Fraction| (|Integer|)) $) 86 (OR (AND (|has| |#1| (|RetractableTo| (|Integer|))) (|has| |#1| (|IntegralDomain|))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))))) (|rem| (($ $ $) 151 (|has| |#1| (|IntegralDomain|)))) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) 129 (|and| (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#1| (|Ring|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) 128 (|and| (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#1| (|Ring|)))) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) 127 (|has| |#1| (|Ring|))) (((|Matrix| |#1|) (|Matrix| $)) 126 (|has| |#1| (|Ring|)))) (|recip| (((|Union| $ "failed") $) 97 (|has| |#1| (|SemiGroup|)))) (|quo| (($ $ $) 150 (|has| |#1| (|IntegralDomain|)))) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 145 (|has| |#1| (|IntegralDomain|)))) (|prime?| (((|Boolean|) $) 158 (|has| |#1| (|IntegralDomain|)))) (|patternMatch| (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) 205 (|has| |#1| (|PatternMatchable| (|Integer|)))) (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) 204 (|has| |#1| (|PatternMatchable| (|Float|))))) (|paren| (($ $) 50) (($ (|List| $)) 49)) (|operators| (((|List| (|BasicOperator|)) $) 42)) (|operator| (((|BasicOperator|) (|BasicOperator|)) 41)) (|one?| (((|Boolean|) $) 95 (|has| |#1| (|SemiGroup|)))) (|odd?| (((|Boolean|) $) 21 (|has| $ (|RetractableTo| (|Integer|))))) (|numerator| (($ $) 179 (|has| |#1| (|Ring|)))) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) 180 (|has| |#1| (|Ring|)))) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 154 (|has| |#1| (|IntegralDomain|)))) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) 24 (|has| $ (|Ring|)))) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|map| (($ (|Mapping| $ $) (|Kernel| $)) 35)) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) 45)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 139 (|has| |#1| (|IntegralDomain|)))) (|lcm| (($ (|List| $)) 143 (|has| |#1| (|IntegralDomain|))) (($ $ $) 142 (|has| |#1| (|IntegralDomain|)))) (|latex| (((|String|) $) 9)) (|kernels| (((|List| (|Kernel| $)) $) 44)) (|kernel| (($ (|BasicOperator|) $) 37) (($ (|BasicOperator|) (|List| $)) 36)) (|isTimes| (((|Union| (|List| $) "failed") $) 185 (|has| |#1| (|SemiGroup|)))) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) 176 (|has| |#1| (|Ring|)))) (|isPlus| (((|Union| (|List| $) "failed") $) 183 (|has| |#1| (|AbelianSemiGroup|)))) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) 182 (|has| |#1| (|AbelianSemiGroup|)))) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) 184 (|has| |#1| (|SemiGroup|))) (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) 178 (|has| |#1| (|Ring|))) (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) 177 (|has| |#1| (|Ring|)))) (|is?| (((|Boolean|) $ (|BasicOperator|)) 39) (((|Boolean|) $ (|Symbol|)) 38)) (|inv| (($ $) 99 (OR (|has| |#1| (|Group|)) (|has| |#1| (|IntegralDomain|))))) (|height| (((|NonNegativeInteger|) $) 46)) (|hash| (((|SingleInteger|) $) 10)) (|ground?| (((|Boolean|) $) 198)) (|ground| ((|#1| $) 197)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 144 (|has| |#1| (|IntegralDomain|)))) (|gcd| (($ (|List| $)) 141 (|has| |#1| (|IntegralDomain|))) (($ $ $) 140 (|has| |#1| (|IntegralDomain|)))) (|freeOf?| (((|Boolean|) $ $) 34) (((|Boolean|) $ (|Symbol|)) 33)) (|factor| (((|Factored| $) $) 155 (|has| |#1| (|IntegralDomain|)))) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 153 (|has| |#1| (|IntegralDomain|))) (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 152 (|has| |#1| (|IntegralDomain|)))) (|exquo| (((|Union| $ "failed") $ $) 134 (|has| |#1| (|IntegralDomain|)))) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 146 (|has| |#1| (|IntegralDomain|)))) (|even?| (((|Boolean|) $) 22 (|has| $ (|RetractableTo| (|Integer|))))) (|eval| (($ $ (|Kernel| $) $) 66) (($ $ (|List| (|Kernel| $)) (|List| $)) 65) (($ $ (|List| (|Equation| $))) 64) (($ $ (|Equation| $)) 63) (($ $ $ $) 62) (($ $ (|List| $) (|List| $)) 61) (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) 32) (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) 31) (($ $ (|Symbol|) (|Mapping| $ (|List| $))) 30) (($ $ (|Symbol|) (|Mapping| $ $)) 29) (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) 28) (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) 27) (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) 26) (($ $ (|BasicOperator|) (|Mapping| $ $)) 25) (($ $ (|Symbol|)) 190 (|has| |#1| (|ConvertibleTo| (|InputForm|)))) (($ $ (|List| (|Symbol|))) 189 (|has| |#1| (|ConvertibleTo| (|InputForm|)))) (($ $) 188 (|has| |#1| (|ConvertibleTo| (|InputForm|)))) (($ $ (|BasicOperator|) $ (|Symbol|)) 187 (|has| |#1| (|ConvertibleTo| (|InputForm|)))) (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) 186 (|has| |#1| (|ConvertibleTo| (|InputForm|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) 175 (|has| |#1| (|Ring|))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) 174 (|has| |#1| (|Ring|))) (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) 173 (|has| |#1| (|Ring|))) (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) 172 (|has| |#1| (|Ring|)))) (|euclideanSize| (((|NonNegativeInteger|) $) 148 (|has| |#1| (|IntegralDomain|)))) (|elt| (($ (|BasicOperator|) $) 60) (($ (|BasicOperator|) $ $) 59) (($ (|BasicOperator|) $ $ $) 58) (($ (|BasicOperator|) $ $ $ $) 57) (($ (|BasicOperator|) (|List| $)) 56)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 149 (|has| |#1| (|IntegralDomain|)))) (|distribute| (($ $) 48) (($ $ $) 47)) (|differentiate| (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 120 (|has| |#1| (|Ring|))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 119 (|has| |#1| (|Ring|))) (($ $ (|List| (|Symbol|))) 118 (|has| |#1| (|Ring|))) (($ $ (|Symbol|)) 117 (|has| |#1| (|Ring|)))) (|denominator| (($ $) 169 (|has| |#1| (|IntegralDomain|)))) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) 170 (|has| |#1| (|IntegralDomain|)))) (|definingPolynomial| (($ $) 23 (|has| $ (|Ring|)))) (|convert| (((|Pattern| (|Integer|)) $) 207 (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|))))) (((|Pattern| (|Float|)) $) 206 (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|))))) (($ (|Factored| $)) 171 (|has| |#1| (|IntegralDomain|))) (((|InputForm|) $) 89 (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|conjugate| (($ $ $) 103 (|has| |#1| (|Group|)))) (|commutator| (($ $ $) 104 (|has| |#1| (|Group|)))) (|coerce| (((|OutputForm|) $) 11) (($ (|Kernel| $)) 69) (($ (|Symbol|)) 210) (($ |#1|) 201) (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) 181 (|has| |#1| (|Ring|))) (($ (|Fraction| |#1|)) 167 (|has| |#1| (|IntegralDomain|))) (($ (|Polynomial| (|Fraction| |#1|))) 166 (|has| |#1| (|IntegralDomain|))) (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) 165 (|has| |#1| (|IntegralDomain|))) (($ (|Fraction| (|Polynomial| |#1|))) 163 (|has| |#1| (|IntegralDomain|))) (($ $) 133 (|has| |#1| (|IntegralDomain|))) (($ (|Polynomial| |#1|)) 116 (|has| |#1| (|Ring|))) (($ (|Fraction| (|Integer|))) 88 (OR (|has| |#1| (|IntegralDomain|)) (AND (|has| |#1| (|RetractableTo| (|Integer|))) (|has| |#1| (|IntegralDomain|))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))) (($ (|Integer|)) 85 (OR (|has| |#1| (|Ring|)) (|has| |#1| (|RetractableTo| (|Integer|)))))) (|charthRoot| (((|Union| $ "failed") $) 130 (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 125 (|has| |#1| (|Ring|)))) (|box| (($ $) 52) (($ (|List| $)) 51)) (|belong?| (((|Boolean|) (|BasicOperator|)) 40)) (|associates?| (((|Boolean|) $ $) 137 (|has| |#1| (|IntegralDomain|)))) (|applyQuote| (($ (|Symbol|) $) 195) (($ (|Symbol|) $ $) 194) (($ (|Symbol|) $ $ $) 193) (($ (|Symbol|) $ $ $ $) 192) (($ (|Symbol|) (|List| $)) 191)) (^ (($ $ (|Integer|)) 102 (OR (|has| |#1| (|Group|)) (|has| |#1| (|IntegralDomain|)))) (($ $ (|NonNegativeInteger|)) 96 (|has| |#1| (|SemiGroup|))) (($ $ (|PositiveInteger|)) 92 (|has| |#1| (|SemiGroup|)))) (|Zero| (($) 107 (|has| |#1| (|AbelianSemiGroup|)) CONST)) (|One| (($) 93 (|has| |#1| (|SemiGroup|)) CONST)) (D (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 124 (|has| |#1| (|Ring|))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 123 (|has| |#1| (|Ring|))) (($ $ (|List| (|Symbol|))) 122 (|has| |#1| (|Ring|))) (($ $ (|Symbol|)) 121 (|has| |#1| (|Ring|)))) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17)) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) 168 (|has| |#1| (|IntegralDomain|))) (($ $ $) 100 (OR (|has| |#1| (|Group|)) (|has| |#1| (|IntegralDomain|))))) (- (($ $ $) 112 (|has| |#1| (|AbelianGroup|))) (($ $) 111 (|has| |#1| (|AbelianGroup|)))) (+ (($ $ $) 105 (|has| |#1| (|AbelianSemiGroup|)))) (** (($ $ (|Integer|)) 101 (OR (|has| |#1| (|Group|)) (|has| |#1| (|IntegralDomain|)))) (($ $ (|NonNegativeInteger|)) 98 (|has| |#1| (|SemiGroup|))) (($ $ (|PositiveInteger|)) 91 (|has| |#1| (|SemiGroup|)))) (* (($ (|Fraction| (|Integer|)) $) 160 (|has| |#1| (|IntegralDomain|))) (($ $ (|Fraction| (|Integer|))) 159 (|has| |#1| (|IntegralDomain|))) (($ |#1| $) 132 (|has| |#1| (|CommutativeRing|))) (($ $ |#1|) 131 (|has| |#1| (|CommutativeRing|))) (($ (|Integer|) $) 113 (|has| |#1| (|AbelianGroup|))) (($ (|NonNegativeInteger|) $) 109 (|has| |#1| (|AbelianSemiGroup|))) (($ (|PositiveInteger|) $) 106 (|has| |#1| (|AbelianSemiGroup|))) (($ $ $) 90 (|has| |#1| (|SemiGroup|))))) │ │ │ +(((|FunctionSpace| |#1|) (|Category|) (|OrderedSet|)) (T |FunctionSpace|)) │ │ │ +((|ground?| (*1 *2 *1) (AND (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|ground| (*1 *2 *1) (AND (|ofCategory| *1 (|FunctionSpace| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|variables| (*1 *2 *1) (AND (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|List| (|Symbol|))))) (|applyQuote| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|applyQuote| (*1 *1 *2 *1 *1) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|applyQuote| (*1 *1 *2 *1 *1 *1) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|applyQuote| (*1 *1 *2 *1 *1 *1 *1) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|applyQuote| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|FunctionSpace| *4)) (|ofCategory| *4 (|OrderedSet|)))) (|eval| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))) (|eval| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Symbol|))) (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))) (|eval| (*1 *1 *1) (AND (|ofCategory| *1 (|FunctionSpace| *2)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *2 (|ConvertibleTo| (|InputForm|))))) (|eval| (*1 *1 *1 *2 *1 *3) (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *4)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *4 (|ConvertibleTo| (|InputForm|))))) (|eval| (*1 *1 *1 *2 *3 *4) (AND (|isDomain| *2 (|List| (|BasicOperator|))) (|isDomain| *3 (|List| *1)) (|isDomain| *4 (|Symbol|)) (|ofCategory| *1 (|FunctionSpace| *5)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *5 (|ConvertibleTo| (|InputForm|))))) (|isTimes| (*1 *2 *1) (|partial| AND (|ofCategory| *3 (|SemiGroup|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|FunctionSpace| *3)))) (|isExpt| (*1 *2 *1) (|partial| AND (|ofCategory| *3 (|SemiGroup|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |var| (|Kernel| *1)) (|:| |exponent| (|Integer|)))) (|ofCategory| *1 (|FunctionSpace| *3)))) (|isPlus| (*1 *2 *1) (|partial| AND (|ofCategory| *3 (|AbelianSemiGroup|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|FunctionSpace| *3)))) (|isMult| (*1 *2 *1) (|partial| AND (|ofCategory| *3 (|AbelianSemiGroup|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| *1)))) (|ofCategory| *1 (|FunctionSpace| *3)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|SparseMultivariatePolynomial| *3 (|Kernel| *1))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *1 (|FunctionSpace| *3)))) (|numer| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|SparseMultivariatePolynomial| *3 (|Kernel| *1))) (|ofCategory| *1 (|FunctionSpace| *3)))) (|numerator| (*1 *1 *1) (AND (|ofCategory| *1 (|FunctionSpace| *2)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *2 (|Ring|)))) (|isExpt| (*1 *2 *1 *3) (|partial| AND (|isDomain| *3 (|BasicOperator|)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |var| (|Kernel| *1)) (|:| |exponent| (|Integer|)))) (|ofCategory| *1 (|FunctionSpace| *4)))) (|isExpt| (*1 *2 *1 *3) (|partial| AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |var| (|Kernel| *1)) (|:| |exponent| (|Integer|)))) (|ofCategory| *1 (|FunctionSpace| *4)))) (|isPower| (*1 *2 *1) (|partial| AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |val| *1) (|:| |exponent| (|Integer|)))) (|ofCategory| *1 (|FunctionSpace| *3)))) (|eval| (*1 *1 *1 *2 *3 *4) (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *3 (|List| (|NonNegativeInteger|))) (|isDomain| *4 (|List| (|Mapping| *1 *1))) (|ofCategory| *1 (|FunctionSpace| *5)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *5 (|Ring|)))) (|eval| (*1 *1 *1 *2 *3 *4) (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *3 (|List| (|NonNegativeInteger|))) (|isDomain| *4 (|List| (|Mapping| *1 (|List| *1)))) (|ofCategory| *1 (|FunctionSpace| *5)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *5 (|Ring|)))) (|eval| (*1 *1 *1 *2 *3 *4) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *4 (|Mapping| *1 (|List| *1))) (|ofCategory| *1 (|FunctionSpace| *5)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *5 (|Ring|)))) (|eval| (*1 *1 *1 *2 *3 *4) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *4 (|Mapping| *1 *1)) (|ofCategory| *1 (|FunctionSpace| *5)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *5 (|Ring|)))) (|convert| (*1 *1 *2) (AND (|isDomain| *2 (|Factored| *1)) (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|OrderedSet|)))) (|denom| (*1 *2 *1) (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|SparseMultivariatePolynomial| *3 (|Kernel| *1))) (|ofCategory| *1 (|FunctionSpace| *3)))) (|denominator| (*1 *1 *1) (AND (|ofCategory| *1 (|FunctionSpace| *2)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *2 (|IntegralDomain|)))) (/ (*1 *1 *2 *2) (AND (|isDomain| *2 (|SparseMultivariatePolynomial| *3 (|Kernel| *1))) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *1 (|FunctionSpace| *3)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *1 (|FunctionSpace| *3)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| (|Fraction| *3))) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *1 (|FunctionSpace| *3)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| (|Polynomial| (|Fraction| *3)))) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *1 (|FunctionSpace| *3)))) (|univariate| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Kernel| *1)) (|ofCategory| *1 (|FunctionSpace| *4)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Fraction| (|SparseUnivariatePolynomial| *1))))) (** (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|FunctionSpace| *3)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *3 (|SemiGroup|))))) │ │ │ +(|Join| (|ExpressionSpace|) (|RetractableTo| (|Symbol|)) (|Patternable| |t#1|) (|FullyPatternMatchable| |t#1|) (|FullyRetractableTo| |t#1|) (CATEGORY |domain| (SIGNATURE |ground?| ((|Boolean|) $)) (SIGNATURE |ground| (|t#1| $)) (SIGNATURE |variables| ((|List| (|Symbol|)) $)) (SIGNATURE |applyQuote| ($ (|Symbol|) $)) (SIGNATURE |applyQuote| ($ (|Symbol|) $ $)) (SIGNATURE |applyQuote| ($ (|Symbol|) $ $ $)) (SIGNATURE |applyQuote| ($ (|Symbol|) $ $ $ $)) (SIGNATURE |applyQuote| ($ (|Symbol|) (|List| $))) (IF (|has| |t#1| (|ConvertibleTo| (|InputForm|))) (PROGN (ATTRIBUTE (|ConvertibleTo| (|InputForm|))) (SIGNATURE |eval| ($ $ (|Symbol|))) (SIGNATURE |eval| ($ $ (|List| (|Symbol|)))) (SIGNATURE |eval| ($ $)) (SIGNATURE |eval| ($ $ (|BasicOperator|) $ (|Symbol|))) (SIGNATURE |eval| ($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)))) |noBranch|) (IF (|has| |t#1| (|SemiGroup|)) (PROGN (ATTRIBUTE (|Monoid|)) (SIGNATURE ** ($ $ (|NonNegativeInteger|))) (SIGNATURE |isTimes| ((|Union| (|List| $) "failed") $)) (SIGNATURE |isExpt| ((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $))) |noBranch|) (IF (|has| |t#1| (|Group|)) (ATTRIBUTE (|Group|)) |noBranch|) (IF (|has| |t#1| (|AbelianSemiGroup|)) (PROGN (ATTRIBUTE (|AbelianMonoid|)) (SIGNATURE |isPlus| ((|Union| (|List| $) "failed") $)) (SIGNATURE |isMult| ((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $))) |noBranch|) (IF (|has| |t#1| (|AbelianGroup|)) (ATTRIBUTE (|AbelianGroup|)) |noBranch|) (IF (|has| |t#1| (|Ring|)) (PROGN (ATTRIBUTE (|Ring|)) (ATTRIBUTE (|RetractableTo| (|Polynomial| |t#1|))) (ATTRIBUTE (|PartialDifferentialRing| (|Symbol|))) (ATTRIBUTE (|FullyLinearlyExplicitRingOver| |t#1|)) (SIGNATURE |coerce| ($ (|SparseMultivariatePolynomial| |t#1| (|Kernel| $)))) (SIGNATURE |numer| ((|SparseMultivariatePolynomial| |t#1| (|Kernel| $)) $)) (SIGNATURE |numerator| ($ $)) (SIGNATURE |isExpt| ((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|))) (SIGNATURE |isExpt| ((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|))) (SIGNATURE |isPower| ((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $)) (SIGNATURE |eval| ($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $)))) (SIGNATURE |eval| ($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $))))) (SIGNATURE |eval| ($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $)))) (SIGNATURE |eval| ($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)))) |noBranch|) (IF (|has| |t#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |noBranch|) (IF (|has| |t#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |noBranch|) (IF (|has| |t#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |t#1|)) |noBranch|) (IF (|has| |t#1| (|IntegralDomain|)) (PROGN (ATTRIBUTE (|Field|)) (ATTRIBUTE (|RetractableTo| (|Fraction| (|Polynomial| |t#1|)))) (SIGNATURE |convert| ($ (|Factored| $))) (SIGNATURE |denom| ((|SparseMultivariatePolynomial| |t#1| (|Kernel| $)) $)) (SIGNATURE |denominator| ($ $)) (SIGNATURE / ($ (|SparseMultivariatePolynomial| |t#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |t#1| (|Kernel| $)))) (SIGNATURE |coerce| ($ (|Fraction| |t#1|))) (SIGNATURE |coerce| ($ (|Polynomial| (|Fraction| |t#1|)))) (SIGNATURE |coerce| ($ (|Fraction| (|Polynomial| (|Fraction| |t#1|))))) (SIGNATURE |univariate| ((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $))) (IF (|has| |t#1| (|RetractableTo| (|Integer|))) (ATTRIBUTE (|RetractableTo| (|Fraction| (|Integer|)))) |noBranch|)) |noBranch|))) │ │ │ +(((|AbelianGroup|) OR (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|AbelianGroup|))) ((|AbelianMonoid|) OR (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|AbelianSemiGroup|)) (|has| |#1| (|AbelianGroup|))) ((|AbelianSemiGroup|) OR (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|AbelianSemiGroup|)) (|has| |#1| (|AbelianGroup|))) ((|Algebra| (|Fraction| (|Integer|))) |has| |#1| (|IntegralDomain|)) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) |has| |#1| (|IntegralDomain|)) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|IntegralDomain|)) ((|BiModule| |#1| |#1|) |has| |#1| (|CommutativeRing|)) ((|BiModule| $ $) |has| |#1| (|IntegralDomain|)) ((|CancellationAbelianMonoid|) OR (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|AbelianGroup|))) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) |has| |#1| (|IntegralDomain|)) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|ConvertibleTo| (|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) ((|ConvertibleTo| (|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) ((|DivisionRing|) |has| |#1| (|IntegralDomain|)) ((|EntireRing|) |has| |#1| (|IntegralDomain|)) ((|EuclideanDomain|) |has| |#1| (|IntegralDomain|)) ((|Evalable| $) . T) ((|ExpressionSpace|) . T) ((|Field|) |has| |#1| (|IntegralDomain|)) ((|FullyLinearlyExplicitRingOver| |#1|) |has| |#1| (|Ring|)) ((|FullyPatternMatchable| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|GcdDomain|) |has| |#1| (|IntegralDomain|)) ((|Group|) |has| |#1| (|Group|)) ((|InnerEvalable| (|Kernel| $) $) . T) ((|InnerEvalable| $ $) . T) ((|IntegralDomain|) |has| |#1| (|IntegralDomain|)) ((|LeftModule| (|Fraction| (|Integer|))) |has| |#1| (|IntegralDomain|)) ((|LeftModule| |#1|) |has| |#1| (|CommutativeRing|)) ((|LeftModule| $) OR (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|))) ((|LeftOreRing|) |has| |#1| (|IntegralDomain|)) ((|LinearlyExplicitRingOver| (|Integer|)) AND (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#1| (|Ring|))) ((|LinearlyExplicitRingOver| |#1|) |has| |#1| (|Ring|)) ((|Module| (|Fraction| (|Integer|))) |has| |#1| (|IntegralDomain|)) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) |has| |#1| (|IntegralDomain|)) ((|Monoid|) OR (|has| |#1| (|SemiGroup|)) (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Group|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|))) ((|OrderedSet|) . T) ((|PartialDifferentialRing| (|Symbol|)) |has| |#1| (|Ring|)) ((|PatternMatchable| (|Float|)) |has| |#1| (|PatternMatchable| (|Float|))) ((|PatternMatchable| (|Integer|)) |has| |#1| (|PatternMatchable| (|Integer|))) ((|Patternable| |#1|) . T) ((|PrincipalIdealDomain|) |has| |#1| (|IntegralDomain|)) ((|RetractableTo| (|Fraction| (|Integer|))) OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|RetractableTo| (|Integer|))))) ((|RetractableTo| (|Fraction| (|Polynomial| |#1|))) |has| |#1| (|IntegralDomain|)) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| (|Kernel| $)) . T) ((|RetractableTo| (|Polynomial| |#1|)) |has| |#1| (|Ring|)) ((|RetractableTo| (|Symbol|)) . T) ((|RetractableTo| |#1|) . T) ((|RightModule| (|Fraction| (|Integer|))) |has| |#1| (|IntegralDomain|)) ((|RightModule| |#1|) |has| |#1| (|CommutativeRing|)) ((|RightModule| $) |has| |#1| (|IntegralDomain|)) ((|Ring|) OR (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|))) ((|Rng|) OR (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|))) ((|SemiGroup|) OR (|has| |#1| (|SemiGroup|)) (|has| |#1| (|Ring|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Group|)) (|has| |#1| (|CommutativeRing|)) (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|CharacteristicNonZero|))) ((|SetCategory|) . T) ((|Type|) . T) ((|UniqueFactorizationDomain|) |has| |#1| (|IntegralDomain|))) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|setref| ((|#1| $ |#1|) 14)) (|setelt| ((|#1| $ |#1|) 12)) (|ref| (($ |#1|) 10)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|elt| ((|#1| $) 11)) (|deref| ((|#1| $) 13)) (|coerce| (((|OutputForm|) $) 21 (|has| |#1| (|SetCategory|)))) (= (((|Boolean|) $ $) 9))) │ │ │ +(((|Reference| |#1|) (|Join| (|Type|) (CATEGORY |domain| (SIGNATURE |ref| ($ |#1|)) (SIGNATURE |elt| (|#1| $)) (SIGNATURE |setelt| (|#1| $ |#1|)) (SIGNATURE |deref| (|#1| $)) (SIGNATURE |setref| (|#1| $ |#1|)) (SIGNATURE = ((|Boolean|) $ $)) (IF (|has| |#1| (|SetCategory|)) (ATTRIBUTE (|SetCategory|)) |noBranch|))) (|Type|)) (T |Reference|)) │ │ │ +((|ref| (*1 *1 *2) (AND (|isDomain| *1 (|Reference| *2)) (|ofCategory| *2 (|Type|)))) (|elt| (*1 *2 *1) (AND (|isDomain| *1 (|Reference| *2)) (|ofCategory| *2 (|Type|)))) (|setelt| (*1 *2 *1 *2) (AND (|isDomain| *1 (|Reference| *2)) (|ofCategory| *2 (|Type|)))) (|deref| (*1 *2 *1) (AND (|isDomain| *1 (|Reference| *2)) (|ofCategory| *2 (|Type|)))) (|setref| (*1 *2 *1 *2) (AND (|isDomain| *1 (|Reference| *2)) (|ofCategory| *2 (|Type|)))) (= (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Reference| *3)) (|ofCategory| *3 (|Type|))))) │ │ │ +(|Join| (|Type|) (CATEGORY |domain| (SIGNATURE |ref| ($ |#1|)) (SIGNATURE |elt| (|#1| $)) (SIGNATURE |setelt| (|#1| $ |#1|)) (SIGNATURE |deref| (|#1| $)) (SIGNATURE |setref| (|#1| $ |#1|)) (SIGNATURE = ((|Boolean|) $ $)) (IF (|has| |#1| (|SetCategory|)) (ATTRIBUTE (|SetCategory|)) |noBranch|))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zerosOf| (((|List| $) (|Polynomial| $)) 78) (((|List| $) (|SparseUnivariatePolynomial| $)) 77) (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) 76) (((|List| $) $) 122) (((|List| $) $ (|Symbol|)) 120)) (|zeroOf| (($ (|Polynomial| $)) 81) (($ (|SparseUnivariatePolynomial| $)) 80) (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) 79) (($ $) 123) (($ $ (|Symbol|)) 121)) (|zero?| (((|Boolean|) $) 15)) (|variables| (((|List| (|Symbol|)) $) 197)) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) 229 (|has| |#1| (|IntegralDomain|)))) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|tower| (((|List| (|Kernel| $)) $) 160)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) 150) (($ $ (|List| (|Equation| $))) 149) (($ $ (|Equation| $)) 148)) (|squareFreePart| (($ $) 73)) (|squareFree| (((|Factored| $) $) 72)) (|sqrt| (($ $) 90)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|sample| (($) 16 T CONST)) (|rootsOf| (((|List| $) (|Polynomial| $)) 84) (((|List| $) (|SparseUnivariatePolynomial| $)) 83) (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) 82) (((|List| $) $) 126) (((|List| $) $ (|Symbol|)) 124)) (|rootOf| (($ (|Polynomial| $)) 87) (($ (|SparseUnivariatePolynomial| $)) 86) (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) 85) (($ $) 127) (($ $ (|Symbol|)) 125)) (|retractIfCan| (((|Union| (|Polynomial| |#1|) "failed") $) 247 (|has| |#1| (|Ring|))) (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") $) 231 (|has| |#1| (|IntegralDomain|))) (((|Union| |#1| "failed") $) 193) (((|Union| (|Integer|) "failed") $) 191 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Symbol|) "failed") $) 184) (((|Union| (|Kernel| $) "failed") $) 135) (((|Union| (|Fraction| (|Integer|)) "failed") $) 119 (OR (AND (|has| |#1| (|RetractableTo| (|Integer|))) (|has| |#1| (|IntegralDomain|))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))))) (|retract| (((|Polynomial| |#1|) $) 248 (|has| |#1| (|Ring|))) (((|Fraction| (|Polynomial| |#1|)) $) 232 (|has| |#1| (|IntegralDomain|))) ((|#1| $) 194) (((|Integer|) $) 190 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Symbol|) $) 185) (((|Kernel| $) $) 136) (((|Fraction| (|Integer|)) $) 118 (OR (AND (|has| |#1| (|RetractableTo| (|Integer|))) (|has| |#1| (|IntegralDomain|))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))))) (|rem| (($ $ $) 54)) (|reducedSystem| (((|Matrix| |#1|) (|Matrix| $)) 237 (|has| |#1| (|Ring|))) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) 236 (|has| |#1| (|Ring|))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) 117 (OR (|and| (|has| |#1| (|Ring|)) (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (|and| (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#1| (|Ring|))))) (((|Matrix| (|Integer|)) (|Matrix| $)) 116 (OR (|and| (|has| |#1| (|Ring|)) (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (|and| (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#1| (|Ring|)))))) (|recip| (((|Union| $ "failed") $) 33)) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|prime?| (((|Boolean|) $) 71)) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) 189 (|has| |#1| (|PatternMatchable| (|Float|)))) (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) 188 (|has| |#1| (|PatternMatchable| (|Integer|))))) (|paren| (($ (|List| $)) 154) (($ $) 153)) (|operators| (((|List| (|BasicOperator|)) $) 161)) (|operator| (((|BasicOperator|) (|BasicOperator|)) 162)) (|one?| (((|Boolean|) $) 30)) (|odd?| (((|Boolean|) $) 182 (|has| $ (|RetractableTo| (|Integer|))))) (|numerator| (($ $) 214 (|has| |#1| (|Ring|)))) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) 213 (|has| |#1| (|Ring|)))) (|nthRoot| (($ $ (|Integer|)) 89)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) 179 (|has| $ (|Ring|)))) (|min| (($ $ $) 133)) (|max| (($ $ $) 132)) (|map| (($ (|Mapping| $ $) (|Kernel| $)) 168)) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) 158)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|kernels| (((|List| (|Kernel| $)) $) 159)) (|kernel| (($ (|BasicOperator|) (|List| $)) 167) (($ (|BasicOperator|) $) 166)) (|isTimes| (((|Union| (|List| $) "failed") $) 208 (|has| |#1| (|SemiGroup|)))) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) 217 (|has| |#1| (|Ring|)))) (|isPlus| (((|Union| (|List| $) "failed") $) 210 (|has| |#1| (|AbelianSemiGroup|)))) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) 211 (|has| |#1| (|AbelianSemiGroup|)))) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) 216 (|has| |#1| (|Ring|))) (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) 215 (|has| |#1| (|Ring|))) (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) 209 (|has| |#1| (|SemiGroup|)))) (|is?| (((|Boolean|) $ (|Symbol|)) 165) (((|Boolean|) $ (|BasicOperator|)) 164)) (|inv| (($ $) 70)) (|height| (((|NonNegativeInteger|) $) 157)) (|hash| (((|SingleInteger|) $) 10)) (|ground?| (((|Boolean|) $) 195)) (|ground| ((|#1| $) 196)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|freeOf?| (((|Boolean|) $ (|Symbol|)) 170) (((|Boolean|) $ $) 169)) (|factor| (((|Factored| $) $) 74)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|even?| (((|Boolean|) $) 181 (|has| $ (|RetractableTo| (|Integer|))))) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) 221 (|has| |#1| (|Ring|))) (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) 220 (|has| |#1| (|Ring|))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) 219 (|has| |#1| (|Ring|))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) 218 (|has| |#1| (|Ring|))) (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) 207 (|has| |#1| (|ConvertibleTo| (|InputForm|)))) (($ $ (|BasicOperator|) $ (|Symbol|)) 206 (|has| |#1| (|ConvertibleTo| (|InputForm|)))) (($ $) 205 (|has| |#1| (|ConvertibleTo| (|InputForm|)))) (($ $ (|List| (|Symbol|))) 204 (|has| |#1| (|ConvertibleTo| (|InputForm|)))) (($ $ (|Symbol|)) 203 (|has| |#1| (|ConvertibleTo| (|InputForm|)))) (($ $ (|BasicOperator|) (|Mapping| $ $)) 178) (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) 177) (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) 176) (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) 175) (($ $ (|Symbol|) (|Mapping| $ $)) 174) (($ $ (|Symbol|) (|Mapping| $ (|List| $))) 173) (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) 172) (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) 171) (($ $ (|List| $) (|List| $)) 142) (($ $ $ $) 141) (($ $ (|Equation| $)) 140) (($ $ (|List| (|Equation| $))) 139) (($ $ (|List| (|Kernel| $)) (|List| $)) 138) (($ $ (|Kernel| $) $) 137)) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|elt| (($ (|BasicOperator|) (|List| $)) 147) (($ (|BasicOperator|) $ $ $ $) 146) (($ (|BasicOperator|) $ $ $) 145) (($ (|BasicOperator|) $ $) 144) (($ (|BasicOperator|) $) 143)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|distribute| (($ $ $) 156) (($ $) 155)) (|differentiate| (($ $ (|Symbol|)) 245 (|has| |#1| (|Ring|))) (($ $ (|List| (|Symbol|))) 244 (|has| |#1| (|Ring|))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 243 (|has| |#1| (|Ring|))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 242 (|has| |#1| (|Ring|)))) (|denominator| (($ $) 224 (|has| |#1| (|IntegralDomain|)))) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) 223 (|has| |#1| (|IntegralDomain|)))) (|definingPolynomial| (($ $) 180 (|has| $ (|Ring|)))) (|convert| (((|InputForm|) $) 251 (|has| |#1| (|ConvertibleTo| (|InputForm|)))) (($ (|Factored| $)) 222 (|has| |#1| (|IntegralDomain|))) (((|Pattern| (|Float|)) $) 187 (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|))))) (((|Pattern| (|Integer|)) $) 186 (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))))) (|conjugate| (($ $ $) 250 (|has| |#1| (|Group|)))) (|commutator| (($ $ $) 249 (|has| |#1| (|Group|)))) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Fraction| (|Integer|))) 65) (($ (|Polynomial| |#1|)) 246 (|has| |#1| (|Ring|))) (($ (|Fraction| (|Polynomial| |#1|))) 230 (|has| |#1| (|IntegralDomain|))) (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) 228 (|has| |#1| (|IntegralDomain|))) (($ (|Polynomial| (|Fraction| |#1|))) 227 (|has| |#1| (|IntegralDomain|))) (($ (|Fraction| |#1|)) 226 (|has| |#1| (|IntegralDomain|))) (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) 212 (|has| |#1| (|Ring|))) (($ |#1|) 192) (($ (|Symbol|)) 183) (($ (|Kernel| $)) 134)) (|charthRoot| (((|Union| $ "failed") $) 235 (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|box| (($ (|List| $)) 152) (($ $) 151)) (|belong?| (((|Boolean|) (|BasicOperator|)) 163)) (|associates?| (((|Boolean|) $ $) 38)) (|applyQuote| (($ (|Symbol|) (|List| $)) 202) (($ (|Symbol|) $ $ $ $) 201) (($ (|Symbol|) $ $ $) 200) (($ (|Symbol|) $ $) 199) (($ (|Symbol|) $) 198)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 69)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $ (|Symbol|)) 241 (|has| |#1| (|Ring|))) (($ $ (|List| (|Symbol|))) 240 (|has| |#1| (|Ring|))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 239 (|has| |#1| (|Ring|))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 238 (|has| |#1| (|Ring|)))) (>= (((|Boolean|) $ $) 130)) (> (((|Boolean|) $ $) 129)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 131)) (< (((|Boolean|) $ $) 128)) (/ (($ $ $) 64) (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) 225 (|has| |#1| (|IntegralDomain|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 68) (($ $ (|Fraction| (|Integer|))) 88)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 67) (($ (|Fraction| (|Integer|)) $) 66) (($ $ |#1|) 234 (|has| |#1| (|CommutativeRing|))) (($ |#1| $) 233 (|has| |#1| (|CommutativeRing|))))) │ │ │ +(((|AlgebraicallyClosedFunctionSpace| |#1|) (|Category|) (|Join| (|OrderedSet|) (|IntegralDomain|))) (T |AlgebraicallyClosedFunctionSpace|)) │ │ │ +((|rootOf| (*1 *1 *1) (AND (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *2)) (|ofCategory| *2 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|rootsOf| (*1 *2 *1) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *3)))) (|rootOf| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *3)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|rootsOf| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *4)))) (|zeroOf| (*1 *1 *1) (AND (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *2)) (|ofCategory| *2 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|zerosOf| (*1 *2 *1) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *3)))) (|zeroOf| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *3)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|zerosOf| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|AlgebraicallyClosedFunctionSpace| *4))))) │ │ │ +(|Join| (|AlgebraicallyClosedField|) (|FunctionSpace| |t#1|) (CATEGORY |domain| (SIGNATURE |rootOf| ($ $)) (SIGNATURE |rootsOf| ((|List| $) $)) (SIGNATURE |rootOf| ($ $ (|Symbol|))) (SIGNATURE |rootsOf| ((|List| $) $ (|Symbol|))) (SIGNATURE |zeroOf| ($ $)) (SIGNATURE |zerosOf| ((|List| $) $)) (SIGNATURE |zeroOf| ($ $ (|Symbol|))) (SIGNATURE |zerosOf| ((|List| $) $ (|Symbol|))))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) . T) ((|AlgebraicallyClosedField|) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| |#1| |#1|) |has| |#1| (|CommutativeRing|)) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|ConvertibleTo| (|Pattern| (|Float|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) ((|ConvertibleTo| (|Pattern| (|Integer|))) |has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Evalable| $) . T) ((|ExpressionSpace|) . T) ((|Field|) . T) ((|FullyLinearlyExplicitRingOver| |#1|) |has| |#1| (|Ring|)) ((|FullyPatternMatchable| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|FunctionSpace| |#1|) . T) ((|GcdDomain|) . T) ((|Group|) |has| |#1| (|Group|)) ((|InnerEvalable| (|Kernel| $) $) . T) ((|InnerEvalable| $ $) . T) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| |#1|) |has| |#1| (|CommutativeRing|)) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|LinearlyExplicitRingOver| (|Integer|)) AND (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#1| (|Ring|))) ((|LinearlyExplicitRingOver| |#1|) |has| |#1| (|Ring|)) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) . T) ((|Monoid|) . T) ((|OrderedSet|) . T) ((|PartialDifferentialRing| (|Symbol|)) |has| |#1| (|Ring|)) ((|PatternMatchable| (|Float|)) |has| |#1| (|PatternMatchable| (|Float|))) ((|PatternMatchable| (|Integer|)) |has| |#1| (|PatternMatchable| (|Integer|))) ((|Patternable| |#1|) . T) ((|PrincipalIdealDomain|) . T) ((|RadicalCategory|) . T) ((|RetractableTo| (|Fraction| (|Integer|))) OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (AND (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|RetractableTo| (|Integer|))))) ((|RetractableTo| (|Fraction| (|Polynomial| |#1|))) |has| |#1| (|IntegralDomain|)) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| (|Kernel| $)) . T) ((|RetractableTo| (|Polynomial| |#1|)) |has| |#1| (|Ring|)) ((|RetractableTo| (|Symbol|)) . T) ((|RetractableTo| |#1|) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| |#1|) |has| |#1| (|CommutativeRing|)) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|Type|) . T) ((|UniqueFactorizationDomain|) . T)) │ │ │ +((|localAbs| ((|#2| |#2|) 87)) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) 46)) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) 152))) │ │ │ +(((|FunctionSpaceToUnivariatePowerSeries| |#1| |#2| |#3| |#4| |#5| |#6|) (CATEGORY |package| (SIGNATURE |exprToUPS| ((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|))) (SIGNATURE |exprToGenUPS| ((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|))) (SIGNATURE |localAbs| (|#2| |#2|))) (|Join| (|GcdDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|))) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ |#3|)))) (|OrderedRing|) (|Join| (|UnivariatePowerSeriesCategory| |#2| |#3|) (|Field|) (|TranscendentalFunctionCategory|) (CATEGORY |domain| (SIGNATURE |differentiate| ($ $)) (SIGNATURE |integrate| ($ $)))) (|PartialTranscendentalFunctions| |#4|) (|Symbol|)) (T |FunctionSpaceToUnivariatePowerSeries|)) │ │ │ +((|localAbs| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|GcdDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|ofCategory| *2 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *3) (CATEGORY |domain| (SIGNATURE |coerce| ($ *4))))) (|ofCategory| *4 (|OrderedRing|)) (|ofCategory| *5 (|Join| (|UnivariatePowerSeriesCategory| *2 *4) (|Field|) (|TranscendentalFunctionCategory|) (CATEGORY |domain| (SIGNATURE |differentiate| ($ $)) (SIGNATURE |integrate| ($ $))))) (|isDomain| *1 (|FunctionSpaceToUnivariatePowerSeries| *3 *2 *4 *5 *6 *7)) (|ofCategory| *6 (|PartialTranscendentalFunctions| *5)) (|ofType| *7 (|Symbol|)))) (|exprToGenUPS| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|Boolean|)) (|ofCategory| *6 (|Join| (|GcdDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|ofCategory| *3 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *6) (CATEGORY |domain| (SIGNATURE |coerce| ($ *7))))) (|ofCategory| *7 (|OrderedRing|)) (|ofCategory| *8 (|Join| (|UnivariatePowerSeriesCategory| *3 *7) (|Field|) (|TranscendentalFunctionCategory|) (CATEGORY |domain| (SIGNATURE |differentiate| ($ $)) (SIGNATURE |integrate| ($ $))))) (|isDomain| *2 (|Union| (|:| |%series| *8) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|)))))) (|isDomain| *1 (|FunctionSpaceToUnivariatePowerSeries| *6 *3 *7 *8 *9 *10)) (|isDomain| *5 (|String|)) (|ofCategory| *9 (|PartialTranscendentalFunctions| *8)) (|ofType| *10 (|Symbol|)))) (|exprToUPS| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|Boolean|)) (|ofCategory| *6 (|Join| (|GcdDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|ofCategory| *3 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *6) (CATEGORY |domain| (SIGNATURE |coerce| ($ *7))))) (|ofCategory| *7 (|OrderedRing|)) (|ofCategory| *8 (|Join| (|UnivariatePowerSeriesCategory| *3 *7) (|Field|) (|TranscendentalFunctionCategory|) (CATEGORY |domain| (SIGNATURE |differentiate| ($ $)) (SIGNATURE |integrate| ($ $))))) (|isDomain| *2 (|Union| (|:| |%series| *8) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|)))))) (|isDomain| *1 (|FunctionSpaceToUnivariatePowerSeries| *6 *3 *7 *8 *9 *10)) (|isDomain| *5 (|String|)) (|ofCategory| *9 (|PartialTranscendentalFunctions| *8)) (|ofType| *10 (|Symbol|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |exprToUPS| ((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|))) (SIGNATURE |exprToGenUPS| ((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|))) (SIGNATURE |localAbs| (|#2| |#2|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26)) (|sample| (($) NIL T CONST)) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) 28)) (|pdct| (((|Integer|) $) 44)) (|partition| (($ (|List| (|Integer|))) 17)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|convert| (((|List| (|Integer|)) $) 11)) (|conjugate| (($ $) 31)) (|coerce| (((|OutputForm|) $) 42) (((|List| (|Integer|)) $) 9)) (|Zero| (($) 7 T CONST)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 19)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 18)) (+ (($ $ $) 20)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) 24))) │ │ │ +(((|Partition|) (|Join| (|OrderedCancellationAbelianMonoid|) (|ConvertibleTo| (|List| (|Integer|))) (CATEGORY |domain| (SIGNATURE |partition| ($ (|List| (|Integer|)))) (SIGNATURE |powers| ((|List| (|List| (|Integer|))) (|List| (|Integer|)))) (SIGNATURE |pdct| ((|Integer|) $)) (SIGNATURE |conjugate| ($ $)) (SIGNATURE |coerce| ((|List| (|Integer|)) $))))) (T |Partition|)) │ │ │ +((|partition| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|Partition|)))) (|powers| (*1 *2 *3) (AND (|isDomain| *2 (|List| (|List| (|Integer|)))) (|isDomain| *1 (|Partition|)) (|isDomain| *3 (|List| (|Integer|))))) (|pdct| (*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Partition|)))) (|conjugate| (*1 *1 *1) (|isDomain| *1 (|Partition|))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|Partition|))))) │ │ │ +(|Join| (|OrderedCancellationAbelianMonoid|) (|ConvertibleTo| (|List| (|Integer|))) (CATEGORY |domain| (SIGNATURE |partition| ($ (|List| (|Integer|)))) (SIGNATURE |powers| ((|List| (|List| (|Integer|))) (|List| (|Integer|)))) (SIGNATURE |pdct| ((|Integer|) $)) (SIGNATURE |conjugate| ($ $)) (SIGNATURE |coerce| ((|List| (|Integer|)) $)))) │ │ │ +((|symmetricSquare| (($ $) 26)) (|adjoint| (($ $) 24)) (D (($) 12))) │ │ │ +(((|LinearOrdinaryDifferentialOperatorCategory&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |symmetricSquare| (|#1| |#1|)) (SIGNATURE |adjoint| (|#1| |#1|)) (SIGNATURE D (|#1|))) (|LinearOrdinaryDifferentialOperatorCategory| |#2|) (|Ring|)) (T |LinearOrdinaryDifferentialOperatorCategory&|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |map!| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |copy| (|#1| |#1|))) │ │ │ -((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 45)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setvalue!| ((|#1| $ |#1|) 36 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setright!| (($ $ $) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setleft!| (($ $ $) 51 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "left" $) 52 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "right" $) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) 7 T CONST)) (|right| (($ $) 54)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) 47)) (|node?| (((|Boolean|) $ $) 39 (|has| |#1| (|SetCategory|)))) (|node| (($ $ |#1| $) 57)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|left| (($ $) 56)) (|leaves| (((|List| |#1|) $) 42)) (|leaf?| (((|Boolean|) $) 46)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ "value") 44) (($ $ "left") 55) (($ $ "right") 53)) (|distance| (((|Integer|) $ $) 41)) (|cyclic?| (((|Boolean|) $) 43)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) 48)) (|child?| (((|Boolean|) $ $) 40 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|BinaryTreeCategory| |#1|) (|Category|) (|SetCategory|)) (T |BinaryTreeCategory|)) │ │ │ -((|node| (*1 *1 *1 *2 *1) (AND (|ofCategory| *1 (|BinaryTreeCategory| *2)) (|ofCategory| *2 (|SetCategory|))))) │ │ │ -(|Join| (|BinaryRecursiveAggregate| |t#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (ATTRIBUTE |finiteAggregate|) (SIGNATURE |node| ($ $ |t#1| $)))) │ │ │ -(((|Aggregate|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|BinaryRecursiveAggregate| |#1|) . T) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|RecursiveAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ +(CATEGORY |domain| (SIGNATURE |symmetricSquare| (|#1| |#1|)) (SIGNATURE |adjoint| (|#1| |#1|)) (SIGNATURE D (|#1|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 62 (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) 63 (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#1| "failed") $) 28)) (|retract| (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1| $) NIL)) (|reductum| (($ $) 24)) (|recip| (((|Union| $ "failed") $) 35)) (|primitivePart| (($ $) NIL (|has| |#1| (|GcdDomain|)))) (|pomopo!| (($ $ |#1| |#2| $) 47)) (|one?| (((|Boolean|) $) NIL)) (|numberOfMonomials| (((|NonNegativeInteger|) $) 16)) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| |#2|) NIL)) (|minimumDegree| ((|#2| $) 19)) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|leadingMonomial| (($ $) 23)) (|leadingCoefficient| ((|#1| $) 21)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|ground?| (((|Boolean|) $) 40)) (|ground| ((|#1| $) NIL)) (|fmecg| (($ $ |#2| |#1| $) 71 (AND (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#1| (|IntegralDomain|))))) (|exquo| (((|Union| $ "failed") $ $) 73 (|has| |#1| (|IntegralDomain|))) (((|Union| $ "failed") $ |#1|) 69 (|has| |#1| (|IntegralDomain|)))) (|degree| ((|#2| $) 17)) (|content| ((|#1| $) NIL (|has| |#1| (|GcdDomain|)))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) 39) (($ $) NIL (|has| |#1| (|IntegralDomain|))) (($ |#1|) 34) (($ (|Fraction| (|Integer|))) NIL (OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))))) (|coefficients| (((|List| |#1|) $) NIL)) (|coefficient| ((|#1| $ |#2|) 31)) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 15)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) 58 (|has| |#1| (|CommutativeRing|)))) (|associates?| (((|Boolean|) $ $) 68 (|has| |#1| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) 54) (($ $ (|NonNegativeInteger|)) 55)) (|Zero| (($) 22 T CONST)) (|One| (($) 12 T CONST)) (= (((|Boolean|) $ $) 67)) (/ (($ $ |#1|) 74 (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) 53) (($ $ (|NonNegativeInteger|)) 51)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ +(((|PolynomialRing| |#1| |#2|) (|Join| (|FiniteAbelianMonoidRing| |#1| |#2|) (CATEGORY |domain| (IF (|has| |#1| (|IntegralDomain|)) (IF (|has| |#2| (|CancellationAbelianMonoid|)) (SIGNATURE |fmecg| ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (ATTRIBUTE |canonicalUnitNormal|) |noBranch|))) (|Ring|) (|OrderedAbelianMonoid|)) (T |PolynomialRing|)) │ │ │ +((|fmecg| (*1 *1 *1 *2 *3 *1) (AND (|isDomain| *1 (|PolynomialRing| *3 *2)) (|ofCategory| *2 (|CancellationAbelianMonoid|)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|))))) │ │ │ +(|Join| (|FiniteAbelianMonoidRing| |#1| |#2|) (CATEGORY |domain| (IF (|has| |#1| (|IntegralDomain|)) (IF (|has| |#2| (|CancellationAbelianMonoid|)) (SIGNATURE |fmecg| ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (ATTRIBUTE |canonicalUnitNormal|) |noBranch|))) │ │ │ +((|outputAsFortran| (((|Void|) $) 7)) (|coerce| (((|OutputForm|) $) 8))) │ │ │ +(((|FortranProgramCategory|) (|Category|)) (T |FortranProgramCategory|)) │ │ │ +((|outputAsFortran| (*1 *2 *1) (AND (|ofCategory| *1 (|FortranProgramCategory|)) (|isDomain| *2 (|Void|))))) │ │ │ +(|Join| (|Type|) (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |outputAsFortran| ((|Void|) $)))) │ │ │ +(((|CoercibleTo| (|OutputForm|)) . T) ((|Type|) . T)) │ │ │ ((|select| (($ (|Mapping| (|Boolean|) |#2|) $) 23)) (|removeDuplicates| (($ $) 36)) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) NIL) (($ |#2| $) 34)) (|remove| (($ |#2| $) 31) (($ (|Mapping| (|Boolean|) |#2|) $) 17)) (|merge!| (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (|insert| (($ |#2| $ (|Integer|)) 19) (($ $ $ (|Integer|)) 21)) (|delete| (($ $ (|Integer|)) 11) (($ $ (|UniversalSegment| (|Integer|))) 14)) (|concat!| (($ $ |#2|) 29) (($ $ $) NIL)) (|concat| (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (|List| $)) NIL))) │ │ │ (((|ExtensibleLinearAggregate&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |merge!| (|#1| |#1| |#1|)) (SIGNATURE |remove!| (|#1| |#2| |#1|)) (SIGNATURE |merge!| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1| |#1|)) (SIGNATURE |remove!| (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |concat!| (|#1| |#1| |#1|)) (SIGNATURE |concat!| (|#1| |#1| |#2|)) (SIGNATURE |insert| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |insert| (|#1| |#2| |#1| (|Integer|))) (SIGNATURE |delete| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |delete| (|#1| |#1| (|Integer|))) (SIGNATURE |concat| (|#1| (|List| |#1|))) (SIGNATURE |concat| (|#1| |#1| |#1|)) (SIGNATURE |concat| (|#1| |#2| |#1|)) (SIGNATURE |concat| (|#1| |#1| |#2|)) (SIGNATURE |remove| (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |select| (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |remove| (|#1| |#2| |#1|)) (SIGNATURE |removeDuplicates| (|#1| |#1|))) (|ExtensibleLinearAggregate| |#2|) (|Type|)) (T |ExtensibleLinearAggregate&|)) │ │ │ NIL │ │ │ (CATEGORY |domain| (SIGNATURE |merge!| (|#1| |#1| |#1|)) (SIGNATURE |remove!| (|#1| |#2| |#1|)) (SIGNATURE |merge!| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1| |#1|)) (SIGNATURE |remove!| (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |concat!| (|#1| |#1| |#1|)) (SIGNATURE |concat!| (|#1| |#1| |#2|)) (SIGNATURE |insert| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |insert| (|#1| |#2| |#1| (|Integer|))) (SIGNATURE |delete| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |delete| (|#1| |#1| (|Integer|))) (SIGNATURE |concat| (|#1| (|List| |#1|))) (SIGNATURE |concat| (|#1| |#1| |#1|)) (SIGNATURE |concat| (|#1| |#2| |#1|)) (SIGNATURE |concat| (|#1| |#1| |#2|)) (SIGNATURE |remove| (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |select| (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |remove| (|#1| |#2| |#1|)) (SIGNATURE |removeDuplicates| (|#1| |#1|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| |#2| "failed") $) 41)) (|retract| ((|#2| $) 40)) (|reductum| (($ $) 27)) (|numberOfMonomials| (((|NonNegativeInteger|) $) 31)) (|monomials| (((|List| $) $) 32)) (|monomial?| (((|Boolean|) $) 35)) (|monom| (($ |#2| |#1|) 36)) (|map| (($ (|Mapping| |#1| |#1|) $) 37)) (|listOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) 34)) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) 28)) (|leadingMonomial| ((|#2| $) 30)) (|leadingCoefficient| ((|#1| $) 29)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11) (($ |#2|) 42)) (|coefficients| (((|List| |#1|) $) 33)) (|coefficient| ((|#1| $ |#2|) 38)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ |#1| $) 22) (($ $ |#1|) 24) (($ |#1| |#2|) 39))) │ │ │ -(((|FreeModuleCat| |#1| |#2|) (|Category|) (|Ring|) (|SetCategory|)) (T |FreeModuleCat|)) │ │ │ -((* (*1 *1 *2 *3) (AND (|ofCategory| *1 (|FreeModuleCat| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|SetCategory|)))) (|coefficient| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|FreeModuleCat| *2 *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Ring|)))) (|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)))) (|monom| (*1 *1 *2 *3) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|SetCategory|)))) (|monomial?| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|listOfTerms| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|List| (|Record| (|:| |k| *4) (|:| |c| *3)))))) (|coefficients| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|List| *3)))) (|monomials| (*1 *2 *1) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|FreeModuleCat| *3 *4)))) (|numberOfMonomials| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|leadingMonomial| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|SetCategory|)))) (|leadingCoefficient| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *2 *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *2 (|Ring|)))) (|leadingTerm| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Record| (|:| |k| *4) (|:| |c| *3))))) (|reductum| (*1 *1 *1) (AND (|ofCategory| *1 (|FreeModuleCat| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ -(|Join| (|BiModule| |t#1| |t#1|) (|RetractableTo| |t#2|) (CATEGORY |domain| (SIGNATURE * ($ |t#1| |t#2|)) (SIGNATURE |coefficient| (|t#1| $ |t#2|)) (SIGNATURE |map| ($ (|Mapping| |t#1| |t#1|) $)) (SIGNATURE |monom| ($ |t#2| |t#1|)) (SIGNATURE |monomial?| ((|Boolean|) $)) (SIGNATURE |listOfTerms| ((|List| (|Record| (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (SIGNATURE |coefficients| ((|List| |t#1|) $)) (SIGNATURE |monomials| ((|List| $) $)) (SIGNATURE |numberOfMonomials| ((|NonNegativeInteger|) $)) (SIGNATURE |leadingMonomial| (|t#2| $)) (SIGNATURE |leadingCoefficient| (|t#1| $)) (SIGNATURE |leadingTerm| ((|Record| (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (SIGNATURE |reductum| ($ $)) (IF (|has| |t#1| (|CommutativeRing|)) (ATTRIBUTE (|Module| |t#1|)) |noBranch|))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#1|) . T) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|RetractableTo| |#2|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|sample| (($) NIL T CONST)) (|reductum| (($ $) NIL)) (|monomial| (($ |#1| |#2|) NIL)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|leadingSupport| ((|#2| $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (|Zero| (($) NIL T CONST)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 13)) (+ (($ $ $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL))) │ │ │ -(((|IndexedDirectProductOrderedAbelianMonoid| |#1| |#2|) (|Join| (|OrderedAbelianMonoid|) (|IndexedDirectProductCategory| |#1| |#2|)) (|OrderedAbelianMonoid|) (|OrderedSet|)) (T |IndexedDirectProductOrderedAbelianMonoid|)) │ │ │ -NIL │ │ │ -(|Join| (|OrderedAbelianMonoid|) (|IndexedDirectProductCategory| |#1| |#2|)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 16)) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) 18)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|size| (((|NonNegativeInteger|) $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL)) (|retract| ((|#1| $) NIL)) (|nthFactor| ((|#1| $ (|Integer|)) 23)) (|nthCoef| ((|#2| $ (|Integer|)) 21)) (|mapGen| (($ (|Mapping| |#1| |#1|) $) 46)) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) 43)) (|latex| (((|String|) $) NIL)) (|highCommonTerms| (($ $ $) 53 (|has| |#2| (|OrderedAbelianMonoid|)))) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 42) (($ |#1|) NIL)) (|coefficient| ((|#2| |#1| $) 49)) (|Zero| (($) 11 T CONST)) (= (((|Boolean|) $ $) 29)) (+ (($ $ $) 27) (($ |#1| $) 25)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) 36) (($ |#2| |#1|) 31))) │ │ │ -(((|InnerFreeAbelianMonoid| |#1| |#2| |#3|) (|FreeAbelianMonoidCategory| |#1| |#2|) (|SetCategory|) (|CancellationAbelianMonoid|) |#2|) (T |InnerFreeAbelianMonoid|)) │ │ │ -NIL │ │ │ -(|FreeAbelianMonoidCategory| |#1| |#2|) │ │ │ -((|Zero| (($) 11)) (|One| (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) │ │ │ -(((|GradedAlgebra&| |#1| |#2| |#3|) (CATEGORY |domain| (SIGNATURE |One| (|#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE |Zero| (|#1|))) (|GradedAlgebra| |#2| |#3|) (|CommutativeRing|) (|AbelianMonoid|)) (T |GradedAlgebra&|)) │ │ │ -NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |One| (|#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE |Zero| (|#1|))) │ │ │ -((|plenaryPower| (($ $ (|PositiveInteger|)) 12))) │ │ │ -(((|NonAssociativeAlgebra&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |plenaryPower| (|#1| |#1| (|PositiveInteger|)))) (|NonAssociativeAlgebra| |#2|) (|CommutativeRing|)) (T |NonAssociativeAlgebra&|)) │ │ │ -NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |plenaryPower| (|#1| |#1| (|PositiveInteger|)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|retractIfCan| (((|Union| |#1| "failed") $) 23)) (|retract| ((|#1| $) 22)) (|product| (($ $ $) 20)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|degree| ((|#2| $) 18)) (|coerce| (((|OutputForm|) $) 11) (($ |#1|) 24)) (|Zero| (($) 17 T CONST)) (|One| (($) 21 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 14) (($ $ $) 12)) (+ (($ $ $) 13)) (* (($ |#1| $) 16) (($ $ |#1|) 15))) │ │ │ -(((|GradedAlgebra| |#1| |#2|) (|Category|) (|CommutativeRing|) (|AbelianMonoid|)) (T |GradedAlgebra|)) │ │ │ -((|One| (*1 *1) (AND (|ofCategory| *1 (|GradedAlgebra| *2 *3)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)))) (|product| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|GradedAlgebra| *2 *3)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|))))) │ │ │ -(|Join| (|GradedModule| |t#1| |t#2|) (|RetractableTo| |t#1|) (CATEGORY |domain| (SIGNATURE (|One|) ($) |constant|) (SIGNATURE |product| ($ $ $)))) │ │ │ -(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|GradedModule| |#1| |#2|) . T) ((|RetractableTo| |#1|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setelt| ((|#1| $ (|Integer|) |#1|) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) 53 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) 78)) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) 70 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) 7 T CONST)) (|removeDuplicates!| (($ $) 76 (|has| |#1| (|SetCategory|)))) (|removeDuplicates| (($ $) 73 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) 82) (($ |#1| $) 77 (|has| |#1| (|SetCategory|)))) (|remove| (($ |#1| $) 72 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (($ (|Mapping| (|Boolean|) |#1|) $) 69 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 71 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) 67 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) 48)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|new| (($ (|NonNegativeInteger|) |#1|) 64)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|minIndex| (((|Integer|) $) 40 (|has| (|Integer|) (|OrderedSet|)))) (|merge!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) 79) (($ $ $) 75 (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxIndex| (((|Integer|) $) 41 (|has| (|Integer|) (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35) (($ (|Mapping| |#1| |#1| |#1|) $ $) 59)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|insert!| (($ |#1| $ (|Integer|)) 81) (($ $ $ (|Integer|)) 80)) (|insert| (($ |#1| $ (|Integer|)) 55) (($ $ $ (|Integer|)) 54)) (|indices| (((|List| (|Integer|)) $) 43)) (|index?| (((|Boolean|) (|Integer|) $) 44)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|first| ((|#1| $) 39 (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) 66)) (|fill!| (($ $ |#1|) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|entry?| (((|Boolean|) |#1| $) 42 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) 45)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ (|Integer|) |#1|) 47) ((|#1| $ (|Integer|)) 46) (($ $ (|UniversalSegment| (|Integer|))) 58)) (|delete!| (($ $ (|Integer|)) 84) (($ $ (|UniversalSegment| (|Integer|))) 83)) (|delete| (($ $ (|Integer|)) 57) (($ $ (|UniversalSegment| (|Integer|))) 56)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|convert| (((|InputForm|) $) 74 (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) 65)) (|concat!| (($ $ |#1|) 86) (($ $ $) 85)) (|concat| (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (|List| $)) 60)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|ExtensibleLinearAggregate| |#1|) (|Category|) (|Type|)) (T |ExtensibleLinearAggregate|)) │ │ │ -((|concat!| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|ExtensibleLinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|concat!| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|ExtensibleLinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|delete!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|ExtensibleLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|delete!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|UniversalSegment| (|Integer|))) (|ofCategory| *1 (|ExtensibleLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|remove!| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *1 (|ExtensibleLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|insert!| (*1 *1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|ExtensibleLinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|insert!| (*1 *1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|ExtensibleLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|merge!| (*1 *1 *2 *1 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3 *3)) (|ofCategory| *1 (|ExtensibleLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|select!| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *1 (|ExtensibleLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|remove!| (*1 *1 *2 *1) (AND (|ofCategory| *1 (|ExtensibleLinearAggregate| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|SetCategory|)))) (|removeDuplicates!| (*1 *1 *1) (AND (|ofCategory| *1 (|ExtensibleLinearAggregate| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|SetCategory|)))) (|merge!| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|ExtensibleLinearAggregate| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|OrderedSet|))))) │ │ │ -(|Join| (|LinearAggregate| |t#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (SIGNATURE |concat!| ($ $ |t#1|)) (SIGNATURE |concat!| ($ $ $)) (SIGNATURE |delete!| ($ $ (|Integer|))) (SIGNATURE |delete!| ($ $ (|UniversalSegment| (|Integer|)))) (SIGNATURE |remove!| ($ (|Mapping| (|Boolean|) |t#1|) $)) (SIGNATURE |insert!| ($ |t#1| $ (|Integer|))) (SIGNATURE |insert!| ($ $ $ (|Integer|))) (SIGNATURE |merge!| ($ (|Mapping| (|Boolean|) |t#1| |t#1|) $ $)) (SIGNATURE |select!| ($ (|Mapping| (|Boolean|) |t#1|) $)) (IF (|has| |t#1| (|SetCategory|)) (PROGN (SIGNATURE |remove!| ($ |t#1| $)) (SIGNATURE |removeDuplicates!| ($ $))) |noBranch|) (IF (|has| |t#1| (|OrderedSet|)) (SIGNATURE |merge!| ($ $ $)) |noBranch|))) │ │ │ -(((|Aggregate|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| (|Integer|) |#1|) . T) ((|EltableAggregate| (|Integer|) |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|IndexedAggregate| (|Integer|) |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|LinearAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 23)) (|subtractIfCan| (((|Union| $ "failed") $ $) 25)) (|sample| (($) 22 T CONST)) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 21 T CONST)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17)) (+ (($ $ $) 19)) (* (($ (|PositiveInteger|) $) 20) (($ (|NonNegativeInteger|) $) 24))) │ │ │ -(((|OrderedCancellationAbelianMonoid|) (|Category|)) (T |OrderedCancellationAbelianMonoid|)) │ │ │ -NIL │ │ │ -(|Join| (|OrderedAbelianMonoid|) (|CancellationAbelianMonoid|)) │ │ │ -(((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedSet|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|rightPower| (($ $ (|PositiveInteger|)) 27)) (|plenaryPower| (($ $ (|PositiveInteger|)) 32)) (|leftPower| (($ $ (|PositiveInteger|)) 28)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|commutator| (($ $ $) 24)) (|coerce| (((|OutputForm|) $) 11)) (|associator| (($ $ $ $) 25)) (|antiCommutator| (($ $ $) 23)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 29)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 26) (($ $ |#1|) 34) (($ |#1| $) 33))) │ │ │ -(((|NonAssociativeAlgebra| |#1|) (|Category|) (|CommutativeRing|)) (T |NonAssociativeAlgebra|)) │ │ │ -((|plenaryPower| (*1 *1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|ofCategory| *1 (|NonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|))))) │ │ │ -(|Join| (|NonAssociativeRng|) (|Module| |t#1|) (CATEGORY |domain| (SIGNATURE |plenaryPower| ($ $ (|PositiveInteger|))))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#1|) . T) ((|Module| |#1|) . T) ((|Monad|) . T) ((|NonAssociativeRng|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|sample| (($) 7 T CONST)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|merge!| (($ $ $) 40)) (|merge| (($ $ $) 41)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|max| ((|#1| $) 42)) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|inspect| ((|#1| $) 36)) (|insert!| (($ |#1| $) 37)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|extract!| ((|#1| $) 38)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|bag| (($ (|List| |#1|)) 39)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|PriorityQueueAggregate| |#1|) (|Category|) |OrdereSet|) (T |PriorityQueueAggregate|)) │ │ │ -((|max| (*1 *2 *1) (|ofCategory| *1 (|PriorityQueueAggregate| *2))) (|merge| (*1 *1 *1 *1) (|ofCategory| *1 (|PriorityQueueAggregate| *2))) (|merge!| (*1 *1 *1 *1) (|ofCategory| *1 (|PriorityQueueAggregate| *2)))) │ │ │ -(|Join| (|BagAggregate| |t#1|) (CATEGORY |domain| (ATTRIBUTE |finiteAggregate|) (SIGNATURE |max| (|t#1| $)) (SIGNATURE |merge| ($ $ $)) (SIGNATURE |merge!| ($ $ $)))) │ │ │ -(((|Aggregate|) . T) ((|BagAggregate| |#1|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|sample| (($) 7 T CONST)) (|rotate!| (($ $) 43)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|length| (((|NonNegativeInteger|) $) 42)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|inspect| ((|#1| $) 36)) (|insert!| (($ |#1| $) 37)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|front| ((|#1| $) 41)) (|extract!| ((|#1| $) 38)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|enqueue!| ((|#1| |#1| $) 45)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|dequeue!| ((|#1| $) 44)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|bag| (($ (|List| |#1|)) 39)) (|back| ((|#1| $) 40)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|QueueAggregate| |#1|) (|Category|) (|Type|)) (T |QueueAggregate|)) │ │ │ -((|enqueue!| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|dequeue!| (*1 *2 *1) (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|rotate!| (*1 *1 *1) (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|length| (*1 *2 *1) (AND (|ofCategory| *1 (|QueueAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|front| (*1 *2 *1) (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|back| (*1 *2 *1) (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ -(|Join| (|BagAggregate| |t#1|) (CATEGORY |domain| (ATTRIBUTE |finiteAggregate|) (SIGNATURE |enqueue!| (|t#1| |t#1| $)) (SIGNATURE |dequeue!| (|t#1| $)) (SIGNATURE |rotate!| ($ $)) (SIGNATURE |length| ((|NonNegativeInteger|) $)) (SIGNATURE |front| (|t#1| $)) (SIGNATURE |back| (|t#1| $)))) │ │ │ -(((|Aggregate|) . T) ((|BagAggregate| |#1|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|top| ((|#1| $) 41)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|sample| (($) 7 T CONST)) (|push!| ((|#1| |#1| $) 43)) (|pop!| ((|#1| $) 42)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|inspect| ((|#1| $) 36)) (|insert!| (($ |#1| $) 37)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|extract!| ((|#1| $) 38)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|depth| (((|NonNegativeInteger|) $) 40)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|bag| (($ (|List| |#1|)) 39)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|StackAggregate| |#1|) (|Category|) (|Type|)) (T |StackAggregate|)) │ │ │ -((|push!| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|StackAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|pop!| (*1 *2 *1) (AND (|ofCategory| *1 (|StackAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|top| (*1 *2 *1) (AND (|ofCategory| *1 (|StackAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|depth| (*1 *2 *1) (AND (|ofCategory| *1 (|StackAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|NonNegativeInteger|))))) │ │ │ -(|Join| (|BagAggregate| |t#1|) (CATEGORY |domain| (ATTRIBUTE |finiteAggregate|) (SIGNATURE |push!| (|t#1| |t#1| $)) (SIGNATURE |pop!| (|t#1| $)) (SIGNATURE |top| (|t#1| $)) (SIGNATURE |depth| ((|NonNegativeInteger|) $)))) │ │ │ -(((|Aggregate|) . T) ((|BagAggregate| |#1|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ -((|insertionSort!| ((|#2| |#2|) 20 (|has| |#1| (|OrderedSet|))) ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) 16)) (|bubbleSort!| ((|#2| |#2|) 19 (|has| |#1| (|OrderedSet|))) ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) 15))) │ │ │ -(((|SortPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |bubbleSort!| (|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|))) (SIGNATURE |insertionSort!| (|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|))) (IF (|has| |#1| (|OrderedSet|)) (PROGN (SIGNATURE |bubbleSort!| (|#2| |#2|)) (SIGNATURE |insertionSort!| (|#2| |#2|))) |noBranch|)) (|Type|) (|Join| (|IndexedAggregate| (|Integer|) |#1|) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|) (ATTRIBUTE |shallowlyMutable|)))) (T |SortPackage|)) │ │ │ -((|insertionSort!| (*1 *2 *2) (AND (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|SortPackage| *3 *2)) (|ofCategory| *2 (|Join| (|IndexedAggregate| (|Integer|) *3) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|) (ATTRIBUTE |shallowlyMutable|)))))) (|bubbleSort!| (*1 *2 *2) (AND (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|SortPackage| *3 *2)) (|ofCategory| *2 (|Join| (|IndexedAggregate| (|Integer|) *3) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|) (ATTRIBUTE |shallowlyMutable|)))))) (|insertionSort!| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *1 (|SortPackage| *4 *2)) (|ofCategory| *2 (|Join| (|IndexedAggregate| (|Integer|) *4) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|) (ATTRIBUTE |shallowlyMutable|)))))) (|bubbleSort!| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *1 (|SortPackage| *4 *2)) (|ofCategory| *2 (|Join| (|IndexedAggregate| (|Integer|) *4) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|) (ATTRIBUTE |shallowlyMutable|))))))) │ │ │ -(CATEGORY |package| (SIGNATURE |bubbleSort!| (|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|))) (SIGNATURE |insertionSort!| (|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|))) (IF (|has| |#1| (|OrderedSet|)) (PROGN (SIGNATURE |bubbleSort!| (|#2| |#2|)) (SIGNATURE |insertionSort!| (|#2| |#2|))) |noBranch|)) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 15)) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setvalue!| ((|#1| $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setright!| (($ $ $) 18 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setleft!| (($ $ $) 20 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "left" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "right" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) NIL T CONST)) (|right| (($ $) 17)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) NIL)) (|node?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|node| (($ $ |#1| $) 23)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|left| (($ $) 19)) (|leaves| (((|List| |#1|) $) NIL)) (|leaf?| (((|Boolean|) $) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|insertRoot!| (($ |#1| $) 24)) (|insert!| (($ |#1| $) 10)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) 14)) (|empty| (($) 8)) (|elt| ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (|distance| (((|Integer|) $ $) NIL)) (|cyclic?| (((|Boolean|) $) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) NIL)) (|child?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|binarySearchTree| (($ (|List| |#1|)) 12)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|BinarySearchTree| |#1|) (|Join| (|BinaryTreeCategory| |#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (ATTRIBUTE |finiteAggregate|) (SIGNATURE |binarySearchTree| ($ (|List| |#1|))) (SIGNATURE |insert!| ($ |#1| $)) (SIGNATURE |insertRoot!| ($ |#1| $)) (SIGNATURE |split| ((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $)))) (|OrderedSet|)) (T |BinarySearchTree|)) │ │ │ -((|binarySearchTree| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|BinarySearchTree| *3)))) (|insert!| (*1 *1 *2 *1) (AND (|isDomain| *1 (|BinarySearchTree| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|insertRoot!| (*1 *1 *2 *1) (AND (|isDomain| *1 (|BinarySearchTree| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|split| (*1 *2 *3 *1) (AND (|isDomain| *2 (|Record| (|:| |less| (|BinarySearchTree| *3)) (|:| |greater| (|BinarySearchTree| *3)))) (|isDomain| *1 (|BinarySearchTree| *3)) (|ofCategory| *3 (|OrderedSet|))))) │ │ │ -(|Join| (|BinaryTreeCategory| |#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (ATTRIBUTE |finiteAggregate|) (SIGNATURE |binarySearchTree| ($ (|List| |#1|))) (SIGNATURE |insert!| ($ |#1| $)) (SIGNATURE |insertRoot!| ($ |#1| $)) (SIGNATURE |split| ((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $)))) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 15)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setvalue!| ((|#1| $ |#1|) 19 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setright!| (($ $ $) 20 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setleft!| (($ $ $) 18 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "left" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "right" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) NIL T CONST)) (|right| (($ $) 21)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) NIL)) (|node?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|node| (($ $ |#1| $) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|left| (($ $) NIL)) (|leaves| (((|List| |#1|) $) NIL)) (|leaf?| (((|Boolean|) $) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|insert!| (($ |#1| $) 10)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) 14)) (|empty| (($) 8)) (|elt| ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (|distance| (((|Integer|) $ $) NIL)) (|cyclic?| (((|Boolean|) $) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) 17)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) NIL)) (|child?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|binaryTournament| (($ (|List| |#1|)) 12)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|BinaryTournament| |#1|) (|Join| (|BinaryTreeCategory| |#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (SIGNATURE |binaryTournament| ($ (|List| |#1|))) (SIGNATURE |insert!| ($ |#1| $)))) (|OrderedSet|)) (T |BinaryTournament|)) │ │ │ -((|binaryTournament| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|BinaryTournament| *3)))) (|insert!| (*1 *1 *2 *1) (AND (|isDomain| *1 (|BinaryTournament| *2)) (|ofCategory| *2 (|OrderedSet|))))) │ │ │ -(|Join| (|BinaryTreeCategory| |#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (SIGNATURE |binaryTournament| ($ (|List| |#1|))) (SIGNATURE |insert!| ($ |#1| $)))) │ │ │ -((|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) 16))) │ │ │ -(((|DrawNumericHack| |#1|) (CATEGORY |package| (SIGNATURE |coerce| ((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))))) (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|Float|)))) (T |DrawNumericHack|)) │ │ │ -((|coerce| (*1 *2 *3) (AND (|isDomain| *3 (|SegmentBinding| (|Expression| *4))) (|ofCategory| *4 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|Float|)))) (|isDomain| *2 (|SegmentBinding| (|Float|))) (|isDomain| *1 (|DrawNumericHack| *4))))) │ │ │ -(CATEGORY |package| (SIGNATURE |coerce| ((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|NonNegativeInteger|) "failed") $) 38)) (|retract| (((|NonNegativeInteger|) $) 36)) (|recip| (((|Union| $ "failed") $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|min| (($ $ $) NIL)) (|max| (($ $ $) 26)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) 39)) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) 41)) (|finite?| (((|Boolean|) $) 23)) (|countable?| (((|Boolean|) $) 35)) (|coerce| (((|OutputForm|) $) 22) (($ (|NonNegativeInteger|)) 14)) (^ (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|PositiveInteger|)) NIL)) (|Zero| (($) 12 T CONST)) (|One| (($) 11 T CONST)) (|Aleph| (($ (|NonNegativeInteger|)) 15)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 24)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 25)) (- (((|Union| $ "failed") $ $) 29)) (+ (($ $ $) 27)) (** (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|PositiveInteger|)) NIL) (($ $ $) 34)) (* (($ (|NonNegativeInteger|) $) 32) (($ (|PositiveInteger|) $) NIL) (($ $ $) 30))) │ │ │ -(((|CardinalNumber|) (|Join| (|OrderedSet|) (|AbelianMonoid|) (|Monoid|) (|RetractableTo| (|NonNegativeInteger|)) (CATEGORY |domain| (ATTRIBUTE (|commutative| "*")) (SIGNATURE - ((|Union| $ "failed") $ $)) (SIGNATURE ** ($ $ $)) (SIGNATURE |Aleph| ($ (|NonNegativeInteger|))) (SIGNATURE |finite?| ((|Boolean|) $)) (SIGNATURE |countable?| ((|Boolean|) $)) (SIGNATURE |generalizedContinuumHypothesisAssumed?| ((|Boolean|))) (SIGNATURE |generalizedContinuumHypothesisAssumed| ((|Boolean|) (|Boolean|)))))) (T |CardinalNumber|)) │ │ │ -((- (*1 *1 *1 *1) (|partial| |isDomain| *1 (|CardinalNumber|))) (** (*1 *1 *1 *1) (|isDomain| *1 (|CardinalNumber|))) (|Aleph| (*1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|CardinalNumber|)))) (|finite?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|CardinalNumber|)))) (|countable?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|CardinalNumber|)))) (|generalizedContinuumHypothesisAssumed?| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|CardinalNumber|)))) (|generalizedContinuumHypothesisAssumed| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|CardinalNumber|))))) │ │ │ -(|Join| (|OrderedSet|) (|AbelianMonoid|) (|Monoid|) (|RetractableTo| (|NonNegativeInteger|)) (CATEGORY |domain| (ATTRIBUTE (|commutative| "*")) (SIGNATURE - ((|Union| $ "failed") $ $)) (SIGNATURE ** ($ $ $)) (SIGNATURE |Aleph| ($ (|NonNegativeInteger|))) (SIGNATURE |finite?| ((|Boolean|) $)) (SIGNATURE |countable?| ((|Boolean|) $)) (SIGNATURE |generalizedContinuumHypothesisAssumed?| ((|Boolean|))) (SIGNATURE |generalizedContinuumHypothesisAssumed| ((|Boolean|) (|Boolean|))))) │ │ │ -((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|top!| ((|#1| $) 51)) (|top| ((|#1| $) 41)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|sample| (($) 7 T CONST)) (|rotate!| (($ $) 57)) (|reverse!| (($ $) 45)) (|push!| ((|#1| |#1| $) 43)) (|pop!| ((|#1| $) 42)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|length| (((|NonNegativeInteger|) $) 58)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|inspect| ((|#1| $) 36)) (|insertTop!| ((|#1| |#1| $) 49)) (|insertBottom!| ((|#1| |#1| $) 48)) (|insert!| (($ |#1| $) 37)) (|height| (((|NonNegativeInteger|) $) 52)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|front| ((|#1| $) 59)) (|extractTop!| ((|#1| $) 47)) (|extractBottom!| ((|#1| $) 46)) (|extract!| ((|#1| $) 38)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|enqueue!| ((|#1| |#1| $) 55)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|dequeue!| ((|#1| $) 56)) (|dequeue| (($) 54) (($ (|List| |#1|)) 53)) (|depth| (((|NonNegativeInteger|) $) 40)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|bottom!| ((|#1| $) 50)) (|bag| (($ (|List| |#1|)) 39)) (|back| ((|#1| $) 60)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|DequeueAggregate| |#1|) (|Category|) (|Type|)) (T |DequeueAggregate|)) │ │ │ -((|dequeue| (*1 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|dequeue| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *1 (|DequeueAggregate| *3)))) (|height| (*1 *2 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|top!| (*1 *2 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|bottom!| (*1 *2 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|insertTop!| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|insertBottom!| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|extractTop!| (*1 *2 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|extractBottom!| (*1 *2 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|reverse!| (*1 *1 *1) (AND (|ofCategory| *1 (|DequeueAggregate| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ -(|Join| (|StackAggregate| |t#1|) (|QueueAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |dequeue| ($)) (SIGNATURE |dequeue| ($ (|List| |t#1|))) (SIGNATURE |height| ((|NonNegativeInteger|) $)) (SIGNATURE |top!| (|t#1| $)) (SIGNATURE |bottom!| (|t#1| $)) (SIGNATURE |insertTop!| (|t#1| |t#1| $)) (SIGNATURE |insertBottom!| (|t#1| |t#1| $)) (SIGNATURE |extractTop!| (|t#1| $)) (SIGNATURE |extractBottom!| (|t#1| $)) (SIGNATURE |reverse!| ($ $)))) │ │ │ -(((|Aggregate|) . T) ((|BagAggregate| |#1|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|QueueAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|StackAggregate| |#1|) . T) ((|Type|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 46)) (|retract| (((|Integer|) $) 45)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|min| (($ $ $) 53)) (|max| (($ $ $) 52)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Integer|)) 47)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 38)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (>= (((|Boolean|) $ $) 50)) (> (((|Boolean|) $ $) 49)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 51)) (< (((|Boolean|) $ $) 48)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ -(((|FortranMachineTypeCategory|) (|Category|)) (T |FortranMachineTypeCategory|)) │ │ │ -NIL │ │ │ -(|Join| (|IntegralDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|EntireRing|) . T) ((|IntegralDomain|) . T) ((|LeftModule| $) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|OrderedSet|) . T) ((|RetractableTo| (|Integer|)) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) 24)) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) 28))) │ │ │ -(((|FactoredFunctions| |#1|) (CATEGORY |package| (SIGNATURE |nthRoot| ((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|))) (SIGNATURE |log| ((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)))) (|IntegralDomain|)) (T |FactoredFunctions|)) │ │ │ -((|log| (*1 *2 *3) (AND (|isDomain| *3 (|Factored| *4)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| *4)))) (|isDomain| *1 (|FactoredFunctions| *4)))) (|nthRoot| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Factored| *5)) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| *5) (|:| |radicand| (|List| *5)))) (|isDomain| *1 (|FactoredFunctions| *5)) (|isDomain| *4 (|NonNegativeInteger|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |nthRoot| ((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|))) (SIGNATURE |log| ((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)))) │ │ │ -((|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) 20))) │ │ │ -(((|FactoredFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)))) (|IntegralDomain|) (|IntegralDomain|)) (T |FactoredFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Factored| *5)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|IntegralDomain|)) (|isDomain| *2 (|Factored| *6)) (|isDomain| *1 (|FactoredFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)))) │ │ │ -((|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) 13))) │ │ │ -(((|FractionFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)))) (|IntegralDomain|) (|IntegralDomain|)) (T |FractionFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Fraction| *5)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|IntegralDomain|)) (|isDomain| *2 (|Fraction| *6)) (|isDomain| *1 (|FractionFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)))) │ │ │ -((|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) 20)) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) 15))) │ │ │ -(((|FactoredFunctionUtilities| |#1|) (CATEGORY |package| (SIGNATURE |refine| ((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|))) (SIGNATURE |mergeFactors| ((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)))) (|IntegralDomain|)) (T |FactoredFunctionUtilities|)) │ │ │ -((|mergeFactors| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Factored| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *1 (|FactoredFunctionUtilities| *3)))) (|refine| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Mapping| (|Factored| *4) *4)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Factored| *4)) (|isDomain| *1 (|FactoredFunctionUtilities| *4))))) │ │ │ -(CATEGORY |package| (SIGNATURE |refine| ((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|))) (SIGNATURE |mergeFactors| ((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|reductum| (($ $) 40)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|monomial| (($ |#1| (|NonNegativeInteger|)) 38)) (|minimumDegree| (((|NonNegativeInteger|) $) 42)) (|leadingCoefficient| ((|#1| $) 41)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|degree| (((|NonNegativeInteger|) $) 43)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ |#1|) 37 (|has| |#1| (|CommutativeRing|)))) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) 39)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 45) (($ |#1| $) 44))) │ │ │ -(((|MonogenicLinearOperator| |#1|) (|Category|) (|Ring|)) (T |MonogenicLinearOperator|)) │ │ │ -((|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|MonogenicLinearOperator| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|minimumDegree| (*1 *2 *1) (AND (|ofCategory| *1 (|MonogenicLinearOperator| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|leadingCoefficient| (*1 *2 *1) (AND (|ofCategory| *1 (|MonogenicLinearOperator| *2)) (|ofCategory| *2 (|Ring|)))) (|reductum| (*1 *1 *1) (AND (|ofCategory| *1 (|MonogenicLinearOperator| *2)) (|ofCategory| *2 (|Ring|)))) (|coefficient| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|MonogenicLinearOperator| *2)) (|ofCategory| *2 (|Ring|)))) (|monomial| (*1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|MonogenicLinearOperator| *2)) (|ofCategory| *2 (|Ring|))))) │ │ │ -(|Join| (|Ring|) (|BiModule| |t#1| |t#1|) (CATEGORY |domain| (IF (|has| |t#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |t#1|)) |noBranch|) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |minimumDegree| ((|NonNegativeInteger|) $)) (SIGNATURE |leadingCoefficient| (|t#1| $)) (SIGNATURE |reductum| ($ $)) (SIGNATURE |coefficient| (|t#1| $ (|NonNegativeInteger|))) (SIGNATURE |monomial| ($ |t#1| (|NonNegativeInteger|))))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Monoid|) . T) ((|RightModule| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((|newton| (((|SparseUnivariatePolynomial| |#1|) (|List| |#1|)) 25))) │ │ │ -(((|NewtonInterpolation| |#1|) (CATEGORY |package| (SIGNATURE |newton| ((|SparseUnivariatePolynomial| |#1|) (|List| |#1|)))) (|IntegralDomain|)) (T |NewtonInterpolation|)) │ │ │ -((|newton| (*1 *2 *3) (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *4)) (|isDomain| *1 (|NewtonInterpolation| *4))))) │ │ │ -(CATEGORY |package| (SIGNATURE |newton| ((|SparseUnivariatePolynomial| |#1|) (|List| |#1|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|series| (($ (|Stream| |#1|)) 9)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) 42)) (|pole?| (((|Boolean|) $) 52)) (|order| (((|NonNegativeInteger|) $) 55) (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) 54)) (|one?| (((|Boolean|) $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|exquo| (((|Union| $ "failed") $ $) 44 (|has| |#1| (|IntegralDomain|)))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|coefficients| (((|Stream| |#1|) $) 23)) (|characteristic| (((|NonNegativeInteger|)) 51)) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 10 T CONST)) (|One| (($) 14 T CONST)) (= (((|Boolean|) $ $) 22)) (- (($ $) 30) (($ $ $) 16)) (+ (($ $ $) 25)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) 49)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (|Integer|)) 36))) │ │ │ -(((|InnerTaylorSeries| |#1|) (|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |coefficients| ((|Stream| |#1|) $)) (SIGNATURE |series| ($ (|Stream| |#1|))) (SIGNATURE |pole?| ((|Boolean|) $)) (SIGNATURE |order| ((|NonNegativeInteger|) $)) (SIGNATURE |order| ((|NonNegativeInteger|) $ (|NonNegativeInteger|))) (SIGNATURE * ($ |#1| $)) (SIGNATURE * ($ $ |#1|)) (SIGNATURE * ($ $ (|Integer|))) (IF (|has| |#1| (|IntegralDomain|)) (ATTRIBUTE (|IntegralDomain|)) |noBranch|))) (|Ring|)) (T |InnerTaylorSeries|)) │ │ │ -((|coefficients| (*1 *2 *1) (AND (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|InnerTaylorSeries| *3)) (|ofCategory| *3 (|Ring|)))) (|series| (*1 *1 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|InnerTaylorSeries| *3)))) (|pole?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|InnerTaylorSeries| *3)) (|ofCategory| *3 (|Ring|)))) (|order| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|InnerTaylorSeries| *3)) (|ofCategory| *3 (|Ring|)))) (|order| (*1 *2 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|InnerTaylorSeries| *3)) (|ofCategory| *3 (|Ring|)))) (* (*1 *1 *2 *1) (AND (|isDomain| *1 (|InnerTaylorSeries| *2)) (|ofCategory| *2 (|Ring|)))) (* (*1 *1 *1 *2) (AND (|isDomain| *1 (|InnerTaylorSeries| *2)) (|ofCategory| *2 (|Ring|)))) (* (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|InnerTaylorSeries| *3)) (|ofCategory| *3 (|Ring|))))) │ │ │ -(|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |coefficients| ((|Stream| |#1|) $)) (SIGNATURE |series| ($ (|Stream| |#1|))) (SIGNATURE |pole?| ((|Boolean|) $)) (SIGNATURE |order| ((|NonNegativeInteger|) $)) (SIGNATURE |order| ((|NonNegativeInteger|) $ (|NonNegativeInteger|))) (SIGNATURE * ($ |#1| $)) (SIGNATURE * ($ $ |#1|)) (SIGNATURE * ($ $ (|Integer|))) (IF (|has| |#1| (|IntegralDomain|)) (ATTRIBUTE (|IntegralDomain|)) |noBranch|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 23)) (|subtractIfCan| (((|Union| $ "failed") $ $) 25)) (|sample| (($) 22 T CONST)) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 21 T CONST)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17)) (- (($ $ $) 27) (($ $) 26)) (+ (($ $ $) 19)) (* (($ (|PositiveInteger|) $) 20) (($ (|NonNegativeInteger|) $) 24) (($ (|Integer|) $) 28))) │ │ │ -(((|OrderedAbelianGroup|) (|Category|)) (T |OrderedAbelianGroup|)) │ │ │ -NIL │ │ │ -(|Join| (|OrderedCancellationAbelianMonoid|) (|AbelianGroup|)) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedCancellationAbelianMonoid|) . T) ((|OrderedSet|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 23)) (|sup| (($ $ $) 26)) (|subtractIfCan| (((|Union| $ "failed") $ $) 25)) (|sample| (($) 22 T CONST)) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 21 T CONST)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17)) (+ (($ $ $) 19)) (* (($ (|PositiveInteger|) $) 20) (($ (|NonNegativeInteger|) $) 24))) │ │ │ -(((|OrderedAbelianMonoidSup|) (|Category|)) (T |OrderedAbelianMonoidSup|)) │ │ │ -((|sup| (*1 *1 *1 *1) (|ofCategory| *1 (|OrderedAbelianMonoidSup|)))) │ │ │ -(|Join| (|OrderedCancellationAbelianMonoid|) (CATEGORY |domain| (SIGNATURE |sup| ($ $ $)))) │ │ │ -(((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedCancellationAbelianMonoid|) . T) ((|OrderedSet|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL) (((|Union| (|BasicOperator|) "failed") $) NIL)) (|retract| ((|#1| $) NIL) (((|BasicOperator|) $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|opeval| ((|#1| (|BasicOperator|) |#1|) NIL)) (|one?| (((|Boolean|) $) NIL)) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|evaluateInverse| (($ $ (|Mapping| |#1| |#1|)) NIL)) (|evaluate| (($ $ (|Mapping| |#1| |#1|)) NIL)) (|elt| ((|#1| $ |#1|) NIL)) (|conjug| ((|#1| |#1|) NIL (|has| |#1| (|CommutativeRing|)))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#1|) NIL) (($ (|BasicOperator|)) NIL)) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|adjoint| (($ $) NIL (|has| |#1| (|CommutativeRing|))) (($ $ $) NIL (|has| |#1| (|CommutativeRing|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ (|BasicOperator|) (|Integer|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (|CommutativeRing|))) (($ $ |#1|) NIL (|has| |#1| (|CommutativeRing|))))) │ │ │ -(((|Operator| |#1|) (|Join| (|Ring|) (|RetractableTo| |#1|) (|RetractableTo| (|BasicOperator|)) (|Eltable| |#1| |#1|) (CATEGORY |domain| (IF (|has| |#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |noBranch|) (IF (|has| |#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |noBranch|) (IF (|has| |#1| (|CommutativeRing|)) (PROGN (ATTRIBUTE (|Algebra| |#1|)) (SIGNATURE |adjoint| ($ $)) (SIGNATURE |adjoint| ($ $ $)) (SIGNATURE |conjug| (|#1| |#1|))) |noBranch|) (SIGNATURE |evaluate| ($ $ (|Mapping| |#1| |#1|))) (SIGNATURE |evaluateInverse| ($ $ (|Mapping| |#1| |#1|))) (SIGNATURE ** ($ (|BasicOperator|) (|Integer|))) (SIGNATURE ** ($ $ (|Integer|))) (SIGNATURE |opeval| (|#1| (|BasicOperator|) |#1|)) (SIGNATURE |makeop| ($ |#1| (|FreeGroup| (|BasicOperator|)))))) (|Ring|)) (T |Operator|)) │ │ │ -((|adjoint| (*1 *1 *1) (AND (|isDomain| *1 (|Operator| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|Ring|)))) (|adjoint| (*1 *1 *1 *1) (AND (|isDomain| *1 (|Operator| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|Ring|)))) (|conjug| (*1 *2 *2) (AND (|isDomain| *1 (|Operator| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|Ring|)))) (|evaluate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|Operator| *3)))) (|evaluateInverse| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|Operator| *3)))) (** (*1 *1 *2 *3) (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|Operator| *4)) (|ofCategory| *4 (|Ring|)))) (** (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Operator| *3)) (|ofCategory| *3 (|Ring|)))) (|opeval| (*1 *2 *3 *2) (AND (|isDomain| *3 (|BasicOperator|)) (|isDomain| *1 (|Operator| *2)) (|ofCategory| *2 (|Ring|)))) (|makeop| (*1 *1 *2 *3) (AND (|isDomain| *3 (|FreeGroup| (|BasicOperator|))) (|isDomain| *1 (|Operator| *2)) (|ofCategory| *2 (|Ring|))))) │ │ │ -(|Join| (|Ring|) (|RetractableTo| |#1|) (|RetractableTo| (|BasicOperator|)) (|Eltable| |#1| |#1|) (CATEGORY |domain| (IF (|has| |#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |noBranch|) (IF (|has| |#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |noBranch|) (IF (|has| |#1| (|CommutativeRing|)) (PROGN (ATTRIBUTE (|Algebra| |#1|)) (SIGNATURE |adjoint| ($ $)) (SIGNATURE |adjoint| ($ $ $)) (SIGNATURE |conjug| (|#1| |#1|))) |noBranch|) (SIGNATURE |evaluate| ($ $ (|Mapping| |#1| |#1|))) (SIGNATURE |evaluateInverse| ($ $ (|Mapping| |#1| |#1|))) (SIGNATURE ** ($ (|BasicOperator|) (|Integer|))) (SIGNATURE ** ($ $ (|Integer|))) (SIGNATURE |opeval| (|#1| (|BasicOperator|) |#1|)) (SIGNATURE |makeop| ($ |#1| (|FreeGroup| (|BasicOperator|)))))) │ │ │ -((|size| (((|Integer|)) 13)) (|seed| (((|Integer|)) 16)) (|reseed| (((|Void|) (|Integer|)) 15)) (|randnum| (((|Integer|) (|Integer|)) 17) (((|Integer|)) 12))) │ │ │ -(((|RandomNumberSource|) (CATEGORY |package| (SIGNATURE |randnum| ((|Integer|))) (SIGNATURE |size| ((|Integer|))) (SIGNATURE |randnum| ((|Integer|) (|Integer|))) (SIGNATURE |reseed| ((|Void|) (|Integer|))) (SIGNATURE |seed| ((|Integer|))))) (T |RandomNumberSource|)) │ │ │ -((|seed| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|RandomNumberSource|)))) (|reseed| (*1 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|RandomNumberSource|)))) (|randnum| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|RandomNumberSource|)))) (|size| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|RandomNumberSource|)))) (|randnum| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|RandomNumberSource|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |randnum| ((|Integer|))) (SIGNATURE |size| ((|Integer|))) (SIGNATURE |randnum| ((|Integer|) (|Integer|))) (SIGNATURE |reseed| ((|Void|) (|Integer|))) (SIGNATURE |seed| ((|Integer|)))) │ │ │ ((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|recip| (((|Union| $ "failed") $) 33)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|one?| (((|Boolean|) $) 30)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 38)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ (((|PrincipalIdealDomain|) (|Category|)) (T |PrincipalIdealDomain|)) │ │ │ ((|principalIdeal| (*1 *2 *3) (AND (|ofCategory| *1 (|PrincipalIdealDomain|)) (|isDomain| *2 (|Record| (|:| |coef| (|List| *1)) (|:| |generator| *1))) (|isDomain| *3 (|List| *1)))) (|expressIdealMember| (*1 *2 *2 *1) (|partial| AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|PrincipalIdealDomain|))))) │ │ │ (|Join| (|GcdDomain|) (CATEGORY |domain| (SIGNATURE |principalIdeal| ((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $))) (SIGNATURE |expressIdealMember| ((|Union| (|List| $) "failed") (|List| $) $)))) │ │ │ (((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|EntireRing|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ |#1|) 37)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 39) (($ |#1| $) 38))) │ │ │ -(((|XAlgebra| |#1|) (|Category|) (|Ring|)) (T |XAlgebra|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|ofCategory| *1 (|XAlgebra| *2)) (|ofCategory| *2 (|Ring|))))) │ │ │ -(|Join| (|Ring|) (|BiModule| |t#1| |t#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ |t#1|)) (IF (|has| |t#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |t#1|)) |noBranch|))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Monoid|) . T) ((|RightModule| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((|monomial?| (((|Boolean|) $) 12)) (|map| (($ (|Mapping| |#2| |#2|) $) 21)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (|Fraction| (|Integer|)) $) 24) (($ $ (|Fraction| (|Integer|))) NIL))) │ │ │ -(((|AbelianMonoidRing&| |#1| |#2| |#3|) (CATEGORY |domain| (SIGNATURE * (|#1| |#1| (|Fraction| (|Integer|)))) (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)) (SIGNATURE |monomial?| ((|Boolean|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) (|AbelianMonoidRing| |#2| |#3|) (|Ring|) (|OrderedAbelianMonoid|)) (T |AbelianMonoidRing&|)) │ │ │ -NIL │ │ │ -(CATEGORY |domain| (SIGNATURE * (|#1| |#1| (|Fraction| (|Integer|)))) (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)) (SIGNATURE |monomial?| ((|Boolean|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) 44)) (|suppOfZero| (((|List| |#1|) $) 30)) (|suppOfPole| (((|List| |#1|) $) 29)) (|supp| (((|List| |#1|) $) 31)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|split| (((|List| $) $) 36)) (|size| (((|NonNegativeInteger|) $) 43)) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) 39)) (|retract| ((|#1| $) 40)) (|nthFactor| ((|#1| $ (|Integer|)) 46)) (|nthCoef| (((|Integer|) $ (|Integer|)) 45)) (|mapGen| (($ (|Mapping| |#1| |#1|) $) 49)) (|mapCoef| (($ (|Mapping| (|Integer|) (|Integer|)) $) 48)) (|latex| (((|String|) $) 9)) (|incr| (($ $) 26)) (|highCommonTerms| (($ $ $) 50 (|has| (|Integer|) (|OrderedAbelianMonoid|)))) (|hash| (((|SingleInteger|) $) 10)) (|effective?| (((|Boolean|) $) 32)) (|divOfZero| (($ $) 28)) (|divOfPole| (($ $) 27)) (|degree| (((|Integer|) $) 37)) (|concat| (($ $ $) 33)) (|collect| (($ $) 34)) (|coerce| (((|OutputForm|) $) 11) (($ |#1|) 38)) (|coefficient| (((|Integer|) |#1| $) 47)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 35)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13) (($ |#1| $) 41)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ (|Integer|)) 52) (($ (|Integer|) $) 51) (($ (|Integer|) |#1|) 42))) │ │ │ -(((|DivisorCategory| |#1|) (|Category|) (|SetCategory|)) (T |DivisorCategory|)) │ │ │ -((|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|DivisorCategory| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Integer|)))) (|split| (*1 *2 *1) (AND (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|DivisorCategory| *3)))) (<= (*1 *2 *1 *1) (AND (|ofCategory| *1 (|DivisorCategory| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|collect| (*1 *1 *1) (AND (|ofCategory| *1 (|DivisorCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (|concat| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|DivisorCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (|effective?| (*1 *2 *1) (AND (|ofCategory| *1 (|DivisorCategory| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Boolean|)))) (|supp| (*1 *2 *1) (AND (|ofCategory| *1 (|DivisorCategory| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|List| *3)))) (|suppOfZero| (*1 *2 *1) (AND (|ofCategory| *1 (|DivisorCategory| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|List| *3)))) (|suppOfPole| (*1 *2 *1) (AND (|ofCategory| *1 (|DivisorCategory| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|List| *3)))) (|divOfZero| (*1 *1 *1) (AND (|ofCategory| *1 (|DivisorCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (|divOfPole| (*1 *1 *1) (AND (|ofCategory| *1 (|DivisorCategory| *2)) (|ofCategory| *2 (|SetCategory|)))) (|incr| (*1 *1 *1) (AND (|ofCategory| *1 (|DivisorCategory| *2)) (|ofCategory| *2 (|SetCategory|))))) │ │ │ -(|Join| (|AbelianGroup|) (|Module| (|Integer|)) (|FreeAbelianMonoidCategory| |t#1| (|Integer|)) (CATEGORY |domain| (SIGNATURE |degree| ((|Integer|) $)) (SIGNATURE |split| ((|List| $) $)) (SIGNATURE <= ((|Boolean|) $ $)) (SIGNATURE |collect| ($ $)) (SIGNATURE |concat| ($ $ $)) (SIGNATURE |effective?| ((|Boolean|) $)) (SIGNATURE |supp| ((|List| |t#1|) $)) (SIGNATURE |suppOfZero| ((|List| |t#1|) $)) (SIGNATURE |suppOfPole| ((|List| |t#1|) $)) (SIGNATURE |divOfZero| ($ $)) (SIGNATURE |divOfPole| ($ $)) (SIGNATURE |incr| ($ $)))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| (|Integer|) (|Integer|)) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|FreeAbelianMonoidCategory| |#1| (|Integer|)) . T) ((|LeftModule| (|Integer|)) . T) ((|Module| (|Integer|)) . T) ((|RetractableTo| |#1|) . T) ((|RightModule| (|Integer|)) . T) ((|SetCategory|) . T)) │ │ │ -((|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) 20)) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) 42))) │ │ │ -(((|DegreeReductionPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |reduce| ((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |expand| ((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)))) (|Ring|) (|Join| (|IntegralDomain|) (|OrderedSet|))) (T |DegreeReductionPackage|)) │ │ │ -((|expand| (*1 *2 *3 *4) (AND (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *6 (|Join| (|IntegralDomain|) (|OrderedSet|))) (|isDomain| *2 (|List| (|Expression| *6))) (|isDomain| *1 (|DegreeReductionPackage| *5 *6)) (|isDomain| *3 (|Expression| *6)) (|ofCategory| *5 (|Ring|)))) (|reduce| (*1 *2 *3) (AND (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Record| (|:| |pol| (|SparseUnivariatePolynomial| *4)) (|:| |deg| (|PositiveInteger|)))) (|isDomain| *1 (|DegreeReductionPackage| *4 *5)) (|isDomain| *3 (|SparseUnivariatePolynomial| *4)) (|ofCategory| *5 (|Join| (|IntegralDomain|) (|OrderedSet|)))))) │ │ │ -(CATEGORY |package| (SIGNATURE |reduce| ((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |expand| ((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)))) │ │ │ -((|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) 26))) │ │ │ -(((|DiscreteLogarithmPackage| |#1|) (CATEGORY |package| (SIGNATURE |shanksDiscLogAlgorithm| ((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)))) (|Join| (|Monoid|) (|Finite|) (CATEGORY |package| (SIGNATURE ** (|#1| |#1| (|Integer|)))))) (T |DiscreteLogarithmPackage|)) │ │ │ -((|shanksDiscLogAlgorithm| (*1 *2 *3 *3 *2) (|partial| AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Join| (|Monoid|) (|Finite|) (CATEGORY |package| (SIGNATURE ** (*3 *3 (|Integer|)))))) (|isDomain| *1 (|DiscreteLogarithmPackage| *3))))) │ │ │ -(CATEGORY |package| (SIGNATURE |shanksDiscLogAlgorithm| ((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 50 (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) 51 (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) 53 (|has| |#1| (|IntegralDomain|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|reductum| (($ $) 59)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|monomial?| (((|Boolean|) $) 61)) (|monomial| (($ |#1| |#2|) 60)) (|map| (($ (|Mapping| |#1| |#1|) $) 62)) (|leadingMonomial| (($ $) 64)) (|leadingCoefficient| ((|#1| $) 65)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|exquo| (((|Union| $ "failed") $ $) 49 (|has| |#1| (|IntegralDomain|)))) (|degree| ((|#2| $) 63)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ (|Fraction| (|Integer|))) 56 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $) 48 (|has| |#1| (|IntegralDomain|))) (($ |#1|) 46 (|has| |#1| (|CommutativeRing|)))) (|coefficient| ((|#1| $ |#2|) 58)) (|charthRoot| (((|Union| $ "failed") $) 47 (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 52 (|has| |#1| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (/ (($ $ |#1|) 57 (|has| |#1| (|Field|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (|Fraction| (|Integer|)) $) 55 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) 54 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ -(((|AbelianMonoidRing| |#1| |#2|) (|Category|) (|Ring|) (|OrderedAbelianMonoid|)) (T |AbelianMonoidRing|)) │ │ │ -((|leadingCoefficient| (*1 *2 *1) (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|)))) (|leadingMonomial| (*1 *1 *1) (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)))) (|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|AbelianMonoidRing| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|AbelianMonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)))) (|monomial?| (*1 *2 *1) (AND (|ofCategory| *1 (|AbelianMonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|Boolean|)))) (|monomial| (*1 *1 *2 *3) (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)))) (|reductum| (*1 *1 *1) (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)))) (|coefficient| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|)))) (/ (*1 *1 *1 *2) (AND (|ofCategory| *1 (|AbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Field|))))) │ │ │ -(|Join| (|Ring|) (|BiModule| |t#1| |t#1|) (CATEGORY |domain| (SIGNATURE |leadingCoefficient| (|t#1| $)) (SIGNATURE |leadingMonomial| ($ $)) (SIGNATURE |degree| (|t#2| $)) (SIGNATURE |map| ($ (|Mapping| |t#1| |t#1|) $)) (SIGNATURE |monomial?| ((|Boolean|) $)) (SIGNATURE |monomial| ($ |t#1| |t#2|)) (SIGNATURE |reductum| ($ $)) (SIGNATURE |coefficient| (|t#1| $ |t#2|)) (IF (|has| |t#1| (|Field|)) (SIGNATURE / ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (|CommutativeRing|)) (PROGN (ATTRIBUTE (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |t#1|))) |noBranch|) (IF (|has| |t#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |noBranch|) (IF (|has| |t#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |noBranch|) (IF (|has| |t#1| (|IntegralDomain|)) (ATTRIBUTE (|IntegralDomain|)) |noBranch|) (IF (|has| |t#1| (|Algebra| (|Fraction| (|Integer|)))) (ATTRIBUTE (|Algebra| (|Fraction| (|Integer|)))) |noBranch|))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) |has| |#1| (|IntegralDomain|)) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|EntireRing|) |has| |#1| (|IntegralDomain|)) ((|IntegralDomain|) |has| |#1| (|IntegralDomain|)) ((|LeftModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Module| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) |has| |#1| (|IntegralDomain|)) ((|Monoid|) . T) ((|RightModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((|neglist| (((|List| |#1|) (|List| |#1|)) 10))) │ │ │ -(((|ExpertSystemToolsPackage1| |#1|) (CATEGORY |package| (SIGNATURE |neglist| ((|List| |#1|) (|List| |#1|)))) (|OrderedRing|)) (T |ExpertSystemToolsPackage1|)) │ │ │ -((|neglist| (*1 *2 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedRing|)) (|isDomain| *1 (|ExpertSystemToolsPackage1| *3))))) │ │ │ -(CATEGORY |package| (SIGNATURE |neglist| ((|List| |#1|) (|List| |#1|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|exponents| (((|List| (|Integer|)) $) 16)) (|degree| (((|NonNegativeInteger|) $) 14)) (|coerce| (((|OutputForm|) $) 20) (($ (|List| (|Integer|))) 12)) (|Nul| (($ (|NonNegativeInteger|)) 17)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 9)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 10))) │ │ │ -(((|ExtAlgBasis|) (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|List| (|Integer|)))) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |exponents| ((|List| (|Integer|)) $)) (SIGNATURE |Nul| ($ (|NonNegativeInteger|)))))) (T |ExtAlgBasis|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|ExtAlgBasis|)))) (|degree| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ExtAlgBasis|)))) (|exponents| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|ExtAlgBasis|)))) (|Nul| (*1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ExtAlgBasis|))))) │ │ │ -(|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|List| (|Integer|)))) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |exponents| ((|List| (|Integer|)) $)) (SIGNATURE |Nul| ($ (|NonNegativeInteger|))))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 14)) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) 18)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|size| (((|NonNegativeInteger|) $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL)) (|retract| ((|#1| $) NIL)) (|nthFactor| ((|#1| $ (|Integer|)) NIL)) (|nthCoef| (((|Integer|) $ (|Integer|)) NIL)) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|mapGen| (($ (|Mapping| |#1| |#1|) $) NIL)) (|mapCoef| (($ (|Mapping| (|Integer|) (|Integer|)) $) 10)) (|latex| (((|String|) $) NIL)) (|highCommonTerms| (($ $ $) NIL (|has| (|Integer|) (|OrderedAbelianMonoid|)))) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ |#1|) NIL)) (|coefficient| (((|Integer|) |#1| $) NIL)) (|Zero| (($) 15 T CONST)) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) 21 (|has| |#1| (|OrderedSet|)))) (- (($ $) 11) (($ $ $) 20)) (+ (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ (|Integer|)) NIL) (($ (|Integer|) |#1|) 19))) │ │ │ -(((|FreeAbelianGroup| |#1|) (|Join| (|AbelianGroup|) (|Module| (|Integer|)) (|FreeAbelianMonoidCategory| |#1| (|Integer|)) (CATEGORY |package| (IF (|has| |#1| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |noBranch|))) (|SetCategory|)) (T |FreeAbelianGroup|)) │ │ │ +((|characteristicPolynomial| ((|#2| |#3|) 27))) │ │ │ +(((|CharacteristicPolynomialInMonogenicalAlgebra| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |characteristicPolynomial| (|#2| |#3|))) (|CommutativeRing|) (|UnivariatePolynomialCategory| |#1|) (|MonogenicAlgebra| |#1| |#2|)) (T |CharacteristicPolynomialInMonogenicalAlgebra|)) │ │ │ +((|characteristicPolynomial| (*1 *2 *3) (AND (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)) (|isDomain| *1 (|CharacteristicPolynomialInMonogenicalAlgebra| *4 *2 *3)) (|ofCategory| *3 (|MonogenicAlgebra| *4 *2))))) │ │ │ +(CATEGORY |package| (SIGNATURE |characteristicPolynomial| (|#2| |#3|))) │ │ │ +((|tanh| ((|#2| |#2|) 77)) (|tan| ((|#2| |#2|) 65)) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) 116)) (|sinh| ((|#2| |#2|) 75)) (|sin| ((|#2| |#2|) 63)) (|sech| ((|#2| |#2|) 79)) (|sec| ((|#2| |#2|) 67)) (|pi| ((|#2|) 46)) (|operator| (((|BasicOperator|) (|BasicOperator|)) 95)) (|log| ((|#2| |#2|) 61)) (|localReal?| (((|Boolean|) |#2|) 134)) (|iitanh| ((|#2| |#2|) 180)) (|iitan| ((|#2| |#2|) 156)) (|iisqrt3| ((|#2|) 59)) (|iisqrt2| ((|#2|) 58)) (|iisinh| ((|#2| |#2|) 176)) (|iisin| ((|#2| |#2|) 152)) (|iisech| ((|#2| |#2|) 184)) (|iisec| ((|#2| |#2|) 160)) (|iilog| ((|#2| |#2|) 148)) (|iiexp| ((|#2| |#2|) 150)) (|iicsch| ((|#2| |#2|) 186)) (|iicsc| ((|#2| |#2|) 162)) (|iicoth| ((|#2| |#2|) 182)) (|iicot| ((|#2| |#2|) 158)) (|iicosh| ((|#2| |#2|) 178)) (|iicos| ((|#2| |#2|) 154)) (|iiatanh| ((|#2| |#2|) 192)) (|iiatan| ((|#2| |#2|) 168)) (|iiasinh| ((|#2| |#2|) 188)) (|iiasin| ((|#2| |#2|) 164)) (|iiasech| ((|#2| |#2|) 196)) (|iiasec| ((|#2| |#2|) 172)) (|iiacsch| ((|#2| |#2|) 198)) (|iiacsc| ((|#2| |#2|) 174)) (|iiacoth| ((|#2| |#2|) 194)) (|iiacot| ((|#2| |#2|) 170)) (|iiacosh| ((|#2| |#2|) 190)) (|iiacos| ((|#2| |#2|) 166)) (|exp| ((|#2| |#2|) 62)) (|csch| ((|#2| |#2|) 80)) (|csc| ((|#2| |#2|) 68)) (|coth| ((|#2| |#2|) 78)) (|cot| ((|#2| |#2|) 66)) (|cosh| ((|#2| |#2|) 76)) (|cos| ((|#2| |#2|) 64)) (|belong?| (((|Boolean|) (|BasicOperator|)) 93)) (|atanh| ((|#2| |#2|) 83)) (|atan| ((|#2| |#2|) 71)) (|asinh| ((|#2| |#2|) 81)) (|asin| ((|#2| |#2|) 69)) (|asech| ((|#2| |#2|) 85)) (|asec| ((|#2| |#2|) 73)) (|acsch| ((|#2| |#2|) 86)) (|acsc| ((|#2| |#2|) 74)) (|acoth| ((|#2| |#2|) 84)) (|acot| ((|#2| |#2|) 72)) (|acosh| ((|#2| |#2|) 82)) (|acos| ((|#2| |#2|) 70))) │ │ │ +(((|ElementaryFunction| |#1| |#2|) (CATEGORY |package| (SIGNATURE |exp| (|#2| |#2|)) (SIGNATURE |log| (|#2| |#2|)) (SIGNATURE |sin| (|#2| |#2|)) (SIGNATURE |cos| (|#2| |#2|)) (SIGNATURE |tan| (|#2| |#2|)) (SIGNATURE |cot| (|#2| |#2|)) (SIGNATURE |sec| (|#2| |#2|)) (SIGNATURE |csc| (|#2| |#2|)) (SIGNATURE |asin| (|#2| |#2|)) (SIGNATURE |acos| (|#2| |#2|)) (SIGNATURE |atan| (|#2| |#2|)) (SIGNATURE |acot| (|#2| |#2|)) (SIGNATURE |asec| (|#2| |#2|)) (SIGNATURE |acsc| (|#2| |#2|)) (SIGNATURE |sinh| (|#2| |#2|)) (SIGNATURE |cosh| (|#2| |#2|)) (SIGNATURE |tanh| (|#2| |#2|)) (SIGNATURE |coth| (|#2| |#2|)) (SIGNATURE |sech| (|#2| |#2|)) (SIGNATURE |csch| (|#2| |#2|)) (SIGNATURE |asinh| (|#2| |#2|)) (SIGNATURE |acosh| (|#2| |#2|)) (SIGNATURE |atanh| (|#2| |#2|)) (SIGNATURE |acoth| (|#2| |#2|)) (SIGNATURE |asech| (|#2| |#2|)) (SIGNATURE |acsch| (|#2| |#2|)) (SIGNATURE |pi| (|#2|)) (SIGNATURE |belong?| ((|Boolean|) (|BasicOperator|))) (SIGNATURE |operator| ((|BasicOperator|) (|BasicOperator|))) (SIGNATURE |iisqrt2| (|#2|)) (SIGNATURE |iisqrt3| (|#2|)) (SIGNATURE |iiexp| (|#2| |#2|)) (SIGNATURE |iilog| (|#2| |#2|)) (SIGNATURE |iisin| (|#2| |#2|)) (SIGNATURE |iicos| (|#2| |#2|)) (SIGNATURE |iitan| (|#2| |#2|)) (SIGNATURE |iicot| (|#2| |#2|)) (SIGNATURE |iisec| (|#2| |#2|)) (SIGNATURE |iicsc| (|#2| |#2|)) (SIGNATURE |iiasin| (|#2| |#2|)) (SIGNATURE |iiacos| (|#2| |#2|)) (SIGNATURE |iiatan| (|#2| |#2|)) (SIGNATURE |iiacot| (|#2| |#2|)) (SIGNATURE |iiasec| (|#2| |#2|)) (SIGNATURE |iiacsc| (|#2| |#2|)) (SIGNATURE |iisinh| (|#2| |#2|)) (SIGNATURE |iicosh| (|#2| |#2|)) (SIGNATURE |iitanh| (|#2| |#2|)) (SIGNATURE |iicoth| (|#2| |#2|)) (SIGNATURE |iisech| (|#2| |#2|)) (SIGNATURE |iicsch| (|#2| |#2|)) (SIGNATURE |iiasinh| (|#2| |#2|)) (SIGNATURE |iiacosh| (|#2| |#2|)) (SIGNATURE |iiatanh| (|#2| |#2|)) (SIGNATURE |iiacoth| (|#2| |#2|)) (SIGNATURE |iiasech| (|#2| |#2|)) (SIGNATURE |iiacsch| (|#2| |#2|)) (SIGNATURE |specialTrigs| ((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|)))))) (SIGNATURE |localReal?| ((|Boolean|) |#2|))) (|Join| (|OrderedSet|) (|IntegralDomain|)) (|Join| (|FunctionSpace| |#1|) (|RadicalCategory|))) (T |ElementaryFunction|)) │ │ │ +((|localReal?| (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ElementaryFunction| *4 *3)) (|ofCategory| *3 (|Join| (|FunctionSpace| *4) (|RadicalCategory|))))) (|specialTrigs| (*1 *2 *2 *3) (|partial| AND (|isDomain| *3 (|List| (|Record| (|:| |func| *2) (|:| |pole| (|Boolean|))))) (|ofCategory| *2 (|Join| (|FunctionSpace| *4) (|RadicalCategory|))) (|ofCategory| *4 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *4 *2)))) (|iiacsch| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iiasech| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iiacoth| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iiatanh| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iiacosh| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iiasinh| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iicsch| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iisech| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iicoth| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iitanh| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iicosh| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iisinh| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iiacsc| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iiasec| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iiacot| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iiatan| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iiacos| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iiasin| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iicsc| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iisec| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iicot| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iitan| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iicos| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iisin| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iilog| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iiexp| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|iisqrt3| (*1 *2) (AND (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|iisqrt2| (*1 *2) (AND (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|operator| (*1 *2 *2) (AND (|isDomain| *2 (|BasicOperator|)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *4)) (|ofCategory| *4 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|belong?| (*1 *2 *3) (AND (|isDomain| *3 (|BasicOperator|)) (|ofCategory| *4 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ElementaryFunction| *4 *5)) (|ofCategory| *5 (|Join| (|FunctionSpace| *4) (|RadicalCategory|))))) (|pi| (*1 *2) (AND (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|acsch| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|asech| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|acoth| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|atanh| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|acosh| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|asinh| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|csch| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|sech| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|coth| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|tanh| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|cosh| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|sinh| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|acsc| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|asec| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|acot| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|atan| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|acos| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|asin| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|csc| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|sec| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|cot| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|tan| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|cos| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|sin| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|log| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|))))) (|exp| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|ElementaryFunction| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|RadicalCategory|)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |exp| (|#2| |#2|)) (SIGNATURE |log| (|#2| |#2|)) (SIGNATURE |sin| (|#2| |#2|)) (SIGNATURE |cos| (|#2| |#2|)) (SIGNATURE |tan| (|#2| |#2|)) (SIGNATURE |cot| (|#2| |#2|)) (SIGNATURE |sec| (|#2| |#2|)) (SIGNATURE |csc| (|#2| |#2|)) (SIGNATURE |asin| (|#2| |#2|)) (SIGNATURE |acos| (|#2| |#2|)) (SIGNATURE |atan| (|#2| |#2|)) (SIGNATURE |acot| (|#2| |#2|)) (SIGNATURE |asec| (|#2| |#2|)) (SIGNATURE |acsc| (|#2| |#2|)) (SIGNATURE |sinh| (|#2| |#2|)) (SIGNATURE |cosh| (|#2| |#2|)) (SIGNATURE |tanh| (|#2| |#2|)) (SIGNATURE |coth| (|#2| |#2|)) (SIGNATURE |sech| (|#2| |#2|)) (SIGNATURE |csch| (|#2| |#2|)) (SIGNATURE |asinh| (|#2| |#2|)) (SIGNATURE |acosh| (|#2| |#2|)) (SIGNATURE |atanh| (|#2| |#2|)) (SIGNATURE |acoth| (|#2| |#2|)) (SIGNATURE |asech| (|#2| |#2|)) (SIGNATURE |acsch| (|#2| |#2|)) (SIGNATURE |pi| (|#2|)) (SIGNATURE |belong?| ((|Boolean|) (|BasicOperator|))) (SIGNATURE |operator| ((|BasicOperator|) (|BasicOperator|))) (SIGNATURE |iisqrt2| (|#2|)) (SIGNATURE |iisqrt3| (|#2|)) (SIGNATURE |iiexp| (|#2| |#2|)) (SIGNATURE |iilog| (|#2| |#2|)) (SIGNATURE |iisin| (|#2| |#2|)) (SIGNATURE |iicos| (|#2| |#2|)) (SIGNATURE |iitan| (|#2| |#2|)) (SIGNATURE |iicot| (|#2| |#2|)) (SIGNATURE |iisec| (|#2| |#2|)) (SIGNATURE |iicsc| (|#2| |#2|)) (SIGNATURE |iiasin| (|#2| |#2|)) (SIGNATURE |iiacos| (|#2| |#2|)) (SIGNATURE |iiatan| (|#2| |#2|)) (SIGNATURE |iiacot| (|#2| |#2|)) (SIGNATURE |iiasec| (|#2| |#2|)) (SIGNATURE |iiacsc| (|#2| |#2|)) (SIGNATURE |iisinh| (|#2| |#2|)) (SIGNATURE |iicosh| (|#2| |#2|)) (SIGNATURE |iitanh| (|#2| |#2|)) (SIGNATURE |iicoth| (|#2| |#2|)) (SIGNATURE |iisech| (|#2| |#2|)) (SIGNATURE |iicsch| (|#2| |#2|)) (SIGNATURE |iiasinh| (|#2| |#2|)) (SIGNATURE |iiacosh| (|#2| |#2|)) (SIGNATURE |iiatanh| (|#2| |#2|)) (SIGNATURE |iiacoth| (|#2| |#2|)) (SIGNATURE |iiasech| (|#2| |#2|)) (SIGNATURE |iiacsch| (|#2| |#2|)) (SIGNATURE |specialTrigs| ((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|)))))) (SIGNATURE |localReal?| ((|Boolean|) |#2|))) │ │ │ +((|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) 9))) │ │ │ +(((|RadixUtilities|) (CATEGORY |package| (SIGNATURE |radix| ((|Any|) (|Fraction| (|Integer|)) (|Integer|))))) (T |RadixUtilities|)) │ │ │ +((|radix| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| (|Integer|))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|RadixUtilities|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |radix| ((|Any|) (|Fraction| (|Integer|)) (|Integer|)))) │ │ │ +((|tanh| (((|Stream| |#1|) (|Stream| |#1|)) 57)) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) 39)) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) 53)) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) 35)) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) 60)) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) 42)) (|log| (((|Stream| |#1|) (|Stream| |#1|)) 31)) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) 27)) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) 61)) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) 43)) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) 58)) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) 40)) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) 55)) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) 37)) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) 65)) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) 47)) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) 63)) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) 45)) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) 68)) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) 50)) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) 69)) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) 51)) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) 67)) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) 49)) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) 66)) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) 48)) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) 33))) │ │ │ +(((|StreamTranscendentalFunctionsNonCommutative| |#1|) (CATEGORY |package| (SIGNATURE |exp| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |log| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE ** ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |sin| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |cos| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |tan| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |cot| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |sec| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |csc| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |asin| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acos| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |atan| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acot| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |asec| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acsc| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |sinh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |cosh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |tanh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |coth| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |sech| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |csch| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |asinh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acosh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |atanh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acoth| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |asech| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acsch| ((|Stream| |#1|) (|Stream| |#1|)))) (|Algebra| (|Fraction| (|Integer|)))) (T |StreamTranscendentalFunctionsNonCommutative|)) │ │ │ +((|acsch| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|asech| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|acoth| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|atanh| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|acosh| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|asinh| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|csch| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|sech| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|coth| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|tanh| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|cosh| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|sinh| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|acsc| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|asec| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|acot| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|atan| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|acos| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|asin| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|csc| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|sec| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|cot| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|tan| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|cos| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|sin| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (** (*1 *2 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|log| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3)))) (|exp| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|isDomain| *1 (|StreamTranscendentalFunctionsNonCommutative| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |exp| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |log| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE ** ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |sin| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |cos| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |tan| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |cot| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |sec| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |csc| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |asin| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acos| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |atan| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acot| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |asec| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acsc| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |sinh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |cosh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |tanh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |coth| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |sech| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |csch| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |asinh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acosh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |atanh| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acoth| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |asech| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |acsch| ((|Stream| |#1|) (|Stream| |#1|)))) │ │ │ +((|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) 113)) (|variables| (((|List| (|SingletonAsOrderedSet|)) $) 15)) (|unvectorise| (($ (|Vector| |#2|)) 115)) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) 66)) (|totalDegree| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|List| (|SingletonAsOrderedSet|))) 18)) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 185)) (|squareFreePart| (($ $) 175)) (|squareFree| (((|Factored| $) $) 173)) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 81)) (|shiftRight| (($ $ (|NonNegativeInteger|)) 70)) (|shiftLeft| (($ $ (|NonNegativeInteger|)) 72)) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) 131)) (|retractIfCan| (((|Union| |#2| "failed") $) 118) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL) (((|Union| (|Integer|) "failed") $) NIL) (((|Union| (|SingletonAsOrderedSet|) "failed") $) NIL)) (|retract| ((|#2| $) 116) (((|Fraction| (|Integer|)) $) NIL) (((|Integer|) $) NIL) (((|SingletonAsOrderedSet|) $) NIL)) (|pseudoQuotient| (($ $ $) 152)) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) 154)) (|order| (((|NonNegativeInteger|) $ $) 170)) (|nextItem| (((|Union| $ "failed") $) 124)) (|monomial| (($ |#2| (|NonNegativeInteger|)) NIL) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) 46) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL)) (|minimumDegree| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|SingletonAsOrderedSet|)) 41) (((|List| (|NonNegativeInteger|)) $ (|List| (|SingletonAsOrderedSet|))) 42)) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) 58)) (|mainVariable| (((|Union| (|SingletonAsOrderedSet|) "failed") $) 39)) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) 69)) (|integrate| (($ $) 196)) (|init| (($) 120)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 182)) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 87)) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 85)) (|factor| (((|Factored| $) $) 105)) (|eval| (($ $ (|List| (|Equation| $))) 38) (($ $ (|Equation| $)) NIL) (($ $ $ $) NIL) (($ $ (|List| $) (|List| $)) NIL) (($ $ (|SingletonAsOrderedSet|) |#2|) 31) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| |#2|)) 28) (($ $ (|SingletonAsOrderedSet|) $) 25) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| $)) 23)) (|euclideanSize| (((|NonNegativeInteger|) $) 188)) (|elt| ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((|Fraction| $) (|Fraction| $) (|Fraction| $)) 148) ((|#2| (|Fraction| $) |#2|) 187) (((|Fraction| $) $ (|Fraction| $)) 169)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 191)) (|differentiate| (($ $ (|SingletonAsOrderedSet|)) 141) (($ $ (|List| (|SingletonAsOrderedSet|))) NIL) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $) 139) (($ $ (|Symbol|)) NIL) (($ $ (|List| (|Symbol|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL) (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#2| |#2|)) 138) (($ $ (|Mapping| |#2| |#2|) $) 135)) (|degree| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|SingletonAsOrderedSet|)) 16) (((|List| (|NonNegativeInteger|)) $ (|List| (|SingletonAsOrderedSet|))) 20)) (|content| ((|#2| $) NIL) (($ $ (|SingletonAsOrderedSet|)) 126)) (|composite| (((|Union| $ "failed") $ $) 162) (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) 158)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#2|) NIL) (($ (|SingletonAsOrderedSet|)) 50) (($ (|Fraction| (|Integer|))) NIL) (($ $) NIL))) │ │ │ +(((|UnivariatePolynomialCategory&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |coerce| (|#1| |#1|)) (SIGNATURE |gcdPolynomial| ((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |squareFree| ((|Factored| |#1|) |#1|)) (SIGNATURE |squareFreePart| (|#1| |#1|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |init| (|#1|)) (SIGNATURE |nextItem| ((|Union| |#1| "failed") |#1|)) (SIGNATURE |elt| ((|Fraction| |#1|) |#1| (|Fraction| |#1|))) (SIGNATURE |euclideanSize| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |divide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|)) (SIGNATURE |integrate| (|#1| |#1|)) (SIGNATURE |elt| (|#2| (|Fraction| |#1|) |#2|)) (SIGNATURE |separate| ((|Record| (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (SIGNATURE |pseudoDivide| ((|Record| (|:| |coef| |#2|) (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|)) (SIGNATURE |pseudoQuotient| (|#1| |#1| |#1|)) (SIGNATURE |composite| ((|Union| (|Fraction| |#1|) "failed") (|Fraction| |#1|) |#1|)) (SIGNATURE |composite| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |order| ((|NonNegativeInteger|) |#1| |#1|)) (SIGNATURE |elt| ((|Fraction| |#1|) (|Fraction| |#1|) (|Fraction| |#1|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |shiftLeft| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |shiftRight| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |karatsubaDivide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| (|NonNegativeInteger|))) (SIGNATURE |unmakeSUP| (|#1| (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |makeSUP| ((|SparseUnivariatePolynomial| |#2|) |#1|)) (SIGNATURE |unvectorise| (|#1| (|Vector| |#2|))) (SIGNATURE |vectorise| ((|Vector| |#2|) |#1| (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|))) (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#1| |#1| |#1|)) (SIGNATURE |elt| (|#2| |#1| |#2|)) (SIGNATURE |factor| ((|Factored| |#1|) |#1|)) (SIGNATURE |squareFreePolynomial| ((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |factorPolynomial| ((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |factorSquareFreePolynomial| ((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |solveLinearPolynomialEquation| ((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |content| (|#1| |#1| (|SingletonAsOrderedSet|))) (SIGNATURE |variables| ((|List| (|SingletonAsOrderedSet|)) |#1|)) (SIGNATURE |totalDegree| ((|NonNegativeInteger|) |#1| (|List| (|SingletonAsOrderedSet|)))) (SIGNATURE |totalDegree| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |monomial| (|#1| |#1| (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE |monomial| (|#1| |#1| (|SingletonAsOrderedSet|) (|NonNegativeInteger|))) (SIGNATURE |minimumDegree| ((|List| (|NonNegativeInteger|)) |#1| (|List| (|SingletonAsOrderedSet|)))) (SIGNATURE |minimumDegree| ((|NonNegativeInteger|) |#1| (|SingletonAsOrderedSet|))) (SIGNATURE |mainVariable| ((|Union| (|SingletonAsOrderedSet|) "failed") |#1|)) (SIGNATURE |degree| ((|List| (|NonNegativeInteger|)) |#1| (|List| (|SingletonAsOrderedSet|)))) (SIGNATURE |degree| ((|NonNegativeInteger|) |#1| (|SingletonAsOrderedSet|))) (SIGNATURE |retract| ((|SingletonAsOrderedSet|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|SingletonAsOrderedSet|) "failed") |#1|)) (SIGNATURE |coerce| (|#1| (|SingletonAsOrderedSet|))) (SIGNATURE |eval| (|#1| |#1| (|List| (|SingletonAsOrderedSet|)) (|List| |#1|))) (SIGNATURE |eval| (|#1| |#1| (|SingletonAsOrderedSet|) |#1|)) (SIGNATURE |eval| (|#1| |#1| (|List| (|SingletonAsOrderedSet|)) (|List| |#2|))) (SIGNATURE |eval| (|#1| |#1| (|SingletonAsOrderedSet|) |#2|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#1|) (|List| |#1|))) (SIGNATURE |eval| (|#1| |#1| |#1| |#1|)) (SIGNATURE |eval| (|#1| |#1| (|Equation| |#1|))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Equation| |#1|)))) (SIGNATURE |degree| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |monomial| (|#1| |#2| (|NonNegativeInteger|))) (SIGNATURE |retract| ((|Integer|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |retract| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |retract| (|#2| |#1|)) (SIGNATURE |minimumDegree| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |content| (|#2| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE |differentiate| (|#1| |#1| (|SingletonAsOrderedSet|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|SingletonAsOrderedSet|)))) (SIGNATURE |differentiate| (|#1| |#1| (|SingletonAsOrderedSet|))) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|UnivariatePolynomialCategory| |#2|) (|Ring|)) (T |UnivariatePolynomialCategory&|)) │ │ │ NIL │ │ │ -(|Join| (|AbelianGroup|) (|Module| (|Integer|)) (|FreeAbelianMonoidCategory| |#1| (|Integer|)) (CATEGORY |package| (IF (|has| |#1| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |noBranch|))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|size| (((|NonNegativeInteger|) $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL)) (|retract| ((|#1| $) NIL)) (|nthFactor| ((|#1| $ (|Integer|)) NIL)) (|nthCoef| (((|NonNegativeInteger|) $ (|Integer|)) NIL)) (|mapGen| (($ (|Mapping| |#1| |#1|) $) NIL)) (|mapCoef| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) NIL)) (|latex| (((|String|) $) NIL)) (|highCommonTerms| (($ $ $) NIL (|has| (|NonNegativeInteger|) (|OrderedAbelianMonoid|)))) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ |#1|) NIL)) (|coefficient| (((|NonNegativeInteger|) |#1| $) NIL)) (|Zero| (($) NIL T CONST)) (= (((|Boolean|) $ $) NIL)) (+ (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|NonNegativeInteger|) |#1|) NIL))) │ │ │ -(((|FreeAbelianMonoid| |#1|) (|FreeAbelianMonoidCategory| |#1| (|NonNegativeInteger|)) (|SetCategory|)) (T |FreeAbelianMonoid|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |coerce| (|#1| |#1|)) (SIGNATURE |gcdPolynomial| ((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |squareFree| ((|Factored| |#1|) |#1|)) (SIGNATURE |squareFreePart| (|#1| |#1|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |init| (|#1|)) (SIGNATURE |nextItem| ((|Union| |#1| "failed") |#1|)) (SIGNATURE |elt| ((|Fraction| |#1|) |#1| (|Fraction| |#1|))) (SIGNATURE |euclideanSize| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |divide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|)) (SIGNATURE |integrate| (|#1| |#1|)) (SIGNATURE |elt| (|#2| (|Fraction| |#1|) |#2|)) (SIGNATURE |separate| ((|Record| (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (SIGNATURE |pseudoDivide| ((|Record| (|:| |coef| |#2|) (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|)) (SIGNATURE |pseudoQuotient| (|#1| |#1| |#1|)) (SIGNATURE |composite| ((|Union| (|Fraction| |#1|) "failed") (|Fraction| |#1|) |#1|)) (SIGNATURE |composite| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |order| ((|NonNegativeInteger|) |#1| |#1|)) (SIGNATURE |elt| ((|Fraction| |#1|) (|Fraction| |#1|) (|Fraction| |#1|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |shiftLeft| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |shiftRight| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |karatsubaDivide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| (|NonNegativeInteger|))) (SIGNATURE |unmakeSUP| (|#1| (|SparseUnivariatePolynomial| |#2|))) (SIGNATURE |makeSUP| ((|SparseUnivariatePolynomial| |#2|) |#1|)) (SIGNATURE |unvectorise| (|#1| (|Vector| |#2|))) (SIGNATURE |vectorise| ((|Vector| |#2|) |#1| (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|))) (SIGNATURE |differentiate| (|#1| |#1| (|Mapping| |#2| |#2|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|Symbol|)))) (SIGNATURE |differentiate| (|#1| |#1| (|Symbol|))) (SIGNATURE |differentiate| (|#1| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#1| |#1| |#1|)) (SIGNATURE |elt| (|#2| |#1| |#2|)) (SIGNATURE |factor| ((|Factored| |#1|) |#1|)) (SIGNATURE |squareFreePolynomial| ((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |factorPolynomial| ((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |factorSquareFreePolynomial| ((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |solveLinearPolynomialEquation| ((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |content| (|#1| |#1| (|SingletonAsOrderedSet|))) (SIGNATURE |variables| ((|List| (|SingletonAsOrderedSet|)) |#1|)) (SIGNATURE |totalDegree| ((|NonNegativeInteger|) |#1| (|List| (|SingletonAsOrderedSet|)))) (SIGNATURE |totalDegree| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |monomial| (|#1| |#1| (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE |monomial| (|#1| |#1| (|SingletonAsOrderedSet|) (|NonNegativeInteger|))) (SIGNATURE |minimumDegree| ((|List| (|NonNegativeInteger|)) |#1| (|List| (|SingletonAsOrderedSet|)))) (SIGNATURE |minimumDegree| ((|NonNegativeInteger|) |#1| (|SingletonAsOrderedSet|))) (SIGNATURE |mainVariable| ((|Union| (|SingletonAsOrderedSet|) "failed") |#1|)) (SIGNATURE |degree| ((|List| (|NonNegativeInteger|)) |#1| (|List| (|SingletonAsOrderedSet|)))) (SIGNATURE |degree| ((|NonNegativeInteger|) |#1| (|SingletonAsOrderedSet|))) (SIGNATURE |retract| ((|SingletonAsOrderedSet|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|SingletonAsOrderedSet|) "failed") |#1|)) (SIGNATURE |coerce| (|#1| (|SingletonAsOrderedSet|))) (SIGNATURE |eval| (|#1| |#1| (|List| (|SingletonAsOrderedSet|)) (|List| |#1|))) (SIGNATURE |eval| (|#1| |#1| (|SingletonAsOrderedSet|) |#1|)) (SIGNATURE |eval| (|#1| |#1| (|List| (|SingletonAsOrderedSet|)) (|List| |#2|))) (SIGNATURE |eval| (|#1| |#1| (|SingletonAsOrderedSet|) |#2|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#1|) (|List| |#1|))) (SIGNATURE |eval| (|#1| |#1| |#1| |#1|)) (SIGNATURE |eval| (|#1| |#1| (|Equation| |#1|))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Equation| |#1|)))) (SIGNATURE |degree| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |monomial| (|#1| |#2| (|NonNegativeInteger|))) (SIGNATURE |retract| ((|Integer|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |retract| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |retract| (|#2| |#1|)) (SIGNATURE |minimumDegree| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |content| (|#2| |#1|)) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|)))) (SIGNATURE |differentiate| (|#1| |#1| (|SingletonAsOrderedSet|) (|NonNegativeInteger|))) (SIGNATURE |differentiate| (|#1| |#1| (|List| (|SingletonAsOrderedSet|)))) (SIGNATURE |differentiate| (|#1| |#1| (|SingletonAsOrderedSet|))) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) │ │ │ +((|zero| (($ (|NonNegativeInteger|)) 16)) (|outerProduct| (((|Matrix| |#2|) $ $) 37)) (|magnitude| ((|#2| $) 46)) (|length| ((|#2| $) 45)) (|dot| ((|#2| $ $) 33)) (|cross| (($ $ $) 42)) (- (($ $) 20) (($ $ $) 26)) (+ (($ $ $) 13)) (* (($ (|Integer|) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28))) │ │ │ +(((|VectorCategory&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |magnitude| (|#2| |#1|)) (SIGNATURE |length| (|#2| |#1|)) (SIGNATURE |cross| (|#1| |#1| |#1|)) (SIGNATURE |outerProduct| ((|Matrix| |#2|) |#1| |#1|)) (SIGNATURE |dot| (|#2| |#1| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|)) (SIGNATURE |zero| (|#1| (|NonNegativeInteger|))) (SIGNATURE + (|#1| |#1| |#1|))) (|VectorCategory| |#2|) (|Type|)) (T |VectorCategory&|)) │ │ │ NIL │ │ │ -(|FreeAbelianMonoidCategory| |#1| (|NonNegativeInteger|)) │ │ │ -((|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 13)) (|unitCanonical| (($ $) 14)) (|squareFree| (((|Factored| $) $) 29)) (|prime?| (((|Boolean|) $) 25)) (|inv| (($ $) 18)) (|gcd| (($ $ $) 22) (($ (|List| $)) NIL)) (|factor| (((|Factored| $) $) 30)) (|exquo| (((|Union| $ "failed") $ $) 21)) (|euclideanSize| (((|NonNegativeInteger|) $) 24)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 34)) (|associates?| (((|Boolean|) $ $) 15)) (/ (($ $ $) 32))) │ │ │ -(((|Field&| |#1|) (CATEGORY |domain| (SIGNATURE / (|#1| |#1| |#1|)) (SIGNATURE |inv| (|#1| |#1|)) (SIGNATURE |prime?| ((|Boolean|) |#1|)) (SIGNATURE |squareFree| ((|Factored| |#1|) |#1|)) (SIGNATURE |factor| ((|Factored| |#1|) |#1|)) (SIGNATURE |divide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|)) (SIGNATURE |euclideanSize| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |gcd| (|#1| (|List| |#1|))) (SIGNATURE |gcd| (|#1| |#1| |#1|)) (SIGNATURE |associates?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |unitCanonical| (|#1| |#1|)) (SIGNATURE |unitNormal| ((|Record| (|:| |unit| |#1|) (|:| |canonical| |#1|) (|:| |associate| |#1|)) |#1|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#1|))) (|Field|)) (T |Field&|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |magnitude| (|#2| |#1|)) (SIGNATURE |length| (|#2| |#1|)) (SIGNATURE |cross| (|#1| |#1| |#1|)) (SIGNATURE |outerProduct| ((|Matrix| |#2|) |#1| |#1|)) (SIGNATURE |dot| (|#2| |#1| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|)) (SIGNATURE |zero| (|#1| (|NonNegativeInteger|))) (SIGNATURE + (|#1| |#1| |#1|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|numericalOptimization| (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) 54) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 49)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 29) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) 31)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|e04fdfAnnaType|) (|NumericalOptimizationCategory|)) (T |e04fdfAnnaType|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE / (|#1| |#1| |#1|)) (SIGNATURE |inv| (|#1| |#1|)) (SIGNATURE |prime?| ((|Boolean|) |#1|)) (SIGNATURE |squareFree| ((|Factored| |#1|) |#1|)) (SIGNATURE |factor| ((|Factored| |#1|) |#1|)) (SIGNATURE |divide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|)) (SIGNATURE |euclideanSize| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |gcd| (|#1| (|List| |#1|))) (SIGNATURE |gcd| (|#1| |#1| |#1|)) (SIGNATURE |associates?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |unitCanonical| (|#1| |#1|)) (SIGNATURE |unitNormal| ((|Record| (|:| |unit| |#1|) (|:| |canonical| |#1|) (|:| |associate| |#1|)) |#1|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#1|))) │ │ │ -((|reducedSystem| (((|Matrix| |#2|) (|Matrix| $)) NIL) (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| $) (|Vector| $)) NIL) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) 19) (((|Matrix| (|Integer|)) (|Matrix| $)) 13))) │ │ │ -(((|FullyLinearlyExplicitRingOver&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |reducedSystem| ((|Matrix| (|Integer|)) (|Matrix| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Matrix| |#2|) (|Matrix| |#1|)))) (|FullyLinearlyExplicitRingOver| |#2|) (|Ring|)) (T |FullyLinearlyExplicitRingOver&|)) │ │ │ +(|NumericalOptimizationCategory|) │ │ │ +((|expt| ((|#1| |#1| (|PositiveInteger|)) 9))) │ │ │ +(((|RepeatedSquaring| |#1|) (CATEGORY |package| (SIGNATURE |expt| (|#1| |#1| (|PositiveInteger|)))) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE * ($ $ $))))) (T |RepeatedSquaring|)) │ │ │ +((|expt| (*1 *2 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *1 (|RepeatedSquaring| *2)) (|ofCategory| *2 (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE * ($ $ $)))))))) │ │ │ +(CATEGORY |package| (SIGNATURE |expt| (|#1| |#1| (|PositiveInteger|)))) │ │ │ +((|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) 21)) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) 23)) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) 18))) │ │ │ +(((|DirectProductFunctions2| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |scan| ((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|)) (SIGNATURE |reduce| (|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|)) (SIGNATURE |map| ((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)))) (|NonNegativeInteger|) (|Type|) (|Type|)) (T |DirectProductFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *7 *6)) (|isDomain| *4 (|DirectProduct| *5 *6)) (|ofType| *5 (|NonNegativeInteger|)) (|ofCategory| *6 (|Type|)) (|ofCategory| *7 (|Type|)) (|isDomain| *2 (|DirectProduct| *5 *7)) (|isDomain| *1 (|DirectProductFunctions2| *5 *6 *7)))) (|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *6 *2)) (|isDomain| *4 (|DirectProduct| *5 *6)) (|ofType| *5 (|NonNegativeInteger|)) (|ofCategory| *6 (|Type|)) (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|DirectProductFunctions2| *5 *6 *2)))) (|scan| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *5 *7 *5)) (|isDomain| *4 (|DirectProduct| *6 *7)) (|ofType| *6 (|NonNegativeInteger|)) (|ofCategory| *7 (|Type|)) (|ofCategory| *5 (|Type|)) (|isDomain| *2 (|DirectProduct| *6 *5)) (|isDomain| *1 (|DirectProductFunctions2| *6 *7 *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |scan| ((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|)) (SIGNATURE |reduce| (|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|)) (SIGNATURE |map| ((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ |#1| $) 22) (($ $ |#1|) 24))) │ │ │ +(((|Module| |#1|) (|Category|) (|CommutativeRing|)) (T |Module|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |reducedSystem| ((|Matrix| (|Integer|)) (|Matrix| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| |#1|) (|Vector| |#1|))) (SIGNATURE |reducedSystem| ((|Matrix| |#2|) (|Matrix| |#1|)))) │ │ │ -((|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) NIL) (((|Boolean|) $) 18)) (|sort!| (($ (|Mapping| (|Boolean|) |#2| |#2|) $) NIL) (($ $) 28)) (|sort| (($ (|Mapping| (|Boolean|) |#2| |#2|) $) 27) (($ $) 22)) (|reverse| (($ $) 25)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) NIL) (((|Integer|) |#2| $) 11) (((|Integer|) |#2| $ (|Integer|)) NIL)) (|merge| (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) NIL) (($ $ $) 20))) │ │ │ -(((|FiniteLinearAggregate&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |sort!| (|#1| |#1|)) (SIGNATURE |sort!| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |sorted?| ((|Boolean|) |#1|)) (SIGNATURE |sort| (|#1| |#1|)) (SIGNATURE |merge| (|#1| |#1| |#1|)) (SIGNATURE |position| ((|Integer|) |#2| |#1| (|Integer|))) (SIGNATURE |position| ((|Integer|) |#2| |#1|)) (SIGNATURE |position| ((|Integer|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |sorted?| ((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |sort| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |reverse| (|#1| |#1|)) (SIGNATURE |merge| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1| |#1|))) (|FiniteLinearAggregate| |#2|) (|Type|)) (T |FiniteLinearAggregate&|)) │ │ │ +(|Join| (|BiModule| |t#1| |t#1|)) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#1|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) NIL)) (|third| ((|#1| $) NIL)) (|tail| (($ $) NIL)) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|split!| (($ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) $) NIL (|has| |#1| (|OrderedSet|))) (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) NIL)) (|sort!| (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| |#1| (|OrderedSet|)))) (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sort| (($ $) NIL (|has| |#1| (|OrderedSet|))) (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setvalue!| ((|#1| $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setrest!| (($ $ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setlast!| ((|#1| $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setfirst!| ((|#1| $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ "first" |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "rest" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ "last" |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setUnion| (($ $ $) 31 (|has| |#1| (|SetCategory|)))) (|setIntersection| (($ $ $) 33 (|has| |#1| (|SetCategory|)))) (|setDifference| (($ $ $) 36 (|has| |#1| (|SetCategory|)))) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) NIL)) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|second| ((|#1| $) NIL)) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|rest| (($ $) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|removeDuplicates!| (($ $) NIL (|has| |#1| (|SetCategory|)))) (|removeDuplicates| (($ $) 30 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|remove!| (($ |#1| $) NIL (|has| |#1| (|SetCategory|))) (($ (|Mapping| (|Boolean|) |#1|) $) NIL)) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) NIL)) (|possiblyInfinite?| (((|Boolean|) $) NIL)) (|position| (((|Integer|) |#1| $ (|Integer|)) NIL (|has| |#1| (|SetCategory|))) (((|Integer|) |#1| $) NIL (|has| |#1| (|SetCategory|))) (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) NIL)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|null| (((|Boolean|) $) 9)) (|nodes| (((|List| $) $) NIL)) (|node?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|nil| (($) 7)) (|new| (($ (|NonNegativeInteger|) |#1|) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|merge!| (($ $ $) NIL (|has| |#1| (|OrderedSet|))) (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) NIL)) (|merge| (($ $ $) NIL (|has| |#1| (|OrderedSet|))) (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 32 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL)) (|list| (($ |#1|) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|leaves| (((|List| |#1|) $) NIL)) (|leaf?| (((|Boolean|) $) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|last| ((|#1| $) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|insert!| (($ $ $ (|Integer|)) NIL) (($ |#1| $ (|Integer|)) NIL)) (|insert| (($ $ $ (|Integer|)) NIL) (($ |#1| $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|first| ((|#1| $) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) NIL)) (|fill!| (($ $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|explicitlyFinite?| (((|Boolean|) $) NIL)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL) ((|#1| $ (|Integer|)) 35) ((|#1| $ (|Integer|) |#1|) NIL)) (|distance| (((|Integer|) $ $) NIL)) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) NIL) (($ $ (|Integer|)) NIL)) (|delete| (($ $ (|UniversalSegment| (|Integer|))) NIL) (($ $ (|Integer|)) NIL)) (|cyclic?| (((|Boolean|) $) NIL)) (|cycleTail| (($ $) NIL)) (|cycleSplit!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|cycleLength| (((|NonNegativeInteger|) $) NIL)) (|cycleEntry| (($ $) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) 44 (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) NIL)) (|cons| (($ |#1| $) 10)) (|concat!| (($ $ $) NIL) (($ $ |#1|) NIL)) (|concat| (($ $ $) 29) (($ |#1| $) NIL) (($ (|List| $)) NIL) (($ $ |#1|) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) NIL)) (|child?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|append| (($ $ $) 11)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|OMwrite| (((|String|) $) 25 (|has| |#1| (|OpenMath|))) (((|String|) $ (|Boolean|)) 26 (|has| |#1| (|OpenMath|))) (((|Void|) (|OpenMathDevice|) $) 27 (|has| |#1| (|OpenMath|))) (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) 28 (|has| |#1| (|OpenMath|)))) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|List| |#1|) (|Join| (|ListAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |nil| ($)) (SIGNATURE |null| ((|Boolean|) $)) (SIGNATURE |cons| ($ |#1| $)) (SIGNATURE |append| ($ $ $)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |setUnion| ($ $ $)) (SIGNATURE |setIntersection| ($ $ $)) (SIGNATURE |setDifference| ($ $ $))) |noBranch|) (IF (|has| |#1| (|OpenMath|)) (ATTRIBUTE (|OpenMath|)) |noBranch|))) (|Type|)) (T |List|)) │ │ │ +((|nil| (*1 *1) (AND (|isDomain| *1 (|List| *2)) (|ofCategory| *2 (|Type|)))) (|null| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|List| *3)) (|ofCategory| *3 (|Type|)))) (|cons| (*1 *1 *2 *1) (AND (|isDomain| *1 (|List| *2)) (|ofCategory| *2 (|Type|)))) (|append| (*1 *1 *1 *1) (AND (|isDomain| *1 (|List| *2)) (|ofCategory| *2 (|Type|)))) (|setUnion| (*1 *1 *1 *1) (AND (|isDomain| *1 (|List| *2)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|Type|)))) (|setIntersection| (*1 *1 *1 *1) (AND (|isDomain| *1 (|List| *2)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|Type|)))) (|setDifference| (*1 *1 *1 *1) (AND (|isDomain| *1 (|List| *2)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|Type|))))) │ │ │ +(|Join| (|ListAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |nil| ($)) (SIGNATURE |null| ((|Boolean|) $)) (SIGNATURE |cons| ($ |#1| $)) (SIGNATURE |append| ($ $ $)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |setUnion| ($ $ $)) (SIGNATURE |setIntersection| ($ $ $)) (SIGNATURE |setDifference| ($ $ $))) |noBranch|) (IF (|has| |#1| (|OpenMath|)) (ATTRIBUTE (|OpenMath|)) |noBranch|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|unitCanonical| (($ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|unit?| (((|Boolean|) $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|traceMatrix| (((|Matrix| (|Fraction| |#2|)) (|Vector| $)) NIL) (((|Matrix| (|Fraction| |#2|))) NIL)) (|trace| (((|Fraction| |#2|) $) NIL)) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|squareFree| (((|Factored| $) $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|sizeLess?| (((|Boolean|) $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|size| (((|NonNegativeInteger|)) NIL (|has| (|Fraction| |#2|) (|Finite|)))) (|singularAtInfinity?| (((|Boolean|)) NIL)) (|singular?| (((|Boolean|) |#1|) NIL) (((|Boolean|) |#2|) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (|has| (|Fraction| |#2|) (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| (|Fraction| |#2|) (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| (|Fraction| |#2|) "failed") $) NIL)) (|retract| (((|Integer|) $) NIL (|has| (|Fraction| |#2|) (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) NIL (|has| (|Fraction| |#2|) (|RetractableTo| (|Fraction| (|Integer|))))) (((|Fraction| |#2|) $) NIL)) (|represents| (($ (|Vector| (|Fraction| |#2|)) (|Vector| $)) NIL) (($ (|Vector| (|Fraction| |#2|))) 57) (($ (|Vector| |#2|) |#2|) 124)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|rem| (($ $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|regularRepresentation| (((|Matrix| (|Fraction| |#2|)) $ (|Vector| $)) NIL) (((|Matrix| (|Fraction| |#2|)) $) NIL)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (|has| (|Fraction| |#2|) (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (|has| (|Fraction| |#2|) (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Fraction| |#2|))) (|:| |vec| (|Vector| (|Fraction| |#2|)))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| (|Fraction| |#2|)) (|Matrix| $)) NIL)) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) NIL)) (|reduce| (($ |#3|) NIL) (((|Union| $ "failed") (|Fraction| |#3|)) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|recip| (((|Union| $ "failed") $) NIL)) (|rationalPoints| (((|List| (|List| |#1|))) NIL (|has| |#1| (|Finite|)))) (|rationalPoint?| (((|Boolean|) |#1| |#1|) NIL)) (|rank| (((|PositiveInteger|)) NIL)) (|random| (($) NIL (|has| (|Fraction| |#2|) (|Finite|)))) (|ramifiedAtInfinity?| (((|Boolean|)) NIL)) (|ramified?| (((|Boolean|) |#1|) NIL) (((|Boolean|) |#2|) NIL)) (|quo| (($ $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|primitivePart| (($ $) NIL)) (|primitiveElement| (($) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|primitive?| (((|Boolean|) $) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))) (($ $) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|prime?| (((|Boolean|) $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|order| (((|PositiveInteger|) $) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))) (((|OnePointCompletion| (|PositiveInteger|)) $) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|one?| (((|Boolean|) $) NIL)) (|numberOfComponents| (((|NonNegativeInteger|)) NIL)) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) 100)) (|norm| (((|Fraction| |#2|) $) NIL)) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) NIL (|has| |#1| (|Field|)))) (|nextItem| (((|Union| $ "failed") $) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|minimalPolynomial| ((|#3| $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|lookup| (((|PositiveInteger|) $) NIL (|has| (|Fraction| |#2|) (|Finite|)))) (|lift| ((|#3| $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|lcm| (($ (|List| $)) NIL (|has| (|Fraction| |#2|) (|Field|))) (($ $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|latex| (((|String|) $) NIL)) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) 78)) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) 51)) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) 44)) (|inv| (($ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|integralRepresents| (($ (|Vector| |#2|) |#2|) 125)) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) 45)) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) 43)) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) 122)) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) 63)) (|integralBasisAtInfinity| (((|Vector| $)) 42)) (|integralBasis| (((|Vector| $)) 41)) (|integralAtInfinity?| (((|Boolean|) $) NIL)) (|integral?| (((|Boolean|) $) NIL) (((|Boolean|) $ |#1|) NIL) (((|Boolean|) $ |#2|) NIL)) (|init| (($) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)) CONST)) (|index| (($ (|PositiveInteger|)) NIL (|has| (|Fraction| |#2|) (|Finite|)))) (|hyperelliptic| (((|Union| |#2| "failed")) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|genus| (((|NonNegativeInteger|)) NIL)) (|generator| (($) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|gcd| (($ (|List| $)) NIL (|has| (|Fraction| |#2|) (|Field|))) (($ $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|factor| (((|Factored| $) $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (|Fraction| |#2|) (|Field|))) (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|exquo| (((|Union| $ "failed") $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|euclideanSize| (((|NonNegativeInteger|) $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|enumerate| (((|List| $)) NIL (|has| (|Fraction| |#2|) (|Finite|)))) (|elt| ((|#1| $ |#1| |#1|) NIL)) (|elliptic| (((|Union| |#2| "failed")) NIL)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|discriminant| (((|Fraction| |#2|) (|Vector| $)) NIL) (((|Fraction| |#2|)) 39)) (|discreteLog| (((|NonNegativeInteger|) $) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))) (((|Union| (|NonNegativeInteger|) "failed") $ $) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|differentiate| (($ $ (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|)) (|NonNegativeInteger|)) NIL (|has| (|Fraction| |#2|) (|Field|))) (($ $ (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|))) NIL (|has| (|Fraction| |#2|) (|Field|))) (($ $ (|Mapping| |#2| |#2|)) 118) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) NIL (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (OR (AND (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|Field|))) (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (($ $) NIL (OR (AND (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|Field|))) (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))))) (|derivationCoordinates| (((|Matrix| (|Fraction| |#2|)) (|Vector| $) (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|))) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|definingPolynomial| ((|#3|) 50)) (|createPrimitiveElement| (($) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|coordinates| (((|Vector| (|Fraction| |#2|)) $ (|Vector| $)) NIL) (((|Matrix| (|Fraction| |#2|)) (|Vector| $) (|Vector| $)) NIL) (((|Vector| (|Fraction| |#2|)) $) 58) (((|Matrix| (|Fraction| |#2|)) (|Vector| $)) 101)) (|convert| (((|Vector| (|Fraction| |#2|)) $) NIL) (($ (|Vector| (|Fraction| |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (|complementaryBasis| (((|Vector| $) (|Vector| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ (|Fraction| |#2|)) NIL) (($ (|Fraction| (|Integer|))) NIL (OR (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|RetractableTo| (|Fraction| (|Integer|)))))) (($ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|charthRoot| (($ $) NIL (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))) (((|Union| $ "failed") $) NIL (|has| (|Fraction| |#2|) (|CharacteristicNonZero|)))) (|characteristicPolynomial| ((|#3| $) NIL)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|branchPointAtInfinity?| (((|Boolean|)) 37)) (|branchPoint?| (((|Boolean|) |#1|) 49) (((|Boolean|) |#2|) 130)) (|basis| (((|Vector| $)) 91)) (|associates?| (((|Boolean|) $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) NIL)) (|absolutelyIrreducible?| (((|Boolean|)) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL (|has| (|Fraction| |#2|) (|Field|)))) (|Zero| (($) 16 T CONST)) (|One| (($) 26 T CONST)) (D (($ $ (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|)) (|NonNegativeInteger|)) NIL (|has| (|Fraction| |#2|) (|Field|))) (($ $ (|Mapping| (|Fraction| |#2|) (|Fraction| |#2|))) NIL (|has| (|Fraction| |#2|) (|Field|))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) NIL (AND (|has| (|Fraction| |#2|) (|Field|)) (|has| (|Fraction| |#2|) (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (OR (AND (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|Field|))) (|has| (|Fraction| |#2|) (|FiniteFieldCategory|)))) (($ $) NIL (OR (AND (|has| (|Fraction| |#2|) (|DifferentialRing|)) (|has| (|Fraction| |#2|) (|Field|))) (|has| (|Fraction| |#2|) (|FiniteFieldCategory|))))) (= (((|Boolean|) $ $) NIL)) (/ (($ $ $) NIL (|has| (|Fraction| |#2|) (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL (|has| (|Fraction| |#2|) (|Field|)))) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|Fraction| |#2|)) NIL) (($ (|Fraction| |#2|) $) NIL) (($ (|Fraction| (|Integer|)) $) NIL (|has| (|Fraction| |#2|) (|Field|))) (($ $ (|Fraction| (|Integer|))) NIL (|has| (|Fraction| |#2|) (|Field|))))) │ │ │ +(((|AlgebraicFunctionField| |#1| |#2| |#3| |#4|) (|Join| (|FunctionFieldCategory| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |knownInfBasis| ((|Void|) (|NonNegativeInteger|))))) (|Field|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| (|Fraction| |#2|)) |#3|) (T |AlgebraicFunctionField|)) │ │ │ +((|knownInfBasis| (*1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Field|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|AlgebraicFunctionField| *4 *5 *6 *7)) (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5))) (|ofType| *7 *6)))) │ │ │ +(|Join| (|FunctionFieldCategory| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |knownInfBasis| ((|Void|) (|NonNegativeInteger|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|numericalOptimization| (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) 73) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 69)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 40) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) 51)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|e04gcfAnnaType|) (|NumericalOptimizationCategory|)) (T |e04gcfAnnaType|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |sort!| (|#1| |#1|)) (SIGNATURE |sort!| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |sorted?| ((|Boolean|) |#1|)) (SIGNATURE |sort| (|#1| |#1|)) (SIGNATURE |merge| (|#1| |#1| |#1|)) (SIGNATURE |position| ((|Integer|) |#2| |#1| (|Integer|))) (SIGNATURE |position| ((|Integer|) |#2| |#1|)) (SIGNATURE |position| ((|Integer|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |sorted?| ((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |sort| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |reverse| (|#1| |#1|)) (SIGNATURE |merge| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1| |#1|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|reducedSystem| (((|Matrix| |#1|) (|Matrix| $)) 35) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) 34) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) 38 (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Matrix| (|Integer|)) (|Matrix| $)) 37 (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|))))) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ -(((|FullyLinearlyExplicitRingOver| |#1|) (|Category|) (|Ring|)) (T |FullyLinearlyExplicitRingOver|)) │ │ │ +(|NumericalOptimizationCategory|) │ │ │ +((|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) 14)) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) 18))) │ │ │ +(((|CartesianTensorFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |reshape| ((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|))) (SIGNATURE |map| ((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)))) (|Integer|) (|NonNegativeInteger|) (|CommutativeRing|) (|CommutativeRing|)) (T |CartesianTensorFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *8 *7)) (|isDomain| *4 (|CartesianTensor| *5 *6 *7)) (|ofType| *5 (|Integer|)) (|ofType| *6 (|NonNegativeInteger|)) (|ofCategory| *7 (|CommutativeRing|)) (|ofCategory| *8 (|CommutativeRing|)) (|isDomain| *2 (|CartesianTensor| *5 *6 *8)) (|isDomain| *1 (|CartesianTensorFunctions2| *5 *6 *7 *8)))) (|reshape| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|CartesianTensor| *5 *6 *7)) (|ofType| *5 (|Integer|)) (|ofType| *6 (|NonNegativeInteger|)) (|ofCategory| *7 (|CommutativeRing|)) (|ofCategory| *8 (|CommutativeRing|)) (|isDomain| *2 (|CartesianTensor| *5 *6 *8)) (|isDomain| *1 (|CartesianTensorFunctions2| *5 *6 *7 *8))))) │ │ │ +(CATEGORY |package| (SIGNATURE |reshape| ((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|))) (SIGNATURE |map| ((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|numericalIntegration| (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) 89) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) NIL)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 77) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|d01TransformFunctionType|) (|NumericalIntegrationCategory|)) (T |d01TransformFunctionType|)) │ │ │ NIL │ │ │ -(|Join| (|LinearlyExplicitRingOver| |t#1|) (CATEGORY |package| (IF (|has| |t#1| (|LinearlyExplicitRingOver| (|Integer|))) (ATTRIBUTE (|LinearlyExplicitRingOver| (|Integer|))) |noBranch|))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| $) . T) ((|LinearlyExplicitRingOver| (|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LinearlyExplicitRingOver| |#1|) . T) ((|Monoid|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((|retractIfCan| (((|Union| |#2| "failed") $) NIL) (((|Union| (|Fraction| (|Integer|)) "failed") $) 27) (((|Union| (|Integer|) "failed") $) 19)) (|retract| ((|#2| $) NIL) (((|Fraction| (|Integer|)) $) 24) (((|Integer|) $) 14)) (|coerce| (($ |#2|) NIL) (($ (|Fraction| (|Integer|))) 22) (($ (|Integer|)) 11))) │ │ │ -(((|FullyRetractableTo&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |retract| ((|Integer|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |retract| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |retract| (|#2| |#1|))) (|FullyRetractableTo| |#2|) (|Type|)) (T |FullyRetractableTo&|)) │ │ │ +(|NumericalIntegrationCategory|) │ │ │ +((|unvectorise| ((|#2| (|Vector| |#1|)) 36)) (|shiftRoots| ((|#2| |#2| |#1|) 49)) (|scaleRoots| ((|#2| |#2| |#1|) 41)) (|reverse| ((|#2| |#2|) 38)) (|monic?| (((|Boolean|) |#2|) 30)) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) 16)) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) 21)) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) 25))) │ │ │ +(((|GaloisGroupPolynomialUtilities| |#1| |#2|) (CATEGORY |package| (SIGNATURE |monic?| ((|Boolean|) |#2|)) (SIGNATURE |unvectorise| (|#2| (|Vector| |#1|))) (SIGNATURE |reverse| (|#2| |#2|)) (SIGNATURE |scaleRoots| (|#2| |#2| |#1|)) (SIGNATURE |shiftRoots| (|#2| |#2| |#1|)) (SIGNATURE |degreePartition| ((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|))) (SIGNATURE |factorOfDegree| (|#2| (|PositiveInteger|) (|Factored| |#2|))) (SIGNATURE |factorsOfDegree| ((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)))) (|Ring|) (|UnivariatePolynomialCategory| |#1|)) (T |GaloisGroupPolynomialUtilities|)) │ │ │ +((|factorsOfDegree| (*1 *2 *3 *4) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|Factored| *6)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|List| *6)) (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *5 *6)))) (|factorOfDegree| (*1 *2 *3 *4) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|Factored| *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *5)) (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *5 *2)) (|ofCategory| *5 (|Ring|)))) (|degreePartition| (*1 *2 *3) (AND (|isDomain| *3 (|Factored| *5)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Multiset| (|NonNegativeInteger|))) (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *4 *5)))) (|shiftRoots| (*1 *2 *2 *3) (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|scaleRoots| (*1 *2 *2 *3) (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|reverse| (*1 *2 *2) (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3)))) (|unvectorise| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *4)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)) (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *4 *2)))) (|monic?| (*1 *2 *3) (AND (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GaloisGroupPolynomialUtilities| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |monic?| ((|Boolean|) |#2|)) (SIGNATURE |unvectorise| (|#2| (|Vector| |#1|))) (SIGNATURE |reverse| (|#2| |#2|)) (SIGNATURE |scaleRoots| (|#2| |#2| |#1|)) (SIGNATURE |shiftRoots| (|#2| |#2| |#1|)) (SIGNATURE |degreePartition| ((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|))) (SIGNATURE |factorOfDegree| (|#2| (|PositiveInteger|) (|Factored| |#2|))) (SIGNATURE |factorsOfDegree| ((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|status| (((|Union| (|Boolean|) "failed") $) 67)) (|simplify| (($ $) 35 (AND (|has| |#1| (|CharacteristicZero|)) (|has| |#1| (|EuclideanDomain|))))) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) 68)) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) 24)) (|latex| (((|String|) $) NIL)) (|idealSimplify| (($ $) 65)) (|hash| (((|SingleInteger|) $) NIL)) (|empty?| (((|Boolean|) $) 66)) (|empty| (($) 29)) (|definingInequation| ((|#4| $) 70)) (|definingEquations| (((|List| |#4|) $) 69)) (|coerce| (((|OutputForm|) $) 64)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|QuasiAlgebraicSet| |#1| |#2| |#3| |#4|) (|Join| (|SetCategory|) (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |empty| ($)) (SIGNATURE |quasiAlgebraicSet| ($ (|List| |#4|) |#4|)) (SIGNATURE |status| ((|Union| (|Boolean|) "failed") $)) (SIGNATURE |setStatus| ($ $ (|Union| (|Boolean|) "failed"))) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |definingEquations| ((|List| |#4|) $)) (SIGNATURE |definingInequation| (|#4| $)) (SIGNATURE |idealSimplify| ($ $)) (IF (|has| |#1| (|EuclideanDomain|)) (IF (|has| |#1| (|CharacteristicZero|)) (SIGNATURE |simplify| ($ $)) |noBranch|) |noBranch|))) (|GcdDomain|) (|OrderedSet|) (|OrderedAbelianMonoidSup|) (|PolynomialCategory| |#1| |#3| |#2|)) (T |QuasiAlgebraicSet|)) │ │ │ +((|empty| (*1 *1) (AND (|ofCategory| *2 (|GcdDomain|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|isDomain| *1 (|QuasiAlgebraicSet| *2 *3 *4 *5)) (|ofCategory| *5 (|PolynomialCategory| *2 *4 *3)))) (|quasiAlgebraicSet| (*1 *1 *2 *3) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|PolynomialCategory| *4 *6 *5)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *1 (|QuasiAlgebraicSet| *4 *5 *6 *3)))) (|status| (*1 *2 *1) (|partial| AND (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|QuasiAlgebraicSet| *3 *4 *5 *6)) (|ofCategory| *6 (|PolynomialCategory| *3 *5 *4)))) (|setStatus| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Union| (|Boolean|) "failed")) (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|isDomain| *1 (|QuasiAlgebraicSet| *3 *4 *5 *6)) (|ofCategory| *6 (|PolynomialCategory| *3 *5 *4)))) (|empty?| (*1 *2 *1) (AND (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|QuasiAlgebraicSet| *3 *4 *5 *6)) (|ofCategory| *6 (|PolynomialCategory| *3 *5 *4)))) (|definingEquations| (*1 *2 *1) (AND (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| *6)) (|isDomain| *1 (|QuasiAlgebraicSet| *3 *4 *5 *6)) (|ofCategory| *6 (|PolynomialCategory| *3 *5 *4)))) (|definingInequation| (*1 *2 *1) (AND (|ofCategory| *2 (|PolynomialCategory| *3 *5 *4)) (|isDomain| *1 (|QuasiAlgebraicSet| *3 *4 *5 *2)) (|ofCategory| *3 (|GcdDomain|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)))) (|idealSimplify| (*1 *1 *1) (AND (|ofCategory| *2 (|GcdDomain|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|isDomain| *1 (|QuasiAlgebraicSet| *2 *3 *4 *5)) (|ofCategory| *5 (|PolynomialCategory| *2 *4 *3)))) (|simplify| (*1 *1 *1) (AND (|ofCategory| *2 (|CharacteristicZero|)) (|ofCategory| *2 (|EuclideanDomain|)) (|ofCategory| *2 (|GcdDomain|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|isDomain| *1 (|QuasiAlgebraicSet| *2 *3 *4 *5)) (|ofCategory| *5 (|PolynomialCategory| *2 *4 *3))))) │ │ │ +(|Join| (|SetCategory|) (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |empty| ($)) (SIGNATURE |quasiAlgebraicSet| ($ (|List| |#4|) |#4|)) (SIGNATURE |status| ((|Union| (|Boolean|) "failed") $)) (SIGNATURE |setStatus| ($ $ (|Union| (|Boolean|) "failed"))) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |definingEquations| ((|List| |#4|) $)) (SIGNATURE |definingInequation| (|#4| $)) (SIGNATURE |idealSimplify| ($ $)) (IF (|has| |#1| (|EuclideanDomain|)) (IF (|has| |#1| (|CharacteristicZero|)) (SIGNATURE |simplify| ($ $)) |noBranch|) |noBranch|))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|varList| (((|List| |#1|) $) 29)) (|trunc| (($ $ (|NonNegativeInteger|)) 30)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) 33)) (|mirror| (($ $) 31)) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) 34)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|eval| (($ $ |#1| $) 28) (($ $ (|List| |#1|) (|List| $)) 27)) (|degree| (((|NonNegativeInteger|) $) 35)) (|construct| (($ $ $) 26)) (|coerce| (((|OutputForm|) $) 11) (($ |#1|) 38) (((|XDistributedPolynomial| |#1| |#2|) $) 37) (((|XRecursivePolynomial| |#1| |#2|) $) 36)) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) 39)) (|Zero| (($) 17 T CONST)) (|LiePoly| (($ (|LyndonWord| |#1|)) 32)) (= (((|Boolean|) $ $) 6)) (/ (($ $ |#2|) 25 (|has| |#2| (|Field|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ |#2| $) 22) (($ $ |#2|) 24))) │ │ │ +(((|FreeLieAlgebra| |#1| |#2|) (|Category|) (|OrderedSet|) (|CommutativeRing|)) (T |FreeLieAlgebra|)) │ │ │ +((|coef| (*1 *2 *3 *1) (AND (|isDomain| *3 (|XRecursivePolynomial| *4 *2)) (|ofCategory| *1 (|FreeLieAlgebra| *4 *2)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|CommutativeRing|)))) (|coerce| (*1 *1 *2) (AND (|ofCategory| *1 (|FreeLieAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|CommutativeRing|)))) (|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|XDistributedPolynomial| *3 *4)))) (|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|XRecursivePolynomial| *3 *4)))) (|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|lquo| (*1 *2 *2 *1) (AND (|isDomain| *2 (|XRecursivePolynomial| *3 *4)) (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|rquo| (*1 *2 *2 *1) (AND (|isDomain| *2 (|XRecursivePolynomial| *3 *4)) (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|LiePoly| (*1 *1 *2) (AND (|isDomain| *2 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *4 (|CommutativeRing|)))) (|mirror| (*1 *1 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|CommutativeRing|)))) (|trunc| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|varList| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|List| *3)))) (|eval| (*1 *1 *1 *2 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|CommutativeRing|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *4)) (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|FreeLieAlgebra| *4 *5)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|CommutativeRing|))))) │ │ │ +(|Join| (|LieAlgebra| |t#2|) (CATEGORY |domain| (SIGNATURE |coef| (|t#2| (|XRecursivePolynomial| |t#1| |t#2|) $)) (SIGNATURE |coerce| ($ |t#1|)) (SIGNATURE |coerce| ((|XDistributedPolynomial| |t#1| |t#2|) $)) (SIGNATURE |coerce| ((|XRecursivePolynomial| |t#1| |t#2|) $)) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |lquo| ((|XRecursivePolynomial| |t#1| |t#2|) (|XRecursivePolynomial| |t#1| |t#2|) $)) (SIGNATURE |rquo| ((|XRecursivePolynomial| |t#1| |t#2|) (|XRecursivePolynomial| |t#1| |t#2|) $)) (SIGNATURE |LiePoly| ($ (|LyndonWord| |t#1|))) (SIGNATURE |mirror| ($ $)) (SIGNATURE |trunc| ($ $ (|NonNegativeInteger|))) (SIGNATURE |varList| ((|List| |t#1|) $)) (SIGNATURE |eval| ($ $ |t#1| $)) (SIGNATURE |eval| ($ $ (|List| |t#1|) (|List| $))))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#2| |#2|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#2|) . T) ((|LieAlgebra| |#2|) . T) ((|Module| |#2|) . T) ((|RightModule| |#2|) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|reductum| (($ $) 40)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|monomial| (($ |#1| (|NonNegativeInteger|)) 38)) (|minimumDegree| (((|NonNegativeInteger|) $) 42)) (|leadingCoefficient| ((|#1| $) 41)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|degree| (((|NonNegativeInteger|) $) 43)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ |#1|) 37 (|has| |#1| (|CommutativeRing|)))) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) 39)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 45) (($ |#1| $) 44))) │ │ │ +(((|MonogenicLinearOperator| |#1|) (|Category|) (|Ring|)) (T |MonogenicLinearOperator|)) │ │ │ +((|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|MonogenicLinearOperator| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|minimumDegree| (*1 *2 *1) (AND (|ofCategory| *1 (|MonogenicLinearOperator| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|leadingCoefficient| (*1 *2 *1) (AND (|ofCategory| *1 (|MonogenicLinearOperator| *2)) (|ofCategory| *2 (|Ring|)))) (|reductum| (*1 *1 *1) (AND (|ofCategory| *1 (|MonogenicLinearOperator| *2)) (|ofCategory| *2 (|Ring|)))) (|coefficient| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|MonogenicLinearOperator| *2)) (|ofCategory| *2 (|Ring|)))) (|monomial| (*1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|MonogenicLinearOperator| *2)) (|ofCategory| *2 (|Ring|))))) │ │ │ +(|Join| (|Ring|) (|BiModule| |t#1| |t#1|) (CATEGORY |domain| (IF (|has| |t#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |t#1|)) |noBranch|) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |minimumDegree| ((|NonNegativeInteger|) $)) (SIGNATURE |leadingCoefficient| (|t#1| $)) (SIGNATURE |reductum| ($ $)) (SIGNATURE |coefficient| (|t#1| $ (|NonNegativeInteger|))) (SIGNATURE |monomial| ($ |t#1| (|NonNegativeInteger|))))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Monoid|) . T) ((|RightModule| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +((|optional| ((|#2| |#2|) 25)) (|multiple| ((|#2| |#2|) 26)) (|constant| ((|#2| |#2|) 24)) (|assert| ((|#2| |#2| (|String|)) 23))) │ │ │ +(((|FunctionSpaceAssertions| |#1| |#2|) (CATEGORY |package| (SIGNATURE |assert| (|#2| |#2| (|String|))) (SIGNATURE |constant| (|#2| |#2|)) (SIGNATURE |optional| (|#2| |#2|)) (SIGNATURE |multiple| (|#2| |#2|))) (|OrderedSet|) (|FunctionSpace| |#1|)) (T |FunctionSpaceAssertions|)) │ │ │ +((|multiple| (*1 *2 *2) (AND (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|FunctionSpaceAssertions| *3 *2)) (|ofCategory| *2 (|FunctionSpace| *3)))) (|optional| (*1 *2 *2) (AND (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|FunctionSpaceAssertions| *3 *2)) (|ofCategory| *2 (|FunctionSpace| *3)))) (|constant| (*1 *2 *2) (AND (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|FunctionSpaceAssertions| *3 *2)) (|ofCategory| *2 (|FunctionSpace| *3)))) (|assert| (*1 *2 *2 *3) (AND (|isDomain| *3 (|String|)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *1 (|FunctionSpaceAssertions| *4 *2)) (|ofCategory| *2 (|FunctionSpace| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |assert| (|#2| |#2| (|String|))) (SIGNATURE |constant| (|#2| |#2|)) (SIGNATURE |optional| (|#2| |#2|)) (SIGNATURE |multiple| (|#2| |#2|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|symbNameV| (((|Symbol|) $) NIL)) (|subMultV| (((|NonNegativeInteger|) $) NIL)) (|setsymbName!| (((|Symbol|) $ (|Symbol|)) NIL)) (|setsubmult!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) NIL)) (|setpoint!| (((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|) $ (|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|)) NIL)) (|setmult!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) NIL)) (|setlocalPoint!| (((|AffinePlane| (|PseudoAlgebraicClosureOfFiniteField| |#1|)) $ (|AffinePlane| (|PseudoAlgebraicClosureOfFiniteField| |#1|))) NIL)) (|setlocalParam!| (((|List| (|NeitherSparseOrDensePowerSeries| (|PseudoAlgebraicClosureOfFiniteField| |#1|))) $ (|List| (|NeitherSparseOrDensePowerSeries| (|PseudoAlgebraicClosureOfFiniteField| |#1|)))) NIL)) (|setexcpDiv!| ((DIVISOR $ DIVISOR) NIL)) (|setcurve!| (((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) (|PseudoAlgebraicClosureOfFiniteField| |#1|)) $ (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) (|PseudoAlgebraicClosureOfFiniteField| |#1|))) NIL)) (|setchart!| ((|#3| $ |#3|) NIL)) (|pointV| (((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|) $) NIL)) (|multV| (((|NonNegativeInteger|) $) NIL)) (|localPointV| (((|AffinePlane| (|PseudoAlgebraicClosureOfFiniteField| |#1|)) $) NIL)) (|localParamV| (((|List| (|NeitherSparseOrDensePowerSeries| (|PseudoAlgebraicClosureOfFiniteField| |#1|))) $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|fullOutput| (((|Boolean|) (|Boolean|)) NIL) (((|Boolean|)) NIL)) (|fullOut| (((|OutputForm|) $) NIL)) (|excpDivV| ((DIVISOR $) NIL)) (|degree| (((|PositiveInteger|) $) NIL)) (|curveV| (((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) (|PseudoAlgebraicClosureOfFiniteField| |#1|)) $) NIL)) (|create| (($ (|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|) (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) (|PseudoAlgebraicClosureOfFiniteField| |#1|)) (|AffinePlane| (|PseudoAlgebraicClosureOfFiniteField| |#1|)) (|NonNegativeInteger|) |#3| (|NonNegativeInteger|) DIVISOR (|PseudoAlgebraicClosureOfFiniteField| |#1|) (|Symbol|)) NIL) (($ (|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|) (|DistributedMultivariatePolynomial| |#2| (|PseudoAlgebraicClosureOfFiniteField| |#1|))) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (|chartV| ((|#3| $) NIL)) (|actualExtensionV| (((|PseudoAlgebraicClosureOfFiniteField| |#1|) $) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |#1| |#2| |#3|) (|Join| (|InfinitlyClosePointCategory| (|PseudoAlgebraicClosureOfFiniteField| |#1|) |#2| (|DistributedMultivariatePolynomial| |#2| (|PseudoAlgebraicClosureOfFiniteField| |#1|)) (|DirectProduct| (|#| |#2|) (|NonNegativeInteger|)) (|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|) (|NeitherSparseOrDensePowerSeries| (|PseudoAlgebraicClosureOfFiniteField| |#1|)) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|) (|Divisor| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) |#3|) (CATEGORY |domain| (SIGNATURE |fullOut| ((|OutputForm|) $)) (SIGNATURE |fullOutput| ((|Boolean|) (|Boolean|))) (SIGNATURE |fullOutput| ((|Boolean|))))) (|FiniteFieldCategory|) (|List| (|Symbol|)) (|BlowUpMethodCategory|)) (T |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField|)) │ │ │ +((|fullOut| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| *3 *4 *5)) (|ofCategory| *3 (|FiniteFieldCategory|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|fullOutput| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| *3 *4 *5)) (|ofCategory| *3 (|FiniteFieldCategory|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|fullOutput| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| *3 *4 *5)) (|ofCategory| *3 (|FiniteFieldCategory|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|))))) │ │ │ +(|Join| (|InfinitlyClosePointCategory| (|PseudoAlgebraicClosureOfFiniteField| |#1|) |#2| (|DistributedMultivariatePolynomial| |#2| (|PseudoAlgebraicClosureOfFiniteField| |#1|)) (|DirectProduct| (|#| |#2|) (|NonNegativeInteger|)) (|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|) (|NeitherSparseOrDensePowerSeries| (|PseudoAlgebraicClosureOfFiniteField| |#1|)) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|) (|Divisor| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) |#3|) (CATEGORY |domain| (SIGNATURE |fullOut| ((|OutputForm|) $)) (SIGNATURE |fullOutput| ((|Boolean|) (|Boolean|))) (SIGNATURE |fullOutput| ((|Boolean|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 7)) (= (((|Boolean|) $ $) 9))) │ │ │ +(((|Exit|) (|SetCategory|)) (T |Exit|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |retract| ((|Integer|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |retract| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |retract| (|#2| |#1|))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|makeSin| (($ |#2| |#1|) 35)) (|makeCos| (($ |#2| |#1|) 33)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#1|) NIL) (($ (|FourierComponent| |#2|)) 25)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 10 T CONST)) (|One| (($) 16 T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) 34)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) │ │ │ -(((|FourierSeries| |#1| |#2|) (|Join| (|Algebra| |#1|) (CATEGORY |domain| (IF (|has| |#2| (ATTRIBUTE |canonical|)) (IF (|has| |#1| (ATTRIBUTE |canonical|)) (ATTRIBUTE |canonical|) |noBranch|) |noBranch|) (SIGNATURE |coerce| ($ |#1|)) (SIGNATURE |coerce| ($ (|FourierComponent| |#2|))) (SIGNATURE |makeSin| ($ |#2| |#1|)) (SIGNATURE |makeCos| ($ |#2| |#1|)))) (|Join| (|CommutativeRing|) (|Algebra| (|Fraction| (|Integer|)))) (|Join| (|OrderedSet|) (|AbelianGroup|))) (T |FourierSeries|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|isDomain| *1 (|FourierSeries| *2 *3)) (|ofCategory| *2 (|Join| (|CommutativeRing|) (|Algebra| (|Fraction| (|Integer|))))) (|ofCategory| *3 (|Join| (|OrderedSet|) (|AbelianGroup|))))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|FourierComponent| *4)) (|ofCategory| *4 (|Join| (|OrderedSet|) (|AbelianGroup|))) (|isDomain| *1 (|FourierSeries| *3 *4)) (|ofCategory| *3 (|Join| (|CommutativeRing|) (|Algebra| (|Fraction| (|Integer|))))))) (|makeSin| (*1 *1 *2 *3) (AND (|isDomain| *1 (|FourierSeries| *3 *2)) (|ofCategory| *3 (|Join| (|CommutativeRing|) (|Algebra| (|Fraction| (|Integer|))))) (|ofCategory| *2 (|Join| (|OrderedSet|) (|AbelianGroup|))))) (|makeCos| (*1 *1 *2 *3) (AND (|isDomain| *1 (|FourierSeries| *3 *2)) (|ofCategory| *3 (|Join| (|CommutativeRing|) (|Algebra| (|Fraction| (|Integer|))))) (|ofCategory| *2 (|Join| (|OrderedSet|) (|AbelianGroup|)))))) │ │ │ -(|Join| (|Algebra| |#1|) (CATEGORY |domain| (IF (|has| |#2| (ATTRIBUTE |canonical|)) (IF (|has| |#1| (ATTRIBUTE |canonical|)) (ATTRIBUTE |canonical|) |noBranch|) |noBranch|) (SIGNATURE |coerce| ($ |#1|)) (SIGNATURE |coerce| ($ (|FourierComponent| |#2|))) (SIGNATURE |makeSin| ($ |#2| |#1|)) (SIGNATURE |makeCos| ($ |#2| |#1|)))) │ │ │ -((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) 91) (((|Boolean|) $) 85 (|has| |#1| (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) 82 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) 81 (AND (|has| |#1| (|OrderedSet|)) (|has| $ (ATTRIBUTE |shallowlyMutable|))))) (|sort| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) 92) (($ $) 86 (|has| |#1| (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setelt| ((|#1| $ (|Integer|) |#1|) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) 53 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) 70 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) 7 T CONST)) (|reverse!| (($ $) 83 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) 93)) (|removeDuplicates| (($ $) 73 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|remove| (($ |#1| $) 72 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (($ (|Mapping| (|Boolean|) |#1|) $) 69 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 71 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) 67 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) 48)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) 90) (((|Integer|) |#1| $) 89 (|has| |#1| (|SetCategory|))) (((|Integer|) |#1| $ (|Integer|)) 88 (|has| |#1| (|SetCategory|)))) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|new| (($ (|NonNegativeInteger|) |#1|) 64)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|minIndex| (((|Integer|) $) 40 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) 80 (|has| |#1| (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) 94) (($ $ $) 87 (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxIndex| (((|Integer|) $) 41 (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) 79 (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35) (($ (|Mapping| |#1| |#1| |#1|) $ $) 59)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|insert| (($ |#1| $ (|Integer|)) 55) (($ $ $ (|Integer|)) 54)) (|indices| (((|List| (|Integer|)) $) 43)) (|index?| (((|Boolean|) (|Integer|) $) 44)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|first| ((|#1| $) 39 (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) 66)) (|fill!| (($ $ |#1|) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|entry?| (((|Boolean|) |#1| $) 42 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) 45)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ (|Integer|) |#1|) 47) ((|#1| $ (|Integer|)) 46) (($ $ (|UniversalSegment| (|Integer|))) 58)) (|delete| (($ $ (|Integer|)) 57) (($ $ (|UniversalSegment| (|Integer|))) 56)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copyInto!| (($ $ $ (|Integer|)) 84 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) 13)) (|convert| (((|InputForm|) $) 74 (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) 65)) (|concat| (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (|List| $)) 60)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) 77 (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) 76 (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (<= (((|Boolean|) $ $) 78 (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) 75 (|has| |#1| (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|FiniteLinearAggregate| |#1|) (|Category|) (|Type|)) (T |FiniteLinearAggregate|)) │ │ │ -((|merge| (*1 *1 *2 *1 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3 *3)) (|ofCategory| *1 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|reverse| (*1 *1 *1) (AND (|ofCategory| *1 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|sort| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3 *3)) (|ofCategory| *1 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|sorted?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *1 (|FiniteLinearAggregate| *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|position| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|ofCategory| *1 (|FiniteLinearAggregate| *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Integer|)))) (|position| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Integer|)))) (|position| (*1 *2 *3 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|SetCategory|)))) (|merge| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|OrderedSet|)))) (|sort| (*1 *1 *1) (AND (|ofCategory| *1 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|OrderedSet|)))) (|sorted?| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|copyInto!| (*1 *1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|reverse!| (*1 *1 *1) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|sort!| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3 *3)) (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|sort!| (*1 *1 *1) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|OrderedSet|))))) │ │ │ -(|Join| (|LinearAggregate| |t#1|) (CATEGORY |domain| (ATTRIBUTE |finiteAggregate|) (SIGNATURE |merge| ($ (|Mapping| (|Boolean|) |t#1| |t#1|) $ $)) (SIGNATURE |reverse| ($ $)) (SIGNATURE |sort| ($ (|Mapping| (|Boolean|) |t#1| |t#1|) $)) (SIGNATURE |sorted?| ((|Boolean|) (|Mapping| (|Boolean|) |t#1| |t#1|) $)) (SIGNATURE |position| ((|Integer|) (|Mapping| (|Boolean|) |t#1|) $)) (IF (|has| |t#1| (|SetCategory|)) (PROGN (SIGNATURE |position| ((|Integer|) |t#1| $)) (SIGNATURE |position| ((|Integer|) |t#1| $ (|Integer|)))) |noBranch|) (IF (|has| |t#1| (|OrderedSet|)) (PROGN (ATTRIBUTE (|OrderedSet|)) (SIGNATURE |merge| ($ $ $)) (SIGNATURE |sort| ($ $)) (SIGNATURE |sorted?| ((|Boolean|) $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (PROGN (SIGNATURE |copyInto!| ($ $ $ (|Integer|))) (SIGNATURE |reverse!| ($ $)) (SIGNATURE |sort!| ($ (|Mapping| (|Boolean|) |t#1| |t#1|) $)) (IF (|has| |t#1| (|OrderedSet|)) (SIGNATURE |sort!| ($ $)) |noBranch|)) |noBranch|))) │ │ │ -(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| (|Integer|) |#1|) . T) ((|EltableAggregate| (|Integer|) |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|IndexedAggregate| (|Integer|) |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|LinearAggregate| |#1|) . T) ((|OrderedSet|) |has| |#1| (|OrderedSet|)) ((|SetCategory|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|Type|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 73)) (|squareFree| (((|Factored| $) $) 72)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|sample| (($) 16 T CONST)) (|rem| (($ $ $) 54)) (|recip| (((|Union| $ "failed") $) 33)) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|prime?| (((|Boolean|) $) 71)) (|one?| (((|Boolean|) $) 30)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 70)) (|hash| (((|SingleInteger|) $) 10)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|factor| (((|Factored| $) $) 74)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Fraction| (|Integer|))) 65)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 38)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 69)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (/ (($ $ $) 64)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 68)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 67) (($ (|Fraction| (|Integer|)) $) 66))) │ │ │ -(((|Field|) (|Category|)) (T |Field|)) │ │ │ -((/ (*1 *1 *1 *1) (|ofCategory| *1 (|Field|)))) │ │ │ -(|Join| (|EuclideanDomain|) (|UniqueFactorizationDomain|) (|DivisionRing|) (CATEGORY |domain| (SIGNATURE / ($ $ $)) (ATTRIBUTE |canonicalUnitNormal|) (ATTRIBUTE |canonicalsClosed|))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|UniqueFactorizationDomain|) . T)) │ │ │ -((|retractIfCan| (((|Union| |#1| "failed") $) 7) (((|Union| (|Fraction| (|Integer|)) "failed") $) 15 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| (|Integer|) "failed") $) 12 (|has| |#1| (|RetractableTo| (|Integer|))))) (|retract| ((|#1| $) 8) (((|Fraction| (|Integer|)) $) 14 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Integer|) $) 11 (|has| |#1| (|RetractableTo| (|Integer|))))) (|coerce| (($ |#1|) 6) (($ (|Fraction| (|Integer|))) 16 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (($ (|Integer|)) 13 (|has| |#1| (|RetractableTo| (|Integer|)))))) │ │ │ -(((|FullyRetractableTo| |#1|) (|Category|) (|Type|)) (T |FullyRetractableTo|)) │ │ │ +(|SetCategory|) │ │ │ +((|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) 118)) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) 45)) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) 95)) (|denomRicDE| ((|#2| |#3|) 37)) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) 82)) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) 63) ((|#3| |#3| |#2|) 79))) │ │ │ +(((|PrimitiveRatRicDE| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |denomRicDE| (|#2| |#3|)) (SIGNATURE |leadingCoefficientRicDE| ((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|)) (SIGNATURE |constantCoefficientRicDE| ((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|))) (SIGNATURE |polyRicDE| ((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|))) (SIGNATURE |singRicDE| ((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|))) (SIGNATURE |changeVar| (|#3| |#3| |#2|)) (SIGNATURE |changeVar| (|#3| |#3| (|Fraction| |#2|)))) (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Fraction| (|Integer|)))) (|UnivariatePolynomialCategory| |#1|) (|LinearOrdinaryDifferentialOperatorCategory| |#2|) (|LinearOrdinaryDifferentialOperatorCategory| (|Fraction| |#2|))) (T |PrimitiveRatRicDE|)) │ │ │ +((|changeVar| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Fraction| *5)) (|ofCategory| *4 (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Fraction| (|Integer|))))) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *1 (|PrimitiveRatRicDE| *4 *5 *2 *6)) (|ofCategory| *2 (|LinearOrdinaryDifferentialOperatorCategory| *5)) (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *3)))) (|changeVar| (*1 *2 *2 *3) (AND (|ofCategory| *4 (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Fraction| (|Integer|))))) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|isDomain| *1 (|PrimitiveRatRicDE| *4 *3 *2 *5)) (|ofCategory| *2 (|LinearOrdinaryDifferentialOperatorCategory| *3)) (|ofCategory| *5 (|LinearOrdinaryDifferentialOperatorCategory| (|Fraction| *3))))) (|singRicDE| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|Mapping| (|List| *7) *7 (|SparseUnivariatePolynomial| *7))) (|isDomain| *5 (|Mapping| (|Factored| *7) *7)) (|ofCategory| *7 (|UnivariatePolynomialCategory| *6)) (|ofCategory| *6 (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Fraction| (|Integer|))))) (|isDomain| *2 (|List| (|Record| (|:| |frac| (|Fraction| *7)) (|:| |eq| *3)))) (|isDomain| *1 (|PrimitiveRatRicDE| *6 *7 *3 *8)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *7)) (|ofCategory| *8 (|LinearOrdinaryDifferentialOperatorCategory| (|Fraction| *7))))) (|polyRicDE| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| (|List| *5) *6)) (|ofCategory| *5 (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Fraction| (|Integer|))))) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|isDomain| *2 (|List| (|Record| (|:| |poly| *6) (|:| |eq| *3)))) (|isDomain| *1 (|PrimitiveRatRicDE| *5 *6 *3 *7)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *6)) (|ofCategory| *7 (|LinearOrdinaryDifferentialOperatorCategory| (|Fraction| *6))))) (|constantCoefficientRicDE| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| (|List| *5) *6)) (|ofCategory| *5 (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Fraction| (|Integer|))))) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|isDomain| *2 (|List| (|Record| (|:| |constant| *5) (|:| |eq| *3)))) (|isDomain| *1 (|PrimitiveRatRicDE| *5 *6 *3 *7)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *6)) (|ofCategory| *7 (|LinearOrdinaryDifferentialOperatorCategory| (|Fraction| *6))))) (|leadingCoefficientRicDE| (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Fraction| (|Integer|))))) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| *5)))) (|isDomain| *1 (|PrimitiveRatRicDE| *4 *5 *3 *6)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *5)) (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| (|Fraction| *5))))) (|denomRicDE| (*1 *2 *3) (AND (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)) (|isDomain| *1 (|PrimitiveRatRicDE| *4 *2 *3 *5)) (|ofCategory| *4 (|Join| (|Field|) (|CharacteristicZero|) (|RetractableTo| (|Fraction| (|Integer|))))) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *5 (|LinearOrdinaryDifferentialOperatorCategory| (|Fraction| *2)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |denomRicDE| (|#2| |#3|)) (SIGNATURE |leadingCoefficientRicDE| ((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|)) (SIGNATURE |constantCoefficientRicDE| ((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|))) (SIGNATURE |polyRicDE| ((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|))) (SIGNATURE |singRicDE| ((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|))) (SIGNATURE |changeVar| (|#3| |#3| |#2|)) (SIGNATURE |changeVar| (|#3| |#3| (|Fraction| |#2|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) 15)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 14) (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 8) (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 10) (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) 12)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|NumericalIntegrationProblem|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |coerce| ($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |coerce| ($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))))) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE |retract| ((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $))))) (T |NumericalIntegrationProblem|)) │ │ │ +((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|NumericalIntegrationProblem|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *1 (|NumericalIntegrationProblem|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *1 (|NumericalIntegrationProblem|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) (|isDomain| *1 (|NumericalIntegrationProblem|)))) (|retract| (*1 *2 *1) (AND (|isDomain| *2 (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) (|isDomain| *1 (|NumericalIntegrationProblem|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |coerce| ($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |coerce| ($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))))) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE |retract| ((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $)))) │ │ │ +((|tanh2trigh| ((|#2| |#2|) 144)) (|tanh2coth| ((|#2| |#2|) 142)) (|tan2trig| ((|#2| |#2|) 134)) (|tan2cot| ((|#2| |#2|) 131)) (|sinh2csch| ((|#2| |#2|) 139)) (|sin2csc| ((|#2| |#2|) 127)) (|simplifyLog| ((|#2| |#2|) 59)) (|simplifyExp| ((|#2| |#2|) 109)) (|simplify| ((|#2| |#2|) 89)) (|sech2cosh| ((|#2| |#2|) 141)) (|sec2cos| ((|#2| |#2|) 129)) (|removeSinhSq| ((|#2| |#2|) 149)) (|removeSinSq| ((|#2| |#2|) 147)) (|removeCoshSq| ((|#2| |#2|) 148)) (|removeCosSq| ((|#2| |#2|) 146)) (|htrigs| ((|#2| |#2|) 158)) (|expandTrigProducts| ((|#2| |#2|) 48 (AND (|has| |#2| (|ConvertibleTo| (|Pattern| |#1|))) (|has| |#2| (|PatternMatchable| |#1|)) (|has| |#1| (|ConvertibleTo| (|Pattern| |#1|))) (|has| |#1| (|PatternMatchable| |#1|))))) (|expandPower| ((|#2| |#2|) 90)) (|expandLog| ((|#2| |#2|) 150)) (|expand| ((|#2| |#2|) 151)) (|csch2sinh| ((|#2| |#2|) 140)) (|csc2sin| ((|#2| |#2|) 128)) (|coth2trigh| ((|#2| |#2|) 145)) (|coth2tanh| ((|#2| |#2|) 143)) (|cot2trig| ((|#2| |#2|) 135)) (|cot2tan| ((|#2| |#2|) 133)) (|cosh2sech| ((|#2| |#2|) 137)) (|cos2sec| ((|#2| |#2|) 125))) │ │ │ +(((|TranscendentalManipulations| |#1| |#2|) (CATEGORY |package| (SIGNATURE |expand| (|#2| |#2|)) (SIGNATURE |simplify| (|#2| |#2|)) (SIGNATURE |htrigs| (|#2| |#2|)) (SIGNATURE |simplifyExp| (|#2| |#2|)) (SIGNATURE |simplifyLog| (|#2| |#2|)) (SIGNATURE |expandPower| (|#2| |#2|)) (SIGNATURE |expandLog| (|#2| |#2|)) (SIGNATURE |cos2sec| (|#2| |#2|)) (SIGNATURE |cosh2sech| (|#2| |#2|)) (SIGNATURE |cot2trig| (|#2| |#2|)) (SIGNATURE |coth2trigh| (|#2| |#2|)) (SIGNATURE |csc2sin| (|#2| |#2|)) (SIGNATURE |csch2sinh| (|#2| |#2|)) (SIGNATURE |sec2cos| (|#2| |#2|)) (SIGNATURE |sech2cosh| (|#2| |#2|)) (SIGNATURE |sin2csc| (|#2| |#2|)) (SIGNATURE |sinh2csch| (|#2| |#2|)) (SIGNATURE |tan2trig| (|#2| |#2|)) (SIGNATURE |tanh2trigh| (|#2| |#2|)) (SIGNATURE |tan2cot| (|#2| |#2|)) (SIGNATURE |tanh2coth| (|#2| |#2|)) (SIGNATURE |cot2tan| (|#2| |#2|)) (SIGNATURE |coth2tanh| (|#2| |#2|)) (SIGNATURE |removeCosSq| (|#2| |#2|)) (SIGNATURE |removeSinSq| (|#2| |#2|)) (SIGNATURE |removeCoshSq| (|#2| |#2|)) (SIGNATURE |removeSinhSq| (|#2| |#2|)) (IF (|has| |#1| (|PatternMatchable| |#1|)) (IF (|has| |#1| (|ConvertibleTo| (|Pattern| |#1|))) (IF (|has| |#2| (|ConvertibleTo| (|Pattern| |#1|))) (IF (|has| |#2| (|PatternMatchable| |#1|)) (SIGNATURE |expandTrigProducts| (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) (|Join| (|OrderedSet|) (|GcdDomain|)) (|Join| (|FunctionSpace| |#1|) (|TranscendentalFunctionCategory|))) (T |TranscendentalManipulations|)) │ │ │ +((|expandTrigProducts| (*1 *2 *2) (AND (|ofCategory| *3 (|ConvertibleTo| (|Pattern| *3))) (|ofCategory| *3 (|PatternMatchable| *3)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|ConvertibleTo| (|Pattern| *3))) (|ofCategory| *2 (|PatternMatchable| *3)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|removeSinhSq| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|removeCoshSq| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|removeSinSq| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|removeCosSq| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|coth2tanh| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|cot2tan| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|tanh2coth| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|tan2cot| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|tanh2trigh| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|tan2trig| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|sinh2csch| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|sin2csc| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|sech2cosh| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|sec2cos| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|csch2sinh| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|csc2sin| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|coth2trigh| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|cot2trig| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|cosh2sech| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|cos2sec| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|expandLog| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|expandPower| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|simplifyLog| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|simplifyExp| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|htrigs| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|simplify| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|))))) (|expand| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|GcdDomain|))) (|isDomain| *1 (|TranscendentalManipulations| *3 *2)) (|ofCategory| *2 (|Join| (|FunctionSpace| *3) (|TranscendentalFunctionCategory|)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |expand| (|#2| |#2|)) (SIGNATURE |simplify| (|#2| |#2|)) (SIGNATURE |htrigs| (|#2| |#2|)) (SIGNATURE |simplifyExp| (|#2| |#2|)) (SIGNATURE |simplifyLog| (|#2| |#2|)) (SIGNATURE |expandPower| (|#2| |#2|)) (SIGNATURE |expandLog| (|#2| |#2|)) (SIGNATURE |cos2sec| (|#2| |#2|)) (SIGNATURE |cosh2sech| (|#2| |#2|)) (SIGNATURE |cot2trig| (|#2| |#2|)) (SIGNATURE |coth2trigh| (|#2| |#2|)) (SIGNATURE |csc2sin| (|#2| |#2|)) (SIGNATURE |csch2sinh| (|#2| |#2|)) (SIGNATURE |sec2cos| (|#2| |#2|)) (SIGNATURE |sech2cosh| (|#2| |#2|)) (SIGNATURE |sin2csc| (|#2| |#2|)) (SIGNATURE |sinh2csch| (|#2| |#2|)) (SIGNATURE |tan2trig| (|#2| |#2|)) (SIGNATURE |tanh2trigh| (|#2| |#2|)) (SIGNATURE |tan2cot| (|#2| |#2|)) (SIGNATURE |tanh2coth| (|#2| |#2|)) (SIGNATURE |cot2tan| (|#2| |#2|)) (SIGNATURE |coth2tanh| (|#2| |#2|)) (SIGNATURE |removeCosSq| (|#2| |#2|)) (SIGNATURE |removeSinSq| (|#2| |#2|)) (SIGNATURE |removeCoshSq| (|#2| |#2|)) (SIGNATURE |removeSinhSq| (|#2| |#2|)) (IF (|has| |#1| (|PatternMatchable| |#1|)) (IF (|has| |#1| (|ConvertibleTo| (|Pattern| |#1|))) (IF (|has| |#2| (|ConvertibleTo| (|Pattern| |#1|))) (IF (|has| |#2| (|PatternMatchable| |#1|)) (SIGNATURE |expandTrigProducts| (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) │ │ │ +((|recip| (((|Union| $ "failed") $) 11)) (|conjugate| (($ $ $) 20)) (|commutator| (($ $ $) 21)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) 14)) (/ (($ $ $) 9)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) 19))) │ │ │ +(((|Group&| |#1|) (CATEGORY |domain| (SIGNATURE |commutator| (|#1| |#1| |#1|)) (SIGNATURE |conjugate| (|#1| |#1| |#1|)) (SIGNATURE ^ (|#1| |#1| (|Integer|))) (SIGNATURE ** (|#1| |#1| (|Integer|))) (SIGNATURE / (|#1| |#1| |#1|)) (SIGNATURE |recip| ((|Union| |#1| "failed") |#1|)) (SIGNATURE ^ (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE ^ (|#1| |#1| (|PositiveInteger|))) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|)))) (|Group|)) (T |Group&|)) │ │ │ NIL │ │ │ -(|Join| (|RetractableTo| |t#1|) (CATEGORY |package| (IF (|has| |t#1| (|RetractableTo| (|Integer|))) (ATTRIBUTE (|RetractableTo| (|Integer|))) |noBranch|) (IF (|has| |t#1| (|RetractableTo| (|Fraction| (|Integer|)))) (ATTRIBUTE (|RetractableTo| (|Fraction| (|Integer|)))) |noBranch|))) │ │ │ -(((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) 10)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|fortranReal| (($) 31)) (|fortranLogical| (($) 37)) (|fortranInteger| (($) 33)) (|fortranDoubleComplex| (($) 35)) (|fortranDouble| (($) 32)) (|fortranComplex| (($) 34)) (|fortranCharacter| (($) 36)) (|external?| (((|Boolean|) $) 8)) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) 16)) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) 25) (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) 26)) (|coerce| (((|OutputForm|) $) 21) (($ (|FortranScalarType|)) 28)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|FortranType|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE |coerce| ($ (|FortranScalarType|))) (SIGNATURE |scalarTypeOf| ((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $)) (SIGNATURE |dimensionsOf| ((|List| (|Polynomial| (|Integer|))) $)) (SIGNATURE |external?| ((|Boolean|) $)) (SIGNATURE |construct| ($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|))) (SIGNATURE |construct| ($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|))) (SIGNATURE |fortranReal| ($)) (SIGNATURE |fortranDouble| ($)) (SIGNATURE |fortranInteger| ($)) (SIGNATURE |fortranLogical| ($)) (SIGNATURE |fortranComplex| ($)) (SIGNATURE |fortranDoubleComplex| ($)) (SIGNATURE |fortranCharacter| ($))))) (T |FortranType|)) │ │ │ -((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|FortranType|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|FortranScalarType|)) (|isDomain| *1 (|FortranType|)))) (|scalarTypeOf| (*1 *2 *1) (AND (|isDomain| *2 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|isDomain| *1 (|FortranType|)))) (|dimensionsOf| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Polynomial| (|Integer|)))) (|isDomain| *1 (|FortranType|)))) (|external?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FortranType|)))) (|construct| (*1 *1 *2 *3 *4) (AND (|isDomain| *2 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|isDomain| *3 (|List| (|Symbol|))) (|isDomain| *4 (|Boolean|)) (|isDomain| *1 (|FortranType|)))) (|construct| (*1 *1 *2 *3 *4) (AND (|isDomain| *2 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|isDomain| *3 (|List| (|Polynomial| (|Integer|)))) (|isDomain| *4 (|Boolean|)) (|isDomain| *1 (|FortranType|)))) (|fortranReal| (*1 *1) (|isDomain| *1 (|FortranType|))) (|fortranDouble| (*1 *1) (|isDomain| *1 (|FortranType|))) (|fortranInteger| (*1 *1) (|isDomain| *1 (|FortranType|))) (|fortranLogical| (*1 *1) (|isDomain| *1 (|FortranType|))) (|fortranComplex| (*1 *1) (|isDomain| *1 (|FortranType|))) (|fortranDoubleComplex| (*1 *1) (|isDomain| *1 (|FortranType|))) (|fortranCharacter| (*1 *1) (|isDomain| *1 (|FortranType|)))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE |coerce| ($ (|FortranScalarType|))) (SIGNATURE |scalarTypeOf| ((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $)) (SIGNATURE |dimensionsOf| ((|List| (|Polynomial| (|Integer|))) $)) (SIGNATURE |external?| ((|Boolean|) $)) (SIGNATURE |construct| ($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|))) (SIGNATURE |construct| ($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|))) (SIGNATURE |fortranReal| ($)) (SIGNATURE |fortranDouble| ($)) (SIGNATURE |fortranInteger| ($)) (SIGNATURE |fortranLogical| ($)) (SIGNATURE |fortranComplex| ($)) (SIGNATURE |fortranDoubleComplex| ($)) (SIGNATURE |fortranCharacter| ($)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|sup| (($ $ $) 16)) (|subtractIfCan| (((|Union| $ "failed") $ $) 13)) (|sample| (($) NIL T CONST)) (|reductum| (($ $) NIL)) (|monomial| (($ |#1| |#2|) NIL)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|leadingSupport| ((|#2| $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (|Zero| (($) NIL T CONST)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) NIL)) (+ (($ $ $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL))) │ │ │ -(((|IndexedDirectProductOrderedAbelianMonoidSup| |#1| |#2|) (|Join| (|OrderedAbelianMonoidSup|) (|IndexedDirectProductCategory| |#1| |#2|)) (|OrderedAbelianMonoidSup|) (|OrderedSet|)) (T |IndexedDirectProductOrderedAbelianMonoidSup|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |commutator| (|#1| |#1| |#1|)) (SIGNATURE |conjugate| (|#1| |#1| |#1|)) (SIGNATURE ^ (|#1| |#1| (|Integer|))) (SIGNATURE ** (|#1| |#1| (|Integer|))) (SIGNATURE / (|#1| |#1| |#1|)) (SIGNATURE |recip| ((|Union| |#1| "failed") |#1|)) (SIGNATURE ^ (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE ^ (|#1| |#1| (|PositiveInteger|))) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|rightPower| (($ $ (|PositiveInteger|)) 27)) (|plenaryPower| (($ $ (|PositiveInteger|)) 32)) (|leftPower| (($ $ (|PositiveInteger|)) 28)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|commutator| (($ $ $) 24)) (|coerce| (((|OutputForm|) $) 11)) (|associator| (($ $ $ $) 25)) (|antiCommutator| (($ $ $) 23)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 29)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 26) (($ $ |#1|) 34) (($ |#1| $) 33))) │ │ │ +(((|NonAssociativeAlgebra| |#1|) (|Category|) (|CommutativeRing|)) (T |NonAssociativeAlgebra|)) │ │ │ +((|plenaryPower| (*1 *1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|ofCategory| *1 (|NonAssociativeAlgebra| *3)) (|ofCategory| *3 (|CommutativeRing|))))) │ │ │ +(|Join| (|NonAssociativeRng|) (|Module| |t#1|) (CATEGORY |domain| (SIGNATURE |plenaryPower| ($ $ (|PositiveInteger|))))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#1|) . T) ((|Module| |#1|) . T) ((|Monad|) . T) ((|NonAssociativeRng|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|segment| (($ |#1| |#1|) 15)) (|map| (((|List| |#1|) (|Mapping| |#1| |#1|) $) 37 (|has| |#1| (|OrderedRing|)))) (|low| ((|#1| $) 10)) (|lo| ((|#1| $) 9)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|incr| (((|Integer|) $) 14)) (|high| ((|#1| $) 12)) (|hi| ((|#1| $) 11)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|expand| (((|List| |#1|) $) 35 (|has| |#1| (|OrderedRing|))) (((|List| |#1|) (|List| $)) 34 (|has| |#1| (|OrderedRing|)))) (|convert| (($ |#1|) 26)) (|coerce| (((|OutputForm|) $) 25 (|has| |#1| (|SetCategory|)))) (SEGMENT (($ |#1| |#1|) 8)) (BY (($ $ (|Integer|)) 16)) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|))))) │ │ │ +(((|Segment| |#1|) (|Join| (|SegmentCategory| |#1|) (CATEGORY |package| (IF (|has| |#1| (|SetCategory|)) (ATTRIBUTE (|SetCategory|)) |noBranch|) (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|SegmentExpansionCategory| |#1| (|List| |#1|))) |noBranch|))) (|Type|)) (T |Segment|)) │ │ │ NIL │ │ │ -(|Join| (|OrderedAbelianMonoidSup|) (|IndexedDirectProductCategory| |#1| |#2|)) │ │ │ -((|plusInfinity| (((|OrderedCompletion| (|Integer|))) 11)) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) 13)) (|infinity| (((|OnePointCompletion| (|Integer|))) 8))) │ │ │ -(((|Infinity|) (CATEGORY |package| (SIGNATURE |infinity| ((|OnePointCompletion| (|Integer|)))) (SIGNATURE |plusInfinity| ((|OrderedCompletion| (|Integer|)))) (SIGNATURE |minusInfinity| ((|OrderedCompletion| (|Integer|)))))) (T |Infinity|)) │ │ │ -((|minusInfinity| (*1 *2) (AND (|isDomain| *2 (|OrderedCompletion| (|Integer|))) (|isDomain| *1 (|Infinity|)))) (|plusInfinity| (*1 *2) (AND (|isDomain| *2 (|OrderedCompletion| (|Integer|))) (|isDomain| *1 (|Infinity|)))) (|infinity| (*1 *2) (AND (|isDomain| *2 (|OnePointCompletion| (|Integer|))) (|isDomain| *1 (|Infinity|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |infinity| ((|OnePointCompletion| (|Integer|)))) (SIGNATURE |plusInfinity| ((|OrderedCompletion| (|Integer|)))) (SIGNATURE |minusInfinity| ((|OrderedCompletion| (|Integer|))))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sign| (((|Integer|) $) NIL (|has| |#1| (|OrderedRing|)))) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL)) (|positive?| (((|Boolean|) $) NIL (|has| |#1| (|OrderedRing|)))) (|one?| (((|Boolean|) $) NIL)) (|numer| ((|#1| $) 13)) (|negative?| (((|Boolean|) $) NIL (|has| |#1| (|OrderedRing|)))) (|min| (($ $ $) NIL (|has| |#1| (|OrderedRing|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedRing|)))) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|denom| ((|#3| $) 15)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#2|) NIL)) (|characteristic| (((|NonNegativeInteger|)) 20)) (|abs| (($ $) NIL (|has| |#1| (|OrderedRing|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) 12 T CONST)) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedRing|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedRing|)))) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedRing|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedRing|)))) (/ (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) │ │ │ -(((|LocalAlgebra| |#1| |#2| |#3|) (|Join| (|Algebra| |#2|) (CATEGORY |domain| (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|OrderedRing|)) |noBranch|) (SIGNATURE / ($ $ |#3|)) (SIGNATURE / ($ |#1| |#3|)) (SIGNATURE |numer| (|#1| $)) (SIGNATURE |denom| (|#3| $)))) (|Algebra| |#2|) (|CommutativeRing|) (|SubsetCategory| (|Monoid|) |#2|)) (T |LocalAlgebra|)) │ │ │ -((/ (*1 *1 *1 *2) (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *1 (|LocalAlgebra| *3 *4 *2)) (|ofCategory| *3 (|Algebra| *4)) (|ofCategory| *2 (|SubsetCategory| (|Monoid|) *4)))) (/ (*1 *1 *2 *3) (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *1 (|LocalAlgebra| *2 *4 *3)) (|ofCategory| *2 (|Algebra| *4)) (|ofCategory| *3 (|SubsetCategory| (|Monoid|) *4)))) (|numer| (*1 *2 *1) (AND (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *2 (|Algebra| *3)) (|isDomain| *1 (|LocalAlgebra| *2 *3 *4)) (|ofCategory| *4 (|SubsetCategory| (|Monoid|) *3)))) (|denom| (*1 *2 *1) (AND (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *2 (|SubsetCategory| (|Monoid|) *4)) (|isDomain| *1 (|LocalAlgebra| *3 *4 *2)) (|ofCategory| *3 (|Algebra| *4))))) │ │ │ -(|Join| (|Algebra| |#2|) (CATEGORY |domain| (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|OrderedRing|)) |noBranch|) (SIGNATURE / ($ $ |#3|)) (SIGNATURE / ($ |#1| |#3|)) (SIGNATURE |numer| (|#1| $)) (SIGNATURE |denom| (|#3| $)))) │ │ │ -((/ (((|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|)) 18)) (- (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|)) 12)) (+ (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|)) 10)) (* (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|)) 14))) │ │ │ -(((|MappingPackage4| |#1| |#2|) (CATEGORY |package| (SIGNATURE + ((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|))) (SIGNATURE - ((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|))) (SIGNATURE * ((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|))) (SIGNATURE / ((|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|)))) (|SetCategory|) (|Ring|)) (T |MappingPackage4|)) │ │ │ -((/ (*1 *2 *2 *2) (AND (|isDomain| *2 (|Mapping| (|Expression| (|Integer|)) *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|MappingPackage4| *3 *4)) (|ofCategory| *4 (|Ring|)))) (* (*1 *2 *2 *2) (AND (|isDomain| *2 (|Mapping| *4 *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|MappingPackage4| *3 *4)))) (- (*1 *2 *2 *2) (AND (|isDomain| *2 (|Mapping| *4 *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|MappingPackage4| *3 *4)))) (+ (*1 *2 *2 *2) (AND (|isDomain| *2 (|Mapping| *4 *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|MappingPackage4| *3 *4))))) │ │ │ -(CATEGORY |package| (SIGNATURE + ((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|))) (SIGNATURE - ((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|))) (SIGNATURE * ((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|))) (SIGNATURE / ((|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|po| ((|#1| $) 10)) (|op| (($ |#1|) 9)) (|one?| (((|Boolean|) $) NIL)) (|monomial| (($ |#2| (|NonNegativeInteger|)) NIL)) (|minimumDegree| (((|NonNegativeInteger|) $) NIL)) (|leadingCoefficient| ((|#2| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|differentiate| (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|DifferentialRing|))) (($ $) NIL (|has| |#1| (|DifferentialRing|)))) (|degree| (((|NonNegativeInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 17) (($ (|Integer|)) NIL) (($ |#2|) NIL (|has| |#2| (|CommutativeRing|)))) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) NIL)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (D (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|DifferentialRing|))) (($ $) NIL (|has| |#1| (|DifferentialRing|)))) (= (((|Boolean|) $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) │ │ │ -(((|OppositeMonogenicLinearOperator| |#1| |#2|) (|Join| (|MonogenicLinearOperator| |#2|) (CATEGORY |domain| (IF (|has| |#1| (|DifferentialRing|)) (ATTRIBUTE (|DifferentialRing|)) |noBranch|) (SIGNATURE |op| ($ |#1|)) (SIGNATURE |po| (|#1| $)))) (|MonogenicLinearOperator| |#2|) (|Ring|)) (T |OppositeMonogenicLinearOperator|)) │ │ │ -((|op| (*1 *1 *2) (AND (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|OppositeMonogenicLinearOperator| *2 *3)) (|ofCategory| *2 (|MonogenicLinearOperator| *3)))) (|po| (*1 *2 *1) (AND (|ofCategory| *2 (|MonogenicLinearOperator| *3)) (|isDomain| *1 (|OppositeMonogenicLinearOperator| *2 *3)) (|ofCategory| *3 (|Ring|))))) │ │ │ -(|Join| (|MonogenicLinearOperator| |#2|) (CATEGORY |domain| (IF (|has| |#1| (|DifferentialRing|)) (ATTRIBUTE (|DifferentialRing|)) |noBranch|) (SIGNATURE |op| ($ |#1|)) (SIGNATURE |po| (|#1| $)))) │ │ │ +(|Join| (|SegmentCategory| |#1|) (CATEGORY |package| (IF (|has| |#1| (|SetCategory|)) (ATTRIBUTE (|SetCategory|)) |noBranch|) (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|SegmentExpansionCategory| |#1| (|List| |#1|))) |noBranch|))) │ │ │ +((|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) 14))) │ │ │ +(((|PatternMatchListAggregate| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)))) (|SetCategory|) (|PatternMatchable| |#1|) (|ListAggregate| |#2|)) (T |PatternMatchListAggregate|)) │ │ │ +((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchListResult| *5 *6 *3)) (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|PatternMatchable| *5)) (|ofCategory| *3 (|ListAggregate| *6)) (|isDomain| *1 (|PatternMatchListAggregate| *5 *6 *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)))) │ │ │ +((|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) 83)) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) 78) (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) 36)) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) 80)) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) 60)) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) 59)) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) 47) (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) 48))) │ │ │ +(((|EigenPackage| |#1|) (CATEGORY |package| (SIGNATURE |characteristicPolynomial| ((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|))) (SIGNATURE |characteristicPolynomial| ((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |eigenvalues| ((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |eigenvector| ((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |generalizedEigenvector| ((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |generalizedEigenvector| ((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |generalizedEigenvectors| ((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |eigenvectors| ((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|GcdDomain|)) (T |EigenPackage|)) │ │ │ +((|eigenvectors| (*1 *2 *3) (AND (|ofCategory| *4 (|GcdDomain|)) (|isDomain| *2 (|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| *4)) (|SuchThat| (|Symbol|) (|Polynomial| *4)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| *4)))))))) (|isDomain| *1 (|EigenPackage| *4)) (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| *4)))))) (|generalizedEigenvectors| (*1 *2 *3) (AND (|ofCategory| *4 (|GcdDomain|)) (|isDomain| *2 (|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| *4)) (|SuchThat| (|Symbol|) (|Polynomial| *4)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| *4)))))))) (|isDomain| *1 (|EigenPackage| *4)) (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| *4)))))) (|generalizedEigenvector| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| *5)) (|SuchThat| (|Symbol|) (|Polynomial| *5)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| *4)))) (|ofCategory| *5 (|GcdDomain|)) (|isDomain| *2 (|List| (|Matrix| (|Fraction| (|Polynomial| *5))))) (|isDomain| *1 (|EigenPackage| *5)) (|isDomain| *4 (|Matrix| (|Fraction| (|Polynomial| *5)))))) (|generalizedEigenvector| (*1 *2 *3 *4 *5 *5) (AND (|isDomain| *3 (|Union| (|Fraction| (|Polynomial| *6)) (|SuchThat| (|Symbol|) (|Polynomial| *6)))) (|isDomain| *5 (|NonNegativeInteger|)) (|ofCategory| *6 (|GcdDomain|)) (|isDomain| *2 (|List| (|Matrix| (|Fraction| (|Polynomial| *6))))) (|isDomain| *1 (|EigenPackage| *6)) (|isDomain| *4 (|Matrix| (|Fraction| (|Polynomial| *6)))))) (|eigenvector| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Union| (|Fraction| (|Polynomial| *5)) (|SuchThat| (|Symbol|) (|Polynomial| *5)))) (|ofCategory| *5 (|GcdDomain|)) (|isDomain| *2 (|List| (|Matrix| (|Fraction| (|Polynomial| *5))))) (|isDomain| *1 (|EigenPackage| *5)) (|isDomain| *4 (|Matrix| (|Fraction| (|Polynomial| *5)))))) (|eigenvalues| (*1 *2 *3) (AND (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| *4)))) (|ofCategory| *4 (|GcdDomain|)) (|isDomain| *2 (|List| (|Union| (|Fraction| (|Polynomial| *4)) (|SuchThat| (|Symbol|) (|Polynomial| *4))))) (|isDomain| *1 (|EigenPackage| *4)))) (|characteristicPolynomial| (*1 *2 *3) (AND (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| *4)))) (|isDomain| *2 (|Polynomial| *4)) (|isDomain| *1 (|EigenPackage| *4)) (|ofCategory| *4 (|GcdDomain|)))) (|characteristicPolynomial| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| *5)))) (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Polynomial| *5)) (|isDomain| *1 (|EigenPackage| *5)) (|ofCategory| *5 (|GcdDomain|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |characteristicPolynomial| ((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|))) (SIGNATURE |characteristicPolynomial| ((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |eigenvalues| ((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |eigenvector| ((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |generalizedEigenvector| ((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |generalizedEigenvector| ((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |generalizedEigenvectors| ((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |eigenvectors| ((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) │ │ │ +((|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) 88)) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) 103) (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) 58)) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) NIL)) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) 55)) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) 47)) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) NIL)) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) 23)) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) 24)) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 51)) (|df2st| (((|String|) (|DoubleFloat|)) NIL))) │ │ │ +(((|ExpertSystemContinuityPackage|) (CATEGORY |package| (SIGNATURE |getlo| ((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |gethi| ((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |functionIsFracPolynomial?| ((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |problemPoints| ((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |zerosOf| ((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |singularitiesOf| ((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |singularitiesOf| ((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |polynomialZeros| ((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |df2st| ((|String|) (|DoubleFloat|))) (SIGNATURE |ldf2lst| ((|List| (|String|)) (|List| (|DoubleFloat|)))) (SIGNATURE |sdf2lst| ((|List| (|String|)) (|Stream| (|DoubleFloat|)))))) (T |ExpertSystemContinuityPackage|)) │ │ │ +((|sdf2lst| (*1 *2 *3) (AND (|isDomain| *3 (|Stream| (|DoubleFloat|))) (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|ExpertSystemContinuityPackage|)))) (|ldf2lst| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|DoubleFloat|))) (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|ExpertSystemContinuityPackage|)))) (|df2st| (*1 *2 *3) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *2 (|String|)) (|isDomain| *1 (|ExpertSystemContinuityPackage|)))) (|polynomialZeros| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Polynomial| (|Fraction| (|Integer|)))) (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|isDomain| *2 (|List| (|DoubleFloat|))) (|isDomain| *1 (|ExpertSystemContinuityPackage|)))) (|singularitiesOf| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Vector| (|Expression| (|DoubleFloat|)))) (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *5 (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|isDomain| *2 (|Stream| (|DoubleFloat|))) (|isDomain| *1 (|ExpertSystemContinuityPackage|)))) (|singularitiesOf| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Expression| (|DoubleFloat|))) (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *5 (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|isDomain| *2 (|Stream| (|DoubleFloat|))) (|isDomain| *1 (|ExpertSystemContinuityPackage|)))) (|zerosOf| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Expression| (|DoubleFloat|))) (|isDomain| *4 (|List| (|Symbol|))) (|isDomain| *5 (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|isDomain| *2 (|Stream| (|DoubleFloat|))) (|isDomain| *1 (|ExpertSystemContinuityPackage|)))) (|problemPoints| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Expression| (|DoubleFloat|))) (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|isDomain| *2 (|List| (|DoubleFloat|))) (|isDomain| *1 (|ExpertSystemContinuityPackage|)))) (|functionIsFracPolynomial?| (*1 *2 *3) (AND (|isDomain| *3 (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ExpertSystemContinuityPackage|)))) (|gethi| (*1 *2 *3) (AND (|isDomain| *3 (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|ExpertSystemContinuityPackage|)))) (|getlo| (*1 *2 *3) (AND (|isDomain| *3 (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|ExpertSystemContinuityPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |getlo| ((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |gethi| ((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |functionIsFracPolynomial?| ((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |problemPoints| ((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |zerosOf| ((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |singularitiesOf| ((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |singularitiesOf| ((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |polynomialZeros| ((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (SIGNATURE |df2st| ((|String|) (|DoubleFloat|))) (SIGNATURE |ldf2lst| ((|List| (|String|)) (|List| (|DoubleFloat|)))) (SIGNATURE |sdf2lst| ((|List| (|String|)) (|Stream| (|DoubleFloat|))))) │ │ │ ((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sqrt| (($ $ (|Integer|)) 61)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|sample| (($) 16 T CONST)) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) 60)) (|rem| (($ $ $) 54)) (|recip| (((|Union| $ "failed") $) 33)) (|quotientByP| (($ $) 63)) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|order| (((|NonNegativeInteger|) $) 68)) (|one?| (((|Boolean|) $) 30)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|modulus| (((|Integer|)) 65)) (|moduloP| (((|Integer|) $) 64)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|extend| (($ $ (|Integer|)) 67)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|digits| (((|Stream| (|Integer|)) $) 69)) (|complete| (($ $) 66)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 38)) (|approximate| (((|Integer|) $ (|Integer|)) 62)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ (((|PAdicIntegerCategory| |#1|) (|Category|) (|Integer|)) (T |PAdicIntegerCategory|)) │ │ │ ((|digits| (*1 *2 *1) (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3)) (|isDomain| *2 (|Stream| (|Integer|))))) (|order| (*1 *2 *1) (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3)) (|isDomain| *2 (|NonNegativeInteger|)))) (|extend| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3)) (|isDomain| *2 (|Integer|)))) (|complete| (*1 *1 *1) (|ofCategory| *1 (|PAdicIntegerCategory| *2))) (|modulus| (*1 *2) (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3)) (|isDomain| *2 (|Integer|)))) (|moduloP| (*1 *2 *1) (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3)) (|isDomain| *2 (|Integer|)))) (|quotientByP| (*1 *1 *1) (|ofCategory| *1 (|PAdicIntegerCategory| *2))) (|approximate| (*1 *2 *1 *2) (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3)) (|isDomain| *2 (|Integer|)))) (|sqrt| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PAdicIntegerCategory| *3)) (|isDomain| *2 (|Integer|)))) (|root| (*1 *1 *2 *3) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| (|Integer|))) (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|PAdicIntegerCategory| *4))))) │ │ │ (|Join| (|EuclideanDomain|) (|CharacteristicZero|) (CATEGORY |domain| (SIGNATURE |digits| ((|Stream| (|Integer|)) $)) (SIGNATURE |order| ((|NonNegativeInteger|) $)) (SIGNATURE |extend| ($ $ (|Integer|))) (SIGNATURE |complete| ($ $)) (SIGNATURE |modulus| ((|Integer|))) (SIGNATURE |moduloP| ((|Integer|) $)) (SIGNATURE |quotientByP| ($ $)) (SIGNATURE |approximate| ((|Integer|) $ (|Integer|))) (SIGNATURE |sqrt| ($ $ (|Integer|))) (SIGNATURE |root| ($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|))))) │ │ │ (((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicZero|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL (OR (AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|))) (AND (|has| |#1| (|AbelianMonoid|)) (|has| |#2| (|AbelianMonoid|))) (AND (|has| |#1| (|CancellationAbelianMonoid|)) (|has| |#2| (|CancellationAbelianMonoid|))) (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|)))))) (|sup| (($ $ $) 63 (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|))))) (|subtractIfCan| (((|Union| $ "failed") $ $) 50 (OR (AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|))) (AND (|has| |#1| (|CancellationAbelianMonoid|)) (|has| |#2| (|CancellationAbelianMonoid|))) (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|)))))) (|size| (((|NonNegativeInteger|)) 34 (AND (|has| |#1| (|Finite|)) (|has| |#2| (|Finite|))))) (|selectsecond| ((|#2| $) 21)) (|selectfirst| ((|#1| $) 20)) (|sample| (($) NIL (OR (AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|))) (AND (|has| |#1| (|AbelianMonoid|)) (|has| |#2| (|AbelianMonoid|))) (AND (|has| |#1| (|CancellationAbelianMonoid|)) (|has| |#2| (|CancellationAbelianMonoid|))) (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))) (AND (|has| |#1| (|Monoid|)) (|has| |#2| (|Monoid|))) (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|)))) CONST)) (|recip| (((|Union| $ "failed") $) NIL (OR (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))) (AND (|has| |#1| (|Monoid|)) (|has| |#2| (|Monoid|)))))) (|random| (($) NIL (AND (|has| |#1| (|Finite|)) (|has| |#2| (|Finite|))))) (|one?| (((|Boolean|) $) NIL (OR (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))) (AND (|has| |#1| (|Monoid|)) (|has| |#2| (|Monoid|)))))) (|min| (($ $ $) NIL (OR (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|))) (AND (|has| |#1| (|OrderedSet|)) (|has| |#2| (|OrderedSet|)))))) (|max| (($ $ $) NIL (OR (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|))) (AND (|has| |#1| (|OrderedSet|)) (|has| |#2| (|OrderedSet|)))))) (|makeprod| (($ |#1| |#2|) 19)) (|lookup| (((|PositiveInteger|) $) NIL (AND (|has| |#1| (|Finite|)) (|has| |#2| (|Finite|))))) (|latex| (((|String|) $) NIL)) (|inv| (($ $) 37 (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))))) (|index| (($ (|PositiveInteger|)) NIL (AND (|has| |#1| (|Finite|)) (|has| |#2| (|Finite|))))) (|hash| (((|SingleInteger|) $) NIL)) (|enumerate| (((|List| $)) NIL (AND (|has| |#1| (|Finite|)) (|has| |#2| (|Finite|))))) (|conjugate| (($ $ $) NIL (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))))) (|commutator| (($ $ $) NIL (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))))) (|coerce| (((|OutputForm|) $) 14)) (^ (($ $ (|Integer|)) NIL (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|)))) (($ $ (|NonNegativeInteger|)) NIL (OR (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))) (AND (|has| |#1| (|Monoid|)) (|has| |#2| (|Monoid|))))) (($ $ (|PositiveInteger|)) NIL (OR (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))) (AND (|has| |#1| (|Monoid|)) (|has| |#2| (|Monoid|)))))) (|Zero| (($) 40 (OR (AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|))) (AND (|has| |#1| (|AbelianMonoid|)) (|has| |#2| (|AbelianMonoid|))) (AND (|has| |#1| (|CancellationAbelianMonoid|)) (|has| |#2| (|CancellationAbelianMonoid|))) (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|)))) CONST)) (|One| (($) 24 (OR (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))) (AND (|has| |#1| (|Monoid|)) (|has| |#2| (|Monoid|)))) CONST)) (>= (((|Boolean|) $ $) NIL (OR (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|))) (AND (|has| |#1| (|OrderedSet|)) (|has| |#2| (|OrderedSet|)))))) (> (((|Boolean|) $ $) NIL (OR (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|))) (AND (|has| |#1| (|OrderedSet|)) (|has| |#2| (|OrderedSet|)))))) (= (((|Boolean|) $ $) 18)) (<= (((|Boolean|) $ $) NIL (OR (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|))) (AND (|has| |#1| (|OrderedSet|)) (|has| |#2| (|OrderedSet|)))))) (< (((|Boolean|) $ $) 66 (OR (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|))) (AND (|has| |#1| (|OrderedSet|)) (|has| |#2| (|OrderedSet|)))))) (/ (($ $ $) NIL (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))))) (- (($ $ $) 56 (AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|)))) (($ $) 53 (AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|))))) (+ (($ $ $) 43 (OR (AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|))) (AND (|has| |#1| (|AbelianMonoid|)) (|has| |#2| (|AbelianMonoid|))) (AND (|has| |#1| (|CancellationAbelianMonoid|)) (|has| |#2| (|CancellationAbelianMonoid|))) (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|)))))) (** (($ $ (|Integer|)) NIL (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|)))) (($ $ (|NonNegativeInteger|)) 31 (OR (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))) (AND (|has| |#1| (|Monoid|)) (|has| |#2| (|Monoid|))))) (($ $ (|PositiveInteger|)) NIL (OR (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))) (AND (|has| |#1| (|Monoid|)) (|has| |#2| (|Monoid|)))))) (* (($ (|Integer|) $) 60 (AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|)))) (($ (|NonNegativeInteger|) $) 46 (OR (AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|))) (AND (|has| |#1| (|AbelianMonoid|)) (|has| |#2| (|AbelianMonoid|))) (AND (|has| |#1| (|CancellationAbelianMonoid|)) (|has| |#2| (|CancellationAbelianMonoid|))) (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|))))) (($ (|PositiveInteger|) $) NIL (OR (AND (|has| |#1| (|AbelianGroup|)) (|has| |#2| (|AbelianGroup|))) (AND (|has| |#1| (|AbelianMonoid|)) (|has| |#2| (|AbelianMonoid|))) (AND (|has| |#1| (|CancellationAbelianMonoid|)) (|has| |#2| (|CancellationAbelianMonoid|))) (AND (|has| |#1| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedAbelianMonoidSup|))))) (($ $ $) 27 (OR (AND (|has| |#1| (|Group|)) (|has| |#2| (|Group|))) (AND (|has| |#1| (|Monoid|)) (|has| |#2| (|Monoid|))))))) │ │ │ -(((|Product| |#1| |#2|) (|Join| (|SetCategory|) (CATEGORY |domain| (IF (|has| |#1| (|Finite|)) (IF (|has| |#2| (|Finite|)) (ATTRIBUTE (|Finite|)) |noBranch|) |noBranch|) (IF (|has| |#1| (|Monoid|)) (IF (|has| |#2| (|Monoid|)) (ATTRIBUTE (|Monoid|)) |noBranch|) |noBranch|) (IF (|has| |#1| (|AbelianMonoid|)) (IF (|has| |#2| (|AbelianMonoid|)) (ATTRIBUTE (|AbelianMonoid|)) |noBranch|) |noBranch|) (IF (|has| |#1| (|CancellationAbelianMonoid|)) (IF (|has| |#2| (|CancellationAbelianMonoid|)) (ATTRIBUTE (|CancellationAbelianMonoid|)) |noBranch|) |noBranch|) (IF (|has| |#1| (|Group|)) (IF (|has| |#2| (|Group|)) (ATTRIBUTE (|Group|)) |noBranch|) |noBranch|) (IF (|has| |#1| (|AbelianGroup|)) (IF (|has| |#2| (|AbelianGroup|)) (ATTRIBUTE (|AbelianGroup|)) |noBranch|) |noBranch|) (IF (|has| |#1| (|OrderedAbelianMonoidSup|)) (IF (|has| |#2| (|OrderedAbelianMonoidSup|)) (ATTRIBUTE (|OrderedAbelianMonoidSup|)) |noBranch|) |noBranch|) (IF (|has| |#1| (|OrderedSet|)) (IF (|has| |#2| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |noBranch|) |noBranch|) (SIGNATURE |makeprod| ($ |#1| |#2|)) (SIGNATURE |selectfirst| (|#1| $)) (SIGNATURE |selectsecond| (|#2| $)))) (|SetCategory|) (|SetCategory|)) (T |Product|)) │ │ │ -((|makeprod| (*1 *1 *2 *3) (AND (|isDomain| *1 (|Product| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|selectfirst| (*1 *2 *1) (AND (|ofCategory| *2 (|SetCategory|)) (|isDomain| *1 (|Product| *2 *3)) (|ofCategory| *3 (|SetCategory|)))) (|selectsecond| (*1 *2 *1) (AND (|ofCategory| *2 (|SetCategory|)) (|isDomain| *1 (|Product| *3 *2)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (IF (|has| |#1| (|Finite|)) (IF (|has| |#2| (|Finite|)) (ATTRIBUTE (|Finite|)) |noBranch|) |noBranch|) (IF (|has| |#1| (|Monoid|)) (IF (|has| |#2| (|Monoid|)) (ATTRIBUTE (|Monoid|)) |noBranch|) |noBranch|) (IF (|has| |#1| (|AbelianMonoid|)) (IF (|has| |#2| (|AbelianMonoid|)) (ATTRIBUTE (|AbelianMonoid|)) |noBranch|) |noBranch|) (IF (|has| |#1| (|CancellationAbelianMonoid|)) (IF (|has| |#2| (|CancellationAbelianMonoid|)) (ATTRIBUTE (|CancellationAbelianMonoid|)) |noBranch|) |noBranch|) (IF (|has| |#1| (|Group|)) (IF (|has| |#2| (|Group|)) (ATTRIBUTE (|Group|)) |noBranch|) |noBranch|) (IF (|has| |#1| (|AbelianGroup|)) (IF (|has| |#2| (|AbelianGroup|)) (ATTRIBUTE (|AbelianGroup|)) |noBranch|) |noBranch|) (IF (|has| |#1| (|OrderedAbelianMonoidSup|)) (IF (|has| |#2| (|OrderedAbelianMonoidSup|)) (ATTRIBUTE (|OrderedAbelianMonoidSup|)) |noBranch|) |noBranch|) (IF (|has| |#1| (|OrderedSet|)) (IF (|has| |#2| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |noBranch|) |noBranch|) (SIGNATURE |makeprod| ($ |#1| |#2|)) (SIGNATURE |selectfirst| (|#1| $)) (SIGNATURE |selectsecond| (|#2| $)))) │ │ │ -((|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) 35 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) 27) ((|#1| (|NonNegativeInteger|) |#1|) 20)) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) 31)) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) 29)) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) 28))) │ │ │ -(((|OrthogonalPolynomialFunctions| |#1|) (CATEGORY |package| (SIGNATURE |chebyshevT| (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE |chebyshevU| (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE |hermiteH| (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE |laguerreL| (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE |laguerreL| (|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|)) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |legendreP| (|#1| (|NonNegativeInteger|) |#1|)) |noBranch|)) (|CommutativeRing|)) (T |OrthogonalPolynomialFunctions|)) │ │ │ -((|legendreP| (*1 *2 *3 *2) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|OrthogonalPolynomialFunctions| *2)) (|ofCategory| *2 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *2 (|CommutativeRing|)))) (|laguerreL| (*1 *2 *3 *3 *2) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|OrthogonalPolynomialFunctions| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|laguerreL| (*1 *2 *3 *2) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|OrthogonalPolynomialFunctions| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|hermiteH| (*1 *2 *3 *2) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|OrthogonalPolynomialFunctions| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|chebyshevU| (*1 *2 *3 *2) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|OrthogonalPolynomialFunctions| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|chebyshevT| (*1 *2 *3 *2) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|OrthogonalPolynomialFunctions| *2)) (|ofCategory| *2 (|CommutativeRing|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |chebyshevT| (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE |chebyshevU| (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE |hermiteH| (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE |laguerreL| (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE |laguerreL| (|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|)) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |legendreP| (|#1| (|NonNegativeInteger|) |#1|)) |noBranch|)) │ │ │ -((|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) 16) (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) 13))) │ │ │ -(((|AttachPredicates| |#1|) (CATEGORY |package| (SIGNATURE |suchThat| ((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|))) (SIGNATURE |suchThat| ((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))))) (|Type|)) (T |AttachPredicates|)) │ │ │ -((|suchThat| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *4 (|List| (|Mapping| (|Boolean|) *5))) (|ofCategory| *5 (|Type|)) (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|AttachPredicates| *5)))) (|suchThat| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *4 (|Mapping| (|Boolean|) *5)) (|ofCategory| *5 (|Type|)) (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|AttachPredicates| *5))))) │ │ │ -(CATEGORY |package| (SIGNATURE |suchThat| ((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|))) (SIGNATURE |suchThat| ((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))))) │ │ │ -((|optional| (((|Expression| (|Integer|)) (|Symbol|)) 15)) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) 13)) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) 11)) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) 18))) │ │ │ -(((|PatternMatchAssertions|) (CATEGORY |package| (SIGNATURE |assert| ((|Expression| (|Integer|)) (|Symbol|) (|String|))) (SIGNATURE |constant| ((|Expression| (|Integer|)) (|Symbol|))) (SIGNATURE |optional| ((|Expression| (|Integer|)) (|Symbol|))) (SIGNATURE |multiple| ((|Expression| (|Integer|)) (|Symbol|))))) (T |PatternMatchAssertions|)) │ │ │ -((|multiple| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|PatternMatchAssertions|)))) (|optional| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|PatternMatchAssertions|)))) (|constant| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|PatternMatchAssertions|)))) (|assert| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *4 (|String|)) (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|PatternMatchAssertions|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |assert| ((|Expression| (|Integer|)) (|Symbol|) (|String|))) (SIGNATURE |constant| ((|Expression| (|Integer|)) (|Symbol|))) (SIGNATURE |optional| ((|Expression| (|Integer|)) (|Symbol|))) (SIGNATURE |multiple| ((|Expression| (|Integer|)) (|Symbol|)))) │ │ │ -((|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) 17))) │ │ │ -(((|PointFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)))) (|Ring|) (|Ring|)) (T |PointFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Point| *5)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|)) (|isDomain| *2 (|Point| *6)) (|isDomain| *1 (|PointFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|setelt| (((|PseudoAlgebraicClosureOfFiniteField| |#1|) $ (|Integer|) (|PseudoAlgebraicClosureOfFiniteField| |#1|)) NIL)) (|removeConjugate| (((|List| $) (|List| $) (|NonNegativeInteger|)) NIL) (((|List| $) (|List| $)) NIL)) (|rational?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL) (((|Boolean|) $) NIL)) (|projectivePoint| (($ (|List| (|PseudoAlgebraicClosureOfFiniteField| |#1|))) NIL)) (|pointValue| (((|List| (|PseudoAlgebraicClosureOfFiniteField| |#1|)) $) NIL)) (|orbit| (((|List| $) $) NIL) (((|List| $) $ (|NonNegativeInteger|)) NIL)) (|list| (((|List| (|PseudoAlgebraicClosureOfFiniteField| |#1|)) $) NIL)) (|latex| (((|String|) $) NIL)) (|lastNonNull| (((|Integer|) $) NIL)) (|lastNonNul| (((|Integer|) $) NIL)) (|homogenize| (($ $ (|Integer|)) NIL) (($ $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|elt| (((|PseudoAlgebraicClosureOfFiniteField| |#1|) $ (|Integer|)) NIL)) (|degree| (((|PositiveInteger|) $) NIL)) (|definingField| (((|PseudoAlgebraicClosureOfFiniteField| |#1|) $) NIL)) (|conjugate| (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (((|List| (|PseudoAlgebraicClosureOfFiniteField| |#1|)) $) NIL) (($ (|List| (|PseudoAlgebraicClosureOfFiniteField| |#1|))) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|) (|ProjectiveSpaceCategory| (|PseudoAlgebraicClosureOfFiniteField| |#1|)) (|FiniteFieldCategory|)) (T |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField|)) │ │ │ +NIL │ │ │ +(|ProjectiveSpaceCategory| (|PseudoAlgebraicClosureOfFiniteField| |#1|)) │ │ │ +((|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) 73) (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) 75) (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) 74))) │ │ │ +(((|RationalUnivariateRepresentationPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |rur| ((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|))) (SIGNATURE |rur| ((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)))) (SIGNATURE |rur| ((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)))) (|Join| (|EuclideanDomain|) (|CharacteristicZero|)) (|List| (|Symbol|))) (T |RationalUnivariateRepresentationPackage|)) │ │ │ +((|rur| (*1 *2 *3 *4 *4) (AND (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| *5)) (|:| |coordinates| (|List| (|Polynomial| *5)))))) (|isDomain| *1 (|RationalUnivariateRepresentationPackage| *5 *6)) (|isDomain| *3 (|List| (|Polynomial| *5))) (|ofType| *6 (|List| (|Symbol|))))) (|rur| (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| *4)) (|:| |coordinates| (|List| (|Polynomial| *4)))))) (|isDomain| *1 (|RationalUnivariateRepresentationPackage| *4 *5)) (|isDomain| *3 (|List| (|Polynomial| *4))) (|ofType| *5 (|List| (|Symbol|))))) (|rur| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| *5)) (|:| |coordinates| (|List| (|Polynomial| *5)))))) (|isDomain| *1 (|RationalUnivariateRepresentationPackage| *5 *6)) (|isDomain| *3 (|List| (|Polynomial| *5))) (|ofType| *6 (|List| (|Symbol|)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |rur| ((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|))) (SIGNATURE |rur| ((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)))) (SIGNATURE |rur| ((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)))) │ │ │ +NIL │ │ │ +(((|CanonicalAttribute|) (|Category|)) (T |CanonicalAttribute|)) │ │ │ +NIL │ │ │ +(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|weight| (((|NonNegativeInteger|) $) 68) (($ $ (|NonNegativeInteger|)) 30)) (|unary?| (((|Boolean|) $) 32)) (|setProperty| (($ $ (|String|) (|None|)) 26)) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) 13)) (|property| (((|Union| (|None|) "failed") $ (|String|)) 24)) (|properties| (((|AssociationList| (|String|) (|None|)) $) 12)) (|operator| (($ (|Symbol|)) 15) (($ (|Symbol|) (|NonNegativeInteger|)) 20)) (|nullary?| (((|Boolean|) $) 31)) (|nary?| (((|Boolean|) $) 33)) (|name| (((|Symbol|) $) 8)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|latex| (((|String|) $) NIL)) (|is?| (((|Boolean|) $ (|Symbol|)) 10)) (|input| (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) 50) (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) 54)) (|hash| (((|SingleInteger|) $) NIL)) (|has?| (((|Boolean|) $ (|String|)) 29)) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) 35)) (|display| (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) 52) (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) 41) (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) 43)) (|deleteProperty!| (($ $ (|String|)) 45)) (|copy| (($ $) 61)) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) 36)) (|coerce| (((|OutputForm|) $) 48)) (|assert| (($ $ (|String|)) 27)) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) 56)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 67)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 72))) │ │ │ +(((|BasicOperator|) (|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |name| ((|Symbol|) $)) (SIGNATURE |properties| ((|AssociationList| (|String|) (|None|)) $)) (SIGNATURE |copy| ($ $)) (SIGNATURE |operator| ($ (|Symbol|))) (SIGNATURE |operator| ($ (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE |arity| ((|Union| (|NonNegativeInteger|) "failed") $)) (SIGNATURE |nullary?| ((|Boolean|) $)) (SIGNATURE |unary?| ((|Boolean|) $)) (SIGNATURE |nary?| ((|Boolean|) $)) (SIGNATURE |weight| ((|NonNegativeInteger|) $)) (SIGNATURE |weight| ($ $ (|NonNegativeInteger|))) (SIGNATURE |equality| ($ $ (|Mapping| (|Boolean|) $ $))) (SIGNATURE |comparison| ($ $ (|Mapping| (|Boolean|) $ $))) (SIGNATURE |display| ((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $)) (SIGNATURE |display| ($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|))))) (SIGNATURE |display| ($ $ (|Mapping| (|OutputForm|) (|OutputForm|)))) (SIGNATURE |input| ($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|))))) (SIGNATURE |input| ((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $)) (SIGNATURE |is?| ((|Boolean|) $ (|Symbol|))) (SIGNATURE |has?| ((|Boolean|) $ (|String|))) (SIGNATURE |assert| ($ $ (|String|))) (SIGNATURE |deleteProperty!| ($ $ (|String|))) (SIGNATURE |property| ((|Union| (|None|) "failed") $ (|String|))) (SIGNATURE |setProperty| ($ $ (|String|) (|None|))) (SIGNATURE |setProperties| ($ $ (|AssociationList| (|String|) (|None|))))))) (T |BasicOperator|)) │ │ │ +((|name| (*1 *2 *1) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|BasicOperator|)))) (|properties| (*1 *2 *1) (AND (|isDomain| *2 (|AssociationList| (|String|) (|None|))) (|isDomain| *1 (|BasicOperator|)))) (|copy| (*1 *1 *1) (|isDomain| *1 (|BasicOperator|))) (|operator| (*1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|BasicOperator|)))) (|operator| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|BasicOperator|)))) (|arity| (*1 *2 *1) (|partial| AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|BasicOperator|)))) (|nullary?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|BasicOperator|)))) (|unary?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|BasicOperator|)))) (|nary?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|BasicOperator|)))) (|weight| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|BasicOperator|)))) (|weight| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|BasicOperator|)))) (|equality| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Mapping| (|Boolean|) (|BasicOperator|) (|BasicOperator|))) (|isDomain| *1 (|BasicOperator|)))) (|comparison| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Mapping| (|Boolean|) (|BasicOperator|) (|BasicOperator|))) (|isDomain| *1 (|BasicOperator|)))) (|display| (*1 *2 *1) (|partial| AND (|isDomain| *2 (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) (|isDomain| *1 (|BasicOperator|)))) (|display| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) (|isDomain| *1 (|BasicOperator|)))) (|display| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Mapping| (|OutputForm|) (|OutputForm|))) (|isDomain| *1 (|BasicOperator|)))) (|input| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Mapping| (|InputForm|) (|List| (|InputForm|)))) (|isDomain| *1 (|BasicOperator|)))) (|input| (*1 *2 *1) (|partial| AND (|isDomain| *2 (|Mapping| (|InputForm|) (|List| (|InputForm|)))) (|isDomain| *1 (|BasicOperator|)))) (|is?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|BasicOperator|)))) (|has?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|BasicOperator|)))) (|assert| (*1 *1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|BasicOperator|)))) (|deleteProperty!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|BasicOperator|)))) (|property| (*1 *2 *1 *3) (|partial| AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|None|)) (|isDomain| *1 (|BasicOperator|)))) (|setProperty| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|String|)) (|isDomain| *3 (|None|)) (|isDomain| *1 (|BasicOperator|)))) (|setProperties| (*1 *1 *1 *2) (AND (|isDomain| *2 (|AssociationList| (|String|) (|None|))) (|isDomain| *1 (|BasicOperator|))))) │ │ │ +(|Join| (|OrderedSet|) (CATEGORY |domain| (SIGNATURE |name| ((|Symbol|) $)) (SIGNATURE |properties| ((|AssociationList| (|String|) (|None|)) $)) (SIGNATURE |copy| ($ $)) (SIGNATURE |operator| ($ (|Symbol|))) (SIGNATURE |operator| ($ (|Symbol|) (|NonNegativeInteger|))) (SIGNATURE |arity| ((|Union| (|NonNegativeInteger|) "failed") $)) (SIGNATURE |nullary?| ((|Boolean|) $)) (SIGNATURE |unary?| ((|Boolean|) $)) (SIGNATURE |nary?| ((|Boolean|) $)) (SIGNATURE |weight| ((|NonNegativeInteger|) $)) (SIGNATURE |weight| ($ $ (|NonNegativeInteger|))) (SIGNATURE |equality| ($ $ (|Mapping| (|Boolean|) $ $))) (SIGNATURE |comparison| ($ $ (|Mapping| (|Boolean|) $ $))) (SIGNATURE |display| ((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $)) (SIGNATURE |display| ($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|))))) (SIGNATURE |display| ($ $ (|Mapping| (|OutputForm|) (|OutputForm|)))) (SIGNATURE |input| ($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|))))) (SIGNATURE |input| ((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $)) (SIGNATURE |is?| ((|Boolean|) $ (|Symbol|))) (SIGNATURE |has?| ((|Boolean|) $ (|String|))) (SIGNATURE |assert| ($ $ (|String|))) (SIGNATURE |deleteProperty!| ($ $ (|String|))) (SIGNATURE |property| ((|Union| (|None|) "failed") $ (|String|))) (SIGNATURE |setProperty| ($ $ (|String|) (|None|))) (SIGNATURE |setProperties| ($ $ (|AssociationList| (|String|) (|None|)))))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|size| (((|NonNegativeInteger|)) 51 (|has| |#1| (|Finite|)))) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 93 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) 91 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#1| "failed") $) 89)) (|retract| (((|Integer|) $) 94 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) 92 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1| $) 88)) (|recip| (((|Union| $ "failed") $) 33)) (|real| ((|#1| $) 78)) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) 65 (|has| |#1| (|IntegerNumberSystem|)))) (|rational?| (((|Boolean|) $) 67 (|has| |#1| (|IntegerNumberSystem|)))) (|rational| (((|Fraction| (|Integer|)) $) 66 (|has| |#1| (|IntegerNumberSystem|)))) (|random| (($) 54 (|has| |#1| (|Finite|)))) (|one?| (((|Boolean|) $) 30)) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (|norm| ((|#1| $) 70)) (|min| (($ $ $) 61 (|has| |#1| (|OrderedSet|)))) (|max| (($ $ $) 60 (|has| |#1| (|OrderedSet|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 80)) (|lookup| (((|PositiveInteger|) $) 53 (|has| |#1| (|Finite|)))) (|latex| (((|String|) $) 9)) (|inv| (($ $) 64 (|has| |#1| (|Field|)))) (|index| (($ (|PositiveInteger|)) 52 (|has| |#1| (|Finite|)))) (|imagk| ((|#1| $) 75)) (|imagj| ((|#1| $) 76)) (|imagi| ((|#1| $) 77)) (|imagK| ((|#1| $) 71)) (|imagJ| ((|#1| $) 72)) (|imagI| ((|#1| $) 73)) (|imagE| ((|#1| $) 74)) (|hash| (((|SingleInteger|) $) 10)) (|eval| (($ $ (|List| |#1|) (|List| |#1|)) 86 (|has| |#1| (|Evalable| |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (|Evalable| |#1|))) (($ $ (|Equation| |#1|)) 84 (|has| |#1| (|Evalable| |#1|))) (($ $ (|List| (|Equation| |#1|))) 83 (|has| |#1| (|Evalable| |#1|))) (($ $ (|List| (|Symbol|)) (|List| |#1|)) 82 (|has| |#1| (|InnerEvalable| (|Symbol|) |#1|))) (($ $ (|Symbol|) |#1|) 81 (|has| |#1| (|InnerEvalable| (|Symbol|) |#1|)))) (|enumerate| (((|List| $)) 55 (|has| |#1| (|Finite|)))) (|elt| (($ $ |#1|) 87 (|has| |#1| (|Eltable| |#1| |#1|)))) (|convert| (((|InputForm|) $) 62 (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|conjugate| (($ $) 79)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ |#1|) 36) (($ (|Fraction| (|Integer|))) 90 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))) (|charthRoot| (((|Union| $ "failed") $) 63 (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|abs| ((|#1| $) 68 (|has| |#1| (|RealNumberSystem|)))) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (>= (((|Boolean|) $ $) 58 (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) 57 (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 59 (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) 56 (|has| |#1| (|OrderedSet|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 38) (($ |#1| $) 37))) │ │ │ +(((|OctonionCategory| |#1|) (|Category|) (|CommutativeRing|)) (T |OctonionCategory|)) │ │ │ +((|conjugate| (*1 *1 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|real| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagi| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagj| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagk| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagE| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagI| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagJ| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|imagK| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|norm| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|octon| (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (|abs| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|RealNumberSystem|)))) (|rational?| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Boolean|)))) (|rational| (*1 *2 *1) (AND (|ofCategory| *1 (|OctonionCategory| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Fraction| (|Integer|))))) (|rationalIfCan| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|OctonionCategory| *3)) (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *2 (|Fraction| (|Integer|))))) (|inv| (*1 *1 *1) (AND (|ofCategory| *1 (|OctonionCategory| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|Field|))))) │ │ │ +(|Join| (|Algebra| |t#1|) (|FullyRetractableTo| |t#1|) (|FullyEvalableOver| |t#1|) (CATEGORY |domain| (SIGNATURE |conjugate| ($ $)) (SIGNATURE |real| (|t#1| $)) (SIGNATURE |imagi| (|t#1| $)) (SIGNATURE |imagj| (|t#1| $)) (SIGNATURE |imagk| (|t#1| $)) (SIGNATURE |imagE| (|t#1| $)) (SIGNATURE |imagI| (|t#1| $)) (SIGNATURE |imagJ| (|t#1| $)) (SIGNATURE |imagK| (|t#1| $)) (SIGNATURE |norm| (|t#1| $)) (SIGNATURE |octon| ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (|Finite|)) (ATTRIBUTE (|Finite|)) |noBranch|) (IF (|has| |t#1| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |noBranch|) (IF (|has| |t#1| (|ConvertibleTo| (|InputForm|))) (ATTRIBUTE (|ConvertibleTo| (|InputForm|))) |noBranch|) (IF (|has| |t#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |noBranch|) (IF (|has| |t#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |noBranch|) (IF (|has| |t#1| (|RealNumberSystem|)) (SIGNATURE |abs| (|t#1| $)) |noBranch|) (IF (|has| |t#1| (|IntegerNumberSystem|)) (PROGN (SIGNATURE |rational?| ((|Boolean|) $)) (SIGNATURE |rational| ((|Fraction| (|Integer|)) $)) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") $))) |noBranch|) (IF (|has| |t#1| (|Field|)) (SIGNATURE |inv| ($ $)) |noBranch|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#1|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| |#1| $) |has| |#1| (|Eltable| |#1| |#1|)) ((|Evalable| |#1|) |has| |#1| (|Evalable| |#1|)) ((|Finite|) |has| |#1| (|Finite|)) ((|FullyEvalableOver| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|InnerEvalable| (|Symbol|) |#1|) |has| |#1| (|InnerEvalable| (|Symbol|) |#1|)) ((|InnerEvalable| |#1| |#1|) |has| |#1| (|Evalable| |#1|)) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Module| |#1|) . T) ((|Monoid|) . T) ((|OrderedSet|) |has| |#1| (|OrderedSet|)) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RightModule| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +((|zCoord| ((|#1| (|Point| |#1|)) 13)) (|yCoord| ((|#1| (|Point| |#1|)) 12)) (|xCoord| ((|#1| (|Point| |#1|)) 11)) (|thetaCoord| ((|#1| (|Point| |#1|)) 15)) (|shade| ((|#1| (|Point| |#1|)) 21)) (|rCoord| ((|#1| (|Point| |#1|)) 14)) (|phiCoord| ((|#1| (|Point| |#1|)) 16)) (|hue| ((|#1| (|Point| |#1|)) 20)) (|color| ((|#1| (|Point| |#1|)) 19))) │ │ │ +(((|PointPackage| |#1|) (CATEGORY |package| (SIGNATURE |xCoord| (|#1| (|Point| |#1|))) (SIGNATURE |yCoord| (|#1| (|Point| |#1|))) (SIGNATURE |zCoord| (|#1| (|Point| |#1|))) (SIGNATURE |rCoord| (|#1| (|Point| |#1|))) (SIGNATURE |thetaCoord| (|#1| (|Point| |#1|))) (SIGNATURE |phiCoord| (|#1| (|Point| |#1|))) (SIGNATURE |color| (|#1| (|Point| |#1|))) (SIGNATURE |hue| (|#1| (|Point| |#1|))) (SIGNATURE |shade| (|#1| (|Point| |#1|)))) (|Ring|)) (T |PointPackage|)) │ │ │ +((|shade| (*1 *2 *3) (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2)) (|ofCategory| *2 (|Ring|)))) (|hue| (*1 *2 *3) (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2)) (|ofCategory| *2 (|Ring|)))) (|color| (*1 *2 *3) (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2)) (|ofCategory| *2 (|Ring|)))) (|phiCoord| (*1 *2 *3) (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2)) (|ofCategory| *2 (|Ring|)))) (|thetaCoord| (*1 *2 *3) (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2)) (|ofCategory| *2 (|Ring|)))) (|rCoord| (*1 *2 *3) (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2)) (|ofCategory| *2 (|Ring|)))) (|zCoord| (*1 *2 *3) (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2)) (|ofCategory| *2 (|Ring|)))) (|yCoord| (*1 *2 *3) (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2)) (|ofCategory| *2 (|Ring|)))) (|xCoord| (*1 *2 *3) (AND (|isDomain| *3 (|Point| *2)) (|isDomain| *1 (|PointPackage| *2)) (|ofCategory| *2 (|Ring|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |xCoord| (|#1| (|Point| |#1|))) (SIGNATURE |yCoord| (|#1| (|Point| |#1|))) (SIGNATURE |zCoord| (|#1| (|Point| |#1|))) (SIGNATURE |rCoord| (|#1| (|Point| |#1|))) (SIGNATURE |thetaCoord| (|#1| (|Point| |#1|))) (SIGNATURE |phiCoord| (|#1| (|Point| |#1|))) (SIGNATURE |color| (|#1| (|Point| |#1|))) (SIGNATURE |hue| (|#1| (|Point| |#1|))) (SIGNATURE |shade| (|#1| (|Point| |#1|)))) │ │ │ +((|variablesOf| (((|List| (|Symbol|)) $) 23)) (|samplePoint| (((|List| |#1|) $) 32)) (|projection| (((|Union| $ "failed") $) 15)) (|makeCell| (($ (|List| (|SimpleCell| |#1| (|SparseUnivariatePolynomial| |#1|)))) 17) (($ (|SimpleCell| |#1| (|SparseUnivariatePolynomial| |#1|)) $) 18)) (|mainVariableOf| (((|Symbol|) $) 21)) (|hasDimension?| (((|Boolean|) $ (|Symbol|)) 29)) (|dimension| (((|NonNegativeInteger|) $) 28)) (|coerce| (((|OutputForm|) $) 13))) │ │ │ +(((|Cell| |#1|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |samplePoint| ((|List| |#1|) $)) (SIGNATURE |dimension| ((|NonNegativeInteger|) $)) (SIGNATURE |hasDimension?| ((|Boolean|) $ (|Symbol|))) (SIGNATURE |makeCell| ($ (|List| (|SimpleCell| |#1| (|SparseUnivariatePolynomial| |#1|))))) (SIGNATURE |makeCell| ($ (|SimpleCell| |#1| (|SparseUnivariatePolynomial| |#1|)) $)) (SIGNATURE |mainVariableOf| ((|Symbol|) $)) (SIGNATURE |variablesOf| ((|List| (|Symbol|)) $)) (SIGNATURE |projection| ((|Union| $ "failed") $)))) (|RealClosedField|)) (T |Cell|)) │ │ │ +((|samplePoint| (*1 *2 *1) (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|Cell| *3)) (|ofCategory| *3 (|RealClosedField|)))) (|dimension| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Cell| *3)) (|ofCategory| *3 (|RealClosedField|)))) (|hasDimension?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Cell| *4)) (|ofCategory| *4 (|RealClosedField|)))) (|makeCell| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|SimpleCell| *3 (|SparseUnivariatePolynomial| *3)))) (|ofCategory| *3 (|RealClosedField|)) (|isDomain| *1 (|Cell| *3)))) (|makeCell| (*1 *1 *2 *1) (AND (|isDomain| *2 (|SimpleCell| *3 (|SparseUnivariatePolynomial| *3))) (|ofCategory| *3 (|RealClosedField|)) (|isDomain| *1 (|Cell| *3)))) (|mainVariableOf| (*1 *2 *1) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|Cell| *3)) (|ofCategory| *3 (|RealClosedField|)))) (|variablesOf| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *1 (|Cell| *3)) (|ofCategory| *3 (|RealClosedField|)))) (|projection| (*1 *1 *1) (|partial| AND (|isDomain| *1 (|Cell| *2)) (|ofCategory| *2 (|RealClosedField|))))) │ │ │ +(|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |samplePoint| ((|List| |#1|) $)) (SIGNATURE |dimension| ((|NonNegativeInteger|) $)) (SIGNATURE |hasDimension?| ((|Boolean|) $ (|Symbol|))) (SIGNATURE |makeCell| ($ (|List| (|SimpleCell| |#1| (|SparseUnivariatePolynomial| |#1|))))) (SIGNATURE |makeCell| ($ (|SimpleCell| |#1| (|SparseUnivariatePolynomial| |#1|)) $)) (SIGNATURE |mainVariableOf| ((|Symbol|) $)) (SIGNATURE |variablesOf| ((|List| (|Symbol|)) $)) (SIGNATURE |projection| ((|Union| $ "failed") $)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|reduce| (($ $) 25)) (|principal?| (((|Boolean|) $) 24)) (|latex| (((|String|) $) 9)) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) 31)) (|hash| (((|SingleInteger|) $) 10)) (|generator| (((|Union| |#4| "failed") $) 23)) (|divisor| (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) 30) (($ |#4|) 29) (($ |#1| |#1|) 28) (($ |#1| |#1| (|Integer|)) 27) (($ |#4| |#2| |#2| |#2| |#1|) 22)) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 26)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19))) │ │ │ +(((|FiniteDivisorCategory| |#1| |#2| |#3| |#4|) (|Category|) (|Field|) (|UnivariatePolynomialCategory| |t#1|) (|UnivariatePolynomialCategory| (|Fraction| |t#2|)) (|FunctionFieldCategory| |t#1| |t#2| |t#3|)) (T |FiniteDivisorCategory|)) │ │ │ +((|ideal| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|ofCategory| *6 (|FunctionFieldCategory| *3 *4 *5)) (|isDomain| *2 (|FractionalIdeal| *4 (|Fraction| *4) *5 *6)))) (|divisor| (*1 *1 *2) (AND (|isDomain| *2 (|FractionalIdeal| *4 (|Fraction| *4) *5 *6)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|ofCategory| *6 (|FunctionFieldCategory| *3 *4 *5)) (|ofCategory| *3 (|Field|)) (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *6)))) (|divisor| (*1 *1 *2) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *2)) (|ofCategory| *2 (|FunctionFieldCategory| *3 *4 *5)))) (|divisor| (*1 *1 *2 *2) (AND (|ofCategory| *2 (|Field|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *3))) (|ofCategory| *1 (|FiniteDivisorCategory| *2 *3 *4 *5)) (|ofCategory| *5 (|FunctionFieldCategory| *2 *3 *4)))) (|divisor| (*1 *1 *2 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *2 (|Field|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|ofCategory| *1 (|FiniteDivisorCategory| *2 *4 *5 *6)) (|ofCategory| *6 (|FunctionFieldCategory| *2 *4 *5)))) (|decompose| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|ofCategory| *6 (|FunctionFieldCategory| *3 *4 *5)) (|isDomain| *2 (|Record| (|:| |id| (|FractionalIdeal| *4 (|Fraction| *4) *5 *6)) (|:| |principalPart| *6))))) (|reduce| (*1 *1 *1) (AND (|ofCategory| *1 (|FiniteDivisorCategory| *2 *3 *4 *5)) (|ofCategory| *2 (|Field|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *4 (|UnivariatePolynomialCategory| (|Fraction| *3))) (|ofCategory| *5 (|FunctionFieldCategory| *2 *3 *4)))) (|principal?| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|ofCategory| *6 (|FunctionFieldCategory| *3 *4 *5)) (|isDomain| *2 (|Boolean|)))) (|generator| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|FiniteDivisorCategory| *3 *4 *5 *2)) (|ofCategory| *3 (|Field|)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *4))) (|ofCategory| *2 (|FunctionFieldCategory| *3 *4 *5)))) (|divisor| (*1 *1 *2 *3 *3 *3 *4) (AND (|ofCategory| *4 (|Field|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *5 (|UnivariatePolynomialCategory| (|Fraction| *3))) (|ofCategory| *1 (|FiniteDivisorCategory| *4 *3 *5 *2)) (|ofCategory| *2 (|FunctionFieldCategory| *4 *3 *5))))) │ │ │ +(|Join| (|AbelianGroup|) (CATEGORY |domain| (SIGNATURE |ideal| ((|FractionalIdeal| |t#2| (|Fraction| |t#2|) |t#3| |t#4|) $)) (SIGNATURE |divisor| ($ (|FractionalIdeal| |t#2| (|Fraction| |t#2|) |t#3| |t#4|))) (SIGNATURE |divisor| ($ |t#4|)) (SIGNATURE |divisor| ($ |t#1| |t#1|)) (SIGNATURE |divisor| ($ |t#1| |t#1| (|Integer|))) (SIGNATURE |decompose| ((|Record| (|:| |id| (|FractionalIdeal| |t#2| (|Fraction| |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (SIGNATURE |reduce| ($ $)) (SIGNATURE |principal?| ((|Boolean|) $)) (SIGNATURE |generator| ((|Union| |t#4| "failed") $)) (SIGNATURE |divisor| ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) |#2| $) 23)) (|size| ((|#1| $) 10)) (|sign| (((|Integer|) |#2| $) 88)) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) 58)) (|right| ((|#1| $) 28)) (|relativeApprox| ((|#1| |#2| $ |#1|) 37)) (|refine| (($ $) 25)) (|recip| (((|Union| |#2| "failed") |#2| $) 87)) (|positive?| (((|Boolean|) |#2| $) NIL)) (|negative?| (((|Boolean|) |#2| $) NIL)) (|mightHaveRoots| (((|Boolean|) |#2| $) 24)) (|middle| ((|#1| $) 89)) (|left| ((|#1| $) 27)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|definingPolynomial| ((|#2| $) 79)) (|coerce| (((|OutputForm|) $) 71)) (|approximate| ((|#1| |#2| $ |#1|) 38)) (|allRootsOf| (((|List| $) |#2|) 60)) (= (((|Boolean|) $ $) 74))) │ │ │ +(((|RightOpenIntervalRootCharacterization| |#1| |#2|) (|Join| (|RealRootCharacterizationCategory| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |left| (|#1| $)) (SIGNATURE |right| (|#1| $)) (SIGNATURE |size| (|#1| $)) (SIGNATURE |middle| (|#1| $)) (SIGNATURE |refine| ($ $)) (SIGNATURE |mightHaveRoots| ((|Boolean|) |#2| $)) (SIGNATURE |relativeApprox| (|#1| |#2| $ |#1|)))) (|Join| (|OrderedRing|) (|Field|)) (|UnivariatePolynomialCategory| |#1|)) (T |RightOpenIntervalRootCharacterization|)) │ │ │ +((|relativeApprox| (*1 *2 *3 *1 *2) (AND (|ofCategory| *2 (|Join| (|OrderedRing|) (|Field|))) (|isDomain| *1 (|RightOpenIntervalRootCharacterization| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|left| (*1 *2 *1) (AND (|ofCategory| *2 (|Join| (|OrderedRing|) (|Field|))) (|isDomain| *1 (|RightOpenIntervalRootCharacterization| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|right| (*1 *2 *1) (AND (|ofCategory| *2 (|Join| (|OrderedRing|) (|Field|))) (|isDomain| *1 (|RightOpenIntervalRootCharacterization| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|size| (*1 *2 *1) (AND (|ofCategory| *2 (|Join| (|OrderedRing|) (|Field|))) (|isDomain| *1 (|RightOpenIntervalRootCharacterization| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|middle| (*1 *2 *1) (AND (|ofCategory| *2 (|Join| (|OrderedRing|) (|Field|))) (|isDomain| *1 (|RightOpenIntervalRootCharacterization| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|refine| (*1 *1 *1) (AND (|ofCategory| *2 (|Join| (|OrderedRing|) (|Field|))) (|isDomain| *1 (|RightOpenIntervalRootCharacterization| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|mightHaveRoots| (*1 *2 *3 *1) (AND (|ofCategory| *4 (|Join| (|OrderedRing|) (|Field|))) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|RightOpenIntervalRootCharacterization| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))) │ │ │ +(|Join| (|RealRootCharacterizationCategory| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |left| (|#1| $)) (SIGNATURE |right| (|#1| $)) (SIGNATURE |size| (|#1| $)) (SIGNATURE |middle| (|#1| $)) (SIGNATURE |refine| ($ $)) (SIGNATURE |mightHaveRoots| ((|Boolean|) |#2| $)) (SIGNATURE |relativeApprox| (|#1| |#2| $ |#1|)))) │ │ │ +((|theCurve| (((|DistributedMultivariatePolynomial| |#2| |#1|)) 83)) (|singularPoints| (((|List| (|ProjectivePlane| |#1|))) 92)) (|setSingularPoints| (((|List| (|ProjectivePlane| |#1|)) (|List| (|ProjectivePlane| |#1|))) 24)) (|setCurve| (((|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|)) 75)) (|rationalPoints| (((|List| (|ProjectivePlane| |#1|))) 65)) (|rationalPlaces| (((|List| (|Places| |#1|))) 63)) (|projectivePoint| (((|ProjectivePlane| |#1|) (|List| |#1|)) 27)) (|pointDominateBy| (((|ProjectivePlane| |#1|) (|Places| |#1|)) 18)) (|placesOfDegree| (((|List| (|Places| |#1|)) (|PositiveInteger|)) 50 (|has| |#1| (|Finite|)))) (|placesAbove| (((|List| (|Places| |#1|)) (|ProjectivePlane| |#1|)) 21)) (|parametrize| (((|NeitherSparseOrDensePowerSeries| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) 95)) (|numberRatPlacesExtDeg| (((|Integer|) (|PositiveInteger|)) 52 (|has| |#1| (|Finite|)))) (|numberPlacesDegExtDeg| (((|Integer|) (|PositiveInteger|) (|PositiveInteger|)) 54 (|has| |#1| (|Finite|)))) (|numberOfPlacesOfDegree| (((|Integer|) (|PositiveInteger|)) 48 (|has| |#1| (|Finite|)))) (|lBasis| (((|Record| (|:| |num| (|List| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|:| |den| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|Divisor| (|Places| |#1|))) 33) (((|List| (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|Divisor| (|Places| |#1|)) (|NonNegativeInteger|)) NIL)) (|intersectionDivisor| (((|Divisor| (|Places| |#1|)) (|DistributedMultivariatePolynomial| |#2| |#1|)) 107)) (|interpolateFormsForFact| (((|List| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Divisor| (|Places| |#1|)) (|List| (|DistributedMultivariatePolynomial| |#2| |#1|))) 31)) (|interpolateForms| (((|List| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Divisor| (|Places| |#1|)) (|NonNegativeInteger|)) 97)) (|homogenize| (((|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Integer|)) 13)) (|goppaCode| (((|Matrix| |#1|) (|Divisor| (|Places| |#1|)) (|List| (|Places| |#1|))) 38) (((|Matrix| |#1|) (|Divisor| (|Places| |#1|)) (|Divisor| (|Places| |#1|))) 40)) (|genusNeg| (((|Integer|)) 81)) (|genus| (((|NonNegativeInteger|)) 79)) (|fullInfClsPt| (((|Void|)) 116)) (|fullDesTree| (((|Void|)) 112)) (|findOrderOfDivisor| (((|Record| (|:| |ord| (|Integer|)) (|:| |num| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|:| |den| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|:| |upTo| (|Integer|))) (|Divisor| (|Places| |#1|)) (|Integer|) (|Integer|)) NIL)) (|evalIfCan| (((|Union| |#1| "failed") (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Places| |#1|)) 105) (((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) 104) (((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) 73)) (|eval| ((|#1| (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Places| |#1|)) 102) ((|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) 34) ((|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) 70)) (|desingTreeWoFullParam| (((|List| (|DesingTree| (|InfClsPt| |#1| |#2| |#3|)))) 88)) (|desingTree| (((|List| (|DesingTree| (|InfClsPt| |#1| |#2| |#3|)))) 86)) (|classNumber| (((|Integer|)) 61 (|has| |#1| (|Finite|)))) (|adjunctionDivisor| (((|Divisor| (|Places| |#1|))) 90)) (|ZetaFunction| (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|) (|PositiveInteger|)) 46 (|has| |#1| (|Finite|))) (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|)) 43 (|has| |#1| (|Finite|)))) (|LPolynomial| (((|SparseUnivariatePolynomial| (|Integer|)) (|PositiveInteger|)) 59 (|has| |#1| (|Finite|))) (((|SparseUnivariatePolynomial| (|Integer|))) 57 (|has| |#1| (|Finite|))))) │ │ │ +(((|PackageForAlgebraicFunctionField| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |homogenize| ((|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Integer|))) (SIGNATURE |interpolateFormsForFact| ((|List| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Divisor| (|Places| |#1|)) (|List| (|DistributedMultivariatePolynomial| |#2| |#1|)))) (SIGNATURE |fullDesTree| ((|Void|))) (SIGNATURE |fullInfClsPt| ((|Void|))) (SIGNATURE |setCurve| ((|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|))) (SIGNATURE |projectivePoint| ((|ProjectivePlane| |#1|) (|List| |#1|))) (SIGNATURE |pointDominateBy| ((|ProjectivePlane| |#1|) (|Places| |#1|))) (SIGNATURE |placesAbove| ((|List| (|Places| |#1|)) (|ProjectivePlane| |#1|))) (SIGNATURE |setSingularPoints| ((|List| (|ProjectivePlane| |#1|)) (|List| (|ProjectivePlane| |#1|)))) (SIGNATURE |goppaCode| ((|Matrix| |#1|) (|Divisor| (|Places| |#1|)) (|Divisor| (|Places| |#1|)))) (SIGNATURE |goppaCode| ((|Matrix| |#1|) (|Divisor| (|Places| |#1|)) (|List| (|Places| |#1|)))) (SIGNATURE |rationalPlaces| ((|List| (|Places| |#1|)))) (SIGNATURE |theCurve| ((|DistributedMultivariatePolynomial| |#2| |#1|))) (SIGNATURE |genus| ((|NonNegativeInteger|))) (SIGNATURE |genusNeg| ((|Integer|))) (SIGNATURE |desingTreeWoFullParam| ((|List| (|DesingTree| (|InfClsPt| |#1| |#2| |#3|))))) (SIGNATURE |desingTree| ((|List| (|DesingTree| (|InfClsPt| |#1| |#2| |#3|))))) (SIGNATURE |rationalPoints| ((|List| (|ProjectivePlane| |#1|)))) (SIGNATURE |singularPoints| ((|List| (|ProjectivePlane| |#1|)))) (SIGNATURE |parametrize| ((|NeitherSparseOrDensePowerSeries| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|))) (SIGNATURE |lBasis| ((|List| (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|Divisor| (|Places| |#1|)) (|NonNegativeInteger|))) (SIGNATURE |lBasis| ((|Record| (|:| |num| (|List| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|:| |den| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|Divisor| (|Places| |#1|)))) (SIGNATURE |findOrderOfDivisor| ((|Record| (|:| |ord| (|Integer|)) (|:| |num| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|:| |den| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|:| |upTo| (|Integer|))) (|Divisor| (|Places| |#1|)) (|Integer|) (|Integer|))) (SIGNATURE |interpolateForms| ((|List| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Divisor| (|Places| |#1|)) (|NonNegativeInteger|))) (SIGNATURE |eval| (|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|))) (SIGNATURE |eval| (|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|))) (SIGNATURE |eval| (|#1| (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Places| |#1|))) (SIGNATURE |evalIfCan| ((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|))) (SIGNATURE |evalIfCan| ((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|))) (SIGNATURE |evalIfCan| ((|Union| |#1| "failed") (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Places| |#1|))) (SIGNATURE |intersectionDivisor| ((|Divisor| (|Places| |#1|)) (|DistributedMultivariatePolynomial| |#2| |#1|))) (SIGNATURE |adjunctionDivisor| ((|Divisor| (|Places| |#1|)))) (IF (|has| |#1| (|Finite|)) (PROGN (SIGNATURE |LPolynomial| ((|SparseUnivariatePolynomial| (|Integer|)))) (SIGNATURE |LPolynomial| ((|SparseUnivariatePolynomial| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |classNumber| ((|Integer|))) (SIGNATURE |placesOfDegree| ((|List| (|Places| |#1|)) (|PositiveInteger|))) (SIGNATURE |numberOfPlacesOfDegree| ((|Integer|) (|PositiveInteger|))) (SIGNATURE |numberRatPlacesExtDeg| ((|Integer|) (|PositiveInteger|))) (SIGNATURE |numberPlacesDegExtDeg| ((|Integer|) (|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |ZetaFunction| ((|UnivariateTaylorSeriesCZero| (|Integer|) |t|))) (SIGNATURE |ZetaFunction| ((|UnivariateTaylorSeriesCZero| (|Integer|) |t|) (|PositiveInteger|)))) |noBranch|)) (|Field|) (|List| (|Symbol|)) (|BlowUpMethodCategory|)) (T |PackageForAlgebraicFunctionField|)) │ │ │ +((|ZetaFunction| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|UnivariateTaylorSeriesCZero| (|Integer|) |t|)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *4 *5 *6)) (|ofCategory| *4 (|Finite|)) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|ZetaFunction| (*1 *2) (AND (|isDomain| *2 (|UnivariateTaylorSeriesCZero| (|Integer|) |t|)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *3 *4 *5)) (|ofCategory| *3 (|Finite|)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|numberPlacesDegExtDeg| (*1 *2 *3 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *4 *5 *6)) (|ofCategory| *4 (|Finite|)) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|numberRatPlacesExtDeg| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *4 *5 *6)) (|ofCategory| *4 (|Finite|)) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|numberOfPlacesOfDegree| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *4 *5 *6)) (|ofCategory| *4 (|Finite|)) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|placesOfDegree| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|List| (|Places| *4))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *4 *5 *6)) (|ofCategory| *4 (|Finite|)) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|classNumber| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *3 *4 *5)) (|ofCategory| *3 (|Finite|)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|LPolynomial| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|SparseUnivariatePolynomial| (|Integer|))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *4 *5 *6)) (|ofCategory| *4 (|Finite|)) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|LPolynomial| (*1 *2) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| (|Integer|))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *3 *4 *5)) (|ofCategory| *3 (|Finite|)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|adjunctionDivisor| (*1 *2) (AND (|isDomain| *2 (|Divisor| (|Places| *3))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *3 *4 *5)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|intersectionDivisor| (*1 *2 *3) (AND (|isDomain| *3 (|DistributedMultivariatePolynomial| *5 *4)) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|isDomain| *2 (|Divisor| (|Places| *4))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *4 *5 *6)) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|evalIfCan| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Fraction| (|DistributedMultivariatePolynomial| *5 *2))) (|isDomain| *4 (|Places| *2)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *2 *5 *6)) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|evalIfCan| (*1 *2 *3 *3 *4) (|partial| AND (|isDomain| *3 (|DistributedMultivariatePolynomial| *5 *2)) (|isDomain| *4 (|Places| *2)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *2 *5 *6)) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|evalIfCan| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|DistributedMultivariatePolynomial| *5 *2)) (|isDomain| *4 (|Places| *2)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *2 *5 *6)) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|eval| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| (|DistributedMultivariatePolynomial| *5 *2))) (|isDomain| *4 (|Places| *2)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *2 *5 *6)) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|eval| (*1 *2 *3 *3 *4) (AND (|isDomain| *3 (|DistributedMultivariatePolynomial| *5 *2)) (|isDomain| *4 (|Places| *2)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *2 *5 *6)) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|eval| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DistributedMultivariatePolynomial| *5 *2)) (|isDomain| *4 (|Places| *2)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *2 *5 *6)) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|interpolateForms| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Divisor| (|Places| *5))) (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|List| (|DistributedMultivariatePolynomial| *6 *5))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *5 *6 *7)) (|ofType| *6 (|List| (|Symbol|))) (|ofCategory| *7 (|BlowUpMethodCategory|)))) (|findOrderOfDivisor| (*1 *2 *3 *4 *4) (AND (|isDomain| *3 (|Divisor| (|Places| *5))) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Record| (|:| |ord| (|Integer|)) (|:| |num| (|DistributedMultivariatePolynomial| *6 *5)) (|:| |den| (|DistributedMultivariatePolynomial| *6 *5)) (|:| |upTo| (|Integer|)))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *5 *6 *7)) (|isDomain| *4 (|Integer|)) (|ofType| *6 (|List| (|Symbol|))) (|ofCategory| *7 (|BlowUpMethodCategory|)))) (|lBasis| (*1 *2 *3) (AND (|isDomain| *3 (|Divisor| (|Places| *4))) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|Record| (|:| |num| (|List| (|DistributedMultivariatePolynomial| *5 *4))) (|:| |den| (|DistributedMultivariatePolynomial| *5 *4)))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *4 *5 *6)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|lBasis| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Divisor| (|Places| *5))) (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|List| (|Fraction| (|DistributedMultivariatePolynomial| *6 *5)))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *5 *6 *7)) (|ofType| *6 (|List| (|Symbol|))) (|ofCategory| *7 (|BlowUpMethodCategory|)))) (|parametrize| (*1 *2 *3 *4) (AND (|isDomain| *3 (|DistributedMultivariatePolynomial| *6 *5)) (|isDomain| *4 (|Places| *5)) (|ofCategory| *5 (|Field|)) (|ofType| *6 (|List| (|Symbol|))) (|isDomain| *2 (|NeitherSparseOrDensePowerSeries| *5)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *5 *6 *7)) (|ofCategory| *7 (|BlowUpMethodCategory|)))) (|singularPoints| (*1 *2) (AND (|isDomain| *2 (|List| (|ProjectivePlane| *3))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *3 *4 *5)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|rationalPoints| (*1 *2) (AND (|isDomain| *2 (|List| (|ProjectivePlane| *3))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *3 *4 *5)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|desingTree| (*1 *2) (AND (|isDomain| *2 (|List| (|DesingTree| (|InfClsPt| *3 *4 *5)))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *3 *4 *5)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|desingTreeWoFullParam| (*1 *2) (AND (|isDomain| *2 (|List| (|DesingTree| (|InfClsPt| *3 *4 *5)))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *3 *4 *5)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|genusNeg| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *3 *4 *5)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|genus| (*1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *3 *4 *5)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|theCurve| (*1 *2) (AND (|isDomain| *2 (|DistributedMultivariatePolynomial| *4 *3)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *3 *4 *5)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|rationalPlaces| (*1 *2) (AND (|isDomain| *2 (|List| (|Places| *3))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *3 *4 *5)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|goppaCode| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Divisor| (|Places| *5))) (|isDomain| *4 (|List| (|Places| *5))) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Matrix| *5)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *5 *6 *7)) (|ofType| *6 (|List| (|Symbol|))) (|ofCategory| *7 (|BlowUpMethodCategory|)))) (|goppaCode| (*1 *2 *3 *3) (AND (|isDomain| *3 (|Divisor| (|Places| *4))) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|Matrix| *4)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *4 *5 *6)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|setSingularPoints| (*1 *2 *2) (AND (|isDomain| *2 (|List| (|ProjectivePlane| *3))) (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *3 *4 *5)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|placesAbove| (*1 *2 *3) (AND (|isDomain| *3 (|ProjectivePlane| *4)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|List| (|Places| *4))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *4 *5 *6)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|pointDominateBy| (*1 *2 *3) (AND (|isDomain| *3 (|Places| *4)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|ProjectivePlane| *4)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *4 *5 *6)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|projectivePoint| (*1 *2 *3) (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|ProjectivePlane| *4)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *4 *5 *6)) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|setCurve| (*1 *2 *2) (AND (|isDomain| *2 (|DistributedMultivariatePolynomial| *4 *3)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *3 *4 *5)) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|fullInfClsPt| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *3 *4 *5)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|fullDesTree| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *3 *4 *5)) (|ofCategory| *3 (|Field|)) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|BlowUpMethodCategory|)))) (|interpolateFormsForFact| (*1 *2 *3 *2) (AND (|isDomain| *2 (|List| (|DistributedMultivariatePolynomial| *5 *4))) (|isDomain| *3 (|Divisor| (|Places| *4))) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *4 *5 *6)) (|ofCategory| *6 (|BlowUpMethodCategory|)))) (|homogenize| (*1 *2 *2 *3) (AND (|isDomain| *2 (|DistributedMultivariatePolynomial| *5 *4)) (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|Field|)) (|ofType| *5 (|List| (|Symbol|))) (|isDomain| *1 (|PackageForAlgebraicFunctionField| *4 *5 *6)) (|ofCategory| *6 (|BlowUpMethodCategory|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |homogenize| ((|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Integer|))) (SIGNATURE |interpolateFormsForFact| ((|List| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Divisor| (|Places| |#1|)) (|List| (|DistributedMultivariatePolynomial| |#2| |#1|)))) (SIGNATURE |fullDesTree| ((|Void|))) (SIGNATURE |fullInfClsPt| ((|Void|))) (SIGNATURE |setCurve| ((|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|))) (SIGNATURE |projectivePoint| ((|ProjectivePlane| |#1|) (|List| |#1|))) (SIGNATURE |pointDominateBy| ((|ProjectivePlane| |#1|) (|Places| |#1|))) (SIGNATURE |placesAbove| ((|List| (|Places| |#1|)) (|ProjectivePlane| |#1|))) (SIGNATURE |setSingularPoints| ((|List| (|ProjectivePlane| |#1|)) (|List| (|ProjectivePlane| |#1|)))) (SIGNATURE |goppaCode| ((|Matrix| |#1|) (|Divisor| (|Places| |#1|)) (|Divisor| (|Places| |#1|)))) (SIGNATURE |goppaCode| ((|Matrix| |#1|) (|Divisor| (|Places| |#1|)) (|List| (|Places| |#1|)))) (SIGNATURE |rationalPlaces| ((|List| (|Places| |#1|)))) (SIGNATURE |theCurve| ((|DistributedMultivariatePolynomial| |#2| |#1|))) (SIGNATURE |genus| ((|NonNegativeInteger|))) (SIGNATURE |genusNeg| ((|Integer|))) (SIGNATURE |desingTreeWoFullParam| ((|List| (|DesingTree| (|InfClsPt| |#1| |#2| |#3|))))) (SIGNATURE |desingTree| ((|List| (|DesingTree| (|InfClsPt| |#1| |#2| |#3|))))) (SIGNATURE |rationalPoints| ((|List| (|ProjectivePlane| |#1|)))) (SIGNATURE |singularPoints| ((|List| (|ProjectivePlane| |#1|)))) (SIGNATURE |parametrize| ((|NeitherSparseOrDensePowerSeries| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|))) (SIGNATURE |lBasis| ((|List| (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|Divisor| (|Places| |#1|)) (|NonNegativeInteger|))) (SIGNATURE |lBasis| ((|Record| (|:| |num| (|List| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|:| |den| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|Divisor| (|Places| |#1|)))) (SIGNATURE |findOrderOfDivisor| ((|Record| (|:| |ord| (|Integer|)) (|:| |num| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|:| |den| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|:| |upTo| (|Integer|))) (|Divisor| (|Places| |#1|)) (|Integer|) (|Integer|))) (SIGNATURE |interpolateForms| ((|List| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Divisor| (|Places| |#1|)) (|NonNegativeInteger|))) (SIGNATURE |eval| (|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|))) (SIGNATURE |eval| (|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|))) (SIGNATURE |eval| (|#1| (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Places| |#1|))) (SIGNATURE |evalIfCan| ((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|))) (SIGNATURE |evalIfCan| ((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|))) (SIGNATURE |evalIfCan| ((|Union| |#1| "failed") (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Places| |#1|))) (SIGNATURE |intersectionDivisor| ((|Divisor| (|Places| |#1|)) (|DistributedMultivariatePolynomial| |#2| |#1|))) (SIGNATURE |adjunctionDivisor| ((|Divisor| (|Places| |#1|)))) (IF (|has| |#1| (|Finite|)) (PROGN (SIGNATURE |LPolynomial| ((|SparseUnivariatePolynomial| (|Integer|)))) (SIGNATURE |LPolynomial| ((|SparseUnivariatePolynomial| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |classNumber| ((|Integer|))) (SIGNATURE |placesOfDegree| ((|List| (|Places| |#1|)) (|PositiveInteger|))) (SIGNATURE |numberOfPlacesOfDegree| ((|Integer|) (|PositiveInteger|))) (SIGNATURE |numberRatPlacesExtDeg| ((|Integer|) (|PositiveInteger|))) (SIGNATURE |numberPlacesDegExtDeg| ((|Integer|) (|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |ZetaFunction| ((|UnivariateTaylorSeriesCZero| (|Integer|) |t|))) (SIGNATURE |ZetaFunction| ((|UnivariateTaylorSeriesCZero| (|Integer|) |t|) (|PositiveInteger|)))) |noBranch|)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ |#1| $) 22))) │ │ │ +(((|LeftModule| |#1|) (|Category|) (|Rng|)) (T |LeftModule|)) │ │ │ +((* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|LeftModule| *2)) (|ofCategory| *2 (|Rng|))))) │ │ │ +(|Join| (|AbelianGroup|) (CATEGORY |domain| (SIGNATURE * ($ |t#1| $)))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|latex| (((|String|) $) NIL)) (|introduce!| (((|Union| $ "failed") (|Symbol|) (|Symbol|)) 31)) (|hash| (((|SingleInteger|) $) NIL)) (|getSmgl| (((|Union| (|Symbol|) "failed") $) 45)) (|d| (((|Union| $ (|Integer|)) (|Symbol|)) 36)) (|copyIto| (((|Table| (|Symbol|) $)) 42)) (|copyBSD| (((|List| $)) 40)) (|convertIfCan| (((|Union| $ "failed") (|Symbol|)) 19)) (|convert| (($ (|Symbol|)) 27) (((|Symbol|) $) NIL)) (|coerce| (((|OutputForm|) $) 21)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) NIL))) │ │ │ +(((|BasicStochasticDifferential|) (|Join| (|OrderedSet|) (CATEGORY |domain| (ATTRIBUTE (|ConvertibleTo| (|Symbol|))) (SIGNATURE |convertIfCan| ((|Union| $ "failed") (|Symbol|))) (SIGNATURE |convert| ($ (|Symbol|))) (SIGNATURE |introduce!| ((|Union| $ "failed") (|Symbol|) (|Symbol|))) (SIGNATURE |d| ((|Union| $ (|Integer|)) (|Symbol|))) (SIGNATURE |copyBSD| ((|List| $))) (SIGNATURE |copyIto| ((|Table| (|Symbol|) $))) (SIGNATURE |getSmgl| ((|Union| (|Symbol|) "failed") $))))) (T |BasicStochasticDifferential|)) │ │ │ +((|convertIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|BasicStochasticDifferential|)))) (|convert| (*1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|BasicStochasticDifferential|)))) (|introduce!| (*1 *1 *2 *2) (|partial| AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|BasicStochasticDifferential|)))) (|d| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Union| (|BasicStochasticDifferential|) (|Integer|))) (|isDomain| *1 (|BasicStochasticDifferential|)))) (|copyBSD| (*1 *2) (AND (|isDomain| *2 (|List| (|BasicStochasticDifferential|))) (|isDomain| *1 (|BasicStochasticDifferential|)))) (|copyIto| (*1 *2) (AND (|isDomain| *2 (|Table| (|Symbol|) (|BasicStochasticDifferential|))) (|isDomain| *1 (|BasicStochasticDifferential|)))) (|getSmgl| (*1 *2 *1) (|partial| AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|BasicStochasticDifferential|))))) │ │ │ +(|Join| (|OrderedSet|) (CATEGORY |domain| (ATTRIBUTE (|ConvertibleTo| (|Symbol|))) (SIGNATURE |convertIfCan| ((|Union| $ "failed") (|Symbol|))) (SIGNATURE |convert| ($ (|Symbol|))) (SIGNATURE |introduce!| ((|Union| $ "failed") (|Symbol|) (|Symbol|))) (SIGNATURE |d| ((|Union| $ (|Integer|)) (|Symbol|))) (SIGNATURE |copyBSD| ((|List| $))) (SIGNATURE |copyIto| ((|Table| (|Symbol|) $))) (SIGNATURE |getSmgl| ((|Union| (|Symbol|) "failed") $)))) │ │ │ +((|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) 35))) │ │ │ +(((|RetractSolvePackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |solveRetract| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))))) (|IntegralDomain|) (|Join| (|IntegralDomain|) (|RetractableTo| |#1|))) (T |RetractSolvePackage|)) │ │ │ +((|solveRetract| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Polynomial| *6))) (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *6 (|Join| (|IntegralDomain|) (|RetractableTo| *5))) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *6)))))) (|isDomain| *1 (|RetractSolvePackage| *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |solveRetract| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))))) │ │ │ +((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|zero| (($ (|NonNegativeInteger|)) 105 (|has| |#1| (|AbelianMonoid|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) 91) (((|Boolean|) $) 85 (|has| |#1| (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) 82 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) 81 (AND (|has| |#1| (|OrderedSet|)) (|has| $ (ATTRIBUTE |shallowlyMutable|))))) (|sort| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) 92) (($ $) 86 (|has| |#1| (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setelt| ((|#1| $ (|Integer|) |#1|) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) 53 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) 70 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) 7 T CONST)) (|reverse!| (($ $) 83 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) 93)) (|removeDuplicates| (($ $) 73 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|remove| (($ |#1| $) 72 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (($ (|Mapping| (|Boolean|) |#1|) $) 69 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 71 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) 67 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) 48)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) 90) (((|Integer|) |#1| $) 89 (|has| |#1| (|SetCategory|))) (((|Integer|) |#1| $ (|Integer|)) 88 (|has| |#1| (|SetCategory|)))) (|point| (($ (|List| |#1|)) 110)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|outerProduct| (((|Matrix| |#1|) $ $) 98 (|has| |#1| (|Ring|)))) (|new| (($ (|NonNegativeInteger|) |#1|) 64)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|minIndex| (((|Integer|) $) 40 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) 80 (|has| |#1| (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) 94) (($ $ $) 87 (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxIndex| (((|Integer|) $) 41 (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) 79 (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35) (($ (|Mapping| |#1| |#1| |#1|) $ $) 59)) (|magnitude| ((|#1| $) 95 (AND (|has| |#1| (|Ring|)) (|has| |#1| (|RadicalCategory|))))) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|length| ((|#1| $) 96 (AND (|has| |#1| (|Ring|)) (|has| |#1| (|RadicalCategory|))))) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|insert| (($ |#1| $ (|Integer|)) 55) (($ $ $ (|Integer|)) 54)) (|indices| (((|List| (|Integer|)) $) 43)) (|index?| (((|Boolean|) (|Integer|) $) 44)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|first| ((|#1| $) 39 (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) 66)) (|fill!| (($ $ |#1|) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|extend| (($ $ (|List| |#1|)) 107)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|entry?| (((|Boolean|) |#1| $) 42 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) 45)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ (|Integer|) |#1|) 47) ((|#1| $ (|Integer|)) 46) (($ $ (|UniversalSegment| (|Integer|))) 58)) (|dot| ((|#1| $ $) 99 (|has| |#1| (|Ring|)))) (|dimension| (((|PositiveInteger|) $) 109)) (|delete| (($ $ (|Integer|)) 57) (($ $ (|UniversalSegment| (|Integer|))) 56)) (|cross| (($ $ $) 97)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copyInto!| (($ $ $ (|Integer|)) 84 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) 13)) (|convert| (((|InputForm|) $) 74 (|has| |#1| (|ConvertibleTo| (|InputForm|)))) (($ (|List| |#1|)) 108)) (|construct| (($ (|List| |#1|)) 65)) (|concat| (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (|List| $)) 60)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) 77 (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) 76 (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (<= (((|Boolean|) $ $) 78 (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) 75 (|has| |#1| (|OrderedSet|)))) (- (($ $) 104 (|has| |#1| (|AbelianGroup|))) (($ $ $) 103 (|has| |#1| (|AbelianGroup|)))) (+ (($ $ $) 106 (|has| |#1| (|AbelianSemiGroup|)))) (* (($ (|Integer|) $) 102 (|has| |#1| (|AbelianGroup|))) (($ |#1| $) 101 (|has| |#1| (|Monoid|))) (($ $ |#1|) 100 (|has| |#1| (|Monoid|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|PointCategory| |#1|) (|Category|) (|Ring|)) (T |PointCategory|)) │ │ │ +((|point| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|PointCategory| *3)))) (|dimension| (*1 *2 *1) (AND (|ofCategory| *1 (|PointCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|PositiveInteger|)))) (|convert| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|PointCategory| *3)))) (|cross| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|PointCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|extend| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *1 (|PointCategory| *3)) (|ofCategory| *3 (|Ring|))))) │ │ │ +(|Join| (|VectorCategory| |t#1|) (CATEGORY |domain| (SIGNATURE |point| ($ (|List| |t#1|))) (SIGNATURE |dimension| ((|PositiveInteger|) $)) (SIGNATURE |convert| ($ (|List| |t#1|))) (SIGNATURE |cross| ($ $ $)) (SIGNATURE |extend| ($ $ (|List| |t#1|))))) │ │ │ +(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| (|Integer|) |#1|) . T) ((|EltableAggregate| (|Integer|) |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|FiniteLinearAggregate| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|IndexedAggregate| (|Integer|) |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|LinearAggregate| |#1|) . T) ((|OneDimensionalArrayAggregate| |#1|) . T) ((|OrderedSet|) |has| |#1| (|OrderedSet|)) ((|SetCategory|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|Type|) . T) ((|VectorCategory| |#1|) . T)) │ │ │ +((|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) 14))) │ │ │ +(((|EquationFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)))) (|Type|) (|Type|)) (T |EquationFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Equation| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|Equation| *6)) (|isDomain| *1 (|EquationFunctions2| *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| ((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)))) │ │ │ +((|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) 22)) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) 51))) │ │ │ +(((|LeadingCoefDetermination| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |polCase| ((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|))) (SIGNATURE |distFact| ((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)))) (|OrderedSet|) (|OrderedAbelianMonoidSup|) (|EuclideanDomain|) (|PolynomialCategory| |#3| |#2| |#1|)) (T |LeadingCoefDetermination|)) │ │ │ +((|distFact| (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| AND (|isDomain| *5 (|Record| (|:| |contp| *3) (|:| |factors| (|List| (|Record| (|:| |irr| *10) (|:| |pow| (|Integer|))))))) (|isDomain| *6 (|List| *3)) (|isDomain| *7 (|List| *8)) (|ofCategory| *8 (|OrderedSet|)) (|ofCategory| *3 (|EuclideanDomain|)) (|ofCategory| *10 (|PolynomialCategory| *3 *9 *8)) (|ofCategory| *9 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Record| (|:| |polfac| (|List| *10)) (|:| |correct| *3) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| *3))))) (|isDomain| *1 (|LeadingCoefDetermination| *8 *9 *3 *10)) (|isDomain| *4 (|List| (|SparseUnivariatePolynomial| *3))))) (|polCase| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *5 (|List| *3)) (|ofCategory| *3 (|EuclideanDomain|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|LeadingCoefDetermination| *6 *7 *3 *8)) (|ofCategory| *8 (|PolynomialCategory| *3 *7 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |polCase| ((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|))) (SIGNATURE |distFact| ((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)))) │ │ │ +((|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) 216) (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) 20) (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) 26) (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) 25) (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) 21))) │ │ │ +(((|TransSolvePackage| |#1|) (CATEGORY |package| (SIGNATURE |solve| ((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|))) (SIGNATURE |solve| ((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)))) (SIGNATURE |solve| ((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|))) (SIGNATURE |solve| ((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|))) (SIGNATURE |solve| ((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))))) (|Join| (|OrderedSet|) (|EuclideanDomain|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|CharacteristicZero|))) (T |TransSolvePackage|)) │ │ │ +((|solve| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|Join| (|OrderedSet|) (|EuclideanDomain|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|List| (|Equation| (|Expression| *5))))) (|isDomain| *1 (|TransSolvePackage| *5)) (|isDomain| *3 (|List| (|Equation| (|Expression| *5)))))) (|solve| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|OrderedSet|) (|EuclideanDomain|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|Equation| (|Expression| *5)))) (|isDomain| *1 (|TransSolvePackage| *5)) (|isDomain| *3 (|Expression| *5)))) (|solve| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|OrderedSet|) (|EuclideanDomain|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|Equation| (|Expression| *5)))) (|isDomain| *1 (|TransSolvePackage| *5)) (|isDomain| *3 (|Equation| (|Expression| *5))))) (|solve| (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|OrderedSet|) (|EuclideanDomain|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|Equation| (|Expression| *4)))) (|isDomain| *1 (|TransSolvePackage| *4)) (|isDomain| *3 (|Equation| (|Expression| *4))))) (|solve| (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|OrderedSet|) (|EuclideanDomain|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|Equation| (|Expression| *4)))) (|isDomain| *1 (|TransSolvePackage| *4)) (|isDomain| *3 (|Expression| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |solve| ((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|))) (SIGNATURE |solve| ((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)))) (SIGNATURE |solve| ((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|))) (SIGNATURE |solve| ((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|))) (SIGNATURE |solve| ((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))))) │ │ │ ((|sqrt| (($ $) 12)) (|nthRoot| (($ $ (|Integer|)) 13))) │ │ │ (((|RadicalCategory&| |#1|) (CATEGORY |domain| (SIGNATURE |sqrt| (|#1| |#1|)) (SIGNATURE |nthRoot| (|#1| |#1| (|Integer|)))) (|RadicalCategory|)) (T |RadicalCategory&|)) │ │ │ NIL │ │ │ (CATEGORY |domain| (SIGNATURE |sqrt| (|#1| |#1|)) (SIGNATURE |nthRoot| (|#1| |#1| (|Integer|)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|sample| (($) 19 T CONST)) (|recip| (((|Union| $ "failed") $) 15)) (|one?| (((|Boolean|) $) 18)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (^ (($ $ (|PositiveInteger|)) 12) (($ $ (|NonNegativeInteger|)) 16)) (|One| (($) 20 T CONST)) (= (((|Boolean|) $ $) 6)) (** (($ $ (|PositiveInteger|)) 13) (($ $ (|NonNegativeInteger|)) 17)) (* (($ $ $) 14))) │ │ │ +(((|Monoid|) (|Category|)) (T |Monoid|)) │ │ │ +((|One| (*1 *1) (|ofCategory| *1 (|Monoid|))) (|sample| (*1 *1) (|ofCategory| *1 (|Monoid|))) (|one?| (*1 *2 *1) (AND (|ofCategory| *1 (|Monoid|)) (|isDomain| *2 (|Boolean|)))) (** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|Monoid|)) (|isDomain| *2 (|NonNegativeInteger|)))) (^ (*1 *1 *1 *2) (AND (|ofCategory| *1 (|Monoid|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|recip| (*1 *1 *1) (|partial| |ofCategory| *1 (|Monoid|)))) │ │ │ +(|Join| (|SemiGroup|) (CATEGORY |domain| (SIGNATURE (|One|) ($) |constant|) (SIGNATURE |sample| ($) |constant|) (SIGNATURE |one?| ((|Boolean|) $)) (SIGNATURE ** ($ $ (|NonNegativeInteger|))) (SIGNATURE ^ ($ $ (|NonNegativeInteger|))) (SIGNATURE |recip| ((|Union| $ "failed") $)))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 89)) (|unitCanonical| (($ $) 90)) (|unit?| (((|Boolean|) $) 92)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 110)) (|squareFree| (((|Factored| $) $) 111)) (|sqrt| (($ $) 73) (($ $ (|NonNegativeInteger|)) 59) (($ (|Fraction| (|Integer|))) 58) (($ (|Integer|)) 57)) (|sizeLess?| (((|Boolean|) $ $) 101)) (|sign| (((|Integer|) $) 128)) (|sample| (($) 16 T CONST)) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) 67) (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) 66)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 85 (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) 83 (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| (|Fraction| (|Integer|)) "failed") $) 81)) (|retract| (((|Integer|) $) 86 (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) 84 (|has| (|Fraction| (|Integer|)) (|RetractableTo| (|Fraction| (|Integer|))))) (((|Fraction| (|Integer|)) $) 80)) (|rename!| (($ $ (|OutputForm|)) 56)) (|rename| (($ $ (|OutputForm|)) 55)) (|rem| (($ $ $) 105)) (|recip| (((|Union| $ "failed") $) 33)) (|quo| (($ $ $) 104)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 99)) (|prime?| (((|Boolean|) $) 112)) (|positive?| (((|Boolean|) $) 126)) (|one?| (((|Boolean|) $) 30)) (|nthRoot| (($ $ (|Integer|)) 72)) (|negative?| (((|Boolean|) $) 127)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 108)) (|min| (($ $ $) 125)) (|max| (($ $ $) 124)) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) 68)) (|mainForm| (((|Union| (|OutputForm|) "failed") $) 70)) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) 69)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 93)) (|lcm| (($ (|List| $)) 97) (($ $ $) 96)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 113)) (|hash| (((|SingleInteger|) $) 10)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 98)) (|gcd| (($ (|List| $)) 95) (($ $ $) 94)) (|factor| (((|Factored| $) $) 109)) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 107) (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 106)) (|exquo| (((|Union| $ "failed") $ $) 88)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 100)) (|euclideanSize| (((|NonNegativeInteger|) $) 102)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 103)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ (|Fraction| (|Integer|))) 118) (($ $) 87) (($ (|Fraction| (|Integer|))) 82) (($ (|Integer|)) 79) (($ (|Fraction| (|Integer|))) 76)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 91)) (|approximate| (((|Fraction| (|Integer|)) $ $) 54)) (|allRootsOf| (((|List| $) (|SparseUnivariatePolynomial| $)) 65) (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) 64) (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) 63) (((|List| $) (|Polynomial| $)) 62) (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) 61) (((|List| $) (|Polynomial| (|Integer|))) 60)) (|abs| (($ $) 129)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 114)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (>= (((|Boolean|) $ $) 122)) (> (((|Boolean|) $ $) 121)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 123)) (< (((|Boolean|) $ $) 120)) (/ (($ $ $) 119)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 115) (($ $ (|Fraction| (|Integer|))) 71)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ (|Fraction| (|Integer|)) $) 117) (($ $ (|Fraction| (|Integer|))) 116) (($ (|Integer|) $) 78) (($ $ (|Integer|)) 77) (($ (|Fraction| (|Integer|)) $) 75) (($ $ (|Fraction| (|Integer|))) 74))) │ │ │ +(((|RealClosedField|) (|Category|)) (T |RealClosedField|)) │ │ │ +((|sqrt| (*1 *1 *1) (|ofCategory| *1 (|RealClosedField|))) (|mainForm| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|RealClosedField|)) (|isDomain| *2 (|OutputForm|)))) (|mainDefiningPolynomial| (*1 *2 *1) (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|RealClosedField|)))) (|mainValue| (*1 *2 *1) (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|RealClosedField|)))) (|rootOf| (*1 *1 *2 *3 *4) (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|OutputForm|)) (|ofCategory| *1 (|RealClosedField|)))) (|rootOf| (*1 *1 *2 *3) (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|isDomain| *3 (|PositiveInteger|)) (|ofCategory| *1 (|RealClosedField|)))) (|allRootsOf| (*1 *2 *3) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|RealClosedField|)) (|isDomain| *2 (|List| *1)))) (|allRootsOf| (*1 *2 *3) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RealClosedField|)))) (|allRootsOf| (*1 *2 *3) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| (|Integer|))) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RealClosedField|)))) (|allRootsOf| (*1 *2 *3) (AND (|isDomain| *3 (|Polynomial| *1)) (|ofCategory| *1 (|RealClosedField|)) (|isDomain| *2 (|List| *1)))) (|allRootsOf| (*1 *2 *3) (AND (|isDomain| *3 (|Polynomial| (|Fraction| (|Integer|)))) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RealClosedField|)))) (|allRootsOf| (*1 *2 *3) (AND (|isDomain| *3 (|Polynomial| (|Integer|))) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|RealClosedField|)))) (|sqrt| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RealClosedField|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|sqrt| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|ofCategory| *1 (|RealClosedField|)))) (|sqrt| (*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|RealClosedField|)))) (|rename!| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RealClosedField|)) (|isDomain| *2 (|OutputForm|)))) (|rename| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RealClosedField|)) (|isDomain| *2 (|OutputForm|)))) (|approximate| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|RealClosedField|)) (|isDomain| *2 (|Fraction| (|Integer|)))))) │ │ │ +(|Join| (|CharacteristicZero|) (|OrderedRing|) (|CommutativeRing|) (|Field|) (|FullyRetractableTo| (|Fraction| (|Integer|))) (|Algebra| (|Integer|)) (|Algebra| (|Fraction| (|Integer|))) (|RadicalCategory|) (CATEGORY |domain| (SIGNATURE |mainForm| ((|Union| (|OutputForm|) "failed") $)) (SIGNATURE |mainDefiningPolynomial| ((|Union| (|SparseUnivariatePolynomial| $) "failed") $)) (SIGNATURE |mainValue| ((|Union| (|SparseUnivariatePolynomial| $) "failed") $)) (SIGNATURE |rootOf| ((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|))) (SIGNATURE |rootOf| ((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|))) (SIGNATURE |allRootsOf| ((|List| $) (|SparseUnivariatePolynomial| $))) (SIGNATURE |allRootsOf| ((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|))))) (SIGNATURE |allRootsOf| ((|List| $) (|SparseUnivariatePolynomial| (|Integer|)))) (SIGNATURE |allRootsOf| ((|List| $) (|Polynomial| $))) (SIGNATURE |allRootsOf| ((|List| $) (|Polynomial| (|Fraction| (|Integer|))))) (SIGNATURE |allRootsOf| ((|List| $) (|Polynomial| (|Integer|)))) (SIGNATURE |sqrt| ($ $ (|NonNegativeInteger|))) (SIGNATURE |sqrt| ($ $)) (SIGNATURE |sqrt| ($ (|Fraction| (|Integer|)))) (SIGNATURE |sqrt| ($ (|Integer|))) (SIGNATURE |rename!| ($ $ (|OutputForm|))) (SIGNATURE |rename| ($ $ (|OutputForm|))) (SIGNATURE |approximate| ((|Fraction| (|Integer|)) $ $)))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| (|Integer|)) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| (|Integer|) (|Integer|)) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicZero|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|FullyRetractableTo| (|Fraction| (|Integer|))) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| (|Integer|)) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| (|Integer|)) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|OrderedAbelianGroup|) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedCancellationAbelianMonoid|) . T) ((|OrderedRing|) . T) ((|OrderedSet|) . T) ((|PrincipalIdealDomain|) . T) ((|RadicalCategory|) . T) ((|RetractableTo| (|Fraction| (|Integer|))) . T) ((|RetractableTo| (|Integer|)) |has| (|Fraction| (|Integer|)) (|RetractableTo| (|Integer|))) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| (|Integer|)) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|UniqueFactorizationDomain|) . T)) │ │ │ +((|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (|commonDenominator| ((|#1| |#3|) 9)) (|clearDenominator| ((|#3| |#3|) 15))) │ │ │ +(((|CommonDenominator| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |commonDenominator| (|#1| |#3|)) (SIGNATURE |clearDenominator| (|#3| |#3|)) (SIGNATURE |splitDenominator| ((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (|IntegralDomain|) (|QuotientFieldCategory| |#1|) (|FiniteLinearAggregate| |#2|)) (T |CommonDenominator|)) │ │ │ +((|splitDenominator| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|QuotientFieldCategory| *4)) (|isDomain| *2 (|Record| (|:| |num| *3) (|:| |den| *4))) (|isDomain| *1 (|CommonDenominator| *4 *5 *3)) (|ofCategory| *3 (|FiniteLinearAggregate| *5)))) (|clearDenominator| (*1 *2 *2) (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|QuotientFieldCategory| *3)) (|isDomain| *1 (|CommonDenominator| *3 *4 *2)) (|ofCategory| *2 (|FiniteLinearAggregate| *4)))) (|commonDenominator| (*1 *2 *3) (AND (|ofCategory| *4 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|isDomain| *1 (|CommonDenominator| *2 *4 *3)) (|ofCategory| *3 (|FiniteLinearAggregate| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |commonDenominator| (|#1| |#3|)) (SIGNATURE |clearDenominator| (|#3| |#3|)) (SIGNATURE |splitDenominator| ((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 33)) (|wholePart| (((|Integer|) $) 55)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|truncate| (($ $) 109)) (|tanh| (($ $) 81)) (|tan| (($ $) 70)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|sqrt| (($ $) 44)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|sinh| (($ $) 79)) (|sin| (($ $) 68)) (|sign| (((|Integer|) $) 63)) (|shift| (($ $ (|Integer|)) 62)) (|sech| (($ $) NIL)) (|sec| (($ $) NIL)) (|sample| (($) NIL T CONST)) (|round| (($ $) 111)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 187) (((|Union| (|Fraction| (|Integer|)) "failed") $) 183)) (|retract| (((|Integer|) $) 185) (((|Fraction| (|Integer|)) $) 181)) (|rem| (($ $ $) NIL)) (|relerror| (((|Integer|) $ $) 101)) (|recip| (((|Union| $ "failed") $) 113)) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) 188) (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) 180)) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|prime?| (((|Boolean|) $) NIL)) (|precision| (((|PositiveInteger|)) 72) (((|PositiveInteger|) (|PositiveInteger|)) 97 (|has| $ (ATTRIBUTE |arbitraryPrecision|)))) (|positive?| (((|Boolean|) $) 105)) (|pi| (($) 40)) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) NIL)) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) 150)) (|outputGeneral| (((|Void|)) 155) (((|Void|) (|NonNegativeInteger|)) 156)) (|outputFloating| (((|Void|)) 157) (((|Void|) (|NonNegativeInteger|)) 158)) (|outputFixed| (((|Void|)) 153) (((|Void|) (|NonNegativeInteger|)) 154)) (|order| (((|Integer|) $) 58)) (|one?| (((|Boolean|) $) 103)) (|nthRoot| (($ $ (|Integer|)) NIL)) (|normalize| (($ $) 48)) (|norm| (($ $) NIL)) (|negative?| (((|Boolean|) $) 35)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|min| (($ $ $) NIL) (($) NIL (AND (|not| (|has| $ (ATTRIBUTE |arbitraryExponent|))) (|not| (|has| $ (ATTRIBUTE |arbitraryPrecision|)))))) (|max| (($ $ $) NIL) (($) 98 (AND (|not| (|has| $ (ATTRIBUTE |arbitraryExponent|))) (|not| (|has| $ (ATTRIBUTE |arbitraryPrecision|)))))) (|mantissa| (((|Integer|) $) 17)) (|log2| (($) 86) (($ $) 91)) (|log10| (($) 90) (($ $) 92)) (|log| (($ $) 82)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) 115)) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) 43 (|has| $ (ATTRIBUTE |arbitraryPrecision|)))) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|fractionPart| (($ $) 53)) (|floor| (($ $) 108)) (|float| (($ (|Integer|) (|Integer|)) 106) (($ (|Integer|) (|Integer|) (|PositiveInteger|)) 107)) (|factor| (((|Factored| $) $) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|exponent| (((|Integer|) $) 19)) (|exp1| (($) 93)) (|exp| (($ $) 78)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|digits| (((|PositiveInteger|)) 99) (((|PositiveInteger|) (|PositiveInteger|)) 100 (|has| $ (ATTRIBUTE |arbitraryPrecision|)))) (|differentiate| (($ $ (|NonNegativeInteger|)) NIL) (($ $) 114)) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) 47 (|has| $ (ATTRIBUTE |arbitraryPrecision|)))) (|csch| (($ $) NIL)) (|csc| (($ $) NIL)) (|coth| (($ $) NIL)) (|cot| (($ $) NIL)) (|cosh| (($ $) 80)) (|cos| (($ $) 69)) (|convert| (((|Float|) $) 173) (((|DoubleFloat|) $) 175) (((|Pattern| (|Float|)) $) NIL) (((|String|) $) 160) (((|InputForm|) $) 171) (($ (|DoubleFloat|)) 179)) (|coerce| (((|OutputForm|) $) 162) (($ (|Integer|)) 184) (($ $) NIL) (($ (|Fraction| (|Integer|))) NIL) (($ (|Integer|)) 184) (($ (|Fraction| (|Integer|))) NIL) (((|DoubleFloat|) $) 176)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|ceiling| (($ $) 110)) (|bits| (((|PositiveInteger|)) 54) (((|PositiveInteger|) (|PositiveInteger|)) 65 (|has| $ (ATTRIBUTE |arbitraryPrecision|)))) (|base| (((|PositiveInteger|)) 102)) (|atanh| (($ $) 85)) (|atan| (($ $) 46) (($ $ $) 52)) (|associates?| (((|Boolean|) $ $) NIL)) (|asinh| (($ $) 83)) (|asin| (($ $) 37)) (|asech| (($ $) NIL)) (|asec| (($ $) NIL)) (|acsch| (($ $) NIL)) (|acsc| (($ $) NIL)) (|acoth| (($ $) NIL)) (|acot| (($ $) NIL)) (|acosh| (($ $) 84)) (|acos| (($ $) 49)) (|abs| (($ $) 51)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|Zero| (($) 34 T CONST)) (|One| (($) 38 T CONST)) (|OMwrite| (((|String|) $) 27) (((|String|) $ (|Boolean|)) 29) (((|Void|) (|OpenMathDevice|) $) 30) (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) 31)) (D (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 39)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 42)) (/ (($ $ $) 45) (($ $ (|Integer|)) 41)) (- (($ $) 36) (($ $ $) 50)) (+ (($ $ $) 61)) (** (($ $ (|PositiveInteger|)) 66) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) 87) (($ $ (|Fraction| (|Integer|))) 124) (($ $ $) 116)) (* (($ (|PositiveInteger|) $) 64) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 67) (($ $ $) 60) (($ $ (|Fraction| (|Integer|))) NIL) (($ (|Fraction| (|Integer|)) $) NIL))) │ │ │ +(((|Float|) (|Join| (|FloatingPointSystem|) (|DifferentialRing|) (|ConvertibleTo| (|String|)) (|OpenMath|) (|CoercibleTo| (|DoubleFloat|)) (|TranscendentalFunctionCategory|) (|ConvertibleTo| (|InputForm|)) (CATEGORY |domain| (SIGNATURE / ($ $ (|Integer|))) (SIGNATURE ** ($ $ $)) (SIGNATURE |normalize| ($ $)) (SIGNATURE |relerror| ((|Integer|) $ $)) (SIGNATURE |shift| ($ $ (|Integer|))) (SIGNATURE |rationalApproximation| ((|Fraction| (|Integer|)) $ (|NonNegativeInteger|))) (SIGNATURE |rationalApproximation| ((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |log2| ($)) (SIGNATURE |log10| ($)) (SIGNATURE |exp1| ($)) (SIGNATURE |atan| ($ $ $)) (SIGNATURE |log2| ($ $)) (SIGNATURE |log10| ($ $)) (SIGNATURE |convert| ($ (|DoubleFloat|))) (SIGNATURE |outputFloating| ((|Void|))) (SIGNATURE |outputFloating| ((|Void|) (|NonNegativeInteger|))) (SIGNATURE |outputFixed| ((|Void|))) (SIGNATURE |outputFixed| ((|Void|) (|NonNegativeInteger|))) (SIGNATURE |outputGeneral| ((|Void|))) (SIGNATURE |outputGeneral| ((|Void|) (|NonNegativeInteger|))) (SIGNATURE |outputSpacing| ((|Void|) (|NonNegativeInteger|))) (ATTRIBUTE |arbitraryPrecision|) (ATTRIBUTE |arbitraryExponent|)))) (T |Float|)) │ │ │ +((** (*1 *1 *1 *1) (|isDomain| *1 (|Float|))) (/ (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Float|)))) (|normalize| (*1 *1 *1) (|isDomain| *1 (|Float|))) (|relerror| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Float|)))) (|shift| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Float|)))) (|rationalApproximation| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|Float|)))) (|rationalApproximation| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|Float|)))) (|log2| (*1 *1) (|isDomain| *1 (|Float|))) (|log10| (*1 *1) (|isDomain| *1 (|Float|))) (|exp1| (*1 *1) (|isDomain| *1 (|Float|))) (|atan| (*1 *1 *1 *1) (|isDomain| *1 (|Float|))) (|log2| (*1 *1 *1) (|isDomain| *1 (|Float|))) (|log10| (*1 *1 *1) (|isDomain| *1 (|Float|))) (|convert| (*1 *1 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|Float|)))) (|outputFloating| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Float|)))) (|outputFloating| (*1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Float|)))) (|outputFixed| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Float|)))) (|outputFixed| (*1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Float|)))) (|outputGeneral| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Float|)))) (|outputGeneral| (*1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Float|)))) (|outputSpacing| (*1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Float|))))) │ │ │ +(|Join| (|FloatingPointSystem|) (|DifferentialRing|) (|ConvertibleTo| (|String|)) (|OpenMath|) (|CoercibleTo| (|DoubleFloat|)) (|TranscendentalFunctionCategory|) (|ConvertibleTo| (|InputForm|)) (CATEGORY |domain| (SIGNATURE / ($ $ (|Integer|))) (SIGNATURE ** ($ $ $)) (SIGNATURE |normalize| ($ $)) (SIGNATURE |relerror| ((|Integer|) $ $)) (SIGNATURE |shift| ($ $ (|Integer|))) (SIGNATURE |rationalApproximation| ((|Fraction| (|Integer|)) $ (|NonNegativeInteger|))) (SIGNATURE |rationalApproximation| ((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |log2| ($)) (SIGNATURE |log10| ($)) (SIGNATURE |exp1| ($)) (SIGNATURE |atan| ($ $ $)) (SIGNATURE |log2| ($ $)) (SIGNATURE |log10| ($ $)) (SIGNATURE |convert| ($ (|DoubleFloat|))) (SIGNATURE |outputFloating| ((|Void|))) (SIGNATURE |outputFloating| ((|Void|) (|NonNegativeInteger|))) (SIGNATURE |outputFixed| ((|Void|))) (SIGNATURE |outputFixed| ((|Void|) (|NonNegativeInteger|))) (SIGNATURE |outputGeneral| ((|Void|))) (SIGNATURE |outputGeneral| ((|Void|) (|NonNegativeInteger|))) (SIGNATURE |outputSpacing| ((|Void|) (|NonNegativeInteger|))) (ATTRIBUTE |arbitraryPrecision|) (ATTRIBUTE |arbitraryExponent|))) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#2| (|SetCategory|)))) (|zero?| (((|Boolean|) $) NIL (|has| |#2| (|CancellationAbelianMonoid|)))) (|unitVector| (($ (|PositiveInteger|)) NIL (|has| |#2| (|Ring|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sup| (($ $ $) NIL (|has| |#2| (|OrderedAbelianMonoidSup|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL (|has| |#2| (|CancellationAbelianMonoid|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|size| (((|NonNegativeInteger|)) NIL (|has| |#2| (|Finite|)))) (|sign| (((|Integer|) $) NIL (|has| |#2| (|OrderedRing|)))) (|setelt| ((|#2| $ (|Integer|) |#2|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|)))) (((|Union| |#2| "failed") $) NIL (|has| |#2| (|SetCategory|)))) (|retract| (((|Integer|) $) NIL (AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|)))) (((|Fraction| (|Integer|)) $) NIL (AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|)))) ((|#2| $) NIL (|has| |#2| (|SetCategory|)))) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|)))) (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| $) (|Vector| $)) NIL (|has| |#2| (|Ring|))) (((|Matrix| |#2|) (|Matrix| $)) NIL (|has| |#2| (|Ring|)))) (|recip| (((|Union| $ "failed") $) NIL (|has| |#2| (|Monoid|)))) (|random| (($) NIL (|has| |#2| (|Finite|)))) (|qsetelt!| ((|#2| $ (|Integer|) |#2|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#2| $ (|Integer|)) NIL)) (|positive?| (((|Boolean|) $) NIL (|has| |#2| (|OrderedRing|)))) (|parts| (((|List| |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|one?| (((|Boolean|) $) NIL (|has| |#2| (|Monoid|)))) (|negative?| (((|Boolean|) $) NIL (|has| |#2| (|OrderedRing|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))))) (|members| (((|List| |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#2| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))))) (|map!| (($ (|Mapping| |#2| |#2|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#2| |#2|) $) NIL)) (|lookup| (((|PositiveInteger|) $) NIL (|has| |#2| (|Finite|)))) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| |#2| (|SetCategory|)))) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|index| (($ (|PositiveInteger|)) NIL (|has| |#2| (|Finite|)))) (|hash| (((|SingleInteger|) $) NIL (|has| |#2| (|SetCategory|)))) (|first| ((|#2| $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|fill!| (($ $ |#2|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#2|))) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|Equation| |#2|)) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ |#2| |#2|) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|List| |#2|) (|List| |#2|)) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|enumerate| (((|List| $)) NIL (|has| |#2| (|Finite|)))) (|entry?| (((|Boolean|) |#2| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|))))) (|entries| (((|List| |#2|) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#2| $ (|Integer|) |#2|) NIL) ((|#2| $ (|Integer|)) NIL)) (|dot| ((|#2| $ $) NIL (|has| |#2| (|Ring|)))) (|directProduct| (($ (|Vector| |#2|)) NIL)) (|dimension| (((|CardinalNumber|)) NIL (|has| |#2| (|Field|)))) (|differentiate| (($ $) NIL (AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|)))) (($ $ (|NonNegativeInteger|)) NIL (AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|)))) (($ $ (|Symbol|)) NIL (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) NIL (|has| |#2| (|Ring|))) (($ $ (|Mapping| |#2| |#2|)) NIL (|has| |#2| (|Ring|)))) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#2| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|))))) (|copy| (($ $) NIL)) (|coerce| (((|Vector| |#2|) $) NIL) (((|OutputForm|) $) NIL (|has| |#2| (|SetCategory|))) (($ (|Integer|)) NIL (OR (AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|))) (|has| |#2| (|Ring|)))) (($ (|Fraction| (|Integer|))) NIL (AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|)))) (($ |#2|) NIL (|has| |#2| (|SetCategory|)))) (|characteristic| (((|NonNegativeInteger|)) NIL (|has| |#2| (|Ring|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|abs| (($ $) NIL (|has| |#2| (|OrderedRing|)))) (^ (($ $ (|NonNegativeInteger|)) NIL (|has| |#2| (|Monoid|))) (($ $ (|PositiveInteger|)) NIL (|has| |#2| (|Monoid|)))) (|Zero| (($) NIL (|has| |#2| (|CancellationAbelianMonoid|)) CONST)) (|One| (($) NIL (|has| |#2| (|Monoid|)) CONST)) (D (($ $) NIL (AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|)))) (($ $ (|NonNegativeInteger|)) NIL (AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|)))) (($ $ (|Symbol|)) NIL (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) NIL (|has| |#2| (|Ring|))) (($ $ (|Mapping| |#2| |#2|)) NIL (|has| |#2| (|Ring|)))) (>= (((|Boolean|) $ $) NIL (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))))) (> (((|Boolean|) $ $) NIL (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))))) (= (((|Boolean|) $ $) NIL (|has| |#2| (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))))) (< (((|Boolean|) $ $) 11 (OR (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|OrderedRing|))))) (/ (($ $ |#2|) NIL (|has| |#2| (|Field|)))) (- (($ $ $) NIL (|has| |#2| (|Ring|))) (($ $) NIL (|has| |#2| (|Ring|)))) (+ (($ $ $) NIL (|has| |#2| (|AbelianSemiGroup|)))) (** (($ $ (|NonNegativeInteger|)) NIL (|has| |#2| (|Monoid|))) (($ $ (|PositiveInteger|)) NIL (|has| |#2| (|Monoid|)))) (* (($ (|Integer|) $) NIL (|has| |#2| (|Ring|))) (($ $ $) NIL (|has| |#2| (|Monoid|))) (($ $ |#2|) NIL (|has| |#2| (|Monoid|))) (($ |#2| $) NIL (|has| |#2| (|Monoid|))) (($ (|NonNegativeInteger|) $) NIL (|has| |#2| (|CancellationAbelianMonoid|))) (($ (|PositiveInteger|) $) NIL (|has| |#2| (|AbelianSemiGroup|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|OrderedDirectProduct| |#1| |#2| |#3|) (|DirectProductCategory| |#1| |#2|) (|NonNegativeInteger|) (|OrderedAbelianMonoidSup|) (|Mapping| (|Boolean|) (|Vector| |#2|) (|Vector| |#2|))) (T |OrderedDirectProduct|)) │ │ │ +NIL │ │ │ +(|DirectProductCategory| |#1| |#2|) │ │ │ +((|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) 16))) │ │ │ +(((|DrawNumericHack| |#1|) (CATEGORY |package| (SIGNATURE |coerce| ((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))))) (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|Float|)))) (T |DrawNumericHack|)) │ │ │ +((|coerce| (*1 *2 *3) (AND (|isDomain| *3 (|SegmentBinding| (|Expression| *4))) (|ofCategory| *4 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|Float|)))) (|isDomain| *2 (|SegmentBinding| (|Float|))) (|isDomain| *1 (|DrawNumericHack| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |coerce| ((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|uncorrelated?| (((|Boolean|) $ $) 89) (((|Boolean|) (|List| $) (|List| $)) 94) (((|Boolean|) (|List| (|List| $))) 97)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|statusIto| (((|OutputForm|)) 88)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|BasicStochasticDifferential|) "failed") $) NIL)) (|retract| (((|BasicStochasticDifferential|) $) 68)) (|listSD| (((|List| (|BasicStochasticDifferential|)) $) 70)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|freeOf?| (((|Boolean|) $ (|BasicStochasticDifferential|)) 64)) (|equation| (((|Union| (|Equation| $) "failed") $ |#1|) 75) (((|Union| (|Equation| $) "failed") |#1| $) 76)) (|drift| (($ $) 62)) (|copyQuadVar| (((|Table| $ $)) 79)) (|copyDrift| (((|Table| $ $)) 78)) (|coerce| (((|OutputForm|) $) 47) (($ (|BasicStochasticDifferential|)) 35)) (|coefficient| (((|Expression| |#1|) $ (|BasicStochasticDifferential|)) 66)) (|alterQuadVar!| (((|Union| $ "failed") (|BasicStochasticDifferential|) (|BasicStochasticDifferential|) $) 39)) (|alterDrift!| (((|Union| $ "failed") (|BasicStochasticDifferential|) $) 40)) (^ (($ $ (|PositiveInteger|)) 61)) (|Zero| (($) 21 T CONST)) (= (((|Boolean|) $ $) 33)) (/ (($ $ (|Expression| |#1|)) 11)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) 56)) (** (($ $ (|PositiveInteger|)) 60)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 32) (($ $ (|Expression| |#1|)) NIL) (($ (|Expression| |#1|) $) 10))) │ │ │ +(((|StochasticDifferential| |#1|) (|Join| (|Rng|) (|Module| (|Expression| |#1|)) (CATEGORY |domain| (ATTRIBUTE (|RetractableTo| (|BasicStochasticDifferential|))) (SIGNATURE |alterQuadVar!| ((|Union| $ "failed") (|BasicStochasticDifferential|) (|BasicStochasticDifferential|) $)) (SIGNATURE |alterDrift!| ((|Union| $ "failed") (|BasicStochasticDifferential|) $)) (SIGNATURE |drift| ($ $)) (SIGNATURE |freeOf?| ((|Boolean|) $ (|BasicStochasticDifferential|))) (SIGNATURE |coefficient| ((|Expression| |#1|) $ (|BasicStochasticDifferential|))) (SIGNATURE |listSD| ((|List| (|BasicStochasticDifferential|)) $)) (SIGNATURE |equation| ((|Union| (|Equation| $) "failed") $ |#1|)) (SIGNATURE |equation| ((|Union| (|Equation| $) "failed") |#1| $)) (SIGNATURE |copyDrift| ((|Table| $ $))) (SIGNATURE |copyQuadVar| ((|Table| $ $))) (SIGNATURE / ($ $ (|Expression| |#1|))) (SIGNATURE ** ($ $ (|PositiveInteger|))) (SIGNATURE ^ ($ $ (|PositiveInteger|))) (SIGNATURE |statusIto| ((|OutputForm|))) (SIGNATURE |uncorrelated?| ((|Boolean|) $ $)) (SIGNATURE |uncorrelated?| ((|Boolean|) (|List| $) (|List| $))) (SIGNATURE |uncorrelated?| ((|Boolean|) (|List| (|List| $)))))) (|Join| (|OrderedSet|) (|IntegralDomain|))) (T |StochasticDifferential|)) │ │ │ +((^ (*1 *1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|StochasticDifferential| *3)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (** (*1 *1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|StochasticDifferential| *3)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|alterQuadVar!| (*1 *1 *2 *2 *1) (|partial| AND (|isDomain| *2 (|BasicStochasticDifferential|)) (|isDomain| *1 (|StochasticDifferential| *3)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|alterDrift!| (*1 *1 *2 *1) (|partial| AND (|isDomain| *2 (|BasicStochasticDifferential|)) (|isDomain| *1 (|StochasticDifferential| *3)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|drift| (*1 *1 *1) (AND (|isDomain| *1 (|StochasticDifferential| *2)) (|ofCategory| *2 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|freeOf?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|BasicStochasticDifferential|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|StochasticDifferential| *4)) (|ofCategory| *4 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|coefficient| (*1 *2 *1 *3) (AND (|isDomain| *3 (|BasicStochasticDifferential|)) (|isDomain| *2 (|Expression| *4)) (|isDomain| *1 (|StochasticDifferential| *4)) (|ofCategory| *4 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|listSD| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|BasicStochasticDifferential|))) (|isDomain| *1 (|StochasticDifferential| *3)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|equation| (*1 *2 *1 *3) (|partial| AND (|isDomain| *2 (|Equation| (|StochasticDifferential| *3))) (|isDomain| *1 (|StochasticDifferential| *3)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|equation| (*1 *2 *3 *1) (|partial| AND (|isDomain| *2 (|Equation| (|StochasticDifferential| *3))) (|isDomain| *1 (|StochasticDifferential| *3)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|copyDrift| (*1 *2) (AND (|isDomain| *2 (|Table| (|StochasticDifferential| *3) (|StochasticDifferential| *3))) (|isDomain| *1 (|StochasticDifferential| *3)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|copyQuadVar| (*1 *2) (AND (|isDomain| *2 (|Table| (|StochasticDifferential| *3) (|StochasticDifferential| *3))) (|isDomain| *1 (|StochasticDifferential| *3)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (/ (*1 *1 *1 *2) (AND (|isDomain| *2 (|Expression| *3)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))) (|isDomain| *1 (|StochasticDifferential| *3)))) (|statusIto| (*1 *2) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|StochasticDifferential| *3)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|uncorrelated?| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|StochasticDifferential| *3)) (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|uncorrelated?| (*1 *2 *3 *3) (AND (|isDomain| *3 (|List| (|StochasticDifferential| *4))) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|StochasticDifferential| *4)) (|ofCategory| *4 (|Join| (|OrderedSet|) (|IntegralDomain|))))) (|uncorrelated?| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|List| (|StochasticDifferential| *4)))) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|StochasticDifferential| *4)) (|ofCategory| *4 (|Join| (|OrderedSet|) (|IntegralDomain|)))))) │ │ │ +(|Join| (|Rng|) (|Module| (|Expression| |#1|)) (CATEGORY |domain| (ATTRIBUTE (|RetractableTo| (|BasicStochasticDifferential|))) (SIGNATURE |alterQuadVar!| ((|Union| $ "failed") (|BasicStochasticDifferential|) (|BasicStochasticDifferential|) $)) (SIGNATURE |alterDrift!| ((|Union| $ "failed") (|BasicStochasticDifferential|) $)) (SIGNATURE |drift| ($ $)) (SIGNATURE |freeOf?| ((|Boolean|) $ (|BasicStochasticDifferential|))) (SIGNATURE |coefficient| ((|Expression| |#1|) $ (|BasicStochasticDifferential|))) (SIGNATURE |listSD| ((|List| (|BasicStochasticDifferential|)) $)) (SIGNATURE |equation| ((|Union| (|Equation| $) "failed") $ |#1|)) (SIGNATURE |equation| ((|Union| (|Equation| $) "failed") |#1| $)) (SIGNATURE |copyDrift| ((|Table| $ $))) (SIGNATURE |copyQuadVar| ((|Table| $ $))) (SIGNATURE / ($ $ (|Expression| |#1|))) (SIGNATURE ** ($ $ (|PositiveInteger|))) (SIGNATURE ^ ($ $ (|PositiveInteger|))) (SIGNATURE |statusIto| ((|OutputForm|))) (SIGNATURE |uncorrelated?| ((|Boolean|) $ $)) (SIGNATURE |uncorrelated?| ((|Boolean|) (|List| $) (|List| $))) (SIGNATURE |uncorrelated?| ((|Boolean|) (|List| (|List| $)))))) │ │ │ +((|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) 35)) (|sn| ((|#2| |#2| |#1|) 38)) (|dn| ((|#2| |#2| |#1|) 40)) (|cn| ((|#2| |#2| |#1|) 39))) │ │ │ +(((|EllipticFunctionsUnivariateTaylorSeries| |#1| |#2|) (CATEGORY |package| (SIGNATURE |sn| (|#2| |#2| |#1|)) (SIGNATURE |cn| (|#2| |#2| |#1|)) (SIGNATURE |dn| (|#2| |#2| |#1|)) (SIGNATURE |sncndn| ((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|))) (|Field|) (|UnivariateTaylorSeriesCategory| |#1|)) (T |EllipticFunctionsUnivariateTaylorSeries|)) │ │ │ +((|sncndn| (*1 *2 *3 *4) (AND (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|List| (|Stream| *4))) (|isDomain| *1 (|EllipticFunctionsUnivariateTaylorSeries| *4 *5)) (|isDomain| *3 (|Stream| *4)) (|ofCategory| *5 (|UnivariateTaylorSeriesCategory| *4)))) (|dn| (*1 *2 *2 *3) (AND (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|EllipticFunctionsUnivariateTaylorSeries| *3 *2)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))) (|cn| (*1 *2 *2 *3) (AND (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|EllipticFunctionsUnivariateTaylorSeries| *3 *2)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3)))) (|sn| (*1 *2 *2 *3) (AND (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|EllipticFunctionsUnivariateTaylorSeries| *3 *2)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |sn| (|#2| |#2| |#1|)) (SIGNATURE |cn| (|#2| |#2| |#1|)) (SIGNATURE |dn| (|#2| |#2| |#1|)) (SIGNATURE |sncndn| ((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ |#1|) 37)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 39) (($ |#1| $) 38))) │ │ │ +(((|XAlgebra| |#1|) (|Category|) (|Ring|)) (T |XAlgebra|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|ofCategory| *1 (|XAlgebra| *2)) (|ofCategory| *2 (|Ring|))))) │ │ │ +(|Join| (|Ring|) (|BiModule| |t#1| |t#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ |t#1|)) (IF (|has| |t#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |t#1|)) |noBranch|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Monoid|) . T) ((|RightModule| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +((|insertionSort!| ((|#2| |#2|) 20 (|has| |#1| (|OrderedSet|))) ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) 16)) (|bubbleSort!| ((|#2| |#2|) 19 (|has| |#1| (|OrderedSet|))) ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) 15))) │ │ │ +(((|SortPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |bubbleSort!| (|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|))) (SIGNATURE |insertionSort!| (|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|))) (IF (|has| |#1| (|OrderedSet|)) (PROGN (SIGNATURE |bubbleSort!| (|#2| |#2|)) (SIGNATURE |insertionSort!| (|#2| |#2|))) |noBranch|)) (|Type|) (|Join| (|IndexedAggregate| (|Integer|) |#1|) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|) (ATTRIBUTE |shallowlyMutable|)))) (T |SortPackage|)) │ │ │ +((|insertionSort!| (*1 *2 *2) (AND (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|SortPackage| *3 *2)) (|ofCategory| *2 (|Join| (|IndexedAggregate| (|Integer|) *3) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|) (ATTRIBUTE |shallowlyMutable|)))))) (|bubbleSort!| (*1 *2 *2) (AND (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|SortPackage| *3 *2)) (|ofCategory| *2 (|Join| (|IndexedAggregate| (|Integer|) *3) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|) (ATTRIBUTE |shallowlyMutable|)))))) (|insertionSort!| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *1 (|SortPackage| *4 *2)) (|ofCategory| *2 (|Join| (|IndexedAggregate| (|Integer|) *4) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|) (ATTRIBUTE |shallowlyMutable|)))))) (|bubbleSort!| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *1 (|SortPackage| *4 *2)) (|ofCategory| *2 (|Join| (|IndexedAggregate| (|Integer|) *4) (CATEGORY |package| (ATTRIBUTE |finiteAggregate|) (ATTRIBUTE |shallowlyMutable|))))))) │ │ │ +(CATEGORY |package| (SIGNATURE |bubbleSort!| (|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|))) (SIGNATURE |insertionSort!| (|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|))) (IF (|has| |#1| (|OrderedSet|)) (PROGN (SIGNATURE |bubbleSort!| (|#2| |#2|)) (SIGNATURE |insertionSort!| (|#2| |#2|))) |noBranch|)) │ │ │ +((|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) 33) (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) 38))) │ │ │ +(((|MakeFloatCompiledFunction| |#1|) (CATEGORY |package| (SIGNATURE |makeFloatFunction| ((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|))) (SIGNATURE |makeFloatFunction| ((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)))) (|ConvertibleTo| (|InputForm|))) (T |MakeFloatCompiledFunction|)) │ │ │ +((|makeFloatFunction| (*1 *2 *3 *4 *4) (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *1 (|MakeFloatCompiledFunction| *3)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|))))) (|makeFloatFunction| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Symbol|)) (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *1 (|MakeFloatCompiledFunction| *3)) (|ofCategory| *3 (|ConvertibleTo| (|InputForm|)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |makeFloatFunction| ((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|))) (SIGNATURE |makeFloatFunction| ((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|vectorise| (((|Vector| $) $ $) 80)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 73)) (|squareFree| (((|Factored| $) $) 72)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|setTower!| (((|Void|) $) 76)) (|sample| (($) 16 T CONST)) (|rem| (($ $ $) 54)) (|reduce| (($ (|SparseUnivariatePolynomial| $)) 86)) (|recip| (((|Union| $ "failed") $) 33)) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|prime?| (((|Boolean|) $) 71)) (|previousTower| (($ $) 81)) (|one?| (((|Boolean|) $) 30)) (|newElement| (($ (|SparseUnivariatePolynomial| $) $ (|Symbol|)) 78) (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) 77)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|maxTower| (($ (|List| $)) 83)) (|lift| (((|SparseUnivariatePolynomial| $) $) 88) (((|SparseUnivariatePolynomial| $) $ $) 87)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 70)) (|hash| (((|SingleInteger|) $) 10)) (|ground?| (((|Boolean|) $) 84)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|fullOutput| (((|OutputForm|) $) 75)) (|factor| (((|Factored| $) $) 74)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|extDegree| (((|PositiveInteger|) $) 82)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|distinguishedRootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) $) 85)) (|definingPolynomial| (((|SparseUnivariatePolynomial| $)) 90) (((|SparseUnivariatePolynomial| $) $) 89)) (|conjugate| (($ $) 79)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Fraction| (|Integer|))) 65)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 38)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 69)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (/ (($ $ $) 64)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 68)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 67) (($ (|Fraction| (|Integer|)) $) 66))) │ │ │ +(((|PseudoAlgebraicClosureOfPerfectFieldCategory|) (|Category|)) (T |PseudoAlgebraicClosureOfPerfectFieldCategory|)) │ │ │ +((|definingPolynomial| (*1 *2) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|definingPolynomial| (*1 *2 *1) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|lift| (*1 *2 *1) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|lift| (*1 *2 *1 *1) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|reduce| (*1 *1 *2) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|distinguishedRootsOf| (*1 *2 *3 *1) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)) (|isDomain| *2 (|List| *1)))) (|ground?| (*1 *2 *1) (AND (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)) (|isDomain| *2 (|Boolean|)))) (|maxTower| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|extDegree| (*1 *2 *1) (AND (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)) (|isDomain| *2 (|PositiveInteger|)))) (|previousTower| (*1 *1 *1) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|))) (|vectorise| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|conjugate| (*1 *1 *1) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|))) (|newElement| (*1 *1 *2 *1 *3) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|isDomain| *3 (|Symbol|)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|newElement| (*1 *1 *2 *3) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|isDomain| *3 (|Symbol|)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|setTower!| (*1 *2 *1) (AND (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)) (|isDomain| *2 (|Void|)))) (|fullOutput| (*1 *2 *1) (AND (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)) (|isDomain| *2 (|OutputForm|))))) │ │ │ +(|Join| (|Field|) (CATEGORY |domain| (SIGNATURE |definingPolynomial| ((|SparseUnivariatePolynomial| $))) (SIGNATURE |definingPolynomial| ((|SparseUnivariatePolynomial| $) $)) (SIGNATURE |lift| ((|SparseUnivariatePolynomial| $) $)) (SIGNATURE |lift| ((|SparseUnivariatePolynomial| $) $ $)) (SIGNATURE |reduce| ($ (|SparseUnivariatePolynomial| $))) (SIGNATURE |distinguishedRootsOf| ((|List| $) (|SparseUnivariatePolynomial| $) $)) (SIGNATURE |ground?| ((|Boolean|) $)) (SIGNATURE |maxTower| ($ (|List| $))) (SIGNATURE |extDegree| ((|PositiveInteger|) $)) (SIGNATURE |previousTower| ($ $)) (SIGNATURE |vectorise| ((|Vector| $) $ $)) (SIGNATURE |conjugate| ($ $)) (SIGNATURE |newElement| ($ (|SparseUnivariatePolynomial| $) $ (|Symbol|))) (SIGNATURE |newElement| ($ (|SparseUnivariatePolynomial| $) (|Symbol|))) (SIGNATURE |setTower!| ((|Void|) $)) (SIGNATURE |fullOutput| ((|OutputForm|) $)))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|UniqueFactorizationDomain|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 12)) (|tree| (($ |#1| (|List| $)) 31) (($ |#1|) 32) (($ (|List| |#1|)) 33)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setvalue!| ((|#1| $ |#1|) 35 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) NIL T CONST)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) NIL)) (|node?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|leaves| (((|List| |#1|) $) 22)) (|leaf?| (((|Boolean|) $) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|fullOutput| (((|Boolean|) (|Boolean|)) 18) (((|Boolean|)) 19)) (|fullOut| (((|OutputForm|) $) 15)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|encode| (((|String|) $) 28)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#1| $ "value") NIL)) (|distance| (((|Integer|) $ $) NIL)) (|cyclic?| (((|Boolean|) $) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) NIL)) (|coerce| (((|OutputForm|) $) 30 (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) 8)) (|child?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 26 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|DesingTree| |#1|) (|Join| (|DesingTreeCategory| |#1|) (CATEGORY |domain| (SIGNATURE |encode| ((|String|) $)) (SIGNATURE |fullOut| ((|OutputForm|) $)) (SIGNATURE |fullOutput| ((|Boolean|) (|Boolean|))) (SIGNATURE |fullOutput| ((|Boolean|))))) (|SetCategory|)) (T |DesingTree|)) │ │ │ +((|encode| (*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|DesingTree| *3)) (|ofCategory| *3 (|SetCategory|)))) (|fullOut| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|DesingTree| *3)) (|ofCategory| *3 (|SetCategory|)))) (|fullOutput| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DesingTree| *3)) (|ofCategory| *3 (|SetCategory|)))) (|fullOutput| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DesingTree| *3)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ +(|Join| (|DesingTreeCategory| |#1|) (CATEGORY |domain| (SIGNATURE |encode| ((|String|) $)) (SIGNATURE |fullOut| ((|OutputForm|) $)) (SIGNATURE |fullOutput| ((|Boolean|) (|Boolean|))) (SIGNATURE |fullOutput| ((|Boolean|))))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17))) │ │ │ +(((|OrderedSet|) (|Category|)) (T |OrderedSet|)) │ │ │ +((< (*1 *2 *1 *1) (AND (|ofCategory| *1 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (> (*1 *2 *1 *1) (AND (|ofCategory| *1 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (>= (*1 *2 *1 *1) (AND (|ofCategory| *1 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (<= (*1 *2 *1 *1) (AND (|ofCategory| *1 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|max| (*1 *1 *1 *1) (|ofCategory| *1 (|OrderedSet|))) (|min| (*1 *1 *1 *1) (|ofCategory| *1 (|OrderedSet|)))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE < ((|Boolean|) $ $)) (SIGNATURE > ((|Boolean|) $ $)) (SIGNATURE >= ((|Boolean|) $ $)) (SIGNATURE <= ((|Boolean|) $ $)) (SIGNATURE |max| ($ $ $)) (SIGNATURE |min| ($ $ $)))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|sample| (($) NIL T CONST)) (|reductum| (($ $) NIL)) (|monomial| (($ |#1| |#2|) NIL)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|leadingSupport| ((|#2| $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (|Zero| (($) NIL T CONST)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 13)) (+ (($ $ $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL))) │ │ │ +(((|IndexedDirectProductOrderedAbelianMonoid| |#1| |#2|) (|Join| (|OrderedAbelianMonoid|) (|IndexedDirectProductCategory| |#1| |#2|)) (|OrderedAbelianMonoid|) (|OrderedSet|)) (T |IndexedDirectProductOrderedAbelianMonoid|)) │ │ │ +NIL │ │ │ +(|Join| (|OrderedAbelianMonoid|) (|IndexedDirectProductCategory| |#1| |#2|)) │ │ │ +((|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) 45)) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) 44)) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) 43)) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) 42)) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) 41)) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) 40)) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) 39)) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) 38)) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) 35)) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) 34)) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) 33)) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) 32)) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) 31)) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) 30)) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 29)) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) 28)) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) 24)) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) 20))) │ │ │ +(((|NagFittingPackage|) (CATEGORY |package| (SIGNATURE |e02adf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |e02aef| ((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|))) (SIGNATURE |e02agf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |e02ahf| ((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |e02ajf| ((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |e02akf| ((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |e02baf| ((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |e02bbf| ((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|))) (SIGNATURE |e02bcf| ((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|))) (SIGNATURE |e02bdf| ((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |e02bef| ((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)))) (SIGNATURE |e02daf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |e02dcf| ((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|))) (SIGNATURE |e02ddf| ((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |e02def| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |e02dff| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |e02gaf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |e02zaf| ((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|))))) (T |NagFittingPackage|)) │ │ │ +((|e02zaf| (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|)))) (|e02gaf| (*1 *2 *3 *3 *3 *4 *5 *5 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|)))) (|e02dff| (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|)))) (|e02def| (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|)))) (|e02ddf| (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (AND (|isDomain| *3 (|String|)) (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *6 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|)))) (|e02dcf| (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (AND (|isDomain| *3 (|String|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *6 (|DoubleFloat|)) (|isDomain| *7 (|Matrix| (|Integer|))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|)))) (|e02daf| (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (AND (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *5 (|Matrix| (|Integer|))) (|isDomain| *6 (|DoubleFloat|)) (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|)))) (|e02bef| (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (AND (|isDomain| *3 (|String|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *6 (|DoubleFloat|)) (|isDomain| *7 (|Matrix| (|Integer|))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|)))) (|e02bdf| (*1 *2 *3 *4 *4 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|)))) (|e02bcf| (*1 *2 *3 *4 *4 *5 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *5 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|)))) (|e02bbf| (*1 *2 *3 *4 *4 *5 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *5 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|)))) (|e02baf| (*1 *2 *3 *3 *4 *4 *4 *4 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|)))) (|e02akf| (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|)))) (|e02ajf| (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|)))) (|e02ahf| (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|)))) (|e02agf| (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (AND (|isDomain| *5 (|Matrix| (|DoubleFloat|))) (|isDomain| *6 (|Matrix| (|Integer|))) (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|)))) (|e02aef| (*1 *2 *3 *4 *5 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *5 (|DoubleFloat|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|)))) (|e02adf| (*1 *2 *3 *3 *3 *4 *4 *4 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagFittingPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |e02adf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |e02aef| ((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|))) (SIGNATURE |e02agf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |e02ahf| ((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |e02ajf| ((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |e02akf| ((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|))) (SIGNATURE |e02baf| ((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |e02bbf| ((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|))) (SIGNATURE |e02bcf| ((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|))) (SIGNATURE |e02bdf| ((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |e02bef| ((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)))) (SIGNATURE |e02daf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |e02dcf| ((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|))) (SIGNATURE |e02ddf| ((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |e02def| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |e02dff| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |e02gaf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |e02zaf| ((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)))) │ │ │ +((|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) 51))) │ │ │ +(((|FiniteFieldPolynomialPackage2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |rootOfIrreduciblePoly| (|#1| (|SparseUnivariatePolynomial| |#2|)))) (|Join| (|FieldOfPrimeCharacteristic|) (CATEGORY |package| (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |lookup| ((|PositiveInteger|) |#1|)) (SIGNATURE |basis| ((|Vector| |#1|) (|PositiveInteger|))) (SIGNATURE |Frobenius| (|#1| |#1|)))) (|FiniteFieldCategory|)) (T |FiniteFieldPolynomialPackage2|)) │ │ │ +((|rootOfIrreduciblePoly| (*1 *2 *3) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)) (|ofCategory| *2 (|Join| (|FieldOfPrimeCharacteristic|) (CATEGORY |package| (SIGNATURE |coerce| (*2 *4)) (SIGNATURE |lookup| ((|PositiveInteger|) *2)) (SIGNATURE |basis| ((|Vector| *2) (|PositiveInteger|))) (SIGNATURE |Frobenius| (*2 *2))))) (|isDomain| *1 (|FiniteFieldPolynomialPackage2| *2 *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |rootOfIrreduciblePoly| (|#1| (|SparseUnivariatePolynomial| |#2|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 32)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) "failed") $) 20)) (|retract| (((|Integer|) $) NIL (|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) NIL (|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|RetractableTo| (|Fraction| (|Integer|))))) (((|UnivariatePuiseuxSeries| |#2| |#3| |#4|) $) NIL)) (|reductum| (($ $) 33)) (|recip| (((|Union| $ "failed") $) 25)) (|primitivePart| (($ $) NIL (|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|GcdDomain|)))) (|pomopo!| (($ $ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|) $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|numberOfMonomials| (((|NonNegativeInteger|) $) 11)) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) 23)) (|minimumDegree| (((|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|) $) NIL)) (|mapExponents| (($ (|Mapping| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|) (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) $) NIL)) (|map| (($ (|Mapping| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) $) NIL)) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) 72)) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| (((|UnivariatePuiseuxSeries| |#2| |#3| |#4|) $) 18)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|ground?| (((|Boolean|) $) NIL)) (|ground| (((|UnivariatePuiseuxSeries| |#2| |#3| |#4|) $) NIL)) (|exquo| (((|Union| $ "failed") $ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) NIL (|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|IntegralDomain|))) (((|Union| $ "failed") $ $) NIL)) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) 55)) (|degree| (((|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|) $) 14)) (|content| (((|UnivariatePuiseuxSeries| |#2| |#3| |#4|) $) NIL (|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|GcdDomain|)))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (|Fraction| (|Integer|))) NIL (OR (|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|Algebra| (|Fraction| (|Integer|)))) (|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|RetractableTo| (|Fraction| (|Integer|))))))) (|coefficients| (((|List| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) $) NIL)) (|coefficient| (((|UnivariatePuiseuxSeries| |#2| |#3| |#4|) $ (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) NIL)) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) NIL (|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|CommutativeRing|)))) (|associates?| (((|Boolean|) $ $) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 60 T CONST)) (|One| (($) NIL T CONST)) (= (((|Boolean|) $ $) NIL)) (/ (($ $ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) NIL (|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) NIL) (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) $) NIL) (($ (|Fraction| (|Integer|)) $) NIL (|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ +(((|UnivariatePuiseuxSeriesWithExponentialSingularity| |#1| |#2| |#3| |#4|) (|Join| (|FiniteAbelianMonoidRing| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|IntegralDomain|) (CATEGORY |domain| (SIGNATURE |limitPlus| ((|Union| (|OrderedCompletion| |#2|) "failed") $)) (SIGNATURE |dominantTerm| ((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $)))) (|Join| (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|GcdDomain|)) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|)) (|Symbol|) |#2|) (T |UnivariatePuiseuxSeriesWithExponentialSingularity|)) │ │ │ +((|limitPlus| (*1 *2 *1) (|partial| AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|GcdDomain|))) (|isDomain| *2 (|OrderedCompletion| *4)) (|isDomain| *1 (|UnivariatePuiseuxSeriesWithExponentialSingularity| *3 *4 *5 *6)) (|ofCategory| *4 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *3))) (|ofType| *5 (|Symbol|)) (|ofType| *6 *4))) (|dominantTerm| (*1 *2 *1) (|partial| AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)) (|GcdDomain|))) (|isDomain| *2 (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| *4 *5 *6)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| *4 *5 *6)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| *4)))))) (|:| |%type| (|String|)))) (|isDomain| *1 (|UnivariatePuiseuxSeriesWithExponentialSingularity| *3 *4 *5 *6)) (|ofCategory| *4 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *3))) (|ofType| *5 (|Symbol|)) (|ofType| *6 *4)))) │ │ │ +(|Join| (|FiniteAbelianMonoidRing| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|) (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|IntegralDomain|) (CATEGORY |domain| (SIGNATURE |limitPlus| ((|Union| (|OrderedCompletion| |#2|) "failed") $)) (SIGNATURE |dominantTerm| ((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $)))) │ │ │ +((|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) 43)) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) 39)) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) 32))) │ │ │ +(((|NagRootFindingPackage|) (CATEGORY |package| (SIGNATURE |c05adf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F))))) (SIGNATURE |c05nbf| ((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN))))) (SIGNATURE |c05pbf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN))))))) (T |NagRootFindingPackage|)) │ │ │ +((|c05pbf| (*1 *2 *3 *3 *3 *4 *5 *3 *6) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *5 (|DoubleFloat|)) (|isDomain| *6 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagRootFindingPackage|)))) (|c05nbf| (*1 *2 *3 *3 *4 *5 *3 *6) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Matrix| (|DoubleFloat|))) (|isDomain| *5 (|DoubleFloat|)) (|isDomain| *6 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagRootFindingPackage|)))) (|c05adf| (*1 *2 *3 *3 *3 *3 *4 *5) (AND (|isDomain| *3 (|DoubleFloat|)) (|isDomain| *4 (|Integer|)) (|isDomain| *5 (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|NagRootFindingPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |c05adf| ((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F))))) (SIGNATURE |c05nbf| ((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN))))) (SIGNATURE |c05pbf| ((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))))) │ │ │ +((|outputAsFortran| (((|Void|) $) 7)) (|coerce| (((|OutputForm|) $) 8) (($ (|Vector| (|MachineFloat|))) 12) (($ (|List| (|FortranCode|))) 11) (($ (|FortranCode|)) 10) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 9))) │ │ │ +(((|FortranVectorCategory|) (|Category|)) (T |FortranVectorCategory|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| (|MachineFloat|))) (|ofCategory| *1 (|FortranVectorCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|FortranCode|))) (|ofCategory| *1 (|FortranVectorCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|FortranCode|)) (|ofCategory| *1 (|FortranVectorCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) (|ofCategory| *1 (|FortranVectorCategory|))))) │ │ │ +(|Join| (|FortranProgramCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|MachineFloat|)))) (SIGNATURE |coerce| ($ (|List| (|FortranCode|)))) (SIGNATURE |coerce| ($ (|FortranCode|))) (SIGNATURE |coerce| ($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|)))))))) │ │ │ +(((|CoercibleTo| (|OutputForm|)) . T) ((|FortranProgramCategory|) . T) ((|Type|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|norm| ((|#2| $) 60)) (|module| (($ (|Vector| |#4|)) 25) (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (|RetractableTo| |#2|)))) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 34)) (|basis| (((|Vector| |#4|) $) 26)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|One| (($) 23 T CONST)) (= (((|Boolean|) $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ $ $) 72))) │ │ │ +(((|FramedModule| |#1| |#2| |#3| |#4| |#5|) (|Join| (|Monoid|) (CATEGORY |domain| (SIGNATURE |basis| ((|Vector| |#4|) $)) (SIGNATURE |norm| (|#2| $)) (SIGNATURE |module| ($ (|Vector| |#4|))) (IF (|has| |#4| (|RetractableTo| |#2|)) (SIGNATURE |module| ($ (|FractionalIdeal| |#1| |#2| |#3| |#4|))) |noBranch|))) (|EuclideanDomain|) (|QuotientFieldCategory| |#1|) (|UnivariatePolynomialCategory| |#2|) (|FramedAlgebra| |#2| |#3|) (|Vector| |#4|)) (T |FramedModule|)) │ │ │ +((|basis| (*1 *2 *1) (AND (|ofCategory| *3 (|EuclideanDomain|)) (|ofCategory| *4 (|QuotientFieldCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Vector| *6)) (|isDomain| *1 (|FramedModule| *3 *4 *5 *6 *7)) (|ofCategory| *6 (|FramedAlgebra| *4 *5)) (|ofType| *7 *2))) (|norm| (*1 *2 *1) (AND (|ofCategory| *4 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 (|QuotientFieldCategory| *3)) (|isDomain| *1 (|FramedModule| *3 *2 *4 *5 *6)) (|ofCategory| *3 (|EuclideanDomain|)) (|ofCategory| *5 (|FramedAlgebra| *2 *4)) (|ofType| *6 (|Vector| *5)))) (|module| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| *6)) (|ofCategory| *6 (|FramedAlgebra| *4 *5)) (|ofCategory| *4 (|QuotientFieldCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *3 (|EuclideanDomain|)) (|isDomain| *1 (|FramedModule| *3 *4 *5 *6 *7)) (|ofType| *7 *2))) (|module| (*1 *1 *2) (AND (|isDomain| *2 (|FractionalIdeal| *3 *4 *5 *6)) (|ofCategory| *6 (|RetractableTo| *4)) (|ofCategory| *3 (|EuclideanDomain|)) (|ofCategory| *4 (|QuotientFieldCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *6 (|FramedAlgebra| *4 *5)) (|ofType| *7 (|Vector| *6)) (|isDomain| *1 (|FramedModule| *3 *4 *5 *6 *7))))) │ │ │ +(|Join| (|Monoid|) (CATEGORY |domain| (SIGNATURE |basis| ((|Vector| |#4|) $)) (SIGNATURE |norm| (|#2| $)) (SIGNATURE |module| ($ (|Vector| |#4|))) (IF (|has| |#4| (|RetractableTo| |#2|)) (SIGNATURE |module| ($ (|FractionalIdeal| |#1| |#2| |#3| |#4|))) |noBranch|))) │ │ │ +((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 45)) (|third| ((|#1| $) 62)) (|tail| (($ $) 64)) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) 94 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|split!| (($ $ (|Integer|)) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setvalue!| ((|#1| $ |#1|) 36 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setrest!| (($ $ $) 53 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setlast!| ((|#1| $ |#1|) 51 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setfirst!| ((|#1| $ |#1|) 55 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ "first" |#1|) 54 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "rest" $) 52 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ "last" |#1|) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) 114 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|Integer|) |#1|) 83 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) 99 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|second| ((|#1| $) 63)) (|sample| (($) 7 T CONST)) (|rest| (($ $) 70) (($ $ (|NonNegativeInteger|)) 68)) (|removeDuplicates| (($ $) 96 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) 100 (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ |#1| $) 97 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $) 102 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 101 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 98 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) 82 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) 84)) (|possiblyInfinite?| (((|Boolean|) $) 80)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) 47)) (|node?| (((|Boolean|) $ $) 39 (|has| |#1| (|SetCategory|)))) (|new| (($ (|NonNegativeInteger|) |#1|) 105)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|minIndex| (((|Integer|) $) 92 (|has| (|Integer|) (|OrderedSet|)))) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxIndex| (((|Integer|) $) 91 (|has| (|Integer|) (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35) (($ (|Mapping| |#1| |#1| |#1|) $ $) 108)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|leaves| (((|List| |#1|) $) 42)) (|leaf?| (((|Boolean|) $) 46)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|last| ((|#1| $) 67) (($ $ (|NonNegativeInteger|)) 65)) (|insert| (($ $ $ (|Integer|)) 113) (($ |#1| $ (|Integer|)) 112)) (|indices| (((|List| (|Integer|)) $) 89)) (|index?| (((|Boolean|) (|Integer|) $) 88)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|first| ((|#1| $) 73) (($ $ (|NonNegativeInteger|)) 71)) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) 103)) (|fill!| (($ $ |#1|) 93 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|explicitlyFinite?| (((|Boolean|) $) 81)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|entry?| (((|Boolean|) |#1| $) 90 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) 87)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ "value") 44) ((|#1| $ "first") 72) (($ $ "rest") 69) ((|#1| $ "last") 66) (($ $ (|UniversalSegment| (|Integer|))) 109) ((|#1| $ (|Integer|)) 86) ((|#1| $ (|Integer|) |#1|) 85)) (|distance| (((|Integer|) $ $) 41)) (|delete| (($ $ (|UniversalSegment| (|Integer|))) 111) (($ $ (|Integer|)) 110)) (|cyclic?| (((|Boolean|) $) 43)) (|cycleTail| (($ $) 59)) (|cycleSplit!| (($ $) 56 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|cycleLength| (((|NonNegativeInteger|) $) 60)) (|cycleEntry| (($ $) 61)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|convert| (((|InputForm|) $) 95 (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) 104)) (|concat!| (($ $ $) 58 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ |#1|) 57 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|concat| (($ $ $) 75) (($ |#1| $) 74) (($ (|List| $)) 107) (($ $ |#1|) 106)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) 48)) (|child?| (((|Boolean|) $ $) 40 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|StreamAggregate| |#1|) (|Category|) (|Type|)) (T |StreamAggregate|)) │ │ │ +((|explicitlyFinite?| (*1 *2 *1) (AND (|ofCategory| *1 (|StreamAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|possiblyInfinite?| (*1 *2 *1) (AND (|ofCategory| *1 (|StreamAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Boolean|))))) │ │ │ +(|Join| (|UnaryRecursiveAggregate| |t#1|) (|LinearAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |explicitlyFinite?| ((|Boolean|) $)) (SIGNATURE |possiblyInfinite?| ((|Boolean|) $)))) │ │ │ +(((|Aggregate|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| (|Integer|) |#1|) . T) ((|EltableAggregate| (|Integer|) |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|IndexedAggregate| (|Integer|) |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|LinearAggregate| |#1|) . T) ((|RecursiveAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T) ((|UnaryRecursiveAggregate| |#1|) . T)) │ │ │ +((|value| ((|#2| $) 28)) (|third| ((|#2| $) 18)) (|tail| (($ $) 35)) (|split!| (($ $ (|Integer|)) 63)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 32)) (|setvalue!| ((|#2| $ |#2|) 60)) (|setlast!| ((|#2| $ |#2|) 58)) (|setelt| ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (|setchildren!| (($ $ (|List| $)) 59)) (|second| ((|#2| $) 17)) (|rest| (($ $) NIL) (($ $ (|NonNegativeInteger|)) 41)) (|nodes| (((|List| $) $) 25)) (|node?| (((|Boolean|) $ $) 49)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 31)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 30)) (|leaf?| (((|Boolean|) $) 27)) (|last| ((|#2| $) 23) (($ $ (|NonNegativeInteger|)) 45)) (|elt| ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (|cyclic?| (((|Boolean|) $) 21)) (|cycleTail| (($ $) 38)) (|cycleSplit!| (($ $) 64)) (|cycleLength| (((|NonNegativeInteger|) $) 40)) (|cycleEntry| (($ $) 39)) (|concat| (($ $ $) 57) (($ |#2| $) NIL)) (|children| (((|List| $) $) 26)) (= (((|Boolean|) $ $) 47)) (|#| (((|NonNegativeInteger|) $) 34))) │ │ │ +(((|UnaryRecursiveAggregate&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |split!| (|#1| |#1| (|Integer|))) (SIGNATURE |setelt| (|#2| |#1| "last" |#2|)) (SIGNATURE |setlast!| (|#2| |#1| |#2|)) (SIGNATURE |setelt| (|#1| |#1| "rest" |#1|)) (SIGNATURE |setelt| (|#2| |#1| "first" |#2|)) (SIGNATURE |cycleSplit!| (|#1| |#1|)) (SIGNATURE |cycleTail| (|#1| |#1|)) (SIGNATURE |cycleLength| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |cycleEntry| (|#1| |#1|)) (SIGNATURE |third| (|#2| |#1|)) (SIGNATURE |second| (|#2| |#1|)) (SIGNATURE |tail| (|#1| |#1|)) (SIGNATURE |last| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#2| |#1| "last")) (SIGNATURE |last| (|#2| |#1|)) (SIGNATURE |rest| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#1| |#1| "rest")) (SIGNATURE |rest| (|#1| |#1|)) (SIGNATURE |elt| (|#2| |#1| "first")) (SIGNATURE |concat| (|#1| |#2| |#1|)) (SIGNATURE |concat| (|#1| |#1| |#1|)) (SIGNATURE |setvalue!| (|#2| |#1| |#2|)) (SIGNATURE |setelt| (|#2| |#1| "value" |#2|)) (SIGNATURE |setchildren!| (|#1| |#1| (|List| |#1|))) (SIGNATURE |node?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |cyclic?| ((|Boolean|) |#1|)) (SIGNATURE |elt| (|#2| |#1| "value")) (SIGNATURE |value| (|#2| |#1|)) (SIGNATURE |leaf?| ((|Boolean|) |#1|)) (SIGNATURE |nodes| ((|List| |#1|) |#1|)) (SIGNATURE |children| ((|List| |#1|) |#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |size?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |less?| ((|Boolean|) |#1| (|NonNegativeInteger|)))) (|UnaryRecursiveAggregate| |#2|) (|Type|)) (T |UnaryRecursiveAggregate&|)) │ │ │ +NIL │ │ │ +(CATEGORY |domain| (SIGNATURE |split!| (|#1| |#1| (|Integer|))) (SIGNATURE |setelt| (|#2| |#1| "last" |#2|)) (SIGNATURE |setlast!| (|#2| |#1| |#2|)) (SIGNATURE |setelt| (|#1| |#1| "rest" |#1|)) (SIGNATURE |setelt| (|#2| |#1| "first" |#2|)) (SIGNATURE |cycleSplit!| (|#1| |#1|)) (SIGNATURE |cycleTail| (|#1| |#1|)) (SIGNATURE |cycleLength| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |cycleEntry| (|#1| |#1|)) (SIGNATURE |third| (|#2| |#1|)) (SIGNATURE |second| (|#2| |#1|)) (SIGNATURE |tail| (|#1| |#1|)) (SIGNATURE |last| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#2| |#1| "last")) (SIGNATURE |last| (|#2| |#1|)) (SIGNATURE |rest| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#1| |#1| "rest")) (SIGNATURE |rest| (|#1| |#1|)) (SIGNATURE |elt| (|#2| |#1| "first")) (SIGNATURE |concat| (|#1| |#2| |#1|)) (SIGNATURE |concat| (|#1| |#1| |#1|)) (SIGNATURE |setvalue!| (|#2| |#1| |#2|)) (SIGNATURE |setelt| (|#2| |#1| "value" |#2|)) (SIGNATURE |setchildren!| (|#1| |#1| (|List| |#1|))) (SIGNATURE |node?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |cyclic?| ((|Boolean|) |#1|)) (SIGNATURE |elt| (|#2| |#1| "value")) (SIGNATURE |value| (|#2| |#1|)) (SIGNATURE |leaf?| ((|Boolean|) |#1|)) (SIGNATURE |nodes| ((|List| |#1|) |#1|)) (SIGNATURE |children| ((|List| |#1|) |#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |size?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |less?| ((|Boolean|) |#1| (|NonNegativeInteger|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 13)) (|variables| (((|List| (|OrderedVariableList| |#1|)) $) 73)) (|univariate| (((|SparseUnivariatePolynomial| $) $ (|OrderedVariableList| |#1|)) 46) (((|SparseUnivariatePolynomial| |#2|) $) 115)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#2| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#2| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#2| (|IntegralDomain|)))) (|totalDegree| (((|NonNegativeInteger|) $) 21) (((|NonNegativeInteger|) $ (|List| (|OrderedVariableList| |#1|))) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#2| (|PolynomialFactorizationExplicit|)))) (|squareFreePart| (($ $) NIL (|has| |#2| (|GcdDomain|)))) (|squareFree| (((|Factored| $) $) NIL (|has| |#2| (|GcdDomain|)))) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#2| (|PolynomialFactorizationExplicit|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#2| "failed") $) 44) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| (|Integer|) "failed") $) NIL (|has| |#2| (|RetractableTo| (|Integer|)))) (((|Union| (|OrderedVariableList| |#1|) "failed") $) NIL)) (|retract| ((|#2| $) 42) (((|Fraction| (|Integer|)) $) NIL (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Integer|) $) NIL (|has| |#2| (|RetractableTo| (|Integer|)))) (((|OrderedVariableList| |#1|) $) NIL)) (|resultant| (($ $ $ (|OrderedVariableList| |#1|)) NIL (|has| |#2| (|CommutativeRing|)))) (|reorder| (($ $ (|List| (|Integer|))) 78)) (|reductum| (($ $) 67)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| |#2|) (|Matrix| $)) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|primitivePart| (($ $) NIL (|has| |#2| (|GcdDomain|))) (($ $ (|OrderedVariableList| |#1|)) NIL (|has| |#2| (|GcdDomain|)))) (|primitiveMonomials| (((|List| $) $) NIL)) (|prime?| (((|Boolean|) $) NIL (|has| |#2| (|PolynomialFactorizationExplicit|)))) (|pomopo!| (($ $ |#2| |#3| $) NIL)) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) NIL (AND (|has| (|OrderedVariableList| |#1|) (|PatternMatchable| (|Float|))) (|has| |#2| (|PatternMatchable| (|Float|))))) (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) NIL (AND (|has| (|OrderedVariableList| |#1|) (|PatternMatchable| (|Integer|))) (|has| |#2| (|PatternMatchable| (|Integer|)))))) (|one?| (((|Boolean|) $) NIL)) (|numberOfMonomials| (((|NonNegativeInteger|) $) 58)) (|multivariate| (($ (|SparseUnivariatePolynomial| |#2|) (|OrderedVariableList| |#1|)) 120) (($ (|SparseUnivariatePolynomial| $) (|OrderedVariableList| |#1|)) 52)) (|monomials| (((|List| $) $) NIL)) (|monomial?| (((|Boolean|) $) 59)) (|monomial| (($ |#2| |#3|) 28) (($ $ (|OrderedVariableList| |#1|) (|NonNegativeInteger|)) 30) (($ $ (|List| (|OrderedVariableList| |#1|)) (|List| (|NonNegativeInteger|))) NIL)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ (|OrderedVariableList| |#1|)) NIL)) (|minimumDegree| ((|#3| $) NIL) (((|NonNegativeInteger|) $ (|OrderedVariableList| |#1|)) 50) (((|List| (|NonNegativeInteger|)) $ (|List| (|OrderedVariableList| |#1|))) 57)) (|min| (($ $ $) NIL (|has| |#2| (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#2| (|OrderedSet|)))) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) NIL)) (|map| (($ (|Mapping| |#2| |#2|) $) NIL)) (|mainVariable| (((|Union| (|OrderedVariableList| |#1|) "failed") $) 39)) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#2| $) 41)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL (|has| |#2| (|GcdDomain|)))) (|lcm| (($ (|List| $)) NIL (|has| |#2| (|GcdDomain|))) (($ $ $) NIL (|has| |#2| (|GcdDomain|)))) (|latex| (((|String|) $) NIL)) (|isTimes| (((|Union| (|List| $) "failed") $) NIL)) (|isPlus| (((|Union| (|List| $) "failed") $) NIL)) (|isExpt| (((|Union| (|Record| (|:| |var| (|OrderedVariableList| |#1|)) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|ground?| (((|Boolean|) $) 40)) (|ground| ((|#2| $) 113)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL (|has| |#2| (|GcdDomain|)))) (|gcd| (($ (|List| $)) NIL (|has| |#2| (|GcdDomain|))) (($ $ $) 125 (|has| |#2| (|GcdDomain|)))) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#2| (|PolynomialFactorizationExplicit|)))) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#2| (|PolynomialFactorizationExplicit|)))) (|factor| (((|Factored| $) $) NIL (|has| |#2| (|PolynomialFactorizationExplicit|)))) (|exquo| (((|Union| $ "failed") $ |#2|) NIL (|has| |#2| (|IntegralDomain|))) (((|Union| $ "failed") $ $) NIL (|has| |#2| (|IntegralDomain|)))) (|eval| (($ $ (|List| (|Equation| $))) NIL) (($ $ (|Equation| $)) NIL) (($ $ $ $) NIL) (($ $ (|List| $) (|List| $)) NIL) (($ $ (|OrderedVariableList| |#1|) |#2|) 85) (($ $ (|List| (|OrderedVariableList| |#1|)) (|List| |#2|)) 88) (($ $ (|OrderedVariableList| |#1|) $) 83) (($ $ (|List| (|OrderedVariableList| |#1|)) (|List| $)) 104)) (|discriminant| (($ $ (|OrderedVariableList| |#1|)) NIL (|has| |#2| (|CommutativeRing|)))) (|differentiate| (($ $ (|OrderedVariableList| |#1|)) 53) (($ $ (|List| (|OrderedVariableList| |#1|))) NIL) (($ $ (|OrderedVariableList| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|OrderedVariableList| |#1|)) (|List| (|NonNegativeInteger|))) NIL)) (|degree| ((|#3| $) 66) (((|NonNegativeInteger|) $ (|OrderedVariableList| |#1|)) 37) (((|List| (|NonNegativeInteger|)) $ (|List| (|OrderedVariableList| |#1|))) 56)) (|convert| (((|Pattern| (|Float|)) $) NIL (AND (|has| (|OrderedVariableList| |#1|) (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Float|)))))) (((|Pattern| (|Integer|)) $) NIL (AND (|has| (|OrderedVariableList| |#1|) (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|)))))) (((|InputForm|) $) NIL (AND (|has| (|OrderedVariableList| |#1|) (|ConvertibleTo| (|InputForm|))) (|has| |#2| (|ConvertibleTo| (|InputForm|)))))) (|content| ((|#2| $) 122 (|has| |#2| (|GcdDomain|))) (($ $ (|OrderedVariableList| |#1|)) NIL (|has| |#2| (|GcdDomain|)))) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#2| (|PolynomialFactorizationExplicit|))))) (|coerce| (((|OutputForm|) $) 141) (($ (|Integer|)) NIL) (($ |#2|) 84) (($ (|OrderedVariableList| |#1|)) 31) (($ (|Fraction| (|Integer|))) NIL (OR (|has| |#2| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))))) (($ $) NIL (|has| |#2| (|IntegralDomain|)))) (|coefficients| (((|List| |#2|) $) NIL)) (|coefficient| ((|#2| $ |#3|) NIL) (($ $ (|OrderedVariableList| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|OrderedVariableList| |#1|)) (|List| (|NonNegativeInteger|))) NIL)) (|charthRoot| (((|Union| $ "failed") $) NIL (OR (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#2| (|PolynomialFactorizationExplicit|))) (|has| |#2| (|CharacteristicNonZero|))))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) NIL (|has| |#2| (|CommutativeRing|)))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#2| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 16 T CONST)) (|One| (($) 25 T CONST)) (D (($ $ (|OrderedVariableList| |#1|)) NIL) (($ $ (|List| (|OrderedVariableList| |#1|))) NIL) (($ $ (|OrderedVariableList| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|OrderedVariableList| |#1|)) (|List| (|NonNegativeInteger|))) NIL)) (>= (((|Boolean|) $ $) NIL (|has| |#2| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#2| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL (|has| |#2| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#2| (|OrderedSet|)))) (/ (($ $ |#2|) 64 (|has| |#2| (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) 109)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) 107)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 29) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#2| (|Algebra| (|Fraction| (|Integer|))))) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#2| (|Algebra| (|Fraction| (|Integer|))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) │ │ │ +(((|GeneralDistributedMultivariatePolynomial| |#1| |#2| |#3|) (|Join| (|PolynomialCategory| |#2| |#3| (|OrderedVariableList| |#1|)) (CATEGORY |domain| (SIGNATURE |reorder| ($ $ (|List| (|Integer|)))))) (|List| (|Symbol|)) (|Ring|) (|DirectProductCategory| (|#| |#1|) (|NonNegativeInteger|))) (T |GeneralDistributedMultivariatePolynomial|)) │ │ │ +((|reorder| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Integer|))) (|ofType| *3 (|List| (|Symbol|))) (|isDomain| *1 (|GeneralDistributedMultivariatePolynomial| *3 *4 *5)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|DirectProductCategory| (|#| *3) (|NonNegativeInteger|)))))) │ │ │ +(|Join| (|PolynomialCategory| |#2| |#3| (|OrderedVariableList| |#1|)) (CATEGORY |domain| (SIGNATURE |reorder| ($ $ (|List| (|Integer|)))))) │ │ │ +((|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) 40)) (|spherical| (((|Point| |#1|) (|Point| |#1|)) 19)) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) 36)) (|polar| (((|Point| |#1|) (|Point| |#1|)) 17)) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) 25)) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) 24)) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) 23)) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) 37)) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) 35)) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) 34)) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) 18)) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) 43)) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) 8)) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) 39)) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) 38))) │ │ │ +(((|CoordinateSystems| |#1|) (CATEGORY |package| (SIGNATURE |cartesian| ((|Point| |#1|) (|Point| |#1|))) (SIGNATURE |polar| ((|Point| |#1|) (|Point| |#1|))) (SIGNATURE |cylindrical| ((|Point| |#1|) (|Point| |#1|))) (SIGNATURE |spherical| ((|Point| |#1|) (|Point| |#1|))) (SIGNATURE |parabolic| ((|Point| |#1|) (|Point| |#1|))) (SIGNATURE |parabolicCylindrical| ((|Point| |#1|) (|Point| |#1|))) (SIGNATURE |paraboloidal| ((|Point| |#1|) (|Point| |#1|))) (SIGNATURE |elliptic| ((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|)) (SIGNATURE |ellipticCylindrical| ((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|)) (SIGNATURE |prolateSpheroidal| ((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|)) (SIGNATURE |oblateSpheroidal| ((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|)) (SIGNATURE |bipolar| ((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|)) (SIGNATURE |bipolarCylindrical| ((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|)) (SIGNATURE |toroidal| ((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|)) (SIGNATURE |conical| ((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|))) (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))) (T |CoordinateSystems|)) │ │ │ +((|conical| (*1 *2 *3 *3) (AND (|isDomain| *2 (|Mapping| (|Point| *3) (|Point| *3))) (|isDomain| *1 (|CoordinateSystems| *3)) (|ofCategory| *3 (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))))) (|toroidal| (*1 *2 *3) (AND (|isDomain| *2 (|Mapping| (|Point| *3) (|Point| *3))) (|isDomain| *1 (|CoordinateSystems| *3)) (|ofCategory| *3 (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))))) (|bipolarCylindrical| (*1 *2 *3) (AND (|isDomain| *2 (|Mapping| (|Point| *3) (|Point| *3))) (|isDomain| *1 (|CoordinateSystems| *3)) (|ofCategory| *3 (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))))) (|bipolar| (*1 *2 *3) (AND (|isDomain| *2 (|Mapping| (|Point| *3) (|Point| *3))) (|isDomain| *1 (|CoordinateSystems| *3)) (|ofCategory| *3 (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))))) (|oblateSpheroidal| (*1 *2 *3) (AND (|isDomain| *2 (|Mapping| (|Point| *3) (|Point| *3))) (|isDomain| *1 (|CoordinateSystems| *3)) (|ofCategory| *3 (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))))) (|prolateSpheroidal| (*1 *2 *3) (AND (|isDomain| *2 (|Mapping| (|Point| *3) (|Point| *3))) (|isDomain| *1 (|CoordinateSystems| *3)) (|ofCategory| *3 (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))))) (|ellipticCylindrical| (*1 *2 *3) (AND (|isDomain| *2 (|Mapping| (|Point| *3) (|Point| *3))) (|isDomain| *1 (|CoordinateSystems| *3)) (|ofCategory| *3 (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))))) (|elliptic| (*1 *2 *3) (AND (|isDomain| *2 (|Mapping| (|Point| *3) (|Point| *3))) (|isDomain| *1 (|CoordinateSystems| *3)) (|ofCategory| *3 (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))))) (|paraboloidal| (*1 *2 *2) (AND (|isDomain| *2 (|Point| *3)) (|ofCategory| *3 (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))) (|isDomain| *1 (|CoordinateSystems| *3)))) (|parabolicCylindrical| (*1 *2 *2) (AND (|isDomain| *2 (|Point| *3)) (|ofCategory| *3 (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))) (|isDomain| *1 (|CoordinateSystems| *3)))) (|parabolic| (*1 *2 *2) (AND (|isDomain| *2 (|Point| *3)) (|ofCategory| *3 (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))) (|isDomain| *1 (|CoordinateSystems| *3)))) (|spherical| (*1 *2 *2) (AND (|isDomain| *2 (|Point| *3)) (|ofCategory| *3 (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))) (|isDomain| *1 (|CoordinateSystems| *3)))) (|cylindrical| (*1 *2 *2) (AND (|isDomain| *2 (|Point| *3)) (|ofCategory| *3 (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))) (|isDomain| *1 (|CoordinateSystems| *3)))) (|polar| (*1 *2 *2) (AND (|isDomain| *2 (|Point| *3)) (|ofCategory| *3 (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))) (|isDomain| *1 (|CoordinateSystems| *3)))) (|cartesian| (*1 *2 *2) (AND (|isDomain| *2 (|Point| *3)) (|ofCategory| *3 (|Join| (|Field|) (|TranscendentalFunctionCategory|) (|RadicalCategory|))) (|isDomain| *1 (|CoordinateSystems| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |cartesian| ((|Point| |#1|) (|Point| |#1|))) (SIGNATURE |polar| ((|Point| |#1|) (|Point| |#1|))) (SIGNATURE |cylindrical| ((|Point| |#1|) (|Point| |#1|))) (SIGNATURE |spherical| ((|Point| |#1|) (|Point| |#1|))) (SIGNATURE |parabolic| ((|Point| |#1|) (|Point| |#1|))) (SIGNATURE |parabolicCylindrical| ((|Point| |#1|) (|Point| |#1|))) (SIGNATURE |paraboloidal| ((|Point| |#1|) (|Point| |#1|))) (SIGNATURE |elliptic| ((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|)) (SIGNATURE |ellipticCylindrical| ((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|)) (SIGNATURE |prolateSpheroidal| ((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|)) (SIGNATURE |oblateSpheroidal| ((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|)) (SIGNATURE |bipolar| ((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|)) (SIGNATURE |bipolarCylindrical| ((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|)) (SIGNATURE |toroidal| ((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|)) (SIGNATURE |conical| ((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|))) │ │ │ +((|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) 14) (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) 13) (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) 26))) │ │ │ +(((|InnerPolySign| |#1| |#2|) (CATEGORY |package| (SIGNATURE |signAround| ((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|))) (SIGNATURE |signAround| ((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|))) (SIGNATURE |signAround| ((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)))) (|Ring|) (|UnivariatePolynomialCategory| |#1|)) (T |InnerPolySign|)) │ │ │ +((|signAround| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *5 (|Mapping| (|Union| (|Integer|) "failed") *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|InnerPolySign| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|signAround| (*1 *2 *3 *4 *2 *5) (|partial| AND (|isDomain| *5 (|Mapping| (|Union| (|Integer|) "failed") *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|InnerPolySign| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|signAround| (*1 *2 *3 *2 *4) (|partial| AND (|isDomain| *4 (|Mapping| (|Union| (|Integer|) "failed") *5)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|InnerPolySign| *5 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |signAround| ((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|))) (SIGNATURE |signAround| ((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|))) (SIGNATURE |signAround| ((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) 10)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 12) (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) 9)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|NumericalPDEProblem|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))))) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE |retract| ((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $))))) (T |NumericalPDEProblem|)) │ │ │ +((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|NumericalPDEProblem|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) (|isDomain| *1 (|NumericalPDEProblem|)))) (|retract| (*1 *2 *1) (AND (|isDomain| *2 (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) (|isDomain| *1 (|NumericalPDEProblem|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))))) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE |retract| ((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|sample| (($) NIL T CONST)) (|retract| (($ (|UnivariateFormalPowerSeries| |#1|)) 21)) (|recip| (((|Union| $ "failed") $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) 26)) (|hash| (((|SingleInteger|) $) NIL)) (|conjugate| (($ $ $) NIL)) (|commutator| (($ $ $) NIL)) (|coerce| (((|OutputForm|) $) 11)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|One| (($) 18 T CONST)) (= (((|Boolean|) $ $) NIL)) (/ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ $ $) 24))) │ │ │ +(((|NottinghamGroup| |#1|) (|Join| (|Group|) (CATEGORY |domain| (SIGNATURE |retract| ($ (|UnivariateFormalPowerSeries| |#1|))))) (|FiniteFieldCategory|)) (T |NottinghamGroup|)) │ │ │ +((|retract| (*1 *1 *2) (AND (|isDomain| *2 (|UnivariateFormalPowerSeries| *3)) (|ofCategory| *3 (|FiniteFieldCategory|)) (|isDomain| *1 (|NottinghamGroup| *3))))) │ │ │ +(|Join| (|Group|) (CATEGORY |domain| (SIGNATURE |retract| ($ (|UnivariateFormalPowerSeries| |#1|))))) │ │ │ ((|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) 14)) (|rational?| (((|Boolean|) |#1|) 13)) (|rational| (((|Fraction| (|Integer|)) |#1|) 9))) │ │ │ (((|RationalRetractions| |#1|) (CATEGORY |package| (SIGNATURE |rational| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |rational?| ((|Boolean|) |#1|)) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|))) (|RetractableTo| (|Fraction| (|Integer|)))) (T |RationalRetractions|)) │ │ │ ((|rationalIfCan| (*1 *2 *3) (|partial| AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|RationalRetractions| *3)) (|ofCategory| *3 (|RetractableTo| *2)))) (|rational?| (*1 *2 *3) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|RationalRetractions| *3)) (|ofCategory| *3 (|RetractableTo| (|Fraction| (|Integer|)))))) (|rational| (*1 *2 *3) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|RationalRetractions| *3)) (|ofCategory| *3 (|RetractableTo| *2))))) │ │ │ (CATEGORY |package| (SIGNATURE |rational| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |rational?| ((|Boolean|) |#1|)) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|))) │ │ │ -((|sqrt| (($ $) 6)) (|nthRoot| (($ $ (|Integer|)) 7)) (** (($ $ (|Fraction| (|Integer|))) 8))) │ │ │ -(((|RadicalCategory|) (|Category|)) (T |RadicalCategory|)) │ │ │ -((** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RadicalCategory|)) (|isDomain| *2 (|Fraction| (|Integer|))))) (|nthRoot| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|RadicalCategory|)) (|isDomain| *2 (|Integer|)))) (|sqrt| (*1 *1 *1) (|ofCategory| *1 (|RadicalCategory|)))) │ │ │ -(|Join| (CATEGORY |domain| (SIGNATURE |sqrt| ($ $)) (SIGNATURE |nthRoot| ($ $ (|Integer|))) (SIGNATURE ** ($ $ (|Fraction| (|Integer|)))))) │ │ │ -((|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) 9))) │ │ │ -(((|RadixUtilities|) (CATEGORY |package| (SIGNATURE |radix| ((|Any|) (|Fraction| (|Integer|)) (|Integer|))))) (T |RadixUtilities|)) │ │ │ -((|radix| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| (|Integer|))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|RadixUtilities|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |radix| ((|Any|) (|Fraction| (|Integer|)) (|Integer|)))) │ │ │ -((|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) 23 (|has| |#1| (|OrderedRing|))) (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) 17))) │ │ │ -(((|UniversalSegmentFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|))) (IF (|has| |#1| (|OrderedRing|)) (SIGNATURE |map| ((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|))) |noBranch|)) (|Type|) (|Type|)) (T |UniversalSegmentFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|UniversalSegment| *5)) (|ofCategory| *5 (|OrderedRing|)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|Stream| *6)) (|isDomain| *1 (|UniversalSegmentFunctions2| *5 *6)))) (|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|UniversalSegment| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|UniversalSegment| *6)) (|isDomain| *1 (|UniversalSegmentFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|))) (IF (|has| |#1| (|OrderedRing|)) (SIGNATURE |map| ((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|))) |noBranch|)) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|varList| (((|List| |#1|) $) 39)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sh| (($ $ $) 42 (|has| |#2| (|CommutativeRing|))) (($ $ (|NonNegativeInteger|)) 41 (|has| |#2| (|CommutativeRing|)))) (|sample| (($) 16 T CONST)) (|rquo| (($ $ |#1|) 53) (($ $ (|OrderedFreeMonoid| |#1|)) 52) (($ $ $) 51)) (|retractIfCan| (((|Union| (|OrderedFreeMonoid| |#1|) "failed") $) 63)) (|retract| (((|OrderedFreeMonoid| |#1|) $) 62)) (|recip| (((|Union| $ "failed") $) 33)) (|quasiRegular?| (((|Boolean|) $) 44)) (|quasiRegular| (($ $) 43)) (|one?| (((|Boolean|) $) 30)) (|monomial?| (((|Boolean|) $) 49)) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) 50)) (|mirror| (($ $) 48)) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) 59)) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) 60)) (|map| (($ (|Mapping| |#2| |#2|) $) 40)) (|lquo| (($ $ |#1|) 56) (($ $ (|OrderedFreeMonoid| |#1|)) 55) (($ $ $) 54)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|constant?| (((|Boolean|) $) 46)) (|constant| ((|#2| $) 45)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ |#2|) 67) (($ (|OrderedFreeMonoid| |#1|)) 64) (($ |#1|) 47)) (|coef| ((|#2| $ (|OrderedFreeMonoid| |#1|)) 58) ((|#2| $ $) 57)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ |#2| $) 66) (($ $ |#2|) 65) (($ |#1| $) 61))) │ │ │ -(((|XFreeAlgebra| |#1| |#2|) (|Category|) (|OrderedSet|) (|Ring|)) (T |XFreeAlgebra|)) │ │ │ -((* (*1 *1 *1 *2) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *2)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *2 (|Ring|)))) (* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|mindeg| (*1 *2 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|OrderedFreeMonoid| *3)))) (|mindegTerm| (*1 *2 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Record| (|:| |k| (|OrderedFreeMonoid| *3)) (|:| |c| *4))))) (|coef| (*1 *2 *1 *3) (AND (|isDomain| *3 (|OrderedFreeMonoid| *4)) (|ofCategory| *1 (|XFreeAlgebra| *4 *2)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|Ring|)))) (|coef| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *2)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *2 (|Ring|)))) (|lquo| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|lquo| (*1 *1 *1 *2) (AND (|isDomain| *2 (|OrderedFreeMonoid| *3)) (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))) (|lquo| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|rquo| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|rquo| (*1 *1 *1 *2) (AND (|isDomain| *2 (|OrderedFreeMonoid| *3)) (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))) (|rquo| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|monom| (*1 *1 *2 *3) (AND (|isDomain| *2 (|OrderedFreeMonoid| *4)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *1 (|XFreeAlgebra| *4 *3)) (|ofCategory| *3 (|Ring|)))) (|monomial?| (*1 *2 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|mirror| (*1 *1 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|coerce| (*1 *1 *2) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|constant?| (*1 *2 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|constant| (*1 *2 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *2)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *2 (|Ring|)))) (|quasiRegular?| (*1 *2 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Boolean|)))) (|quasiRegular| (*1 *1 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|sh| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|CommutativeRing|)))) (|sh| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *4 (|CommutativeRing|)))) (|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *4 *4)) (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))) (|varList| (*1 *2 *1) (AND (|ofCategory| *1 (|XFreeAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|List| *3))))) │ │ │ -(|Join| (|Ring|) (|XAlgebra| |t#2|) (|RetractableTo| (|OrderedFreeMonoid| |t#1|)) (CATEGORY |domain| (SIGNATURE * ($ |t#1| $)) (SIGNATURE * ($ $ |t#2|)) (SIGNATURE |mindeg| ((|OrderedFreeMonoid| |t#1|) $)) (SIGNATURE |mindegTerm| ((|Record| (|:| |k| (|OrderedFreeMonoid| |t#1|)) (|:| |c| |t#2|)) $)) (SIGNATURE |coef| (|t#2| $ (|OrderedFreeMonoid| |t#1|))) (SIGNATURE |coef| (|t#2| $ $)) (SIGNATURE |lquo| ($ $ |t#1|)) (SIGNATURE |lquo| ($ $ (|OrderedFreeMonoid| |t#1|))) (SIGNATURE |lquo| ($ $ $)) (SIGNATURE |rquo| ($ $ |t#1|)) (SIGNATURE |rquo| ($ $ (|OrderedFreeMonoid| |t#1|))) (SIGNATURE |rquo| ($ $ $)) (SIGNATURE |monom| ($ (|OrderedFreeMonoid| |t#1|) |t#2|)) (SIGNATURE |monomial?| ((|Boolean|) $)) (SIGNATURE |mirror| ($ $)) (SIGNATURE |coerce| ($ |t#1|)) (SIGNATURE |constant?| ((|Boolean|) $)) (SIGNATURE |constant| (|t#2| $)) (SIGNATURE |quasiRegular?| ((|Boolean|) $)) (SIGNATURE |quasiRegular| ($ $)) (IF (|has| |t#2| (|CommutativeRing|)) (PROGN (SIGNATURE |sh| ($ $ $)) (SIGNATURE |sh| ($ $ (|NonNegativeInteger|)))) |noBranch|) (SIGNATURE |map| ($ (|Mapping| |t#2| |t#2|) $)) (SIGNATURE |varList| ((|List| |t#1|) $)) (IF (|has| |t#2| (ATTRIBUTE |noZeroDivisors|)) (ATTRIBUTE |noZeroDivisors|) |noBranch|))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#2|) |has| |#2| (|CommutativeRing|)) ((|BasicType|) . T) ((|BiModule| |#2| |#2|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#2|) . T) ((|LeftModule| $) . T) ((|Module| |#2|) |has| |#2| (|CommutativeRing|)) ((|Monoid|) . T) ((|RetractableTo| (|OrderedFreeMonoid| |#1|)) . T) ((|RightModule| |#2|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|XAlgebra| |#2|) . T)) │ │ │ -((|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) 23))) │ │ │ -(((|UnivariatePuiseuxSeriesFunctions2| |#1| |#2| |#3| |#4| |#5| |#6|) (CATEGORY |package| (SIGNATURE |map| ((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)))) (|Ring|) (|Ring|) (|Symbol|) (|Symbol|) |#1| |#2|) (T |UnivariatePuiseuxSeriesFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|UnivariatePuiseuxSeries| *5 *7 *9)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|)) (|ofType| *7 (|Symbol|)) (|ofType| *9 *5) (|ofType| *10 *6) (|isDomain| *2 (|UnivariatePuiseuxSeries| *6 *8 *10)) (|isDomain| *1 (|UnivariatePuiseuxSeriesFunctions2| *5 *6 *7 *8 *9 *10)) (|ofType| *8 (|Symbol|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)))) │ │ │ -((|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) 17)) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) 11)) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) 14))) │ │ │ -(((|IntegerLinearDependence| |#1|) (CATEGORY |package| (SIGNATURE |linearlyDependentOverZ?| ((|Boolean|) (|Vector| |#1|))) (SIGNATURE |linearDependenceOverZ| ((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|))) (SIGNATURE |solveLinearlyOverQ| ((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|))) (|LinearlyExplicitRingOver| (|Integer|))) (T |IntegerLinearDependence|)) │ │ │ -((|solveLinearlyOverQ| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Vector| *4)) (|ofCategory| *4 (|LinearlyExplicitRingOver| (|Integer|))) (|isDomain| *2 (|Vector| (|Fraction| (|Integer|)))) (|isDomain| *1 (|IntegerLinearDependence| *4)))) (|linearDependenceOverZ| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Vector| *4)) (|ofCategory| *4 (|LinearlyExplicitRingOver| (|Integer|))) (|isDomain| *2 (|Vector| (|Integer|))) (|isDomain| *1 (|IntegerLinearDependence| *4)))) (|linearlyDependentOverZ?| (*1 *2 *3) (AND (|isDomain| *3 (|Vector| *4)) (|ofCategory| *4 (|LinearlyExplicitRingOver| (|Integer|))) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IntegerLinearDependence| *4))))) │ │ │ -(CATEGORY |package| (SIGNATURE |linearlyDependentOverZ?| ((|Boolean|) (|Vector| |#1|))) (SIGNATURE |linearDependenceOverZ| ((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|))) (SIGNATURE |solveLinearlyOverQ| ((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|))) │ │ │ -((|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 23)) (|setRow!| (($ $ (|Integer|) |#3|) 45)) (|setColumn!| (($ $ (|Integer|) |#4|) 49)) (|row| ((|#3| $ (|Integer|)) 58)) (|parts| (((|List| |#2|) $) 30)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 25)) (|member?| (((|Boolean|) |#2| $) 53)) (|map!| (($ (|Mapping| |#2| |#2|) $) 37)) (|map| (($ (|Mapping| |#2| |#2|) $) 36) (($ (|Mapping| |#2| |#2| |#2|) $ $) 39) (($ (|Mapping| |#2| |#2| |#2|) $ $ |#2|) 41)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 24)) (|fill!| (($ $ |#2|) 34)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 19)) (|elt| ((|#2| $ (|Integer|) (|Integer|)) NIL) ((|#2| $ (|Integer|) (|Integer|) |#2|) 27)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) 28) (((|NonNegativeInteger|) |#2| $) 55)) (|copy| (($ $) 33)) (|column| ((|#4| $ (|Integer|)) 61)) (|coerce| (((|OutputForm|) $) 66)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 18)) (= (((|Boolean|) $ $) 52)) (|#| (((|NonNegativeInteger|) $) 26))) │ │ │ -(((|TwoDimensionalArrayCategory&| |#1| |#2| |#3| |#4|) (CATEGORY |domain| (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2| |#2|) |#1| |#1| |#2|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2| |#2|) |#1| |#1|)) (SIGNATURE |map!| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |setColumn!| (|#1| |#1| (|Integer|) |#4|)) (SIGNATURE |setRow!| (|#1| |#1| (|Integer|) |#3|)) (SIGNATURE |parts| ((|List| |#2|) |#1|)) (SIGNATURE |column| (|#4| |#1| (|Integer|))) (SIGNATURE |row| (|#3| |#1| (|Integer|))) (SIGNATURE |elt| (|#2| |#1| (|Integer|) (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|) (|Integer|))) (SIGNATURE |fill!| (|#1| |#1| |#2|)) (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |member?| ((|Boolean|) |#2| |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) |#2| |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |size?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |less?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |copy| (|#1| |#1|))) (|TwoDimensionalArrayCategory| |#2| |#3| |#4|) (|Type|) (|FiniteLinearAggregate| |#2|) (|FiniteLinearAggregate| |#2|)) (T |TwoDimensionalArrayCategory&|)) │ │ │ -NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2| |#2|) |#1| |#1| |#2|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2| |#2|) |#1| |#1|)) (SIGNATURE |map!| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |setColumn!| (|#1| |#1| (|Integer|) |#4|)) (SIGNATURE |setRow!| (|#1| |#1| (|Integer|) |#3|)) (SIGNATURE |parts| ((|List| |#2|) |#1|)) (SIGNATURE |column| (|#4| |#1| (|Integer|))) (SIGNATURE |row| (|#3| |#1| (|Integer|))) (SIGNATURE |elt| (|#2| |#1| (|Integer|) (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|) (|Integer|))) (SIGNATURE |fill!| (|#1| |#1| |#2|)) (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |member?| ((|Boolean|) |#2| |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) |#2| |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |size?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |less?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |copy| (|#1| |#1|))) │ │ │ -((|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) 62) (((|Boolean|) $) NIL)) (|sort!| (($ (|Mapping| (|Boolean|) |#2| |#2|) $) 17) (($ $) NIL)) (|setelt| ((|#2| $ (|Integer|) |#2|) NIL) ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) 34)) (|reverse!| (($ $) 58)) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (|Mapping| |#2| |#2| |#2|) $) 37)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) 22) (((|Integer|) |#2| $) NIL) (((|Integer|) |#2| $ (|Integer|)) 70)) (|parts| (((|List| |#2|) $) 13)) (|merge| (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (|map!| (($ (|Mapping| |#2| |#2|) $) 29)) (|map| (($ (|Mapping| |#2| |#2|) $) NIL) (($ (|Mapping| |#2| |#2| |#2|) $ $) 44)) (|insert| (($ |#2| $ (|Integer|)) NIL) (($ $ $ (|Integer|)) 49)) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) 24)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 21)) (|elt| ((|#2| $ (|Integer|) |#2|) NIL) ((|#2| $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) 48)) (|delete| (($ $ (|Integer|)) 55) (($ $ (|UniversalSegment| (|Integer|))) 54)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) 26) (((|NonNegativeInteger|) |#2| $) NIL)) (|copyInto!| (($ $ $ (|Integer|)) 51)) (|copy| (($ $) 50)) (|construct| (($ (|List| |#2|)) 52)) (|concat| (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 63) (($ (|List| $)) 61)) (|coerce| (((|OutputForm|) $) 69)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 20)) (= (((|Boolean|) $ $) 64)) (< (((|Boolean|) $ $) 72))) │ │ │ -(((|OneDimensionalArrayAggregate&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |sort!| (|#1| |#1|)) (SIGNATURE |sort!| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |reverse!| (|#1| |#1|)) (SIGNATURE |copyInto!| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |sorted?| ((|Boolean|) |#1|)) (SIGNATURE |merge| (|#1| |#1| |#1|)) (SIGNATURE |position| ((|Integer|) |#2| |#1| (|Integer|))) (SIGNATURE |position| ((|Integer|) |#2| |#1|)) (SIGNATURE |position| ((|Integer|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |sorted?| ((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |merge| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1| |#1|)) (SIGNATURE |setelt| (|#2| |#1| (|UniversalSegment| (|Integer|)) |#2|)) (SIGNATURE |insert| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |insert| (|#1| |#2| |#1| (|Integer|))) (SIGNATURE |delete| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |delete| (|#1| |#1| (|Integer|))) (SIGNATURE |elt| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2| |#2|) |#1| |#1|)) (SIGNATURE |concat| (|#1| (|List| |#1|))) (SIGNATURE |concat| (|#1| |#1| |#1|)) (SIGNATURE |concat| (|#1| |#2| |#1|)) (SIGNATURE |concat| (|#1| |#1| |#2|)) (SIGNATURE |construct| (|#1| (|List| |#2|))) (SIGNATURE |find| ((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#2|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#2| |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|))) (SIGNATURE |elt| (|#2| |#1| (|Integer|) |#2|)) (SIGNATURE |setelt| (|#2| |#1| (|Integer|) |#2|)) (SIGNATURE |count| ((|NonNegativeInteger|) |#2| |#1|)) (SIGNATURE |parts| ((|List| |#2|) |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |map!| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |copy| (|#1| |#1|))) (|OneDimensionalArrayAggregate| |#2|) (|Type|)) (T |OneDimensionalArrayAggregate&|)) │ │ │ -NIL │ │ │ -(CATEGORY |domain| (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |sort!| (|#1| |#1|)) (SIGNATURE |sort!| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |reverse!| (|#1| |#1|)) (SIGNATURE |copyInto!| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |sorted?| ((|Boolean|) |#1|)) (SIGNATURE |merge| (|#1| |#1| |#1|)) (SIGNATURE |position| ((|Integer|) |#2| |#1| (|Integer|))) (SIGNATURE |position| ((|Integer|) |#2| |#1|)) (SIGNATURE |position| ((|Integer|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |sorted?| ((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |merge| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1| |#1|)) (SIGNATURE |setelt| (|#2| |#1| (|UniversalSegment| (|Integer|)) |#2|)) (SIGNATURE |insert| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |insert| (|#1| |#2| |#1| (|Integer|))) (SIGNATURE |delete| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |delete| (|#1| |#1| (|Integer|))) (SIGNATURE |elt| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2| |#2|) |#1| |#1|)) (SIGNATURE |concat| (|#1| (|List| |#1|))) (SIGNATURE |concat| (|#1| |#1| |#1|)) (SIGNATURE |concat| (|#1| |#2| |#1|)) (SIGNATURE |concat| (|#1| |#1| |#2|)) (SIGNATURE |construct| (|#1| (|List| |#2|))) (SIGNATURE |find| ((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#2|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#2| |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|))) (SIGNATURE |elt| (|#2| |#1| (|Integer|) |#2|)) (SIGNATURE |setelt| (|#2| |#1| (|Integer|) |#2|)) (SIGNATURE |count| ((|NonNegativeInteger|) |#2| |#1|)) (SIGNATURE |parts| ((|List| |#2|) |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |map!| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |copy| (|#1| |#1|))) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) NIL)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setvalue!| ((|#1| $ |#1|) 13 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setright!| (($ $ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setleft!| (($ $ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setleaves!| (($ $ (|List| |#1|)) 15)) (|setelt| ((|#1| $ "value" |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "left" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "right" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) NIL T CONST)) (|right| (($ $) 11)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) NIL)) (|node?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|node| (($ $ |#1| $) 17)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|mapUp!| ((|#1| $ (|Mapping| |#1| |#1| |#1|)) 25) (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) 30)) (|mapDown!| (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) 31) (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) 35)) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|left| (($ $) 10)) (|leaves| (((|List| |#1|) $) NIL)) (|leaf?| (((|Boolean|) $) 12)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) 9)) (|empty| (($) 16)) (|elt| ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (|distance| (((|Integer|) $ $) NIL)) (|cyclic?| (((|Boolean|) $) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) NIL)) (|child?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) 19)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|BalancedBinaryTree| |#1|) (|Join| (|BinaryTreeCategory| |#1|) (CATEGORY |domain| (ATTRIBUTE |finiteAggregate|) (ATTRIBUTE |shallowlyMutable|) (SIGNATURE |balancedBinaryTree| ($ (|NonNegativeInteger|) |#1|)) (SIGNATURE |setleaves!| ($ $ (|List| |#1|))) (SIGNATURE |mapUp!| (|#1| $ (|Mapping| |#1| |#1| |#1|))) (SIGNATURE |mapUp!| ($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|))) (SIGNATURE |mapDown!| ($ $ |#1| (|Mapping| |#1| |#1| |#1|))) (SIGNATURE |mapDown!| ($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|))))) (|SetCategory|)) (T |BalancedBinaryTree|)) │ │ │ -((|balancedBinaryTree| (*1 *1 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|BalancedBinaryTree| *3)) (|ofCategory| *3 (|SetCategory|)))) (|setleaves!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|BalancedBinaryTree| *3)))) (|mapUp!| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Mapping| *2 *2 *2)) (|isDomain| *1 (|BalancedBinaryTree| *2)) (|ofCategory| *2 (|SetCategory|)))) (|mapUp!| (*1 *1 *1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3 *3 *3 *3 *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|BalancedBinaryTree| *3)))) (|mapDown!| (*1 *1 *1 *2 *3) (AND (|isDomain| *3 (|Mapping| *2 *2 *2)) (|ofCategory| *2 (|SetCategory|)) (|isDomain| *1 (|BalancedBinaryTree| *2)))) (|mapDown!| (*1 *1 *1 *2 *3) (AND (|isDomain| *3 (|Mapping| (|List| *2) *2 *2 *2)) (|ofCategory| *2 (|SetCategory|)) (|isDomain| *1 (|BalancedBinaryTree| *2))))) │ │ │ -(|Join| (|BinaryTreeCategory| |#1|) (CATEGORY |domain| (ATTRIBUTE |finiteAggregate|) (ATTRIBUTE |shallowlyMutable|) (SIGNATURE |balancedBinaryTree| ($ (|NonNegativeInteger|) |#1|)) (SIGNATURE |setleaves!| ($ $ (|List| |#1|))) (SIGNATURE |mapUp!| (|#1| $ (|Mapping| |#1| |#1| |#1|))) (SIGNATURE |mapUp!| ($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|))) (SIGNATURE |mapDown!| ($ $ |#1| (|Mapping| |#1| |#1| |#1|))) (SIGNATURE |mapDown!| ($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|))))) │ │ │ -((|outputAsFortran| (((|Void|) $) 62)) (|coerce| (((|OutputForm|) $) 56) (($ (|Matrix| (|MachineFloat|))) 47) (($ (|List| (|FortranCode|))) 50) (($ (|FortranCode|)) 53) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 46))) │ │ │ -(((|Asp34| |#1|) (|FortranMatrixCategory|) (|Symbol|)) (T |Asp34|)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|wholePart| (((|Integer|) $) NIL (|has| (|Integer|) (|EuclideanDomain|)))) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|toint| (((|Integer|) (|String|)) 19)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| (|Integer|) (|PolynomialFactorizationExplicit|)))) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| (|Integer|) (|PolynomialFactorizationExplicit|)))) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|sign| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedIntegralDomain|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL) (((|Union| (|Symbol|) "failed") $) NIL (|has| (|Integer|) (|RetractableTo| (|Symbol|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| (|Integer|) (|RetractableTo| (|Integer|)))) (((|Union| (|Integer|) "failed") $) NIL (|has| (|Integer|) (|RetractableTo| (|Integer|))))) (|retract| (((|Integer|) $) NIL) (((|Symbol|) $) NIL (|has| (|Integer|) (|RetractableTo| (|Symbol|)))) (((|Fraction| (|Integer|)) $) NIL (|has| (|Integer|) (|RetractableTo| (|Integer|)))) (((|Integer|) $) NIL (|has| (|Integer|) (|RetractableTo| (|Integer|))))) (|rem| (($ $ $) NIL)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (|has| (|Integer|) (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (|has| (|Integer|) (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| (|Integer|)) (|Matrix| $)) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|random| (($) NIL (|has| (|Integer|) (|IntegerNumberSystem|)))) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|prime?| (((|Boolean|) $) NIL)) (|positive?| (((|Boolean|) $) NIL (|has| (|Integer|) (|OrderedIntegralDomain|)))) (|patternMatch| (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) NIL (|has| (|Integer|) (|PatternMatchable| (|Integer|)))) (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) NIL (|has| (|Integer|) (|PatternMatchable| (|Float|))))) (|one?| (((|Boolean|) $) NIL)) (|numerator| (($ $) NIL)) (|numer| (((|Integer|) $) NIL)) (|nextItem| (((|Union| $ "failed") $) NIL (|has| (|Integer|) (|StepThrough|)))) (|negative?| (((|Boolean|) $) NIL (|has| (|Integer|) (|OrderedIntegralDomain|)))) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|min| (($ $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|map| (($ (|Mapping| (|Integer|) (|Integer|)) $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) NIL)) (|init| (($) NIL (|has| (|Integer|) (|StepThrough|)) CONST)) (|hex| (($ (|Fraction| (|Integer|))) 8)) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|fractionPart| (($ $) NIL (|has| (|Integer|) (|EuclideanDomain|))) (((|Fraction| (|Integer|)) $) NIL)) (|floor| (((|Integer|) $) NIL (|has| (|Integer|) (|IntegerNumberSystem|)))) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| (|Integer|) (|PolynomialFactorizationExplicit|)))) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| (|Integer|) (|PolynomialFactorizationExplicit|)))) (|factor| (((|Factored| $) $) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|eval| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) NIL (|has| (|Integer|) (|Evalable| (|Integer|)))) (($ $ (|Integer|) (|Integer|)) NIL (|has| (|Integer|) (|Evalable| (|Integer|)))) (($ $ (|Equation| (|Integer|))) NIL (|has| (|Integer|) (|Evalable| (|Integer|)))) (($ $ (|List| (|Equation| (|Integer|)))) NIL (|has| (|Integer|) (|Evalable| (|Integer|)))) (($ $ (|List| (|Symbol|)) (|List| (|Integer|))) NIL (|has| (|Integer|) (|InnerEvalable| (|Symbol|) (|Integer|)))) (($ $ (|Symbol|) (|Integer|)) NIL (|has| (|Integer|) (|InnerEvalable| (|Symbol|) (|Integer|))))) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|elt| (($ $ (|Integer|)) NIL (|has| (|Integer|) (|Eltable| (|Integer|) (|Integer|))))) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|differentiate| (($ $) NIL (|has| (|Integer|) (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|Integer|) (|DifferentialRing|))) (($ $ (|Symbol|)) NIL (|has| (|Integer|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| (|Integer|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| (|Integer|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| (|Integer|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| (|Integer|) (|Integer|)) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| (|Integer|) (|Integer|))) NIL)) (|denominator| (($ $) NIL)) (|denom| (((|Integer|) $) NIL)) (|convert| (((|Pattern| (|Integer|)) $) NIL (|has| (|Integer|) (|ConvertibleTo| (|Pattern| (|Integer|))))) (((|Pattern| (|Float|)) $) NIL (|has| (|Integer|) (|ConvertibleTo| (|Pattern| (|Float|))))) (((|InputForm|) $) NIL (|has| (|Integer|) (|ConvertibleTo| (|InputForm|)))) (((|Float|) $) NIL (|has| (|Integer|) (|RealConstant|))) (((|DoubleFloat|) $) NIL (|has| (|Integer|) (|RealConstant|)))) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (AND (|has| $ (|CharacteristicNonZero|)) (|has| (|Integer|) (|PolynomialFactorizationExplicit|))))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL) (($ (|Fraction| (|Integer|))) 7) (($ (|Integer|)) NIL) (($ (|Symbol|)) NIL (|has| (|Integer|) (|RetractableTo| (|Symbol|)))) (((|Fraction| (|Integer|)) $) NIL) (((|RadixExpansion| 16) $) 9)) (|charthRoot| (((|Union| $ "failed") $) NIL (OR (AND (|has| $ (|CharacteristicNonZero|)) (|has| (|Integer|) (|PolynomialFactorizationExplicit|))) (|has| (|Integer|) (|CharacteristicNonZero|))))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|ceiling| (((|Integer|) $) NIL (|has| (|Integer|) (|IntegerNumberSystem|)))) (|associates?| (((|Boolean|) $ $) NIL)) (|abs| (($ $) NIL (|has| (|Integer|) (|OrderedIntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (D (($ $) NIL (|has| (|Integer|) (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|Integer|) (|DifferentialRing|))) (($ $ (|Symbol|)) NIL (|has| (|Integer|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| (|Integer|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| (|Integer|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| (|Integer|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| (|Integer|) (|Integer|)) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| (|Integer|) (|Integer|))) NIL)) (>= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (/ (($ $ $) NIL) (($ (|Integer|) (|Integer|)) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|Fraction| (|Integer|))) NIL) (($ (|Fraction| (|Integer|)) $) NIL) (($ (|Integer|) $) NIL) (($ $ (|Integer|)) NIL))) │ │ │ +(((|HexadecimalExpansion|) (|Join| (|QuotientFieldCategory| (|Integer|)) (CATEGORY |domain| (SIGNATURE |coerce| ((|Fraction| (|Integer|)) $)) (SIGNATURE |coerce| ((|RadixExpansion| 16) $)) (SIGNATURE |fractionPart| ((|Fraction| (|Integer|)) $)) (SIGNATURE |hex| ($ (|Fraction| (|Integer|)))) (SIGNATURE |toint| ((|Integer|) (|String|)))))) (T |HexadecimalExpansion|)) │ │ │ +((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|HexadecimalExpansion|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|RadixExpansion| 16)) (|isDomain| *1 (|HexadecimalExpansion|)))) (|fractionPart| (*1 *2 *1) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|HexadecimalExpansion|)))) (|hex| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|HexadecimalExpansion|)))) (|toint| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|HexadecimalExpansion|))))) │ │ │ +(|Join| (|QuotientFieldCategory| (|Integer|)) (CATEGORY |domain| (SIGNATURE |coerce| ((|Fraction| (|Integer|)) $)) (SIGNATURE |coerce| ((|RadixExpansion| 16) $)) (SIGNATURE |fractionPart| ((|Fraction| (|Integer|)) $)) (SIGNATURE |hex| ($ (|Fraction| (|Integer|)))) (SIGNATURE |toint| ((|Integer|) (|String|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|whileLoop| (($ (|Switch|) $) 88)) (|stop| (($) 76)) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) 11)) (|save| (($) 77)) (|returns| (($) 90) (($ (|Expression| (|MachineFloat|))) 96) (($ (|Expression| (|MachineInteger|))) 93) (($ (|Expression| (|MachineComplex|))) 99) (($ (|Expression| (|Float|))) 105) (($ (|Expression| (|Integer|))) 102) (($ (|Expression| (|Complex| (|Float|)))) 108)) (|repeatUntilLoop| (($ (|Switch|) $) 89)) (|printStatement| (($ (|List| (|OutputForm|))) 79)) (|printCode| (((|Void|) $) 73)) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|goto| (($ (|SingleInteger|)) 45)) (|getCode| (((|SExpression|) $) 25)) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) 85) (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) 86)) (|continue| (($ (|SingleInteger|)) 87)) (|cond| (($ (|Switch|) $) 110) (($ (|Switch|) $ $) 111)) (|common| (($ (|Symbol|) (|List| (|Symbol|))) 75)) (|comment| (($ (|String|)) 82) (($ (|List| (|String|))) 80)) (|coerce| (((|OutputForm|) $) 113)) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) 37)) (|call| (($ (|String|)) 182)) (|block| (($ (|List| $)) 109)) (|assign| (($ (|Symbol|) (|String|)) 115) (($ (|Symbol|) (|Expression| (|MachineInteger|))) 155) (($ (|Symbol|) (|Expression| (|MachineFloat|))) 156) (($ (|Symbol|) (|Expression| (|MachineComplex|))) 157) (($ (|Symbol|) (|Matrix| (|MachineInteger|))) 118) (($ (|Symbol|) (|Matrix| (|MachineFloat|))) 121) (($ (|Symbol|) (|Matrix| (|MachineComplex|))) 124) (($ (|Symbol|) (|Vector| (|MachineInteger|))) 127) (($ (|Symbol|) (|Vector| (|MachineFloat|))) 130) (($ (|Symbol|) (|Vector| (|MachineComplex|))) 133) (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) 136) (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) 139) (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) 142) (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) 145) (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) 148) (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) 151) (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) 152) (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) 153) (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) 154) (($ (|Symbol|) (|Expression| (|Integer|))) 179) (($ (|Symbol|) (|Expression| (|Float|))) 180) (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) 181) (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) 160) (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) 163) (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) 166) (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) 169) (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) 172) (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) 175) (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) 176) (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) 177) (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) 178)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|FortranCode|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE |forLoop| ($ (|SegmentBinding| (|Polynomial| (|Integer|))) $)) (SIGNATURE |forLoop| ($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $)) (SIGNATURE |whileLoop| ($ (|Switch|) $)) (SIGNATURE |repeatUntilLoop| ($ (|Switch|) $)) (SIGNATURE |goto| ($ (|SingleInteger|))) (SIGNATURE |continue| ($ (|SingleInteger|))) (SIGNATURE |comment| ($ (|String|))) (SIGNATURE |comment| ($ (|List| (|String|)))) (SIGNATURE |call| ($ (|String|))) (SIGNATURE |returns| ($)) (SIGNATURE |returns| ($ (|Expression| (|MachineFloat|)))) (SIGNATURE |returns| ($ (|Expression| (|MachineInteger|)))) (SIGNATURE |returns| ($ (|Expression| (|MachineComplex|)))) (SIGNATURE |returns| ($ (|Expression| (|Float|)))) (SIGNATURE |returns| ($ (|Expression| (|Integer|)))) (SIGNATURE |returns| ($ (|Expression| (|Complex| (|Float|))))) (SIGNATURE |cond| ($ (|Switch|) $)) (SIGNATURE |cond| ($ (|Switch|) $ $)) (SIGNATURE |assign| ($ (|Symbol|) (|String|))) (SIGNATURE |assign| ($ (|Symbol|) (|Expression| (|MachineInteger|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Expression| (|MachineFloat|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Expression| (|MachineComplex|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|MachineInteger|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|MachineFloat|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|MachineComplex|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|MachineInteger|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|MachineFloat|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|MachineComplex|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|))))) (SIGNATURE |assign| ($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|)))) (SIGNATURE |assign| ($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|)))) (SIGNATURE |assign| ($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Expression| (|Integer|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Expression| (|Float|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Expression| (|Complex| (|Float|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|Expression| (|Integer|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|Expression| (|Float|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|)))))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|Expression| (|Integer|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|Expression| (|Float|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|)))))) (SIGNATURE |assign| ($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|)))) (SIGNATURE |assign| ($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|)))) (SIGNATURE |assign| ($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|))))) (SIGNATURE |block| ($ (|List| $))) (SIGNATURE |stop| ($)) (SIGNATURE |save| ($)) (SIGNATURE |printStatement| ($ (|List| (|OutputForm|)))) (SIGNATURE |common| ($ (|Symbol|) (|List| (|Symbol|)))) (SIGNATURE |operation| ((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (SIGNATURE |code| ((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $)) (SIGNATURE |printCode| ((|Void|) $)) (SIGNATURE |getCode| ((|SExpression|) $)) (SIGNATURE |setLabelValue| ((|SingleInteger|) (|SingleInteger|)))))) (T |FortranCode|)) │ │ │ +((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|FortranCode|)))) (|forLoop| (*1 *1 *2 *1) (AND (|isDomain| *2 (|SegmentBinding| (|Polynomial| (|Integer|)))) (|isDomain| *1 (|FortranCode|)))) (|forLoop| (*1 *1 *2 *3 *1) (AND (|isDomain| *2 (|SegmentBinding| (|Polynomial| (|Integer|)))) (|isDomain| *3 (|Polynomial| (|Integer|))) (|isDomain| *1 (|FortranCode|)))) (|whileLoop| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Switch|)) (|isDomain| *1 (|FortranCode|)))) (|repeatUntilLoop| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Switch|)) (|isDomain| *1 (|FortranCode|)))) (|goto| (*1 *1 *2) (AND (|isDomain| *2 (|SingleInteger|)) (|isDomain| *1 (|FortranCode|)))) (|continue| (*1 *1 *2) (AND (|isDomain| *2 (|SingleInteger|)) (|isDomain| *1 (|FortranCode|)))) (|comment| (*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|FortranCode|)))) (|comment| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|String|))) (|isDomain| *1 (|FortranCode|)))) (|call| (*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|FortranCode|)))) (|returns| (*1 *1) (|isDomain| *1 (|FortranCode|))) (|returns| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|MachineFloat|))) (|isDomain| *1 (|FortranCode|)))) (|returns| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|MachineInteger|))) (|isDomain| *1 (|FortranCode|)))) (|returns| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|MachineComplex|))) (|isDomain| *1 (|FortranCode|)))) (|returns| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|Float|))) (|isDomain| *1 (|FortranCode|)))) (|returns| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|FortranCode|)))) (|returns| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|Complex| (|Float|)))) (|isDomain| *1 (|FortranCode|)))) (|cond| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Switch|)) (|isDomain| *1 (|FortranCode|)))) (|cond| (*1 *1 *2 *1 *1) (AND (|isDomain| *2 (|Switch|)) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|String|)) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Expression| (|MachineInteger|))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Expression| (|MachineFloat|))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Expression| (|MachineComplex|))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Matrix| (|MachineInteger|))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Matrix| (|MachineFloat|))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Matrix| (|MachineComplex|))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Vector| (|MachineInteger|))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Vector| (|MachineFloat|))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Vector| (|MachineComplex|))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Matrix| (|Expression| (|MachineInteger|)))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Matrix| (|Expression| (|MachineFloat|)))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Matrix| (|Expression| (|MachineComplex|)))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Vector| (|Expression| (|MachineInteger|)))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Vector| (|Expression| (|MachineFloat|)))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Vector| (|Expression| (|MachineComplex|)))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3 *4) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|List| (|Polynomial| (|Integer|)))) (|isDomain| *4 (|Expression| (|MachineInteger|))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3 *4) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|List| (|Polynomial| (|Integer|)))) (|isDomain| *4 (|Expression| (|MachineFloat|))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3 *4) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|List| (|Polynomial| (|Integer|)))) (|isDomain| *4 (|Expression| (|MachineComplex|))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Expression| (|Integer|))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Expression| (|Float|))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Expression| (|Complex| (|Float|)))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Matrix| (|Expression| (|Integer|)))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Matrix| (|Expression| (|Float|)))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Matrix| (|Expression| (|Complex| (|Float|))))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Vector| (|Expression| (|Integer|)))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Vector| (|Expression| (|Float|)))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|Vector| (|Expression| (|Complex| (|Float|))))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3 *4) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|List| (|Polynomial| (|Integer|)))) (|isDomain| *4 (|Expression| (|Integer|))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3 *4) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|List| (|Polynomial| (|Integer|)))) (|isDomain| *4 (|Expression| (|Float|))) (|isDomain| *1 (|FortranCode|)))) (|assign| (*1 *1 *2 *3 *4) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|List| (|Polynomial| (|Integer|)))) (|isDomain| *4 (|Expression| (|Complex| (|Float|)))) (|isDomain| *1 (|FortranCode|)))) (|block| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|FortranCode|))) (|isDomain| *1 (|FortranCode|)))) (|stop| (*1 *1) (|isDomain| *1 (|FortranCode|))) (|save| (*1 *1) (|isDomain| *1 (|FortranCode|))) (|printStatement| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|OutputForm|))) (|isDomain| *1 (|FortranCode|)))) (|common| (*1 *1 *2 *3) (AND (|isDomain| *3 (|List| (|Symbol|))) (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|FortranCode|)))) (|operation| (*1 *2 *1) (AND (|isDomain| *2 (|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (|isDomain| *1 (|FortranCode|)))) (|code| (*1 *2 *1) (AND (|isDomain| *2 (|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| (|FortranCode|)) (|:| |elseClause| (|FortranCode|)))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| (|FortranCode|))) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| (|FortranCode|)))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| (|FortranCode|)))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|))))) (|isDomain| *1 (|FortranCode|)))) (|printCode| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|FortranCode|)))) (|getCode| (*1 *2 *1) (AND (|isDomain| *2 (|SExpression|)) (|isDomain| *1 (|FortranCode|)))) (|setLabelValue| (*1 *2 *2) (AND (|isDomain| *2 (|SingleInteger|)) (|isDomain| *1 (|FortranCode|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE |forLoop| ($ (|SegmentBinding| (|Polynomial| (|Integer|))) $)) (SIGNATURE |forLoop| ($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $)) (SIGNATURE |whileLoop| ($ (|Switch|) $)) (SIGNATURE |repeatUntilLoop| ($ (|Switch|) $)) (SIGNATURE |goto| ($ (|SingleInteger|))) (SIGNATURE |continue| ($ (|SingleInteger|))) (SIGNATURE |comment| ($ (|String|))) (SIGNATURE |comment| ($ (|List| (|String|)))) (SIGNATURE |call| ($ (|String|))) (SIGNATURE |returns| ($)) (SIGNATURE |returns| ($ (|Expression| (|MachineFloat|)))) (SIGNATURE |returns| ($ (|Expression| (|MachineInteger|)))) (SIGNATURE |returns| ($ (|Expression| (|MachineComplex|)))) (SIGNATURE |returns| ($ (|Expression| (|Float|)))) (SIGNATURE |returns| ($ (|Expression| (|Integer|)))) (SIGNATURE |returns| ($ (|Expression| (|Complex| (|Float|))))) (SIGNATURE |cond| ($ (|Switch|) $)) (SIGNATURE |cond| ($ (|Switch|) $ $)) (SIGNATURE |assign| ($ (|Symbol|) (|String|))) (SIGNATURE |assign| ($ (|Symbol|) (|Expression| (|MachineInteger|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Expression| (|MachineFloat|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Expression| (|MachineComplex|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|MachineInteger|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|MachineFloat|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|MachineComplex|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|MachineInteger|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|MachineFloat|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|MachineComplex|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|))))) (SIGNATURE |assign| ($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|)))) (SIGNATURE |assign| ($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|)))) (SIGNATURE |assign| ($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Expression| (|Integer|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Expression| (|Float|)))) (SIGNATURE |assign| ($ (|Symbol|) (|Expression| (|Complex| (|Float|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|Expression| (|Integer|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|Expression| (|Float|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|)))))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|Expression| (|Integer|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|Expression| (|Float|))))) (SIGNATURE |assign| ($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|)))))) (SIGNATURE |assign| ($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|)))) (SIGNATURE |assign| ($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|)))) (SIGNATURE |assign| ($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|))))) (SIGNATURE |block| ($ (|List| $))) (SIGNATURE |stop| ($)) (SIGNATURE |save| ($)) (SIGNATURE |printStatement| ($ (|List| (|OutputForm|)))) (SIGNATURE |common| ($ (|Symbol|) (|List| (|Symbol|)))) (SIGNATURE |operation| ((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (SIGNATURE |code| ((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $)) (SIGNATURE |printCode| ((|Void|) $)) (SIGNATURE |getCode| ((|SExpression|) $)) (SIGNATURE |setLabelValue| ((|SingleInteger|) (|SingleInteger|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|SetCategory|)))) (|zero?| (((|Boolean|) $) NIL)) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) NIL)) (|vertConcat| (($ $ $) NIL)) (|transpose| (($ (|U32Vector|)) NIL) (($ $) NIL)) (|symmetric?| (((|Boolean|) $) NIL)) (|swapRows!| (($ $ (|Integer|) (|Integer|)) NIL)) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) NIL)) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) NIL)) (|squareTop| (($ $) NIL)) (|square?| (((|Boolean|) $) NIL)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) NIL)) (|setelt| (((|Integer|) $ (|Integer|) (|Integer|) (|Integer|)) 17) (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) NIL)) (|setRow!| (($ $ (|Integer|) (|U32Vector|)) NIL)) (|setColumn!| (($ $ (|Integer|) (|U32Vector|)) NIL)) (|scalarMatrix| (($ (|NonNegativeInteger|) (|Integer|)) NIL)) (|sample| (($) NIL T CONST)) (|rowEchelon| (($ $) NIL (|has| (|Integer|) (|EuclideanDomain|)))) (|row| (((|U32Vector|) $ (|Integer|)) NIL)) (|rank| (((|NonNegativeInteger|) $) NIL (|has| (|Integer|) (|IntegralDomain|)))) (|qsetelt!| (((|Integer|) $ (|Integer|) (|Integer|) (|Integer|)) 16)) (|qnew| (($ (|Integer|) (|Integer|)) 19)) (|qelt| (((|Integer|) $ (|Integer|) (|Integer|)) 14)) (|pfaffian| (((|Integer|) $) NIL (|has| (|Integer|) (|CommutativeRing|)))) (|parts| (((|List| (|Integer|)) $) NIL)) (|nullity| (((|NonNegativeInteger|) $) NIL (|has| (|Integer|) (|IntegralDomain|)))) (|nullSpace| (((|List| (|U32Vector|)) $) NIL (|has| (|Integer|) (|IntegralDomain|)))) (|nrows| (((|NonNegativeInteger|) $) 10)) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) 20)) (|ncols| (((|NonNegativeInteger|) $) 11)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minordet| (((|Integer|) $) NIL (|has| (|Integer|) (ATTRIBUTE (|commutative| "*"))))) (|minRowIndex| (((|Integer|) $) 7)) (|minColIndex| (((|Integer|) $) 8)) (|members| (((|List| (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|maxRowIndex| (((|Integer|) $) 12)) (|maxColIndex| (((|Integer|) $) 13)) (|matrix| (($ (|List| (|List| (|Integer|)))) NIL) (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| (|Integer|) (|Integer|) (|Integer|))) NIL)) (|map!| (($ (|Mapping| (|Integer|) (|Integer|)) $) NIL)) (|map| (($ (|Mapping| (|Integer|) (|Integer|)) $) NIL) (($ (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ $) NIL) (($ (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ $ (|Integer|)) NIL)) (|listOfLists| (((|List| (|List| (|Integer|))) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|inverse| (((|Union| $ "failed") $) NIL (|has| (|Integer|) (|Field|)))) (|horizConcat| (($ $ $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|fill!| (($ $ (|Integer|)) NIL)) (|exquo| (((|Union| $ "failed") $ (|Integer|)) NIL (|has| (|Integer|) (|IntegralDomain|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|Integer|)))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|Equation| (|Integer|))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|Integer|) (|Integer|)) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|List| (|Integer|)) (|List| (|Integer|))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) 18)) (|elt| (((|Integer|) $ (|Integer|) (|Integer|)) 15) (((|Integer|) $ (|Integer|) (|Integer|) (|Integer|)) NIL) (($ $ (|List| (|Integer|)) (|List| (|Integer|))) NIL)) (|diagonalMatrix| (($ (|List| (|Integer|))) NIL) (($ (|List| $)) NIL)) (|diagonal?| (((|Boolean|) $) NIL)) (|determinant| (((|Integer|) $) NIL (|has| (|Integer|) (ATTRIBUTE (|commutative| "*"))))) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|copy| (($ $) NIL)) (|columnSpace| (((|List| (|U32Vector|)) $) NIL (|has| (|Integer|) (|EuclideanDomain|)))) (|column| (((|U32Vector|) $ (|Integer|)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| (|Integer|) (|SetCategory|))) (($ (|U32Vector|)) NIL)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|antisymmetric?| (((|Boolean|) $) NIL)) (= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|SetCategory|)))) (/ (($ $ (|Integer|)) NIL (|has| (|Integer|) (|Field|)))) (- (($ $ $) NIL) (($ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL (|has| (|Integer|) (|Field|)))) (* (($ $ $) NIL) (($ (|Integer|) $) NIL) (($ $ (|Integer|)) NIL) (($ (|Integer|) $) NIL) (((|U32Vector|) $ (|U32Vector|)) NIL) (((|U32Vector|) (|U32Vector|) $) NIL)) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|U32Matrix|) (|Join| (|MatrixCategory| (|Integer|) (|U32Vector|) (|U32Vector|)) (CATEGORY |domain| (SIGNATURE |qnew| ($ (|Integer|) (|Integer|)))))) (T |U32Matrix|)) │ │ │ +((|qnew| (*1 *1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|U32Matrix|))))) │ │ │ +(|Join| (|MatrixCategory| (|Integer|) (|U32Vector|) (|U32Vector|)) (CATEGORY |domain| (SIGNATURE |qnew| ($ (|Integer|) (|Integer|))))) │ │ │ +((|zero?| (((|Boolean|) $) 15)) (|tanh| (($ $) 90)) (|tan| (($ $) 66)) (|sinh| (($ $) 86)) (|sin| (($ $) 62)) (|sech| (($ $) 94)) (|sec| (($ $) 70)) (|log| (($ $) 60)) (|exp| (($ $) 58)) (|csch| (($ $) 96)) (|csc| (($ $) 72)) (|coth| (($ $) 92)) (|cot| (($ $) 68)) (|cosh| (($ $) 88)) (|cos| (($ $) 64)) (|coerce| (((|OutputForm|) $) 46) (($ (|Integer|)) NIL) (($ (|Fraction| (|Integer|))) NIL) (($ $) NIL) (($ |#2|) NIL)) (|atanh| (($ $) 102)) (|atan| (($ $) 78)) (|asinh| (($ $) 98)) (|asin| (($ $) 74)) (|asech| (($ $) 106)) (|asec| (($ $) 82)) (|acsch| (($ $) 108)) (|acsc| (($ $) 84)) (|acoth| (($ $) 104)) (|acot| (($ $) 80)) (|acosh| (($ $) 100)) (|acos| (($ $) 76)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ |#2|) 50) (($ $ $) 53) (($ $ (|Fraction| (|Integer|))) 56))) │ │ │ +(((|UnivariateTaylorSeriesCategory&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE ** (|#1| |#1| (|Fraction| (|Integer|)))) (SIGNATURE |tan| (|#1| |#1|)) (SIGNATURE |sin| (|#1| |#1|)) (SIGNATURE |sec| (|#1| |#1|)) (SIGNATURE |csc| (|#1| |#1|)) (SIGNATURE |cot| (|#1| |#1|)) (SIGNATURE |cos| (|#1| |#1|)) (SIGNATURE |acos| (|#1| |#1|)) (SIGNATURE |acot| (|#1| |#1|)) (SIGNATURE |acsc| (|#1| |#1|)) (SIGNATURE |asec| (|#1| |#1|)) (SIGNATURE |asin| (|#1| |#1|)) (SIGNATURE |atan| (|#1| |#1|)) (SIGNATURE |cosh| (|#1| |#1|)) (SIGNATURE |coth| (|#1| |#1|)) (SIGNATURE |csch| (|#1| |#1|)) (SIGNATURE |sech| (|#1| |#1|)) (SIGNATURE |sinh| (|#1| |#1|)) (SIGNATURE |tanh| (|#1| |#1|)) (SIGNATURE |acosh| (|#1| |#1|)) (SIGNATURE |acoth| (|#1| |#1|)) (SIGNATURE |acsch| (|#1| |#1|)) (SIGNATURE |asech| (|#1| |#1|)) (SIGNATURE |asinh| (|#1| |#1|)) (SIGNATURE |atanh| (|#1| |#1|)) (SIGNATURE |log| (|#1| |#1|)) (SIGNATURE |exp| (|#1| |#1|)) (SIGNATURE ** (|#1| |#1| |#1|)) (SIGNATURE ** (|#1| |#1| |#2|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| |#1|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|))) (SIGNATURE |zero?| ((|Boolean|) |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|UnivariateTaylorSeriesCategory| |#2|) (|Ring|)) (T |UnivariateTaylorSeriesCategory&|)) │ │ │ NIL │ │ │ -(|FortranMatrixCategory|) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (|bfKeys| (((|List| (|Symbol|))) 32)) (|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) 35)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|BasicFunctions|) (|Join| (|SetCategory|) (CATEGORY |package| (SIGNATURE |bfKeys| ((|List| (|Symbol|)))) (SIGNATURE |bfEntry| ((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|))) (ATTRIBUTE |finiteAggregate|)))) (T |BasicFunctions|)) │ │ │ -((|bfKeys| (*1 *2) (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *1 (|BasicFunctions|)))) (|bfEntry| (*1 *2 *3) (AND (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|))))) (|isDomain| *1 (|BasicFunctions|))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |package| (SIGNATURE |bfKeys| ((|List| (|Symbol|)))) (SIGNATURE |bfEntry| ((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|))) (ATTRIBUTE |finiteAggregate|))) │ │ │ -((|zaxpy| (((|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|) (|Complex| (|DoubleFloat|)) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|)) 33)) (|izamax| (((|Integer|) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|)) 32)) (|isamax| (((|Integer|) (|Integer|) (|PrimitiveArray| (|Float|)) (|Integer|)) 31)) (|idamax| (((|Integer|) (|Integer|) (|PrimitiveArray| (|DoubleFloat|)) (|Integer|)) 29)) (|icamax| (((|Integer|) (|Integer|) (|PrimitiveArray| (|Complex| (|Float|))) (|Integer|)) 28)) (|dznrm2| (((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|)) 25)) (|dzasum| (((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|)) 24)) (|dswap| (((|List| (|PrimitiveArray| (|DoubleFloat|))) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) 22)) (|dscal| (((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|DoubleFloat|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) 21)) (|drotg| (((|PrimitiveArray| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) 18)) (|drot| (((|List| (|PrimitiveArray| (|DoubleFloat|))) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|DoubleFloat|) (|DoubleFloat|)) 20)) (|dnrm2| (((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) 17)) (|ddot| (((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) 16)) (|dcopy| (((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) 15)) (|dcabs1| (((|DoubleFloat|) (|Complex| (|DoubleFloat|))) 10)) (|daxpy| (((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|DoubleFloat|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) 14)) (|dasum| (((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) 13))) │ │ │ -(((|BlasLevelOne|) (CATEGORY |package| (SIGNATURE |dcabs1| ((|DoubleFloat|) (|Complex| (|DoubleFloat|)))) (SIGNATURE |dasum| ((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|))) (SIGNATURE |daxpy| ((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|DoubleFloat|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|))) (SIGNATURE |dcopy| ((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|))) (SIGNATURE |ddot| ((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|))) (SIGNATURE |dnrm2| ((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|))) (SIGNATURE |drotg| ((|PrimitiveArray| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |drot| ((|List| (|PrimitiveArray| (|DoubleFloat|))) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |dscal| ((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|DoubleFloat|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|))) (SIGNATURE |dswap| ((|List| (|PrimitiveArray| (|DoubleFloat|))) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|))) (SIGNATURE |dzasum| ((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|))) (SIGNATURE |dznrm2| ((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|))) (SIGNATURE |icamax| ((|Integer|) (|Integer|) (|PrimitiveArray| (|Complex| (|Float|))) (|Integer|))) (SIGNATURE |idamax| ((|Integer|) (|Integer|) (|PrimitiveArray| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |isamax| ((|Integer|) (|Integer|) (|PrimitiveArray| (|Float|)) (|Integer|))) (SIGNATURE |izamax| ((|Integer|) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|))) (SIGNATURE |zaxpy| ((|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|) (|Complex| (|DoubleFloat|)) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|))))) (T |BlasLevelOne|)) │ │ │ -((|zaxpy| (*1 *2 *3 *4 *2 *3 *2 *3) (AND (|isDomain| *2 (|PrimitiveArray| (|Complex| (|DoubleFloat|)))) (|isDomain| *3 (|SingleInteger|)) (|isDomain| *4 (|Complex| (|DoubleFloat|))) (|isDomain| *1 (|BlasLevelOne|)))) (|izamax| (*1 *2 *3 *4 *3) (AND (|isDomain| *3 (|SingleInteger|)) (|isDomain| *4 (|PrimitiveArray| (|Complex| (|DoubleFloat|)))) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|BlasLevelOne|)))) (|isamax| (*1 *2 *2 *3 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|PrimitiveArray| (|Float|))) (|isDomain| *1 (|BlasLevelOne|)))) (|idamax| (*1 *2 *2 *3 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|PrimitiveArray| (|DoubleFloat|))) (|isDomain| *1 (|BlasLevelOne|)))) (|icamax| (*1 *2 *2 *3 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|PrimitiveArray| (|Complex| (|Float|)))) (|isDomain| *1 (|BlasLevelOne|)))) (|dznrm2| (*1 *2 *3 *4 *3) (AND (|isDomain| *3 (|SingleInteger|)) (|isDomain| *4 (|PrimitiveArray| (|Complex| (|DoubleFloat|)))) (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|BlasLevelOne|)))) (|dzasum| (*1 *2 *3 *4 *3) (AND (|isDomain| *3 (|SingleInteger|)) (|isDomain| *4 (|PrimitiveArray| (|Complex| (|DoubleFloat|)))) (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|BlasLevelOne|)))) (|dswap| (*1 *2 *3 *4 *3 *4 *3) (AND (|isDomain| *3 (|SingleInteger|)) (|isDomain| *2 (|List| (|PrimitiveArray| (|DoubleFloat|)))) (|isDomain| *1 (|BlasLevelOne|)) (|isDomain| *4 (|PrimitiveArray| (|DoubleFloat|))))) (|dscal| (*1 *2 *3 *4 *2 *3) (AND (|isDomain| *2 (|PrimitiveArray| (|DoubleFloat|))) (|isDomain| *3 (|SingleInteger|)) (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *1 (|BlasLevelOne|)))) (|drot| (*1 *2 *3 *4 *3 *4 *3 *5 *5) (AND (|isDomain| *3 (|SingleInteger|)) (|isDomain| *5 (|DoubleFloat|)) (|isDomain| *2 (|List| (|PrimitiveArray| *5))) (|isDomain| *1 (|BlasLevelOne|)) (|isDomain| *4 (|PrimitiveArray| *5)))) (|drotg| (*1 *2 *3 *3 *3 *3) (AND (|isDomain| *2 (|PrimitiveArray| (|DoubleFloat|))) (|isDomain| *1 (|BlasLevelOne|)) (|isDomain| *3 (|DoubleFloat|)))) (|dnrm2| (*1 *2 *3 *4 *3) (AND (|isDomain| *3 (|SingleInteger|)) (|isDomain| *4 (|PrimitiveArray| (|DoubleFloat|))) (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|BlasLevelOne|)))) (|ddot| (*1 *2 *3 *4 *3 *4 *3) (AND (|isDomain| *3 (|SingleInteger|)) (|isDomain| *4 (|PrimitiveArray| (|DoubleFloat|))) (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|BlasLevelOne|)))) (|dcopy| (*1 *2 *3 *2 *3 *2 *3) (AND (|isDomain| *2 (|PrimitiveArray| (|DoubleFloat|))) (|isDomain| *3 (|SingleInteger|)) (|isDomain| *1 (|BlasLevelOne|)))) (|daxpy| (*1 *2 *3 *4 *2 *3 *2 *3) (AND (|isDomain| *2 (|PrimitiveArray| (|DoubleFloat|))) (|isDomain| *3 (|SingleInteger|)) (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *1 (|BlasLevelOne|)))) (|dasum| (*1 *2 *3 *4 *3) (AND (|isDomain| *3 (|SingleInteger|)) (|isDomain| *4 (|PrimitiveArray| (|DoubleFloat|))) (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|BlasLevelOne|)))) (|dcabs1| (*1 *2 *3) (AND (|isDomain| *3 (|Complex| (|DoubleFloat|))) (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|BlasLevelOne|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |dcabs1| ((|DoubleFloat|) (|Complex| (|DoubleFloat|)))) (SIGNATURE |dasum| ((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|))) (SIGNATURE |daxpy| ((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|DoubleFloat|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|))) (SIGNATURE |dcopy| ((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|))) (SIGNATURE |ddot| ((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|))) (SIGNATURE |dnrm2| ((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|))) (SIGNATURE |drotg| ((|PrimitiveArray| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |drot| ((|List| (|PrimitiveArray| (|DoubleFloat|))) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|DoubleFloat|) (|DoubleFloat|))) (SIGNATURE |dscal| ((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|DoubleFloat|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|))) (SIGNATURE |dswap| ((|List| (|PrimitiveArray| (|DoubleFloat|))) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|))) (SIGNATURE |dzasum| ((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|))) (SIGNATURE |dznrm2| ((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|))) (SIGNATURE |icamax| ((|Integer|) (|Integer|) (|PrimitiveArray| (|Complex| (|Float|))) (|Integer|))) (SIGNATURE |idamax| ((|Integer|) (|Integer|) (|PrimitiveArray| (|DoubleFloat|)) (|Integer|))) (SIGNATURE |isamax| ((|Integer|) (|Integer|) (|PrimitiveArray| (|Float|)) (|Integer|))) (SIGNATURE |izamax| ((|Integer|) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|))) (SIGNATURE |zaxpy| ((|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|) (|Complex| (|DoubleFloat|)) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|) (|PrimitiveArray| (|Complex| (|DoubleFloat|))) (|SingleInteger|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sqrt| (($ $ (|Integer|)) NIL)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|sample| (($) NIL T CONST)) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) NIL)) (|rem| (($ $ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|quotientByP| (($ $) NIL)) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|order| (((|NonNegativeInteger|) $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|modulus| (((|Integer|)) NIL)) (|moduloP| (((|Integer|) $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|extend| (($ $ (|Integer|)) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|digits| (((|Stream| (|Integer|)) $) NIL)) (|complete| (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|associates?| (((|Boolean|) $ $) NIL)) (|approximate| (((|Integer|) $ (|Integer|)) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL))) │ │ │ -(((|BalancedPAdicInteger| |#1|) (|PAdicIntegerCategory| |#1|) (|Integer|)) (T |BalancedPAdicInteger|)) │ │ │ +(CATEGORY |domain| (SIGNATURE ** (|#1| |#1| (|Fraction| (|Integer|)))) (SIGNATURE |tan| (|#1| |#1|)) (SIGNATURE |sin| (|#1| |#1|)) (SIGNATURE |sec| (|#1| |#1|)) (SIGNATURE |csc| (|#1| |#1|)) (SIGNATURE |cot| (|#1| |#1|)) (SIGNATURE |cos| (|#1| |#1|)) (SIGNATURE |acos| (|#1| |#1|)) (SIGNATURE |acot| (|#1| |#1|)) (SIGNATURE |acsc| (|#1| |#1|)) (SIGNATURE |asec| (|#1| |#1|)) (SIGNATURE |asin| (|#1| |#1|)) (SIGNATURE |atan| (|#1| |#1|)) (SIGNATURE |cosh| (|#1| |#1|)) (SIGNATURE |coth| (|#1| |#1|)) (SIGNATURE |csch| (|#1| |#1|)) (SIGNATURE |sech| (|#1| |#1|)) (SIGNATURE |sinh| (|#1| |#1|)) (SIGNATURE |tanh| (|#1| |#1|)) (SIGNATURE |acosh| (|#1| |#1|)) (SIGNATURE |acoth| (|#1| |#1|)) (SIGNATURE |acsch| (|#1| |#1|)) (SIGNATURE |asech| (|#1| |#1|)) (SIGNATURE |asinh| (|#1| |#1|)) (SIGNATURE |atanh| (|#1| |#1|)) (SIGNATURE |log| (|#1| |#1|)) (SIGNATURE |exp| (|#1| |#1|)) (SIGNATURE ** (|#1| |#1| |#1|)) (SIGNATURE ** (|#1| |#1| |#2|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| |#1|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|))) (SIGNATURE |zero?| ((|Boolean|) |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) │ │ │ +((~ (($ $) 14)) (|not| (($ $) 11)) (|nor| (($ $ $) 24)) (|nand| (($ $ $) 22)) (^ (($ $) 12)) (|\\/| (($ $ $) 20)) (|/\\| (($ $ $) 18))) │ │ │ +(((|BitAggregate&| |#1|) (CATEGORY |domain| (SIGNATURE |nor| (|#1| |#1| |#1|)) (SIGNATURE |nand| (|#1| |#1| |#1|)) (SIGNATURE ^ (|#1| |#1|)) (SIGNATURE |not| (|#1| |#1|)) (SIGNATURE ~ (|#1| |#1|)) (SIGNATURE |/\\| (|#1| |#1| |#1|)) (SIGNATURE |\\/| (|#1| |#1| |#1|))) (|BitAggregate|)) (T |BitAggregate&|)) │ │ │ NIL │ │ │ -(|PAdicIntegerCategory| |#1|) │ │ │ +(CATEGORY |domain| (SIGNATURE |nor| (|#1| |#1| |#1|)) (SIGNATURE |nand| (|#1| |#1| |#1|)) (SIGNATURE ^ (|#1| |#1|)) (SIGNATURE |not| (|#1| |#1|)) (SIGNATURE ~ (|#1| |#1|)) (SIGNATURE |/\\| (|#1| |#1| |#1|)) (SIGNATURE |\\/| (|#1| |#1| |#1|))) │ │ │ +((|yRange| (((|Segment| (|DoubleFloat|)) $) 7)) (|xRange| (((|Segment| (|DoubleFloat|)) $) 8)) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) 9)) (|coerce| (((|OutputForm|) $) 6))) │ │ │ +(((|PlottablePlaneCurveCategory|) (|Category|)) (T |PlottablePlaneCurveCategory|)) │ │ │ +((|listBranches| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottablePlaneCurveCategory|)) (|isDomain| *2 (|List| (|List| (|Point| (|DoubleFloat|))))))) (|xRange| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottablePlaneCurveCategory|)) (|isDomain| *2 (|Segment| (|DoubleFloat|))))) (|yRange| (*1 *2 *1) (AND (|ofCategory| *1 (|PlottablePlaneCurveCategory|)) (|isDomain| *2 (|Segment| (|DoubleFloat|)))))) │ │ │ +(|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |listBranches| ((|List| (|List| (|Point| (|DoubleFloat|)))) $)) (SIGNATURE |xRange| ((|Segment| (|DoubleFloat|)) $)) (SIGNATURE |yRange| ((|Segment| (|DoubleFloat|)) $)))) │ │ │ +(((|CoercibleTo| (|OutputForm|)) . T)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|weights| (((|List| (|NonNegativeInteger|)) $) 194) (((|List| (|NonNegativeInteger|)) $ |#2|) 192)) (|weight| (((|NonNegativeInteger|) $) 193) (((|NonNegativeInteger|) $ |#2|) 191)) (|variables| (((|List| |#3|) $) 109)) (|univariate| (((|SparseUnivariatePolynomial| $) $ |#3|) 124) (((|SparseUnivariatePolynomial| |#1|) $) 123)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 85 (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) 86 (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) 88 (|has| |#1| (|IntegralDomain|)))) (|totalDegree| (((|NonNegativeInteger|) $) 111) (((|NonNegativeInteger|) $ (|List| |#3|)) 110)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 99 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|squareFreePart| (($ $) 97 (|has| |#1| (|GcdDomain|)))) (|squareFree| (((|Factored| $) $) 96 (|has| |#1| (|GcdDomain|)))) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 102 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|separant| (($ $) 187)) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) 163) (((|Union| (|Fraction| (|Integer|)) "failed") $) 161 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| (|Integer|) "failed") $) 159 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| |#3| "failed") $) 135) (((|Union| |#2| "failed") $) 201)) (|retract| ((|#1| $) 164) (((|Fraction| (|Integer|)) $) 160 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Integer|) $) 158 (|has| |#1| (|RetractableTo| (|Integer|)))) ((|#3| $) 134) ((|#2| $) 200)) (|resultant| (($ $ $ |#3|) 107 (|has| |#1| (|CommutativeRing|)))) (|reductum| (($ $) 153)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) 133 (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) 132 (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) 131) (((|Matrix| |#1|) (|Matrix| $)) 130)) (|recip| (((|Union| $ "failed") $) 33)) (|primitivePart| (($ $) 175 (|has| |#1| (|GcdDomain|))) (($ $ |#3|) 104 (|has| |#1| (|GcdDomain|)))) (|primitiveMonomials| (((|List| $) $) 108)) (|prime?| (((|Boolean|) $) 95 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|pomopo!| (($ $ |#1| |#4| $) 171)) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) 82 (AND (|has| |#3| (|PatternMatchable| (|Float|))) (|has| |#1| (|PatternMatchable| (|Float|))))) (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) 81 (AND (|has| |#3| (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Integer|)))))) (|order| (((|NonNegativeInteger|) $ |#2|) 197) (((|NonNegativeInteger|) $) 196)) (|one?| (((|Boolean|) $) 30)) (|numberOfMonomials| (((|NonNegativeInteger|) $) 168)) (|multivariate| (($ (|SparseUnivariatePolynomial| |#1|) |#3|) 116) (($ (|SparseUnivariatePolynomial| $) |#3|) 115)) (|monomials| (((|List| $) $) 125)) (|monomial?| (((|Boolean|) $) 151)) (|monomial| (($ |#1| |#4|) 152) (($ $ |#3| (|NonNegativeInteger|)) 118) (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) 117)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) 119)) (|minimumDegree| ((|#4| $) 169) (((|NonNegativeInteger|) $ |#3|) 121) (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) 120)) (|min| (($ $ $) 77 (|has| |#1| (|OrderedSet|)))) (|max| (($ $ $) 76 (|has| |#1| (|OrderedSet|)))) (|mapExponents| (($ (|Mapping| |#4| |#4|) $) 170)) (|map| (($ (|Mapping| |#1| |#1|) $) 150)) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) |#2|) 199) (((|Mapping| $ (|NonNegativeInteger|)) $) 186 (|has| |#1| (|DifferentialRing|)))) (|mainVariable| (((|Union| |#3| "failed") $) 122)) (|leadingMonomial| (($ $) 148)) (|leadingCoefficient| ((|#1| $) 147)) (|leader| ((|#3| $) 189)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 89 (|has| |#1| (|GcdDomain|)))) (|lcm| (($ (|List| $)) 93 (|has| |#1| (|GcdDomain|))) (($ $ $) 92 (|has| |#1| (|GcdDomain|)))) (|latex| (((|String|) $) 9)) (|isobaric?| (((|Boolean|) $) 190)) (|isTimes| (((|Union| (|List| $) "failed") $) 113)) (|isPlus| (((|Union| (|List| $) "failed") $) 114)) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) 112)) (|initial| (($ $) 188)) (|hash| (((|SingleInteger|) $) 10)) (|ground?| (((|Boolean|) $) 165)) (|ground| ((|#1| $) 166)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 94 (|has| |#1| (|GcdDomain|)))) (|gcd| (($ (|List| $)) 91 (|has| |#1| (|GcdDomain|))) (($ $ $) 90 (|has| |#1| (|GcdDomain|)))) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 101 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 100 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factor| (((|Factored| $) $) 98 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|exquo| (((|Union| $ "failed") $ |#1|) 173 (|has| |#1| (|IntegralDomain|))) (((|Union| $ "failed") $ $) 84 (|has| |#1| (|IntegralDomain|)))) (|eval| (($ $ (|List| (|Equation| $))) 144) (($ $ (|Equation| $)) 143) (($ $ $ $) 142) (($ $ (|List| $) (|List| $)) 141) (($ $ |#3| |#1|) 140) (($ $ (|List| |#3|) (|List| |#1|)) 139) (($ $ |#3| $) 138) (($ $ (|List| |#3|) (|List| $)) 137) (($ $ |#2| $) 185 (|has| |#1| (|DifferentialRing|))) (($ $ (|List| |#2|) (|List| $)) 184 (|has| |#1| (|DifferentialRing|))) (($ $ |#2| |#1|) 183 (|has| |#1| (|DifferentialRing|))) (($ $ (|List| |#2|) (|List| |#1|)) 182 (|has| |#1| (|DifferentialRing|)))) (|discriminant| (($ $ |#3|) 106 (|has| |#1| (|CommutativeRing|)))) (|differentiate| (($ $ |#3|) 41) (($ $ (|List| |#3|)) 40) (($ $ |#3| (|NonNegativeInteger|)) 39) (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) 38) (($ $) 218 (|has| |#1| (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) 216 (|has| |#1| (|DifferentialRing|))) (($ $ (|Symbol|)) 214 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) 213 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 212 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 211 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) 204) (($ $ (|Mapping| |#1| |#1|)) 203)) (|differentialVariables| (((|List| |#2|) $) 198)) (|degree| ((|#4| $) 149) (((|NonNegativeInteger|) $ |#3|) 129) (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) 128) (((|NonNegativeInteger|) $ |#2|) 195)) (|convert| (((|Pattern| (|Float|)) $) 80 (AND (|has| |#3| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))))) (((|Pattern| (|Integer|)) $) 79 (AND (|has| |#3| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))))) (((|InputForm|) $) 78 (AND (|has| |#3| (|ConvertibleTo| (|InputForm|))) (|has| |#1| (|ConvertibleTo| (|InputForm|)))))) (|content| ((|#1| $) 174 (|has| |#1| (|GcdDomain|))) (($ $ |#3|) 105 (|has| |#1| (|GcdDomain|)))) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) 103 (|and| (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ |#1|) 162) (($ |#3|) 136) (($ |#2|) 202) (($ (|Fraction| (|Integer|))) 70 (OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (($ $) 83 (|has| |#1| (|IntegralDomain|)))) (|coefficients| (((|List| |#1|) $) 167)) (|coefficient| ((|#1| $ |#4|) 154) (($ $ |#3| (|NonNegativeInteger|)) 127) (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) 126)) (|charthRoot| (((|Union| $ "failed") $) 71 (OR (|and| (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) (|has| |#1| (|CharacteristicNonZero|))))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) 172 (|has| |#1| (|CommutativeRing|)))) (|associates?| (((|Boolean|) $ $) 87 (|has| |#1| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $ |#3|) 37) (($ $ (|List| |#3|)) 36) (($ $ |#3| (|NonNegativeInteger|)) 35) (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) 34) (($ $) 217 (|has| |#1| (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) 215 (|has| |#1| (|DifferentialRing|))) (($ $ (|Symbol|)) 210 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) 209 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 208 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 207 (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) 206) (($ $ (|Mapping| |#1| |#1|)) 205)) (>= (((|Boolean|) $ $) 74 (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) 73 (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 75 (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) 72 (|has| |#1| (|OrderedSet|)))) (/ (($ $ |#1|) 155 (|has| |#1| (|Field|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 157 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ (|Fraction| (|Integer|)) $) 156 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ |#1| $) 146) (($ $ |#1|) 145))) │ │ │ +(((|DifferentialPolynomialCategory| |#1| |#2| |#3| |#4|) (|Category|) (|Ring|) (|OrderedSet|) (|DifferentialVariableCategory| |t#2|) (|OrderedAbelianMonoidSup|)) (T |DifferentialPolynomialCategory|)) │ │ │ +((|makeVariable| (*1 *2 *3) (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *3)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Mapping| *1 (|NonNegativeInteger|))) (|ofCategory| *1 (|DifferentialPolynomialCategory| *4 *3 *5 *6)))) (|differentialVariables| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *4)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| *4)))) (|order| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *4 *3 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *3)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|order| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *4)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|degree| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *4 *3 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *3)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|weights| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *4)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| (|NonNegativeInteger|))))) (|weight| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *4)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|weights| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *4 *3 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *3)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|List| (|NonNegativeInteger|))))) (|weight| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *4 *3 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *3)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|isobaric?| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *4)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Boolean|)))) (|leader| (*1 *2 *1) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *2 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|DifferentialVariableCategory| *4)))) (|initial| (*1 *1 *1) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *2 *3 *4 *5)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|DifferentialVariableCategory| *3)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)))) (|separant| (*1 *1 *1) (AND (|ofCategory| *1 (|DifferentialPolynomialCategory| *2 *3 *4 *5)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|DifferentialVariableCategory| *3)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)))) (|makeVariable| (*1 *2 *1) (AND (|ofCategory| *3 (|DifferentialRing|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|DifferentialVariableCategory| *4)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Mapping| *1 (|NonNegativeInteger|))) (|ofCategory| *1 (|DifferentialPolynomialCategory| *3 *4 *5 *6))))) │ │ │ +(|Join| (|PolynomialCategory| |t#1| |t#4| |t#3|) (|DifferentialExtension| |t#1|) (|RetractableTo| |t#2|) (CATEGORY |domain| (SIGNATURE |makeVariable| ((|Mapping| $ (|NonNegativeInteger|)) |t#2|)) (SIGNATURE |differentialVariables| ((|List| |t#2|) $)) (SIGNATURE |order| ((|NonNegativeInteger|) $ |t#2|)) (SIGNATURE |order| ((|NonNegativeInteger|) $)) (SIGNATURE |degree| ((|NonNegativeInteger|) $ |t#2|)) (SIGNATURE |weights| ((|List| (|NonNegativeInteger|)) $)) (SIGNATURE |weight| ((|NonNegativeInteger|) $)) (SIGNATURE |weights| ((|List| (|NonNegativeInteger|)) $ |t#2|)) (SIGNATURE |weight| ((|NonNegativeInteger|) $ |t#2|)) (SIGNATURE |isobaric?| ((|Boolean|) $)) (SIGNATURE |leader| (|t#3| $)) (SIGNATURE |initial| ($ $)) (SIGNATURE |separant| ($ $)) (IF (|has| |t#1| (|DifferentialRing|)) (PROGN (ATTRIBUTE (|InnerEvalable| |t#2| |t#1|)) (ATTRIBUTE (|InnerEvalable| |t#2| $)) (ATTRIBUTE (|Evalable| $)) (SIGNATURE |makeVariable| ((|Mapping| $ (|NonNegativeInteger|)) $))) |noBranch|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| |#4|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|ConvertibleTo| (|InputForm|)) AND (|has| |#1| (|ConvertibleTo| (|InputForm|))) (|has| |#3| (|ConvertibleTo| (|InputForm|)))) ((|ConvertibleTo| (|Pattern| (|Float|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#3| (|ConvertibleTo| (|Pattern| (|Float|))))) ((|ConvertibleTo| (|Pattern| (|Integer|))) AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#3| (|ConvertibleTo| (|Pattern| (|Integer|))))) ((|DifferentialExtension| |#1|) . T) ((|DifferentialRing|) |has| |#1| (|DifferentialRing|)) ((|EntireRing|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|Evalable| $) . T) ((|FiniteAbelianMonoidRing| |#1| |#4|) . T) ((|FullyLinearlyExplicitRingOver| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|GcdDomain|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|GcdDomain|))) ((|InnerEvalable| |#2| |#1|) |has| |#1| (|DifferentialRing|)) ((|InnerEvalable| |#2| $) |has| |#1| (|DifferentialRing|)) ((|InnerEvalable| |#3| |#1|) . T) ((|InnerEvalable| |#3| $) . T) ((|InnerEvalable| $ $) . T) ((|IntegralDomain|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|LeftModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|GcdDomain|))) ((|LinearlyExplicitRingOver| (|Integer|)) |has| |#1| (|LinearlyExplicitRingOver| (|Integer|))) ((|LinearlyExplicitRingOver| |#1|) . T) ((|Module| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|))) ((|Monoid|) . T) ((|OrderedSet|) |has| |#1| (|OrderedSet|)) ((|PartialDifferentialRing| (|Symbol|)) |has| |#1| (|PartialDifferentialRing| (|Symbol|))) ((|PartialDifferentialRing| |#3|) . T) ((|PatternMatchable| (|Float|)) AND (|has| |#1| (|PatternMatchable| (|Float|))) (|has| |#3| (|PatternMatchable| (|Float|)))) ((|PatternMatchable| (|Integer|)) AND (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#3| (|PatternMatchable| (|Integer|)))) ((|PolynomialCategory| |#1| |#4| |#3|) . T) ((|PolynomialFactorizationExplicit|) |has| |#1| (|PolynomialFactorizationExplicit|)) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RetractableTo| |#2|) . T) ((|RetractableTo| |#3|) . T) ((|RightModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|PolynomialFactorizationExplicit|)) (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|GcdDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|UniqueFactorizationDomain|) |has| |#1| (|PolynomialFactorizationExplicit|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|NonNegativeInteger|) "failed") $) 38)) (|retract| (((|NonNegativeInteger|) $) 36)) (|recip| (((|Union| $ "failed") $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|min| (($ $ $) NIL)) (|max| (($ $ $) 26)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) 39)) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) 41)) (|finite?| (((|Boolean|) $) 23)) (|countable?| (((|Boolean|) $) 35)) (|coerce| (((|OutputForm|) $) 22) (($ (|NonNegativeInteger|)) 14)) (^ (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|PositiveInteger|)) NIL)) (|Zero| (($) 12 T CONST)) (|One| (($) 11 T CONST)) (|Aleph| (($ (|NonNegativeInteger|)) 15)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 24)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 25)) (- (((|Union| $ "failed") $ $) 29)) (+ (($ $ $) 27)) (** (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|PositiveInteger|)) NIL) (($ $ $) 34)) (* (($ (|NonNegativeInteger|) $) 32) (($ (|PositiveInteger|) $) NIL) (($ $ $) 30))) │ │ │ +(((|CardinalNumber|) (|Join| (|OrderedSet|) (|AbelianMonoid|) (|Monoid|) (|RetractableTo| (|NonNegativeInteger|)) (CATEGORY |domain| (ATTRIBUTE (|commutative| "*")) (SIGNATURE - ((|Union| $ "failed") $ $)) (SIGNATURE ** ($ $ $)) (SIGNATURE |Aleph| ($ (|NonNegativeInteger|))) (SIGNATURE |finite?| ((|Boolean|) $)) (SIGNATURE |countable?| ((|Boolean|) $)) (SIGNATURE |generalizedContinuumHypothesisAssumed?| ((|Boolean|))) (SIGNATURE |generalizedContinuumHypothesisAssumed| ((|Boolean|) (|Boolean|)))))) (T |CardinalNumber|)) │ │ │ +((- (*1 *1 *1 *1) (|partial| |isDomain| *1 (|CardinalNumber|))) (** (*1 *1 *1 *1) (|isDomain| *1 (|CardinalNumber|))) (|Aleph| (*1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|CardinalNumber|)))) (|finite?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|CardinalNumber|)))) (|countable?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|CardinalNumber|)))) (|generalizedContinuumHypothesisAssumed?| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|CardinalNumber|)))) (|generalizedContinuumHypothesisAssumed| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|CardinalNumber|))))) │ │ │ +(|Join| (|OrderedSet|) (|AbelianMonoid|) (|Monoid|) (|RetractableTo| (|NonNegativeInteger|)) (CATEGORY |domain| (ATTRIBUTE (|commutative| "*")) (SIGNATURE - ((|Union| $ "failed") $ $)) (SIGNATURE ** ($ $ $)) (SIGNATURE |Aleph| ($ (|NonNegativeInteger|))) (SIGNATURE |finite?| ((|Boolean|) $)) (SIGNATURE |countable?| ((|Boolean|) $)) (SIGNATURE |generalizedContinuumHypothesisAssumed?| ((|Boolean|))) (SIGNATURE |generalizedContinuumHypothesisAssumed| ((|Boolean|) (|Boolean|))))) │ │ │ +((|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) 14))) │ │ │ +(((|QuotientFieldCategoryFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |map| (|#4| (|Mapping| |#2| |#1|) |#3|))) (|IntegralDomain|) (|IntegralDomain|) (|QuotientFieldCategory| |#1|) (|QuotientFieldCategory| |#2|)) (T |QuotientFieldCategoryFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|IntegralDomain|)) (|ofCategory| *2 (|QuotientFieldCategory| *6)) (|isDomain| *1 (|QuotientFieldCategoryFunctions2| *5 *6 *4 *2)) (|ofCategory| *4 (|QuotientFieldCategory| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| (|#4| (|Mapping| |#2| |#1|) |#3|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|setButtonValue| (((|Float|) (|String|) (|Float|)) 42) (((|Float|) (|String|) (|String|) (|Float|)) 41)) (|setAttributeButtonStep| (((|Float|) (|Float|)) 33)) (|resetAttributeButtons| (((|Void|)) 36)) (|latex| (((|String|) $) NIL)) (|increase| (((|Float|) (|String|) (|String|)) 46) (((|Float|) (|String|)) 48)) (|hash| (((|SingleInteger|) $) NIL)) (|getButtonValue| (((|Float|) (|String|) (|String|)) 47)) (|decrease| (((|Float|) (|String|) (|String|)) 49) (((|Float|) (|String|)) 50)) (|coerce| (((|OutputForm|) $) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|AttributeButtons|) (|Join| (|SetCategory|) (CATEGORY |package| (SIGNATURE |increase| ((|Float|) (|String|) (|String|))) (SIGNATURE |increase| ((|Float|) (|String|))) (SIGNATURE |decrease| ((|Float|) (|String|) (|String|))) (SIGNATURE |decrease| ((|Float|) (|String|))) (SIGNATURE |getButtonValue| ((|Float|) (|String|) (|String|))) (SIGNATURE |resetAttributeButtons| ((|Void|))) (SIGNATURE |setAttributeButtonStep| ((|Float|) (|Float|))) (SIGNATURE |setButtonValue| ((|Float|) (|String|) (|Float|))) (SIGNATURE |setButtonValue| ((|Float|) (|String|) (|String|) (|Float|))) (ATTRIBUTE |finiteAggregate|)))) (T |AttributeButtons|)) │ │ │ +((|increase| (*1 *2 *3 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|AttributeButtons|)))) (|increase| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|AttributeButtons|)))) (|decrease| (*1 *2 *3 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|AttributeButtons|)))) (|decrease| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|AttributeButtons|)))) (|getButtonValue| (*1 *2 *3 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|AttributeButtons|)))) (|resetAttributeButtons| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|AttributeButtons|)))) (|setAttributeButtonStep| (*1 *2 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|AttributeButtons|)))) (|setButtonValue| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *3 (|String|)) (|isDomain| *1 (|AttributeButtons|)))) (|setButtonValue| (*1 *2 *3 *3 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *3 (|String|)) (|isDomain| *1 (|AttributeButtons|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |package| (SIGNATURE |increase| ((|Float|) (|String|) (|String|))) (SIGNATURE |increase| ((|Float|) (|String|))) (SIGNATURE |decrease| ((|Float|) (|String|) (|String|))) (SIGNATURE |decrease| ((|Float|) (|String|))) (SIGNATURE |getButtonValue| ((|Float|) (|String|) (|String|))) (SIGNATURE |resetAttributeButtons| ((|Void|))) (SIGNATURE |setAttributeButtonStep| ((|Float|) (|Float|))) (SIGNATURE |setButtonValue| ((|Float|) (|String|) (|Float|))) (SIGNATURE |setButtonValue| ((|Float|) (|String|) (|String|) (|Float|))) (ATTRIBUTE |finiteAggregate|))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 23)) (|sup| (($ $ $) 26)) (|subtractIfCan| (((|Union| $ "failed") $ $) 25)) (|sample| (($) 22 T CONST)) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 21 T CONST)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17)) (+ (($ $ $) 19)) (* (($ (|PositiveInteger|) $) 20) (($ (|NonNegativeInteger|) $) 24))) │ │ │ +(((|OrderedAbelianMonoidSup|) (|Category|)) (T |OrderedAbelianMonoidSup|)) │ │ │ +((|sup| (*1 *1 *1 *1) (|ofCategory| *1 (|OrderedAbelianMonoidSup|)))) │ │ │ +(|Join| (|OrderedCancellationAbelianMonoid|) (CATEGORY |domain| (SIGNATURE |sup| ($ $ $)))) │ │ │ +(((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedCancellationAbelianMonoid|) . T) ((|OrderedSet|) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) NIL)) (|third| ((|#1| $) NIL)) (|tail| (($ $) 48)) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) 73 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|split!| (($ $ (|Integer|)) 107 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|showAllElements| (((|OutputForm|) $) 37 (|has| |#1| (|SetCategory|)))) (|showAll?| (((|Boolean|)) 38 (|has| |#1| (|SetCategory|)))) (|setvalue!| ((|#1| $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setrest!| (($ $ $) 95 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ (|Integer|) $) 117)) (|setlast!| ((|#1| $ |#1|) 104 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setfirst!| ((|#1| $ |#1|) 99 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ "first" |#1|) 101 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "rest" $) 103 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ "last" |#1|) 106 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) 86 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|Integer|) |#1|) 52 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) 55)) (|second| ((|#1| $) NIL)) (|sample| (($) NIL T CONST)) (|rst| (($ $) 14)) (|rest| (($ $) 28) (($ $ (|NonNegativeInteger|)) 85)) (|repeating?| (((|Boolean|) (|List| |#1|) $) 112 (|has| |#1| (|SetCategory|)))) (|repeating| (($ (|List| |#1|)) 109)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|remove| (($ |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) (($ (|Mapping| (|Boolean|) |#1|) $) 54)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) NIL)) (|possiblyInfinite?| (((|Boolean|) $) NIL)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|output| (((|Void|) (|Integer|) $) 116 (|has| |#1| (|SetCategory|)))) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) 114)) (|nodes| (((|List| $) $) NIL)) (|node?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|new| (($ (|NonNegativeInteger|) |#1|) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) 70 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 60) (($ (|Mapping| |#1| |#1| |#1|) $ $) 64)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|leaves| (((|List| |#1|) $) NIL)) (|leaf?| (((|Boolean|) $) NIL)) (|lazyEvaluate| (($ $) 87)) (|lazy?| (((|Boolean|) $) 13)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|last| ((|#1| $) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|insert| (($ $ $ (|Integer|)) NIL) (($ |#1| $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) 71)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|generate| (($ (|Mapping| |#1|)) 119) (($ (|Mapping| |#1| |#1|) |#1|) 120)) (|frst| ((|#1| $) 10)) (|first| ((|#1| $) 27) (($ $ (|NonNegativeInteger|)) 46)) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) 24)) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) NIL)) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) 121)) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) 122)) (|fill!| (($ $ |#1|) 65 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|extend| (($ $ (|Integer|)) 31)) (|explicitlyFinite?| (((|Boolean|) $) 69)) (|explicitlyEmpty?| (((|Boolean|) $) 12)) (|explicitEntries?| (((|Boolean|) $) 113)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 20)) (|entry?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) NIL)) (|empty?| (((|Boolean|) $) 15)) (|empty| (($) 40)) (|elt| ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL) ((|#1| $ (|Integer|)) 51) ((|#1| $ (|Integer|) |#1|) NIL)) (|distance| (((|Integer|) $ $) 45)) (|delete| (($ $ (|UniversalSegment| (|Integer|))) NIL) (($ $ (|Integer|)) NIL)) (|delay| (($ (|Mapping| $)) 44)) (|cyclic?| (((|Boolean|) $) 66)) (|cycleTail| (($ $) 67)) (|cycleSplit!| (($ $) 96 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|cycleLength| (((|NonNegativeInteger|) $) NIL)) (|cycleEntry| (($ $) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) 41)) (|convert| (((|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) 50)) (|cons| (($ |#1| $) 94)) (|concat!| (($ $ $) 97 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ |#1|) 98 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|concat| (($ $ $) 75) (($ |#1| $) 42) (($ (|List| $)) 80) (($ $ |#1|) 74)) (|complete| (($ $) 47)) (|coerce| (((|OutputForm|) $) 39 (|has| |#1| (|SetCategory|))) (($ (|List| |#1|)) 108)) (|children| (((|List| $) $) NIL)) (|child?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 111 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|Stream| |#1|) (|Join| (|LazyStreamAggregate| |#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (SIGNATURE |coerce| ($ (|List| |#1|))) (SIGNATURE |repeating| ($ (|List| |#1|))) (IF (|has| |#1| (|SetCategory|)) (SIGNATURE |repeating?| ((|Boolean|) (|List| |#1|) $)) |noBranch|) (SIGNATURE |findCycle| ((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $)) (SIGNATURE |delay| ($ (|Mapping| $))) (SIGNATURE |cons| ($ |#1| $)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |output| ((|Void|) (|Integer|) $)) (SIGNATURE |showAllElements| ((|OutputForm|) $)) (SIGNATURE |showAll?| ((|Boolean|)))) |noBranch|) (SIGNATURE |setrest!| ($ $ (|Integer|) $)) (SIGNATURE |generate| ($ (|Mapping| |#1|))) (SIGNATURE |generate| ($ (|Mapping| |#1| |#1|) |#1|)) (SIGNATURE |filterWhile| ($ (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |filterUntil| ($ (|Mapping| (|Boolean|) |#1|) $)))) (|Type|)) (T |Stream|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|Stream| *3)))) (|repeating| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|Stream| *3)))) (|repeating?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Stream| *4)))) (|findCycle| (*1 *2 *3 *1) (AND (|isDomain| *2 (|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|)))) (|isDomain| *1 (|Stream| *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *3 (|NonNegativeInteger|)))) (|delay| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| (|Stream| *3))) (|isDomain| *1 (|Stream| *3)) (|ofCategory| *3 (|Type|)))) (|cons| (*1 *1 *2 *1) (AND (|isDomain| *1 (|Stream| *2)) (|ofCategory| *2 (|Type|)))) (|output| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Stream| *4)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *4 (|Type|)))) (|showAllElements| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|Stream| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|Type|)))) (|showAll?| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Stream| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|Type|)))) (|setrest!| (*1 *1 *1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Stream| *3)) (|ofCategory| *3 (|Type|)))) (|generate| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|Stream| *3)))) (|generate| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|Stream| *3)))) (|filterWhile| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|Stream| *3)))) (|filterUntil| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|Stream| *3))))) │ │ │ +(|Join| (|LazyStreamAggregate| |#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (SIGNATURE |coerce| ($ (|List| |#1|))) (SIGNATURE |repeating| ($ (|List| |#1|))) (IF (|has| |#1| (|SetCategory|)) (SIGNATURE |repeating?| ((|Boolean|) (|List| |#1|) $)) |noBranch|) (SIGNATURE |findCycle| ((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $)) (SIGNATURE |delay| ($ (|Mapping| $))) (SIGNATURE |cons| ($ |#1| $)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |output| ((|Void|) (|Integer|) $)) (SIGNATURE |showAllElements| ((|OutputForm|) $)) (SIGNATURE |showAll?| ((|Boolean|)))) |noBranch|) (SIGNATURE |setrest!| ($ $ (|Integer|) $)) (SIGNATURE |generate| ($ (|Mapping| |#1|))) (SIGNATURE |generate| ($ (|Mapping| |#1| |#1|) |#1|)) (SIGNATURE |filterWhile| ($ (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |filterUntil| ($ (|Mapping| (|Boolean|) |#1|) $)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|numericalIntegration| (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) 14) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) 12)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 15) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6))) │ │ │ +(((|NumericalIntegrationCategory|) (|Category|)) (T |NumericalIntegrationCategory|)) │ │ │ +((|measure| (*1 *2 *3 *4) (AND (|ofCategory| *1 (|NumericalIntegrationCategory|)) (|isDomain| *3 (|RoutinesTable|)) (|isDomain| *4 (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *2 (|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|)))))) (|numericalIntegration| (*1 *2 *3 *2) (AND (|ofCategory| *1 (|NumericalIntegrationCategory|)) (|isDomain| *2 (|Result|)) (|isDomain| *3 (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) (|measure| (*1 *2 *3 *4) (AND (|ofCategory| *1 (|NumericalIntegrationCategory|)) (|isDomain| *3 (|RoutinesTable|)) (|isDomain| *4 (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|isDomain| *2 (|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|)))))) (|numericalIntegration| (*1 *2 *3 *2) (AND (|ofCategory| *1 (|NumericalIntegrationCategory|)) (|isDomain| *2 (|Result|)) (|isDomain| *3 (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |package| (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |numericalIntegration| ((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|))) (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) (SIGNATURE |numericalIntegration| ((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|))))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|exprex| (((|String|) (|OutputForm|)) 31)) (|display| (((|Void|) (|String|)) 28)) (|coerceS| (((|String|) (|OutputForm|)) 24)) (|coerceL| (((|String|) (|OutputForm|)) 25)) (|coerce| (((|OutputForm|) $) NIL) (((|String|) (|OutputForm|)) 23)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|MathMLFormat|) (|Join| (|SetCategory|) (CATEGORY |package| (SIGNATURE |coerce| ((|String|) (|OutputForm|))) (SIGNATURE |coerceS| ((|String|) (|OutputForm|))) (SIGNATURE |coerceL| ((|String|) (|OutputForm|))) (SIGNATURE |exprex| ((|String|) (|OutputForm|))) (SIGNATURE |display| ((|Void|) (|String|)))))) (T |MathMLFormat|)) │ │ │ +((|coerce| (*1 *2 *3) (AND (|isDomain| *3 (|OutputForm|)) (|isDomain| *2 (|String|)) (|isDomain| *1 (|MathMLFormat|)))) (|coerceS| (*1 *2 *3) (AND (|isDomain| *3 (|OutputForm|)) (|isDomain| *2 (|String|)) (|isDomain| *1 (|MathMLFormat|)))) (|coerceL| (*1 *2 *3) (AND (|isDomain| *3 (|OutputForm|)) (|isDomain| *2 (|String|)) (|isDomain| *1 (|MathMLFormat|)))) (|exprex| (*1 *2 *3) (AND (|isDomain| *3 (|OutputForm|)) (|isDomain| *2 (|String|)) (|isDomain| *1 (|MathMLFormat|)))) (|display| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|MathMLFormat|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |package| (SIGNATURE |coerce| ((|String|) (|OutputForm|))) (SIGNATURE |coerceS| ((|String|) (|OutputForm|))) (SIGNATURE |coerceL| ((|String|) (|OutputForm|))) (SIGNATURE |exprex| ((|String|) (|OutputForm|))) (SIGNATURE |display| ((|Void|) (|String|))))) │ │ │ +((|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) 15))) │ │ │ +(((|ExpertSystemToolsPackage2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)))) (|Ring|) (|Ring|)) (T |ExpertSystemToolsPackage2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Matrix| *5)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|)) (|isDomain| *2 (|Matrix| *6)) (|isDomain| *1 (|ExpertSystemToolsPackage2| *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| ((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)))) │ │ │ +((|sylvesterMatrix| ((|#3| |#2| |#2|) 28)) (|bezoutResultant| ((|#1| |#2| |#2|) 36 (|has| |#1| (ATTRIBUTE (|commutative| "*"))))) (|bezoutMatrix| ((|#3| |#2| |#2|) 29)) (|bezoutDiscriminant| ((|#1| |#2|) 40 (|has| |#1| (ATTRIBUTE (|commutative| "*")))))) │ │ │ +(((|BezoutMatrix| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |sylvesterMatrix| (|#3| |#2| |#2|)) (SIGNATURE |bezoutMatrix| (|#3| |#2| |#2|)) (IF (|has| |#1| (ATTRIBUTE (|commutative| "*"))) (PROGN (SIGNATURE |bezoutResultant| (|#1| |#2| |#2|)) (SIGNATURE |bezoutDiscriminant| (|#1| |#2|))) |noBranch|)) (|Ring|) (|UnivariatePolynomialCategory| |#1|) (|MatrixCategory| |#1| |#4| |#5|) (|FiniteLinearAggregate| |#1|) (|FiniteLinearAggregate| |#1|)) (T |BezoutMatrix|)) │ │ │ +((|bezoutDiscriminant| (*1 *2 *3) (AND (|has| *2 (ATTRIBUTE (|commutative| "*"))) (|ofCategory| *5 (|FiniteLinearAggregate| *2)) (|ofCategory| *6 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|BezoutMatrix| *2 *3 *4 *5 *6)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *4 (|MatrixCategory| *2 *5 *6)))) (|bezoutResultant| (*1 *2 *3 *3) (AND (|has| *2 (ATTRIBUTE (|commutative| "*"))) (|ofCategory| *5 (|FiniteLinearAggregate| *2)) (|ofCategory| *6 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|BezoutMatrix| *2 *3 *4 *5 *6)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *4 (|MatrixCategory| *2 *5 *6)))) (|bezoutMatrix| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)) (|isDomain| *1 (|BezoutMatrix| *4 *3 *2 *5 *6)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)))) (|sylvesterMatrix| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *2 (|MatrixCategory| *4 *5 *6)) (|isDomain| *1 (|BezoutMatrix| *4 *3 *2 *5 *6)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |sylvesterMatrix| (|#3| |#2| |#2|)) (SIGNATURE |bezoutMatrix| (|#3| |#2| |#2|)) (IF (|has| |#1| (ATTRIBUTE (|commutative| "*"))) (PROGN (SIGNATURE |bezoutResultant| (|#1| |#2| |#2|)) (SIGNATURE |bezoutDiscriminant| (|#1| |#2|))) |noBranch|)) │ │ │ ((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 24)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setvalue!| ((|#1| $ |#1|) 26 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setright!| (($ $ $) 30 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setleft!| (($ $ $) 28 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "left" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "right" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) NIL T CONST)) (|right| (($ $) 20)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) NIL)) (|node?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|node| (($ $ |#1| $) 15)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|left| (($ $) 19)) (|leaves| (((|List| |#1|) $) NIL)) (|leaf?| (((|Boolean|) $) 21)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) 18)) (|empty| (($) 11)) (|elt| ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (|distance| (((|Integer|) $ $) NIL)) (|cyclic?| (((|Boolean|) $) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) NIL)) (|child?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|binaryTree| (($ |#1|) 17) (($ $ |#1| $) 16)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 10 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ (((|BinaryTree| |#1|) (|Join| (|BinaryTreeCategory| |#1|) (CATEGORY |domain| (SIGNATURE |binaryTree| ($ |#1|)) (SIGNATURE |binaryTree| ($ $ |#1| $)))) (|SetCategory|)) (T |BinaryTree|)) │ │ │ ((|binaryTree| (*1 *1 *2) (AND (|isDomain| *1 (|BinaryTree| *2)) (|ofCategory| *2 (|SetCategory|)))) (|binaryTree| (*1 *1 *1 *2 *1) (AND (|isDomain| *1 (|BinaryTree| *2)) (|ofCategory| *2 (|SetCategory|))))) │ │ │ (|Join| (|BinaryTreeCategory| |#1|) (CATEGORY |domain| (SIGNATURE |binaryTree| ($ |#1|)) (SIGNATURE |binaryTree| ($ $ |#1| $)))) │ │ │ -((|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) 36)) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) 19)) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) 31) ((|#1| (|List| |#1|) (|List| |#1|)) 29))) │ │ │ -(((|CRApackage| |#1|) (CATEGORY |package| (SIGNATURE |modTree| ((|List| |#1|) |#1| (|List| |#1|))) (SIGNATURE |chineseRemainder| (|#1| (|List| |#1|) (|List| |#1|))) (SIGNATURE |chineseRemainder| ((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|))) (SIGNATURE |multiEuclideanTree| ((|List| |#1|) (|List| |#1|) |#1|))) (|EuclideanDomain|)) (T |CRApackage|)) │ │ │ -((|multiEuclideanTree| (*1 *2 *2 *3) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|EuclideanDomain|)) (|isDomain| *1 (|CRApackage| *3)))) (|chineseRemainder| (*1 *2 *3 *2) (AND (|isDomain| *3 (|List| (|List| *4))) (|isDomain| *2 (|List| *4)) (|ofCategory| *4 (|EuclideanDomain|)) (|isDomain| *1 (|CRApackage| *4)))) (|chineseRemainder| (*1 *2 *3 *3) (AND (|isDomain| *3 (|List| *2)) (|isDomain| *1 (|CRApackage| *2)) (|ofCategory| *2 (|EuclideanDomain|)))) (|modTree| (*1 *2 *3 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|EuclideanDomain|)) (|isDomain| *1 (|CRApackage| *3))))) │ │ │ -(CATEGORY |package| (SIGNATURE |modTree| ((|List| |#1|) |#1| (|List| |#1|))) (SIGNATURE |chineseRemainder| (|#1| (|List| |#1|) (|List| |#1|))) (SIGNATURE |chineseRemainder| ((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|))) (SIGNATURE |multiEuclideanTree| ((|List| |#1|) (|List| |#1|) |#1|))) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|top!| ((|#1| $) 25)) (|top| ((|#1| $) 26)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|sample| (($) NIL T CONST)) (|rotate!| (($ $) NIL)) (|reverse!| (($ $) 32)) (|push!| ((|#1| |#1| $) NIL)) (|pop!| ((|#1| $) NIL)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|length| (((|NonNegativeInteger|) $) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|inspect| ((|#1| $) NIL)) (|insertTop!| ((|#1| |#1| $) 29)) (|insertBottom!| ((|#1| |#1| $) 31)) (|insert!| (($ |#1| $) NIL)) (|height| (((|NonNegativeInteger|) $) 27)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|front| ((|#1| $) NIL)) (|extractTop!| ((|#1| $) 24)) (|extractBottom!| ((|#1| $) 8)) (|extract!| ((|#1| $) NIL)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|enqueue!| ((|#1| |#1| $) NIL)) (|empty?| (((|Boolean|) $) 15)) (|empty| (($) NIL)) (|dequeue!| ((|#1| $) NIL)) (|dequeue| (($) NIL) (($ (|List| |#1|)) 13)) (|depth| (((|NonNegativeInteger|) $) 28)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|bottom!| ((|#1| $) 9)) (|bag| (($ (|List| |#1|)) NIL)) (|back| ((|#1| $) NIL)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|Dequeue| |#1|) (|Join| (|DequeueAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |dequeue| ($ (|List| |#1|))) (SIGNATURE |dequeue!| (|#1| $)) (SIGNATURE |extract!| (|#1| $)) (SIGNATURE |enqueue!| (|#1| |#1| $)) (SIGNATURE |insert!| ($ |#1| $)) (SIGNATURE |inspect| (|#1| $)) (SIGNATURE |front| (|#1| $)) (SIGNATURE |back| (|#1| $)) (SIGNATURE |rotate!| ($ $)) (SIGNATURE |length| ((|NonNegativeInteger|) $)) (SIGNATURE |less?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |size?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |bag| ($ (|List| |#1|))) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |empty| ($)) (SIGNATURE |sample| ($)) (SIGNATURE |copy| ($ $)) (SIGNATURE |eq?| ((|Boolean|) $ $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (SIGNATURE |depth| ((|NonNegativeInteger|) $)) (SIGNATURE |dequeue| ($)) (SIGNATURE |height| ((|NonNegativeInteger|) $)) (SIGNATURE |top| (|#1| $)) (SIGNATURE |bottom!| (|#1| $)) (SIGNATURE |extractBottom!| (|#1| $)) (SIGNATURE |extractTop!| (|#1| $)) (SIGNATURE |insertBottom!| (|#1| |#1| $)) (SIGNATURE |insertTop!| (|#1| |#1| $)) (SIGNATURE |pop!| (|#1| $)) (SIGNATURE |push!| (|#1| |#1| $)) (SIGNATURE |reverse!| ($ $)) (SIGNATURE |top!| (|#1| $)) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (SIGNATURE |map!| ($ (|Mapping| |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |latex| ((|String|) $)) (SIGNATURE |hash| ((|SingleInteger|) $)) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE = ((|Boolean|) $ $)) (SIGNATURE ~= ((|Boolean|) $ $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (PROGN (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |#| ((|NonNegativeInteger|) $)) (SIGNATURE |parts| ((|List| |#1|) $)) (SIGNATURE |members| ((|List| |#1|) $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |member?| ((|Boolean|) |#1| $)) (SIGNATURE |count| ((|NonNegativeInteger|) |#1| $))) |noBranch|) |noBranch|))) (|SetCategory|)) (T |Dequeue|)) │ │ │ -((|eq?| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Dequeue| *3)) (|ofCategory| *3 (|SetCategory|)))) (|copy| (*1 *1 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|empty| (*1 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|empty?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Dequeue| *3)) (|ofCategory| *3 (|SetCategory|)))) (|less?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Dequeue| *4)) (|ofCategory| *4 (|SetCategory|)))) (|more?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Dequeue| *4)) (|ofCategory| *4 (|SetCategory|)))) (|size?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Dequeue| *4)) (|ofCategory| *4 (|SetCategory|)))) (|sample| (*1 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|#| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Dequeue| *3)) (|ofCategory| *3 (|SetCategory|)))) (|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Dequeue| *3)))) (|map!| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Dequeue| *3)))) (|any?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Dequeue| *4)))) (|every?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Dequeue| *4)))) (|count| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Dequeue| *4)))) (|parts| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|Dequeue| *3)) (|ofCategory| *3 (|SetCategory|)))) (|members| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|Dequeue| *3)) (|ofCategory| *3 (|SetCategory|)))) (|count| (*1 *2 *3 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Dequeue| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|member?| (*1 *2 *3 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Dequeue| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|latex| (*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|Dequeue| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|hash| (*1 *2 *1) (AND (|isDomain| *2 (|SingleInteger|)) (|isDomain| *1 (|Dequeue| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|Dequeue| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (= (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Dequeue| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (~= (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Dequeue| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|bag| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Dequeue| *3)))) (|extract!| (*1 *2 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|insert!| (*1 *1 *2 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|inspect| (*1 *2 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|push!| (*1 *2 *2 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|pop!| (*1 *2 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|top| (*1 *2 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|depth| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Dequeue| *3)) (|ofCategory| *3 (|SetCategory|)))) (|back| (*1 *2 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|front| (*1 *2 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|length| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Dequeue| *3)) (|ofCategory| *3 (|SetCategory|)))) (|rotate!| (*1 *1 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|dequeue!| (*1 *2 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|enqueue!| (*1 *2 *2 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|dequeue| (*1 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|dequeue| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Dequeue| *3)))) (|height| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Dequeue| *3)) (|ofCategory| *3 (|SetCategory|)))) (|top!| (*1 *2 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|bottom!| (*1 *2 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|insertTop!| (*1 *2 *2 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|insertBottom!| (*1 *2 *2 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|extractTop!| (*1 *2 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|extractBottom!| (*1 *2 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|reverse!| (*1 *1 *1) (AND (|isDomain| *1 (|Dequeue| *2)) (|ofCategory| *2 (|SetCategory|))))) │ │ │ -(|Join| (|DequeueAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |dequeue| ($ (|List| |#1|))) (SIGNATURE |dequeue!| (|#1| $)) (SIGNATURE |extract!| (|#1| $)) (SIGNATURE |enqueue!| (|#1| |#1| $)) (SIGNATURE |insert!| ($ |#1| $)) (SIGNATURE |inspect| (|#1| $)) (SIGNATURE |front| (|#1| $)) (SIGNATURE |back| (|#1| $)) (SIGNATURE |rotate!| ($ $)) (SIGNATURE |length| ((|NonNegativeInteger|) $)) (SIGNATURE |less?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |size?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |bag| ($ (|List| |#1|))) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |empty| ($)) (SIGNATURE |sample| ($)) (SIGNATURE |copy| ($ $)) (SIGNATURE |eq?| ((|Boolean|) $ $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (SIGNATURE |depth| ((|NonNegativeInteger|) $)) (SIGNATURE |dequeue| ($)) (SIGNATURE |height| ((|NonNegativeInteger|) $)) (SIGNATURE |top| (|#1| $)) (SIGNATURE |bottom!| (|#1| $)) (SIGNATURE |extractBottom!| (|#1| $)) (SIGNATURE |extractTop!| (|#1| $)) (SIGNATURE |insertBottom!| (|#1| |#1| $)) (SIGNATURE |insertTop!| (|#1| |#1| $)) (SIGNATURE |pop!| (|#1| $)) (SIGNATURE |push!| (|#1| |#1| $)) (SIGNATURE |reverse!| ($ $)) (SIGNATURE |top!| (|#1| $)) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (SIGNATURE |map!| ($ (|Mapping| |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |latex| ((|String|) $)) (SIGNATURE |hash| ((|SingleInteger|) $)) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE = ((|Boolean|) $ $)) (SIGNATURE ~= ((|Boolean|) $ $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (PROGN (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |#| ((|NonNegativeInteger|) $)) (SIGNATURE |parts| ((|List| |#1|) $)) (SIGNATURE |members| ((|List| |#1|) $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |member?| ((|Boolean|) |#1| $)) (SIGNATURE |count| ((|NonNegativeInteger|) |#1| $))) |noBranch|) |noBranch|))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zeta| (($) 34 T CONST)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|CommutativeRing|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|CommutativeRing|)))) (|unit?| (((|Boolean|) $) 54 (|has| |#1| (|CommutativeRing|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) 55)) (|one?| (((|Boolean|) $) NIL)) (|multiplicative?| (((|Boolean|) $ (|PositiveInteger|)) 71)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|CommutativeRing|)))) (|elt| ((|#1| $ (|PositiveInteger|)) 9)) (|coerce| (((|OutputForm|) $) 29) (($ (|Integer|)) NIL) (($ (|Mapping| |#1| (|PositiveInteger|))) 12) (((|Mapping| |#1| (|PositiveInteger|)) $) 11) (($ (|Stream| |#1|)) 26) (((|Stream| |#1|) $) 24) (($ |#1|) NIL (|has| |#1| (|CommutativeRing|))) (($ $) NIL (|has| |#1| (|CommutativeRing|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|CommutativeRing|)))) (|additive?| (((|Boolean|) $ (|PositiveInteger|)) 72)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 33 T CONST)) (|One| (($) 13 T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) 38) (($ $ $) NIL)) (+ (($ $ $) 36)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 40) (($ $ $) 51) (($ |#1| $) 42 (|has| |#1| (|CommutativeRing|))) (($ $ |#1|) NIL (|has| |#1| (|CommutativeRing|))))) │ │ │ -(((|DirichletRing| |#1|) (|Join| (|Ring|) (|Eltable| (|PositiveInteger|) |#1|) (CATEGORY |domain| (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|IntegralDomain|)) |noBranch|) (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |#1|)) |noBranch|) (SIGNATURE |coerce| ($ (|Mapping| |#1| (|PositiveInteger|)))) (SIGNATURE |coerce| ((|Mapping| |#1| (|PositiveInteger|)) $)) (SIGNATURE |coerce| ($ (|Stream| |#1|))) (SIGNATURE |coerce| ((|Stream| |#1|) $)) (SIGNATURE |zeta| ($) |constant|) (SIGNATURE |multiplicative?| ((|Boolean|) $ (|PositiveInteger|))) (SIGNATURE |additive?| ((|Boolean|) $ (|PositiveInteger|))))) (|Ring|)) (T |DirichletRing|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3 (|PositiveInteger|))) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|DirichletRing| *3)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 (|PositiveInteger|))) (|isDomain| *1 (|DirichletRing| *3)) (|ofCategory| *3 (|Ring|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|DirichletRing| *3)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|DirichletRing| *3)) (|ofCategory| *3 (|Ring|)))) (|zeta| (*1 *1) (AND (|isDomain| *1 (|DirichletRing| *2)) (|ofCategory| *2 (|Ring|)))) (|multiplicative?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DirichletRing| *4)) (|ofCategory| *4 (|Ring|)))) (|additive?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DirichletRing| *4)) (|ofCategory| *4 (|Ring|))))) │ │ │ -(|Join| (|Ring|) (|Eltable| (|PositiveInteger|) |#1|) (CATEGORY |domain| (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|IntegralDomain|)) |noBranch|) (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |#1|)) |noBranch|) (SIGNATURE |coerce| ($ (|Mapping| |#1| (|PositiveInteger|)))) (SIGNATURE |coerce| ((|Mapping| |#1| (|PositiveInteger|)) $)) (SIGNATURE |coerce| ($ (|Stream| |#1|))) (SIGNATURE |coerce| ((|Stream| |#1|) $)) (SIGNATURE |zeta| ($) |constant|) (SIGNATURE |multiplicative?| ((|Boolean|) $ (|PositiveInteger|))) (SIGNATURE |additive?| ((|Boolean|) $ (|PositiveInteger|))))) │ │ │ -((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) 41)) (|setRow!| (($ $ (|Integer|) |#2|) 39)) (|setColumn!| (($ $ (|Integer|) |#3|) 38)) (|sample| (($) 7 T CONST)) (|row| ((|#2| $ (|Integer|)) 43)) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) 40)) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) 45)) (|parts| (((|List| |#1|) $) 30)) (|nrows| (((|NonNegativeInteger|) $) 48)) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) 54)) (|ncols| (((|NonNegativeInteger|) $) 47)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|minRowIndex| (((|Integer|) $) 52)) (|minColIndex| (((|Integer|) $) 50)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxRowIndex| (((|Integer|) $) 51)) (|maxColIndex| (((|Integer|) $) 49)) (|map!| (($ (|Mapping| |#1| |#1|) $) 34)) (|map| (($ (|Mapping| |#1| |#1|) $) 35) (($ (|Mapping| |#1| |#1| |#1|) $ $) 37) (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) 36)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|fill!| (($ $ |#1|) 53)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ (|Integer|) (|Integer|)) 46) ((|#1| $ (|Integer|) (|Integer|) |#1|) 44)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|column| ((|#3| $ (|Integer|)) 42)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|TwoDimensionalArrayCategory| |#1| |#2| |#3|) (|Category|) (|Type|) (|FiniteLinearAggregate| |t#1|) (|FiniteLinearAggregate| |t#1|)) (T |TwoDimensionalArrayCategory|)) │ │ │ -((|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|new| (*1 *1 *2 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Type|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|fill!| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *3 *4)) (|ofCategory| *2 (|Type|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (|minRowIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Integer|)))) (|maxRowIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Integer|)))) (|minColIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Integer|)))) (|maxColIndex| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Integer|)))) (|nrows| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|NonNegativeInteger|)))) (|ncols| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|NonNegativeInteger|)))) (|elt| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|qelt| (*1 *2 *1 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|elt| (*1 *2 *1 *3 *3 *2) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5)) (|ofCategory| *2 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)))) (|row| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *4 *2 *5)) (|ofCategory| *4 (|Type|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *2 (|FiniteLinearAggregate| *4)))) (|column| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *4 *5 *2)) (|ofCategory| *4 (|Type|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *2 (|FiniteLinearAggregate| *4)))) (|parts| (*1 *2 *1) (AND (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|List| *3)))) (|setelt| (*1 *2 *1 *3 *3 *2) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5)) (|ofCategory| *2 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)))) (|qsetelt!| (*1 *2 *1 *3 *3 *2) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *2 *4 *5)) (|ofCategory| *2 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *5 (|FiniteLinearAggregate| *2)))) (|setRow!| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *4 *3 *5)) (|ofCategory| *4 (|Type|)) (|ofCategory| *3 (|FiniteLinearAggregate| *4)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)))) (|setColumn!| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *4 *5 *3)) (|ofCategory| *4 (|Type|)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *3 (|FiniteLinearAggregate| *4)))) (|map!| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|map| (*1 *1 *2 *1 *1) (AND (|isDomain| *2 (|Mapping| *3 *3 *3)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|map| (*1 *1 *2 *1 *1 *3) (AND (|isDomain| *2 (|Mapping| *3 *3 *3)) (|ofCategory| *1 (|TwoDimensionalArrayCategory| *3 *4 *5)) (|ofCategory| *3 (|Type|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3))))) │ │ │ -(|Join| (|HomogeneousAggregate| |t#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (ATTRIBUTE |finiteAggregate|) (SIGNATURE |new| ($ (|NonNegativeInteger|) (|NonNegativeInteger|) |t#1|)) (SIGNATURE |fill!| ($ $ |t#1|)) (SIGNATURE |minRowIndex| ((|Integer|) $)) (SIGNATURE |maxRowIndex| ((|Integer|) $)) (SIGNATURE |minColIndex| ((|Integer|) $)) (SIGNATURE |maxColIndex| ((|Integer|) $)) (SIGNATURE |nrows| ((|NonNegativeInteger|) $)) (SIGNATURE |ncols| ((|NonNegativeInteger|) $)) (SIGNATURE |elt| (|t#1| $ (|Integer|) (|Integer|))) (SIGNATURE |qelt| (|t#1| $ (|Integer|) (|Integer|))) (SIGNATURE |elt| (|t#1| $ (|Integer|) (|Integer|) |t#1|)) (SIGNATURE |row| (|t#2| $ (|Integer|))) (SIGNATURE |column| (|t#3| $ (|Integer|))) (SIGNATURE |parts| ((|List| |t#1|) $)) (SIGNATURE |setelt| (|t#1| $ (|Integer|) (|Integer|) |t#1|)) (SIGNATURE |qsetelt!| (|t#1| $ (|Integer|) (|Integer|) |t#1|)) (SIGNATURE |setRow!| ($ $ (|Integer|) |t#2|)) (SIGNATURE |setColumn!| ($ $ (|Integer|) |t#3|)) (SIGNATURE |map| ($ (|Mapping| |t#1| |t#1|) $)) (SIGNATURE |map!| ($ (|Mapping| |t#1| |t#1|) $)) (SIGNATURE |map| ($ (|Mapping| |t#1| |t#1| |t#1|) $ $)) (SIGNATURE |map| ($ (|Mapping| |t#1| |t#1| |t#1|) $ $ |t#1|)))) │ │ │ -(((|Aggregate|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 17)) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) 30)) (|suppOfZero| (((|List| |#1|) $) 36)) (|suppOfPole| (((|List| |#1|) $) 37)) (|supp| (((|List| |#1|) $) 35)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|split| (((|List| $) $) 29)) (|size| (((|NonNegativeInteger|) $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL)) (|retract| ((|#1| $) NIL)) (|reductum| (($ $) 24)) (|nthFactor| ((|#1| $ (|Integer|)) NIL)) (|nthCoef| (((|Integer|) $ (|Integer|)) NIL)) (|mapGen| (($ (|Mapping| |#1| |#1|) $) NIL)) (|mapCoef| (($ (|Mapping| (|Integer|) (|Integer|)) $) NIL)) (|latex| (((|String|) $) NIL)) (|incr| (($ $) 8)) (|highCommonTerms| (($ $ $) NIL (|has| (|Integer|) (|OrderedAbelianMonoid|)))) (|head| (((|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|))) $) 26)) (|hash| (((|SingleInteger|) $) NIL)) (|effective?| (((|Boolean|) $) 50)) (|divOfZero| (($ $) 38)) (|divOfPole| (($ $) 39)) (|degree| (((|Integer|) $) 58)) (|concat| (($ $ $) 44)) (|collect| (($ $) 33)) (|coerce| (((|OutputForm|) $) 22) (($ |#1|) 27)) (|coefficient| (((|Integer|) |#1| $) 32)) (|Zero| (($) 23 T CONST)) (= (((|Boolean|) $ $) 40)) (<= (((|Boolean|) $ $) 51)) (- (($ $) 48) (($ $ $) 47)) (+ (($ $ $) 45) (($ |#1| $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 49) (($ $ (|Integer|)) NIL) (($ (|Integer|) $) 49) (($ (|Integer|) |#1|) NIL))) │ │ │ -(((|Divisor| |#1|) (|Join| (|DivisorCategory| |#1|) (CATEGORY |domain| (SIGNATURE |head| ((|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|))) $)) (SIGNATURE |reductum| ($ $)))) (|SetCategoryWithDegree|)) (T |Divisor|)) │ │ │ -((|head| (*1 *2 *1) (AND (|isDomain| *2 (|Record| (|:| |gen| *3) (|:| |exp| (|Integer|)))) (|isDomain| *1 (|Divisor| *3)) (|ofCategory| *3 (|SetCategoryWithDegree|)))) (|reductum| (*1 *1 *1) (AND (|isDomain| *1 (|Divisor| *2)) (|ofCategory| *2 (|SetCategoryWithDegree|))))) │ │ │ -(|Join| (|DivisorCategory| |#1|) (CATEGORY |domain| (SIGNATURE |head| ((|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|))) $)) (SIGNATURE |reductum| ($ $)))) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) NIL)) (|third| ((|#1| $) NIL)) (|tail| (($ $) NIL)) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|split!| (($ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) $) NIL (|has| |#1| (|OrderedSet|))) (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) NIL)) (|sort!| (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| |#1| (|OrderedSet|)))) (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sort| (($ $) 10 (|has| |#1| (|OrderedSet|))) (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setvalue!| ((|#1| $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setrest!| (($ $ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setlast!| ((|#1| $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setfirst!| ((|#1| $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ "first" |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "rest" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ "last" |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) NIL)) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|second| ((|#1| $) NIL)) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|rest| (($ $) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|removeDuplicates!| (($ $) NIL (|has| |#1| (|SetCategory|)))) (|removeDuplicates| (($ $) 7 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|remove!| (($ |#1| $) NIL (|has| |#1| (|SetCategory|))) (($ (|Mapping| (|Boolean|) |#1|) $) NIL)) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) NIL)) (|possiblyInfinite?| (((|Boolean|) $) NIL)) (|position| (((|Integer|) |#1| $ (|Integer|)) NIL (|has| |#1| (|SetCategory|))) (((|Integer|) |#1| $) NIL (|has| |#1| (|SetCategory|))) (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) NIL)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) NIL)) (|node?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|new| (($ (|NonNegativeInteger|) |#1|) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|merge!| (($ $ $) NIL (|has| |#1| (|OrderedSet|))) (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) NIL)) (|merge| (($ $ $) NIL (|has| |#1| (|OrderedSet|))) (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL)) (|list| (($ |#1|) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|leaves| (((|List| |#1|) $) NIL)) (|leaf?| (((|Boolean|) $) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|last| ((|#1| $) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|insert!| (($ $ $ (|Integer|)) NIL) (($ |#1| $ (|Integer|)) NIL)) (|insert| (($ $ $ (|Integer|)) NIL) (($ |#1| $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|first| ((|#1| $) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) NIL)) (|fill!| (($ $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|explicitlyFinite?| (((|Boolean|) $) NIL)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL) ((|#1| $ (|Integer|)) NIL) ((|#1| $ (|Integer|) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((|NonNegativeInteger|) $ "count") 16)) (|distance| (((|Integer|) $ $) NIL)) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) NIL) (($ $ (|Integer|)) NIL)) (|delete| (($ $ (|UniversalSegment| (|Integer|))) NIL) (($ $ (|Integer|)) NIL)) (|datalist| (($ (|List| |#1|)) 22)) (|cyclic?| (((|Boolean|) $) NIL)) (|cycleTail| (($ $) NIL)) (|cycleSplit!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|cycleLength| (((|NonNegativeInteger|) $) NIL)) (|cycleEntry| (($ $) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) NIL)) (|concat!| (($ $ $) NIL) (($ $ |#1|) NIL)) (|concat| (($ $ $) NIL) (($ |#1| $) NIL) (($ (|List| $)) NIL) (($ $ |#1|) NIL)) (|coerce| (($ (|List| |#1|)) 17) (((|List| |#1|) $) 18) (((|OutputForm|) $) 21 (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) NIL)) (|child?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) 14 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|DataList| |#1|) (|Join| (|ListAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|List| |#1|))) (SIGNATURE |coerce| ((|List| |#1|) $)) (SIGNATURE |datalist| ($ (|List| |#1|))) (SIGNATURE |elt| ($ $ "unique")) (SIGNATURE |elt| ($ $ "sort")) (SIGNATURE |elt| ((|NonNegativeInteger|) $ "count")))) (|OrderedSet|)) (T |DataList|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|DataList| *3)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|DataList| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|datalist| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|DataList| *3)))) (|elt| (*1 *1 *1 *2) (AND (|isDomain| *2 "unique") (|isDomain| *1 (|DataList| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|elt| (*1 *1 *1 *2) (AND (|isDomain| *2 "sort") (|isDomain| *1 (|DataList| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 "count") (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|DataList| *4)) (|ofCategory| *4 (|OrderedSet|))))) │ │ │ -(|Join| (|ListAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|List| |#1|))) (SIGNATURE |coerce| ((|List| |#1|) $)) (SIGNATURE |datalist| ($ (|List| |#1|))) (SIGNATURE |elt| ($ $ "unique")) (SIGNATURE |elt| ($ $ "sort")) (SIGNATURE |elt| ((|NonNegativeInteger|) $ "count")))) │ │ │ -((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) 91) (((|Boolean|) $) 85 (|has| |#1| (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) 82 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) 81 (AND (|has| |#1| (|OrderedSet|)) (|has| $ (ATTRIBUTE |shallowlyMutable|))))) (|sort| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) 92) (($ $) 86 (|has| |#1| (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setelt| ((|#1| $ (|Integer|) |#1|) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) 53 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) 70 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) 7 T CONST)) (|reverse!| (($ $) 83 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) 93)) (|removeDuplicates| (($ $) 73 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|remove| (($ |#1| $) 72 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (($ (|Mapping| (|Boolean|) |#1|) $) 69 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 71 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) 67 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) 48)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) 90) (((|Integer|) |#1| $) 89 (|has| |#1| (|SetCategory|))) (((|Integer|) |#1| $ (|Integer|)) 88 (|has| |#1| (|SetCategory|)))) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|new| (($ (|NonNegativeInteger|) |#1|) 64)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|minIndex| (((|Integer|) $) 40 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) 80 (|has| |#1| (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) 94) (($ $ $) 87 (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxIndex| (((|Integer|) $) 41 (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) 79 (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35) (($ (|Mapping| |#1| |#1| |#1|) $ $) 59)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|insert| (($ |#1| $ (|Integer|)) 55) (($ $ $ (|Integer|)) 54)) (|indices| (((|List| (|Integer|)) $) 43)) (|index?| (((|Boolean|) (|Integer|) $) 44)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|first| ((|#1| $) 39 (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) 66)) (|fill!| (($ $ |#1|) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|entry?| (((|Boolean|) |#1| $) 42 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) 45)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ (|Integer|) |#1|) 47) ((|#1| $ (|Integer|)) 46) (($ $ (|UniversalSegment| (|Integer|))) 58)) (|delete| (($ $ (|Integer|)) 57) (($ $ (|UniversalSegment| (|Integer|))) 56)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copyInto!| (($ $ $ (|Integer|)) 84 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) 13)) (|convert| (((|InputForm|) $) 74 (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) 65)) (|concat| (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (|List| $)) 60)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) 77 (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) 76 (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (<= (((|Boolean|) $ $) 78 (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) 75 (|has| |#1| (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|OneDimensionalArrayAggregate| |#1|) (|Category|) (|Type|)) (T |OneDimensionalArrayAggregate|)) │ │ │ -NIL │ │ │ -(|Join| (|FiniteLinearAggregate| |t#1|) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|))) │ │ │ -(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| (|Integer|) |#1|) . T) ((|EltableAggregate| (|Integer|) |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|FiniteLinearAggregate| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|IndexedAggregate| (|Integer|) |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|LinearAggregate| |#1|) . T) ((|OrderedSet|) |has| |#1| (|OrderedSet|)) ((|SetCategory|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|Type|) . T)) │ │ │ -((|setRealSteps| (((|Integer|) (|Integer|)) 50)) (|setImagSteps| (((|Integer|) (|Integer|)) 51)) (|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) 52)) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) 49)) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) 47))) │ │ │ -(((|DrawComplex|) (CATEGORY |package| (SIGNATURE |drawComplex| ((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|))) (SIGNATURE |drawComplexVectorField| ((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |setRealSteps| ((|Integer|) (|Integer|))) (SIGNATURE |setImagSteps| ((|Integer|) (|Integer|))) (SIGNATURE |setClipValue| ((|DoubleFloat|) (|DoubleFloat|))))) (T |DrawComplex|)) │ │ │ -((|setClipValue| (*1 *2 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|DrawComplex|)))) (|setImagSteps| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|DrawComplex|)))) (|setRealSteps| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|DrawComplex|)))) (|drawComplexVectorField| (*1 *2 *3 *4 *4) (AND (|isDomain| *3 (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (|isDomain| *4 (|Segment| (|DoubleFloat|))) (|isDomain| *2 (|ThreeDimensionalViewport|)) (|isDomain| *1 (|DrawComplex|)))) (|drawComplex| (*1 *2 *3 *4 *4 *5) (AND (|isDomain| *3 (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)))) (|isDomain| *4 (|Segment| (|DoubleFloat|))) (|isDomain| *5 (|Boolean|)) (|isDomain| *2 (|ThreeDimensionalViewport|)) (|isDomain| *1 (|DrawComplex|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |drawComplex| ((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|))) (SIGNATURE |drawComplexVectorField| ((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |setRealSteps| ((|Integer|) (|Integer|))) (SIGNATURE |setImagSteps| ((|Integer|) (|Integer|))) (SIGNATURE |setClipValue| ((|DoubleFloat|) (|DoubleFloat|)))) │ │ │ -((|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) 21) (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) 22) (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) 13) (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) 14) (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) 18) (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) 19))) │ │ │ -(((|TopLevelDrawFunctionsForPoints|) (CATEGORY |package| (SIGNATURE |draw| ((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)))) (SIGNATURE |draw| ((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|)))) (SIGNATURE |draw| ((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))))) (SIGNATURE |draw| ((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)))) (SIGNATURE |draw| ((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)))) (SIGNATURE |draw| ((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|)))))) (T |TopLevelDrawFunctionsForPoints|)) │ │ │ -((|draw| (*1 *2 *3 *3 *3 *4) (AND (|isDomain| *3 (|List| (|DoubleFloat|))) (|isDomain| *4 (|List| (|DrawOption|))) (|isDomain| *2 (|ThreeDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctionsForPoints|)))) (|draw| (*1 *2 *3 *3 *3) (AND (|isDomain| *3 (|List| (|DoubleFloat|))) (|isDomain| *2 (|ThreeDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctionsForPoints|)))) (|draw| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Point| (|DoubleFloat|)))) (|isDomain| *4 (|List| (|DrawOption|))) (|isDomain| *2 (|TwoDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctionsForPoints|)))) (|draw| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Point| (|DoubleFloat|)))) (|isDomain| *2 (|TwoDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctionsForPoints|)))) (|draw| (*1 *2 *3 *3 *4) (AND (|isDomain| *3 (|List| (|DoubleFloat|))) (|isDomain| *4 (|List| (|DrawOption|))) (|isDomain| *2 (|TwoDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctionsForPoints|)))) (|draw| (*1 *2 *3 *3) (AND (|isDomain| *3 (|List| (|DoubleFloat|))) (|isDomain| *2 (|TwoDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctionsForPoints|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |draw| ((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)))) (SIGNATURE |draw| ((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|)))) (SIGNATURE |draw| ((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))))) (SIGNATURE |draw| ((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)))) (SIGNATURE |draw| ((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)))) (SIGNATURE |draw| ((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|numericalIntegration| (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) NIL) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) 60)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) NIL) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 32)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|d01gbfAnnaType|) (|NumericalIntegrationCategory|)) (T |d01gbfAnnaType|)) │ │ │ +((|hadamard| (((|UnivariateFormalPowerSeries| |#1|) (|UnivariateFormalPowerSeries| |#1|) (|UnivariateFormalPowerSeries| |#1|)) 15))) │ │ │ +(((|UnivariateFormalPowerSeriesFunctions| |#1|) (CATEGORY |package| (SIGNATURE |hadamard| ((|UnivariateFormalPowerSeries| |#1|) (|UnivariateFormalPowerSeries| |#1|) (|UnivariateFormalPowerSeries| |#1|)))) (|Ring|)) (T |UnivariateFormalPowerSeriesFunctions|)) │ │ │ +((|hadamard| (*1 *2 *2 *2) (AND (|isDomain| *2 (|UnivariateFormalPowerSeries| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|UnivariateFormalPowerSeriesFunctions| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |hadamard| ((|UnivariateFormalPowerSeries| |#1|) (|UnivariateFormalPowerSeries| |#1|) (|UnivariateFormalPowerSeries| |#1|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|morphism| (($ (|Mapping| |#1| |#1|)) 25) (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) 24) (($ (|Mapping| |#1| |#1| (|Integer|))) 22)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) 14)) (|hash| (((|SingleInteger|) $) NIL)) (|elt| ((|#1| $ |#1|) 11)) (|conjugate| (($ $ $) NIL)) (|commutator| (($ $ $) NIL)) (|coerce| (((|OutputForm|) $) 20)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|One| (($) 8 T CONST)) (= (((|Boolean|) $ $) 10)) (/ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) 28) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) 16)) (* (($ $ $) 29))) │ │ │ +(((|Automorphism| |#1|) (|Join| (|Group|) (|Eltable| |#1| |#1|) (CATEGORY |domain| (SIGNATURE |morphism| ($ (|Mapping| |#1| |#1|))) (SIGNATURE |morphism| ($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|))) (SIGNATURE |morphism| ($ (|Mapping| |#1| |#1| (|Integer|)))))) (|Ring|)) (T |Automorphism|)) │ │ │ +((|morphism| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|Automorphism| *3)))) (|morphism| (*1 *1 *2 *2) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|Automorphism| *3)))) (|morphism| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3 *3 (|Integer|))) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|Automorphism| *3))))) │ │ │ +(|Join| (|Group|) (|Eltable| |#1| |#1|) (CATEGORY |domain| (SIGNATURE |morphism| ($ (|Mapping| |#1| |#1|))) (SIGNATURE |morphism| ($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|))) (SIGNATURE |morphism| ($ (|Mapping| |#1| |#1| (|Integer|)))))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (^ (($ $ (|PositiveInteger|)) 12)) (= (((|Boolean|) $ $) 6)) (** (($ $ (|PositiveInteger|)) 13)) (* (($ $ $) 14))) │ │ │ +(((|SemiGroup|) (|Category|)) (T |SemiGroup|)) │ │ │ +((* (*1 *1 *1 *1) (|ofCategory| *1 (|SemiGroup|))) (** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|SemiGroup|)) (|isDomain| *2 (|PositiveInteger|)))) (^ (*1 *1 *1 *2) (AND (|ofCategory| *1 (|SemiGroup|)) (|isDomain| *2 (|PositiveInteger|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE * ($ $ $)) (SIGNATURE ** ($ $ (|PositiveInteger|))) (SIGNATURE ^ ($ $ (|PositiveInteger|))))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ +((|atanh| (($ $) 11)) (|asinh| (($ $) 10)) (|asech| (($ $) 9)) (|acsch| (($ $) 8)) (|acoth| (($ $) 7)) (|acosh| (($ $) 6))) │ │ │ +(((|ArcHyperbolicFunctionCategory|) (|Category|)) (T |ArcHyperbolicFunctionCategory|)) │ │ │ +((|atanh| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|))) (|asinh| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|))) (|asech| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|))) (|acsch| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|))) (|acoth| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|))) (|acosh| (*1 *1 *1) (|ofCategory| *1 (|ArcHyperbolicFunctionCategory|)))) │ │ │ +(|Join| (CATEGORY |domain| (SIGNATURE |acosh| ($ $)) (SIGNATURE |acoth| ($ $)) (SIGNATURE |acsch| ($ $)) (SIGNATURE |asech| ($ $)) (SIGNATURE |asinh| ($ $)) (SIGNATURE |atanh| ($ $)))) │ │ │ +((|zero?| (((|Boolean|) $) 10)) (|sample| (($) 15)) (* (($ (|PositiveInteger|) $) 14) (($ (|NonNegativeInteger|) $) 18))) │ │ │ +(((|AbelianMonoid&| |#1|) (CATEGORY |domain| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE |zero?| ((|Boolean|) |#1|)) (SIGNATURE |sample| (|#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) (|AbelianMonoid|)) (T |AbelianMonoid&|)) │ │ │ NIL │ │ │ -(|NumericalIntegrationCategory|) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) 12)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|d03fafAnnaType|) (|PartialDifferentialEquationsSolverCategory|)) (T |d03fafAnnaType|)) │ │ │ +(CATEGORY |domain| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE |zero?| ((|Boolean|) |#1|)) (SIGNATURE |sample| (|#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) │ │ │ +((* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) │ │ │ +(((|Module&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) (|Module| |#2|) (|CommutativeRing|)) (T |Module&|)) │ │ │ NIL │ │ │ -(|PartialDifferentialEquationsSolverCategory|) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 42)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 73)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|d02ejfAnnaType|) (|OrdinaryDifferentialEquationsSolverCategory|)) (T |d02ejfAnnaType|)) │ │ │ +(CATEGORY |domain| (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) │ │ │ +((|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) 27)) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) 39))) │ │ │ +(((|TransSolvePackageService| |#1|) (CATEGORY |package| (SIGNATURE |decomposeFunc| ((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))))) (SIGNATURE |unvectorise| ((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)))) (|Join| (|IntegralDomain|) (|OrderedSet|))) (T |TransSolvePackageService|)) │ │ │ +((|unvectorise| (*1 *2 *3 *2 *4) (AND (|isDomain| *2 (|Fraction| (|SparseUnivariatePolynomial| (|Expression| *5)))) (|isDomain| *3 (|Vector| (|Expression| *5))) (|isDomain| *4 (|Integer|)) (|ofCategory| *5 (|Join| (|IntegralDomain|) (|OrderedSet|))) (|isDomain| *1 (|TransSolvePackageService| *5)))) (|decomposeFunc| (*1 *2 *2 *2 *2) (AND (|isDomain| *2 (|Fraction| (|SparseUnivariatePolynomial| (|Expression| *3)))) (|ofCategory| *3 (|Join| (|IntegralDomain|) (|OrderedSet|))) (|isDomain| *1 (|TransSolvePackageService| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |decomposeFunc| ((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))))) (SIGNATURE |unvectorise| ((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)))) │ │ │ +((|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) 57)) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) 17) (((|List| |#4|) (|List| |#4|) (|String|)) 16) (((|List| |#4|) (|List| |#4|)) 11))) │ │ │ +(((|EuclideanGroebnerBasisPackage| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |euclideanNormalForm| (|#4| |#4| (|List| |#4|))) (SIGNATURE |euclideanGroebner| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |euclideanGroebner| ((|List| |#4|) (|List| |#4|) (|String|))) (SIGNATURE |euclideanGroebner| ((|List| |#4|) (|List| |#4|) (|String|) (|String|)))) (|EuclideanDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|PolynomialCategory| |#1| |#2| |#3|)) (T |EuclideanGroebnerBasisPackage|)) │ │ │ +((|euclideanGroebner| (*1 *2 *2 *3 *3) (AND (|isDomain| *2 (|List| *7)) (|isDomain| *3 (|String|)) (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|EuclideanDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *1 (|EuclideanGroebnerBasisPackage| *4 *5 *6 *7)))) (|euclideanGroebner| (*1 *2 *2 *3) (AND (|isDomain| *2 (|List| *7)) (|isDomain| *3 (|String|)) (|ofCategory| *7 (|PolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|EuclideanDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *1 (|EuclideanGroebnerBasisPackage| *4 *5 *6 *7)))) (|euclideanGroebner| (*1 *2 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|PolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|EuclideanDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|EuclideanGroebnerBasisPackage| *3 *4 *5 *6)))) (|euclideanNormalForm| (*1 *2 *2 *3) (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|PolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|EuclideanDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *1 (|EuclideanGroebnerBasisPackage| *4 *5 *6 *2))))) │ │ │ +(CATEGORY |package| (SIGNATURE |euclideanNormalForm| (|#4| |#4| (|List| |#4|))) (SIGNATURE |euclideanGroebner| ((|List| |#4|) (|List| |#4|))) (SIGNATURE |euclideanGroebner| ((|List| |#4|) (|List| |#4|) (|String|))) (SIGNATURE |euclideanGroebner| ((|List| |#4|) (|List| |#4|) (|String|) (|String|)))) │ │ │ +((|zero?| (((|Boolean|) $) 41)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL) (((|Union| |#2| "failed") $) 44)) (|retract| (((|Integer|) $) NIL) (((|Fraction| (|Integer|)) $) NIL) ((|#2| $) 42)) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) 78)) (|rational?| (((|Boolean|) $) 72)) (|rational| (((|Fraction| (|Integer|)) $) 76)) (|norm| ((|#2| $) 26)) (|map| (($ (|Mapping| |#2| |#2|) $) 23)) (|inv| (($ $) 61)) (|convert| (((|InputForm|) $) 67)) (|conjugate| (($ $) 21)) (|coerce| (((|OutputForm|) $) 56) (($ (|Integer|)) 39) (($ |#2|) 37) (($ (|Fraction| (|Integer|))) NIL)) (|characteristic| (((|NonNegativeInteger|)) 10)) (|abs| ((|#2| $) 71)) (= (((|Boolean|) $ $) 29)) (< (((|Boolean|) $ $) 69)) (- (($ $) 31) (($ $ $) NIL)) (+ (($ $ $) 30)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) │ │ │ +(((|OctonionCategory&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |convert| ((|InputForm|) |#1|)) (SIGNATURE |inv| (|#1| |#1|)) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |rational| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |rational?| ((|Boolean|) |#1|)) (SIGNATURE |abs| (|#2| |#1|)) (SIGNATURE |norm| (|#2| |#1|)) (SIGNATURE |conjugate| (|#1| |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |retract| (|#2| |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |retract| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |retract| ((|Integer|) |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |characteristic| ((|NonNegativeInteger|))) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE |zero?| ((|Boolean|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|)) (SIGNATURE + (|#1| |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|))) (|OctonionCategory| |#2|) (|CommutativeRing|)) (T |OctonionCategory&|)) │ │ │ +((|characteristic| (*1 *2) (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|OctonionCategory&| *3 *4)) (|ofCategory| *3 (|OctonionCategory| *4))))) │ │ │ +(CATEGORY |domain| (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |convert| ((|InputForm|) |#1|)) (SIGNATURE |inv| (|#1| |#1|)) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |rational| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |rational?| ((|Boolean|) |#1|)) (SIGNATURE |abs| (|#2| |#1|)) (SIGNATURE |norm| (|#2| |#1|)) (SIGNATURE |conjugate| (|#1| |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |retract| (|#2| |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |retract| ((|Fraction| (|Integer|)) |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE |retract| ((|Integer|) |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE |characteristic| ((|NonNegativeInteger|))) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE |zero?| ((|Boolean|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|)) (SIGNATURE + (|#1| |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 38)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ (|Fraction| (|Integer|))) 43)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 39)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 40)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ (|Fraction| (|Integer|)) $) 42) (($ $ (|Fraction| (|Integer|))) 41))) │ │ │ +(((|DivisionRing|) (|Category|)) (T |DivisionRing|)) │ │ │ +((** (*1 *1 *1 *2) (AND (|ofCategory| *1 (|DivisionRing|)) (|isDomain| *2 (|Integer|)))) (^ (*1 *1 *1 *2) (AND (|ofCategory| *1 (|DivisionRing|)) (|isDomain| *2 (|Integer|)))) (|inv| (*1 *1 *1) (|ofCategory| *1 (|DivisionRing|)))) │ │ │ +(|Join| (|EntireRing|) (|Algebra| (|Fraction| (|Integer|))) (CATEGORY |domain| (SIGNATURE ** ($ $ (|Integer|))) (SIGNATURE ^ ($ $ (|Integer|))) (SIGNATURE |inv| ($ $)))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|EntireRing|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| $) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Monoid|) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +((|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (|commonDenominator| ((|#1| |#3|) 13)) (|clearDenominator| ((|#3| |#3|) 19))) │ │ │ +(((|UnivariatePolynomialCommonDenominator| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |commonDenominator| (|#1| |#3|)) (SIGNATURE |clearDenominator| (|#3| |#3|)) (SIGNATURE |splitDenominator| ((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (|IntegralDomain|) (|QuotientFieldCategory| |#1|) (|UnivariatePolynomialCategory| |#2|)) (T |UnivariatePolynomialCommonDenominator|)) │ │ │ +((|splitDenominator| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|QuotientFieldCategory| *4)) (|isDomain| *2 (|Record| (|:| |num| *3) (|:| |den| *4))) (|isDomain| *1 (|UnivariatePolynomialCommonDenominator| *4 *5 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)))) (|clearDenominator| (*1 *2 *2) (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|QuotientFieldCategory| *3)) (|isDomain| *1 (|UnivariatePolynomialCommonDenominator| *3 *4 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *4)))) (|commonDenominator| (*1 *2 *3) (AND (|ofCategory| *4 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|isDomain| *1 (|UnivariatePolynomialCommonDenominator| *2 *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |commonDenominator| (|#1| |#3|)) (SIGNATURE |clearDenominator| (|#3| |#3|)) (SIGNATURE |splitDenominator| ((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) │ │ │ +((|retractIfCan| (((|Union| $ "failed") (|Expression| (|Float|))) 19) (((|Union| $ "failed") (|Expression| (|Integer|))) 17) (((|Union| $ "failed") (|Polynomial| (|Float|))) 15) (((|Union| $ "failed") (|Polynomial| (|Integer|))) 13) (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) 11) (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) 9)) (|retract| (($ (|Expression| (|Float|))) 20) (($ (|Expression| (|Integer|))) 18) (($ (|Polynomial| (|Float|))) 16) (($ (|Polynomial| (|Integer|))) 14) (($ (|Fraction| (|Polynomial| (|Float|)))) 12) (($ (|Fraction| (|Polynomial| (|Integer|)))) 10)) (|outputAsFortran| (((|Void|) $) 7)) (|coerce| (((|OutputForm|) $) 8) (($ (|List| (|FortranCode|))) 23) (($ (|FortranCode|)) 22) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 21))) │ │ │ +(((|FortranFunctionCategory|) (|Category|)) (T |FortranFunctionCategory|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|FortranCode|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|FortranCode|)) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|Float|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Expression| (|Float|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|Integer|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Expression| (|Integer|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| (|Float|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Polynomial| (|Float|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| (|Integer|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Polynomial| (|Integer|))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| (|Polynomial| (|Float|)))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Fraction| (|Polynomial| (|Float|)))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| (|Polynomial| (|Integer|)))) (|ofCategory| *1 (|FortranFunctionCategory|)))) (|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|Fraction| (|Polynomial| (|Integer|)))) (|ofCategory| *1 (|FortranFunctionCategory|))))) │ │ │ +(|Join| (|FortranProgramCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|List| (|FortranCode|)))) (SIGNATURE |coerce| ($ (|FortranCode|))) (SIGNATURE |coerce| ($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|)))))) (SIGNATURE |retract| ($ (|Expression| (|Float|)))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Expression| (|Float|)))) (SIGNATURE |retract| ($ (|Expression| (|Integer|)))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Expression| (|Integer|)))) (SIGNATURE |retract| ($ (|Polynomial| (|Float|)))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| (|Float|)))) (SIGNATURE |retract| ($ (|Polynomial| (|Integer|)))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Polynomial| (|Integer|)))) (SIGNATURE |retract| ($ (|Fraction| (|Polynomial| (|Float|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|))))) (SIGNATURE |retract| ($ (|Fraction| (|Polynomial| (|Integer|))))) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|))))))) │ │ │ +(((|CoercibleTo| (|OutputForm|)) . T) ((|FortranProgramCategory|) . T) ((|Type|) . T)) │ │ │ +((|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) 61)) (|setErrorBound| ((|#1| |#1|) 54)) (|schwerpunkt| (((|Complex| |#1|) |#2|) 82)) (|rootRadius| ((|#1| |#2|) 122) ((|#1| |#2| |#1|) 80)) (|reciprocalPolynomial| ((|#2| |#2|) 81)) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) 112) (((|Factored| |#2|) |#2| |#1| (|Boolean|)) 79)) (|norm| ((|#1| |#2|) 111)) (|graeffe| ((|#2| |#2|) 118)) (|factor| (((|Factored| |#2|) |#2|) 133) (((|Factored| |#2|) |#2| |#1|) 32) (((|Factored| |#2|) |#2| |#1| (|Boolean|)) 132)) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) 131) (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) 75)) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) 40) (((|List| (|Complex| |#1|)) |#2|) 41))) │ │ │ +(((|ComplexRootFindingPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |complexZeros| ((|List| (|Complex| |#1|)) |#2|)) (SIGNATURE |complexZeros| ((|List| (|Complex| |#1|)) |#2| |#1|)) (SIGNATURE |divisorCascade| ((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|))) (SIGNATURE |divisorCascade| ((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|)) (SIGNATURE |factor| ((|Factored| |#2|) |#2| |#1| (|Boolean|))) (SIGNATURE |factor| ((|Factored| |#2|) |#2| |#1|)) (SIGNATURE |factor| ((|Factored| |#2|) |#2|)) (SIGNATURE |graeffe| (|#2| |#2|)) (SIGNATURE |norm| (|#1| |#2|)) (SIGNATURE |pleskenSplit| ((|Factored| |#2|) |#2| |#1| (|Boolean|))) (SIGNATURE |pleskenSplit| ((|Factored| |#2|) |#2| |#1|)) (SIGNATURE |reciprocalPolynomial| (|#2| |#2|)) (SIGNATURE |rootRadius| (|#1| |#2| |#1|)) (SIGNATURE |rootRadius| (|#1| |#2|)) (SIGNATURE |schwerpunkt| ((|Complex| |#1|) |#2|)) (SIGNATURE |setErrorBound| (|#1| |#1|)) (SIGNATURE |startPolynomial| ((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|))) (|Join| (|Field|) (|OrderedRing|)) (|UnivariatePolynomialCategory| (|Complex| |#1|))) (T |ComplexRootFindingPackage|)) │ │ │ +((|startPolynomial| (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))) (|isDomain| *2 (|Record| (|:| |start| *3) (|:| |factors| (|Factored| *3)))) (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4))))) (|setErrorBound| (*1 *2 *2) (AND (|ofCategory| *2 (|Join| (|Field|) (|OrderedRing|))) (|isDomain| *1 (|ComplexRootFindingPackage| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *2))))) (|schwerpunkt| (*1 *2 *3) (AND (|isDomain| *2 (|Complex| *4)) (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3)) (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))) (|ofCategory| *3 (|UnivariatePolynomialCategory| *2)))) (|rootRadius| (*1 *2 *3) (AND (|ofCategory| *2 (|Join| (|Field|) (|OrderedRing|))) (|isDomain| *1 (|ComplexRootFindingPackage| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *2))))) (|rootRadius| (*1 *2 *3 *2) (AND (|ofCategory| *2 (|Join| (|Field|) (|OrderedRing|))) (|isDomain| *1 (|ComplexRootFindingPackage| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *2))))) (|reciprocalPolynomial| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|Field|) (|OrderedRing|))) (|isDomain| *1 (|ComplexRootFindingPackage| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Complex| *3))))) (|pleskenSplit| (*1 *2 *3 *4) (AND (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4))))) (|pleskenSplit| (*1 *2 *3 *4 *5) (AND (|isDomain| *5 (|Boolean|)) (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4))))) (|norm| (*1 *2 *3) (AND (|ofCategory| *2 (|Join| (|Field|) (|OrderedRing|))) (|isDomain| *1 (|ComplexRootFindingPackage| *2 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *2))))) (|graeffe| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|Field|) (|OrderedRing|))) (|isDomain| *1 (|ComplexRootFindingPackage| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| (|Complex| *3))))) (|factor| (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4))))) (|factor| (*1 *2 *3 *4) (AND (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4))))) (|factor| (*1 *2 *3 *4 *5) (AND (|isDomain| *5 (|Boolean|)) (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4))))) (|divisorCascade| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))) (|isDomain| *2 (|List| (|Record| (|:| |factors| (|List| *3)) (|:| |error| *4)))) (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4))))) (|divisorCascade| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|Join| (|Field|) (|OrderedRing|))) (|isDomain| *2 (|List| (|Record| (|:| |factors| (|List| *3)) (|:| |error| *5)))) (|isDomain| *1 (|ComplexRootFindingPackage| *5 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *5))))) (|complexZeros| (*1 *2 *3 *4) (AND (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))) (|isDomain| *2 (|List| (|Complex| *4))) (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4))))) (|complexZeros| (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))) (|isDomain| *2 (|List| (|Complex| *4))) (|isDomain| *1 (|ComplexRootFindingPackage| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|Complex| *4)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |complexZeros| ((|List| (|Complex| |#1|)) |#2|)) (SIGNATURE |complexZeros| ((|List| (|Complex| |#1|)) |#2| |#1|)) (SIGNATURE |divisorCascade| ((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|))) (SIGNATURE |divisorCascade| ((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|)) (SIGNATURE |factor| ((|Factored| |#2|) |#2| |#1| (|Boolean|))) (SIGNATURE |factor| ((|Factored| |#2|) |#2| |#1|)) (SIGNATURE |factor| ((|Factored| |#2|) |#2|)) (SIGNATURE |graeffe| (|#2| |#2|)) (SIGNATURE |norm| (|#1| |#2|)) (SIGNATURE |pleskenSplit| ((|Factored| |#2|) |#2| |#1| (|Boolean|))) (SIGNATURE |pleskenSplit| ((|Factored| |#2|) |#2| |#1|)) (SIGNATURE |reciprocalPolynomial| (|#2| |#2|)) (SIGNATURE |rootRadius| (|#1| |#2| |#1|)) (SIGNATURE |rootRadius| (|#1| |#2|)) (SIGNATURE |schwerpunkt| ((|Complex| |#1|) |#2|)) (SIGNATURE |setErrorBound| (|#1| |#1|)) (SIGNATURE |startPolynomial| ((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|))) │ │ │ +((|randomR| ((|#3|) 36)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) 32))) │ │ │ +(((|GeneralPolynomialGcdPackage| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |gcdPolynomial| ((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|))) (SIGNATURE |randomR| (|#3|))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|PolynomialFactorizationExplicit|) (|PolynomialCategory| |#3| |#1| |#2|)) (T |GeneralPolynomialGcdPackage|)) │ │ │ +((|randomR| (*1 *2) (AND (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|PolynomialFactorizationExplicit|)) (|isDomain| *1 (|GeneralPolynomialGcdPackage| *3 *4 *2 *5)) (|ofCategory| *5 (|PolynomialCategory| *2 *3 *4)))) (|gcdPolynomial| (*1 *2 *2 *2) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *6)) (|ofCategory| *6 (|PolynomialCategory| *5 *3 *4)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|PolynomialFactorizationExplicit|)) (|isDomain| *1 (|GeneralPolynomialGcdPackage| *3 *4 *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |gcdPolynomial| ((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|))) (SIGNATURE |randomR| (|#3|))) │ │ │ +((|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) 69) (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) 68) (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) 59) (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) 58) (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) 50) (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) 49)) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) 72) (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) 71) (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) 62) (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) 61) (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) 54) (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) 53) (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) 41) (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) 40) (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) 33) (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) 32))) │ │ │ +(((|TopLevelDrawFunctions| |#1|) (CATEGORY |package| (SIGNATURE |draw| ((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|)))) (SIGNATURE |draw| ((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)))) (SIGNATURE |draw| ((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|)))) (SIGNATURE |draw| ((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)))) (SIGNATURE |draw| ((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|)))) (SIGNATURE |draw| ((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)))) (SIGNATURE |makeObject| ((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|)))) (SIGNATURE |makeObject| ((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)))) (SIGNATURE |draw| ((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|)))) (SIGNATURE |draw| ((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)))) (SIGNATURE |makeObject| ((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|)))) (SIGNATURE |makeObject| ((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)))) (SIGNATURE |draw| ((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|)))) (SIGNATURE |draw| ((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)))) (SIGNATURE |makeObject| ((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|)))) (SIGNATURE |makeObject| ((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))))) (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))) (T |TopLevelDrawFunctions|)) │ │ │ +((|makeObject| (*1 *2 *3 *4 *4) (AND (|isDomain| *3 (|ParametricSurface| *5)) (|isDomain| *4 (|SegmentBinding| (|Float|))) (|ofCategory| *5 (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))) (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|))) (|isDomain| *1 (|TopLevelDrawFunctions| *5)))) (|makeObject| (*1 *2 *3 *4 *4 *5) (AND (|isDomain| *3 (|ParametricSurface| *6)) (|isDomain| *4 (|SegmentBinding| (|Float|))) (|isDomain| *5 (|List| (|DrawOption|))) (|ofCategory| *6 (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))) (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|))) (|isDomain| *1 (|TopLevelDrawFunctions| *6)))) (|draw| (*1 *2 *3 *4 *4) (AND (|isDomain| *3 (|ParametricSurface| *5)) (|isDomain| *4 (|SegmentBinding| (|Float|))) (|ofCategory| *5 (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))) (|isDomain| *2 (|ThreeDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctions| *5)))) (|draw| (*1 *2 *3 *4 *4 *5) (AND (|isDomain| *3 (|ParametricSurface| *6)) (|isDomain| *4 (|SegmentBinding| (|Float|))) (|isDomain| *5 (|List| (|DrawOption|))) (|ofCategory| *6 (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))) (|isDomain| *2 (|ThreeDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctions| *6)))) (|makeObject| (*1 *2 *3 *4 *4) (AND (|isDomain| *4 (|SegmentBinding| (|Float|))) (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|))) (|isDomain| *1 (|TopLevelDrawFunctions| *3)) (|ofCategory| *3 (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))))) (|makeObject| (*1 *2 *3 *4 *4 *5) (AND (|isDomain| *4 (|SegmentBinding| (|Float|))) (|isDomain| *5 (|List| (|DrawOption|))) (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|))) (|isDomain| *1 (|TopLevelDrawFunctions| *3)) (|ofCategory| *3 (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))))) (|draw| (*1 *2 *3 *4 *4) (AND (|isDomain| *4 (|SegmentBinding| (|Float|))) (|isDomain| *2 (|ThreeDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctions| *3)) (|ofCategory| *3 (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))))) (|draw| (*1 *2 *3 *4 *4 *5) (AND (|isDomain| *4 (|SegmentBinding| (|Float|))) (|isDomain| *5 (|List| (|DrawOption|))) (|isDomain| *2 (|ThreeDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctions| *3)) (|ofCategory| *3 (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))))) (|makeObject| (*1 *2 *3 *4) (AND (|isDomain| *3 (|ParametricSpaceCurve| *5)) (|isDomain| *4 (|SegmentBinding| (|Float|))) (|ofCategory| *5 (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))) (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|))) (|isDomain| *1 (|TopLevelDrawFunctions| *5)))) (|makeObject| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|ParametricSpaceCurve| *6)) (|isDomain| *4 (|SegmentBinding| (|Float|))) (|isDomain| *5 (|List| (|DrawOption|))) (|ofCategory| *6 (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))) (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|))) (|isDomain| *1 (|TopLevelDrawFunctions| *6)))) (|draw| (*1 *2 *3 *4) (AND (|isDomain| *3 (|ParametricSpaceCurve| *5)) (|isDomain| *4 (|SegmentBinding| (|Float|))) (|ofCategory| *5 (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))) (|isDomain| *2 (|ThreeDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctions| *5)))) (|draw| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|ParametricSpaceCurve| *6)) (|isDomain| *4 (|SegmentBinding| (|Float|))) (|isDomain| *5 (|List| (|DrawOption|))) (|ofCategory| *6 (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))) (|isDomain| *2 (|ThreeDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctions| *6)))) (|draw| (*1 *2 *3 *4) (AND (|isDomain| *3 (|ParametricPlaneCurve| *5)) (|isDomain| *4 (|SegmentBinding| (|Float|))) (|ofCategory| *5 (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))) (|isDomain| *2 (|TwoDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctions| *5)))) (|draw| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|ParametricPlaneCurve| *6)) (|isDomain| *4 (|SegmentBinding| (|Float|))) (|isDomain| *5 (|List| (|DrawOption|))) (|ofCategory| *6 (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))) (|isDomain| *2 (|TwoDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctions| *6)))) (|draw| (*1 *2 *3 *4) (AND (|isDomain| *4 (|SegmentBinding| (|Float|))) (|isDomain| *2 (|TwoDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctions| *3)) (|ofCategory| *3 (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|))))) (|draw| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|SegmentBinding| (|Float|))) (|isDomain| *5 (|List| (|DrawOption|))) (|isDomain| *2 (|TwoDimensionalViewport|)) (|isDomain| *1 (|TopLevelDrawFunctions| *3)) (|ofCategory| *3 (|Join| (|ConvertibleTo| (|InputForm|)) (|SetCategory|)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |draw| ((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|)))) (SIGNATURE |draw| ((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)))) (SIGNATURE |draw| ((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|)))) (SIGNATURE |draw| ((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)))) (SIGNATURE |draw| ((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|)))) (SIGNATURE |draw| ((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)))) (SIGNATURE |makeObject| ((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|)))) (SIGNATURE |makeObject| ((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)))) (SIGNATURE |draw| ((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|)))) (SIGNATURE |draw| ((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)))) (SIGNATURE |makeObject| ((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|)))) (SIGNATURE |makeObject| ((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)))) (SIGNATURE |draw| ((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|)))) (SIGNATURE |draw| ((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)))) (SIGNATURE |makeObject| ((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|)))) (SIGNATURE |makeObject| ((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))))) │ │ │ +((|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) 18)) (|commonDenominator| ((|#1| (|Matrix| |#2|)) 9)) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) 16))) │ │ │ +(((|MatrixCommonDenominator| |#1| |#2|) (CATEGORY |package| (SIGNATURE |commonDenominator| (|#1| (|Matrix| |#2|))) (SIGNATURE |clearDenominator| ((|Matrix| |#1|) (|Matrix| |#2|))) (SIGNATURE |splitDenominator| ((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)))) (|IntegralDomain|) (|QuotientFieldCategory| |#1|)) (T |MatrixCommonDenominator|)) │ │ │ +((|splitDenominator| (*1 *2 *3) (AND (|isDomain| *3 (|Matrix| *5)) (|ofCategory| *5 (|QuotientFieldCategory| *4)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |num| (|Matrix| *4)) (|:| |den| *4))) (|isDomain| *1 (|MatrixCommonDenominator| *4 *5)))) (|clearDenominator| (*1 *2 *3) (AND (|isDomain| *3 (|Matrix| *5)) (|ofCategory| *5 (|QuotientFieldCategory| *4)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Matrix| *4)) (|isDomain| *1 (|MatrixCommonDenominator| *4 *5)))) (|commonDenominator| (*1 *2 *3) (AND (|isDomain| *3 (|Matrix| *4)) (|ofCategory| *4 (|QuotientFieldCategory| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|isDomain| *1 (|MatrixCommonDenominator| *2 *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |commonDenominator| (|#1| (|Matrix| |#2|))) (SIGNATURE |clearDenominator| ((|Matrix| |#1|) (|Matrix| |#2|))) (SIGNATURE |splitDenominator| ((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)))) │ │ │ +((|integral| (($ $ (|SegmentBinding| $)) 7) (($ $ (|Symbol|)) 6))) │ │ │ +(((|PrimitiveFunctionCategory|) (|Category|)) (T |PrimitiveFunctionCategory|)) │ │ │ +((|integral| (*1 *1 *1 *2) (AND (|isDomain| *2 (|SegmentBinding| *1)) (|ofCategory| *1 (|PrimitiveFunctionCategory|)))) (|integral| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PrimitiveFunctionCategory|)) (|isDomain| *2 (|Symbol|))))) │ │ │ +(|Join| (CATEGORY |domain| (SIGNATURE |integral| ($ $ (|Symbol|))) (SIGNATURE |integral| ($ $ (|SegmentBinding| $))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|variables| (((|List| (|Symbol|)) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|tanh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|tan| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sqrt| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sinh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sin| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sech| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sec| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sample| (($) NIL T CONST)) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) 16) (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) NIL)) (|pole?| (((|Boolean|) $) NIL)) (|pi| (($) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|order| (((|NonNegativeInteger|) $ (|Symbol|)) NIL) (((|NonNegativeInteger|) $ (|Symbol|) (|NonNegativeInteger|)) NIL)) (|one?| (((|Boolean|) $) NIL)) (|nthRoot| (($ $ (|Integer|)) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ $ (|List| (|Symbol|)) (|List| (|IndexedExponents| (|Symbol|)))) NIL) (($ $ (|Symbol|) (|IndexedExponents| (|Symbol|))) NIL) (($ |#1| (|IndexedExponents| (|Symbol|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|log| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|integrate| (($ $ (|Symbol|)) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Symbol|) |#1|) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|hash| (((|SingleInteger|) $) NIL)) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|extend| (($ $ (|NonNegativeInteger|)) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|exp| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|eval| (($ $ (|Symbol|) $) NIL) (($ $ (|List| (|Symbol|)) (|List| $)) NIL) (($ $ (|List| (|Equation| $))) NIL) (($ $ (|Equation| $)) NIL) (($ $ $ $) NIL) (($ $ (|List| $) (|List| $)) NIL)) (|differentiate| (($ $ (|Symbol|)) NIL) (($ $ (|List| (|Symbol|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL)) (|degree| (((|IndexedExponents| (|Symbol|)) $) NIL)) (|csch| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|csc| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|coth| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cot| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cosh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cos| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|complete| (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#1|) NIL (|has| |#1| (|CommutativeRing|))) (($ $) NIL (|has| |#1| (|IntegralDomain|))) (($ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ (|Symbol|)) NIL) (($ (|Polynomial| |#1|)) NIL)) (|coefficient| ((|#1| $ (|IndexedExponents| (|Symbol|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL) (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) NIL)) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|atanh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|atan| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|asinh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asin| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asech| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asec| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acsch| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acsc| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acoth| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acot| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acosh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acos| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (D (($ $ (|Symbol|)) NIL) (($ $ (|List| (|Symbol|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL)) (= (((|Boolean|) $ $) NIL)) (/ (($ $ |#1|) NIL (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) │ │ │ +(((|TaylorSeries| |#1|) (|Join| (|MultivariateTaylorSeriesCategory| |#1| (|Symbol|)) (CATEGORY |domain| (SIGNATURE |coefficient| ((|Polynomial| |#1|) $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ (|Symbol|))) (SIGNATURE |coerce| ($ (|Polynomial| |#1|))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ($ $ (|Symbol|) |#1|)) (SIGNATURE |fintegrate| ($ (|Mapping| $) (|Symbol|) |#1|))) |noBranch|))) (|Ring|)) (T |TaylorSeries|)) │ │ │ +((|coefficient| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Polynomial| *4)) (|isDomain| *1 (|TaylorSeries| *4)) (|ofCategory| *4 (|Ring|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|TaylorSeries| *3)) (|ofCategory| *3 (|Ring|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|TaylorSeries| *3)))) (|integrate| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|TaylorSeries| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|Ring|)))) (|fintegrate| (*1 *1 *2 *3 *4) (AND (|isDomain| *2 (|Mapping| (|TaylorSeries| *4))) (|isDomain| *3 (|Symbol|)) (|isDomain| *1 (|TaylorSeries| *4)) (|ofCategory| *4 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *4 (|Ring|))))) │ │ │ +(|Join| (|MultivariateTaylorSeriesCategory| |#1| (|Symbol|)) (CATEGORY |domain| (SIGNATURE |coefficient| ((|Polynomial| |#1|) $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ (|Symbol|))) (SIGNATURE |coerce| ($ (|Polynomial| |#1|))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ($ $ (|Symbol|) |#1|)) (SIGNATURE |fintegrate| ($ (|Mapping| $) (|Symbol|) |#1|))) |noBranch|))) │ │ │ +((|newReduc| (((|Void|)) 18)) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) 40) (((|Fraction| (|Integer|)) |#2|) 23))) │ │ │ +(((|FunctionSpaceReduce| |#1| |#2|) (CATEGORY |package| (SIGNATURE |bringDown| ((|Fraction| (|Integer|)) |#2|)) (SIGNATURE |bringDown| ((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|))) (SIGNATURE |newReduc| ((|Void|)))) (|Join| (|OrderedSet|) (|IntegralDomain|) (|RetractableTo| (|Integer|))) (|FunctionSpace| |#1|)) (T |FunctionSpaceReduce|)) │ │ │ +((|newReduc| (*1 *2) (AND (|ofCategory| *3 (|Join| (|OrderedSet|) (|IntegralDomain|) (|RetractableTo| (|Integer|)))) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|FunctionSpaceReduce| *3 *4)) (|ofCategory| *4 (|FunctionSpace| *3)))) (|bringDown| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Kernel| *3)) (|ofCategory| *3 (|FunctionSpace| *5)) (|ofCategory| *5 (|Join| (|OrderedSet|) (|IntegralDomain|) (|RetractableTo| (|Integer|)))) (|isDomain| *2 (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|isDomain| *1 (|FunctionSpaceReduce| *5 *3)))) (|bringDown| (*1 *2 *3) (AND (|ofCategory| *4 (|Join| (|OrderedSet|) (|IntegralDomain|) (|RetractableTo| (|Integer|)))) (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|FunctionSpaceReduce| *4 *3)) (|ofCategory| *3 (|FunctionSpace| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |bringDown| ((|Fraction| (|Integer|)) |#2|)) (SIGNATURE |bringDown| ((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|))) (SIGNATURE |newReduc| ((|Void|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|))))) (|value| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL)) (|third| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL)) (|tail| (($ $) NIL)) (|table| (($) NIL) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL)) (|swap!| (((|Void|) $ |#1| |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|split!| (($ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL) (((|Boolean|) $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL) (($ $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setvalue!| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setrest!| (($ $ $) 27 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setlast!| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setfirst!| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 29 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#2| $ |#1| |#2|) 45) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|UniversalSegment| (|Integer|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ "last" (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "rest" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ "first" (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ "value" (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select!| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL)) (|select| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|second| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL)) (|search| (((|Union| |#2| "failed") |#1| $) 37)) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|rest| (($ $ (|NonNegativeInteger|)) NIL) (($ $) 24)) (|removeDuplicates!| (($ $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (|remove!| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Union| |#2| "failed") |#1| $) 46) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL) (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (|remove| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#2| $ |#1| |#2|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#2| $ |#1|) NIL) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Integer|)) NIL)) (|possiblyInfinite?| (((|Boolean|) $) NIL)) (|position| (((|Integer|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL) (((|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))) (((|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Integer|)) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (|parts| (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 18 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 18 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) NIL)) (|node?| (((|Boolean|) $ $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (|new| (($ (|NonNegativeInteger|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| ((|#1| $) NIL (|has| |#1| (|OrderedSet|))) (((|Integer|) $) 32 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (|merge!| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ $) NIL) (($ $ $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ $) NIL) (($ $ $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (|members| (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (((|Boolean|) |#2| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|)))) (((|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (|maxIndex| ((|#1| $) NIL (|has| |#1| (|OrderedSet|))) (((|Integer|) $) 34 (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (|map!| (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ (|Mapping| |#2| |#2|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL) (($ (|Mapping| |#2| |#2|) $) NIL) (($ (|Mapping| |#2| |#2| |#2|) $ $) NIL) (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ $) NIL) (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL)) (|list| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|leaves| (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL)) (|leaf?| (((|Boolean|) $) NIL)) (|latex| (((|String|) $) 41 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|))))) (|last| (($ $ (|NonNegativeInteger|)) NIL) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL)) (|keys| (((|List| |#1|) $) 20)) (|key?| (((|Boolean|) |#1| $) NIL)) (|inspect| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL)) (|insert!| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL) (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|insert| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| |#1|) $) NIL) (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) |#1| $) NIL) (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|))))) (|first| ((|#2| $) NIL (|has| |#1| (|OrderedSet|))) (($ $ (|NonNegativeInteger|)) NIL) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 23)) (|find| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL) (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL)) (|fill!| (($ $ |#2|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|extract!| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL)) (|explicitlyFinite?| (((|Boolean|) $) NIL)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) NIL (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|List| |#2|) (|List| |#2|)) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ |#2| |#2|) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|Equation| |#2|)) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|List| (|Equation| |#2|))) NIL (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|List| (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) NIL (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) |#2| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|)))) (((|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (|entries| (((|List| |#2|) $) NIL) (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 17)) (|empty?| (((|Boolean|) $) 16)) (|empty| (($) 13)) (|elt| ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ "first") NIL) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ "value") NIL)) (|distance| (((|Integer|) $ $) NIL)) (|dictionary| (($) 12) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL)) (|delete!| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|cyclic?| (((|Boolean|) $) NIL)) (|cycleTail| (($ $) NIL)) (|cycleSplit!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|cycleLength| (((|NonNegativeInteger|) $) NIL)) (|cycleEntry| (($ $) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (((|NonNegativeInteger|) |#2| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL)) (|concat!| (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL) (($ $ $) NIL)) (|concat| (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) NIL) (($ (|List| $)) NIL) (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 25) (($ $ $) NIL)) (|coerce| (((|OutputForm|) $) NIL (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|))))) (|children| (((|List| $) $) NIL)) (|child?| (((|Boolean|) $ $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (|bag| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) NIL)) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) 43)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|))))) (<= (((|Boolean|) $ $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) 22 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|AssociationList| |#1| |#2|) (|AssociationListAggregate| |#1| |#2|) (|SetCategory|) (|SetCategory|)) (T |AssociationList|)) │ │ │ NIL │ │ │ -(|OrdinaryDifferentialEquationsSolverCategory|) │ │ │ -((|primitivePart| (($ $) 52)) (|pomopo!| (($ $ |#2| |#3| $) 14)) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) 35)) (|ground?| (((|Boolean|) $) 27)) (|ground| ((|#2| $) 29)) (|exquo| (((|Union| $ "failed") $ $) NIL) (((|Union| $ "failed") $ |#2|) 45)) (|content| ((|#2| $) 48)) (|coefficients| (((|List| |#2|) $) 38)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) 23)) (/ (($ $ |#2|) 42))) │ │ │ -(((|FiniteAbelianMonoidRing&| |#1| |#2| |#3|) (CATEGORY |domain| (SIGNATURE |primitivePart| (|#1| |#1|)) (SIGNATURE |content| (|#2| |#1|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#2|)) (SIGNATURE |binomThmExpt| (|#1| |#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |pomopo!| (|#1| |#1| |#2| |#3| |#1|)) (SIGNATURE |mapExponents| (|#1| (|Mapping| |#3| |#3|) |#1|)) (SIGNATURE |coefficients| ((|List| |#2|) |#1|)) (SIGNATURE |ground| (|#2| |#1|)) (SIGNATURE |ground?| ((|Boolean|) |#1|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE / (|#1| |#1| |#2|))) (|FiniteAbelianMonoidRing| |#2| |#3|) (|Ring|) (|OrderedAbelianMonoid|)) (T |FiniteAbelianMonoidRing&|)) │ │ │ +(|AssociationListAggregate| |#1| |#2|) │ │ │ +((|eval| (($ $ (|List| |#1|) (|List| |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (|Equation| |#1|)) 9) (($ $ (|List| (|Equation| |#1|))) 8))) │ │ │ +(((|Evalable| |#1|) (|Category|) (|SetCategory|)) (T |Evalable|)) │ │ │ +((|eval| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Equation| *3)) (|ofCategory| *1 (|Evalable| *3)) (|ofCategory| *3 (|SetCategory|)))) (|eval| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Equation| *3))) (|ofCategory| *1 (|Evalable| *3)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ +(|Join| (|InnerEvalable| |t#1| |t#1|) (CATEGORY |domain| (SIGNATURE |eval| ($ $ (|Equation| |t#1|))) (SIGNATURE |eval| ($ $ (|List| (|Equation| |t#1|)))))) │ │ │ +(((|InnerEvalable| |#1| |#1|) . T)) │ │ │ +((|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) 13))) │ │ │ +(((|FractionFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)))) (|IntegralDomain|) (|IntegralDomain|)) (T |FractionFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Fraction| *5)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|IntegralDomain|)) (|isDomain| *2 (|Fraction| *6)) (|isDomain| *1 (|FractionFunctions2| *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| ((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)))) │ │ │ +((|transcendent?| (((|Boolean|) $) 13)) (|algebraic?| (((|Boolean|) $) 12)) (|Frobenius| (($ $) 17) (($ $ (|NonNegativeInteger|)) 18))) │ │ │ +(((|ExtensionField&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |Frobenius| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |Frobenius| (|#1| |#1|)) (SIGNATURE |transcendent?| ((|Boolean|) |#1|)) (SIGNATURE |algebraic?| ((|Boolean|) |#1|))) (|ExtensionField| |#2|) (|Field|)) (T |ExtensionField&|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |primitivePart| (|#1| |#1|)) (SIGNATURE |content| (|#2| |#1|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#2|)) (SIGNATURE |binomThmExpt| (|#1| |#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |pomopo!| (|#1| |#1| |#2| |#3| |#1|)) (SIGNATURE |mapExponents| (|#1| (|Mapping| |#3| |#3|) |#1|)) (SIGNATURE |coefficients| ((|List| |#2|) |#1|)) (SIGNATURE |ground| (|#2| |#1|)) (SIGNATURE |ground?| ((|Boolean|) |#1|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE / (|#1| |#1| |#2|))) │ │ │ -((|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) 22)) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) 12)) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) 21))) │ │ │ -(((|FiniteLinearAggregateSort| |#1| |#2|) (CATEGORY |package| (SIGNATURE |quickSort| (|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|)) (SIGNATURE |heapSort| (|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|)) (SIGNATURE |shellSort| (|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|))) (|Type|) (|Join| (|FiniteLinearAggregate| |#1|) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|)))) (T |FiniteLinearAggregateSort|)) │ │ │ -((|shellSort| (*1 *2 *3 *2) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *1 (|FiniteLinearAggregateSort| *4 *2)) (|ofCategory| *2 (|Join| (|FiniteLinearAggregate| *4) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|)))))) (|heapSort| (*1 *2 *3 *2) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *1 (|FiniteLinearAggregateSort| *4 *2)) (|ofCategory| *2 (|Join| (|FiniteLinearAggregate| *4) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|)))))) (|quickSort| (*1 *2 *3 *2) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4 *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *1 (|FiniteLinearAggregateSort| *4 *2)) (|ofCategory| *2 (|Join| (|FiniteLinearAggregate| *4) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|))))))) │ │ │ -(CATEGORY |package| (SIGNATURE |quickSort| (|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|)) (SIGNATURE |heapSort| (|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|)) (SIGNATURE |shellSort| (|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|))) │ │ │ -((|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) 23)) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) 15)) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) 21))) │ │ │ -(((|FiniteLinearAggregateFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |map| (|#4| (|Mapping| |#3| |#1|) |#2|)) (SIGNATURE |reduce| (|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|)) (SIGNATURE |scan| (|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|))) (|Type|) (|FiniteLinearAggregate| |#1|) (|Type|) (|FiniteLinearAggregate| |#3|)) (T |FiniteLinearAggregateFunctions2|)) │ │ │ -((|scan| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *5 *6 *5)) (|ofCategory| *6 (|Type|)) (|ofCategory| *5 (|Type|)) (|ofCategory| *2 (|FiniteLinearAggregate| *5)) (|isDomain| *1 (|FiniteLinearAggregateFunctions2| *6 *4 *5 *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *6)))) (|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) (|ofCategory| *5 (|Type|)) (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|FiniteLinearAggregateFunctions2| *5 *4 *2 *6)) (|ofCategory| *4 (|FiniteLinearAggregate| *5)) (|ofCategory| *6 (|FiniteLinearAggregate| *2)))) (|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|ofCategory| *2 (|FiniteLinearAggregate| *6)) (|isDomain| *1 (|FiniteLinearAggregateFunctions2| *5 *4 *6 *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *5))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| (|#4| (|Mapping| |#3| |#1|) |#2|)) (SIGNATURE |reduce| (|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|)) (SIGNATURE |scan| (|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 50 (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) 51 (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) 53 (|has| |#1| (|IntegralDomain|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 86 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) 84 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#1| "failed") $) 83)) (|retract| (((|Integer|) $) 87 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) 85 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1| $) 82)) (|reductum| (($ $) 59)) (|recip| (((|Union| $ "failed") $) 33)) (|primitivePart| (($ $) 71 (|has| |#1| (|GcdDomain|)))) (|pomopo!| (($ $ |#1| |#2| $) 75)) (|one?| (((|Boolean|) $) 30)) (|numberOfMonomials| (((|NonNegativeInteger|) $) 78)) (|monomial?| (((|Boolean|) $) 61)) (|monomial| (($ |#1| |#2|) 60)) (|minimumDegree| ((|#2| $) 77)) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) 76)) (|map| (($ (|Mapping| |#1| |#1|) $) 62)) (|leadingMonomial| (($ $) 64)) (|leadingCoefficient| ((|#1| $) 65)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|ground?| (((|Boolean|) $) 81)) (|ground| ((|#1| $) 80)) (|exquo| (((|Union| $ "failed") $ $) 49 (|has| |#1| (|IntegralDomain|))) (((|Union| $ "failed") $ |#1|) 73 (|has| |#1| (|IntegralDomain|)))) (|degree| ((|#2| $) 63)) (|content| ((|#1| $) 72 (|has| |#1| (|GcdDomain|)))) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 48 (|has| |#1| (|IntegralDomain|))) (($ |#1|) 46) (($ (|Fraction| (|Integer|))) 56 (OR (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) (|coefficients| (((|List| |#1|) $) 79)) (|coefficient| ((|#1| $ |#2|) 58)) (|charthRoot| (((|Union| $ "failed") $) 47 (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) 74 (|has| |#1| (|CommutativeRing|)))) (|associates?| (((|Boolean|) $ $) 52 (|has| |#1| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (/ (($ $ |#1|) 57 (|has| |#1| (|Field|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (|Fraction| (|Integer|)) $) 55 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) 54 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ -(((|FiniteAbelianMonoidRing| |#1| |#2|) (|Category|) (|Ring|) (|OrderedAbelianMonoid|)) (T |FiniteAbelianMonoidRing|)) │ │ │ -((|ground?| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|Boolean|)))) (|ground| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *2 *3)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|)))) (|coefficients| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|List| *3)))) (|numberOfMonomials| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|minimumDegree| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|mapExponents| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *4 *4)) (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)))) (|pomopo!| (*1 *1 *1 *2 *3 *1) (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)))) (|binomThmExpt| (*1 *1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|FiniteAbelianMonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|ofCategory| *3 (|CommutativeRing|)))) (|exquo| (*1 *1 *1 *2) (|partial| AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|IntegralDomain|)))) (|content| (*1 *2 *1) (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *2 *3)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|GcdDomain|)))) (|primitivePart| (*1 *1 *1) (AND (|ofCategory| *1 (|FiniteAbelianMonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|GcdDomain|))))) │ │ │ -(|Join| (|AbelianMonoidRing| |t#1| |t#2|) (|FullyRetractableTo| |t#1|) (CATEGORY |domain| (SIGNATURE |ground?| ((|Boolean|) $)) (SIGNATURE |ground| (|t#1| $)) (SIGNATURE |coefficients| ((|List| |t#1|) $)) (SIGNATURE |numberOfMonomials| ((|NonNegativeInteger|) $)) (SIGNATURE |minimumDegree| (|t#2| $)) (SIGNATURE |mapExponents| ($ (|Mapping| |t#2| |t#2|) $)) (SIGNATURE |pomopo!| ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (|CommutativeRing|)) (SIGNATURE |binomThmExpt| ($ $ $ (|NonNegativeInteger|))) |noBranch|) (IF (|has| |t#1| (|IntegralDomain|)) (SIGNATURE |exquo| ((|Union| $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (|GcdDomain|)) (PROGN (SIGNATURE |content| (|t#1| $)) (SIGNATURE |primitivePart| ($ $))) |noBranch|))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| |#2|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) |has| |#1| (|IntegralDomain|)) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|EntireRing|) |has| |#1| (|IntegralDomain|)) ((|FullyRetractableTo| |#1|) . T) ((|IntegralDomain|) |has| |#1| (|IntegralDomain|)) ((|LeftModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Module| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) |has| |#1| (|IntegralDomain|)) ((|Monoid|) . T) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RightModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|size| (((|NonNegativeInteger|) $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL)) (|retract| ((|#1| $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|one?| (((|Boolean|) $) 14)) (|nthFactor| ((|#1| $ (|Integer|)) NIL)) (|nthExpon| (((|Integer|) $ (|Integer|)) NIL)) (|mapGen| (($ (|Mapping| |#1| |#1|) $) 32)) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) 24)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) 26)) (|hash| (((|SingleInteger|) $) NIL)) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) 28)) (|conjugate| (($ $ $) NIL)) (|commutator| (($ $ $) NIL)) (|coerce| (((|OutputForm|) $) 38) (($ |#1|) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|One| (($) 9 T CONST)) (= (((|Boolean|) $ $) NIL)) (/ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL) (($ |#1| (|Integer|)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) │ │ │ -(((|FreeGroup| |#1|) (|Join| (|Group|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE * ($ |#1| $)) (SIGNATURE * ($ $ |#1|)) (SIGNATURE ** ($ |#1| (|Integer|))) (SIGNATURE |size| ((|NonNegativeInteger|) $)) (SIGNATURE |nthExpon| ((|Integer|) $ (|Integer|))) (SIGNATURE |nthFactor| (|#1| $ (|Integer|))) (SIGNATURE |mapExpon| ($ (|Mapping| (|Integer|) (|Integer|)) $)) (SIGNATURE |mapGen| ($ (|Mapping| |#1| |#1|) $)) (SIGNATURE |factors| ((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $)))) (|SetCategory|)) (T |FreeGroup|)) │ │ │ -((* (*1 *1 *2 *1) (AND (|isDomain| *1 (|FreeGroup| *2)) (|ofCategory| *2 (|SetCategory|)))) (* (*1 *1 *1 *2) (AND (|isDomain| *1 (|FreeGroup| *2)) (|ofCategory| *2 (|SetCategory|)))) (** (*1 *1 *2 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|FreeGroup| *2)) (|ofCategory| *2 (|SetCategory|)))) (|size| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|FreeGroup| *3)) (|ofCategory| *3 (|SetCategory|)))) (|nthExpon| (*1 *2 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|FreeGroup| *3)) (|ofCategory| *3 (|SetCategory|)))) (|nthFactor| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|FreeGroup| *2)) (|ofCategory| *2 (|SetCategory|)))) (|mapExpon| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Integer|) (|Integer|))) (|isDomain| *1 (|FreeGroup| *3)) (|ofCategory| *3 (|SetCategory|)))) (|mapGen| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|FreeGroup| *3)))) (|factors| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |gen| *3) (|:| |exp| (|Integer|))))) (|isDomain| *1 (|FreeGroup| *3)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ -(|Join| (|Group|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE * ($ |#1| $)) (SIGNATURE * ($ $ |#1|)) (SIGNATURE ** ($ |#1| (|Integer|))) (SIGNATURE |size| ((|NonNegativeInteger|) $)) (SIGNATURE |nthExpon| ((|Integer|) $ (|Integer|))) (SIGNATURE |nthFactor| (|#1| $ (|Integer|))) (SIGNATURE |mapExpon| ($ (|Mapping| (|Integer|) (|Integer|)) $)) (SIGNATURE |mapGen| ($ (|Mapping| |#1| |#1|) $)) (SIGNATURE |factors| ((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|reductum| (($ $) NIL)) (|monomial| (($ |#1| |#2|) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|leadingSupport| ((|#2| $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 27)) (|Zero| (($) 12 T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 18))) │ │ │ -(((|FreeModule| |#1| |#2|) (|Join| (|BiModule| |#1| |#1|) (|IndexedDirectProductCategory| |#1| |#2|) (CATEGORY |package| (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|Module| |#1|)) |noBranch|))) (|Ring|) (|OrderedSet|)) (T |FreeModule|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |Frobenius| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |Frobenius| (|#1| |#1|)) (SIGNATURE |transcendent?| ((|Boolean|) |#1|)) (SIGNATURE |algebraic?| ((|Boolean|) |#1|))) │ │ │ +((|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) 23))) │ │ │ +(((|UnivariatePuiseuxSeriesFunctions2| |#1| |#2| |#3| |#4| |#5| |#6|) (CATEGORY |package| (SIGNATURE |map| ((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)))) (|Ring|) (|Ring|) (|Symbol|) (|Symbol|) |#1| |#2|) (T |UnivariatePuiseuxSeriesFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|UnivariatePuiseuxSeries| *5 *7 *9)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|)) (|ofType| *7 (|Symbol|)) (|ofType| *9 *5) (|ofType| *10 *6) (|isDomain| *2 (|UnivariatePuiseuxSeries| *6 *8 *10)) (|isDomain| *1 (|UnivariatePuiseuxSeriesFunctions2| *5 *6 *7 *8 *9 *10)) (|ofType| *8 (|Symbol|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| ((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 17)) (|variables| (((|List| |#2|) $) 160)) (|univariate| (((|SparseUnivariatePolynomial| $) $ |#2|) 54) (((|SparseUnivariatePolynomial| |#1|) $) 43)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 110 (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) 112 (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) 114 (|has| |#1| (|IntegralDomain|)))) (|totalDegree| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|List| |#2|)) 193)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|squareFreePart| (($ $) NIL (|has| |#1| (|GcdDomain|)))) (|squareFree| (((|Factored| $) $) NIL (|has| |#1| (|GcdDomain|)))) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) 157) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| |#2| "failed") $) NIL)) (|retract| ((|#1| $) 155) (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) ((|#2| $) NIL)) (|resultant| (($ $ $ |#2|) NIL (|has| |#1| (|CommutativeRing|)))) (|reductum| (($ $) 197)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| |#1|) (|Matrix| $)) NIL)) (|recip| (((|Union| $ "failed") $) 82)) (|primitivePart| (($ $) NIL (|has| |#1| (|GcdDomain|))) (($ $ |#2|) NIL (|has| |#1| (|GcdDomain|)))) (|primitiveMonomials| (((|List| $) $) NIL)) (|prime?| (((|Boolean|) $) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|pomopo!| (($ $ |#1| (|IndexedExponents| |#2|) $) NIL)) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) NIL (AND (|has| |#1| (|PatternMatchable| (|Float|))) (|has| |#2| (|PatternMatchable| (|Float|))))) (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) NIL (AND (|has| |#1| (|PatternMatchable| (|Integer|))) (|has| |#2| (|PatternMatchable| (|Integer|)))))) (|one?| (((|Boolean|) $) 19)) (|numberOfMonomials| (((|NonNegativeInteger|) $) 26)) (|multivariate| (($ (|SparseUnivariatePolynomial| |#1|) |#2|) 48) (($ (|SparseUnivariatePolynomial| $) |#2|) 64)) (|monomials| (((|List| $) $) NIL)) (|monomial?| (((|Boolean|) $) 31)) (|monomial| (($ |#1| (|IndexedExponents| |#2|)) 71) (($ $ |#2| (|NonNegativeInteger|)) 52) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) NIL)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#2|) NIL)) (|minimumDegree| (((|IndexedExponents| |#2|) $) 187) (((|NonNegativeInteger|) $ |#2|) 188) (((|List| (|NonNegativeInteger|)) $ (|List| |#2|)) 189)) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|mapExponents| (($ (|Mapping| (|IndexedExponents| |#2|) (|IndexedExponents| |#2|)) $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) 122)) (|mainVariable| (((|Union| |#2| "failed") $) 162)) (|leadingMonomial| (($ $) 196)) (|leadingCoefficient| ((|#1| $) 37)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL (|has| |#1| (|GcdDomain|)))) (|lcm| (($ (|List| $)) NIL (|has| |#1| (|GcdDomain|))) (($ $ $) NIL (|has| |#1| (|GcdDomain|)))) (|latex| (((|String|) $) NIL)) (|isTimes| (((|Union| (|List| $) "failed") $) NIL)) (|isPlus| (((|Union| (|List| $) "failed") $) NIL)) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|ground?| (((|Boolean|) $) 32)) (|ground| ((|#1| $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 140 (|has| |#1| (|GcdDomain|)))) (|gcd| (($ (|List| $)) 145 (|has| |#1| (|GcdDomain|))) (($ $ $) 132 (|has| |#1| (|GcdDomain|)))) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factor| (((|Factored| $) $) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|exquo| (((|Union| $ "failed") $ |#1|) NIL (|has| |#1| (|IntegralDomain|))) (((|Union| $ "failed") $ $) 120 (|has| |#1| (|IntegralDomain|)))) (|eval| (($ $ (|List| (|Equation| $))) NIL) (($ $ (|Equation| $)) NIL) (($ $ $ $) NIL) (($ $ (|List| $) (|List| $)) NIL) (($ $ |#2| |#1|) 165) (($ $ (|List| |#2|) (|List| |#1|)) 178) (($ $ |#2| $) 164) (($ $ (|List| |#2|) (|List| $)) 177)) (|discriminant| (($ $ |#2|) NIL (|has| |#1| (|CommutativeRing|)))) (|differentiate| (($ $ |#2|) 195) (($ $ (|List| |#2|)) NIL) (($ $ |#2| (|NonNegativeInteger|)) NIL) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) NIL)) (|degree| (((|IndexedExponents| |#2|) $) 183) (((|NonNegativeInteger|) $ |#2|) 179) (((|List| (|NonNegativeInteger|)) $ (|List| |#2|)) 181)) (|convert| (((|Pattern| (|Float|)) $) NIL (AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Float|)))))) (((|Pattern| (|Integer|)) $) NIL (AND (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#2| (|ConvertibleTo| (|Pattern| (|Integer|)))))) (((|InputForm|) $) NIL (AND (|has| |#1| (|ConvertibleTo| (|InputForm|))) (|has| |#2| (|ConvertibleTo| (|InputForm|)))))) (|content| ((|#1| $) 128 (|has| |#1| (|GcdDomain|))) (($ $ |#2|) 131 (|has| |#1| (|GcdDomain|)))) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))) (|coerce| (((|OutputForm|) $) 151) (($ (|Integer|)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (|IntegralDomain|))) (($ (|Fraction| (|Integer|))) NIL (OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))))) (|coefficients| (((|List| |#1|) $) 154)) (|coefficient| ((|#1| $ (|IndexedExponents| |#2|)) 73) (($ $ |#2| (|NonNegativeInteger|)) NIL) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) NIL)) (|charthRoot| (((|Union| $ "failed") $) NIL (OR (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) (|has| |#1| (|CharacteristicNonZero|))))) (|characteristic| (((|NonNegativeInteger|)) 79)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|CommutativeRing|)))) (|associates?| (((|Boolean|) $ $) 117 (|has| |#1| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) 102) (($ $ (|NonNegativeInteger|)) 104)) (|Zero| (($) 12 T CONST)) (|One| (($) 14 T CONST)) (D (($ $ |#2|) NIL) (($ $ (|List| |#2|)) NIL) (($ $ |#2| (|NonNegativeInteger|)) NIL) (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) NIL)) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) 97)) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (/ (($ $ |#1|) 126 (|has| |#1| (|Field|)))) (- (($ $) 85) (($ $ $) 95)) (+ (($ $ $) 49)) (** (($ $ (|PositiveInteger|)) 103) (($ $ (|NonNegativeInteger|)) 100)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 88) (($ $ $) 65) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) │ │ │ +(((|SparseMultivariatePolynomial| |#1| |#2|) (|PolynomialCategory| |#1| (|IndexedExponents| |#2|) |#2|) (|Ring|) (|OrderedSet|)) (T |SparseMultivariatePolynomial|)) │ │ │ NIL │ │ │ -(|Join| (|BiModule| |#1| |#1|) (|IndexedDirectProductCategory| |#1| |#2|) (CATEGORY |package| (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|Module| |#1|)) |noBranch|))) │ │ │ -((|primeFrobenius| (($ $) 10) (($ $ (|NonNegativeInteger|)) 11))) │ │ │ -(((|FieldOfPrimeCharacteristic&| |#1|) (CATEGORY |domain| (SIGNATURE |primeFrobenius| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |primeFrobenius| (|#1| |#1|))) (|FieldOfPrimeCharacteristic|)) (T |FieldOfPrimeCharacteristic&|)) │ │ │ +(|PolynomialCategory| |#1| (|IndexedExponents| |#2|) |#2|) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|zero| (($ (|NonNegativeInteger|)) NIL (|has| |#1| (|AbelianMonoid|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (((|Boolean|) $) NIL (|has| |#1| (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| |#1| (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|remove| (($ |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) NIL)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) NIL) (((|Integer|) |#1| $) NIL (|has| |#1| (|SetCategory|))) (((|Integer|) |#1| $ (|Integer|)) NIL (|has| |#1| (|SetCategory|)))) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|outerProduct| (((|Matrix| |#1|) $ $) NIL (|has| |#1| (|Ring|)))) (|new| (($ (|NonNegativeInteger|) |#1|) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL)) (|magnitude| ((|#1| $) NIL (AND (|has| |#1| (|RadicalCategory|)) (|has| |#1| (|Ring|))))) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|length| ((|#1| $) NIL (AND (|has| |#1| (|RadicalCategory|)) (|has| |#1| (|Ring|))))) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|insert| (($ |#1| $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|first| ((|#1| $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) NIL)) (|fill!| (($ $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#1| $ (|Integer|) |#1|) NIL) ((|#1| $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|dot| ((|#1| $ $) NIL (|has| |#1| (|Ring|)))) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|cross| (($ $ $) NIL (|has| |#1| (|Ring|)))) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) NIL)) (|concat| (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (|List| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (- (($ $) NIL (|has| |#1| (|AbelianGroup|))) (($ $ $) NIL (|has| |#1| (|AbelianGroup|)))) (+ (($ $ $) NIL (|has| |#1| (|AbelianSemiGroup|)))) (* (($ (|Integer|) $) NIL (|has| |#1| (|AbelianGroup|))) (($ |#1| $) NIL (|has| |#1| (|Monoid|))) (($ $ |#1|) NIL (|has| |#1| (|Monoid|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|IndexedVector| |#1| |#2|) (|VectorCategory| |#1|) (|Type|) (|Integer|)) (T |IndexedVector|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |primeFrobenius| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |primeFrobenius| (|#1| |#1|))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#2| "failed") $) 25)) (|retract| ((|#2| $) 27)) (|reductum| (($ $) NIL)) (|numberOfMonomials| (((|NonNegativeInteger|) $) 10)) (|monomials| (((|List| $) $) 20)) (|monomial?| (((|Boolean|) $) NIL)) (|monom| (($ |#2| |#1|) 18)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|listOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (|leadingMonomial| ((|#2| $) 15)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 43) (($ |#2|) 26)) (|coefficients| (((|List| |#1|) $) 17)) (|coefficient| ((|#1| $ |#2|) 45)) (|Zero| (($) 28 T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 33) (($ |#2| |#1|) 34))) │ │ │ -(((|FreeModule1| |#1| |#2|) (|Join| (|FreeModuleCat| |#1| |#2|) (CATEGORY |domain| (SIGNATURE * ($ |#2| |#1|)))) (|Ring|) (|OrderedSet|)) (T |FreeModule1|)) │ │ │ -((* (*1 *1 *2 *3) (AND (|isDomain| *1 (|FreeModule1| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedSet|))))) │ │ │ -(|Join| (|FreeModuleCat| |#1| |#2|) (CATEGORY |domain| (SIGNATURE * ($ |#2| |#1|)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 73)) (|squareFree| (((|Factored| $) $) 72)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|sample| (($) 16 T CONST)) (|rem| (($ $ $) 54)) (|recip| (((|Union| $ "failed") $) 33)) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|primeFrobenius| (($ $) 77) (($ $ (|NonNegativeInteger|)) 76)) (|prime?| (((|Boolean|) $) 71)) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) 79)) (|one?| (((|Boolean|) $) 30)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 70)) (|hash| (((|SingleInteger|) $) 10)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|factor| (((|Factored| $) $) 74)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) 78)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Fraction| (|Integer|))) 65)) (|charthRoot| (((|Union| $ "failed") $) 80)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 38)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 69)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (/ (($ $ $) 64)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 68)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 67) (($ (|Fraction| (|Integer|)) $) 66))) │ │ │ -(((|FieldOfPrimeCharacteristic|) (|Category|)) (T |FieldOfPrimeCharacteristic|)) │ │ │ -((|order| (*1 *2 *1) (AND (|ofCategory| *1 (|FieldOfPrimeCharacteristic|)) (|isDomain| *2 (|OnePointCompletion| (|PositiveInteger|))))) (|discreteLog| (*1 *2 *1 *1) (|partial| AND (|ofCategory| *1 (|FieldOfPrimeCharacteristic|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|primeFrobenius| (*1 *1 *1) (|ofCategory| *1 (|FieldOfPrimeCharacteristic|))) (|primeFrobenius| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|FieldOfPrimeCharacteristic|)) (|isDomain| *2 (|NonNegativeInteger|))))) │ │ │ -(|Join| (|Field|) (|CharacteristicNonZero|) (CATEGORY |domain| (SIGNATURE |order| ((|OnePointCompletion| (|PositiveInteger|)) $)) (SIGNATURE |discreteLog| ((|Union| (|NonNegativeInteger|) "failed") $ $)) (SIGNATURE |primeFrobenius| ($ $)) (SIGNATURE |primeFrobenius| ($ $ (|NonNegativeInteger|))))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|UniqueFactorizationDomain|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|sup| (($ $ $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|reductum| (($ $) NIL)) (|monomial| (($ (|NonNegativeInteger|) |#1|) NIL)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|map| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) NIL)) (|leadingSupport| ((|#1| $) NIL)) (|leadingCoefficient| (((|NonNegativeInteger|) $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 20)) (|Zero| (($) NIL T CONST)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) NIL)) (+ (($ $ $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL))) │ │ │ -(((|IndexedExponents| |#1|) (|Join| (|OrderedAbelianMonoidSup|) (|IndexedDirectProductCategory| (|NonNegativeInteger|) |#1|)) (|OrderedSet|)) (T |IndexedExponents|)) │ │ │ +(|VectorCategory| |#1|) │ │ │ NIL │ │ │ -(|Join| (|OrderedAbelianMonoidSup|) (|IndexedDirectProductCategory| (|NonNegativeInteger|) |#1|)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|size| (((|NonNegativeInteger|) $) 56)) (|sample| (($) NIL T CONST)) (|rquo| (((|Union| $ "failed") $ $) 58)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL)) (|retract| ((|#1| $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (|one?| (((|Boolean|) $) 14)) (|nthFactor| ((|#1| $ (|Integer|)) NIL)) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) NIL)) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|mapGen| (($ (|Mapping| |#1| |#1|) $) 37)) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) 34)) (|lquo| (((|Union| $ "failed") $ $) 49)) (|latex| (((|String|) $) NIL)) (|hcrf| (($ $ $) 25)) (|hclf| (($ $ $) 23)) (|hash| (((|SingleInteger|) $) NIL)) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) 31)) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (|coerce| (((|OutputForm|) $) 21) (($ |#1|) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|One| (($) 9 T CONST)) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) 41)) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) 60 (|has| |#1| (|OrderedSet|)))) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ |#1| (|NonNegativeInteger|)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27))) │ │ │ -(((|FreeMonoid| |#1|) (|Join| (|Monoid|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE * ($ |#1| $)) (SIGNATURE * ($ $ |#1|)) (SIGNATURE ** ($ |#1| (|NonNegativeInteger|))) (SIGNATURE |hclf| ($ $ $)) (SIGNATURE |hcrf| ($ $ $)) (SIGNATURE |lquo| ((|Union| $ "failed") $ $)) (SIGNATURE |rquo| ((|Union| $ "failed") $ $)) (SIGNATURE |divide| ((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (SIGNATURE |overlap| ((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (SIGNATURE |size| ((|NonNegativeInteger|) $)) (SIGNATURE |factors| ((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $)) (SIGNATURE |nthExpon| ((|NonNegativeInteger|) $ (|Integer|))) (SIGNATURE |nthFactor| (|#1| $ (|Integer|))) (SIGNATURE |mapExpon| ($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $)) (SIGNATURE |mapGen| ($ (|Mapping| |#1| |#1|) $)) (IF (|has| |#1| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |noBranch|))) (|SetCategory|)) (T |FreeMonoid|)) │ │ │ -((* (*1 *1 *2 *1) (AND (|isDomain| *1 (|FreeMonoid| *2)) (|ofCategory| *2 (|SetCategory|)))) (* (*1 *1 *1 *2) (AND (|isDomain| *1 (|FreeMonoid| *2)) (|ofCategory| *2 (|SetCategory|)))) (** (*1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|FreeMonoid| *2)) (|ofCategory| *2 (|SetCategory|)))) (|hclf| (*1 *1 *1 *1) (AND (|isDomain| *1 (|FreeMonoid| *2)) (|ofCategory| *2 (|SetCategory|)))) (|hcrf| (*1 *1 *1 *1) (AND (|isDomain| *1 (|FreeMonoid| *2)) (|ofCategory| *2 (|SetCategory|)))) (|lquo| (*1 *1 *1 *1) (|partial| AND (|isDomain| *1 (|FreeMonoid| *2)) (|ofCategory| *2 (|SetCategory|)))) (|rquo| (*1 *1 *1 *1) (|partial| AND (|isDomain| *1 (|FreeMonoid| *2)) (|ofCategory| *2 (|SetCategory|)))) (|divide| (*1 *2 *1 *1) (|partial| AND (|isDomain| *2 (|Record| (|:| |lm| (|FreeMonoid| *3)) (|:| |rm| (|FreeMonoid| *3)))) (|isDomain| *1 (|FreeMonoid| *3)) (|ofCategory| *3 (|SetCategory|)))) (|overlap| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Record| (|:| |lm| (|FreeMonoid| *3)) (|:| |mm| (|FreeMonoid| *3)) (|:| |rm| (|FreeMonoid| *3)))) (|isDomain| *1 (|FreeMonoid| *3)) (|ofCategory| *3 (|SetCategory|)))) (|size| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|FreeMonoid| *3)) (|ofCategory| *3 (|SetCategory|)))) (|factors| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |gen| *3) (|:| |exp| (|NonNegativeInteger|))))) (|isDomain| *1 (|FreeMonoid| *3)) (|ofCategory| *3 (|SetCategory|)))) (|nthExpon| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|FreeMonoid| *4)) (|ofCategory| *4 (|SetCategory|)))) (|nthFactor| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|FreeMonoid| *2)) (|ofCategory| *2 (|SetCategory|)))) (|mapExpon| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|))) (|isDomain| *1 (|FreeMonoid| *3)) (|ofCategory| *3 (|SetCategory|)))) (|mapGen| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|FreeMonoid| *3))))) │ │ │ -(|Join| (|Monoid|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE * ($ |#1| $)) (SIGNATURE * ($ $ |#1|)) (SIGNATURE ** ($ |#1| (|NonNegativeInteger|))) (SIGNATURE |hclf| ($ $ $)) (SIGNATURE |hcrf| ($ $ $)) (SIGNATURE |lquo| ((|Union| $ "failed") $ $)) (SIGNATURE |rquo| ((|Union| $ "failed") $ $)) (SIGNATURE |divide| ((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (SIGNATURE |overlap| ((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (SIGNATURE |size| ((|NonNegativeInteger|) $)) (SIGNATURE |factors| ((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $)) (SIGNATURE |nthExpon| ((|NonNegativeInteger|) $ (|Integer|))) (SIGNATURE |nthFactor| (|#1| $ (|Integer|))) (SIGNATURE |mapExpon| ($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $)) (SIGNATURE |mapGen| ($ (|Mapping| |#1| |#1|) $)) (IF (|has| |#1| (|OrderedSet|)) (ATTRIBUTE (|OrderedSet|)) |noBranch|))) │ │ │ -((|perfectSquare?| (((|Boolean|) |#1|) 16)) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) 14)) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) 30) (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) 18)) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) 19)) (|approxSqrt| ((|#1| |#1|) 31)) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) 33))) │ │ │ -(((|IntegerRoots| |#1|) (CATEGORY |package| (SIGNATURE |perfectNthPower?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |perfectNthRoot| ((|Union| |#1| "failed") |#1| (|NonNegativeInteger|))) (SIGNATURE |perfectNthRoot| ((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|)) (SIGNATURE |approxNthRoot| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |perfectSquare?| ((|Boolean|) |#1|)) (SIGNATURE |perfectSqrt| ((|Union| |#1| "failed") |#1|)) (SIGNATURE |approxSqrt| (|#1| |#1|))) (|IntegerNumberSystem|)) (T |IntegerRoots|)) │ │ │ -((|approxSqrt| (*1 *2 *2) (AND (|isDomain| *1 (|IntegerRoots| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)))) (|perfectSqrt| (*1 *2 *2) (|partial| AND (|isDomain| *1 (|IntegerRoots| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)))) (|perfectSquare?| (*1 *2 *3) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IntegerRoots| *3)) (|ofCategory| *3 (|IntegerNumberSystem|)))) (|approxNthRoot| (*1 *2 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|IntegerRoots| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)))) (|perfectNthRoot| (*1 *2 *3) (AND (|isDomain| *2 (|Record| (|:| |base| *3) (|:| |exponent| (|NonNegativeInteger|)))) (|isDomain| *1 (|IntegerRoots| *3)) (|ofCategory| *3 (|IntegerNumberSystem|)))) (|perfectNthRoot| (*1 *2 *2 *3) (|partial| AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|IntegerRoots| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)))) (|perfectNthPower?| (*1 *2 *3 *4) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IntegerRoots| *3)) (|ofCategory| *3 (|IntegerNumberSystem|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |perfectNthPower?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |perfectNthRoot| ((|Union| |#1| "failed") |#1| (|NonNegativeInteger|))) (SIGNATURE |perfectNthRoot| ((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|)) (SIGNATURE |approxNthRoot| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |perfectSquare?| ((|Boolean|) |#1|)) (SIGNATURE |perfectSqrt| ((|Union| |#1| "failed") |#1|)) (SIGNATURE |approxSqrt| (|#1| |#1|))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sqrt| (($ $ (|Integer|)) 65)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|sample| (($) NIL T CONST)) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) 71)) (|rem| (($ $ $) NIL)) (|recip| (((|Union| $ "failed") $) 57)) (|quotientByP| (($ $) 33)) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|order| (((|NonNegativeInteger|) $) 15)) (|one?| (((|Boolean|) $) NIL)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|modulus| (((|Integer|)) 27)) (|moduloP| (((|Integer|) $) 31)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|extend| (($ $ (|Integer|)) 21)) (|exquo| (((|Union| $ "failed") $ $) 58)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) 16)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 60)) (|digits| (((|Stream| (|Integer|)) $) 18)) (|complete| (($ $) 23)) (|coerce| (((|OutputForm|) $) 85) (($ (|Integer|)) 51) (($ $) NIL)) (|characteristic| (((|NonNegativeInteger|)) 14)) (|associates?| (((|Boolean|) $ $) NIL)) (|approximate| (((|Integer|) $ (|Integer|)) 35)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 34 T CONST)) (|One| (($) 19 T CONST)) (= (((|Boolean|) $ $) 38)) (- (($ $) 50) (($ $ $) 36)) (+ (($ $ $) 49)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 53) (($ $ $) 54))) │ │ │ -(((|InnerPAdicInteger| |#1| |#2|) (|PAdicIntegerCategory| |#1|) (|Integer|) (|Boolean|)) (T |InnerPAdicInteger|)) │ │ │ +(((|NullSquareAttribute|) (|Category|)) (T |NullSquareAttribute|)) │ │ │ NIL │ │ │ -(|PAdicIntegerCategory| |#1|) │ │ │ -((|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) 11) (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) 26))) │ │ │ -(((|IntegrationResultFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|))) (SIGNATURE |map| ((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed"))) (SIGNATURE |map| ((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed"))) (SIGNATURE |map| ((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (|Field|) (|Field|)) (T |IntegrationResultFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Union| (|Record| (|:| |mainpart| *5) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|Field|)) (|isDomain| *2 (|Record| (|:| |mainpart| *6) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| *6) (|:| |logand| *6)))))) (|isDomain| *1 (|IntegrationResultFunctions2| *5 *6)))) (|map| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Mapping| *2 *5)) (|isDomain| *4 (|Union| *5 "failed")) (|ofCategory| *5 (|Field|)) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|IntegrationResultFunctions2| *5 *2)))) (|map| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Union| (|Record| (|:| |ratpart| *5) (|:| |coeff| *5)) "failed")) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|Field|)) (|isDomain| *2 (|Record| (|:| |ratpart| *6) (|:| |coeff| *6))) (|isDomain| *1 (|IntegrationResultFunctions2| *5 *6)))) (|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|IntegrationResult| *5)) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|Field|)) (|isDomain| *2 (|IntegrationResult| *6)) (|isDomain| *1 (|IntegrationResultFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|))) (SIGNATURE |map| ((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed"))) (SIGNATURE |map| ((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed"))) (SIGNATURE |map| ((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|varList| (((|List| |#1|) $) NIL)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|mirror| (($ $) 67)) (|log| (((|LiePolynomial| |#1| |#2|) $) 52)) (|listOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) 36)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) 70)) (|identification| (((|List| (|Equation| |#2|)) $ $) 33)) (|hash| (((|SingleInteger|) $) NIL)) (|exp| (($ (|LiePolynomial| |#1| |#2|)) 48)) (|conjugate| (($ $ $) NIL)) (|commutator| (($ $ $) NIL)) (|coerce| (((|OutputForm|) $) 58) (((|XDistributedPolynomial| |#1| |#2|) $) NIL) (((|XPBWPolynomial| |#1| |#2|) $) 66)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|One| (($) 53 T CONST)) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) 31)) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) 65)) (= (((|Boolean|) $ $) 54)) (/ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ $ $) 44))) │ │ │ -(((|LieExponentials| |#1| |#2| |#3|) (|Join| (|Group|) (CATEGORY |domain| (SIGNATURE |exp| ($ (|LiePolynomial| |#1| |#2|))) (SIGNATURE |log| ((|LiePolynomial| |#1| |#2|) $)) (SIGNATURE |listOfTerms| ((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $)) (SIGNATURE |coerce| ((|XDistributedPolynomial| |#1| |#2|) $)) (SIGNATURE |coerce| ((|XPBWPolynomial| |#1| |#2|) $)) (SIGNATURE |mirror| ($ $)) (SIGNATURE |varList| ((|List| |#1|) $)) (SIGNATURE |LyndonBasis| ((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|))) (SIGNATURE |LyndonCoordinates| ((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $)) (SIGNATURE |identification| ((|List| (|Equation| |#2|)) $ $)))) (|OrderedSet|) (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|)))) (|PositiveInteger|)) (T |LieExponentials|)) │ │ │ -((|exp| (*1 *1 *2) (AND (|isDomain| *2 (|LiePolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|isDomain| *1 (|LieExponentials| *3 *4 *5)) (|ofType| *5 (|PositiveInteger|)))) (|log| (*1 *2 *1) (AND (|isDomain| *2 (|LiePolynomial| *3 *4)) (|isDomain| *1 (|LieExponentials| *3 *4 *5)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *5 (|PositiveInteger|)))) (|listOfTerms| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| *3)) (|:| |c| *4)))) (|isDomain| *1 (|LieExponentials| *3 *4 *5)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *5 (|PositiveInteger|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|XDistributedPolynomial| *3 *4)) (|isDomain| *1 (|LieExponentials| *3 *4 *5)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *5 (|PositiveInteger|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|XPBWPolynomial| *3 *4)) (|isDomain| *1 (|LieExponentials| *3 *4 *5)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *5 (|PositiveInteger|)))) (|mirror| (*1 *1 *1) (AND (|isDomain| *1 (|LieExponentials| *2 *3 *4)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *4 (|PositiveInteger|)))) (|varList| (*1 *2 *1) (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|LieExponentials| *3 *4 *5)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *5 (|PositiveInteger|)))) (|LyndonBasis| (*1 *2 *3) (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|List| (|LiePolynomial| *4 *5))) (|isDomain| *1 (|LieExponentials| *4 *5 *6)) (|ofCategory| *5 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *6 (|PositiveInteger|)))) (|LyndonCoordinates| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |k| (|LyndonWord| *3)) (|:| |c| *4)))) (|isDomain| *1 (|LieExponentials| *3 *4 *5)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *5 (|PositiveInteger|)))) (|identification| (*1 *2 *1 *1) (AND (|isDomain| *2 (|List| (|Equation| *4))) (|isDomain| *1 (|LieExponentials| *3 *4 *5)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *5 (|PositiveInteger|))))) │ │ │ -(|Join| (|Group|) (CATEGORY |domain| (SIGNATURE |exp| ($ (|LiePolynomial| |#1| |#2|))) (SIGNATURE |log| ((|LiePolynomial| |#1| |#2|) $)) (SIGNATURE |listOfTerms| ((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $)) (SIGNATURE |coerce| ((|XDistributedPolynomial| |#1| |#2|) $)) (SIGNATURE |coerce| ((|XPBWPolynomial| |#1| |#2|) $)) (SIGNATURE |mirror| ($ $)) (SIGNATURE |varList| ((|List| |#1|) $)) (SIGNATURE |LyndonBasis| ((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|))) (SIGNATURE |LyndonCoordinates| ((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $)) (SIGNATURE |identification| ((|List| (|Equation| |#2|)) $ $)))) │ │ │ -((/ (($ $ |#2|) 10))) │ │ │ -(((|LieAlgebra&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE / (|#1| |#1| |#2|))) (|LieAlgebra| |#2|) (|CommutativeRing|)) (T |LieAlgebra&|)) │ │ │ +(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ +((|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) 16))) │ │ │ +(((|FindOrderFinite| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |order| ((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)))) (|Join| (|Finite|) (|Field|)) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| (|Fraction| |#2|)) (|FunctionFieldCategory| |#1| |#2| |#3|)) (T |FindOrderFinite|)) │ │ │ +((|order| (*1 *2 *3) (AND (|isDomain| *3 (|FiniteDivisor| *4 *5 *6 *7)) (|ofCategory| *4 (|Join| (|Finite|) (|Field|))) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *6 (|UnivariatePolynomialCategory| (|Fraction| *5))) (|ofCategory| *7 (|FunctionFieldCategory| *4 *5 *6)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|FindOrderFinite| *4 *5 *6 *7))))) │ │ │ +(CATEGORY |package| (SIGNATURE |order| ((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)))) │ │ │ +((|retractIfCan| (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) 73) (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) 62) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) 95) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) 84) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 51) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 40)) (|retract| (($ (|Vector| (|Expression| (|Float|)))) 69) (($ (|Vector| (|Expression| (|Integer|)))) 58) (($ (|Vector| (|Polynomial| (|Float|)))) 91) (($ (|Vector| (|Polynomial| (|Integer|)))) 80) (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 47) (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 33)) (|outputAsFortran| (((|Void|) $) 121)) (|coerce| (((|OutputForm|) $) 115) (($ (|List| (|FortranCode|))) 106) (($ (|FortranCode|)) 112) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 110) (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) 32))) │ │ │ +(((|Asp6| |#1|) (|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))))))) (|Symbol|)) (T |Asp6|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) (|isDomain| *1 (|Asp6| *3)) (|ofType| *3 (|Symbol|))))) │ │ │ +(|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))))))) │ │ │ +((|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) 22))) │ │ │ +(((|UnivariatePolynomialCategoryFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |map| (|#4| (|Mapping| |#3| |#1|) |#2|))) (|Ring|) (|UnivariatePolynomialCategory| |#1|) (|Ring|) (|UnivariatePolynomialCategory| |#3|)) (T |UnivariatePolynomialCategoryFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *6)) (|isDomain| *1 (|UnivariatePolynomialCategoryFunctions2| *5 *4 *6 *2)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| (|#4| (|Mapping| |#3| |#1|) |#2|))) │ │ │ +((|coerce| ((|#1| (|Exit|)) 11) (((|Void|) |#1|) 9))) │ │ │ +(((|ResolveLatticeCompletion| |#1|) (CATEGORY |package| (SIGNATURE |coerce| ((|Void|) |#1|)) (SIGNATURE |coerce| (|#1| (|Exit|)))) (|Type|)) (T |ResolveLatticeCompletion|)) │ │ │ +((|coerce| (*1 *2 *3) (AND (|isDomain| *3 (|Exit|)) (|isDomain| *1 (|ResolveLatticeCompletion| *2)) (|ofCategory| *2 (|Type|)))) (|coerce| (*1 *2 *3) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|ResolveLatticeCompletion| *3)) (|ofCategory| *3 (|Type|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |coerce| ((|Void|) |#1|)) (SIGNATURE |coerce| (|#1| (|Exit|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|reductum| (($ $) NIL)) (|monomial| (($ |#1| |#2|) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|leadingSupport| ((|#2| $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 27)) (|Zero| (($) 12 T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 18))) │ │ │ +(((|FreeModule| |#1| |#2|) (|Join| (|BiModule| |#1| |#1|) (|IndexedDirectProductCategory| |#1| |#2|) (CATEGORY |package| (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|Module| |#1|)) |noBranch|))) (|Ring|) (|OrderedSet|)) (T |FreeModule|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE / (|#1| |#1| |#2|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|construct| (($ $ $) 26)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (/ (($ $ |#1|) 25 (|has| |#1| (|Field|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ |#1| $) 22) (($ $ |#1|) 24))) │ │ │ -(((|LieAlgebra| |#1|) (|Category|) (|CommutativeRing|)) (T |LieAlgebra|)) │ │ │ -((|construct| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|LieAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)))) (/ (*1 *1 *1 *2) (AND (|ofCategory| *1 (|LieAlgebra| *2)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|Field|))))) │ │ │ -(|Join| (|Module| |t#1|) (CATEGORY |domain| (SIGNATURE |construct| ($ $ $)) (ATTRIBUTE |NullSquare|) (ATTRIBUTE |JacobiIdentity|) (IF (|has| |t#1| (|Field|)) (SIGNATURE / ($ $ |t#1|)) |noBranch|))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#1|) . T) ((|Module| |#1|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T)) │ │ │ +(|Join| (|BiModule| |#1| |#1|) (|IndexedDirectProductCategory| |#1| |#2|) (CATEGORY |package| (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|Module| |#1|)) |noBranch|))) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|top| ((|#1| $) 34)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|sample| (($) NIL T CONST)) (|push!| ((|#1| |#1| $) 30)) (|pop!| ((|#1| $) 28)) (|parts| (((|List| |#1|) $) 39 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 43 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 41)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|inspect| ((|#1| $) 45)) (|insert!| (($ |#1| $) 31)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|extract!| ((|#1| $) 29)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) 16)) (|empty| (($) 38)) (|depth| (((|NonNegativeInteger|) $) 26)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) 15)) (|coerce| (((|OutputForm|) $) 25 (|has| |#1| (|SetCategory|)))) (|bag| (($ (|List| |#1|)) NIL)) (|arrayStack| (($ (|List| |#1|)) 36)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 13 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 10 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|ArrayStack| |#1|) (|Join| (|StackAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |arrayStack| ($ (|List| |#1|))) (SIGNATURE |pop!| (|#1| $)) (SIGNATURE |extract!| (|#1| $)) (SIGNATURE |push!| (|#1| |#1| $)) (SIGNATURE |insert!| ($ |#1| $)) (SIGNATURE |inspect| (|#1| $)) (SIGNATURE |top| (|#1| $)) (SIGNATURE |depth| ((|NonNegativeInteger|) $)) (SIGNATURE |less?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |size?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |bag| ($ (|List| |#1|))) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |empty| ($)) (SIGNATURE |sample| ($)) (SIGNATURE |copy| ($ $)) (SIGNATURE |eq?| ((|Boolean|) $ $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (SIGNATURE |map!| ($ (|Mapping| |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |latex| ((|String|) $)) (SIGNATURE |hash| ((|SingleInteger|) $)) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE = ((|Boolean|) $ $)) (SIGNATURE ~= ((|Boolean|) $ $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (PROGN (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |#| ((|NonNegativeInteger|) $)) (SIGNATURE |parts| ((|List| |#1|) $)) (SIGNATURE |members| ((|List| |#1|) $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |member?| ((|Boolean|) |#1| $)) (SIGNATURE |count| ((|NonNegativeInteger|) |#1| $))) |noBranch|) |noBranch|))) (|SetCategory|)) (T |ArrayStack|)) │ │ │ +((|eq?| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|copy| (*1 *1 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|empty| (*1 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|empty?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|less?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *4)) (|ofCategory| *4 (|SetCategory|)))) (|more?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *4)) (|ofCategory| *4 (|SetCategory|)))) (|size?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *4)) (|ofCategory| *4 (|SetCategory|)))) (|sample| (*1 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|#| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|ArrayStack| *3)))) (|map!| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|ArrayStack| *3)))) (|any?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *4)))) (|every?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *4)))) (|count| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ArrayStack| *4)))) (|parts| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|members| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|count| (*1 *2 *3 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|member?| (*1 *2 *3 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|latex| (*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|hash| (*1 *2 *1) (AND (|isDomain| *2 (|SingleInteger|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (= (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (~= (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|bag| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|ArrayStack| *3)))) (|extract!| (*1 *2 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|insert!| (*1 *1 *2 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|inspect| (*1 *2 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|push!| (*1 *2 *2 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|pop!| (*1 *2 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|top| (*1 *2 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|depth| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|arrayStack| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|ArrayStack| *3))))) │ │ │ +(|Join| (|StackAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |arrayStack| ($ (|List| |#1|))) (SIGNATURE |pop!| (|#1| $)) (SIGNATURE |extract!| (|#1| $)) (SIGNATURE |push!| (|#1| |#1| $)) (SIGNATURE |insert!| ($ |#1| $)) (SIGNATURE |inspect| (|#1| $)) (SIGNATURE |top| (|#1| $)) (SIGNATURE |depth| ((|NonNegativeInteger|) $)) (SIGNATURE |less?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |size?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |bag| ($ (|List| |#1|))) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |empty| ($)) (SIGNATURE |sample| ($)) (SIGNATURE |copy| ($ $)) (SIGNATURE |eq?| ((|Boolean|) $ $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (SIGNATURE |map!| ($ (|Mapping| |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |latex| ((|String|) $)) (SIGNATURE |hash| ((|SingleInteger|) $)) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE = ((|Boolean|) $ $)) (SIGNATURE ~= ((|Boolean|) $ $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (PROGN (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |#| ((|NonNegativeInteger|) $)) (SIGNATURE |parts| ((|List| |#1|) $)) (SIGNATURE |members| ((|List| |#1|) $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |member?| ((|Boolean|) |#1| $)) (SIGNATURE |count| ((|NonNegativeInteger|) |#1| $))) |noBranch|) |noBranch|))) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 26)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setvalue!| ((|#1| $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setright!| (($ $ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setleft!| (($ $ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "left" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "right" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) NIL T CONST)) (|right| (($ $) 25)) (|ptree| (($ |#1|) 12) (($ $ $) 17)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) NIL)) (|node?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|left| (($ $) 23)) (|leaves| (((|List| |#1|) $) NIL)) (|leaf?| (((|Boolean|) $) 20)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (|distance| (((|Integer|) $ $) NIL)) (|cyclic?| (((|Boolean|) $) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) NIL)) (|coerce| (((|OutputForm|) $) 29 (|has| |#1| (|SetCategory|))) (((|Tree| |#1|) $) 9)) (|children| (((|List| $) $) NIL)) (|child?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 21 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|PendantTree| |#1|) (|Join| (|BinaryRecursiveAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |ptree| ($ |#1|)) (SIGNATURE |ptree| ($ $ $)) (SIGNATURE |coerce| ((|Tree| |#1|) $)))) (|SetCategory|)) (T |PendantTree|)) │ │ │ +((|ptree| (*1 *1 *2) (AND (|isDomain| *1 (|PendantTree| *2)) (|ofCategory| *2 (|SetCategory|)))) (|ptree| (*1 *1 *1 *1) (AND (|isDomain| *1 (|PendantTree| *2)) (|ofCategory| *2 (|SetCategory|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Tree| *3)) (|isDomain| *1 (|PendantTree| *3)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ +(|Join| (|BinaryRecursiveAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |ptree| ($ |#1|)) (SIGNATURE |ptree| ($ $ $)) (SIGNATURE |coerce| ((|Tree| |#1|) $)))) │ │ │ +((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|sample| (($) 7 T CONST)) (|rotate!| (($ $) 43)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|length| (((|NonNegativeInteger|) $) 42)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|inspect| ((|#1| $) 36)) (|insert!| (($ |#1| $) 37)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|front| ((|#1| $) 41)) (|extract!| ((|#1| $) 38)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|enqueue!| ((|#1| |#1| $) 45)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|dequeue!| ((|#1| $) 44)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|bag| (($ (|List| |#1|)) 39)) (|back| ((|#1| $) 40)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|QueueAggregate| |#1|) (|Category|) (|Type|)) (T |QueueAggregate|)) │ │ │ +((|enqueue!| (*1 *2 *2 *1) (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|dequeue!| (*1 *2 *1) (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|rotate!| (*1 *1 *1) (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|length| (*1 *2 *1) (AND (|ofCategory| *1 (|QueueAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|front| (*1 *2 *1) (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|back| (*1 *2 *1) (AND (|ofCategory| *1 (|QueueAggregate| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ +(|Join| (|BagAggregate| |t#1|) (CATEGORY |domain| (ATTRIBUTE |finiteAggregate|) (SIGNATURE |enqueue!| (|t#1| |t#1| $)) (SIGNATURE |dequeue!| (|t#1| $)) (SIGNATURE |rotate!| ($ $)) (SIGNATURE |length| ((|NonNegativeInteger|) $)) (SIGNATURE |front| (|t#1| $)) (SIGNATURE |back| (|t#1| $)))) │ │ │ +(((|Aggregate|) . T) ((|BagAggregate| |#1|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ +((|variable| (((|Symbol|) $) 15)) (|value| (((|String|) $) 16)) (|equation| (($ (|Symbol|) (|String|)) 14)) (|coerce| (((|OutputForm|) $) 13))) │ │ │ +(((|QueryEquation|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |equation| ($ (|Symbol|) (|String|))) (SIGNATURE |variable| ((|Symbol|) $)) (SIGNATURE |value| ((|String|) $))))) (T |QueryEquation|)) │ │ │ +((|equation| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|String|)) (|isDomain| *1 (|QueryEquation|)))) (|variable| (*1 *2 *1) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|QueryEquation|)))) (|value| (*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|QueryEquation|))))) │ │ │ +(|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |equation| ($ (|Symbol|) (|String|))) (SIGNATURE |variable| ((|Symbol|) $)) (SIGNATURE |value| ((|String|) $)))) │ │ │ +((|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) 88)) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) 86)) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) 58))) │ │ │ +(((|GroebnerSolve| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |groebSolve| ((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|)))) (SIGNATURE |testDim| ((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|)))) (SIGNATURE |genericPosition| ((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))))) (|List| (|Symbol|)) (|GcdDomain|) (|GcdDomain|)) (T |GroebnerSolve|)) │ │ │ +((|genericPosition| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| (|OrderedVariableList| *5))) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|GcdDomain|)) (|isDomain| *2 (|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| *5 *6))) (|:| |coords| (|List| (|Integer|))))) (|isDomain| *1 (|GroebnerSolve| *5 *6 *7)) (|isDomain| *3 (|List| (|DistributedMultivariatePolynomial| *5 *6))) (|ofCategory| *7 (|GcdDomain|)))) (|testDim| (*1 *2 *2 *3) (|partial| AND (|isDomain| *2 (|List| (|HomogeneousDistributedMultivariatePolynomial| *4 *5))) (|isDomain| *3 (|List| (|OrderedVariableList| *4))) (|ofType| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|GcdDomain|)) (|isDomain| *1 (|GroebnerSolve| *4 *5 *6)) (|ofCategory| *6 (|GcdDomain|)))) (|groebSolve| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| (|OrderedVariableList| *5))) (|ofType| *5 (|List| (|Symbol|))) (|ofCategory| *6 (|GcdDomain|)) (|isDomain| *2 (|List| (|List| (|DistributedMultivariatePolynomial| *5 *6)))) (|isDomain| *1 (|GroebnerSolve| *5 *6 *7)) (|isDomain| *3 (|List| (|DistributedMultivariatePolynomial| *5 *6))) (|ofCategory| *7 (|GcdDomain|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |groebSolve| ((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|)))) (SIGNATURE |testDim| ((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|)))) (SIGNATURE |genericPosition| ((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))))) │ │ │ +((|localAbs| ((|#2| |#2|) 160)) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) 55))) │ │ │ +(((|FunctionSpaceToExponentialExpansion| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |exprToXXP| ((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|))) (SIGNATURE |localAbs| (|#2| |#2|))) (|Join| (|GcdDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|))) (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| |#1|)) (|Symbol|) |#2|) (T |FunctionSpaceToExponentialExpansion|)) │ │ │ +((|localAbs| (*1 *2 *2) (AND (|ofCategory| *3 (|Join| (|GcdDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *1 (|FunctionSpaceToExponentialExpansion| *3 *2 *4 *5)) (|ofCategory| *2 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *3))) (|ofType| *4 (|Symbol|)) (|ofType| *5 *2))) (|exprToXXP| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Boolean|)) (|ofCategory| *5 (|Join| (|GcdDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Union| (|:| |%expansion| (|ExponentialExpansion| *5 *3 *6 *7)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|)))))) (|isDomain| *1 (|FunctionSpaceToExponentialExpansion| *5 *3 *6 *7)) (|ofCategory| *3 (|Join| (|AlgebraicallyClosedField|) (|TranscendentalFunctionCategory|) (|FunctionSpace| *5))) (|ofType| *6 (|Symbol|)) (|ofType| *7 *3)))) │ │ │ +(CATEGORY |package| (SIGNATURE |exprToXXP| ((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|))) (SIGNATURE |localAbs| (|#2| |#2|))) │ │ │ +((|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) 10))) │ │ │ +(((|InverseLaplaceTransform| |#1| |#2|) (CATEGORY |package| (SIGNATURE |inverseLaplace| ((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)))) (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|))) (|Join| (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|) (|SpecialFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| |#1|))) (T |InverseLaplaceTransform|)) │ │ │ +((|inverseLaplace| (*1 *2 *2 *3 *3) (|partial| AND (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *1 (|InverseLaplaceTransform| *4 *2)) (|ofCategory| *2 (|Join| (|TranscendentalFunctionCategory|) (|PrimitiveFunctionCategory|) (|SpecialFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *4)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |inverseLaplace| ((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|variables| (((|List| (|SingletonAsOrderedSet|)) $) 70)) (|variable| (((|Symbol|) $) 98)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 50 (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) 51 (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) 53 (|has| |#1| (|IntegralDomain|)))) (|truncate| (($ $ (|Fraction| (|Integer|))) 93) (($ $ (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) 92)) (|terms| (((|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|))) $) 100)) (|tanh| (($ $) 127 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|tan| (($ $) 110 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 155 (|has| |#1| (|Field|)))) (|squareFree| (((|Factored| $) $) 156 (|has| |#1| (|Field|)))) (|sqrt| (($ $) 109 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sizeLess?| (((|Boolean|) $ $) 146 (|has| |#1| (|Field|)))) (|sinh| (($ $) 126 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sin| (($ $) 111 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) 165)) (|sech| (($ $) 125 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sec| (($ $) 112 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| |#2| "failed") $) 173)) (|retract| ((|#2| $) 172)) (|rem| (($ $ $) 150 (|has| |#1| (|Field|)))) (|reductum| (($ $) 59)) (|recip| (((|Union| $ "failed") $) 33)) (|rationalPower| (((|Fraction| (|Integer|)) $) 170)) (|quo| (($ $ $) 149 (|has| |#1| (|Field|)))) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) 171)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 144 (|has| |#1| (|Field|)))) (|prime?| (((|Boolean|) $) 157 (|has| |#1| (|Field|)))) (|pole?| (((|Boolean|) $) 69)) (|pi| (($) 137 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|order| (((|Fraction| (|Integer|)) $) 95) (((|Fraction| (|Integer|)) $ (|Fraction| (|Integer|))) 94)) (|one?| (((|Boolean|) $) 30)) (|nthRoot| (($ $ (|Integer|)) 108 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|multiplyExponents| (($ $ (|PositiveInteger|)) 96) (($ $ (|Fraction| (|Integer|))) 164)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 153 (|has| |#1| (|Field|)))) (|monomial?| (((|Boolean|) $) 61)) (|monomial| (($ |#1| (|Fraction| (|Integer|))) 60) (($ $ (|SingletonAsOrderedSet|) (|Fraction| (|Integer|))) 72) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|Fraction| (|Integer|)))) 71)) (|map| (($ (|Mapping| |#1| |#1|) $) 62)) (|log| (($ $) 134 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|leadingMonomial| (($ $) 64)) (|leadingCoefficient| ((|#1| $) 65)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 138 (|has| |#1| (|Field|)))) (|lcm| (($ (|List| $)) 142 (|has| |#1| (|Field|))) (($ $ $) 141 (|has| |#1| (|Field|)))) (|laurentRep| ((|#2| $) 169)) (|laurentIfCan| (((|Union| |#2| "failed") $) 167)) (|laurent| ((|#2| $) 168)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 158 (|has| |#1| (|Field|)))) (|integrate| (($ $) 163 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Symbol|)) 162 (OR (AND (|has| |#1| (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (AND (|has| |#1| (SIGNATURE |variables| ((|List| (|Symbol|)) |#1|))) (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| (|Symbol|)))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))))) (|hash| (((|SingleInteger|) $) 10)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 143 (|has| |#1| (|Field|)))) (|gcd| (($ (|List| $)) 140 (|has| |#1| (|Field|))) (($ $ $) 139 (|has| |#1| (|Field|)))) (|factor| (((|Factored| $) $) 154 (|has| |#1| (|Field|)))) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 152 (|has| |#1| (|Field|))) (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 151 (|has| |#1| (|Field|)))) (|extend| (($ $ (|Fraction| (|Integer|))) 90)) (|exquo| (((|Union| $ "failed") $ $) 49 (|has| |#1| (|IntegralDomain|)))) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 145 (|has| |#1| (|Field|)))) (|exp| (($ $) 135 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|eval| (((|Stream| |#1|) $ |#1|) 89 (|has| |#1| (SIGNATURE ** (|#1| |#1| (|Fraction| (|Integer|))))))) (|euclideanSize| (((|NonNegativeInteger|) $) 147 (|has| |#1| (|Field|)))) (|elt| ((|#1| $ (|Fraction| (|Integer|))) 99) (($ $ $) 76 (|has| (|Fraction| (|Integer|)) (|SemiGroup|)))) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 148 (|has| |#1| (|Field|)))) (|differentiate| (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 84 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 83 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))))) (($ $ (|List| (|Symbol|))) 82 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))))) (($ $ (|Symbol|)) 81 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))))) (($ $ (|NonNegativeInteger|)) 79 (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))) (($ $) 77 (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))))) (|degree| (((|Fraction| (|Integer|)) $) 63)) (|csch| (($ $) 124 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|csc| (($ $) 113 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|coth| (($ $) 123 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cot| (($ $) 114 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cosh| (($ $) 122 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cos| (($ $) 115 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|complete| (($ $) 68)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ |#1|) 46 (|has| |#1| (|CommutativeRing|))) (($ |#2|) 174) (($ (|Fraction| (|Integer|))) 56 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $) 48 (|has| |#1| (|IntegralDomain|)))) (|coefficient| ((|#1| $ (|Fraction| (|Integer|))) 58)) (|charthRoot| (((|Union| $ "failed") $) 47 (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|center| ((|#1| $) 97)) (|atanh| (($ $) 133 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|atan| (($ $) 121 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|associates?| (((|Boolean|) $ $) 52 (|has| |#1| (|IntegralDomain|)))) (|asinh| (($ $) 132 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asin| (($ $) 120 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asech| (($ $) 131 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asec| (($ $) 119 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|approximate| ((|#1| $ (|Fraction| (|Integer|))) 91 (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| (|Fraction| (|Integer|))))) (|has| |#1| (SIGNATURE |coerce| (|#1| (|Symbol|))))))) (|acsch| (($ $) 130 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acsc| (($ $) 118 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acoth| (($ $) 129 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acot| (($ $) 117 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acosh| (($ $) 128 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acos| (($ $) 116 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 159 (|has| |#1| (|Field|)))) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 88 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 87 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))))) (($ $ (|List| (|Symbol|))) 86 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))))) (($ $ (|Symbol|)) 85 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))))) (($ $ (|NonNegativeInteger|)) 80 (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))) (($ $) 78 (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))))) (= (((|Boolean|) $ $) 6)) (/ (($ $ |#1|) 57 (|has| |#1| (|Field|))) (($ $ $) 161 (|has| |#1| (|Field|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 160 (|has| |#1| (|Field|))) (($ $ $) 136 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) 107 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (|Fraction| (|Integer|)) $) 55 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) 54 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ +(((|UnivariatePuiseuxSeriesConstructorCategory| |#1| |#2|) (|Category|) (|Ring|) (|UnivariateLaurentSeriesCategory| |t#1|)) (T |UnivariatePuiseuxSeriesConstructorCategory|)) │ │ │ +((|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3)) (|isDomain| *2 (|Fraction| (|Integer|))))) (|coerce| (*1 *1 *2) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *2)) (|ofCategory| *2 (|UnivariateLaurentSeriesCategory| *3)))) (|puiseux| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|ofCategory| *4 (|Ring|)) (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *4 *3)) (|ofCategory| *3 (|UnivariateLaurentSeriesCategory| *4)))) (|rationalPower| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|UnivariateLaurentSeriesCategory| *3)) (|isDomain| *2 (|Fraction| (|Integer|))))) (|laurentRep| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|UnivariateLaurentSeriesCategory| *3)))) (|laurent| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|UnivariateLaurentSeriesCategory| *3)))) (|laurentIfCan| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|UnivariatePuiseuxSeriesConstructorCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|UnivariateLaurentSeriesCategory| *3))))) │ │ │ +(|Join| (|UnivariatePuiseuxSeriesCategory| |t#1|) (|RetractableTo| |t#2|) (CATEGORY |domain| (SIGNATURE |puiseux| ($ (|Fraction| (|Integer|)) |t#2|)) (SIGNATURE |rationalPower| ((|Fraction| (|Integer|)) $)) (SIGNATURE |laurentRep| (|t#2| $)) (SIGNATURE |degree| ((|Fraction| (|Integer|)) $)) (SIGNATURE |coerce| ($ |t#2|)) (SIGNATURE |laurent| (|t#2| $)) (SIGNATURE |laurentIfCan| ((|Union| |t#2| "failed") $)))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| (|Fraction| (|Integer|))) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|ArcHyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|ArcTrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|DifferentialRing|) |has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) ((|DivisionRing|) |has| |#1| (|Field|)) ((|ElementaryFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Eltable| $ $) |has| (|Fraction| (|Integer|)) (|SemiGroup|)) ((|EntireRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|EuclideanDomain|) |has| |#1| (|Field|)) ((|Field|) |has| |#1| (|Field|)) ((|GcdDomain|) |has| |#1| (|Field|)) ((|HyperbolicFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|IntegralDomain|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|LeftModule| (|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) |has| |#1| (|Field|)) ((|Module| (|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|))) ((|Monoid|) . T) ((|PartialDifferentialRing| (|Symbol|)) AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|PowerSeriesCategory| |#1| (|Fraction| (|Integer|)) (|SingletonAsOrderedSet|)) . T) ((|PrincipalIdealDomain|) |has| |#1| (|Field|)) ((|RadicalCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RetractableTo| |#2|) . T) ((|RightModule| (|Fraction| (|Integer|))) OR (|has| |#1| (|Field|)) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|Field|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|TranscendentalFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|TrigonometricFunctionCategory|) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|UniqueFactorizationDomain|) |has| |#1| (|Field|)) ((|UnivariatePowerSeriesCategory| |#1| (|Fraction| (|Integer|))) . T) ((|UnivariatePuiseuxSeriesCategory| |#1|) . T)) │ │ │ ((|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) 16)) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) 18)) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) 13))) │ │ │ (((|ListFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |scan| ((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|)) (SIGNATURE |map| ((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)))) (|Type|) (|Type|)) (T |ListFunctions2|)) │ │ │ ((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|List| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|List| *6)) (|isDomain| *1 (|ListFunctions2| *5 *6)))) (|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) (|isDomain| *4 (|List| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|ListFunctions2| *5 *2)))) (|scan| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *5 *6 *5)) (|isDomain| *4 (|List| *6)) (|ofCategory| *6 (|Type|)) (|ofCategory| *5 (|Type|)) (|isDomain| *2 (|List| *5)) (|isDomain| *1 (|ListFunctions2| *6 *5))))) │ │ │ (CATEGORY |package| (SIGNATURE |scan| ((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|)) (SIGNATURE |map| ((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)))) │ │ │ +((|universe| (($) 44)) (|union| (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (|symmetricDifference| (($ $ $) 39)) (|subset?| (((|Boolean|) $ $) 28)) (|size| (((|NonNegativeInteger|)) 47)) (|set| (($ (|List| |#2|)) 20) (($) NIL)) (|random| (($) 53)) (|min| ((|#2| $) 61)) (|max| ((|#2| $) 59)) (|lookup| (((|PositiveInteger|) $) 55)) (|intersect| (($ $ $) 35)) (|index| (($ (|PositiveInteger|)) 50)) (|difference| (($ $ |#2|) NIL) (($ $ $) 38)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) NIL) (((|NonNegativeInteger|) |#2| $) 26)) (|construct| (($ (|List| |#2|)) 24)) (|complement| (($ $) 46)) (|coerce| (((|OutputForm|) $) 33)) (|cardinality| (((|NonNegativeInteger|) $) 21)) (|brace| (($ (|List| |#2|)) 19) (($) NIL)) (= (((|Boolean|) $ $) 16)) (< (((|Boolean|) $ $) 13))) │ │ │ +(((|FiniteSetAggregate&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |size| ((|NonNegativeInteger|))) (SIGNATURE |index| (|#1| (|PositiveInteger|))) (SIGNATURE |lookup| ((|PositiveInteger|) |#1|)) (SIGNATURE |random| (|#1|)) (SIGNATURE |min| (|#2| |#1|)) (SIGNATURE |max| (|#2| |#1|)) (SIGNATURE |universe| (|#1|)) (SIGNATURE |complement| (|#1| |#1|)) (SIGNATURE |cardinality| ((|NonNegativeInteger|) |#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |brace| (|#1|)) (SIGNATURE |brace| (|#1| (|List| |#2|))) (SIGNATURE |set| (|#1|)) (SIGNATURE |set| (|#1| (|List| |#2|))) (SIGNATURE |intersect| (|#1| |#1| |#1|)) (SIGNATURE |difference| (|#1| |#1| |#1|)) (SIGNATURE |difference| (|#1| |#1| |#2|)) (SIGNATURE |symmetricDifference| (|#1| |#1| |#1|)) (SIGNATURE |subset?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |union| (|#1| |#1| |#1|)) (SIGNATURE |union| (|#1| |#1| |#2|)) (SIGNATURE |union| (|#1| |#2| |#1|)) (SIGNATURE |construct| (|#1| (|List| |#2|))) (SIGNATURE |count| ((|NonNegativeInteger|) |#2| |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) |#1|))) (|FiniteSetAggregate| |#2|) (|SetCategory|)) (T |FiniteSetAggregate&|)) │ │ │ +((|size| (*1 *2) (AND (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|FiniteSetAggregate&| *3 *4)) (|ofCategory| *3 (|FiniteSetAggregate| *4))))) │ │ │ +(CATEGORY |domain| (SIGNATURE |size| ((|NonNegativeInteger|))) (SIGNATURE |index| (|#1| (|PositiveInteger|))) (SIGNATURE |lookup| ((|PositiveInteger|) |#1|)) (SIGNATURE |random| (|#1|)) (SIGNATURE |min| (|#2| |#1|)) (SIGNATURE |max| (|#2| |#1|)) (SIGNATURE |universe| (|#1|)) (SIGNATURE |complement| (|#1| |#1|)) (SIGNATURE |cardinality| ((|NonNegativeInteger|) |#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |brace| (|#1|)) (SIGNATURE |brace| (|#1| (|List| |#2|))) (SIGNATURE |set| (|#1|)) (SIGNATURE |set| (|#1| (|List| |#2|))) (SIGNATURE |intersect| (|#1| |#1| |#1|)) (SIGNATURE |difference| (|#1| |#1| |#1|)) (SIGNATURE |difference| (|#1| |#1| |#2|)) (SIGNATURE |symmetricDifference| (|#1| |#1| |#1|)) (SIGNATURE |subset?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |union| (|#1| |#1| |#1|)) (SIGNATURE |union| (|#1| |#1| |#2|)) (SIGNATURE |union| (|#1| |#2| |#1|)) (SIGNATURE |construct| (|#1| (|List| |#2|))) (SIGNATURE |count| ((|NonNegativeInteger|) |#2| |#1|)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) |#1|))) │ │ │ +((|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) 39)) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) 37) ((|#8| (|Mapping| |#5| |#1|) |#4|) 31))) │ │ │ +(((|MatrixCategoryFunctions2| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (CATEGORY |package| (SIGNATURE |map| (|#8| (|Mapping| |#5| |#1|) |#4|)) (SIGNATURE |map| ((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|)) (SIGNATURE |reduce| (|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|))) (|Ring|) (|FiniteLinearAggregate| |#1|) (|FiniteLinearAggregate| |#1|) (|MatrixCategory| |#1| |#2| |#3|) (|Ring|) (|FiniteLinearAggregate| |#5|) (|FiniteLinearAggregate| |#5|) (|MatrixCategory| |#5| |#6| |#7|)) (T |MatrixCategoryFunctions2|)) │ │ │ +((|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *6 (|FiniteLinearAggregate| *5)) (|ofCategory| *7 (|FiniteLinearAggregate| *5)) (|ofCategory| *8 (|FiniteLinearAggregate| *2)) (|ofCategory| *9 (|FiniteLinearAggregate| *2)) (|isDomain| *1 (|MatrixCategoryFunctions2| *5 *6 *7 *4 *2 *8 *9 *10)) (|ofCategory| *4 (|MatrixCategory| *5 *6 *7)) (|ofCategory| *10 (|MatrixCategory| *2 *8 *9)))) (|map| (*1 *2 *3 *4) (|partial| AND (|isDomain| *3 (|Mapping| (|Union| *8 "failed") *5)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *8 (|Ring|)) (|ofCategory| *6 (|FiniteLinearAggregate| *5)) (|ofCategory| *7 (|FiniteLinearAggregate| *5)) (|ofCategory| *2 (|MatrixCategory| *8 *9 *10)) (|isDomain| *1 (|MatrixCategoryFunctions2| *5 *6 *7 *4 *8 *9 *10 *2)) (|ofCategory| *4 (|MatrixCategory| *5 *6 *7)) (|ofCategory| *9 (|FiniteLinearAggregate| *8)) (|ofCategory| *10 (|FiniteLinearAggregate| *8)))) (|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *8 *5)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *8 (|Ring|)) (|ofCategory| *6 (|FiniteLinearAggregate| *5)) (|ofCategory| *7 (|FiniteLinearAggregate| *5)) (|ofCategory| *2 (|MatrixCategory| *8 *9 *10)) (|isDomain| *1 (|MatrixCategoryFunctions2| *5 *6 *7 *4 *8 *9 *10 *2)) (|ofCategory| *4 (|MatrixCategory| *5 *6 *7)) (|ofCategory| *9 (|FiniteLinearAggregate| *8)) (|ofCategory| *10 (|FiniteLinearAggregate| *8))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| (|#8| (|Mapping| |#5| |#1|) |#4|)) (SIGNATURE |map| ((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|)) (SIGNATURE |reduce| (|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|))) │ │ │ +((|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) 16))) │ │ │ +(((|QuaternionCategoryFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |map| (|#3| (|Mapping| |#4| |#2|) |#1|))) (|QuaternionCategory| |#2|) (|CommutativeRing|) (|QuaternionCategory| |#4|) (|CommutativeRing|)) (T |QuaternionCategoryFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|CommutativeRing|)) (|ofCategory| *6 (|CommutativeRing|)) (|ofCategory| *2 (|QuaternionCategory| *6)) (|isDomain| *1 (|QuaternionCategoryFunctions2| *4 *5 *2 *6)) (|ofCategory| *4 (|QuaternionCategory| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| (|#3| (|Mapping| |#4| |#2|) |#1|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|sort| (((|List| $) (|List| $)) 76)) (|sign| (((|Integer|) $) 59)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL)) (|order| (((|NonNegativeInteger|) $) 57)) (|orbit| (((|Set| |#1|) $ |#1|) 48)) (|one?| (((|Boolean|) $) NIL)) (|odd?| (((|Boolean|) $) 62)) (|numberOfCycles| (((|NonNegativeInteger|) $) 60)) (|movedPoints| (((|Set| |#1|) $) 41)) (|min| (($ $ $) NIL (OR (|has| |#1| (|Finite|)) (|has| |#1| (|OrderedSet|))))) (|max| (($ $ $) NIL (OR (|has| |#1| (|Finite|)) (|has| |#1| (|OrderedSet|))))) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) 35)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) 92)) (|hash| (((|SingleInteger|) $) NIL)) (|fixedPoints| (((|Set| |#1|) $) 98 (|has| |#1| (|Finite|)))) (|even?| (((|Boolean|) $) 58)) (|eval| ((|#1| $ |#1|) 46)) (|elt| ((|#1| $ |#1|) 93)) (|degree| (((|NonNegativeInteger|) $) 43)) (|cycles| (($ (|List| (|List| |#1|))) 84)) (|cyclePartition| (((|Partition|) $) 52)) (|cycle| (($ (|List| |#1|)) 21)) (|conjugate| (($ $ $) NIL)) (|commutator| (($ $ $) NIL)) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) 38)) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) 87)) (|coerceImages| (($ (|List| |#1|)) 95)) (|coerce| (((|OutputForm|) $) 83) (($ (|List| (|List| |#1|))) 65) (($ (|List| |#1|)) 66)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|One| (($) 16 T CONST)) (>= (((|Boolean|) $ $) NIL (OR (|has| |#1| (|Finite|)) (|has| |#1| (|OrderedSet|))))) (> (((|Boolean|) $ $) NIL (OR (|has| |#1| (|Finite|)) (|has| |#1| (|OrderedSet|))))) (= (((|Boolean|) $ $) 44)) (<= (((|Boolean|) $ $) NIL (OR (|has| |#1| (|Finite|)) (|has| |#1| (|OrderedSet|))))) (< (((|Boolean|) $ $) 64)) (/ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ $ $) 22))) │ │ │ +(((|Permutation| |#1|) (|Join| (|PermutationCategory| |#1|) (CATEGORY |domain| (SIGNATURE |listRepresentation| ((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $)) (SIGNATURE |coercePreimagesImages| ($ (|List| (|List| |#1|)))) (SIGNATURE |coerce| ($ (|List| (|List| |#1|)))) (SIGNATURE |coerce| ($ (|List| |#1|))) (SIGNATURE |coerceListOfPairs| ($ (|List| (|List| |#1|)))) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |movedPoints| ((|Set| |#1|) $)) (SIGNATURE |cyclePartition| ((|Partition|) $)) (SIGNATURE |order| ((|NonNegativeInteger|) $)) (SIGNATURE |numberOfCycles| ((|NonNegativeInteger|) $)) (SIGNATURE |sign| ((|Integer|) $)) (SIGNATURE |even?| ((|Boolean|) $)) (SIGNATURE |odd?| ((|Boolean|) $)) (SIGNATURE |sort| ((|List| $) (|List| $))) (IF (|has| |#1| (|Finite|)) (SIGNATURE |fixedPoints| ((|Set| |#1|) $)) |noBranch|) (IF (|has| |#1| (|IntegerNumberSystem|)) (SIGNATURE |coerceImages| ($ (|List| |#1|))) (IF (|has| |#1| (|Finite|)) (SIGNATURE |coerceImages| ($ (|List| |#1|))) |noBranch|)))) (|SetCategory|)) (T |Permutation|)) │ │ │ +((|listRepresentation| (*1 *2 *1) (AND (|isDomain| *2 (|Record| (|:| |preimage| (|List| *3)) (|:| |image| (|List| *3)))) (|isDomain| *1 (|Permutation| *3)) (|ofCategory| *3 (|SetCategory|)))) (|coercePreimagesImages| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Permutation| *3)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Permutation| *3)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Permutation| *3)))) (|coerceListOfPairs| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Permutation| *3)))) (|degree| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Permutation| *3)) (|ofCategory| *3 (|SetCategory|)))) (|movedPoints| (*1 *2 *1) (AND (|isDomain| *2 (|Set| *3)) (|isDomain| *1 (|Permutation| *3)) (|ofCategory| *3 (|SetCategory|)))) (|cyclePartition| (*1 *2 *1) (AND (|isDomain| *2 (|Partition|)) (|isDomain| *1 (|Permutation| *3)) (|ofCategory| *3 (|SetCategory|)))) (|order| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Permutation| *3)) (|ofCategory| *3 (|SetCategory|)))) (|numberOfCycles| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Permutation| *3)) (|ofCategory| *3 (|SetCategory|)))) (|sign| (*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Permutation| *3)) (|ofCategory| *3 (|SetCategory|)))) (|even?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Permutation| *3)) (|ofCategory| *3 (|SetCategory|)))) (|odd?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Permutation| *3)) (|ofCategory| *3 (|SetCategory|)))) (|sort| (*1 *2 *2) (AND (|isDomain| *2 (|List| (|Permutation| *3))) (|isDomain| *1 (|Permutation| *3)) (|ofCategory| *3 (|SetCategory|)))) (|fixedPoints| (*1 *2 *1) (AND (|isDomain| *2 (|Set| *3)) (|isDomain| *1 (|Permutation| *3)) (|ofCategory| *3 (|Finite|)) (|ofCategory| *3 (|SetCategory|)))) (|coerceImages| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Permutation| *3))))) │ │ │ +(|Join| (|PermutationCategory| |#1|) (CATEGORY |domain| (SIGNATURE |listRepresentation| ((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $)) (SIGNATURE |coercePreimagesImages| ($ (|List| (|List| |#1|)))) (SIGNATURE |coerce| ($ (|List| (|List| |#1|)))) (SIGNATURE |coerce| ($ (|List| |#1|))) (SIGNATURE |coerceListOfPairs| ($ (|List| (|List| |#1|)))) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |movedPoints| ((|Set| |#1|) $)) (SIGNATURE |cyclePartition| ((|Partition|) $)) (SIGNATURE |order| ((|NonNegativeInteger|) $)) (SIGNATURE |numberOfCycles| ((|NonNegativeInteger|) $)) (SIGNATURE |sign| ((|Integer|) $)) (SIGNATURE |even?| ((|Boolean|) $)) (SIGNATURE |odd?| ((|Boolean|) $)) (SIGNATURE |sort| ((|List| $) (|List| $))) (IF (|has| |#1| (|Finite|)) (SIGNATURE |fixedPoints| ((|Set| |#1|) $)) |noBranch|) (IF (|has| |#1| (|IntegerNumberSystem|)) (SIGNATURE |coerceImages| ($ (|List| |#1|))) (IF (|has| |#1| (|Finite|)) (SIGNATURE |coerceImages| ($ (|List| |#1|))) |noBranch|)))) │ │ │ +((|outputAsFortran| (((|Void|) $) 37)) (|coerce| (((|OutputForm|) $) 89) (($ (|FortranCode|)) 92) (($ (|List| (|FortranCode|))) 91) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 88) (($ (|Expression| (|MachineInteger|))) 52) (($ (|Expression| (|MachineFloat|))) 66) (($ (|Expression| (|MachineComplex|))) 78) (($ (|Equation| (|Expression| (|MachineInteger|)))) 62) (($ (|Equation| (|Expression| (|MachineFloat|)))) 74) (($ (|Equation| (|Expression| (|MachineComplex|)))) 86) (($ (|Expression| (|Integer|))) 96) (($ (|Expression| (|Float|))) 108) (($ (|Expression| (|Complex| (|Float|)))) 120) (($ (|Equation| (|Expression| (|Integer|)))) 104) (($ (|Equation| (|Expression| (|Float|)))) 116) (($ (|Equation| (|Expression| (|Complex| (|Float|))))) 128))) │ │ │ +(((|FortranProgram| |#1| |#2| |#3| |#4|) (|Join| (|FortranProgramCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|FortranCode|))) (SIGNATURE |coerce| ($ (|List| (|FortranCode|)))) (SIGNATURE |coerce| ($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|)))))) (SIGNATURE |coerce| ($ (|Expression| (|MachineInteger|)))) (SIGNATURE |coerce| ($ (|Expression| (|MachineFloat|)))) (SIGNATURE |coerce| ($ (|Expression| (|MachineComplex|)))) (SIGNATURE |coerce| ($ (|Equation| (|Expression| (|MachineInteger|))))) (SIGNATURE |coerce| ($ (|Equation| (|Expression| (|MachineFloat|))))) (SIGNATURE |coerce| ($ (|Equation| (|Expression| (|MachineComplex|))))) (SIGNATURE |coerce| ($ (|Expression| (|Integer|)))) (SIGNATURE |coerce| ($ (|Expression| (|Float|)))) (SIGNATURE |coerce| ($ (|Expression| (|Complex| (|Float|))))) (SIGNATURE |coerce| ($ (|Equation| (|Expression| (|Integer|))))) (SIGNATURE |coerce| ($ (|Equation| (|Expression| (|Float|))))) (SIGNATURE |coerce| ($ (|Equation| (|Expression| (|Complex| (|Float|)))))))) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|SymbolTable|)) (T |FortranProgram|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|FortranCode|)) (|isDomain| *1 (|FortranProgram| *3 *4 *5 *6)) (|ofType| *3 (|Symbol|)) (|ofType| *4 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|SymbolTable|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|FortranCode|))) (|isDomain| *1 (|FortranProgram| *3 *4 *5 *6)) (|ofType| *3 (|Symbol|)) (|ofType| *4 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|SymbolTable|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) (|isDomain| *1 (|FortranProgram| *3 *4 *5 *6)) (|ofType| *3 (|Symbol|)) (|ofType| *4 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|SymbolTable|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|MachineInteger|))) (|isDomain| *1 (|FortranProgram| *3 *4 *5 *6)) (|ofType| *3 (|Symbol|)) (|ofType| *4 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|SymbolTable|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|MachineFloat|))) (|isDomain| *1 (|FortranProgram| *3 *4 *5 *6)) (|ofType| *3 (|Symbol|)) (|ofType| *4 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|SymbolTable|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|MachineComplex|))) (|isDomain| *1 (|FortranProgram| *3 *4 *5 *6)) (|ofType| *3 (|Symbol|)) (|ofType| *4 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|SymbolTable|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Equation| (|Expression| (|MachineInteger|)))) (|isDomain| *1 (|FortranProgram| *3 *4 *5 *6)) (|ofType| *3 (|Symbol|)) (|ofType| *4 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|SymbolTable|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Equation| (|Expression| (|MachineFloat|)))) (|isDomain| *1 (|FortranProgram| *3 *4 *5 *6)) (|ofType| *3 (|Symbol|)) (|ofType| *4 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|SymbolTable|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Equation| (|Expression| (|MachineComplex|)))) (|isDomain| *1 (|FortranProgram| *3 *4 *5 *6)) (|ofType| *3 (|Symbol|)) (|ofType| *4 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|SymbolTable|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|FortranProgram| *3 *4 *5 *6)) (|ofType| *3 (|Symbol|)) (|ofType| *4 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|SymbolTable|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|Float|))) (|isDomain| *1 (|FortranProgram| *3 *4 *5 *6)) (|ofType| *3 (|Symbol|)) (|ofType| *4 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|SymbolTable|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Expression| (|Complex| (|Float|)))) (|isDomain| *1 (|FortranProgram| *3 *4 *5 *6)) (|ofType| *3 (|Symbol|)) (|ofType| *4 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|SymbolTable|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Equation| (|Expression| (|Integer|)))) (|isDomain| *1 (|FortranProgram| *3 *4 *5 *6)) (|ofType| *3 (|Symbol|)) (|ofType| *4 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|SymbolTable|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Equation| (|Expression| (|Float|)))) (|isDomain| *1 (|FortranProgram| *3 *4 *5 *6)) (|ofType| *3 (|Symbol|)) (|ofType| *4 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|SymbolTable|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Equation| (|Expression| (|Complex| (|Float|))))) (|isDomain| *1 (|FortranProgram| *3 *4 *5 *6)) (|ofType| *3 (|Symbol|)) (|ofType| *4 (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|SymbolTable|))))) │ │ │ +(|Join| (|FortranProgramCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|FortranCode|))) (SIGNATURE |coerce| ($ (|List| (|FortranCode|)))) (SIGNATURE |coerce| ($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|)))))) (SIGNATURE |coerce| ($ (|Expression| (|MachineInteger|)))) (SIGNATURE |coerce| ($ (|Expression| (|MachineFloat|)))) (SIGNATURE |coerce| ($ (|Expression| (|MachineComplex|)))) (SIGNATURE |coerce| ($ (|Equation| (|Expression| (|MachineInteger|))))) (SIGNATURE |coerce| ($ (|Equation| (|Expression| (|MachineFloat|))))) (SIGNATURE |coerce| ($ (|Equation| (|Expression| (|MachineComplex|))))) (SIGNATURE |coerce| ($ (|Expression| (|Integer|)))) (SIGNATURE |coerce| ($ (|Expression| (|Float|)))) (SIGNATURE |coerce| ($ (|Expression| (|Complex| (|Float|))))) (SIGNATURE |coerce| ($ (|Equation| (|Expression| (|Integer|))))) (SIGNATURE |coerce| ($ (|Equation| (|Expression| (|Float|))))) (SIGNATURE |coerce| ($ (|Equation| (|Expression| (|Complex| (|Float|)))))))) │ │ │ +((|ignore?| (((|Boolean|) (|String|)) 22)) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) 32)) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) 73) (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) 74))) │ │ │ +(((|DefiniteIntegrationTools| |#1| |#2|) (CATEGORY |package| (SIGNATURE |ignore?| ((|Boolean|) (|String|))) (SIGNATURE |computeInt| ((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|))) (SIGNATURE |checkForZero| ((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|))) (SIGNATURE |checkForZero| ((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)))) (|Join| (|GcdDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|))) (|Join| (|TranscendentalFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| |#1|))) (T |DefiniteIntegrationTools|)) │ │ │ +((|checkForZero| (*1 *2 *3 *4 *4 *2) (|partial| AND (|isDomain| *2 (|Boolean|)) (|isDomain| *3 (|SparseUnivariatePolynomial| *6)) (|isDomain| *4 (|OrderedCompletion| *6)) (|ofCategory| *6 (|Join| (|TranscendentalFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *5))) (|ofCategory| *5 (|Join| (|GcdDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *1 (|DefiniteIntegrationTools| *5 *6)))) (|checkForZero| (*1 *2 *3 *4 *5 *5 *2) (|partial| AND (|isDomain| *2 (|Boolean|)) (|isDomain| *3 (|Polynomial| *6)) (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|OrderedCompletion| *7)) (|ofCategory| *6 (|Join| (|GcdDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|ofCategory| *7 (|Join| (|TranscendentalFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *6))) (|isDomain| *1 (|DefiniteIntegrationTools| *6 *7)))) (|computeInt| (*1 *2 *3 *4 *2 *2 *5) (|partial| AND (|isDomain| *2 (|OrderedCompletion| *4)) (|isDomain| *3 (|Kernel| *4)) (|isDomain| *5 (|Boolean|)) (|ofCategory| *4 (|Join| (|TranscendentalFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *6))) (|ofCategory| *6 (|Join| (|GcdDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *1 (|DefiniteIntegrationTools| *6 *4)))) (|ignore?| (*1 *2 *3) (AND (|isDomain| *3 (|String|)) (|ofCategory| *4 (|Join| (|GcdDomain|) (|OrderedSet|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|DefiniteIntegrationTools| *4 *5)) (|ofCategory| *5 (|Join| (|TranscendentalFunctionCategory|) (|AlgebraicallyClosedFunctionSpace| *4)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |ignore?| ((|Boolean|) (|String|))) (SIGNATURE |computeInt| ((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|))) (SIGNATURE |checkForZero| ((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|))) (SIGNATURE |checkForZero| ((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|unparse| (((|String|) $) 46)) (|symbol?| (((|Boolean|) $) 43)) (|symbol| (((|Symbol|) $) 44)) (|string?| (((|Boolean|) $) 41)) (|string| (((|String|) $) 42)) (|parse| (($ (|String|)) 47)) (|pair?| (((|Boolean|) $) NIL)) (|null?| (((|Boolean|) $) NIL)) (|list?| (((|Boolean|) $) NIL)) (|latex| (((|String|) $) NIL)) (|lambda| (($ $ (|List| (|Symbol|))) 20)) (|interpret| (((|Any|) $) 22)) (|integer?| (((|Boolean|) $) NIL)) (|integer| (((|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) 59)) (|float?| (((|Boolean|) $) NIL)) (|float| (((|DoubleFloat|) $) NIL)) (|flatten| (($ $) 38)) (|expr| (((|OutputForm|) $) NIL)) (|eq| (((|Boolean|) $ $) NIL)) (|elt| (($ $ (|Integer|)) NIL) (($ $ (|List| (|Integer|))) NIL)) (|destruct| (((|List| $) $) 28)) (|declare| (((|Symbol|) (|List| $)) 48)) (|convert| (($ (|List| $)) 52) (($ (|String|)) NIL) (($ (|Symbol|)) 18) (($ (|Integer|)) 8) (($ (|DoubleFloat|)) 25) (($ (|OutputForm|)) NIL) (((|SExpression|) $) 11) (($ (|SExpression|)) 12)) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) 51)) (|coerce| (((|OutputForm|) $) NIL)) (|cdr| (($ $) 50)) (|car| (($ $) 49)) (|binary| (($ $ (|List| $)) 56)) (|atom?| (((|Boolean|) $) 27)) (|Zero| (($) 9 T CONST)) (|One| (($) 10 T CONST)) (= (((|Boolean|) $ $) 60)) (/ (($ $ $) 65)) (+ (($ $ $) 61)) (** (($ $ (|NonNegativeInteger|)) 64) (($ $ (|Integer|)) 63)) (* (($ $ $) 62)) (|#| (((|Integer|) $) NIL))) │ │ │ +(((|InputForm|) (|Join| (|SExpressionCategory| (|String|) (|Symbol|) (|Integer|) (|DoubleFloat|) (|OutputForm|)) (|ConvertibleTo| (|SExpression|)) (CATEGORY |domain| (SIGNATURE |interpret| ((|Any|) $)) (SIGNATURE |convert| ($ (|SExpression|))) (SIGNATURE |binary| ($ $ (|List| $))) (SIGNATURE |function| ($ $ (|List| (|Symbol|)) (|Symbol|))) (SIGNATURE |lambda| ($ $ (|List| (|Symbol|)))) (SIGNATURE + ($ $ $)) (SIGNATURE * ($ $ $)) (SIGNATURE / ($ $ $)) (SIGNATURE ** ($ $ (|NonNegativeInteger|))) (SIGNATURE ** ($ $ (|Integer|))) (SIGNATURE 0 ($) |constant|) (SIGNATURE 1 ($) |constant|) (SIGNATURE |flatten| ($ $)) (SIGNATURE |unparse| ((|String|) $)) (SIGNATURE |parse| ($ (|String|))) (SIGNATURE |declare| ((|Symbol|) (|List| $))) (SIGNATURE |compile| ((|Symbol|) (|Symbol|) (|List| $)))))) (T |InputForm|)) │ │ │ +((|interpret| (*1 *2 *1) (AND (|isDomain| *2 (|Any|)) (|isDomain| *1 (|InputForm|)))) (|convert| (*1 *1 *2) (AND (|isDomain| *2 (|SExpression|)) (|isDomain| *1 (|InputForm|)))) (|binary| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|InputForm|))) (|isDomain| *1 (|InputForm|)))) (|function| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *3 (|Symbol|)) (|isDomain| *1 (|InputForm|)))) (|lambda| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| (|Symbol|))) (|isDomain| *1 (|InputForm|)))) (+ (*1 *1 *1 *1) (|isDomain| *1 (|InputForm|))) (* (*1 *1 *1 *1) (|isDomain| *1 (|InputForm|))) (/ (*1 *1 *1 *1) (|isDomain| *1 (|InputForm|))) (** (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|InputForm|)))) (** (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|InputForm|)))) (|Zero| (*1 *1) (|isDomain| *1 (|InputForm|))) (|One| (*1 *1) (|isDomain| *1 (|InputForm|))) (|flatten| (*1 *1 *1) (|isDomain| *1 (|InputForm|))) (|unparse| (*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|InputForm|)))) (|parse| (*1 *1 *2) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|InputForm|)))) (|declare| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|InputForm|))) (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|InputForm|)))) (|compile| (*1 *2 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *3 (|List| (|InputForm|))) (|isDomain| *1 (|InputForm|))))) │ │ │ +(|Join| (|SExpressionCategory| (|String|) (|Symbol|) (|Integer|) (|DoubleFloat|) (|OutputForm|)) (|ConvertibleTo| (|SExpression|)) (CATEGORY |domain| (SIGNATURE |interpret| ((|Any|) $)) (SIGNATURE |convert| ($ (|SExpression|))) (SIGNATURE |binary| ($ $ (|List| $))) (SIGNATURE |function| ($ $ (|List| (|Symbol|)) (|Symbol|))) (SIGNATURE |lambda| ($ $ (|List| (|Symbol|)))) (SIGNATURE + ($ $ $)) (SIGNATURE * ($ $ $)) (SIGNATURE / ($ $ $)) (SIGNATURE ** ($ $ (|NonNegativeInteger|))) (SIGNATURE ** ($ $ (|Integer|))) (SIGNATURE (|Zero|) ($) |constant|) (SIGNATURE (|One|) ($) |constant|) (SIGNATURE |flatten| ($ $)) (SIGNATURE |unparse| ((|String|) $)) (SIGNATURE |parse| ($ (|String|))) (SIGNATURE |declare| ((|Symbol|) (|List| $))) (SIGNATURE |compile| ((|Symbol|) (|Symbol|) (|List| $))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|union| (($ $ $) 37)) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) 34)) (|new| (($) 11)) (|latex| (((|String|) $) NIL)) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) 20)) (|hash| (((|SingleInteger|) $) NIL)) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) 48)) (|failed?| (((|Boolean|) $) 14)) (|failed| (($) 12)) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) 25)) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) 23)) (|coerce| (((|OutputForm|) $) 42)) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) 46)) (|addMatch| (($ (|Pattern| |#1|) |#2| $) 45)) (= (((|Boolean|) $ $) 39))) │ │ │ +(((|PatternMatchResult| |#1| |#2|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |failed?| ((|Boolean|) $)) (SIGNATURE |failed| ($)) (SIGNATURE |new| ($)) (SIGNATURE |union| ($ $ $)) (SIGNATURE |getMatch| ((|Union| |#2| "failed") (|Pattern| |#1|) $)) (SIGNATURE |addMatch| ($ (|Pattern| |#1|) |#2| $)) (SIGNATURE |insertMatch| ($ (|Pattern| |#1|) |#2| $)) (SIGNATURE |addMatchRestricted| ($ (|Pattern| |#1|) |#2| $ |#2|)) (SIGNATURE |destruct| ((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $)) (SIGNATURE |construct| ($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))))) (SIGNATURE |satisfy?| ((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|))))) (|SetCategory|) (|SetCategory|)) (T |PatternMatchResult|)) │ │ │ +((|failed?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PatternMatchResult| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))) (|failed| (*1 *1) (AND (|isDomain| *1 (|PatternMatchResult| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|new| (*1 *1) (AND (|isDomain| *1 (|PatternMatchResult| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|union| (*1 *1 *1 *1) (AND (|isDomain| *1 (|PatternMatchResult| *2 *3)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|getMatch| (*1 *2 *3 *1) (|partial| AND (|isDomain| *3 (|Pattern| *4)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *2 (|SetCategory|)) (|isDomain| *1 (|PatternMatchResult| *4 *2)))) (|addMatch| (*1 *1 *2 *3 *1) (AND (|isDomain| *2 (|Pattern| *4)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *1 (|PatternMatchResult| *4 *3)) (|ofCategory| *3 (|SetCategory|)))) (|insertMatch| (*1 *1 *2 *3 *1) (AND (|isDomain| *2 (|Pattern| *4)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *1 (|PatternMatchResult| *4 *3)) (|ofCategory| *3 (|SetCategory|)))) (|addMatchRestricted| (*1 *1 *2 *3 *1 *3) (AND (|isDomain| *2 (|Pattern| *4)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *1 (|PatternMatchResult| *4 *3)) (|ofCategory| *3 (|SetCategory|)))) (|destruct| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| *4)))) (|isDomain| *1 (|PatternMatchResult| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)))) (|construct| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| *4)))) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *1 (|PatternMatchResult| *3 *4)) (|ofCategory| *3 (|SetCategory|)))) (|satisfy?| (*1 *2 *1 *3) (|partial| AND (|isDomain| *3 (|Pattern| *4)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PatternMatchResult| *4 *5)) (|ofCategory| *5 (|SetCategory|))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |failed?| ((|Boolean|) $)) (SIGNATURE |failed| ($)) (SIGNATURE |new| ($)) (SIGNATURE |union| ($ $ $)) (SIGNATURE |getMatch| ((|Union| |#2| "failed") (|Pattern| |#1|) $)) (SIGNATURE |addMatch| ($ (|Pattern| |#1|) |#2| $)) (SIGNATURE |insertMatch| ($ (|Pattern| |#1|) |#2| $)) (SIGNATURE |addMatchRestricted| ($ (|Pattern| |#1|) |#2| $ |#2|)) (SIGNATURE |destruct| ((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $)) (SIGNATURE |construct| ($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))))) (SIGNATURE |satisfy?| ((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|))))) │ │ │ +((|split| (((|Factored| |#1|) |#1|) 38)) (|factor| (((|Factored| |#1|) |#1|) 27) (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) 30)) (|doublyTransitive?| (((|Boolean|) |#1|) 54))) │ │ │ +(((|AlgFactor| |#1|) (CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|)))) (SIGNATURE |factor| ((|Factored| |#1|) |#1|)) (SIGNATURE |split| ((|Factored| |#1|) |#1|)) (SIGNATURE |doublyTransitive?| ((|Boolean|) |#1|))) (|UnivariatePolynomialCategory| (|AlgebraicNumber|))) (T |AlgFactor|)) │ │ │ +((|doublyTransitive?| (*1 *2 *3) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|AlgFactor| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|AlgebraicNumber|))))) (|split| (*1 *2 *3) (AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|AlgFactor| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|AlgebraicNumber|))))) (|factor| (*1 *2 *3) (AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|AlgFactor| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|AlgebraicNumber|))))) (|factor| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| (|AlgebraicNumber|))) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|AlgFactor| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| (|AlgebraicNumber|)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |factor| ((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|)))) (SIGNATURE |factor| ((|Factored| |#1|) |#1|)) (SIGNATURE |split| ((|Factored| |#1|) |#1|)) (SIGNATURE |doublyTransitive?| ((|Boolean|) |#1|))) │ │ │ +((|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) 86) (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) 82) (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) 84) (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) 85) (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) 78) (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) 80) (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) 81) (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) 79) (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) 87) (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) 83))) │ │ │ +(((|ExpressionSpaceODESolver| |#1| |#2|) (CATEGORY |package| (SIGNATURE |seriesSolve| ((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|))) (SIGNATURE |seriesSolve| ((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|))) (SIGNATURE |seriesSolve| ((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|)))) (SIGNATURE |seriesSolve| ((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|))) (SIGNATURE |seriesSolve| ((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|))) (SIGNATURE |seriesSolve| ((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|)))) (SIGNATURE |seriesSolve| ((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|)) (SIGNATURE |seriesSolve| ((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|)) (SIGNATURE |seriesSolve| ((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|))) (SIGNATURE |seriesSolve| ((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)))) (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|))) (|FunctionSpace| |#1|)) (T |ExpressionSpaceODESolver|)) │ │ │ +((|seriesSolve| (*1 *2 *3 *4 *5 *6) (AND (|isDomain| *4 (|BasicOperator|)) (|isDomain| *5 (|Equation| *3)) (|isDomain| *6 (|List| *3)) (|ofCategory| *3 (|FunctionSpace| *7)) (|ofCategory| *7 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|ExpressionSpaceODESolver| *7 *3)))) (|seriesSolve| (*1 *2 *3 *4 *5 *5) (AND (|isDomain| *4 (|BasicOperator|)) (|isDomain| *5 (|Equation| *3)) (|ofCategory| *3 (|FunctionSpace| *6)) (|ofCategory| *6 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|ExpressionSpaceODESolver| *6 *3)))) (|seriesSolve| (*1 *2 *3 *4 *5 *3) (AND (|isDomain| *4 (|BasicOperator|)) (|isDomain| *5 (|Equation| *3)) (|ofCategory| *3 (|FunctionSpace| *6)) (|ofCategory| *6 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|ExpressionSpaceODESolver| *6 *3)))) (|seriesSolve| (*1 *2 *3 *4 *3 *5) (AND (|isDomain| *3 (|Equation| *5)) (|isDomain| *4 (|BasicOperator|)) (|ofCategory| *5 (|FunctionSpace| *6)) (|ofCategory| *6 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|ExpressionSpaceODESolver| *6 *5)))) (|seriesSolve| (*1 *2 *3 *4 *5 *6) (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|List| (|BasicOperator|))) (|isDomain| *6 (|List| (|Equation| *8))) (|ofCategory| *8 (|FunctionSpace| *7)) (|isDomain| *5 (|Equation| *8)) (|ofCategory| *7 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|ExpressionSpaceODESolver| *7 *8)))) (|seriesSolve| (*1 *2 *3 *4 *5 *3) (AND (|isDomain| *3 (|List| *7)) (|isDomain| *4 (|List| (|BasicOperator|))) (|isDomain| *5 (|Equation| *7)) (|ofCategory| *7 (|FunctionSpace| *6)) (|ofCategory| *6 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|ExpressionSpaceODESolver| *6 *7)))) (|seriesSolve| (*1 *2 *3 *4 *5 *6) (AND (|isDomain| *3 (|List| (|Equation| *8))) (|isDomain| *4 (|List| (|BasicOperator|))) (|isDomain| *5 (|Equation| *8)) (|isDomain| *6 (|List| *8)) (|ofCategory| *8 (|FunctionSpace| *7)) (|ofCategory| *7 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|ExpressionSpaceODESolver| *7 *8)))) (|seriesSolve| (*1 *2 *3 *4 *5 *3) (AND (|isDomain| *3 (|List| (|Equation| *7))) (|isDomain| *4 (|List| (|BasicOperator|))) (|isDomain| *5 (|Equation| *7)) (|ofCategory| *7 (|FunctionSpace| *6)) (|ofCategory| *6 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|ExpressionSpaceODESolver| *6 *7)))) (|seriesSolve| (*1 *2 *3 *4 *3 *5) (AND (|isDomain| *3 (|Equation| *7)) (|isDomain| *4 (|BasicOperator|)) (|isDomain| *5 (|List| *7)) (|ofCategory| *7 (|FunctionSpace| *6)) (|ofCategory| *6 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|ExpressionSpaceODESolver| *6 *7)))) (|seriesSolve| (*1 *2 *3 *4 *3 *3) (AND (|isDomain| *3 (|Equation| *6)) (|isDomain| *4 (|BasicOperator|)) (|ofCategory| *6 (|FunctionSpace| *5)) (|ofCategory| *5 (|Join| (|OrderedSet|) (|IntegralDomain|) (|ConvertibleTo| (|InputForm|)))) (|isDomain| *2 (|Any|)) (|isDomain| *1 (|ExpressionSpaceODESolver| *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |seriesSolve| ((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|))) (SIGNATURE |seriesSolve| ((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|))) (SIGNATURE |seriesSolve| ((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|)))) (SIGNATURE |seriesSolve| ((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|))) (SIGNATURE |seriesSolve| ((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|))) (SIGNATURE |seriesSolve| ((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|)))) (SIGNATURE |seriesSolve| ((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|)) (SIGNATURE |seriesSolve| ((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|)) (SIGNATURE |seriesSolve| ((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|))) (SIGNATURE |seriesSolve| ((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL)) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) 55)) (|one?| (((|Boolean|) $) NIL)) (|numer| (((|Vector| |#4|) $) 17)) (|norm| ((|#2| $) 53)) (|minimize| (($ $) 136)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) 98)) (|ideal| (($ (|Vector| |#4|)) 97)) (|hash| (((|SingleInteger|) $) NIL)) (|denom| ((|#1| $) 18)) (|conjugate| (($ $ $) NIL)) (|commutator| (($ $ $) NIL)) (|coerce| (((|OutputForm|) $) 131)) (|basis| (((|Vector| |#4|) $) 126)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|One| (($) 11 T CONST)) (= (((|Boolean|) $ $) 39)) (/ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) 119)) (* (($ $ $) 118))) │ │ │ +(((|FractionalIdeal| |#1| |#2| |#3| |#4|) (|Join| (|Group|) (CATEGORY |domain| (SIGNATURE |ideal| ($ (|Vector| |#4|))) (SIGNATURE |basis| ((|Vector| |#4|) $)) (SIGNATURE |norm| (|#2| $)) (SIGNATURE |numer| ((|Vector| |#4|) $)) (SIGNATURE |denom| (|#1| $)) (SIGNATURE |minimize| ($ $)) (SIGNATURE |randomLC| (|#4| (|NonNegativeInteger|) (|Vector| |#4|))))) (|EuclideanDomain|) (|QuotientFieldCategory| |#1|) (|UnivariatePolynomialCategory| |#2|) (|Join| (|FramedAlgebra| |#2| |#3|) (|RetractableTo| |#2|))) (T |FractionalIdeal|)) │ │ │ +((|ideal| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| *6)) (|ofCategory| *6 (|Join| (|FramedAlgebra| *4 *5) (|RetractableTo| *4))) (|ofCategory| *4 (|QuotientFieldCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *3 (|EuclideanDomain|)) (|isDomain| *1 (|FractionalIdeal| *3 *4 *5 *6)))) (|basis| (*1 *2 *1) (AND (|ofCategory| *3 (|EuclideanDomain|)) (|ofCategory| *4 (|QuotientFieldCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Vector| *6)) (|isDomain| *1 (|FractionalIdeal| *3 *4 *5 *6)) (|ofCategory| *6 (|Join| (|FramedAlgebra| *4 *5) (|RetractableTo| *4))))) (|norm| (*1 *2 *1) (AND (|ofCategory| *4 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 (|QuotientFieldCategory| *3)) (|isDomain| *1 (|FractionalIdeal| *3 *2 *4 *5)) (|ofCategory| *3 (|EuclideanDomain|)) (|ofCategory| *5 (|Join| (|FramedAlgebra| *2 *4) (|RetractableTo| *2))))) (|numer| (*1 *2 *1) (AND (|ofCategory| *3 (|EuclideanDomain|)) (|ofCategory| *4 (|QuotientFieldCategory| *3)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Vector| *6)) (|isDomain| *1 (|FractionalIdeal| *3 *4 *5 *6)) (|ofCategory| *6 (|Join| (|FramedAlgebra| *4 *5) (|RetractableTo| *4))))) (|denom| (*1 *2 *1) (AND (|ofCategory| *3 (|QuotientFieldCategory| *2)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *2 (|EuclideanDomain|)) (|isDomain| *1 (|FractionalIdeal| *2 *3 *4 *5)) (|ofCategory| *5 (|Join| (|FramedAlgebra| *3 *4) (|RetractableTo| *3))))) (|minimize| (*1 *1 *1) (AND (|ofCategory| *2 (|EuclideanDomain|)) (|ofCategory| *3 (|QuotientFieldCategory| *2)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|isDomain| *1 (|FractionalIdeal| *2 *3 *4 *5)) (|ofCategory| *5 (|Join| (|FramedAlgebra| *3 *4) (|RetractableTo| *3))))) (|randomLC| (*1 *2 *3 *4) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *4 (|Vector| *2)) (|ofCategory| *5 (|EuclideanDomain|)) (|ofCategory| *6 (|QuotientFieldCategory| *5)) (|ofCategory| *2 (|Join| (|FramedAlgebra| *6 *7) (|RetractableTo| *6))) (|isDomain| *1 (|FractionalIdeal| *5 *6 *7 *2)) (|ofCategory| *7 (|UnivariatePolynomialCategory| *6))))) │ │ │ +(|Join| (|Group|) (CATEGORY |domain| (SIGNATURE |ideal| ($ (|Vector| |#4|))) (SIGNATURE |basis| ((|Vector| |#4|) $)) (SIGNATURE |norm| (|#2| $)) (SIGNATURE |numer| ((|Vector| |#4|) $)) (SIGNATURE |denom| (|#1| $)) (SIGNATURE |minimize| ($ $)) (SIGNATURE |randomLC| (|#4| (|NonNegativeInteger|) (|Vector| |#4|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|type| (((|Union| "left" "center" "right" "vertical" "horizontal") $) 17)) (|transCoord| (((|Integer|) $) 14)) (|ramifMult| (((|Integer|) $) 15)) (|quotValuation| (((|Integer|) $) 16)) (|latex| (((|String|) $) NIL)) (|infClsPt?| (((|Boolean|) $) 8)) (|hash| (((|SingleInteger|) $) NIL)) (|excepCoord| (((|Integer|) $) 12)) (|createHN| (($ (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Union| "left" "center" "right" "vertical" "horizontal")) 11)) (|coerce| (((|OutputForm|) $) 19) (($ (|List| (|Integer|))) NIL)) (|chartCoord| (((|Integer|) $) 13)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|BlowUpWithHamburgerNoether|) (|Join| (|BlowUpMethodCategory|) (CATEGORY |package| (ATTRIBUTE |HamburgerNoether|)))) (T |BlowUpWithHamburgerNoether|)) │ │ │ +NIL │ │ │ +(|Join| (|BlowUpMethodCategory|) (CATEGORY |package| (ATTRIBUTE |HamburgerNoether|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) NIL)) (|zeroSetSplit| (((|List| $) (|List| |#4|)) 87)) (|variables| (((|List| |#3|) $) NIL)) (|trivialIdeal?| (((|Boolean|) $) NIL)) (|triangular?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|stronglyReduced?| (((|Boolean|) |#4| $) NIL) (((|Boolean|) $) NIL)) (|stronglyReduce| ((|#4| |#4| $) NIL)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) NIL)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|select| (($ (|Mapping| (|Boolean|) |#4|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Union| |#4| "failed") $ |#3|) NIL)) (|sample| (($) NIL T CONST)) (|roughUnitIdeal?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|roughSubIdeal?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|roughEqualIdeals?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|roughBase?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 27)) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) 24 (|has| |#1| (|IntegralDomain|)))) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) NIL)) (|retract| (($ (|List| |#4|)) NIL)) (|rest| (((|Union| $ "failed") $) 69)) (|removeZero| ((|#4| |#4| $) 74)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#4| (|SetCategory|))))) (|remove| (($ |#4| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#4| (|SetCategory|)))) (($ (|Mapping| (|Boolean|) |#4|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (|IntegralDomain|)))) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) NIL)) (|reduceByQuasiMonic| ((|#4| |#4| $) NIL)) (|reduce| ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4| |#4|) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#4| (|SetCategory|)))) ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#4| (|Mapping| |#4| |#4| |#4|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) NIL)) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) NIL)) (|parts| (((|List| |#4|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|normalized?| (((|Boolean|) |#4| $) NIL) (((|Boolean|) $) NIL)) (|mvar| ((|#3| $) 75)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|members| (((|List| |#4|) $) 28 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#4| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#4| (|SetCategory|))))) (|medialSet| (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) 31) (((|Union| $ "failed") (|List| |#4|)) 34)) (|map!| (($ (|Mapping| |#4| |#4|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#4| |#4|) $) NIL)) (|mainVariables| (((|List| |#3|) $) NIL)) (|mainVariable?| (((|Boolean|) |#3| $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL)) (|last| (((|Union| |#4| "failed") $) NIL)) (|initials| (((|List| |#4|) $) 49)) (|initiallyReduced?| (((|Boolean|) |#4| $) NIL) (((|Boolean|) $) NIL)) (|initiallyReduce| ((|#4| |#4| $) 73)) (|infRittWu?| (((|Boolean|) $ $) 84)) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (|IntegralDomain|)))) (|headReduced?| (((|Boolean|) |#4| $) NIL) (((|Boolean|) $) NIL)) (|headReduce| ((|#4| |#4| $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|first| (((|Union| |#4| "failed") $) 68)) (|find| (((|Union| |#4| "failed") (|Mapping| (|Boolean|) |#4|) $) NIL)) (|extendIfCan| (((|Union| $ "failed") $ |#4|) NIL)) (|extend| (($ $ |#4|) NIL)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#4|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| |#4|) (|List| |#4|)) NIL (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) (($ $ |#4| |#4|) NIL (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) (($ $ (|Equation| |#4|)) NIL (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) (($ $ (|List| (|Equation| |#4|))) NIL (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) 66)) (|empty| (($) 41)) (|degree| (((|NonNegativeInteger|) $) NIL)) (|count| (((|NonNegativeInteger|) |#4| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#4| (|SetCategory|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#4|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| |#4| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#4|)) NIL)) (|collectUpper| (($ $ |#3|) NIL)) (|collectUnder| (($ $ |#3|) NIL)) (|collectQuasiMonic| (($ $) NIL)) (|collect| (($ $ |#3|) NIL)) (|coerce| (((|OutputForm|) $) NIL) (((|List| |#4|) $) 56)) (|coHeight| (((|NonNegativeInteger|) $) NIL (|has| |#3| (|Finite|)))) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) 39) (((|Union| $ "failed") (|List| |#4|)) 40)) (|characteristicSerie| (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) 64) (((|List| $) (|List| |#4|)) 65)) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 23) (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) NIL)) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) NIL)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#4|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|algebraicVariables| (((|List| |#3|) $) NIL)) (|algebraic?| (((|Boolean|) |#3| $) NIL)) (= (((|Boolean|) $ $) NIL)) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|WuWenTsunTriangularSet| |#1| |#2| |#3| |#4|) (|Join| (|TriangularSetCategory| |#1| |#2| |#3| |#4|) (CATEGORY |domain| (SIGNATURE |medialSet| ((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|))) (SIGNATURE |medialSet| ((|Union| $ "failed") (|List| |#4|))) (SIGNATURE |characteristicSet| ((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|))) (SIGNATURE |characteristicSet| ((|Union| $ "failed") (|List| |#4|))) (SIGNATURE |characteristicSerie| ((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|))) (SIGNATURE |characteristicSerie| ((|List| $) (|List| |#4|))))) (|IntegralDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |#1| |#2| |#3|)) (T |WuWenTsunTriangularSet|)) │ │ │ +((|medialSet| (*1 *1 *2 *3 *4) (|partial| AND (|isDomain| *2 (|List| *8)) (|isDomain| *3 (|Mapping| (|Boolean|) *8 *8)) (|isDomain| *4 (|Mapping| *8 *8 *8)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *1 (|WuWenTsunTriangularSet| *5 *6 *7 *8)))) (|medialSet| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|WuWenTsunTriangularSet| *3 *4 *5 *6)))) (|characteristicSet| (*1 *1 *2 *3 *4) (|partial| AND (|isDomain| *2 (|List| *8)) (|isDomain| *3 (|Mapping| (|Boolean|) *8 *8)) (|isDomain| *4 (|Mapping| *8 *8 *8)) (|ofCategory| *8 (|RecursivePolynomialCategory| *5 *6 *7)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|isDomain| *1 (|WuWenTsunTriangularSet| *5 *6 *7 *8)))) (|characteristicSet| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|WuWenTsunTriangularSet| *3 *4 *5 *6)))) (|characteristicSerie| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|List| *9)) (|isDomain| *4 (|Mapping| (|Boolean|) *9 *9)) (|isDomain| *5 (|Mapping| *9 *9 *9)) (|ofCategory| *9 (|RecursivePolynomialCategory| *6 *7 *8)) (|ofCategory| *6 (|IntegralDomain|)) (|ofCategory| *7 (|OrderedAbelianMonoidSup|)) (|ofCategory| *8 (|OrderedSet|)) (|isDomain| *2 (|List| (|WuWenTsunTriangularSet| *6 *7 *8 *9))) (|isDomain| *1 (|WuWenTsunTriangularSet| *6 *7 *8 *9)))) (|characteristicSerie| (*1 *2 *3) (AND (|isDomain| *3 (|List| *7)) (|ofCategory| *7 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *2 (|List| (|WuWenTsunTriangularSet| *4 *5 *6 *7))) (|isDomain| *1 (|WuWenTsunTriangularSet| *4 *5 *6 *7))))) │ │ │ +(|Join| (|TriangularSetCategory| |#1| |#2| |#3| |#4|) (CATEGORY |domain| (SIGNATURE |medialSet| ((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|))) (SIGNATURE |medialSet| ((|Union| $ "failed") (|List| |#4|))) (SIGNATURE |characteristicSet| ((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|))) (SIGNATURE |characteristicSet| ((|Union| $ "failed") (|List| |#4|))) (SIGNATURE |characteristicSerie| ((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|))) (SIGNATURE |characteristicSerie| ((|List| $) (|List| |#4|))))) │ │ │ +((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 45)) (|third| ((|#1| $) 62)) (|tail| (($ $) 64)) (|split!| (($ $ (|Integer|)) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setvalue!| ((|#1| $ |#1|) 36 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setrest!| (($ $ $) 53 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setlast!| ((|#1| $ |#1|) 51 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setfirst!| ((|#1| $ |#1|) 55 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ "first" |#1|) 54 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "rest" $) 52 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ "last" |#1|) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|second| ((|#1| $) 63)) (|sample| (($) 7 T CONST)) (|rest| (($ $) 70) (($ $ (|NonNegativeInteger|)) 68)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) 47)) (|node?| (((|Boolean|) $ $) 39 (|has| |#1| (|SetCategory|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|leaves| (((|List| |#1|) $) 42)) (|leaf?| (((|Boolean|) $) 46)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|last| ((|#1| $) 67) (($ $ (|NonNegativeInteger|)) 65)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|first| ((|#1| $) 73) (($ $ (|NonNegativeInteger|)) 71)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ "value") 44) ((|#1| $ "first") 72) (($ $ "rest") 69) ((|#1| $ "last") 66)) (|distance| (((|Integer|) $ $) 41)) (|cyclic?| (((|Boolean|) $) 43)) (|cycleTail| (($ $) 59)) (|cycleSplit!| (($ $) 56 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|cycleLength| (((|NonNegativeInteger|) $) 60)) (|cycleEntry| (($ $) 61)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|concat!| (($ $ $) 58 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ |#1|) 57 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|concat| (($ $ $) 75) (($ |#1| $) 74)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) 48)) (|child?| (((|Boolean|) $ $) 40 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|UnaryRecursiveAggregate| |#1|) (|Category|) (|Type|)) (T |UnaryRecursiveAggregate|)) │ │ │ +((|concat| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|concat| (*1 *1 *2 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|first| (*1 *2 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 "first") (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|first| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|rest| (*1 *1 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|elt| (*1 *1 *1 *2) (AND (|isDomain| *2 "rest") (|ofCategory| *1 (|UnaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|rest| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|last| (*1 *2 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 "last") (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|last| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|tail| (*1 *1 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|second| (*1 *2 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|third| (*1 *2 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|cycleEntry| (*1 *1 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|cycleLength| (*1 *2 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|cycleTail| (*1 *1 *1) (AND (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|concat!| (*1 *1 *1 *1) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|concat!| (*1 *1 *1 *2) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|cycleSplit!| (*1 *1 *1) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setfirst!| (*1 *2 *1 *2) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setelt| (*1 *2 *1 *3 *2) (AND (|isDomain| *3 "first") (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setrest!| (*1 *1 *1 *1) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setelt| (*1 *1 *1 *2 *1) (AND (|isDomain| *2 "rest") (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|setlast!| (*1 *2 *1 *2) (AND (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|setelt| (*1 *2 *1 *3 *2) (AND (|isDomain| *3 "last") (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|split!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|has| *1 (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *1 (|UnaryRecursiveAggregate| *3)) (|ofCategory| *3 (|Type|))))) │ │ │ +(|Join| (|RecursiveAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |concat| ($ $ $)) (SIGNATURE |concat| ($ |t#1| $)) (SIGNATURE |first| (|t#1| $)) (SIGNATURE |elt| (|t#1| $ "first")) (SIGNATURE |first| ($ $ (|NonNegativeInteger|))) (SIGNATURE |rest| ($ $)) (SIGNATURE |elt| ($ $ "rest")) (SIGNATURE |rest| ($ $ (|NonNegativeInteger|))) (SIGNATURE |last| (|t#1| $)) (SIGNATURE |elt| (|t#1| $ "last")) (SIGNATURE |last| ($ $ (|NonNegativeInteger|))) (SIGNATURE |tail| ($ $)) (SIGNATURE |second| (|t#1| $)) (SIGNATURE |third| (|t#1| $)) (SIGNATURE |cycleEntry| ($ $)) (SIGNATURE |cycleLength| ((|NonNegativeInteger|) $)) (SIGNATURE |cycleTail| ($ $)) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (PROGN (SIGNATURE |concat!| ($ $ $)) (SIGNATURE |concat!| ($ $ |t#1|)) (SIGNATURE |cycleSplit!| ($ $)) (SIGNATURE |setfirst!| (|t#1| $ |t#1|)) (SIGNATURE |setelt| (|t#1| $ "first" |t#1|)) (SIGNATURE |setrest!| ($ $ $)) (SIGNATURE |setelt| ($ $ "rest" $)) (SIGNATURE |setlast!| (|t#1| $ |t#1|)) (SIGNATURE |setelt| (|t#1| $ "last" |t#1|)) (SIGNATURE |split!| ($ $ (|Integer|)))) |noBranch|))) │ │ │ +(((|Aggregate|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|RecursiveAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|Type|) . T)) │ │ │ ((|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) 18) (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) 19) ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) 16) (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) 17) ((|#2| (|List| |#1|) (|List| |#2|) |#1|) 10) (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) 12))) │ │ │ (((|ListToMap| |#1| |#2|) (CATEGORY |package| (SIGNATURE |match| ((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|))) (SIGNATURE |match| (|#2| (|List| |#1|) (|List| |#2|) |#1|)) (SIGNATURE |match| ((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|)) (SIGNATURE |match| (|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|)) (SIGNATURE |match| ((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|))) (SIGNATURE |match| (|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)))) (|SetCategory|) (|Type|)) (T |ListToMap|)) │ │ │ ((|match| (*1 *2 *3 *4 *5 *6) (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|List| *2)) (|isDomain| *6 (|Mapping| *2 *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|ListToMap| *5 *2)))) (|match| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|Mapping| *6 *5)) (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|List| *6)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|Type|)) (|isDomain| *1 (|ListToMap| *5 *6)))) (|match| (*1 *2 *3 *4 *5 *2) (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|List| *2)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|ListToMap| *5 *2)))) (|match| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|List| *6)) (|isDomain| *4 (|List| *5)) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *5 (|Type|)) (|isDomain| *2 (|Mapping| *5 *6)) (|isDomain| *1 (|ListToMap| *6 *5)))) (|match| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|List| *2)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|ListToMap| *5 *2)))) (|match| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|List| *6)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|Mapping| *6 *5)) (|isDomain| *1 (|ListToMap| *5 *6))))) │ │ │ (CATEGORY |package| (SIGNATURE |match| ((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|))) (SIGNATURE |match| (|#2| (|List| |#1|) (|List| |#2|) |#1|)) (SIGNATURE |match| ((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|)) (SIGNATURE |match| (|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|)) (SIGNATURE |match| ((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|))) (SIGNATURE |match| (|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|size| (((|NonNegativeInteger|) $) 15)) (|rightMult| (($ $ |#1|) 55)) (|reverse!| (($ $) 32)) (|reverse| (($ $) 31)) (|retractIfCan| (((|Union| |#1| "failed") $) 47)) (|retract| ((|#1| $) NIL)) (|plus| (($ |#1| |#2| $) 60) (($ $ $) 61)) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) 45)) (|nthFactor| ((|#1| $ (|Integer|)) 30)) (|nthExpon| ((|#2| $ (|Integer|)) 29)) (|mapGen| (($ (|Mapping| |#1| |#1|) $) 34)) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) 38)) (|makeUnit| (($) 10)) (|makeTerm| (($ |#1| |#2|) 22)) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) 23)) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) 13)) (|leftMult| (($ |#1| $) 56)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|commutativeEquality| (((|Boolean|) $ $) 58)) (|coerce| (((|OutputForm|) $) 19) (($ |#1|) 16)) (= (((|Boolean|) $ $) 25))) │ │ │ -(((|ListMonoidOps| |#1| |#2| |#3|) (|Join| (|SetCategory|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |outputForm| ((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|))) (SIGNATURE |listOfMonoms| ((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $)) (SIGNATURE |makeTerm| ($ |#1| |#2|)) (SIGNATURE |makeMulti| ($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))))) (SIGNATURE |nthExpon| (|#2| $ (|Integer|))) (SIGNATURE |nthFactor| (|#1| $ (|Integer|))) (SIGNATURE |reverse| ($ $)) (SIGNATURE |reverse!| ($ $)) (SIGNATURE |size| ((|NonNegativeInteger|) $)) (SIGNATURE |makeUnit| ($)) (SIGNATURE |rightMult| ($ $ |#1|)) (SIGNATURE |leftMult| ($ |#1| $)) (SIGNATURE |plus| ($ |#1| |#2| $)) (SIGNATURE |plus| ($ $ $)) (SIGNATURE |commutativeEquality| ((|Boolean|) $ $)) (SIGNATURE |mapExpon| ($ (|Mapping| |#2| |#2|) $)) (SIGNATURE |mapGen| ($ (|Mapping| |#1| |#1|) $)))) (|SetCategory|) (|AbelianMonoid|) |#2|) (T |ListMonoidOps|)) │ │ │ -((|outputForm| (*1 *2 *1 *3 *3 *4) (AND (|isDomain| *3 (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|ListMonoidOps| *5 *6 *7)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|AbelianMonoid|)) (|ofType| *7 *6))) (|listOfMonoms| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |gen| *3) (|:| |exp| *4)))) (|isDomain| *1 (|ListMonoidOps| *3 *4 *5)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|AbelianMonoid|)) (|ofType| *5 *4))) (|makeTerm| (*1 *1 *2 *3) (AND (|isDomain| *1 (|ListMonoidOps| *2 *3 *4)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 *3))) (|makeMulti| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Record| (|:| |gen| *3) (|:| |exp| *4)))) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|AbelianMonoid|)) (|ofType| *5 *4) (|isDomain| *1 (|ListMonoidOps| *3 *4 *5)))) (|nthExpon| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *2 (|AbelianMonoid|)) (|isDomain| *1 (|ListMonoidOps| *4 *2 *5)) (|ofCategory| *4 (|SetCategory|)) (|ofType| *5 *2))) (|nthFactor| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *2 (|SetCategory|)) (|isDomain| *1 (|ListMonoidOps| *2 *4 *5)) (|ofCategory| *4 (|AbelianMonoid|)) (|ofType| *5 *4))) (|reverse| (*1 *1 *1) (AND (|isDomain| *1 (|ListMonoidOps| *2 *3 *4)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 *3))) (|reverse!| (*1 *1 *1) (AND (|isDomain| *1 (|ListMonoidOps| *2 *3 *4)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 *3))) (|size| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ListMonoidOps| *3 *4 *5)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|AbelianMonoid|)) (|ofType| *5 *4))) (|makeUnit| (*1 *1) (AND (|isDomain| *1 (|ListMonoidOps| *2 *3 *4)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 *3))) (|rightMult| (*1 *1 *1 *2) (AND (|isDomain| *1 (|ListMonoidOps| *2 *3 *4)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 *3))) (|leftMult| (*1 *1 *2 *1) (AND (|isDomain| *1 (|ListMonoidOps| *2 *3 *4)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 *3))) (|plus| (*1 *1 *2 *3 *1) (AND (|isDomain| *1 (|ListMonoidOps| *2 *3 *4)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 *3))) (|plus| (*1 *1 *1 *1) (AND (|isDomain| *1 (|ListMonoidOps| *2 *3 *4)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 *3))) (|commutativeEquality| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ListMonoidOps| *3 *4 *5)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|AbelianMonoid|)) (|ofType| *5 *4))) (|mapExpon| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *4 *4)) (|ofCategory| *4 (|AbelianMonoid|)) (|ofType| *5 *4) (|isDomain| *1 (|ListMonoidOps| *3 *4 *5)) (|ofCategory| *3 (|SetCategory|)))) (|mapGen| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|ListMonoidOps| *3 *4 *5)) (|ofCategory| *4 (|AbelianMonoid|)) (|ofType| *5 *4)))) │ │ │ -(|Join| (|SetCategory|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |outputForm| ((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|))) (SIGNATURE |listOfMonoms| ((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $)) (SIGNATURE |makeTerm| ($ |#1| |#2|)) (SIGNATURE |makeMulti| ($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))))) (SIGNATURE |nthExpon| (|#2| $ (|Integer|))) (SIGNATURE |nthFactor| (|#1| $ (|Integer|))) (SIGNATURE |reverse| ($ $)) (SIGNATURE |reverse!| ($ $)) (SIGNATURE |size| ((|NonNegativeInteger|) $)) (SIGNATURE |makeUnit| ($)) (SIGNATURE |rightMult| ($ $ |#1|)) (SIGNATURE |leftMult| ($ |#1| $)) (SIGNATURE |plus| ($ |#1| |#2| $)) (SIGNATURE |plus| ($ $ $)) (SIGNATURE |commutativeEquality| ((|Boolean|) $ $)) (SIGNATURE |mapExpon| ($ (|Mapping| |#2| |#2|) $)) (SIGNATURE |mapGen| ($ (|Mapping| |#1| |#1|) $)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|varList| (((|List| |#1|) $) 14)) (|right| (($ $) 18)) (|retractable?| (((|Boolean|) $) 19)) (|retractIfCan| (((|Union| |#1| "failed") $) 22)) (|retract| ((|#1| $) 20)) (|rest| (($ $) 36)) (|mirror| (($ $) 24)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|lexico| (((|Boolean|) $ $) 41)) (|length| (((|PositiveInteger|) $) 38)) (|left| (($ $) 17)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|first| ((|#1| $) 35)) (|coerce| (((|OutputForm|) $) 31) (($ |#1|) 23) (((|OrderedFreeMonoid| |#1|) $) 27)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 12)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 40)) (* (($ $ $) 34))) │ │ │ -(((|Magma| |#1|) (|Join| (|OrderedSet|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE * ($ $ $)) (SIGNATURE |coerce| ((|OrderedFreeMonoid| |#1|) $)) (SIGNATURE |first| (|#1| $)) (SIGNATURE |left| ($ $)) (SIGNATURE |length| ((|PositiveInteger|) $)) (SIGNATURE |lexico| ((|Boolean|) $ $)) (SIGNATURE |mirror| ($ $)) (SIGNATURE |rest| ($ $)) (SIGNATURE |retractable?| ((|Boolean|) $)) (SIGNATURE |right| ($ $)) (SIGNATURE |varList| ((|List| |#1|) $)))) (|OrderedSet|)) (T |Magma|)) │ │ │ -((* (*1 *1 *1 *1) (AND (|isDomain| *1 (|Magma| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OrderedFreeMonoid| *3)) (|isDomain| *1 (|Magma| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|first| (*1 *2 *1) (AND (|isDomain| *1 (|Magma| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|left| (*1 *1 *1) (AND (|isDomain| *1 (|Magma| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|length| (*1 *2 *1) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|Magma| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|lexico| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Magma| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|mirror| (*1 *1 *1) (AND (|isDomain| *1 (|Magma| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|rest| (*1 *1 *1) (AND (|isDomain| *1 (|Magma| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|retractable?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Magma| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|right| (*1 *1 *1) (AND (|isDomain| *1 (|Magma| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|varList| (*1 *2 *1) (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|Magma| *3)) (|ofCategory| *3 (|OrderedSet|))))) │ │ │ -(|Join| (|OrderedSet|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE * ($ $ $)) (SIGNATURE |coerce| ((|OrderedFreeMonoid| |#1|) $)) (SIGNATURE |first| (|#1| $)) (SIGNATURE |left| ($ $)) (SIGNATURE |length| ((|PositiveInteger|) $)) (SIGNATURE |lexico| ((|Boolean|) $ $)) (SIGNATURE |mirror| ($ $)) (SIGNATURE |rest| ($ $)) (SIGNATURE |retractable?| ((|Boolean|) $)) (SIGNATURE |right| ($ $)) (SIGNATURE |varList| ((|List| |#1|) $)))) │ │ │ -((|value| ((|#2| $) 76)) (|tail| (($ $) 96)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 26)) (|rest| (($ $) 85) (($ $ (|NonNegativeInteger|)) 88)) (|possiblyInfinite?| (((|Boolean|) $) 97)) (|nodes| (((|List| $) $) 72)) (|node?| (((|Boolean|) $ $) 71)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 24)) (|minIndex| (((|Integer|) $) 46)) (|maxIndex| (((|Integer|) $) 45)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 22)) (|leaf?| (((|Boolean|) $) 74)) (|last| ((|#2| $) 89) (($ $ (|NonNegativeInteger|)) 92)) (|insert| (($ $ $ (|Integer|)) 62) (($ |#2| $ (|Integer|)) 61)) (|indices| (((|List| (|Integer|)) $) 44)) (|index?| (((|Boolean|) (|Integer|) $) 42)) (|first| ((|#2| $) NIL) (($ $ (|NonNegativeInteger|)) 84)) (|extend| (($ $ (|Integer|)) 99)) (|explicitlyFinite?| (((|Boolean|) $) 98)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 32)) (|entries| (((|List| |#2|) $) 33)) (|elt| ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (|UniversalSegment| (|Integer|))) 58) ((|#2| $ (|Integer|)) 40) ((|#2| $ (|Integer|) |#2|) 41)) (|distance| (((|Integer|) $ $) 70)) (|delete| (($ $ (|UniversalSegment| (|Integer|))) 57) (($ $ (|Integer|)) 51)) (|cyclic?| (((|Boolean|) $) 66)) (|cycleTail| (($ $) 81)) (|cycleLength| (((|NonNegativeInteger|) $) 80)) (|cycleEntry| (($ $) 79)) (|construct| (($ (|List| |#2|)) 37)) (|complete| (($ $) 100)) (|children| (((|List| $) $) 69)) (|child?| (((|Boolean|) $ $) 68)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 31)) (= (((|Boolean|) $ $) 18)) (|#| (((|NonNegativeInteger|) $) 29))) │ │ │ -(((|LazyStreamAggregate&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |complete| (|#1| |#1|)) (SIGNATURE |extend| (|#1| |#1| (|Integer|))) (SIGNATURE |possiblyInfinite?| ((|Boolean|) |#1|)) (SIGNATURE |explicitlyFinite?| ((|Boolean|) |#1|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|))) (SIGNATURE |entries| ((|List| |#2|) |#1|)) (SIGNATURE |index?| ((|Boolean|) (|Integer|) |#1|)) (SIGNATURE |indices| ((|List| (|Integer|)) |#1|)) (SIGNATURE |maxIndex| ((|Integer|) |#1|)) (SIGNATURE |minIndex| ((|Integer|) |#1|)) (SIGNATURE |construct| (|#1| (|List| |#2|))) (SIGNATURE |elt| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |delete| (|#1| |#1| (|Integer|))) (SIGNATURE |delete| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |insert| (|#1| |#2| |#1| (|Integer|))) (SIGNATURE |insert| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |cycleTail| (|#1| |#1|)) (SIGNATURE |cycleLength| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |cycleEntry| (|#1| |#1|)) (SIGNATURE |tail| (|#1| |#1|)) (SIGNATURE |last| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#2| |#1| "last")) (SIGNATURE |last| (|#2| |#1|)) (SIGNATURE |rest| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#1| |#1| "rest")) (SIGNATURE |rest| (|#1| |#1|)) (SIGNATURE |first| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#2| |#1| "first")) (SIGNATURE |first| (|#2| |#1|)) (SIGNATURE |node?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |child?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |distance| ((|Integer|) |#1| |#1|)) (SIGNATURE |cyclic?| ((|Boolean|) |#1|)) (SIGNATURE |elt| (|#2| |#1| "value")) (SIGNATURE |value| (|#2| |#1|)) (SIGNATURE |leaf?| ((|Boolean|) |#1|)) (SIGNATURE |nodes| ((|List| |#1|) |#1|)) (SIGNATURE |children| ((|List| |#1|) |#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |size?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |less?| ((|Boolean|) |#1| (|NonNegativeInteger|)))) (|LazyStreamAggregate| |#2|) (|Type|)) (T |LazyStreamAggregate&|)) │ │ │ +((|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) 20)) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) 12)) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) 16)) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) 9)) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) 44) (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) 39)) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) 26)) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) 43)) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) 31)) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) 33)) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) 46)) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) 54))) │ │ │ +(((|SymmetricGroupCombinatoricFunctions|) (CATEGORY |package| (SIGNATURE |coleman| ((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |inverseColeman| ((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|)))) (SIGNATURE |listYoungTableaus| ((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)))) (SIGNATURE |makeYoungTableau| ((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |nextColeman| ((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|)))) (SIGNATURE |nextLatticePermutation| ((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|))) (SIGNATURE |nextPartition| ((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|))) (SIGNATURE |nextPartition| ((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|))) (SIGNATURE |numberOfImproperPartitions| ((|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |subSet| ((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |unrankImproperPartitions0| ((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |unrankImproperPartitions1| ((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|))))) (T |SymmetricGroupCombinatoricFunctions|)) │ │ │ +((|unrankImproperPartitions1| (*1 *2 *3 *3 *3) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)) (|isDomain| *3 (|Integer|)))) (|unrankImproperPartitions0| (*1 *2 *3 *3 *3) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)) (|isDomain| *3 (|Integer|)))) (|subSet| (*1 *2 *3 *3 *3) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)) (|isDomain| *3 (|Integer|)))) (|numberOfImproperPartitions| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)))) (|nextPartition| (*1 *2 *3 *2 *4) (AND (|isDomain| *2 (|Vector| (|Integer|))) (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *4 (|Integer|)) (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)))) (|nextPartition| (*1 *2 *2 *2 *3) (AND (|isDomain| *2 (|Vector| (|Integer|))) (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)))) (|nextLatticePermutation| (*1 *2 *2 *2 *3) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *3 (|Boolean|)) (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)))) (|nextColeman| (*1 *2 *3 *3 *2) (AND (|isDomain| *2 (|Matrix| (|Integer|))) (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)))) (|makeYoungTableau| (*1 *2 *3 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|Matrix| (|Integer|))) (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)))) (|listYoungTableaus| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|List| (|Matrix| (|Integer|)))) (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)))) (|inverseColeman| (*1 *2 *2 *2 *3) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *3 (|Matrix| (|Integer|))) (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|)))) (|coleman| (*1 *2 *3 *3 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|Matrix| (|Integer|))) (|isDomain| *1 (|SymmetricGroupCombinatoricFunctions|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |coleman| ((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |inverseColeman| ((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|)))) (SIGNATURE |listYoungTableaus| ((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)))) (SIGNATURE |makeYoungTableau| ((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |nextColeman| ((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|)))) (SIGNATURE |nextLatticePermutation| ((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|))) (SIGNATURE |nextPartition| ((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|))) (SIGNATURE |nextPartition| ((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|))) (SIGNATURE |numberOfImproperPartitions| ((|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |subSet| ((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |unrankImproperPartitions0| ((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |unrankImproperPartitions1| ((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)))) │ │ │ +((/ (($ $ |#2|) 30)) (- (($ $) 22) (($ $ $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (|Fraction| (|Integer|)) $) 26) (($ $ (|Fraction| (|Integer|))) 28))) │ │ │ +(((|PowerSeriesCategory&| |#1| |#2| |#3| |#4|) (CATEGORY |domain| (SIGNATURE * (|#1| |#1| (|Fraction| (|Integer|)))) (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)) (SIGNATURE / (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) (|PowerSeriesCategory| |#2| |#3| |#4|) (|Ring|) (|OrderedAbelianMonoid|) (|OrderedSet|)) (T |PowerSeriesCategory&|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |complete| (|#1| |#1|)) (SIGNATURE |extend| (|#1| |#1| (|Integer|))) (SIGNATURE |possiblyInfinite?| ((|Boolean|) |#1|)) (SIGNATURE |explicitlyFinite?| ((|Boolean|) |#1|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|))) (SIGNATURE |entries| ((|List| |#2|) |#1|)) (SIGNATURE |index?| ((|Boolean|) (|Integer|) |#1|)) (SIGNATURE |indices| ((|List| (|Integer|)) |#1|)) (SIGNATURE |maxIndex| ((|Integer|) |#1|)) (SIGNATURE |minIndex| ((|Integer|) |#1|)) (SIGNATURE |construct| (|#1| (|List| |#2|))) (SIGNATURE |elt| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |delete| (|#1| |#1| (|Integer|))) (SIGNATURE |delete| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |insert| (|#1| |#2| |#1| (|Integer|))) (SIGNATURE |insert| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |cycleTail| (|#1| |#1|)) (SIGNATURE |cycleLength| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |cycleEntry| (|#1| |#1|)) (SIGNATURE |tail| (|#1| |#1|)) (SIGNATURE |last| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#2| |#1| "last")) (SIGNATURE |last| (|#2| |#1|)) (SIGNATURE |rest| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#1| |#1| "rest")) (SIGNATURE |rest| (|#1| |#1|)) (SIGNATURE |first| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#2| |#1| "first")) (SIGNATURE |first| (|#2| |#1|)) (SIGNATURE |node?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |child?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |distance| ((|Integer|) |#1| |#1|)) (SIGNATURE |cyclic?| ((|Boolean|) |#1|)) (SIGNATURE |elt| (|#2| |#1| "value")) (SIGNATURE |value| (|#2| |#1|)) (SIGNATURE |leaf?| ((|Boolean|) |#1|)) (SIGNATURE |nodes| ((|List| |#1|) |#1|)) (SIGNATURE |children| ((|List| |#1|) |#1|)) (SIGNATURE = ((|Boolean|) |#1| |#1|)) (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) |#1|)) (SIGNATURE |size?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) |#1| (|NonNegativeInteger|))) (SIGNATURE |less?| ((|Boolean|) |#1| (|NonNegativeInteger|)))) │ │ │ -((|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) 17)) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) 38) (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) 40) (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) 42)) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) NIL)) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) 43))) │ │ │ -(((|MeshCreationRoutinesForThreeDimensions|) (CATEGORY |package| (SIGNATURE |meshPar2Var| ((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|)))) (SIGNATURE |meshPar2Var| ((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|)))) (SIGNATURE |meshPar2Var| ((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|)))) (SIGNATURE |meshFun2Var| ((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|)))) (SIGNATURE |meshPar1Var| ((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|)))) (SIGNATURE |ptFunc| ((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)))))) (T |MeshCreationRoutinesForThreeDimensions|)) │ │ │ -((|ptFunc| (*1 *2 *3 *3 *3 *4) (AND (|isDomain| *3 (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *4 (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *2 (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *1 (|MeshCreationRoutinesForThreeDimensions|)))) (|meshPar1Var| (*1 *2 *3 *3 *3 *4 *5 *6) (AND (|isDomain| *3 (|Expression| (|Integer|))) (|isDomain| *4 (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *5 (|Segment| (|DoubleFloat|))) (|isDomain| *6 (|List| (|DrawOption|))) (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|))) (|isDomain| *1 (|MeshCreationRoutinesForThreeDimensions|)))) (|meshFun2Var| (*1 *2 *3 *4 *5 *5 *6) (AND (|isDomain| *3 (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *4 (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined")) (|isDomain| *5 (|Segment| (|DoubleFloat|))) (|isDomain| *6 (|List| (|DrawOption|))) (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|))) (|isDomain| *1 (|MeshCreationRoutinesForThreeDimensions|)))) (|meshPar2Var| (*1 *2 *2 *3 *4 *4 *5) (AND (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|))) (|isDomain| *3 (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *4 (|Segment| (|DoubleFloat|))) (|isDomain| *5 (|List| (|DrawOption|))) (|isDomain| *1 (|MeshCreationRoutinesForThreeDimensions|)))) (|meshPar2Var| (*1 *2 *3 *4 *4 *5) (AND (|isDomain| *3 (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *4 (|Segment| (|DoubleFloat|))) (|isDomain| *5 (|List| (|DrawOption|))) (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|))) (|isDomain| *1 (|MeshCreationRoutinesForThreeDimensions|)))) (|meshPar2Var| (*1 *2 *3 *3 *3 *4 *5 *5 *6) (AND (|isDomain| *3 (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *4 (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined")) (|isDomain| *5 (|Segment| (|DoubleFloat|))) (|isDomain| *6 (|List| (|DrawOption|))) (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|))) (|isDomain| *1 (|MeshCreationRoutinesForThreeDimensions|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |meshPar2Var| ((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|)))) (SIGNATURE |meshPar2Var| ((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|)))) (SIGNATURE |meshPar2Var| ((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|)))) (SIGNATURE |meshFun2Var| ((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|)))) (SIGNATURE |meshPar1Var| ((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|)))) (SIGNATURE |ptFunc| ((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|shift| (($ |#1|) 17) (($ $ |#1|) 20)) (|scale| (($ |#1|) 18) (($ $ |#1|) 21)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL) (($) 19) (($ $) 22)) (|one?| (((|Boolean|) $) NIL)) (|moebius| (($ |#1| |#1| |#1| |#1|) 8)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) 16)) (|hash| (((|SingleInteger|) $) NIL)) (|eval| ((|#1| $ |#1|) 24) (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) 32)) (|conjugate| (($ $ $) NIL)) (|commutator| (($ $ $) NIL)) (|coerce| (((|OutputForm|) $) 39)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|One| (($) 9 T CONST)) (= (((|Boolean|) $ $) 44)) (/ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ $ $) 14))) │ │ │ -(((|MoebiusTransform| |#1|) (|Join| (|Group|) (CATEGORY |domain| (SIGNATURE |moebius| ($ |#1| |#1| |#1| |#1|)) (SIGNATURE |shift| ($ |#1|)) (SIGNATURE |scale| ($ |#1|)) (SIGNATURE |recip| ($)) (SIGNATURE |shift| ($ $ |#1|)) (SIGNATURE |scale| ($ $ |#1|)) (SIGNATURE |recip| ($ $)) (SIGNATURE |eval| (|#1| $ |#1|)) (SIGNATURE |eval| ((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|))))) (|Field|)) (T |MoebiusTransform|)) │ │ │ -((|moebius| (*1 *1 *2 *2 *2 *2) (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|)))) (|shift| (*1 *1 *2) (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|)))) (|scale| (*1 *1 *2) (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|)))) (|recip| (*1 *1) (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|)))) (|shift| (*1 *1 *1 *2) (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|)))) (|scale| (*1 *1 *1 *2) (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|)))) (|recip| (*1 *1 *1) (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|)))) (|eval| (*1 *2 *1 *2) (AND (|isDomain| *1 (|MoebiusTransform| *2)) (|ofCategory| *2 (|Field|)))) (|eval| (*1 *2 *1 *2) (AND (|isDomain| *2 (|OnePointCompletion| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|MoebiusTransform| *3))))) │ │ │ -(|Join| (|Group|) (CATEGORY |domain| (SIGNATURE |moebius| ($ |#1| |#1| |#1| |#1|)) (SIGNATURE |shift| ($ |#1|)) (SIGNATURE |scale| ($ |#1|)) (SIGNATURE |recip| ($)) (SIGNATURE |shift| ($ $ |#1|)) (SIGNATURE |scale| ($ $ |#1|)) (SIGNATURE |recip| ($ $)) (SIGNATURE |eval| (|#1| $ |#1|)) (SIGNATURE |eval| ((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|))))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|sample| (($) NIL T CONST)) (|rem| (($ $ $) NIL)) (|reduce| (($ |#1| |#2|) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|prime?| (((|Boolean|) $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|modulus| ((|#2| $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|factor| (((|Factored| $) $) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|exQuo| (((|Union| $ "failed") $ $) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL) (($ (|Fraction| (|Integer|))) NIL) ((|#1| $) NIL)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|associates?| (((|Boolean|) $ $) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (= (((|Boolean|) $ $) NIL)) (/ (($ $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|Fraction| (|Integer|))) NIL) (($ (|Fraction| (|Integer|)) $) NIL))) │ │ │ -(((|ModularField| |#1| |#2| |#3| |#4| |#5|) (|Join| (|Field|) (CATEGORY |domain| (SIGNATURE |modulus| (|#2| $)) (SIGNATURE |coerce| (|#1| $)) (SIGNATURE |reduce| ($ |#1| |#2|)) (SIGNATURE |exQuo| ((|Union| $ "failed") $ $)))) (|CommutativeRing|) (|AbelianMonoid|) (|Mapping| |#1| |#1| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2|) (|Mapping| (|Union| |#1| "failed") |#1| |#1| |#2|)) (T |ModularField|)) │ │ │ -((|modulus| (*1 *2 *1) (AND (|ofCategory| *2 (|AbelianMonoid|)) (|isDomain| *1 (|ModularField| *3 *2 *4 *5 *6)) (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|Mapping| *3 *3 *2)) (|ofType| *5 (|Mapping| (|Union| *2 "failed") *2 *2)) (|ofType| *6 (|Mapping| (|Union| *3 "failed") *3 *3 *2)))) (|coerce| (*1 *2 *1) (AND (|ofCategory| *2 (|CommutativeRing|)) (|isDomain| *1 (|ModularField| *2 *3 *4 *5 *6)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3)) (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3)) (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3)))) (|reduce| (*1 *1 *2 *3) (AND (|isDomain| *1 (|ModularField| *2 *3 *4 *5 *6)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3)) (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3)) (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3)))) (|exQuo| (*1 *1 *1 *1) (|partial| AND (|isDomain| *1 (|ModularField| *2 *3 *4 *5 *6)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3)) (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3)) (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3))))) │ │ │ -(|Join| (|Field|) (CATEGORY |domain| (SIGNATURE |modulus| (|#2| $)) (SIGNATURE |coerce| (|#1| $)) (SIGNATURE |reduce| ($ |#1| |#2|)) (SIGNATURE |exQuo| ((|Union| $ "failed") $ $)))) │ │ │ -((|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) 10))) │ │ │ -(((|MergeThing| |#1|) (CATEGORY |package| (SIGNATURE |mergeDifference| ((|List| |#1|) (|List| |#1|) (|List| |#1|)))) (|OrderedSet|)) (T |MergeThing|)) │ │ │ -((|mergeDifference| (*1 *2 *2 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|MergeThing| *3))))) │ │ │ -(CATEGORY |package| (SIGNATURE |mergeDifference| ((|List| |#1|) (|List| |#1|) (|List| |#1|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 59)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) 89) (((|Union| (|BasicOperator|) "failed") $) 95)) (|retract| ((|#1| $) NIL) (((|BasicOperator|) $) 39)) (|recip| (((|Union| $ "failed") $) 90)) (|opeval| ((|#2| (|BasicOperator|) |#2|) 82)) (|one?| (((|Boolean|) $) NIL)) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) 13)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) 58)) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) 44)) (|elt| ((|#2| $ |#2|) 32)) (|conjug| ((|#1| |#1|) 100 (|has| |#1| (|CommutativeRing|)))) (|coerce| (((|OutputForm|) $) 66) (($ (|Integer|)) 17) (($ |#1|) 16) (($ (|BasicOperator|)) 23)) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 36)) (|adjoint| (($ $) 99 (|has| |#1| (|CommutativeRing|))) (($ $ $) 103 (|has| |#1| (|CommutativeRing|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 20 T CONST)) (|One| (($) 9 T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) 48) (($ $ $) NIL)) (+ (($ $ $) 73)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ (|BasicOperator|) (|Integer|)) NIL) (($ $ (|Integer|)) 57)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (|CommutativeRing|))) (($ $ |#1|) 97 (|has| |#1| (|CommutativeRing|))))) │ │ │ -(((|ModuleOperator| |#1| |#2|) (|Join| (|Ring|) (|RetractableTo| |#1|) (|RetractableTo| (|BasicOperator|)) (|Eltable| |#2| |#2|) (CATEGORY |domain| (IF (|has| |#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |noBranch|) (IF (|has| |#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |noBranch|) (IF (|has| |#1| (|CommutativeRing|)) (PROGN (ATTRIBUTE (|Algebra| |#1|)) (SIGNATURE |adjoint| ($ $)) (SIGNATURE |adjoint| ($ $ $)) (SIGNATURE |conjug| (|#1| |#1|))) |noBranch|) (SIGNATURE |evaluate| ($ $ (|Mapping| |#2| |#2|))) (SIGNATURE |evaluateInverse| ($ $ (|Mapping| |#2| |#2|))) (SIGNATURE ** ($ (|BasicOperator|) (|Integer|))) (SIGNATURE ** ($ $ (|Integer|))) (SIGNATURE |opeval| (|#2| (|BasicOperator|) |#2|)) (SIGNATURE |makeop| ($ |#1| (|FreeGroup| (|BasicOperator|)))))) (|Ring|) (|LeftModule| |#1|)) (T |ModuleOperator|)) │ │ │ -((|adjoint| (*1 *1 *1) (AND (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|ModuleOperator| *2 *3)) (|ofCategory| *3 (|LeftModule| *2)))) (|adjoint| (*1 *1 *1 *1) (AND (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|ModuleOperator| *2 *3)) (|ofCategory| *3 (|LeftModule| *2)))) (|conjug| (*1 *2 *2) (AND (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|ModuleOperator| *2 *3)) (|ofCategory| *3 (|LeftModule| *2)))) (|evaluate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Mapping| *4 *4)) (|ofCategory| *4 (|LeftModule| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|ModuleOperator| *3 *4)))) (|evaluateInverse| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Mapping| *4 *4)) (|ofCategory| *4 (|LeftModule| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|ModuleOperator| *3 *4)))) (** (*1 *1 *2 *3) (AND (|isDomain| *2 (|BasicOperator|)) (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|ModuleOperator| *4 *5)) (|ofCategory| *5 (|LeftModule| *4)))) (** (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|ModuleOperator| *3 *4)) (|ofCategory| *4 (|LeftModule| *3)))) (|opeval| (*1 *2 *3 *2) (AND (|isDomain| *3 (|BasicOperator|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|ModuleOperator| *4 *2)) (|ofCategory| *2 (|LeftModule| *4)))) (|makeop| (*1 *1 *2 *3) (AND (|isDomain| *3 (|FreeGroup| (|BasicOperator|))) (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|ModuleOperator| *2 *4)) (|ofCategory| *4 (|LeftModule| *2))))) │ │ │ -(|Join| (|Ring|) (|RetractableTo| |#1|) (|RetractableTo| (|BasicOperator|)) (|Eltable| |#2| |#2|) (CATEGORY |domain| (IF (|has| |#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |noBranch|) (IF (|has| |#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |noBranch|) (IF (|has| |#1| (|CommutativeRing|)) (PROGN (ATTRIBUTE (|Algebra| |#1|)) (SIGNATURE |adjoint| ($ $)) (SIGNATURE |adjoint| ($ $ $)) (SIGNATURE |conjug| (|#1| |#1|))) |noBranch|) (SIGNATURE |evaluate| ($ $ (|Mapping| |#2| |#2|))) (SIGNATURE |evaluateInverse| ($ $ (|Mapping| |#2| |#2|))) (SIGNATURE ** ($ (|BasicOperator|) (|Integer|))) (SIGNATURE ** ($ $ (|Integer|))) (SIGNATURE |opeval| (|#2| (|BasicOperator|) |#2|)) (SIGNATURE |makeop| ($ |#1| (|FreeGroup| (|BasicOperator|)))))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 26)) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) 27)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|size| (((|NonNegativeInteger|)) 20 (AND (|has| |#2| (|Finite|)) (|has| |#1| (|Finite|))))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#2| "failed") $) 55) (((|Union| |#1| "failed") $) 58)) (|retract| ((|#2| $) NIL) ((|#1| $) NIL)) (|reductum| (($ $) 75 (|has| |#2| (|OrderedSet|)))) (|recip| (((|Union| $ "failed") $) 62)) (|random| (($) 33 (AND (|has| |#2| (|Finite|)) (|has| |#1| (|Finite|))))) (|one?| (((|Boolean|) $) NIL)) (|numberOfMonomials| (((|NonNegativeInteger|) $) 53)) (|monomials| (((|List| $) $) 37)) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| |#2|) 16)) (|map| (($ (|Mapping| |#1| |#1|) $) 52)) (|lookup| (((|PositiveInteger|) $) 30 (AND (|has| |#2| (|Finite|)) (|has| |#1| (|Finite|))))) (|leadingMonomial| ((|#2| $) 74 (|has| |#2| (|OrderedSet|)))) (|leadingCoefficient| ((|#1| $) 73 (|has| |#2| (|OrderedSet|)))) (|latex| (((|String|) $) NIL)) (|index| (($ (|PositiveInteger|)) 25 (AND (|has| |#2| (|Finite|)) (|has| |#1| (|Finite|))))) (|hash| (((|SingleInteger|) $) NIL)) (|enumerate| (((|List| $)) NIL (AND (|has| |#2| (|Finite|)) (|has| |#1| (|Finite|))))) (|coerce| (((|OutputForm|) $) 72) (($ (|Integer|)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) 11)) (|coefficients| (((|List| |#1|) $) 39)) (|coefficient| ((|#1| $ |#2|) 83)) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 12 T CONST)) (|One| (($) 31 T CONST)) (= (((|Boolean|) $ $) 76)) (- (($ $) 46) (($ $ $) NIL)) (+ (($ $ $) 24)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 50) (($ $ $) 85) (($ |#1| $) 48 (|has| |#1| (|CommutativeRing|))) (($ $ |#1|) NIL (|has| |#1| (|CommutativeRing|))))) │ │ │ -(((|MonoidRing| |#1| |#2|) (|Join| (|Ring|) (|RetractableTo| |#2|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |monomial| ($ |#1| |#2|)) (SIGNATURE |coefficient| (|#1| $ |#2|)) (SIGNATURE |coerce| ($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))))) (SIGNATURE |terms| ((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (SIGNATURE |monomial?| ((|Boolean|) $)) (SIGNATURE |coefficients| ((|List| |#1|) $)) (SIGNATURE |monomials| ((|List| $) $)) (SIGNATURE |numberOfMonomials| ((|NonNegativeInteger|) $)) (IF (|has| |#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |noBranch|) (IF (|has| |#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |noBranch|) (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |#1|)) |noBranch|) (IF (|has| |#1| (|Finite|)) (IF (|has| |#2| (|Finite|)) (ATTRIBUTE (|Finite|)) |noBranch|) |noBranch|) (IF (|has| |#2| (|OrderedSet|)) (PROGN (SIGNATURE |leadingMonomial| (|#2| $)) (SIGNATURE |leadingCoefficient| (|#1| $)) (SIGNATURE |reductum| ($ $))) |noBranch|))) (|Ring|) (|Monoid|)) (T |MonoidRing|)) │ │ │ -((|monomial| (*1 *1 *2 *3) (AND (|isDomain| *1 (|MonoidRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|Monoid|)))) (|coefficient| (*1 *2 *1 *3) (AND (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|MonoidRing| *2 *3)) (|ofCategory| *3 (|Monoid|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Record| (|:| |coef| *3) (|:| |monom| *4)))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|Monoid|)) (|isDomain| *1 (|MonoidRing| *3 *4)))) (|terms| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |coef| *3) (|:| |monom| *4)))) (|isDomain| *1 (|MonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|Monoid|)))) (|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|MonoidRing| *3 *4)) (|ofCategory| *4 (|Monoid|)))) (|monomial?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|MonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|Monoid|)))) (|coefficients| (*1 *2 *1) (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|MonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|Monoid|)))) (|monomials| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|MonoidRing| *3 *4))) (|isDomain| *1 (|MonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|Monoid|)))) (|numberOfMonomials| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|MonoidRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|Monoid|)))) (|leadingMonomial| (*1 *2 *1) (AND (|ofCategory| *2 (|Monoid|)) (|ofCategory| *2 (|OrderedSet|)) (|isDomain| *1 (|MonoidRing| *3 *2)) (|ofCategory| *3 (|Ring|)))) (|leadingCoefficient| (*1 *2 *1) (AND (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|MonoidRing| *2 *3)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *3 (|Monoid|)))) (|reductum| (*1 *1 *1) (AND (|isDomain| *1 (|MonoidRing| *2 *3)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|Monoid|))))) │ │ │ -(|Join| (|Ring|) (|RetractableTo| |#2|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |monomial| ($ |#1| |#2|)) (SIGNATURE |coefficient| (|#1| $ |#2|)) (SIGNATURE |coerce| ($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))))) (SIGNATURE |terms| ((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (SIGNATURE |monomial?| ((|Boolean|) $)) (SIGNATURE |coefficients| ((|List| |#1|) $)) (SIGNATURE |monomials| ((|List| $) $)) (SIGNATURE |numberOfMonomials| ((|NonNegativeInteger|) $)) (IF (|has| |#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |noBranch|) (IF (|has| |#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|CharacteristicNonZero|)) |noBranch|) (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |#1|)) |noBranch|) (IF (|has| |#1| (|Finite|)) (IF (|has| |#2| (|Finite|)) (ATTRIBUTE (|Finite|)) |noBranch|) |noBranch|) (IF (|has| |#2| (|OrderedSet|)) (PROGN (SIGNATURE |leadingMonomial| (|#2| $)) (SIGNATURE |leadingCoefficient| (|#1| $)) (SIGNATURE |reductum| ($ $))) |noBranch|))) │ │ │ -((|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) 25))) │ │ │ -(((|NumericContinuedFraction| |#1|) (CATEGORY |package| (SIGNATURE |continuedFraction| ((|ContinuedFraction| (|Integer|)) |#1|))) (|FloatingPointSystem|)) (T |NumericContinuedFraction|)) │ │ │ -((|continuedFraction| (*1 *2 *3) (AND (|isDomain| *2 (|ContinuedFraction| (|Integer|))) (|isDomain| *1 (|NumericContinuedFraction| *3)) (|ofCategory| *3 (|FloatingPointSystem|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |continuedFraction| ((|ContinuedFraction| (|Integer|)) |#1|))) │ │ │ -((|leftRemainder| ((|#1| |#1| |#1|) 24)) (|leftQuotient| ((|#1| |#1| |#1|) 23)) (|leftLcm| ((|#1| |#1| |#1|) 31)) (|leftGcd| ((|#1| |#1| |#1|) 27)) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) 26)) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) 22))) │ │ │ -(((|NonCommutativeOperatorDivision| |#1| |#2|) (CATEGORY |package| (SIGNATURE |leftDivide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|)) (SIGNATURE |leftQuotient| (|#1| |#1| |#1|)) (SIGNATURE |leftRemainder| (|#1| |#1| |#1|)) (SIGNATURE |leftExactQuotient| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |leftGcd| (|#1| |#1| |#1|)) (SIGNATURE |leftLcm| (|#1| |#1| |#1|))) (|MonogenicLinearOperator| |#2|) (|Field|)) (T |NonCommutativeOperatorDivision|)) │ │ │ -((|leftLcm| (*1 *2 *2 *2) (AND (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|NonCommutativeOperatorDivision| *2 *3)) (|ofCategory| *2 (|MonogenicLinearOperator| *3)))) (|leftGcd| (*1 *2 *2 *2) (AND (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|NonCommutativeOperatorDivision| *2 *3)) (|ofCategory| *2 (|MonogenicLinearOperator| *3)))) (|leftExactQuotient| (*1 *2 *2 *2) (|partial| AND (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|NonCommutativeOperatorDivision| *2 *3)) (|ofCategory| *2 (|MonogenicLinearOperator| *3)))) (|leftRemainder| (*1 *2 *2 *2) (AND (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|NonCommutativeOperatorDivision| *2 *3)) (|ofCategory| *2 (|MonogenicLinearOperator| *3)))) (|leftQuotient| (*1 *2 *2 *2) (AND (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|NonCommutativeOperatorDivision| *2 *3)) (|ofCategory| *2 (|MonogenicLinearOperator| *3)))) (|leftDivide| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3))) (|isDomain| *1 (|NonCommutativeOperatorDivision| *3 *4)) (|ofCategory| *3 (|MonogenicLinearOperator| *4))))) │ │ │ -(CATEGORY |package| (SIGNATURE |leftDivide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|)) (SIGNATURE |leftQuotient| (|#1| |#1| |#1|)) (SIGNATURE |leftRemainder| (|#1| |#1| |#1|)) (SIGNATURE |leftExactQuotient| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |leftGcd| (|#1| |#1| |#1|)) (SIGNATURE |leftLcm| (|#1| |#1| |#1|))) │ │ │ -((|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) 45))) │ │ │ -(((|NumericTubePlot| |#1|) (CATEGORY |package| (SIGNATURE |tube| ((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)))) (|PlottableSpaceCurveCategory|)) (T |NumericTubePlot|)) │ │ │ -((|tube| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *5 (|Integer|)) (|isDomain| *2 (|TubePlot| *3)) (|isDomain| *1 (|NumericTubePlot| *3)) (|ofCategory| *3 (|PlottableSpaceCurveCategory|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |tube| ((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)))) │ │ │ +(CATEGORY |domain| (SIGNATURE * (|#1| |#1| (|Fraction| (|Integer|)))) (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)) (SIGNATURE / (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) │ │ │ +((|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) 37)) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) 33)) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) 52)) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) 62 (|has| |#3| (|GcdDomain|))))) │ │ │ +(((|PolynomialRoots| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |rroot| ((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|))) (SIGNATURE |qroot| ((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|))) (IF (|has| |#3| (|GcdDomain|)) (SIGNATURE |froot| ((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|))) |noBranch|) (SIGNATURE |nthr| ((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|IntegralDomain|) (|PolynomialCategory| |#3| |#1| |#2|) (|Join| (|Field|) (CATEGORY |domain| (SIGNATURE |numer| (|#4| $)) (SIGNATURE |denom| (|#4| $)) (SIGNATURE |coerce| ($ |#4|))))) (T |PolynomialRoots|)) │ │ │ +((|nthr| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|IntegralDomain|)) (|ofCategory| *3 (|PolynomialCategory| *7 *5 *6)) (|isDomain| *2 (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| *3) (|:| |radicand| (|List| *3)))) (|isDomain| *1 (|PolynomialRoots| *5 *6 *7 *3 *8)) (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *8 (|Join| (|Field|) (CATEGORY |domain| (SIGNATURE |numer| (*3 $)) (SIGNATURE |denom| (*3 $)) (SIGNATURE |coerce| ($ *3))))))) (|froot| (*1 *2 *3 *4) (AND (|ofCategory| *7 (|GcdDomain|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|IntegralDomain|)) (|ofCategory| *8 (|PolynomialCategory| *7 *5 *6)) (|isDomain| *2 (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| *3) (|:| |radicand| *3))) (|isDomain| *1 (|PolynomialRoots| *5 *6 *7 *8 *3)) (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *3 (|Join| (|Field|) (CATEGORY |domain| (SIGNATURE |numer| (*8 $)) (SIGNATURE |denom| (*8 $)) (SIGNATURE |coerce| ($ *8))))))) (|qroot| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| (|Integer|))) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|IntegralDomain|)) (|ofCategory| *8 (|PolynomialCategory| *7 *5 *6)) (|isDomain| *2 (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| *9) (|:| |radicand| *9))) (|isDomain| *1 (|PolynomialRoots| *5 *6 *7 *8 *9)) (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *9 (|Join| (|Field|) (CATEGORY |domain| (SIGNATURE |numer| (*8 $)) (SIGNATURE |denom| (*8 $)) (SIGNATURE |coerce| ($ *8))))))) (|rroot| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *7 (|PolynomialCategory| *3 *5 *6)) (|isDomain| *2 (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| *8) (|:| |radicand| *8))) (|isDomain| *1 (|PolynomialRoots| *5 *6 *3 *7 *8)) (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *8 (|Join| (|Field|) (CATEGORY |domain| (SIGNATURE |numer| (*7 $)) (SIGNATURE |denom| (*7 $)) (SIGNATURE |coerce| ($ *7)))))))) │ │ │ +(CATEGORY |package| (SIGNATURE |rroot| ((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|))) (SIGNATURE |qroot| ((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|))) (IF (|has| |#3| (|GcdDomain|)) (SIGNATURE |froot| ((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|))) |noBranch|) (SIGNATURE |nthr| ((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)))) │ │ │ +((~= (((|Boolean|) $ $) 9))) │ │ │ +(((|BasicType&| |#1|) (CATEGORY |domain| (SIGNATURE ~= ((|Boolean|) |#1| |#1|))) (|BasicType|)) (T |BasicType&|)) │ │ │ +NIL │ │ │ +(CATEGORY |domain| (SIGNATURE ~= ((|Boolean|) |#1| |#1|))) │ │ │ +((~= (((|Boolean|) $ $) 18 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (|value| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 117)) (|third| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 140)) (|tail| (($ $) 138)) (|table| (($) 66) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 65)) (|swap!| (((|Void|) $ |#1| |#1|) 93 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Void|) $ (|Integer|) (|Integer|)) 170 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|split!| (($ $ (|Integer|)) 151 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 201) (((|Boolean|) $) 195 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 192 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) 191 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)) (|has| $ (ATTRIBUTE |shallowlyMutable|))))) (|sort| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 202) (($ $) 196 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setvalue!| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 126 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setrest!| (($ $ $) 147 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setlast!| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 149 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setfirst!| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 145 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#2| $ |#1| |#2|) 67) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 181 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|UniversalSegment| (|Integer|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 152 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ "last" (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 150 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "rest" $) 148 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ "first" (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 146 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ "value" (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 125 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) 124 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select!| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 42 (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 208)) (|select| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 52 (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 167 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|second| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 139)) (|search| (((|Union| |#2| "failed") |#1| $) 57)) (|sample| (($) 7 T CONST)) (|reverse!| (($ $) 193 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) 203)) (|rest| (($ $ (|NonNegativeInteger|)) 134) (($ $) 132)) (|removeDuplicates!| (($ $) 206 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (|removeDuplicates| (($ $) 55 (OR (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))) (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))))) (|remove!| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 44 (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 43 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Union| |#2| "failed") |#1| $) 58) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 212) (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 207 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (|remove| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 54 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 51 (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 169 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 166 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 53 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 50 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 168 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 165 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 164 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#2| $ |#1| |#2|) 81 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 182 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#2| $ |#1|) 82) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Integer|)) 180)) (|possiblyInfinite?| (((|Boolean|) $) 184)) (|position| (((|Integer|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 200) (((|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 199 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))) (((|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Integer|)) 198 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (|parts| (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| |#2|) $) 73 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 106 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) 115)) (|node?| (((|Boolean|) $ $) 123 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (|new| (($ (|NonNegativeInteger|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 161)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|minIndex| ((|#1| $) 90 (|has| |#1| (|OrderedSet|))) (((|Integer|) $) 172 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) 190 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (|merge!| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ $) 209) (($ $ $) 205 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ $) 204) (($ $ $) 197 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (|members| (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| |#2|) $) 74 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 107 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 27 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|Boolean|) |#2| $) 76 (AND (|has| |#2| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 109 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxIndex| ((|#1| $) 89 (|has| |#1| (|OrderedSet|))) (((|Integer|) $) 173 (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) 189 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (|map!| (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ (|Mapping| |#2| |#2|) $) 69 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 102 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 35) (($ (|Mapping| |#2| |#2|) $) 68) (($ (|Mapping| |#2| |#2| |#2|) $ $) 64) (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $ $) 158) (($ (|Mapping| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 101)) (|list| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 217)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|leaves| (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 120)) (|leaf?| (((|Boolean|) $) 116)) (|latex| (((|String|) $) 22 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (|last| (($ $ (|NonNegativeInteger|)) 137) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 135)) (|keys| (((|List| |#1|) $) 59)) (|key?| (((|Boolean|) |#1| $) 60)) (|inspect| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 36)) (|insert!| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 37) (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Integer|)) 211) (($ $ $ (|Integer|)) 210)) (|insert| (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Integer|)) 154) (($ $ $ (|Integer|)) 153)) (|indices| (((|List| |#1|) $) 87) (((|List| (|Integer|)) $) 175)) (|index?| (((|Boolean|) |#1| $) 86) (((|Boolean|) (|Integer|) $) 176)) (|hash| (((|SingleInteger|) $) 21 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (|first| ((|#2| $) 91 (|has| |#1| (|OrderedSet|))) (($ $ (|NonNegativeInteger|)) 131) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 129)) (|find| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 48) (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 163)) (|fill!| (($ $ |#2|) 92 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 171 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|extract!| (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 38)) (|explicitlyFinite?| (((|Boolean|) $) 183)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 71 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 104 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) 26 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 25 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 24 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 23 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|List| |#2|) (|List| |#2|)) 80 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ |#2| |#2|) 79 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|Equation| |#2|)) 78 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|List| (|Equation| |#2|))) 77 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 113 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 112 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 111 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (($ $ (|List| (|Equation| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))))) 110 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|entry?| (((|Boolean|) |#2| $) 88 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|)))) (((|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 174 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (|entries| (((|List| |#2|) $) 85) (((|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 177)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#2| $ |#1|) 84) ((|#2| $ |#1| |#2|) 83) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 179) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ (|Integer|)) 178) (($ $ (|UniversalSegment| (|Integer|))) 157) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ "last") 136) (($ $ "rest") 133) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ "first") 130) (((|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $ "value") 118)) (|distance| (((|Integer|) $ $) 121)) (|dictionary| (($) 46) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 45)) (|delete!| (($ $ (|Integer|)) 214) (($ $ (|UniversalSegment| (|Integer|))) 213)) (|delete| (($ $ (|Integer|)) 156) (($ $ (|UniversalSegment| (|Integer|))) 155)) (|cyclic?| (((|Boolean|) $) 119)) (|cycleTail| (($ $) 143)) (|cycleSplit!| (($ $) 144 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|cycleLength| (((|NonNegativeInteger|) $) 142)) (|cycleEntry| (($ $) 141)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 28 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|NonNegativeInteger|) |#2| $) 75 (AND (|has| |#2| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) 72 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 108 (AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 105 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|copyInto!| (($ $ $ (|Integer|)) 194 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) 13)) (|convert| (((|InputForm|) $) 56 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|ConvertibleTo| (|InputForm|))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|ConvertibleTo| (|InputForm|)))))) (|construct| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 47) (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 162)) (|concat!| (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 216) (($ $ $) 215)) (|concat| (($ $ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) 160) (($ (|List| $)) 159) (($ (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) $) 128) (($ $ $) 127)) (|coerce| (((|OutputForm|) $) 20 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (|children| (((|List| $) $) 114)) (|child?| (((|Boolean|) $ $) 122 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)))) (|bag| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) 39)) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) 100)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 70 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) $) 103 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) 187 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (> (((|Boolean|) $ $) 186 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (= (((|Boolean|) $ $) 19 (OR (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| |#2| (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))))) (<= (((|Boolean|) $ $) 188 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (< (((|Boolean|) $ $) 185 (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|AssociationListAggregate| |#1| |#2|) (|Category|) (|SetCategory|) (|SetCategory|)) (T |AssociationListAggregate|)) │ │ │ +((|assoc| (*1 *2 *3 *1) (|partial| AND (|ofCategory| *1 (|AssociationListAggregate| *3 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Record| (|:| |key| *3) (|:| |entry| *4)))))) │ │ │ +(|Join| (|TableAggregate| |t#1| |t#2|) (|ListAggregate| (|Record| (|:| |key| |t#1|) (|:| |entry| |t#2|))) (CATEGORY |domain| (SIGNATURE |assoc| ((|Union| (|Record| (|:| |key| |t#1|) (|:| |entry| |t#2|)) "failed") |t#1| $)))) │ │ │ +(((|Aggregate|) . T) ((|BagAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|BasicType|) OR (|has| |#2| (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#2| (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|))) ((|Collection| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|ConvertibleTo| (|InputForm|)) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|ConvertibleTo| (|InputForm|))) ((|Dictionary| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|DictionaryOperations| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|Eltable| (|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|Eltable| |#1| |#2|) . T) ((|EltableAggregate| (|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|EltableAggregate| |#1| |#2|) . T) ((|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))) ((|Evalable| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|ExtensibleLinearAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|FiniteLinearAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|HomogeneousAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|HomogeneousAggregate| |#2|) . T) ((|IndexedAggregate| (|Integer|) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|IndexedAggregate| |#1| |#2|) . T) ((|InnerEvalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) AND (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|Evalable| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|))) ((|InnerEvalable| |#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|KeyedDictionary| |#1| |#2|) . T) ((|LinearAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|ListAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|OrderedSet|) |has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|)) ((|RecursiveAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|SetCategory|) OR (|has| |#2| (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|SetCategory|)) (|has| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) (|OrderedSet|))) ((|StreamAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T) ((|TableAggregate| |#1| |#2|) . T) ((|Type|) . T) ((|UnaryRecursiveAggregate| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) . T)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|symmetricSquare| (($ $) 79 (|has| |#1| (|Field|)))) (|symmetricProduct| (($ $ $) 81 (|has| |#1| (|Field|)))) (|symmetricPower| (($ $ (|NonNegativeInteger|)) 80 (|has| |#1| (|Field|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|rightRemainder| (($ $ $) 44 (|has| |#1| (|Field|)))) (|rightQuotient| (($ $ $) 45 (|has| |#1| (|Field|)))) (|rightLcm| (($ $ $) 47 (|has| |#1| (|Field|)))) (|rightGcd| (($ $ $) 42 (|has| |#1| (|Field|)))) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 41 (|has| |#1| (|Field|)))) (|rightExactQuotient| (((|Union| $ "failed") $ $) 43 (|has| |#1| (|Field|)))) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 46 (|has| |#1| (|Field|)))) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 73 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) 71 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#1| "failed") $) 68)) (|retract| (((|Integer|) $) 74 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) 72 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1| $) 67)) (|reductum| (($ $) 63)) (|recip| (((|Union| $ "failed") $) 33)) (|primitivePart| (($ $) 54 (|has| |#1| (|GcdDomain|)))) (|one?| (((|Boolean|) $) 30)) (|monomial| (($ |#1| (|NonNegativeInteger|)) 61)) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56 (|has| |#1| (|IntegralDomain|)))) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 57 (|has| |#1| (|IntegralDomain|)))) (|minimumDegree| (((|NonNegativeInteger|) $) 65)) (|leftRemainder| (($ $ $) 51 (|has| |#1| (|Field|)))) (|leftQuotient| (($ $ $) 52 (|has| |#1| (|Field|)))) (|leftLcm| (($ $ $) 40 (|has| |#1| (|Field|)))) (|leftGcd| (($ $ $) 49 (|has| |#1| (|Field|)))) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 48 (|has| |#1| (|Field|)))) (|leftExactQuotient| (((|Union| $ "failed") $ $) 50 (|has| |#1| (|Field|)))) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 53 (|has| |#1| (|Field|)))) (|leadingCoefficient| ((|#1| $) 64)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|exquo| (((|Union| $ "failed") $ |#1|) 58 (|has| |#1| (|IntegralDomain|)))) (|elt| ((|#1| $ |#1|) 84)) (|directSum| (($ $ $) 78 (|has| |#1| (|Field|)))) (|degree| (((|NonNegativeInteger|) $) 66)) (|content| ((|#1| $) 55 (|has| |#1| (|GcdDomain|)))) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ (|Fraction| (|Integer|))) 70 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (($ |#1|) 69)) (|coefficients| (((|List| |#1|) $) 60)) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) 62)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|apply| ((|#1| $ |#1| |#1|) 59)) (|adjoint| (($ $) 82)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($) 83)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 76) (($ |#1| $) 75))) │ │ │ +(((|LinearOrdinaryDifferentialOperatorCategory| |#1|) (|Category|) (|Ring|)) (T |LinearOrdinaryDifferentialOperatorCategory|)) │ │ │ +((D (*1 *1) (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|adjoint| (*1 *1 *1) (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|symmetricProduct| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|symmetricPower| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|Field|)))) (|symmetricSquare| (*1 *1 *1) (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|directSum| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|))))) │ │ │ +(|Join| (|UnivariateSkewPolynomialCategory| |t#1|) (|Eltable| |t#1| |t#1|) (CATEGORY |domain| (SIGNATURE D ($)) (SIGNATURE |adjoint| ($ $)) (IF (|has| |t#1| (|Field|)) (PROGN (SIGNATURE |symmetricProduct| ($ $ $)) (SIGNATURE |symmetricPower| ($ $ (|NonNegativeInteger|))) (SIGNATURE |symmetricSquare| ($ $)) (SIGNATURE |directSum| ($ $ $))) |noBranch|))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Eltable| |#1| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Monoid|) . T) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RightModule| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|UnivariateSkewPolynomialCategory| |#1|) . T)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (= (((|Boolean|) $ $) 6))) │ │ │ +(((|SetCategory|) (|Category|)) (T |SetCategory|)) │ │ │ +((|hash| (*1 *2 *1) (AND (|ofCategory| *1 (|SetCategory|)) (|isDomain| *2 (|SingleInteger|)))) (|latex| (*1 *2 *1) (AND (|ofCategory| *1 (|SetCategory|)) (|isDomain| *2 (|String|))))) │ │ │ +(|Join| (|BasicType|) (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (SIGNATURE |hash| ((|SingleInteger|) $)) (SIGNATURE |latex| ((|String|) $)))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|rightPower| (($ $ (|PositiveInteger|)) 27)) (|leftPower| (($ $ (|PositiveInteger|)) 28)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|commutator| (($ $ $) 24)) (|coerce| (((|OutputForm|) $) 11)) (|associator| (($ $ $ $) 25)) (|antiCommutator| (($ $ $) 23)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 29)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 26))) │ │ │ +(((|NonAssociativeRng|) (|Category|)) (T |NonAssociativeRng|)) │ │ │ +((|associator| (*1 *1 *1 *1 *1) (|ofCategory| *1 (|NonAssociativeRng|))) (|commutator| (*1 *1 *1 *1) (|ofCategory| *1 (|NonAssociativeRng|))) (|antiCommutator| (*1 *1 *1 *1) (|ofCategory| *1 (|NonAssociativeRng|)))) │ │ │ +(|Join| (|AbelianGroup|) (|Monad|) (CATEGORY |domain| (SIGNATURE |associator| ($ $ $ $)) (SIGNATURE |commutator| ($ $ $)) (SIGNATURE |antiCommutator| ($ $ $)))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Monad|) . T) ((|SetCategory|) . T)) │ │ │ +((|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) 8))) │ │ │ +(((|TopLevelThreeSpace|) (CATEGORY |package| (SIGNATURE |createThreeSpace| ((|ThreeSpace| (|DoubleFloat|)))))) (T |TopLevelThreeSpace|)) │ │ │ +((|createThreeSpace| (*1 *2) (AND (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|))) (|isDomain| *1 (|TopLevelThreeSpace|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |createThreeSpace| ((|ThreeSpace| (|DoubleFloat|))))) │ │ │ +((|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) 23) (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) 32))) │ │ │ +(((|InnerPolySum| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |sum| ((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|))) (SIGNATURE |sum| ((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|IntegralDomain|) (|PolynomialCategory| |#3| |#1| |#2|)) (T |InnerPolySum|)) │ │ │ +((|sum| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *6 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |num| *3) (|:| |den| (|Integer|)))) (|isDomain| *1 (|InnerPolySum| *5 *4 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| *6 *5 *4)))) (|sum| (*1 *2 *3 *4 *5) (AND (|isDomain| *5 (|Segment| *3)) (|ofCategory| *3 (|PolynomialCategory| *7 *6 *4)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *7 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |num| *3) (|:| |den| (|Integer|)))) (|isDomain| *1 (|InnerPolySum| *6 *4 *7 *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |sum| ((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|))) (SIGNATURE |sum| ((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|new| (($) 14)) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) 27)) (|lists| (((|PatternMatchResult| |#1| |#3|) $) 16)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|failed?| (((|Boolean|) $) 22)) (|failed| (($) 19)) (|coerce| (((|OutputForm|) $) 30)) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) 15)) (= (((|Boolean|) $ $) 25))) │ │ │ +(((|PatternMatchListResult| |#1| |#2| |#3|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |failed?| ((|Boolean|) $)) (SIGNATURE |failed| ($)) (SIGNATURE |new| ($)) (SIGNATURE |makeResult| ($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|))) (SIGNATURE |atoms| ((|PatternMatchResult| |#1| |#2|) $)) (SIGNATURE |lists| ((|PatternMatchResult| |#1| |#3|) $)))) (|SetCategory|) (|SetCategory|) (|ListAggregate| |#2|)) (T |PatternMatchListResult|)) │ │ │ +((|failed?| (*1 *2 *1) (AND (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PatternMatchListResult| *3 *4 *5)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *5 (|ListAggregate| *4)))) (|failed| (*1 *1) (AND (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|PatternMatchListResult| *2 *3 *4)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *4 (|ListAggregate| *3)))) (|new| (*1 *1) (AND (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|PatternMatchListResult| *2 *3 *4)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *4 (|ListAggregate| *3)))) (|makeResult| (*1 *1 *2 *3) (AND (|isDomain| *2 (|PatternMatchResult| *4 *5)) (|isDomain| *3 (|PatternMatchResult| *4 *6)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|ListAggregate| *5)) (|isDomain| *1 (|PatternMatchListResult| *4 *5 *6)))) (|atoms| (*1 *2 *1) (AND (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|PatternMatchResult| *3 *4)) (|isDomain| *1 (|PatternMatchListResult| *3 *4 *5)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *5 (|ListAggregate| *4)))) (|lists| (*1 *2 *1) (AND (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|PatternMatchResult| *3 *5)) (|isDomain| *1 (|PatternMatchListResult| *3 *4 *5)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *5 (|ListAggregate| *4))))) │ │ │ +(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |failed?| ((|Boolean|) $)) (SIGNATURE |failed| ($)) (SIGNATURE |new| ($)) (SIGNATURE |makeResult| ($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|))) (SIGNATURE |atoms| ((|PatternMatchResult| |#1| |#2|) $)) (SIGNATURE |lists| ((|PatternMatchResult| |#1| |#3|) $)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|variables| (((|List| (|SingletonAsOrderedSet|)) $) NIL)) (|variable| (((|Symbol|) $) 11)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|truncate| (($ $ (|Fraction| (|Integer|))) NIL) (($ $ (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) NIL)) (|terms| (((|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|))) $) NIL)) (|tanh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|tan| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL (|has| |#1| (|Field|)))) (|squareFree| (((|Factored| $) $) NIL (|has| |#1| (|Field|)))) (|sqrt| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sizeLess?| (((|Boolean|) $ $) NIL (|has| |#1| (|Field|)))) (|sinh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sin| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) NIL)) (|sech| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sec| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|UnivariateLaurentSeries| |#1| |#2| |#3|) "failed") $) 19) (((|Union| (|UnivariateTaylorSeries| |#1| |#2| |#3|) "failed") $) 22)) (|retract| (((|UnivariateLaurentSeries| |#1| |#2| |#3|) $) NIL) (((|UnivariateTaylorSeries| |#1| |#2| |#3|) $) NIL)) (|rem| (($ $ $) NIL (|has| |#1| (|Field|)))) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|rationalPower| (((|Fraction| (|Integer|)) $) 57)) (|quo| (($ $ $) NIL (|has| |#1| (|Field|)))) (|puiseux| (($ (|Fraction| (|Integer|)) (|UnivariateLaurentSeries| |#1| |#2| |#3|)) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL (|has| |#1| (|Field|)))) (|prime?| (((|Boolean|) $) NIL (|has| |#1| (|Field|)))) (|pole?| (((|Boolean|) $) NIL)) (|pi| (($) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|order| (((|Fraction| (|Integer|)) $) NIL) (((|Fraction| (|Integer|)) $ (|Fraction| (|Integer|))) NIL)) (|one?| (((|Boolean|) $) NIL)) (|nthRoot| (($ $ (|Integer|)) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|multiplyExponents| (($ $ (|PositiveInteger|)) NIL) (($ $ (|Fraction| (|Integer|))) NIL)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| |#1| (|Field|)))) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| (|Fraction| (|Integer|))) 29) (($ $ (|SingletonAsOrderedSet|) (|Fraction| (|Integer|))) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|Fraction| (|Integer|)))) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|log| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL (|has| |#1| (|Field|)))) (|lcm| (($ (|List| $)) NIL (|has| |#1| (|Field|))) (($ $ $) NIL (|has| |#1| (|Field|)))) (|laurentRep| (((|UnivariateLaurentSeries| |#1| |#2| |#3|) $) 60)) (|laurentIfCan| (((|Union| (|UnivariateLaurentSeries| |#1| |#2| |#3|) "failed") $) NIL)) (|laurent| (((|UnivariateLaurentSeries| |#1| |#2| |#3|) $) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) NIL (|has| |#1| (|Field|)))) (|integrate| (($ $) 38 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Symbol|)) NIL (OR (AND (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| (|Symbol|)))) (|has| |#1| (SIGNATURE |variables| ((|List| (|Symbol|)) |#1|))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (AND (|has| |#1| (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|))))) (($ $ (|Variable| |#2|)) 39 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|Field|)))) (|gcd| (($ (|List| $)) NIL (|has| |#1| (|Field|))) (($ $ $) NIL (|has| |#1| (|Field|)))) (|factor| (((|Factored| $) $) NIL (|has| |#1| (|Field|)))) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (|Field|))) (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| |#1| (|Field|)))) (|extend| (($ $ (|Fraction| (|Integer|))) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| |#1| (|Field|)))) (|exp| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|eval| (((|Stream| |#1|) $ |#1|) NIL (|has| |#1| (SIGNATURE ** (|#1| |#1| (|Fraction| (|Integer|))))))) (|euclideanSize| (((|NonNegativeInteger|) $) NIL (|has| |#1| (|Field|)))) (|elt| ((|#1| $ (|Fraction| (|Integer|))) NIL) (($ $ $) NIL (|has| (|Fraction| (|Integer|)) (|SemiGroup|)))) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#1| (|Field|)))) (|differentiate| (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))) (($ $) 36 (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))) (($ $ (|Variable| |#2|)) 37)) (|degree| (((|Fraction| (|Integer|)) $) NIL)) (|csch| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|csc| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|coth| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cot| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cosh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cos| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|complete| (($ $) NIL)) (|coerce| (((|OutputForm|) $) 87) (($ (|Integer|)) NIL) (($ |#1|) NIL (|has| |#1| (|CommutativeRing|))) (($ (|UnivariateLaurentSeries| |#1| |#2| |#3|)) 16) (($ (|UnivariateTaylorSeries| |#1| |#2| |#3|)) 17) (($ (|Variable| |#2|)) 35) (($ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|coefficient| ((|#1| $ (|Fraction| (|Integer|))) NIL)) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|center| ((|#1| $) 12)) (|atanh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|atan| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|asinh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asin| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asech| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asec| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|approximate| ((|#1| $ (|Fraction| (|Integer|))) 62 (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| (|Fraction| (|Integer|))))) (|has| |#1| (SIGNATURE |coerce| (|#1| (|Symbol|))))))) (|acsch| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acsc| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acoth| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acot| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acosh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acos| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL (|has| |#1| (|Field|)))) (|Zero| (($) 31 T CONST)) (|One| (($) 26 T CONST)) (D (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)))) (($ $) NIL (|has| |#1| (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|))))) (= (((|Boolean|) $ $) NIL)) (/ (($ $ |#1|) NIL (|has| |#1| (|Field|))) (($ $ $) NIL (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) 33)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL (|has| |#1| (|Field|))) (($ $ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ +(((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) (|Join| (|UnivariatePuiseuxSeriesConstructorCategory| |#1| (|UnivariateLaurentSeries| |#1| |#2| |#3|)) (|RetractableTo| (|UnivariateTaylorSeries| |#1| |#2| |#3|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Variable| |#2|))) (SIGNATURE |differentiate| ($ $ (|Variable| |#2|))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ (|Variable| |#2|))) |noBranch|))) (|Ring|) (|Symbol|) |#1|) (T |UnivariatePuiseuxSeries|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|UnivariatePuiseuxSeries| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3))) (|differentiate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|UnivariatePuiseuxSeries| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3))) (|integrate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|UnivariatePuiseuxSeries| *3 *4 *5)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3)))) │ │ │ +(|Join| (|UnivariatePuiseuxSeriesConstructorCategory| |#1| (|UnivariateLaurentSeries| |#1| |#2| |#3|)) (|RetractableTo| (|UnivariateTaylorSeries| |#1| |#2| |#3|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Variable| |#2|))) (SIGNATURE |differentiate| ($ $ (|Variable| |#2|))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ (|Variable| |#2|))) |noBranch|))) │ │ │ +((|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) 36)) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) 67 (|has| |#1| (|GcdDomain|)))) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) 53)) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) 44)) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) 55 (|has| |#1| (|GcdDomain|)))) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) 47)) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) 52))) │ │ │ +(((|SturmHabichtPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |subresultantSequence| ((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |SturmHabichtSequence| ((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |SturmHabichtCoefficients| ((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |SturmHabicht| ((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |countRealRoots| ((|Integer|) (|UnivariatePolynomial| |#2| |#1|))) (IF (|has| |#1| (|GcdDomain|)) (PROGN (SIGNATURE |SturmHabichtMultiple| ((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |countRealRootsMultiple| ((|Integer|) (|UnivariatePolynomial| |#2| |#1|)))) |noBranch|)) (|OrderedIntegralDomain|) (|Symbol|)) (T |SturmHabichtPackage|)) │ │ │ +((|countRealRootsMultiple| (*1 *2 *3) (AND (|isDomain| *3 (|UnivariatePolynomial| *5 *4)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *4 (|OrderedIntegralDomain|)) (|ofType| *5 (|Symbol|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|SturmHabichtPackage| *4 *5)))) (|SturmHabichtMultiple| (*1 *2 *3 *3) (AND (|isDomain| *3 (|UnivariatePolynomial| *5 *4)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *4 (|OrderedIntegralDomain|)) (|ofType| *5 (|Symbol|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|SturmHabichtPackage| *4 *5)))) (|countRealRoots| (*1 *2 *3) (AND (|isDomain| *3 (|UnivariatePolynomial| *5 *4)) (|ofCategory| *4 (|OrderedIntegralDomain|)) (|ofType| *5 (|Symbol|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|SturmHabichtPackage| *4 *5)))) (|SturmHabicht| (*1 *2 *3 *3) (AND (|isDomain| *3 (|UnivariatePolynomial| *5 *4)) (|ofCategory| *4 (|OrderedIntegralDomain|)) (|ofType| *5 (|Symbol|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|SturmHabichtPackage| *4 *5)))) (|SturmHabichtCoefficients| (*1 *2 *3 *3) (AND (|isDomain| *3 (|UnivariatePolynomial| *5 *4)) (|ofCategory| *4 (|OrderedIntegralDomain|)) (|ofType| *5 (|Symbol|)) (|isDomain| *2 (|List| *4)) (|isDomain| *1 (|SturmHabichtPackage| *4 *5)))) (|SturmHabichtSequence| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|OrderedIntegralDomain|)) (|ofType| *5 (|Symbol|)) (|isDomain| *2 (|List| (|UnivariatePolynomial| *5 *4))) (|isDomain| *1 (|SturmHabichtPackage| *4 *5)) (|isDomain| *3 (|UnivariatePolynomial| *5 *4)))) (|subresultantSequence| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|OrderedIntegralDomain|)) (|ofType| *5 (|Symbol|)) (|isDomain| *2 (|List| (|UnivariatePolynomial| *5 *4))) (|isDomain| *1 (|SturmHabichtPackage| *4 *5)) (|isDomain| *3 (|UnivariatePolynomial| *5 *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |subresultantSequence| ((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |SturmHabichtSequence| ((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |SturmHabichtCoefficients| ((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |SturmHabicht| ((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |countRealRoots| ((|Integer|) (|UnivariatePolynomial| |#2| |#1|))) (IF (|has| |#1| (|GcdDomain|)) (PROGN (SIGNATURE |SturmHabichtMultiple| ((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |countRealRootsMultiple| ((|Integer|) (|UnivariatePolynomial| |#2| |#1|)))) |noBranch|)) │ │ │ +((|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) 14) (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) 13)) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) 16) (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) 15))) │ │ │ +(((|NonLinearSolvePackage| |#1|) (CATEGORY |package| (SIGNATURE |solveInField| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)))) (SIGNATURE |solveInField| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)))) (SIGNATURE |solve| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)))) (SIGNATURE |solve| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))))) (|IntegralDomain|)) (T |NonLinearSolvePackage|)) │ │ │ +((|solve| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Polynomial| *4))) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *4)))))) (|isDomain| *1 (|NonLinearSolvePackage| *4)))) (|solve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Polynomial| *5))) (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *5)))))) (|isDomain| *1 (|NonLinearSolvePackage| *5)))) (|solveInField| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Polynomial| *4))) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *4)))))) (|isDomain| *1 (|NonLinearSolvePackage| *4)))) (|solveInField| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Polynomial| *5))) (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|List| (|List| (|Equation| (|Fraction| (|Polynomial| *5)))))) (|isDomain| *1 (|NonLinearSolvePackage| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |solveInField| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)))) (SIGNATURE |solveInField| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)))) (SIGNATURE |solve| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)))) (SIGNATURE |solve| ((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))))) │ │ │ +((UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) 30)) (UP2UTS ((|#4| |#2|) 25)) (RF2UTS ((|#4| (|Fraction| |#2|)) 51 (|has| |#1| (|IntegralDomain|)))) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) 45))) │ │ │ +(((|UTSodetools| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE UP2UTS (|#4| |#2|)) (SIGNATURE UTS2UP (|#2| |#4| (|NonNegativeInteger|))) (SIGNATURE LODO2FUN ((|Mapping| |#4| (|List| |#4|)) |#3|)) (IF (|has| |#1| (|IntegralDomain|)) (SIGNATURE RF2UTS (|#4| (|Fraction| |#2|))) |noBranch|)) (|Ring|) (|UnivariatePolynomialCategory| |#1|) (|LinearOrdinaryDifferentialOperatorCategory| |#2|) (|UnivariateTaylorSeriesCategory| |#1|)) (T |UTSodetools|)) │ │ │ +((RF2UTS (*1 *2 *3) (AND (|isDomain| *3 (|Fraction| *5)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *4)) (|isDomain| *1 (|UTSodetools| *4 *5 *6 *2)) (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *5)))) (LODO2FUN (*1 *2 *3) (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Mapping| *6 (|List| *6))) (|isDomain| *1 (|UTSodetools| *4 *5 *3 *6)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *5)) (|ofCategory| *6 (|UnivariateTaylorSeriesCategory| *4)))) (UTS2UP (*1 *2 *3 *4) (AND (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *5)) (|isDomain| *1 (|UTSodetools| *5 *2 *6 *3)) (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *3 (|UnivariateTaylorSeriesCategory| *5)))) (UP2UTS (*1 *2 *3) (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *4)) (|isDomain| *1 (|UTSodetools| *4 *3 *5 *2)) (|ofCategory| *5 (|LinearOrdinaryDifferentialOperatorCategory| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE UP2UTS (|#4| |#2|)) (SIGNATURE UTS2UP (|#2| |#4| (|NonNegativeInteger|))) (SIGNATURE LODO2FUN ((|Mapping| |#4| (|List| |#4|)) |#3|)) (IF (|has| |#1| (|IntegralDomain|)) (SIGNATURE RF2UTS (|#4| (|Fraction| |#2|))) |noBranch|)) │ │ │ +((|specialise| (((|List| (|SparseUnivariatePolynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|Cell| |#1|)) 33)) (|resultantSet| (((|List| (|Polynomial| |#1|)) (|List| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)))) 61)) (|projectionSet| (((|List| (|Polynomial| |#1|)) (|List| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)))) 32)) (|principalSubResultantSet| (((|List| (|Polynomial| |#1|)) (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|SparseUnivariatePolynomial| (|Polynomial| |#1|))) 60)) (|discriminantSet| (((|List| (|Polynomial| |#1|)) (|List| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)))) 57)) (|cylindricalDecomposition| (((|List| (|Cell| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) 16) (((|List| (|Cell| |#1|)) (|List| (|Polynomial| |#1|))) 17)) (|coefficientSet| (((|List| (|Polynomial| |#1|)) (|SparseUnivariatePolynomial| (|Polynomial| |#1|))) 45))) │ │ │ +(((|CylindricalAlgebraicDecompositionPackage| |#1|) (CATEGORY |package| (SIGNATURE |cylindricalDecomposition| ((|List| (|Cell| |#1|)) (|List| (|Polynomial| |#1|)))) (SIGNATURE |cylindricalDecomposition| ((|List| (|Cell| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)))) (SIGNATURE |projectionSet| ((|List| (|Polynomial| |#1|)) (|List| (|SparseUnivariatePolynomial| (|Polynomial| |#1|))))) (SIGNATURE |coefficientSet| ((|List| (|Polynomial| |#1|)) (|SparseUnivariatePolynomial| (|Polynomial| |#1|)))) (SIGNATURE |discriminantSet| ((|List| (|Polynomial| |#1|)) (|List| (|SparseUnivariatePolynomial| (|Polynomial| |#1|))))) (SIGNATURE |resultantSet| ((|List| (|Polynomial| |#1|)) (|List| (|SparseUnivariatePolynomial| (|Polynomial| |#1|))))) (SIGNATURE |principalSubResultantSet| ((|List| (|Polynomial| |#1|)) (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|SparseUnivariatePolynomial| (|Polynomial| |#1|)))) (SIGNATURE |specialise| ((|List| (|SparseUnivariatePolynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|Cell| |#1|)))) (|RealClosedField|)) (T |CylindricalAlgebraicDecompositionPackage|)) │ │ │ +((|specialise| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Polynomial| *5))) (|isDomain| *4 (|Cell| *5)) (|ofCategory| *5 (|RealClosedField|)) (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *5))) (|isDomain| *1 (|CylindricalAlgebraicDecompositionPackage| *5)))) (|principalSubResultantSet| (*1 *2 *3 *3) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| (|Polynomial| *4))) (|ofCategory| *4 (|RealClosedField|)) (|isDomain| *2 (|List| (|Polynomial| *4))) (|isDomain| *1 (|CylindricalAlgebraicDecompositionPackage| *4)))) (|resultantSet| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|SparseUnivariatePolynomial| (|Polynomial| *4)))) (|ofCategory| *4 (|RealClosedField|)) (|isDomain| *2 (|List| (|Polynomial| *4))) (|isDomain| *1 (|CylindricalAlgebraicDecompositionPackage| *4)))) (|discriminantSet| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|SparseUnivariatePolynomial| (|Polynomial| *4)))) (|ofCategory| *4 (|RealClosedField|)) (|isDomain| *2 (|List| (|Polynomial| *4))) (|isDomain| *1 (|CylindricalAlgebraicDecompositionPackage| *4)))) (|coefficientSet| (*1 *2 *3) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| (|Polynomial| *4))) (|ofCategory| *4 (|RealClosedField|)) (|isDomain| *2 (|List| (|Polynomial| *4))) (|isDomain| *1 (|CylindricalAlgebraicDecompositionPackage| *4)))) (|projectionSet| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|SparseUnivariatePolynomial| (|Polynomial| *4)))) (|ofCategory| *4 (|RealClosedField|)) (|isDomain| *2 (|List| (|Polynomial| *4))) (|isDomain| *1 (|CylindricalAlgebraicDecompositionPackage| *4)))) (|cylindricalDecomposition| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Polynomial| *5))) (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|RealClosedField|)) (|isDomain| *2 (|List| (|Cell| *5))) (|isDomain| *1 (|CylindricalAlgebraicDecompositionPackage| *5)))) (|cylindricalDecomposition| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Polynomial| *4))) (|ofCategory| *4 (|RealClosedField|)) (|isDomain| *2 (|List| (|Cell| *4))) (|isDomain| *1 (|CylindricalAlgebraicDecompositionPackage| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |cylindricalDecomposition| ((|List| (|Cell| |#1|)) (|List| (|Polynomial| |#1|)))) (SIGNATURE |cylindricalDecomposition| ((|List| (|Cell| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)))) (SIGNATURE |projectionSet| ((|List| (|Polynomial| |#1|)) (|List| (|SparseUnivariatePolynomial| (|Polynomial| |#1|))))) (SIGNATURE |coefficientSet| ((|List| (|Polynomial| |#1|)) (|SparseUnivariatePolynomial| (|Polynomial| |#1|)))) (SIGNATURE |discriminantSet| ((|List| (|Polynomial| |#1|)) (|List| (|SparseUnivariatePolynomial| (|Polynomial| |#1|))))) (SIGNATURE |resultantSet| ((|List| (|Polynomial| |#1|)) (|List| (|SparseUnivariatePolynomial| (|Polynomial| |#1|))))) (SIGNATURE |principalSubResultantSet| ((|List| (|Polynomial| |#1|)) (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|SparseUnivariatePolynomial| (|Polynomial| |#1|)))) (SIGNATURE |specialise| ((|List| (|SparseUnivariatePolynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|Cell| |#1|)))) │ │ │ +NIL │ │ │ +(((|LazyRepresentationAttribute|) (|Category|)) (T |LazyRepresentationAttribute|)) │ │ │ +NIL │ │ │ +(|Join| (CATEGORY |package| (ATTRIBUTE |nil|))) │ │ │ ((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 45)) (|third| ((|#1| $) 62)) (|tail| (($ $) 64)) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) 94 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|split!| (($ $ (|Integer|)) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setvalue!| ((|#1| $ |#1|) 36 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setrest!| (($ $ $) 53 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setlast!| ((|#1| $ |#1|) 51 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setfirst!| ((|#1| $ |#1|) 55 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ "first" |#1|) 54 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "rest" $) 52 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ "last" |#1|) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) 114 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|Integer|) |#1|) 83 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) 99)) (|second| ((|#1| $) 63)) (|sample| (($) 7 T CONST)) (|rst| (($ $) 118)) (|rest| (($ $) 70) (($ $ (|NonNegativeInteger|)) 68)) (|removeDuplicates| (($ $) 96 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|remove| (($ |#1| $) 97 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (($ (|Mapping| (|Boolean|) |#1|) $) 100)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $) 102 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 101 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 98 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) 82 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) 84)) (|possiblyInfinite?| (((|Boolean|) $) 80)) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) 117)) (|nodes| (((|List| $) $) 47)) (|node?| (((|Boolean|) $ $) 39 (|has| |#1| (|SetCategory|)))) (|new| (($ (|NonNegativeInteger|) |#1|) 105)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|minIndex| (((|Integer|) $) 92 (|has| (|Integer|) (|OrderedSet|)))) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxIndex| (((|Integer|) $) 91 (|has| (|Integer|) (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35) (($ (|Mapping| |#1| |#1| |#1|) $ $) 108)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|leaves| (((|List| |#1|) $) 42)) (|leaf?| (((|Boolean|) $) 46)) (|lazyEvaluate| (($ $) 120)) (|lazy?| (((|Boolean|) $) 121)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|last| ((|#1| $) 67) (($ $ (|NonNegativeInteger|)) 65)) (|insert| (($ $ $ (|Integer|)) 113) (($ |#1| $ (|Integer|)) 112)) (|indices| (((|List| (|Integer|)) $) 89)) (|index?| (((|Boolean|) (|Integer|) $) 88)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|frst| ((|#1| $) 119)) (|first| ((|#1| $) 73) (($ $ (|NonNegativeInteger|)) 71)) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) 103)) (|fill!| (($ $ |#1|) 93 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|extend| (($ $ (|Integer|)) 116)) (|explicitlyFinite?| (((|Boolean|) $) 81)) (|explicitlyEmpty?| (((|Boolean|) $) 122)) (|explicitEntries?| (((|Boolean|) $) 123)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|entry?| (((|Boolean|) |#1| $) 90 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) 87)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ "value") 44) ((|#1| $ "first") 72) (($ $ "rest") 69) ((|#1| $ "last") 66) (($ $ (|UniversalSegment| (|Integer|))) 109) ((|#1| $ (|Integer|)) 86) ((|#1| $ (|Integer|) |#1|) 85)) (|distance| (((|Integer|) $ $) 41)) (|delete| (($ $ (|UniversalSegment| (|Integer|))) 111) (($ $ (|Integer|)) 110)) (|cyclic?| (((|Boolean|) $) 43)) (|cycleTail| (($ $) 59)) (|cycleSplit!| (($ $) 56 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|cycleLength| (((|NonNegativeInteger|) $) 60)) (|cycleEntry| (($ $) 61)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|convert| (((|InputForm|) $) 95 (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) 104)) (|concat!| (($ $ $) 58 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ |#1|) 57 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|concat| (($ $ $) 75) (($ |#1| $) 74) (($ (|List| $)) 107) (($ $ |#1|) 106)) (|complete| (($ $) 115)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|children| (((|List| $) $) 48)) (|child?| (((|Boolean|) $ $) 40 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ (((|LazyStreamAggregate| |#1|) (|Category|) (|Type|)) (T |LazyStreamAggregate|)) │ │ │ ((|remove| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|select| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|explicitEntries?| (*1 *2 *1) (AND (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|explicitlyEmpty?| (*1 *2 *1) (AND (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|lazy?| (*1 *2 *1) (AND (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Boolean|)))) (|lazyEvaluate| (*1 *1 *1) (AND (|ofCategory| *1 (|LazyStreamAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|frst| (*1 *2 *1) (AND (|ofCategory| *1 (|LazyStreamAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|rst| (*1 *1 *1) (AND (|ofCategory| *1 (|LazyStreamAggregate| *2)) (|ofCategory| *2 (|Type|)))) (|numberOfComputedEntries| (*1 *2 *1) (AND (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|extend| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|LazyStreamAggregate| *3)) (|ofCategory| *3 (|Type|)))) (|complete| (*1 *1 *1) (AND (|ofCategory| *1 (|LazyStreamAggregate| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ (|Join| (|StreamAggregate| |t#1|) (CATEGORY |domain| (SIGNATURE |remove| ($ (|Mapping| (|Boolean|) |t#1|) $)) (SIGNATURE |select| ($ (|Mapping| (|Boolean|) |t#1|) $)) (SIGNATURE |explicitEntries?| ((|Boolean|) $)) (SIGNATURE |explicitlyEmpty?| ((|Boolean|) $)) (SIGNATURE |lazy?| ((|Boolean|) $)) (SIGNATURE |lazyEvaluate| ($ $)) (SIGNATURE |frst| (|t#1| $)) (SIGNATURE |rst| ($ $)) (SIGNATURE |numberOfComputedEntries| ((|NonNegativeInteger|) $)) (SIGNATURE |extend| ($ $ (|Integer|))) (SIGNATURE |complete| ($ $)))) │ │ │ (((|Aggregate|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| (|Integer|) |#1|) . T) ((|EltableAggregate| (|Integer|) |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|IndexedAggregate| (|Integer|) |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|LinearAggregate| |#1|) . T) ((|RecursiveAggregate| |#1|) . T) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|StreamAggregate| |#1|) . T) ((|Type|) . T) ((|UnaryRecursiveAggregate| |#1|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#2| (|Field|)))) (|unitCanonical| (($ $) NIL (|has| |#2| (|Field|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#2| (|Field|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL (|has| |#2| (|Field|)))) (|squareFree| (((|Factored| $) $) NIL (|has| |#2| (|Field|)))) (|sizeLess?| (((|Boolean|) $ $) NIL (|has| |#2| (|Field|)))) (|sample| (($) NIL T CONST)) (|rem| (($ $ $) NIL (|has| |#2| (|Field|)))) (|recip| (((|Union| $ "failed") $) NIL)) (|quo| (($ $ $) NIL (|has| |#2| (|Field|)))) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL (|has| |#2| (|Field|)))) (|prime?| (((|Boolean|) $) NIL (|has| |#2| (|Field|)))) (|one?| (((|Boolean|) $) NIL)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| |#2| (|Field|)))) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL (|has| |#2| (|Field|)))) (|lcm| (($ (|List| $)) NIL (|has| |#2| (|Field|))) (($ $ $) NIL (|has| |#2| (|Field|)))) (|latex| (((|String|) $) NIL)) (|inv| (($ $) 20 (|has| |#2| (|Field|)))) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL (|has| |#2| (|Field|)))) (|gcd| (($ (|List| $)) NIL (|has| |#2| (|Field|))) (($ $ $) NIL (|has| |#2| (|Field|)))) (|factor| (((|Factored| $) $) NIL (|has| |#2| (|Field|)))) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (|Field|))) (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| |#2| (|Field|)))) (|exquo| (((|Union| $ "failed") $ $) NIL (|has| |#2| (|Field|)))) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| |#2| (|Field|)))) (|euclideanSize| (((|NonNegativeInteger|) $) NIL (|has| |#2| (|Field|)))) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#2| (|Field|)))) (|differentiate| (($ $ (|NonNegativeInteger|)) NIL) (($ $) 13)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (|Fraction| (|Integer|))) NIL (|has| |#2| (|Field|))) (($ $) NIL (|has| |#2| (|Field|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|associates?| (((|Boolean|) $ $) NIL (|has| |#2| (|Field|)))) (^ (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|PositiveInteger|)) NIL) (($ $ (|Integer|)) NIL (|has| |#2| (|Field|)))) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (D (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL)) (= (((|Boolean|) $ $) NIL)) (/ (($ $ $) 15 (|has| |#2| (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|PositiveInteger|)) NIL) (($ $ (|Integer|)) 18 (|has| |#2| (|Field|)))) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#2| (|Field|))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#2| (|Field|))))) │ │ │ -(((|OrdinaryDifferentialRing| |#1| |#2| |#3|) (|Join| (|BiModule| $ $) (|DifferentialRing|) (CATEGORY |domain| (IF (|has| |#2| (|Field|)) (ATTRIBUTE (|Field|)) |noBranch|) (SIGNATURE |coerce| ($ |#2|)) (SIGNATURE |coerce| (|#2| $)))) (|SetCategory|) (|PartialDifferentialRing| |#1|) |#1|) (T |OrdinaryDifferentialRing|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|ofCategory| *3 (|SetCategory|)) (|ofType| *4 *3) (|isDomain| *1 (|OrdinaryDifferentialRing| *3 *2 *4)) (|ofCategory| *2 (|PartialDifferentialRing| *3)))) (|coerce| (*1 *2 *1) (AND (|ofCategory| *2 (|PartialDifferentialRing| *3)) (|isDomain| *1 (|OrdinaryDifferentialRing| *3 *2 *4)) (|ofCategory| *3 (|SetCategory|)) (|ofType| *4 *3)))) │ │ │ -(|Join| (|BiModule| $ $) (|DifferentialRing|) (CATEGORY |domain| (IF (|has| |#2| (|Field|)) (ATTRIBUTE (|Field|)) |noBranch|) (SIGNATURE |coerce| ($ |#2|)) (SIGNATURE |coerce| (|#2| $)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|varList| (((|List| |#1|) $) 34)) (|size| (((|NonNegativeInteger|) $) NIL)) (|sample| (($) NIL T CONST)) (|rquo| (((|Union| $ "failed") $ $) 21) (((|Union| $ "failed") $ |#1|) 19)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL)) (|retract| ((|#1| $) NIL)) (|rest| (($ $) 36)) (|recip| (((|Union| $ "failed") $) NIL)) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|nthFactor| ((|#1| $ (|Integer|)) NIL)) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) NIL)) (|mirror| (($ $) 40)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|lquo| (((|Union| $ "failed") $ $) 20) (((|Union| $ "failed") $ |#1|) 16)) (|lexico| (((|Boolean|) $ $) 38)) (|length| (((|NonNegativeInteger|) $) 30)) (|latex| (((|String|) $) NIL)) (|hcrf| (($ $ $) NIL)) (|hclf| (($ $ $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|first| ((|#1| $) 35)) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) NIL)) (|divide| (((|Union| (|Record| (|:| |lm| (|Union| $ "failed")) (|:| |rm| (|Union| $ "failed"))) "failed") $ $) 24)) (|coerce| (((|OutputForm|) $) NIL) (($ |#1|) NIL)) (^ (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|PositiveInteger|)) NIL)) (|One| (($) 14 T CONST)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 39)) (** (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|PositiveInteger|)) NIL) (($ |#1| (|NonNegativeInteger|)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) │ │ │ -(((|OrderedFreeMonoid| |#1|) (|Join| (|OrderedMonoid|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE * ($ |#1| $)) (SIGNATURE * ($ $ |#1|)) (SIGNATURE ** ($ |#1| (|NonNegativeInteger|))) (SIGNATURE |first| (|#1| $)) (SIGNATURE |rest| ($ $)) (SIGNATURE |mirror| ($ $)) (SIGNATURE |lexico| ((|Boolean|) $ $)) (SIGNATURE |hclf| ($ $ $)) (SIGNATURE |hcrf| ($ $ $)) (SIGNATURE |lquo| ((|Union| $ "failed") $ $)) (SIGNATURE |rquo| ((|Union| $ "failed") $ $)) (SIGNATURE |lquo| ((|Union| $ "failed") $ |#1|)) (SIGNATURE |rquo| ((|Union| $ "failed") $ |#1|)) (SIGNATURE |divide| ((|Union| (|Record| (|:| |lm| (|Union| $ "failed")) (|:| |rm| (|Union| $ "failed"))) "failed") $ $)) (SIGNATURE |overlap| ((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (SIGNATURE |size| ((|NonNegativeInteger|) $)) (SIGNATURE |nthExpon| ((|NonNegativeInteger|) $ (|Integer|))) (SIGNATURE |nthFactor| (|#1| $ (|Integer|))) (SIGNATURE |factors| ((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $)) (SIGNATURE |length| ((|NonNegativeInteger|) $)) (SIGNATURE |varList| ((|List| |#1|) $)))) (|OrderedSet|)) (T |OrderedFreeMonoid|)) │ │ │ -((* (*1 *1 *2 *1) (AND (|isDomain| *1 (|OrderedFreeMonoid| *2)) (|ofCategory| *2 (|OrderedSet|)))) (* (*1 *1 *1 *2) (AND (|isDomain| *1 (|OrderedFreeMonoid| *2)) (|ofCategory| *2 (|OrderedSet|)))) (** (*1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|OrderedFreeMonoid| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|first| (*1 *2 *1) (AND (|isDomain| *1 (|OrderedFreeMonoid| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|rest| (*1 *1 *1) (AND (|isDomain| *1 (|OrderedFreeMonoid| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|mirror| (*1 *1 *1) (AND (|isDomain| *1 (|OrderedFreeMonoid| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|lexico| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OrderedFreeMonoid| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|hclf| (*1 *1 *1 *1) (AND (|isDomain| *1 (|OrderedFreeMonoid| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|hcrf| (*1 *1 *1 *1) (AND (|isDomain| *1 (|OrderedFreeMonoid| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|lquo| (*1 *1 *1 *1) (|partial| AND (|isDomain| *1 (|OrderedFreeMonoid| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|rquo| (*1 *1 *1 *1) (|partial| AND (|isDomain| *1 (|OrderedFreeMonoid| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|lquo| (*1 *1 *1 *2) (|partial| AND (|isDomain| *1 (|OrderedFreeMonoid| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|rquo| (*1 *1 *1 *2) (|partial| AND (|isDomain| *1 (|OrderedFreeMonoid| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|divide| (*1 *2 *1 *1) (|partial| AND (|isDomain| *2 (|Record| (|:| |lm| (|Union| (|OrderedFreeMonoid| *3) "failed")) (|:| |rm| (|Union| (|OrderedFreeMonoid| *3) "failed")))) (|isDomain| *1 (|OrderedFreeMonoid| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|overlap| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Record| (|:| |lm| (|OrderedFreeMonoid| *3)) (|:| |mm| (|OrderedFreeMonoid| *3)) (|:| |rm| (|OrderedFreeMonoid| *3)))) (|isDomain| *1 (|OrderedFreeMonoid| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|size| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|OrderedFreeMonoid| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|nthExpon| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|OrderedFreeMonoid| *4)) (|ofCategory| *4 (|OrderedSet|)))) (|nthFactor| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|OrderedFreeMonoid| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|factors| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |gen| *3) (|:| |exp| (|NonNegativeInteger|))))) (|isDomain| *1 (|OrderedFreeMonoid| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|length| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|OrderedFreeMonoid| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|varList| (*1 *2 *1) (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|OrderedFreeMonoid| *3)) (|ofCategory| *3 (|OrderedSet|))))) │ │ │ -(|Join| (|OrderedMonoid|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE * ($ |#1| $)) (SIGNATURE * ($ $ |#1|)) (SIGNATURE ** ($ |#1| (|NonNegativeInteger|))) (SIGNATURE |first| (|#1| $)) (SIGNATURE |rest| ($ $)) (SIGNATURE |mirror| ($ $)) (SIGNATURE |lexico| ((|Boolean|) $ $)) (SIGNATURE |hclf| ($ $ $)) (SIGNATURE |hcrf| ($ $ $)) (SIGNATURE |lquo| ((|Union| $ "failed") $ $)) (SIGNATURE |rquo| ((|Union| $ "failed") $ $)) (SIGNATURE |lquo| ((|Union| $ "failed") $ |#1|)) (SIGNATURE |rquo| ((|Union| $ "failed") $ |#1|)) (SIGNATURE |divide| ((|Union| (|Record| (|:| |lm| (|Union| $ "failed")) (|:| |rm| (|Union| $ "failed"))) "failed") $ $)) (SIGNATURE |overlap| ((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (SIGNATURE |size| ((|NonNegativeInteger|) $)) (SIGNATURE |nthExpon| ((|NonNegativeInteger|) $ (|Integer|))) (SIGNATURE |nthFactor| (|#1| $ (|Integer|))) (SIGNATURE |factors| ((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $)) (SIGNATURE |length| ((|NonNegativeInteger|) $)) (SIGNATURE |varList| ((|List| |#1|) $)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL (|has| |#1| (|AbelianGroup|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|AbelianGroup|)))) (|sign| (((|Integer|) $) NIL (|has| |#1| (|OrderedRing|)))) (|sample| (($) NIL (|has| |#1| (|AbelianGroup|)) CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#1| "failed") $) 15)) (|retract| (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1| $) 9)) (|recip| (((|Union| $ "failed") $) 40 (|has| |#1| (|OrderedRing|)))) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) 48 (|has| |#1| (|IntegerNumberSystem|)))) (|rational?| (((|Boolean|) $) 43 (|has| |#1| (|IntegerNumberSystem|)))) (|rational| (((|Fraction| (|Integer|)) $) 45 (|has| |#1| (|IntegerNumberSystem|)))) (|positive?| (((|Boolean|) $) NIL (|has| |#1| (|OrderedRing|)))) (|one?| (((|Boolean|) $) NIL (|has| |#1| (|OrderedRing|)))) (|negative?| (((|Boolean|) $) NIL (|has| |#1| (|OrderedRing|)))) (|min| (($ $ $) NIL (|has| |#1| (|OrderedRing|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedRing|)))) (|latex| (((|String|) $) NIL)) (|infinity| (($) 13)) (|infinite?| (((|Boolean|) $) 12)) (|hash| (((|SingleInteger|) $) NIL)) (|finite?| (((|Boolean|) $) 11)) (|coerce| (((|OutputForm|) $) 18) (($ (|Fraction| (|Integer|))) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (($ |#1|) 8) (($ (|Integer|)) NIL (OR (|has| |#1| (|OrderedRing|)) (|has| |#1| (|RetractableTo| (|Integer|)))))) (|characteristic| (((|NonNegativeInteger|)) 34 (|has| |#1| (|OrderedRing|)))) (|abs| (($ $) NIL (|has| |#1| (|OrderedRing|)))) (^ (($ $ (|PositiveInteger|)) NIL (|has| |#1| (|OrderedRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|OrderedRing|)))) (|Zero| (($) 22 (|has| |#1| (|AbelianGroup|)) CONST)) (|One| (($) 31 (|has| |#1| (|OrderedRing|)) CONST)) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedRing|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedRing|)))) (= (((|Boolean|) $ $) 20)) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedRing|)))) (< (((|Boolean|) $ $) 42 (|has| |#1| (|OrderedRing|)))) (- (($ $ $) NIL (|has| |#1| (|AbelianGroup|))) (($ $) 27 (|has| |#1| (|AbelianGroup|)))) (+ (($ $ $) 29 (|has| |#1| (|AbelianGroup|)))) (** (($ $ (|PositiveInteger|)) NIL (|has| |#1| (|OrderedRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|OrderedRing|)))) (* (($ $ $) 37 (|has| |#1| (|OrderedRing|))) (($ (|Integer|) $) 25 (|has| |#1| (|AbelianGroup|))) (($ (|NonNegativeInteger|) $) NIL (|has| |#1| (|AbelianGroup|))) (($ (|PositiveInteger|) $) NIL (|has| |#1| (|AbelianGroup|))))) │ │ │ -(((|OnePointCompletion| |#1|) (|Join| (|SetCategory|) (|FullyRetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |infinity| ($)) (SIGNATURE |finite?| ((|Boolean|) $)) (SIGNATURE |infinite?| ((|Boolean|) $)) (IF (|has| |#1| (|AbelianGroup|)) (ATTRIBUTE (|AbelianGroup|)) |noBranch|) (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|OrderedRing|)) |noBranch|) (IF (|has| |#1| (|IntegerNumberSystem|)) (PROGN (SIGNATURE |rational?| ((|Boolean|) $)) (SIGNATURE |rational| ((|Fraction| (|Integer|)) $)) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") $))) |noBranch|))) (|SetCategory|)) (T |OnePointCompletion|)) │ │ │ -((|infinity| (*1 *1) (AND (|isDomain| *1 (|OnePointCompletion| *2)) (|ofCategory| *2 (|SetCategory|)))) (|finite?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OnePointCompletion| *3)) (|ofCategory| *3 (|SetCategory|)))) (|infinite?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OnePointCompletion| *3)) (|ofCategory| *3 (|SetCategory|)))) (|rational?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OnePointCompletion| *3)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|ofCategory| *3 (|SetCategory|)))) (|rational| (*1 *2 *1) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|OnePointCompletion| *3)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|ofCategory| *3 (|SetCategory|)))) (|rationalIfCan| (*1 *2 *1) (|partial| AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|OnePointCompletion| *3)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ -(|Join| (|SetCategory|) (|FullyRetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |infinity| ($)) (SIGNATURE |finite?| ((|Boolean|) $)) (SIGNATURE |infinite?| ((|Boolean|) $)) (IF (|has| |#1| (|AbelianGroup|)) (ATTRIBUTE (|AbelianGroup|)) |noBranch|) (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|OrderedRing|)) |noBranch|) (IF (|has| |#1| (|IntegerNumberSystem|)) (PROGN (SIGNATURE |rational?| ((|Boolean|) $)) (SIGNATURE |rational| ((|Fraction| (|Integer|)) $)) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") $))) |noBranch|))) │ │ │ ((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL (|has| |#1| (|AbelianGroup|)))) (|whatInfinity| (((|SingleInteger|) $) 24)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|AbelianGroup|)))) (|sign| (((|Integer|) $) NIL (|has| |#1| (|OrderedRing|)))) (|sample| (($) NIL (|has| |#1| (|AbelianGroup|)) CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#1| "failed") $) 16)) (|retract| (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1| $) 9)) (|recip| (((|Union| $ "failed") $) 47 (|has| |#1| (|OrderedRing|)))) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) 54 (|has| |#1| (|IntegerNumberSystem|)))) (|rational?| (((|Boolean|) $) 49 (|has| |#1| (|IntegerNumberSystem|)))) (|rational| (((|Fraction| (|Integer|)) $) 52 (|has| |#1| (|IntegerNumberSystem|)))) (|positive?| (((|Boolean|) $) NIL (|has| |#1| (|OrderedRing|)))) (|plusInfinity| (($) 13)) (|one?| (((|Boolean|) $) NIL (|has| |#1| (|OrderedRing|)))) (|negative?| (((|Boolean|) $) NIL (|has| |#1| (|OrderedRing|)))) (|minusInfinity| (($) 14)) (|min| (($ $ $) NIL (|has| |#1| (|OrderedRing|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedRing|)))) (|latex| (((|String|) $) NIL)) (|infinite?| (((|Boolean|) $) 12)) (|hash| (((|SingleInteger|) $) NIL)) (|finite?| (((|Boolean|) $) 11)) (|coerce| (((|OutputForm|) $) 22) (($ (|Fraction| (|Integer|))) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (($ |#1|) 8) (($ (|Integer|)) NIL (OR (|has| |#1| (|OrderedRing|)) (|has| |#1| (|RetractableTo| (|Integer|)))))) (|characteristic| (((|NonNegativeInteger|)) 41 (|has| |#1| (|OrderedRing|)))) (|abs| (($ $) NIL (|has| |#1| (|OrderedRing|)))) (^ (($ $ (|PositiveInteger|)) NIL (|has| |#1| (|OrderedRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|OrderedRing|)))) (|Zero| (($) 29 (|has| |#1| (|AbelianGroup|)) CONST)) (|One| (($) 38 (|has| |#1| (|OrderedRing|)) CONST)) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedRing|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedRing|)))) (= (((|Boolean|) $ $) 27)) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedRing|)))) (< (((|Boolean|) $ $) 48 (|has| |#1| (|OrderedRing|)))) (- (($ $ $) NIL (|has| |#1| (|AbelianGroup|))) (($ $) 34 (|has| |#1| (|AbelianGroup|)))) (+ (($ $ $) 36 (|has| |#1| (|AbelianGroup|)))) (** (($ $ (|PositiveInteger|)) NIL (|has| |#1| (|OrderedRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|OrderedRing|)))) (* (($ $ $) 44 (|has| |#1| (|OrderedRing|))) (($ (|Integer|) $) 32 (|has| |#1| (|AbelianGroup|))) (($ (|NonNegativeInteger|) $) NIL (|has| |#1| (|AbelianGroup|))) (($ (|PositiveInteger|) $) NIL (|has| |#1| (|AbelianGroup|))))) │ │ │ (((|OrderedCompletion| |#1|) (|Join| (|SetCategory|) (|FullyRetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |plusInfinity| ($)) (SIGNATURE |minusInfinity| ($)) (SIGNATURE |finite?| ((|Boolean|) $)) (SIGNATURE |infinite?| ((|Boolean|) $)) (SIGNATURE |whatInfinity| ((|SingleInteger|) $)) (IF (|has| |#1| (|AbelianGroup|)) (ATTRIBUTE (|AbelianGroup|)) |noBranch|) (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|OrderedRing|)) |noBranch|) (IF (|has| |#1| (|IntegerNumberSystem|)) (PROGN (SIGNATURE |rational?| ((|Boolean|) $)) (SIGNATURE |rational| ((|Fraction| (|Integer|)) $)) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") $))) |noBranch|))) (|SetCategory|)) (T |OrderedCompletion|)) │ │ │ ((|plusInfinity| (*1 *1) (AND (|isDomain| *1 (|OrderedCompletion| *2)) (|ofCategory| *2 (|SetCategory|)))) (|minusInfinity| (*1 *1) (AND (|isDomain| *1 (|OrderedCompletion| *2)) (|ofCategory| *2 (|SetCategory|)))) (|finite?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OrderedCompletion| *3)) (|ofCategory| *3 (|SetCategory|)))) (|infinite?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OrderedCompletion| *3)) (|ofCategory| *3 (|SetCategory|)))) (|whatInfinity| (*1 *2 *1) (AND (|isDomain| *2 (|SingleInteger|)) (|isDomain| *1 (|OrderedCompletion| *3)) (|ofCategory| *3 (|SetCategory|)))) (|rational?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OrderedCompletion| *3)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|ofCategory| *3 (|SetCategory|)))) (|rational| (*1 *2 *1) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|OrderedCompletion| *3)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|ofCategory| *3 (|SetCategory|)))) (|rationalIfCan| (*1 *2 *1) (|partial| AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|OrderedCompletion| *3)) (|ofCategory| *3 (|IntegerNumberSystem|)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ (|Join| (|SetCategory|) (|FullyRetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |plusInfinity| ($)) (SIGNATURE |minusInfinity| ($)) (SIGNATURE |finite?| ((|Boolean|) $)) (SIGNATURE |infinite?| ((|Boolean|) $)) (SIGNATURE |whatInfinity| ((|SingleInteger|) $)) (IF (|has| |#1| (|AbelianGroup|)) (ATTRIBUTE (|AbelianGroup|)) |noBranch|) (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|OrderedRing|)) |noBranch|) (IF (|has| |#1| (|IntegerNumberSystem|)) (PROGN (SIGNATURE |rational?| ((|Boolean|) $)) (SIGNATURE |rational| ((|Fraction| (|Integer|)) $)) (SIGNATURE |rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") $))) |noBranch|))) │ │ │ -((|rightRemainder| (($ $ $) 45)) (|rightQuotient| (($ $ $) 44)) (|rightLcm| (($ $ $) 42)) (|rightGcd| (($ $ $) 51)) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 46)) (|rightExactQuotient| (((|Union| $ "failed") $ $) 49)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL) (((|Union| |#2| "failed") $) 25)) (|primitivePart| (($ $) 35)) (|leftRemainder| (($ $ $) 39)) (|leftQuotient| (($ $ $) 38)) (|leftLcm| (($ $ $) 47)) (|leftGcd| (($ $ $) 53)) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 41)) (|leftExactQuotient| (((|Union| $ "failed") $ $) 48)) (|exquo| (((|Union| $ "failed") $ |#2|) 28)) (|content| ((|#2| $) 32)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ (|Fraction| (|Integer|))) NIL) (($ |#2|) 12)) (|coefficients| (((|List| |#2|) $) 18)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) │ │ │ -(((|UnivariateSkewPolynomialCategory&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |leftLcm| (|#1| |#1| |#1|)) (SIGNATURE |rightExtendedGcd| ((|Record| (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| |generator| |#1|)) |#1| |#1|)) (SIGNATURE |rightGcd| (|#1| |#1| |#1|)) (SIGNATURE |rightExactQuotient| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |rightRemainder| (|#1| |#1| |#1|)) (SIGNATURE |rightQuotient| (|#1| |#1| |#1|)) (SIGNATURE |rightLcm| (|#1| |#1| |#1|)) (SIGNATURE |leftExtendedGcd| ((|Record| (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| |generator| |#1|)) |#1| |#1|)) (SIGNATURE |leftGcd| (|#1| |#1| |#1|)) (SIGNATURE |leftExactQuotient| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |leftRemainder| (|#1| |#1| |#1|)) (SIGNATURE |leftQuotient| (|#1| |#1| |#1|)) (SIGNATURE |primitivePart| (|#1| |#1|)) (SIGNATURE |content| (|#2| |#1|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#2|)) (SIGNATURE |coefficients| ((|List| |#2|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|UnivariateSkewPolynomialCategory| |#2|) (|Ring|)) (T |UnivariateSkewPolynomialCategory&|)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|setelt| ((|#2| $ (|Integer|) |#2|) NIL)) (|removeConjugate| (((|List| $) (|List| $) (|NonNegativeInteger|)) 41) (((|List| $) (|List| $)) 42)) (|rational?| (((|Boolean|) $ (|NonNegativeInteger|)) 38) (((|Boolean|) $) 40)) (|projectivePoint| (($ (|List| |#2|)) 25)) (|pointValue| (((|List| |#2|) $) 27)) (|orbit| (((|List| $) $) 50) (((|List| $) $ (|NonNegativeInteger|)) 47)) (|list| (((|List| |#2|) $) 26)) (|latex| (((|String|) $) NIL)) (|lastNonNull| (((|Integer|) $) 59)) (|lastNonNul| (((|Integer|) $) 62)) (|homogenize| (($ $ (|Integer|)) 36) (($ $) 52)) (|hash| (((|SingleInteger|) $) NIL)) (|elt| ((|#2| $ (|Integer|)) 32)) (|degree| (((|PositiveInteger|) $) 16)) (|definingField| ((|#2| $) 22)) (|conjugate| (($ $ (|NonNegativeInteger|)) 30) (($ $) 49)) (|coerce| (((|OutputForm|) $) 19) (((|List| |#2|) $) 24) (($ (|List| |#2|)) 58)) (= (((|Boolean|) $ $) 37))) │ │ │ +(((|ProjectiveSpace| |#1| |#2|) (|ProjectiveSpaceCategory| |#2|) (|NonNegativeInteger|) (|Field|)) (T |ProjectiveSpace|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |leftLcm| (|#1| |#1| |#1|)) (SIGNATURE |rightExtendedGcd| ((|Record| (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| |generator| |#1|)) |#1| |#1|)) (SIGNATURE |rightGcd| (|#1| |#1| |#1|)) (SIGNATURE |rightExactQuotient| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |rightRemainder| (|#1| |#1| |#1|)) (SIGNATURE |rightQuotient| (|#1| |#1| |#1|)) (SIGNATURE |rightLcm| (|#1| |#1| |#1|)) (SIGNATURE |leftExtendedGcd| ((|Record| (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| |generator| |#1|)) |#1| |#1|)) (SIGNATURE |leftGcd| (|#1| |#1| |#1|)) (SIGNATURE |leftExactQuotient| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |leftRemainder| (|#1| |#1| |#1|)) (SIGNATURE |leftQuotient| (|#1| |#1| |#1|)) (SIGNATURE |primitivePart| (|#1| |#1|)) (SIGNATURE |content| (|#2| |#1|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#2|)) (SIGNATURE |coefficients| ((|List| |#2|) |#1|)) (SIGNATURE |retractIfCan| ((|Union| |#2| "failed") |#1|)) (SIGNATURE |coerce| (|#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Fraction| (|Integer|)))) (SIGNATURE |retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") |#1|)) (SIGNATURE |retractIfCan| ((|Union| (|Integer|) "failed") |#1|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE |coerce| (|#1| (|Integer|))) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|)) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (((|Polynomial| |#1|) $) NIL) (($ (|Polynomial| |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (|CommutativeRing|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (= (((|Boolean|) $ $) NIL)) (/ (((|Union| $ "failed") $ $) NIL (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (|CommutativeRing|))) (($ $ |#1|) NIL (|has| |#1| (|CommutativeRing|))))) │ │ │ -(((|OrdinaryWeightedPolynomials| |#1| |#2| |#3| |#4|) (|Join| (|Ring|) (CATEGORY |domain| (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |#1|)) |noBranch|) (SIGNATURE |coerce| ((|Polynomial| |#1|) $)) (SIGNATURE |coerce| ($ (|Polynomial| |#1|))) (IF (|has| |#1| (|Field|)) (SIGNATURE / ((|Union| $ "failed") $ $)) |noBranch|) (SIGNATURE |changeWeightLevel| ((|Void|) (|NonNegativeInteger|))))) (|Ring|) (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) (T |OrdinaryWeightedPolynomials|)) │ │ │ -((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Polynomial| *3)) (|isDomain| *1 (|OrdinaryWeightedPolynomials| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|List| (|Symbol|))) (|ofType| *5 (|List| (|NonNegativeInteger|))) (|ofType| *6 (|NonNegativeInteger|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|OrdinaryWeightedPolynomials| *3 *4 *5 *6)) (|ofType| *4 (|List| (|Symbol|))) (|ofType| *5 (|List| (|NonNegativeInteger|))) (|ofType| *6 (|NonNegativeInteger|)))) (/ (*1 *1 *1 *1) (|partial| AND (|isDomain| *1 (|OrdinaryWeightedPolynomials| *2 *3 *4 *5)) (|ofCategory| *2 (|Field|)) (|ofCategory| *2 (|Ring|)) (|ofType| *3 (|List| (|Symbol|))) (|ofType| *4 (|List| (|NonNegativeInteger|))) (|ofType| *5 (|NonNegativeInteger|)))) (|changeWeightLevel| (*1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OrdinaryWeightedPolynomials| *4 *5 *6 *7)) (|ofCategory| *4 (|Ring|)) (|ofType| *5 (|List| (|Symbol|))) (|ofType| *6 (|List| *3)) (|ofType| *7 *3)))) │ │ │ -(|Join| (|Ring|) (CATEGORY |domain| (IF (|has| |#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |#1|)) |noBranch|) (SIGNATURE |coerce| ((|Polynomial| |#1|) $)) (SIGNATURE |coerce| ($ (|Polynomial| |#1|))) (IF (|has| |#1| (|Field|)) (SIGNATURE / ((|Union| $ "failed") $ $)) |noBranch|) (SIGNATURE |changeWeightLevel| ((|Void|) (|NonNegativeInteger|))))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|vectorise| (((|Vector| $) $ $) 80)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 73)) (|squareFree| (((|Factored| $) $) 72)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|setTower!| (((|Void|) $) 76)) (|sample| (($) 16 T CONST)) (|rem| (($ $ $) 54)) (|reduce| (($ (|SparseUnivariatePolynomial| $)) 86)) (|recip| (((|Union| $ "failed") $) 33)) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|prime?| (((|Boolean|) $) 71)) (|previousTower| (($ $) 81)) (|one?| (((|Boolean|) $) 30)) (|newElement| (($ (|SparseUnivariatePolynomial| $) $ (|Symbol|)) 78) (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) 77)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|maxTower| (($ (|List| $)) 83)) (|lift| (((|SparseUnivariatePolynomial| $) $) 88) (((|SparseUnivariatePolynomial| $) $ $) 87)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 70)) (|hash| (((|SingleInteger|) $) 10)) (|ground?| (((|Boolean|) $) 84)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|fullOutput| (((|OutputForm|) $) 75)) (|factor| (((|Factored| $) $) 74)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|extDegree| (((|PositiveInteger|) $) 82)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|distinguishedRootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) $) 85)) (|definingPolynomial| (((|SparseUnivariatePolynomial| $)) 90) (((|SparseUnivariatePolynomial| $) $) 89)) (|conjugate| (($ $) 79)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Fraction| (|Integer|))) 65)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 38)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 69)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (/ (($ $ $) 64)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 68)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 67) (($ (|Fraction| (|Integer|)) $) 66))) │ │ │ -(((|PseudoAlgebraicClosureOfPerfectFieldCategory|) (|Category|)) (T |PseudoAlgebraicClosureOfPerfectFieldCategory|)) │ │ │ -((|definingPolynomial| (*1 *2) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|definingPolynomial| (*1 *2 *1) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|lift| (*1 *2 *1) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|lift| (*1 *2 *1 *1) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|reduce| (*1 *1 *2) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|distinguishedRootsOf| (*1 *2 *3 *1) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *1)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)) (|isDomain| *2 (|List| *1)))) (|ground?| (*1 *2 *1) (AND (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)) (|isDomain| *2 (|Boolean|)))) (|maxTower| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|extDegree| (*1 *2 *1) (AND (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)) (|isDomain| *2 (|PositiveInteger|)))) (|previousTower| (*1 *1 *1) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|))) (|vectorise| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Vector| *1)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|conjugate| (*1 *1 *1) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|))) (|newElement| (*1 *1 *2 *1 *3) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|isDomain| *3 (|Symbol|)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|newElement| (*1 *1 *2 *3) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1)) (|isDomain| *3 (|Symbol|)) (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)))) (|setTower!| (*1 *2 *1) (AND (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)) (|isDomain| *2 (|Void|)))) (|fullOutput| (*1 *2 *1) (AND (|ofCategory| *1 (|PseudoAlgebraicClosureOfPerfectFieldCategory|)) (|isDomain| *2 (|OutputForm|))))) │ │ │ -(|Join| (|Field|) (CATEGORY |domain| (SIGNATURE |definingPolynomial| ((|SparseUnivariatePolynomial| $))) (SIGNATURE |definingPolynomial| ((|SparseUnivariatePolynomial| $) $)) (SIGNATURE |lift| ((|SparseUnivariatePolynomial| $) $)) (SIGNATURE |lift| ((|SparseUnivariatePolynomial| $) $ $)) (SIGNATURE |reduce| ($ (|SparseUnivariatePolynomial| $))) (SIGNATURE |distinguishedRootsOf| ((|List| $) (|SparseUnivariatePolynomial| $) $)) (SIGNATURE |ground?| ((|Boolean|) $)) (SIGNATURE |maxTower| ($ (|List| $))) (SIGNATURE |extDegree| ((|PositiveInteger|) $)) (SIGNATURE |previousTower| ($ $)) (SIGNATURE |vectorise| ((|Vector| $) $ $)) (SIGNATURE |conjugate| ($ $)) (SIGNATURE |newElement| ($ (|SparseUnivariatePolynomial| $) $ (|Symbol|))) (SIGNATURE |newElement| ($ (|SparseUnivariatePolynomial| $) (|Symbol|))) (SIGNATURE |setTower!| ((|Void|) $)) (SIGNATURE |fullOutput| ((|OutputForm|) $)))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|UniqueFactorizationDomain|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sqrt| (($ $ (|Integer|)) NIL)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|sample| (($) NIL T CONST)) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) NIL)) (|rem| (($ $ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|quotientByP| (($ $) NIL)) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|order| (((|NonNegativeInteger|) $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|modulus| (((|Integer|)) NIL)) (|moduloP| (((|Integer|) $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|extend| (($ $ (|Integer|)) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|digits| (((|Stream| (|Integer|)) $) NIL)) (|complete| (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|associates?| (((|Boolean|) $ $) NIL)) (|approximate| (((|Integer|) $ (|Integer|)) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL))) │ │ │ -(((|PAdicInteger| |#1|) (|PAdicIntegerCategory| |#1|) (|Integer|)) (T |PAdicInteger|)) │ │ │ +(|ProjectiveSpaceCategory| |#2|) │ │ │ +((|segment| (($ |#1| |#1|) 7)) (|low| ((|#1| $) 10)) (|lo| ((|#1| $) 12)) (|incr| (((|Integer|) $) 8)) (|high| ((|#1| $) 9)) (|hi| ((|#1| $) 11)) (|convert| (($ |#1|) 6)) (SEGMENT (($ |#1| |#1|) 14)) (BY (($ $ (|Integer|)) 13))) │ │ │ +(((|SegmentCategory| |#1|) (|Category|) (|Type|)) (T |SegmentCategory|)) │ │ │ +((SEGMENT (*1 *1 *2 *2) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))) (BY (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|SegmentCategory| *3)) (|ofCategory| *3 (|Type|)))) (|lo| (*1 *2 *1) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))) (|hi| (*1 *2 *1) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))) (|low| (*1 *2 *1) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))) (|high| (*1 *2 *1) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))) (|incr| (*1 *2 *1) (AND (|ofCategory| *1 (|SegmentCategory| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *2 (|Integer|)))) (|segment| (*1 *1 *2 *2) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|)))) (|convert| (*1 *1 *2) (AND (|ofCategory| *1 (|SegmentCategory| *2)) (|ofCategory| *2 (|Type|))))) │ │ │ +(|Join| (|Type|) (CATEGORY |domain| (SIGNATURE SEGMENT ($ |t#1| |t#1|)) (SIGNATURE BY ($ $ (|Integer|))) (SIGNATURE |lo| (|t#1| $)) (SIGNATURE |hi| (|t#1| $)) (SIGNATURE |low| (|t#1| $)) (SIGNATURE |high| (|t#1| $)) (SIGNATURE |incr| ((|Integer|) $)) (SIGNATURE |segment| ($ |t#1| |t#1|)) (SIGNATURE |convert| ($ |t#1|)))) │ │ │ +(((|Type|) . T)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 23)) (|subtractIfCan| (((|Union| $ "failed") $ $) 25)) (|sample| (($) 22 T CONST)) (|min| (($ $ $) 12)) (|max| (($ $ $) 13)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 21 T CONST)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17)) (+ (($ $ $) 19)) (* (($ (|PositiveInteger|) $) 20) (($ (|NonNegativeInteger|) $) 24))) │ │ │ +(((|OrderedCancellationAbelianMonoid|) (|Category|)) (T |OrderedCancellationAbelianMonoid|)) │ │ │ NIL │ │ │ -(|PAdicIntegerCategory| |#1|) │ │ │ -((|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) 17))) │ │ │ -(((|PatternFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)))) (|SetCategory|) (|SetCategory|)) (T |PatternFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|SetCategory|)) (|isDomain| *2 (|Pattern| *6)) (|isDomain| *1 (|PatternFunctions2| *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| ((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|new| (($) 14)) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) 27)) (|lists| (((|PatternMatchResult| |#1| |#3|) $) 16)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|failed?| (((|Boolean|) $) 22)) (|failed| (($) 19)) (|coerce| (((|OutputForm|) $) 30)) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) 15)) (= (((|Boolean|) $ $) 25))) │ │ │ -(((|PatternMatchListResult| |#1| |#2| |#3|) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |failed?| ((|Boolean|) $)) (SIGNATURE |failed| ($)) (SIGNATURE |new| ($)) (SIGNATURE |makeResult| ($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|))) (SIGNATURE |atoms| ((|PatternMatchResult| |#1| |#2|) $)) (SIGNATURE |lists| ((|PatternMatchResult| |#1| |#3|) $)))) (|SetCategory|) (|SetCategory|) (|ListAggregate| |#2|)) (T |PatternMatchListResult|)) │ │ │ -((|failed?| (*1 *2 *1) (AND (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PatternMatchListResult| *3 *4 *5)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *5 (|ListAggregate| *4)))) (|failed| (*1 *1) (AND (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|PatternMatchListResult| *2 *3 *4)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *4 (|ListAggregate| *3)))) (|new| (*1 *1) (AND (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|PatternMatchListResult| *2 *3 *4)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *4 (|ListAggregate| *3)))) (|makeResult| (*1 *1 *2 *3) (AND (|isDomain| *2 (|PatternMatchResult| *4 *5)) (|isDomain| *3 (|PatternMatchResult| *4 *6)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|ListAggregate| *5)) (|isDomain| *1 (|PatternMatchListResult| *4 *5 *6)))) (|atoms| (*1 *2 *1) (AND (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|PatternMatchResult| *3 *4)) (|isDomain| *1 (|PatternMatchListResult| *3 *4 *5)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *5 (|ListAggregate| *4)))) (|lists| (*1 *2 *1) (AND (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|PatternMatchResult| *3 *5)) (|isDomain| *1 (|PatternMatchListResult| *3 *4 *5)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *5 (|ListAggregate| *4))))) │ │ │ -(|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE |failed?| ((|Boolean|) $)) (SIGNATURE |failed| ($)) (SIGNATURE |new| ($)) (SIGNATURE |makeResult| ($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|))) (SIGNATURE |atoms| ((|PatternMatchResult| |#1| |#2|) $)) (SIGNATURE |lists| ((|PatternMatchResult| |#1| |#3|) $)))) │ │ │ -((|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) 30)) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) 26)) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) 39) (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) 38)) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) 40)) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) 22) (((|Stream| (|List| (|Integer|))) (|Integer|)) 16) (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) 12)) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) 24)) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) 23))) │ │ │ -(((|PartitionsAndPermutations|) (CATEGORY |package| (SIGNATURE |partitions| ((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |partitions| ((|Stream| (|List| (|Integer|))) (|Integer|))) (SIGNATURE |partitions| ((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|))) (SIGNATURE |conjugate| ((|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |conjugates| ((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|))))) (SIGNATURE |shuffle| ((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |shufflein| ((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|))))) (SIGNATURE |sequences| ((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |sequences| ((|Stream| (|List| (|Integer|))) (|List| (|Integer|)))) (SIGNATURE |permutations| ((|Stream| (|List| (|Integer|))) (|Integer|))))) (T |PartitionsAndPermutations|)) │ │ │ -((|permutations| (*1 *2 *3) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *1 (|PartitionsAndPermutations|)) (|isDomain| *3 (|Integer|)))) (|sequences| (*1 *2 *3) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *1 (|PartitionsAndPermutations|)) (|isDomain| *3 (|List| (|Integer|))))) (|sequences| (*1 *2 *3 *3) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *1 (|PartitionsAndPermutations|)) (|isDomain| *3 (|List| (|Integer|))))) (|shufflein| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *1 (|PartitionsAndPermutations|)))) (|shuffle| (*1 *2 *3 *3) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *1 (|PartitionsAndPermutations|)) (|isDomain| *3 (|List| (|Integer|))))) (|conjugates| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *1 (|PartitionsAndPermutations|)))) (|conjugate| (*1 *2 *2) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|PartitionsAndPermutations|)))) (|partitions| (*1 *2 *3 *3) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *1 (|PartitionsAndPermutations|)) (|isDomain| *3 (|Integer|)))) (|partitions| (*1 *2 *3) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *1 (|PartitionsAndPermutations|)) (|isDomain| *3 (|Integer|)))) (|partitions| (*1 *2 *3 *3 *3) (AND (|isDomain| *2 (|Stream| (|List| (|Integer|)))) (|isDomain| *1 (|PartitionsAndPermutations|)) (|isDomain| *3 (|Integer|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |partitions| ((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |partitions| ((|Stream| (|List| (|Integer|))) (|Integer|))) (SIGNATURE |partitions| ((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|))) (SIGNATURE |conjugate| ((|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |conjugates| ((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|))))) (SIGNATURE |shuffle| ((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |shufflein| ((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|))))) (SIGNATURE |sequences| ((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |sequences| ((|Stream| (|List| (|Integer|))) (|List| (|Integer|)))) (SIGNATURE |permutations| ((|Stream| (|List| (|Integer|))) (|Integer|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|varList| (((|List| |#1|) $) 16)) (|retractable?| (((|Boolean|) $) 38)) (|retractIfCan| (((|Union| (|LyndonWord| |#1|) "failed") $) 41)) (|retract| (((|LyndonWord| |#1|) $) 39)) (|rest| (($ $) 18)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|listOfTerms| (((|List| (|LyndonWord| |#1|)) $) 23)) (|length| (((|NonNegativeInteger|) $) 45)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|first| (((|LyndonWord| |#1|) $) 17)) (|coerce| (((|OutputForm|) $) 37) (($ (|LyndonWord| |#1|)) 21) (((|OrderedFreeMonoid| |#1|) $) 27) (($ |#1|) 20)) (|One| (($) 8 T CONST)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 11)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 48))) │ │ │ -(((|PoincareBirkhoffWittLyndonBasis| |#1|) (|Join| (|OrderedSet|) (|RetractableTo| (|LyndonWord| |#1|)) (CATEGORY |domain| (SIGNATURE 1 ($) |constant|) (SIGNATURE |coerce| ((|OrderedFreeMonoid| |#1|) $)) (SIGNATURE |coerce| ($ |#1|)) (SIGNATURE |first| ((|LyndonWord| |#1|) $)) (SIGNATURE |length| ((|NonNegativeInteger|) $)) (SIGNATURE |listOfTerms| ((|List| (|LyndonWord| |#1|)) $)) (SIGNATURE |rest| ($ $)) (SIGNATURE |retractable?| ((|Boolean|) $)) (SIGNATURE |varList| ((|List| |#1|) $)))) (|OrderedSet|)) (T |PoincareBirkhoffWittLyndonBasis|)) │ │ │ -((|One| (*1 *1) (AND (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OrderedFreeMonoid| *3)) (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|first| (*1 *2 *1) (AND (|isDomain| *2 (|LyndonWord| *3)) (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|length| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|listOfTerms| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|LyndonWord| *3))) (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|rest| (*1 *1 *1) (AND (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|retractable?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|varList| (*1 *2 *1) (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|PoincareBirkhoffWittLyndonBasis| *3)) (|ofCategory| *3 (|OrderedSet|))))) │ │ │ -(|Join| (|OrderedSet|) (|RetractableTo| (|LyndonWord| |#1|)) (CATEGORY |domain| (SIGNATURE (|One|) ($) |constant|) (SIGNATURE |coerce| ((|OrderedFreeMonoid| |#1|) $)) (SIGNATURE |coerce| ($ |#1|)) (SIGNATURE |first| ((|LyndonWord| |#1|) $)) (SIGNATURE |length| ((|NonNegativeInteger|) $)) (SIGNATURE |listOfTerms| ((|List| (|LyndonWord| |#1|)) $)) (SIGNATURE |rest| ($ $)) (SIGNATURE |retractable?| ((|Boolean|) $)) (SIGNATURE |varList| ((|List| |#1|) $)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|rightRemainder| (($ $ $) 44 (|has| |#1| (|Field|)))) (|rightQuotient| (($ $ $) 45 (|has| |#1| (|Field|)))) (|rightLcm| (($ $ $) 47 (|has| |#1| (|Field|)))) (|rightGcd| (($ $ $) 42 (|has| |#1| (|Field|)))) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 41 (|has| |#1| (|Field|)))) (|rightExactQuotient| (((|Union| $ "failed") $ $) 43 (|has| |#1| (|Field|)))) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 46 (|has| |#1| (|Field|)))) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 73 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) 71 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#1| "failed") $) 68)) (|retract| (((|Integer|) $) 74 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) 72 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1| $) 67)) (|reductum| (($ $) 63)) (|recip| (((|Union| $ "failed") $) 33)) (|primitivePart| (($ $) 54 (|has| |#1| (|GcdDomain|)))) (|one?| (((|Boolean|) $) 30)) (|monomial| (($ |#1| (|NonNegativeInteger|)) 61)) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56 (|has| |#1| (|IntegralDomain|)))) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 57 (|has| |#1| (|IntegralDomain|)))) (|minimumDegree| (((|NonNegativeInteger|) $) 65)) (|leftRemainder| (($ $ $) 51 (|has| |#1| (|Field|)))) (|leftQuotient| (($ $ $) 52 (|has| |#1| (|Field|)))) (|leftLcm| (($ $ $) 40 (|has| |#1| (|Field|)))) (|leftGcd| (($ $ $) 49 (|has| |#1| (|Field|)))) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 48 (|has| |#1| (|Field|)))) (|leftExactQuotient| (((|Union| $ "failed") $ $) 50 (|has| |#1| (|Field|)))) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 53 (|has| |#1| (|Field|)))) (|leadingCoefficient| ((|#1| $) 64)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|exquo| (((|Union| $ "failed") $ |#1|) 58 (|has| |#1| (|IntegralDomain|)))) (|degree| (((|NonNegativeInteger|) $) 66)) (|content| ((|#1| $) 55 (|has| |#1| (|GcdDomain|)))) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ (|Fraction| (|Integer|))) 70 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (($ |#1|) 69)) (|coefficients| (((|List| |#1|) $) 60)) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) 62)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|apply| ((|#1| $ |#1| |#1|) 59)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 76) (($ |#1| $) 75))) │ │ │ -(((|UnivariateSkewPolynomialCategory| |#1|) (|Category|) (|Ring|)) (T |UnivariateSkewPolynomialCategory|)) │ │ │ -((|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|minimumDegree| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|leadingCoefficient| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|reductum| (*1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|coefficient| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|monomial| (*1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|coefficients| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|List| *3)))) (|apply| (*1 *2 *1 *2 *2) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|exquo| (*1 *1 *1 *2) (|partial| AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|IntegralDomain|)))) (|monicLeftDivide| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)))) (|monicRightDivide| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)))) (|content| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|GcdDomain|)))) (|primitivePart| (*1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|GcdDomain|)))) (|leftDivide| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)))) (|leftQuotient| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|leftRemainder| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|leftExactQuotient| (*1 *1 *1 *1) (|partial| AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|leftGcd| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|leftExtendedGcd| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |coef1| *1) (|:| |coef2| *1) (|:| |generator| *1))) (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)))) (|rightLcm| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|rightDivide| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *1) (|:| |remainder| *1))) (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)))) (|rightQuotient| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|rightRemainder| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|rightExactQuotient| (*1 *1 *1 *1) (|partial| AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|rightGcd| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|rightExtendedGcd| (*1 *2 *1 *1) (AND (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Record| (|:| |coef1| *1) (|:| |coef2| *1) (|:| |generator| *1))) (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *3)))) (|leftLcm| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|UnivariateSkewPolynomialCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|))))) │ │ │ -(|Join| (|Ring|) (|BiModule| |t#1| |t#1|) (|FullyRetractableTo| |t#1|) (CATEGORY |domain| (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |minimumDegree| ((|NonNegativeInteger|) $)) (SIGNATURE |leadingCoefficient| (|t#1| $)) (SIGNATURE |reductum| ($ $)) (SIGNATURE |coefficient| (|t#1| $ (|NonNegativeInteger|))) (SIGNATURE |monomial| ($ |t#1| (|NonNegativeInteger|))) (SIGNATURE |coefficients| ((|List| |t#1|) $)) (SIGNATURE |apply| (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (|CommutativeRing|)) (ATTRIBUTE (|Algebra| |t#1|)) |noBranch|) (IF (|has| |t#1| (|IntegralDomain|)) (PROGN (SIGNATURE |exquo| ((|Union| $ "failed") $ |t#1|)) (SIGNATURE |monicLeftDivide| ((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $)) (SIGNATURE |monicRightDivide| ((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $))) |noBranch|) (IF (|has| |t#1| (|GcdDomain|)) (PROGN (SIGNATURE |content| (|t#1| $)) (SIGNATURE |primitivePart| ($ $))) |noBranch|) (IF (|has| |t#1| (|Field|)) (PROGN (SIGNATURE |leftDivide| ((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $)) (SIGNATURE |leftQuotient| ($ $ $)) (SIGNATURE |leftRemainder| ($ $ $)) (SIGNATURE |leftExactQuotient| ((|Union| $ "failed") $ $)) (SIGNATURE |leftGcd| ($ $ $)) (SIGNATURE |leftExtendedGcd| ((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $)) (SIGNATURE |rightLcm| ($ $ $)) (SIGNATURE |rightDivide| ((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $)) (SIGNATURE |rightQuotient| ($ $ $)) (SIGNATURE |rightRemainder| ($ $ $)) (SIGNATURE |rightExactQuotient| ((|Union| $ "failed") $ $)) (SIGNATURE |rightGcd| ($ $ $)) (SIGNATURE |rightExtendedGcd| ((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $)) (SIGNATURE |leftLcm| ($ $ $))) |noBranch|))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|FullyRetractableTo| |#1|) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Monoid|) . T) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RightModule| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) 26)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setvalue!| ((|#1| $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setright!| (($ $ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setleft!| (($ $ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "left" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "right" $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) NIL T CONST)) (|right| (($ $) 25)) (|ptree| (($ |#1|) 12) (($ $ $) 17)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|nodes| (((|List| $) $) NIL)) (|node?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|left| (($ $) 23)) (|leaves| (((|List| |#1|) $) NIL)) (|leaf?| (((|Boolean|) $) 20)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (|distance| (((|Integer|) $ $) NIL)) (|cyclic?| (((|Boolean|) $) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) NIL)) (|coerce| (((|OutputForm|) $) 29 (|has| |#1| (|SetCategory|))) (((|Tree| |#1|) $) 9)) (|children| (((|List| $) $) NIL)) (|child?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 21 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|PendantTree| |#1|) (|Join| (|BinaryRecursiveAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |ptree| ($ |#1|)) (SIGNATURE |ptree| ($ $ $)) (SIGNATURE |coerce| ((|Tree| |#1|) $)))) (|SetCategory|)) (T |PendantTree|)) │ │ │ -((|ptree| (*1 *1 *2) (AND (|isDomain| *1 (|PendantTree| *2)) (|ofCategory| *2 (|SetCategory|)))) (|ptree| (*1 *1 *1 *1) (AND (|isDomain| *1 (|PendantTree| *2)) (|ofCategory| *2 (|SetCategory|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Tree| *3)) (|isDomain| *1 (|PendantTree| *3)) (|ofCategory| *3 (|SetCategory|))))) │ │ │ -(|Join| (|BinaryRecursiveAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |ptree| ($ |#1|)) (SIGNATURE |ptree| ($ $ $)) (SIGNATURE |coerce| ((|Tree| |#1|) $)))) │ │ │ -((|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) 22) (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 19)) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 46) (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) 47)) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) 23)) (|mathieu24| (((|PermutationGroup| (|Integer|))) 36) (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 35)) (|mathieu23| (((|PermutationGroup| (|Integer|))) 34) (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 33)) (|mathieu22| (((|PermutationGroup| (|Integer|))) 32) (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 31)) (|mathieu12| (((|PermutationGroup| (|Integer|))) 30) (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 29)) (|mathieu11| (((|PermutationGroup| (|Integer|))) 28) (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 27)) (|janko2| (((|PermutationGroup| (|Integer|))) 38) (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 37)) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 50) (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) 51)) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 48) (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) 49)) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) 43) (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) 45)) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) 40))) │ │ │ -(((|PermutationGroupExamples|) (CATEGORY |package| (SIGNATURE |symmetricGroup| ((|PermutationGroup| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |symmetricGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |alternatingGroup| ((|PermutationGroup| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |alternatingGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |abelianGroup| ((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|)))) (SIGNATURE |cyclicGroup| ((|PermutationGroup| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |cyclicGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |dihedralGroup| ((|PermutationGroup| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |dihedralGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu11| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu11| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |mathieu12| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu12| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |mathieu22| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu22| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |mathieu23| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu23| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |mathieu24| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu24| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |janko2| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |janko2| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |rubiksGroup| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |youngGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |youngGroup| ((|PermutationGroup| (|Integer|)) (|Partition|))))) (T |PermutationGroupExamples|)) │ │ │ -((|youngGroup| (*1 *2 *3) (AND (|isDomain| *3 (|Partition|)) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|youngGroup| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|rubiksGroup| (*1 *2) (AND (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|janko2| (*1 *2) (AND (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|janko2| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu24| (*1 *2) (AND (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu24| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu23| (*1 *2) (AND (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu23| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu22| (*1 *2) (AND (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu22| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu12| (*1 *2) (AND (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu12| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu11| (*1 *2) (AND (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|mathieu11| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|dihedralGroup| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|dihedralGroup| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|cyclicGroup| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|cyclicGroup| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|abelianGroup| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|PositiveInteger|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|alternatingGroup| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|alternatingGroup| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|symmetricGroup| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Integer|))) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|)))) (|symmetricGroup| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|PermutationGroup| (|Integer|))) (|isDomain| *1 (|PermutationGroupExamples|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |symmetricGroup| ((|PermutationGroup| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |symmetricGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |alternatingGroup| ((|PermutationGroup| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |alternatingGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |abelianGroup| ((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|)))) (SIGNATURE |cyclicGroup| ((|PermutationGroup| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |cyclicGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |dihedralGroup| ((|PermutationGroup| (|Integer|)) (|PositiveInteger|))) (SIGNATURE |dihedralGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu11| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu11| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |mathieu12| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu12| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |mathieu22| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu22| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |mathieu23| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu23| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |mathieu24| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |mathieu24| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |janko2| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |janko2| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |rubiksGroup| ((|PermutationGroup| (|Integer|)))) (SIGNATURE |youngGroup| ((|PermutationGroup| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |youngGroup| ((|PermutationGroup| (|Integer|)) (|Partition|)))) │ │ │ -((|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) 10)) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) 9))) │ │ │ -(((|PolyGroebner| |#1|) (CATEGORY |package| (SIGNATURE |lexGroebner| ((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)))) (SIGNATURE |totalGroebner| ((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))))) (|GcdDomain|)) (T |PolyGroebner|)) │ │ │ -((|totalGroebner| (*1 *2 *2 *3) (AND (|isDomain| *2 (|List| (|Polynomial| *4))) (|isDomain| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|GcdDomain|)) (|isDomain| *1 (|PolyGroebner| *4)))) (|lexGroebner| (*1 *2 *2 *3) (AND (|isDomain| *2 (|List| (|Polynomial| *4))) (|isDomain| *3 (|List| (|Symbol|))) (|ofCategory| *4 (|GcdDomain|)) (|isDomain| *1 (|PolyGroebner| *4))))) │ │ │ -(CATEGORY |package| (SIGNATURE |lexGroebner| ((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)))) (SIGNATURE |totalGroebner| ((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))))) │ │ │ -((|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) 17) (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) 13))) │ │ │ -(((|PolynomialInterpolation| |#1| |#2|) (CATEGORY |package| (SIGNATURE |interpolate| ((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|))) (SIGNATURE |interpolate| ((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)))) (|Symbol|) (|Field|)) (T |PolynomialInterpolation|)) │ │ │ -((|interpolate| (*1 *2 *3 *3) (AND (|isDomain| *3 (|List| *5)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *5)) (|isDomain| *1 (|PolynomialInterpolation| *4 *5)) (|ofType| *4 (|Symbol|)))) (|interpolate| (*1 *2 *2 *3 *3) (AND (|isDomain| *2 (|UnivariatePolynomial| *4 *5)) (|isDomain| *3 (|List| *5)) (|ofType| *4 (|Symbol|)) (|ofCategory| *5 (|Field|)) (|isDomain| *1 (|PolynomialInterpolation| *4 *5))))) │ │ │ -(CATEGORY |package| (SIGNATURE |interpolate| ((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|))) (SIGNATURE |interpolate| ((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)))) │ │ │ -((|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) 23))) │ │ │ -(((|PlotTools|) (CATEGORY |package| (SIGNATURE |calcRanges| ((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|)))))))) (T |PlotTools|)) │ │ │ -((|calcRanges| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|))))) (|isDomain| *2 (|List| (|Segment| (|DoubleFloat|)))) (|isDomain| *1 (|PlotTools|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |calcRanges| ((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))))) │ │ │ -((|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) 24)) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) 12))) │ │ │ -(((|PatternMatchPushDown| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |fixPredicate| ((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|))) (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)))) (|SetCategory|) (|PatternMatchable| |#1|) (|Join| (|SetCategory|) (|RetractableTo| |#2|))) (T |PatternMatchPushDown|)) │ │ │ -((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchResult| *5 *6)) (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|Join| (|SetCategory|) (|RetractableTo| *3))) (|ofCategory| *3 (|PatternMatchable| *5)) (|isDomain| *1 (|PatternMatchPushDown| *5 *3 *6)))) (|fixPredicate| (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *6)) (|ofCategory| *6 (|Join| (|SetCategory|) (|RetractableTo| *5))) (|ofCategory| *5 (|PatternMatchable| *4)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Mapping| (|Boolean|) *5)) (|isDomain| *1 (|PatternMatchPushDown| *4 *5 *6))))) │ │ │ -(CATEGORY |package| (SIGNATURE |fixPredicate| ((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|))) (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|wholePart| ((|#1| $) 80)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|sample| (($) NIL T CONST)) (|rem| (($ $ $) NIL)) (|recip| (((|Union| $ "failed") $) 74)) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|prime?| (((|Boolean|) $) NIL)) (|partialFraction| (($ |#1| (|Factored| |#1|)) 72)) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) 40)) (|padicFraction| (($ $) 48)) (|one?| (((|Boolean|) $) NIL)) (|numberOfFractionalTerms| (((|Integer|) $) 77)) (|nthFractionalTerm| (($ $ (|Integer|)) 79)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|firstNumer| ((|#1| $) 76)) (|firstDenom| (((|Factored| |#1|) $) 75)) (|factor| (((|Factored| $) $) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|exquo| (((|Union| $ "failed") $ $) 73)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|compactFraction| (($ $) 38)) (|coerce| (((|OutputForm|) $) 98) (($ (|Integer|)) 53) (($ $) NIL) (($ (|Fraction| (|Integer|))) NIL) (($ |#1|) 30) (((|Fraction| |#1|) $) 58) (($ (|Fraction| (|Factored| |#1|))) 66)) (|characteristic| (((|NonNegativeInteger|)) 51)) (|associates?| (((|Boolean|) $ $) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|Zero| (($) 23 T CONST)) (|One| (($) 11 T CONST)) (= (((|Boolean|) $ $) 67)) (/ (($ $ $) NIL)) (- (($ $) 87) (($ $ $) NIL)) (+ (($ $ $) 37)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 89) (($ $ $) 36) (($ $ (|Fraction| (|Integer|))) NIL) (($ (|Fraction| (|Integer|)) $) NIL) (($ |#1| $) 88) (($ $ |#1|) NIL))) │ │ │ -(((|PartialFraction| |#1|) (|Join| (|Field|) (|Algebra| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ((|Fraction| |#1|) $)) (SIGNATURE |coerce| ($ (|Fraction| (|Factored| |#1|)))) (SIGNATURE |compactFraction| ($ $)) (SIGNATURE |firstDenom| ((|Factored| |#1|) $)) (SIGNATURE |firstNumer| (|#1| $)) (SIGNATURE |nthFractionalTerm| ($ $ (|Integer|))) (SIGNATURE |numberOfFractionalTerms| ((|Integer|) $)) (SIGNATURE |padicallyExpand| ((|SparseUnivariatePolynomial| |#1|) |#1| |#1|)) (SIGNATURE |padicFraction| ($ $)) (SIGNATURE |partialFraction| ($ |#1| (|Factored| |#1|))) (SIGNATURE |wholePart| (|#1| $)))) (|EuclideanDomain|)) (T |PartialFraction|)) │ │ │ -((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Fraction| *3)) (|isDomain| *1 (|PartialFraction| *3)) (|ofCategory| *3 (|EuclideanDomain|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| (|Factored| *3))) (|ofCategory| *3 (|EuclideanDomain|)) (|isDomain| *1 (|PartialFraction| *3)))) (|compactFraction| (*1 *1 *1) (AND (|isDomain| *1 (|PartialFraction| *2)) (|ofCategory| *2 (|EuclideanDomain|)))) (|firstDenom| (*1 *2 *1) (AND (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|PartialFraction| *3)) (|ofCategory| *3 (|EuclideanDomain|)))) (|firstNumer| (*1 *2 *1) (AND (|isDomain| *1 (|PartialFraction| *2)) (|ofCategory| *2 (|EuclideanDomain|)))) (|nthFractionalTerm| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|PartialFraction| *3)) (|ofCategory| *3 (|EuclideanDomain|)))) (|numberOfFractionalTerms| (*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|PartialFraction| *3)) (|ofCategory| *3 (|EuclideanDomain|)))) (|padicallyExpand| (*1 *2 *3 *3) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3)) (|isDomain| *1 (|PartialFraction| *3)) (|ofCategory| *3 (|EuclideanDomain|)))) (|padicFraction| (*1 *1 *1) (AND (|isDomain| *1 (|PartialFraction| *2)) (|ofCategory| *2 (|EuclideanDomain|)))) (|partialFraction| (*1 *1 *2 *3) (AND (|isDomain| *3 (|Factored| *2)) (|ofCategory| *2 (|EuclideanDomain|)) (|isDomain| *1 (|PartialFraction| *2)))) (|wholePart| (*1 *2 *1) (AND (|isDomain| *1 (|PartialFraction| *2)) (|ofCategory| *2 (|EuclideanDomain|))))) │ │ │ -(|Join| (|Field|) (|Algebra| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ((|Fraction| |#1|) $)) (SIGNATURE |coerce| ($ (|Fraction| (|Factored| |#1|)))) (SIGNATURE |compactFraction| ($ $)) (SIGNATURE |firstDenom| ((|Factored| |#1|) $)) (SIGNATURE |firstNumer| (|#1| $)) (SIGNATURE |nthFractionalTerm| ($ $ (|Integer|))) (SIGNATURE |numberOfFractionalTerms| ((|Integer|) $)) (SIGNATURE |padicallyExpand| ((|SparseUnivariatePolynomial| |#1|) |#1| |#1|)) (SIGNATURE |padicFraction| ($ $)) (SIGNATURE |partialFraction| ($ |#1| (|Factored| |#1|))) (SIGNATURE |wholePart| (|#1| $)))) │ │ │ -((|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) 14))) │ │ │ -(((|PatternMatchListAggregate| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)))) (|SetCategory|) (|PatternMatchable| |#1|) (|ListAggregate| |#2|)) (T |PatternMatchListAggregate|)) │ │ │ -((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchListResult| *5 *6 *3)) (|isDomain| *4 (|Pattern| *5)) (|ofCategory| *5 (|SetCategory|)) (|ofCategory| *6 (|PatternMatchable| *5)) (|ofCategory| *3 (|ListAggregate| *6)) (|isDomain| *1 (|PatternMatchListAggregate| *5 *6 *3))))) │ │ │ -(CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)))) │ │ │ -((|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) 12))) │ │ │ -(((|PatternMatchIntegerNumberSystem| |#1|) (CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)))) (|IntegerNumberSystem|)) (T |PatternMatchIntegerNumberSystem|)) │ │ │ -((|patternMatch| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|PatternMatchResult| (|Integer|) *3)) (|isDomain| *4 (|Pattern| (|Integer|))) (|ofCategory| *3 (|IntegerNumberSystem|)) (|isDomain| *1 (|PatternMatchIntegerNumberSystem| *3))))) │ │ │ -(CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)))) │ │ │ -((|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) 33)) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) 32))) │ │ │ -(((|PatternMatchTools| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)))) (SIGNATURE |patternMatchTimes| ((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))))) (|SetCategory|) (|Join| (|Ring|) (|OrderedSet|)) (|Join| (|Ring|) (|ConvertibleTo| (|Pattern| |#1|)) (|RetractableTo| |#2|))) (T |PatternMatchTools|)) │ │ │ -((|patternMatchTimes| (*1 *2 *3 *4 *2 *5) (AND (|isDomain| *3 (|List| *8)) (|isDomain| *4 (|List| (|Pattern| *6))) (|isDomain| *5 (|Mapping| (|PatternMatchResult| *6 *8) *8 (|Pattern| *6) (|PatternMatchResult| *6 *8))) (|ofCategory| *6 (|SetCategory|)) (|ofCategory| *8 (|Join| (|Ring|) (|ConvertibleTo| (|Pattern| *6)) (|RetractableTo| *7))) (|isDomain| *2 (|PatternMatchResult| *6 *8)) (|ofCategory| *7 (|Join| (|Ring|) (|OrderedSet|))) (|isDomain| *1 (|PatternMatchTools| *6 *7 *8)))) (|patternMatch| (*1 *2 *3 *4 *5 *2 *6) (AND (|isDomain| *4 (|List| (|Pattern| *7))) (|isDomain| *5 (|Mapping| *9 (|List| *9))) (|isDomain| *6 (|Mapping| (|PatternMatchResult| *7 *9) *9 (|Pattern| *7) (|PatternMatchResult| *7 *9))) (|ofCategory| *7 (|SetCategory|)) (|ofCategory| *9 (|Join| (|Ring|) (|ConvertibleTo| (|Pattern| *7)) (|RetractableTo| *8))) (|isDomain| *2 (|PatternMatchResult| *7 *9)) (|isDomain| *3 (|List| *9)) (|ofCategory| *8 (|Join| (|Ring|) (|OrderedSet|))) (|isDomain| *1 (|PatternMatchTools| *7 *8 *9))))) │ │ │ -(CATEGORY |package| (SIGNATURE |patternMatch| ((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)))) (SIGNATURE |patternMatchTimes| ((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) 26)) (|sample| (($) NIL T CONST)) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) 28)) (|pdct| (((|Integer|) $) 44)) (|partition| (($ (|List| (|Integer|))) 17)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|convert| (((|List| (|Integer|)) $) 11)) (|conjugate| (($ $) 31)) (|coerce| (((|OutputForm|) $) 42) (((|List| (|Integer|)) $) 9)) (|Zero| (($) 7 T CONST)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 19)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 18)) (+ (($ $ $) 20)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) 24))) │ │ │ -(((|Partition|) (|Join| (|OrderedCancellationAbelianMonoid|) (|ConvertibleTo| (|List| (|Integer|))) (CATEGORY |domain| (SIGNATURE |partition| ($ (|List| (|Integer|)))) (SIGNATURE |powers| ((|List| (|List| (|Integer|))) (|List| (|Integer|)))) (SIGNATURE |pdct| ((|Integer|) $)) (SIGNATURE |conjugate| ($ $)) (SIGNATURE |coerce| ((|List| (|Integer|)) $))))) (T |Partition|)) │ │ │ -((|partition| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|Partition|)))) (|powers| (*1 *2 *3) (AND (|isDomain| *2 (|List| (|List| (|Integer|)))) (|isDomain| *1 (|Partition|)) (|isDomain| *3 (|List| (|Integer|))))) (|pdct| (*1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Partition|)))) (|conjugate| (*1 *1 *1) (|isDomain| *1 (|Partition|))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|Partition|))))) │ │ │ -(|Join| (|OrderedCancellationAbelianMonoid|) (|ConvertibleTo| (|List| (|Integer|))) (CATEGORY |domain| (SIGNATURE |partition| ($ (|List| (|Integer|)))) (SIGNATURE |powers| ((|List| (|List| (|Integer|))) (|List| (|Integer|)))) (SIGNATURE |pdct| ((|Integer|) $)) (SIGNATURE |conjugate| ($ $)) (SIGNATURE |coerce| ((|List| (|Integer|)) $)))) │ │ │ -((/ (($ $ |#2|) 30)) (- (($ $) 22) (($ $ $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (|Fraction| (|Integer|)) $) 26) (($ $ (|Fraction| (|Integer|))) 28))) │ │ │ -(((|PowerSeriesCategory&| |#1| |#2| |#3| |#4|) (CATEGORY |domain| (SIGNATURE * (|#1| |#1| (|Fraction| (|Integer|)))) (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)) (SIGNATURE / (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) (|PowerSeriesCategory| |#2| |#3| |#4|) (|Ring|) (|OrderedAbelianMonoid|) (|OrderedSet|)) (T |PowerSeriesCategory&|)) │ │ │ +(|Join| (|OrderedAbelianMonoid|) (|CancellationAbelianMonoid|)) │ │ │ +(((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedSet|) . T) ((|SetCategory|) . T)) │ │ │ +((|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) 36)) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) 109) (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) 108)) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) 81)) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) 71)) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) 73)) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) 69)) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) 85)) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) 97)) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) 100)) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) 99)) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) 98)) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) 94)) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) 62)) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) 103)) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) 106)) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) 105)) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) 104)) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) 101))) │ │ │ +(((|FiniteFieldPolynomialPackage| |#1|) (CATEGORY |package| (SIGNATURE |primitive?| ((|Boolean|) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |normal?| ((|Boolean|) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |numberOfIrreduciblePoly| ((|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |numberOfPrimitivePoly| ((|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |numberOfNormalPoly| ((|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |createIrreduciblePoly| ((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|))) (SIGNATURE |createPrimitivePoly| ((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|))) (SIGNATURE |createNormalPoly| ((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|))) (SIGNATURE |createNormalPrimitivePoly| ((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|))) (SIGNATURE |createPrimitiveNormalPoly| ((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|))) (SIGNATURE |nextIrreduciblePoly| ((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |nextPrimitivePoly| ((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |nextNormalPoly| ((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |nextNormalPrimitivePoly| ((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |nextPrimitiveNormalPoly| ((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |random| ((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|))) (SIGNATURE |random| ((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |leastAffineMultiple| ((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |reducedQPowers| ((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)))) (|FiniteFieldCategory|)) (T |FiniteFieldPolynomialPackage|)) │ │ │ +((|reducedQPowers| (*1 *2 *3) (AND (|ofCategory| *4 (|FiniteFieldCategory|)) (|isDomain| *2 (|PrimitiveArray| (|SparseUnivariatePolynomial| *4))) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4)) (|isDomain| *3 (|SparseUnivariatePolynomial| *4)))) (|leastAffineMultiple| (*1 *2 *2) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|FiniteFieldCategory|)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3)))) (|random| (*1 *2 *3 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *4)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)))) (|random| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *4)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)))) (|nextPrimitiveNormalPoly| (*1 *2 *2) (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|FiniteFieldCategory|)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3)))) (|nextNormalPrimitivePoly| (*1 *2 *2) (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|FiniteFieldCategory|)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3)))) (|nextNormalPoly| (*1 *2 *2) (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|FiniteFieldCategory|)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3)))) (|nextPrimitivePoly| (*1 *2 *2) (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|FiniteFieldCategory|)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3)))) (|nextIrreduciblePoly| (*1 *2 *2) (|partial| AND (|isDomain| *2 (|SparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|FiniteFieldCategory|)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3)))) (|createPrimitiveNormalPoly| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *4)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)))) (|createNormalPrimitivePoly| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *4)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)))) (|createNormalPoly| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *4)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)))) (|createPrimitivePoly| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *4)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)))) (|createIrreduciblePoly| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *4)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)))) (|numberOfNormalPoly| (*1 *2 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3)) (|ofCategory| *3 (|FiniteFieldCategory|)))) (|numberOfPrimitivePoly| (*1 *2 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3)) (|ofCategory| *3 (|FiniteFieldCategory|)))) (|numberOfIrreduciblePoly| (*1 *2 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *3)) (|ofCategory| *3 (|FiniteFieldCategory|)))) (|normal?| (*1 *2 *3) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4)))) (|primitive?| (*1 *2 *3) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *4)) (|ofCategory| *4 (|FiniteFieldCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FiniteFieldPolynomialPackage| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |primitive?| ((|Boolean|) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |normal?| ((|Boolean|) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |numberOfIrreduciblePoly| ((|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |numberOfPrimitivePoly| ((|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |numberOfNormalPoly| ((|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |createIrreduciblePoly| ((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|))) (SIGNATURE |createPrimitivePoly| ((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|))) (SIGNATURE |createNormalPoly| ((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|))) (SIGNATURE |createNormalPrimitivePoly| ((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|))) (SIGNATURE |createPrimitiveNormalPoly| ((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|))) (SIGNATURE |nextIrreduciblePoly| ((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |nextPrimitivePoly| ((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |nextNormalPoly| ((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |nextNormalPrimitivePoly| ((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |nextPrimitiveNormalPoly| ((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |random| ((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|))) (SIGNATURE |random| ((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|))) (SIGNATURE |leastAffineMultiple| ((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|))) (SIGNATURE |reducedQPowers| ((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)))) │ │ │ +((|leftRemainder| ((|#1| |#1| |#1|) 24)) (|leftQuotient| ((|#1| |#1| |#1|) 23)) (|leftLcm| ((|#1| |#1| |#1|) 31)) (|leftGcd| ((|#1| |#1| |#1|) 27)) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) 26)) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) 22))) │ │ │ +(((|NonCommutativeOperatorDivision| |#1| |#2|) (CATEGORY |package| (SIGNATURE |leftDivide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|)) (SIGNATURE |leftQuotient| (|#1| |#1| |#1|)) (SIGNATURE |leftRemainder| (|#1| |#1| |#1|)) (SIGNATURE |leftExactQuotient| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |leftGcd| (|#1| |#1| |#1|)) (SIGNATURE |leftLcm| (|#1| |#1| |#1|))) (|MonogenicLinearOperator| |#2|) (|Field|)) (T |NonCommutativeOperatorDivision|)) │ │ │ +((|leftLcm| (*1 *2 *2 *2) (AND (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|NonCommutativeOperatorDivision| *2 *3)) (|ofCategory| *2 (|MonogenicLinearOperator| *3)))) (|leftGcd| (*1 *2 *2 *2) (AND (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|NonCommutativeOperatorDivision| *2 *3)) (|ofCategory| *2 (|MonogenicLinearOperator| *3)))) (|leftExactQuotient| (*1 *2 *2 *2) (|partial| AND (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|NonCommutativeOperatorDivision| *2 *3)) (|ofCategory| *2 (|MonogenicLinearOperator| *3)))) (|leftRemainder| (*1 *2 *2 *2) (AND (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|NonCommutativeOperatorDivision| *2 *3)) (|ofCategory| *2 (|MonogenicLinearOperator| *3)))) (|leftQuotient| (*1 *2 *2 *2) (AND (|ofCategory| *3 (|Field|)) (|isDomain| *1 (|NonCommutativeOperatorDivision| *2 *3)) (|ofCategory| *2 (|MonogenicLinearOperator| *3)))) (|leftDivide| (*1 *2 *3 *3) (AND (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3))) (|isDomain| *1 (|NonCommutativeOperatorDivision| *3 *4)) (|ofCategory| *3 (|MonogenicLinearOperator| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |leftDivide| ((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|)) (SIGNATURE |leftQuotient| (|#1| |#1| |#1|)) (SIGNATURE |leftRemainder| (|#1| |#1| |#1|)) (SIGNATURE |leftExactQuotient| ((|Union| |#1| "failed") |#1| |#1|)) (SIGNATURE |leftGcd| (|#1| |#1| |#1|)) (SIGNATURE |leftLcm| (|#1| |#1| |#1|))) │ │ │ +((|OMmakeConn| (($ (|SingleInteger|)) 7)) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) 15)) (|OMconnOutDevice| (((|OpenMathDevice|) $) 12)) (|OMconnInDevice| (((|OpenMathDevice|) $) 11)) (|OMcloseConn| (((|Void|) $) 9)) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) 16))) │ │ │ +(((|OpenMathConnection|) (CATEGORY |domain| (SIGNATURE |OMmakeConn| ($ (|SingleInteger|))) (SIGNATURE |OMcloseConn| ((|Void|) $)) (SIGNATURE |OMconnInDevice| ((|OpenMathDevice|) $)) (SIGNATURE |OMconnOutDevice| ((|OpenMathDevice|) $)) (SIGNATURE |OMconnectTCP| ((|Boolean|) $ (|String|) (|SingleInteger|))) (SIGNATURE |OMbindTCP| ((|Boolean|) $ (|SingleInteger|))))) (T |OpenMathConnection|)) │ │ │ +((|OMbindTCP| (*1 *2 *1 *3) (AND (|isDomain| *3 (|SingleInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OpenMathConnection|)))) (|OMconnectTCP| (*1 *2 *1 *3 *4) (AND (|isDomain| *3 (|String|)) (|isDomain| *4 (|SingleInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|OpenMathConnection|)))) (|OMconnOutDevice| (*1 *2 *1) (AND (|isDomain| *2 (|OpenMathDevice|)) (|isDomain| *1 (|OpenMathConnection|)))) (|OMconnInDevice| (*1 *2 *1) (AND (|isDomain| *2 (|OpenMathDevice|)) (|isDomain| *1 (|OpenMathConnection|)))) (|OMcloseConn| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|OpenMathConnection|)))) (|OMmakeConn| (*1 *1 *2) (AND (|isDomain| *2 (|SingleInteger|)) (|isDomain| *1 (|OpenMathConnection|))))) │ │ │ +(CATEGORY |domain| (SIGNATURE |OMmakeConn| ($ (|SingleInteger|))) (SIGNATURE |OMcloseConn| ((|Void|) $)) (SIGNATURE |OMconnInDevice| ((|OpenMathDevice|) $)) (SIGNATURE |OMconnOutDevice| ((|OpenMathDevice|) $)) (SIGNATURE |OMconnectTCP| ((|Boolean|) $ (|String|) (|SingleInteger|))) (SIGNATURE |OMbindTCP| ((|Boolean|) $ (|SingleInteger|)))) │ │ │ +((|sortedPurge!| (((|Void|) $ (|Mapping| (|Boolean|) |#1|)) 71)) (|setelt!| (((|Void|) $ (|Integer|) |#1| |#2|) 48)) (|setRow!| (((|Void|) $ (|Integer|) (|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|)))) 37) (((|Void|) $ (|Integer|) (|List| |#1|) (|List| |#2|)) 39)) (|setGcdMode| (((|Symbol|) (|Symbol|)) 105 (|has| |#2| (|GcdDomain|)))) (|rowEchelon| (((|Record| (|:| |Ech| $) (|:| |Lt| (|Matrix| |#2|)) (|:| |Pivots| (|List| |#2|)) (|:| |Rank| (|NonNegativeInteger|))) $) 104)) (|row| (((|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|))) $ (|Integer|)) 33)) (|purge!| (((|Void|) $ (|Mapping| (|Boolean|) |#1|)) 70)) (|primitiveRowEchelon| (((|Record| (|:| |Ech| $) (|:| |Lt| (|Matrix| (|Fraction| |#2|))) (|:| |Pivots| (|List| |#2|)) (|:| |Rank| (|NonNegativeInteger|))) $) 130 (|has| |#2| (|GcdDomain|)))) (|pivots| (((|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|))) $) 93)) (|pivot| (((|Record| (|:| |Index| |#1|) (|:| |Entry| |#2|)) $ (|Integer|)) 92)) (|nrows| (((|NonNegativeInteger|) $) 26)) (|new| (($ (|List| |#1|) (|Integer|)) 40)) (|ncols| (((|NonNegativeInteger|) $) 25)) (|join| (($ $ $) 81)) (|horizSplit| (((|Record| (|:| |Left| $) (|:| |Right| $)) $ |#1|) 84)) (|horizJoin| (($ $ $) 82)) (|extract| (($ $ (|Integer|) (|Integer|)) 80)) (|elt| ((|#2| $ (|Integer|) |#1|) 44)) (|elimZeroCols!| (((|Void|) $) 68)) (|deleteRow!| (((|Void|) $ (|Integer|)) 72)) (|copy| (($ $) 64)) (|consRow!| (((|Void|) $ (|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|)))) 77)) (|coerce| (((|OutputForm|) $) 61) (((|Matrix| |#2|) $) 57)) (|appendRow!| (((|Void|) $ (|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|)))) 79)) (|allIndices| (((|List| |#1|) $) 29)) (* (($ (|Matrix| |#2|) $) 136) (($ (|Matrix| (|Fraction| |#2|)) $) 148 (|has| |#2| (|IntegralDomain|))))) │ │ │ +(((|SparseEchelonMatrix| |#1| |#2|) (|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (ATTRIBUTE |finiteAggregate|) (SIGNATURE |coerce| ((|Matrix| |#2|) $)) (SIGNATURE |copy| ($ $)) (SIGNATURE |ncols| ((|NonNegativeInteger|) $)) (SIGNATURE |nrows| ((|NonNegativeInteger|) $)) (SIGNATURE |allIndices| ((|List| |#1|) $)) (SIGNATURE |elimZeroCols!| ((|Void|) $)) (SIGNATURE |purge!| ((|Void|) $ (|Mapping| (|Boolean|) |#1|))) (SIGNATURE |sortedPurge!| ((|Void|) $ (|Mapping| (|Boolean|) |#1|))) (SIGNATURE |new| ($ (|List| |#1|) (|Integer|))) (SIGNATURE |elt| (|#2| $ (|Integer|) |#1|)) (SIGNATURE |setelt!| ((|Void|) $ (|Integer|) |#1| |#2|)) (SIGNATURE |row| ((|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|))) $ (|Integer|))) (SIGNATURE |setRow!| ((|Void|) $ (|Integer|) (|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|))))) (SIGNATURE |setRow!| ((|Void|) $ (|Integer|) (|List| |#1|) (|List| |#2|))) (SIGNATURE |deleteRow!| ((|Void|) $ (|Integer|))) (SIGNATURE |consRow!| ((|Void|) $ (|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|))))) (SIGNATURE |appendRow!| ((|Void|) $ (|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|))))) (SIGNATURE |extract| ($ $ (|Integer|) (|Integer|))) (SIGNATURE |rowEchelon| ((|Record| (|:| |Ech| $) (|:| |Lt| (|Matrix| |#2|)) (|:| |Pivots| (|List| |#2|)) (|:| |Rank| (|NonNegativeInteger|))) $)) (IF (|has| |#2| (|GcdDomain|)) (PROGN (SIGNATURE |setGcdMode| ((|Symbol|) (|Symbol|))) (SIGNATURE |primitiveRowEchelon| ((|Record| (|:| |Ech| $) (|:| |Lt| (|Matrix| (|Fraction| |#2|))) (|:| |Pivots| (|List| |#2|)) (|:| |Rank| (|NonNegativeInteger|))) $))) |noBranch|) (SIGNATURE |pivot| ((|Record| (|:| |Index| |#1|) (|:| |Entry| |#2|)) $ (|Integer|))) (SIGNATURE |pivots| ((|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|))) $)) (SIGNATURE * ($ (|Matrix| |#2|) $)) (IF (|has| |#2| (|IntegralDomain|)) (SIGNATURE * ($ (|Matrix| (|Fraction| |#2|)) $)) |noBranch|) (SIGNATURE |join| ($ $ $)) (SIGNATURE |horizJoin| ($ $ $)) (SIGNATURE |horizSplit| ((|Record| (|:| |Left| $) (|:| |Right| $)) $ |#1|)))) (|OrderedSet|) (|Ring|)) (T |SparseEchelonMatrix|)) │ │ │ +((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Matrix| *4)) (|isDomain| *1 (|SparseEchelonMatrix| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))) (|copy| (*1 *1 *1) (AND (|isDomain| *1 (|SparseEchelonMatrix| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|ncols| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|SparseEchelonMatrix| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))) (|nrows| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|SparseEchelonMatrix| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))) (|allIndices| (*1 *2 *1) (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|SparseEchelonMatrix| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))) (|elimZeroCols!| (*1 *2 *1) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|SparseEchelonMatrix| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))) (|purge!| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|SparseEchelonMatrix| *4 *5)) (|ofCategory| *5 (|Ring|)))) (|sortedPurge!| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|SparseEchelonMatrix| *4 *5)) (|ofCategory| *5 (|Ring|)))) (|new| (*1 *1 *2 *3) (AND (|isDomain| *2 (|List| *4)) (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *1 (|SparseEchelonMatrix| *4 *5)) (|ofCategory| *5 (|Ring|)))) (|elt| (*1 *2 *1 *3 *4) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|SparseEchelonMatrix| *4 *2)) (|ofCategory| *4 (|OrderedSet|)))) (|setelt!| (*1 *2 *1 *3 *4 *5) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|SparseEchelonMatrix| *4 *5)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|Ring|)))) (|row| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Record| (|:| |Indices| (|List| *4)) (|:| |Entries| (|List| *5)))) (|isDomain| *1 (|SparseEchelonMatrix| *4 *5)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|Ring|)))) (|setRow!| (*1 *2 *1 *3 *4) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Record| (|:| |Indices| (|List| *5)) (|:| |Entries| (|List| *6)))) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|Ring|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|SparseEchelonMatrix| *5 *6)))) (|setRow!| (*1 *2 *1 *3 *4 *5) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|List| *6)) (|isDomain| *5 (|List| *7)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|Ring|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|SparseEchelonMatrix| *6 *7)))) (|deleteRow!| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|SparseEchelonMatrix| *4 *5)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|Ring|)))) (|consRow!| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Record| (|:| |Indices| (|List| *4)) (|:| |Entries| (|List| *5)))) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|SparseEchelonMatrix| *4 *5)))) (|appendRow!| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Record| (|:| |Indices| (|List| *4)) (|:| |Entries| (|List| *5)))) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|SparseEchelonMatrix| *4 *5)))) (|extract| (*1 *1 *1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|SparseEchelonMatrix| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))) (|rowEchelon| (*1 *2 *1) (AND (|isDomain| *2 (|Record| (|:| |Ech| (|SparseEchelonMatrix| *3 *4)) (|:| |Lt| (|Matrix| *4)) (|:| |Pivots| (|List| *4)) (|:| |Rank| (|NonNegativeInteger|)))) (|isDomain| *1 (|SparseEchelonMatrix| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))) (|setGcdMode| (*1 *2 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|SparseEchelonMatrix| *3 *4)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))) (|primitiveRowEchelon| (*1 *2 *1) (AND (|isDomain| *2 (|Record| (|:| |Ech| (|SparseEchelonMatrix| *3 *4)) (|:| |Lt| (|Matrix| (|Fraction| *4))) (|:| |Pivots| (|List| *4)) (|:| |Rank| (|NonNegativeInteger|)))) (|isDomain| *1 (|SparseEchelonMatrix| *3 *4)) (|ofCategory| *4 (|GcdDomain|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))) (|pivot| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Record| (|:| |Index| *4) (|:| |Entry| *5))) (|isDomain| *1 (|SparseEchelonMatrix| *4 *5)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|Ring|)))) (|pivots| (*1 *2 *1) (AND (|isDomain| *2 (|Record| (|:| |Indices| (|List| *3)) (|:| |Entries| (|List| *4)))) (|isDomain| *1 (|SparseEchelonMatrix| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))) (* (*1 *1 *2 *1) (AND (|isDomain| *2 (|Matrix| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|SparseEchelonMatrix| *3 *4)) (|ofCategory| *3 (|OrderedSet|)))) (* (*1 *1 *2 *1) (AND (|isDomain| *2 (|Matrix| (|Fraction| *4))) (|ofCategory| *4 (|IntegralDomain|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|SparseEchelonMatrix| *3 *4)) (|ofCategory| *3 (|OrderedSet|)))) (|join| (*1 *1 *1 *1) (AND (|isDomain| *1 (|SparseEchelonMatrix| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|horizJoin| (*1 *1 *1 *1) (AND (|isDomain| *1 (|SparseEchelonMatrix| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Ring|)))) (|horizSplit| (*1 *2 *1 *3) (AND (|isDomain| *2 (|Record| (|:| |Left| (|SparseEchelonMatrix| *3 *4)) (|:| |Right| (|SparseEchelonMatrix| *3 *4)))) (|isDomain| *1 (|SparseEchelonMatrix| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|))))) │ │ │ +(|Join| (|CoercibleTo| (|OutputForm|)) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (ATTRIBUTE |finiteAggregate|) (SIGNATURE |coerce| ((|Matrix| |#2|) $)) (SIGNATURE |copy| ($ $)) (SIGNATURE |ncols| ((|NonNegativeInteger|) $)) (SIGNATURE |nrows| ((|NonNegativeInteger|) $)) (SIGNATURE |allIndices| ((|List| |#1|) $)) (SIGNATURE |elimZeroCols!| ((|Void|) $)) (SIGNATURE |purge!| ((|Void|) $ (|Mapping| (|Boolean|) |#1|))) (SIGNATURE |sortedPurge!| ((|Void|) $ (|Mapping| (|Boolean|) |#1|))) (SIGNATURE |new| ($ (|List| |#1|) (|Integer|))) (SIGNATURE |elt| (|#2| $ (|Integer|) |#1|)) (SIGNATURE |setelt!| ((|Void|) $ (|Integer|) |#1| |#2|)) (SIGNATURE |row| ((|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|))) $ (|Integer|))) (SIGNATURE |setRow!| ((|Void|) $ (|Integer|) (|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|))))) (SIGNATURE |setRow!| ((|Void|) $ (|Integer|) (|List| |#1|) (|List| |#2|))) (SIGNATURE |deleteRow!| ((|Void|) $ (|Integer|))) (SIGNATURE |consRow!| ((|Void|) $ (|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|))))) (SIGNATURE |appendRow!| ((|Void|) $ (|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|))))) (SIGNATURE |extract| ($ $ (|Integer|) (|Integer|))) (SIGNATURE |rowEchelon| ((|Record| (|:| |Ech| $) (|:| |Lt| (|Matrix| |#2|)) (|:| |Pivots| (|List| |#2|)) (|:| |Rank| (|NonNegativeInteger|))) $)) (IF (|has| |#2| (|GcdDomain|)) (PROGN (SIGNATURE |setGcdMode| ((|Symbol|) (|Symbol|))) (SIGNATURE |primitiveRowEchelon| ((|Record| (|:| |Ech| $) (|:| |Lt| (|Matrix| (|Fraction| |#2|))) (|:| |Pivots| (|List| |#2|)) (|:| |Rank| (|NonNegativeInteger|))) $))) |noBranch|) (SIGNATURE |pivot| ((|Record| (|:| |Index| |#1|) (|:| |Entry| |#2|)) $ (|Integer|))) (SIGNATURE |pivots| ((|Record| (|:| |Indices| (|List| |#1|)) (|:| |Entries| (|List| |#2|))) $)) (SIGNATURE * ($ (|Matrix| |#2|) $)) (IF (|has| |#2| (|IntegralDomain|)) (SIGNATURE * ($ (|Matrix| (|Fraction| |#2|)) $)) |noBranch|) (SIGNATURE |join| ($ $ $)) (SIGNATURE |horizJoin| ($ $ $)) (SIGNATURE |horizSplit| ((|Record| (|:| |Left| $) (|:| |Right| $)) $ |#1|)))) │ │ │ +((|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) 11))) │ │ │ +(((|SimplifyAlgebraicNumberConvertPackage|) (CATEGORY |package| (SIGNATURE |simplify| ((|Expression| (|Integer|)) (|AlgebraicNumber|))))) (T |SimplifyAlgebraicNumberConvertPackage|)) │ │ │ +((|simplify| (*1 *2 *3) (AND (|isDomain| *3 (|AlgebraicNumber|)) (|isDomain| *2 (|Expression| (|Integer|))) (|isDomain| *1 (|SimplifyAlgebraicNumberConvertPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |simplify| ((|Expression| (|Integer|)) (|AlgebraicNumber|)))) │ │ │ +((|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) 53)) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) 30)) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) 52)) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) 28)) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) 51)) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) 18)) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) 31)) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) 29)) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) 27))) │ │ │ +(((|NumericalQuadrature|) (CATEGORY |package| (SIGNATURE |aromberg| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |asimpson| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |atrapezoidal| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |romberg| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|))) (SIGNATURE |simpson| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|))) (SIGNATURE |trapezoidal| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|))) (SIGNATURE |rombergo| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|))) (SIGNATURE |simpsono| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|))) (SIGNATURE |trapezoidalo| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|))))) (T |NumericalQuadrature|)) │ │ │ +((|trapezoidalo| (*1 *2 *3 *4 *4 *4 *4 *5 *5) (AND (|isDomain| *3 (|Mapping| (|Float|) (|Float|))) (|isDomain| *4 (|Float|)) (|isDomain| *2 (|Record| (|:| |value| *4) (|:| |error| *4) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|)))) (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|)))) (|simpsono| (*1 *2 *3 *4 *4 *4 *4 *5 *5) (AND (|isDomain| *3 (|Mapping| (|Float|) (|Float|))) (|isDomain| *4 (|Float|)) (|isDomain| *2 (|Record| (|:| |value| *4) (|:| |error| *4) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|)))) (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|)))) (|rombergo| (*1 *2 *3 *4 *4 *4 *4 *5 *5) (AND (|isDomain| *3 (|Mapping| (|Float|) (|Float|))) (|isDomain| *4 (|Float|)) (|isDomain| *2 (|Record| (|:| |value| *4) (|:| |error| *4) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|)))) (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|)))) (|trapezoidal| (*1 *2 *3 *4 *4 *4 *4 *5 *5) (AND (|isDomain| *3 (|Mapping| (|Float|) (|Float|))) (|isDomain| *4 (|Float|)) (|isDomain| *2 (|Record| (|:| |value| *4) (|:| |error| *4) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|)))) (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|)))) (|simpson| (*1 *2 *3 *4 *4 *4 *4 *5 *5) (AND (|isDomain| *3 (|Mapping| (|Float|) (|Float|))) (|isDomain| *4 (|Float|)) (|isDomain| *2 (|Record| (|:| |value| *4) (|:| |error| *4) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|)))) (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|)))) (|romberg| (*1 *2 *3 *4 *4 *4 *4 *5 *5) (AND (|isDomain| *3 (|Mapping| (|Float|) (|Float|))) (|isDomain| *4 (|Float|)) (|isDomain| *2 (|Record| (|:| |value| *4) (|:| |error| *4) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|)))) (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|)))) (|atrapezoidal| (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (AND (|isDomain| *3 (|Mapping| (|Float|) (|Float|))) (|isDomain| *4 (|Float|)) (|isDomain| *2 (|Record| (|:| |value| *4) (|:| |error| *4) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|)))) (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|)))) (|asimpson| (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (AND (|isDomain| *3 (|Mapping| (|Float|) (|Float|))) (|isDomain| *4 (|Float|)) (|isDomain| *2 (|Record| (|:| |value| *4) (|:| |error| *4) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|)))) (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|)))) (|aromberg| (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (AND (|isDomain| *3 (|Mapping| (|Float|) (|Float|))) (|isDomain| *4 (|Float|)) (|isDomain| *2 (|Record| (|:| |value| *4) (|:| |error| *4) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|)))) (|isDomain| *1 (|NumericalQuadrature|)) (|isDomain| *5 (|Integer|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |aromberg| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |asimpson| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |atrapezoidal| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |romberg| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|))) (SIGNATURE |simpson| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|))) (SIGNATURE |trapezoidal| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|))) (SIGNATURE |rombergo| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|))) (SIGNATURE |simpsono| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|))) (SIGNATURE |trapezoidalo| ((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)))) │ │ │ +((|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) 58)) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) 48)) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) 41)) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) 67)) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) 33)) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) 61)) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) 65))) │ │ │ +(((|RadicalEigenPackage|) (CATEGORY |package| (SIGNATURE |radicalEigenvectors| ((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |radicalEigenvector| ((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |radicalEigenvalues| ((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |eigenMatrix| ((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |normalise| ((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|))))) (SIGNATURE |gramschmidt| ((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|)))))) (SIGNATURE |orthonormalBasis| ((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|)))))))) (T |RadicalEigenPackage|)) │ │ │ +((|orthonormalBasis| (*1 *2 *3) (AND (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *2 (|List| (|Matrix| (|Expression| (|Integer|))))) (|isDomain| *1 (|RadicalEigenPackage|)))) (|gramschmidt| (*1 *2 *2) (AND (|isDomain| *2 (|List| (|Matrix| (|Expression| (|Integer|))))) (|isDomain| *1 (|RadicalEigenPackage|)))) (|normalise| (*1 *2 *2) (AND (|isDomain| *2 (|Matrix| (|Expression| (|Integer|)))) (|isDomain| *1 (|RadicalEigenPackage|)))) (|eigenMatrix| (*1 *2 *3) (|partial| AND (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *2 (|Matrix| (|Expression| (|Integer|)))) (|isDomain| *1 (|RadicalEigenPackage|)))) (|radicalEigenvalues| (*1 *2 *3) (AND (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *2 (|List| (|Expression| (|Integer|)))) (|isDomain| *1 (|RadicalEigenPackage|)))) (|radicalEigenvector| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *2 (|List| (|Matrix| (|Expression| (|Integer|))))) (|isDomain| *1 (|RadicalEigenPackage|)) (|isDomain| *3 (|Expression| (|Integer|))))) (|radicalEigenvectors| (*1 *2 *3) (AND (|isDomain| *3 (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *2 (|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|)))))))) (|isDomain| *1 (|RadicalEigenPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |radicalEigenvectors| ((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |radicalEigenvector| ((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |radicalEigenvalues| ((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |eigenMatrix| ((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |normalise| ((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|))))) (SIGNATURE |gramschmidt| ((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|)))))) (SIGNATURE |orthonormalBasis| ((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 12)) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) NIL)) (|variables| (((|List| (|SingletonAsOrderedSet|)) $) NIL)) (|unvectorise| (($ (|Vector| |#1|)) NIL)) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) NIL)) (|univariate| (((|SparseUnivariatePolynomial| $) $ (|SingletonAsOrderedSet|)) NIL) (((|SparseUnivariatePolynomial| |#1|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|totalDegree| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|List| (|SingletonAsOrderedSet|))) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|subResultantsChain| (((|List| $) $ $) 39 (|has| |#1| (|IntegralDomain|)))) (|subResultantGcd| (($ $ $) 35 (|has| |#1| (|IntegralDomain|)))) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|squareFreePart| (($ $) NIL (|has| |#1| (|GcdDomain|)))) (|squareFree| (((|Factored| $) $) NIL (|has| |#1| (|GcdDomain|)))) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|sizeLess?| (((|Boolean|) $ $) NIL (|has| |#1| (|Field|)))) (|shiftRight| (($ $ (|NonNegativeInteger|)) NIL)) (|shiftLeft| (($ $ (|NonNegativeInteger|)) NIL)) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (|GcdDomain|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|SingletonAsOrderedSet|) "failed") $) NIL) (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $) 10)) (|retract| ((|#1| $) NIL) (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|SingletonAsOrderedSet|) $) NIL) (((|SparseUnivariatePolynomial| |#1|) $) NIL)) (|resultant| (($ $ $ (|SingletonAsOrderedSet|)) NIL (|has| |#1| (|CommutativeRing|))) ((|#1| $ $) 43 (|has| |#1| (|CommutativeRing|)))) (|rem| (($ $ $) NIL (|has| |#1| (|Field|)))) (|reductum| (($ $) NIL)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| |#1|) (|Matrix| $)) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|quo| (($ $ $) NIL (|has| |#1| (|Field|)))) (|pseudoRemainder| (($ $ $) NIL)) (|pseudoQuotient| (($ $ $) 71 (|has| |#1| (|IntegralDomain|)))) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) 70 (|has| |#1| (|IntegralDomain|)))) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL (|has| |#1| (|Field|)))) (|primitivePart| (($ $) NIL (|has| |#1| (|GcdDomain|))) (($ $ (|SingletonAsOrderedSet|)) NIL (|has| |#1| (|GcdDomain|)))) (|primitiveMonomials| (((|List| $) $) NIL)) (|prime?| (((|Boolean|) $) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|pomopo!| (($ $ |#1| (|NonNegativeInteger|) $) NIL)) (|patternMatch| (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) NIL (AND (|has| (|SingletonAsOrderedSet|) (|PatternMatchable| (|Float|))) (|has| |#1| (|PatternMatchable| (|Float|))))) (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) NIL (AND (|has| (|SingletonAsOrderedSet|) (|PatternMatchable| (|Integer|))) (|has| |#1| (|PatternMatchable| (|Integer|)))))) (|order| (((|NonNegativeInteger|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|one?| (((|Boolean|) $) NIL)) (|numberOfMonomials| (((|NonNegativeInteger|) $) NIL)) (|nextItem| (((|Union| $ "failed") $) NIL (|has| |#1| (|StepThrough|)))) (|multivariate| (($ (|SparseUnivariatePolynomial| |#1|) (|SingletonAsOrderedSet|)) NIL) (($ (|SparseUnivariatePolynomial| $) (|SingletonAsOrderedSet|)) NIL)) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) NIL)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| |#1| (|Field|)))) (|monomials| (((|List| $) $) NIL)) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| (|NonNegativeInteger|)) NIL) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL)) (|monicModulo| (($ $ $) 20)) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ (|SingletonAsOrderedSet|)) NIL) (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|minimumDegree| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|SingletonAsOrderedSet|)) NIL) (((|List| (|NonNegativeInteger|)) $ (|List| (|SingletonAsOrderedSet|))) NIL)) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|mapExponents| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) NIL)) (|mainVariable| (((|Union| (|SingletonAsOrderedSet|) "failed") $) NIL)) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL (|has| |#1| (|GcdDomain|)))) (|lcm| (($ (|List| $)) NIL (|has| |#1| (|GcdDomain|))) (($ $ $) NIL (|has| |#1| (|GcdDomain|)))) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) 26)) (|lazyPseudoRemainder| (($ $ $) 29)) (|lazyPseudoQuotient| (($ $ $) 32)) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) 31)) (|latex| (((|String|) $) NIL)) (|lastSubResultant| (($ $ $) 41 (|has| |#1| (|IntegralDomain|)))) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) NIL)) (|isTimes| (((|Union| (|List| $) "failed") $) NIL)) (|isPlus| (((|Union| (|List| $) "failed") $) NIL)) (|isExpt| (((|Union| (|Record| (|:| |var| (|SingletonAsOrderedSet|)) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) NIL)) (|integrate| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|init| (($) NIL (|has| |#1| (|StepThrough|)) CONST)) (|hash| (((|SingleInteger|) $) NIL)) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (|IntegralDomain|)))) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (|IntegralDomain|)))) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (|IntegralDomain|)))) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (|IntegralDomain|)))) (|ground?| (((|Boolean|) $) 13)) (|ground| ((|#1| $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|GcdDomain|)))) (|gcd| (($ (|List| $)) NIL (|has| |#1| (|GcdDomain|))) (($ $ $) NIL (|has| |#1| (|GcdDomain|)))) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) 19)) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factor| (((|Factored| $) $) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (|IntegralDomain|)))) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (|IntegralDomain|)))) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (|Field|))) (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| |#1| (|Field|)))) (|exquo| (((|Union| $ "failed") $ |#1|) NIL (|has| |#1| (|IntegralDomain|))) (((|Union| $ "failed") $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL (|has| |#1| (|Field|)))) (|eval| (($ $ (|List| (|Equation| $))) NIL) (($ $ (|Equation| $)) NIL) (($ $ $ $) NIL) (($ $ (|List| $) (|List| $)) NIL) (($ $ (|SingletonAsOrderedSet|) |#1|) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| |#1|)) NIL) (($ $ (|SingletonAsOrderedSet|) $) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| $)) NIL)) (|euclideanSize| (((|NonNegativeInteger|) $) NIL (|has| |#1| (|Field|)))) (|elt| ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((|Fraction| $) (|Fraction| $) (|Fraction| $)) NIL (|has| |#1| (|IntegralDomain|))) ((|#1| (|Fraction| $) |#1|) NIL (|has| |#1| (|Field|))) (((|Fraction| $) $ (|Fraction| $)) NIL (|has| |#1| (|IntegralDomain|)))) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) NIL)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#1| (|Field|)))) (|discriminant| (($ $ (|SingletonAsOrderedSet|)) NIL (|has| |#1| (|CommutativeRing|))) ((|#1| $) NIL (|has| |#1| (|CommutativeRing|)))) (|differentiate| (($ $ (|SingletonAsOrderedSet|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|))) NIL) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL) (($ $ (|Symbol|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#1| |#1|)) NIL) (($ $ (|Mapping| |#1| |#1|) $) NIL)) (|degree| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|SingletonAsOrderedSet|)) NIL) (((|List| (|NonNegativeInteger|)) $ (|List| (|SingletonAsOrderedSet|))) NIL)) (|convert| (((|Pattern| (|Float|)) $) NIL (AND (|has| (|SingletonAsOrderedSet|) (|ConvertibleTo| (|Pattern| (|Float|)))) (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|)))))) (((|Pattern| (|Integer|)) $) NIL (AND (|has| (|SingletonAsOrderedSet|) (|ConvertibleTo| (|Pattern| (|Integer|)))) (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|)))))) (((|InputForm|) $) NIL (AND (|has| (|SingletonAsOrderedSet|) (|ConvertibleTo| (|InputForm|))) (|has| |#1| (|ConvertibleTo| (|InputForm|)))))) (|content| ((|#1| $) NIL (|has| |#1| (|GcdDomain|))) (($ $ (|SingletonAsOrderedSet|)) NIL (|has| |#1| (|GcdDomain|)))) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))) (|composite| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|IntegralDomain|))) (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) NIL (|has| |#1| (|IntegralDomain|)))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#1|) NIL) (($ (|SingletonAsOrderedSet|)) NIL) (((|SparseUnivariatePolynomial| |#1|) $) 7) (($ (|SparseUnivariatePolynomial| |#1|)) 8) (($ (|Fraction| (|Integer|))) NIL (OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))))) (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|coefficients| (((|List| |#1|) $) NIL)) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) NIL) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL)) (|charthRoot| (((|Union| $ "failed") $) NIL (OR (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) (|has| |#1| (|CharacteristicNonZero|))))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|CommutativeRing|)))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 21 T CONST)) (|One| (($) 24 T CONST)) (D (($ $ (|SingletonAsOrderedSet|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|))) NIL) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL) (($ $ (|Symbol|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#1| |#1|)) NIL)) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (/ (($ $ |#1|) NIL (|has| |#1| (|Field|)))) (- (($ $) 28) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) │ │ │ +(((|NewSparseUnivariatePolynomial| |#1|) (|Join| (|UnivariatePolynomialCategory| |#1|) (|CoercibleTo| (|SparseUnivariatePolynomial| |#1|)) (|RetractableTo| (|SparseUnivariatePolynomial| |#1|)) (CATEGORY |domain| (SIGNATURE |fmecg| ($ $ (|NonNegativeInteger|) |#1| $)) (SIGNATURE |monicModulo| ($ $ $)) (SIGNATURE |lazyResidueClass| ((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $)) (SIGNATURE |lazyPseudoRemainder| ($ $ $)) (SIGNATURE |lazyPseudoDivide| ((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $)) (SIGNATURE |lazyPseudoQuotient| ($ $ $)) (IF (|has| |#1| (|IntegralDomain|)) (PROGN (SIGNATURE |subResultantsChain| ((|List| $) $ $)) (SIGNATURE |lastSubResultant| ($ $ $)) (SIGNATURE |extendedSubResultantGcd| ((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (SIGNATURE |halfExtendedSubResultantGcd1| ((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $)) (SIGNATURE |halfExtendedSubResultantGcd2| ((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $)) (SIGNATURE |extendedResultant| ((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (SIGNATURE |halfExtendedResultant1| ((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $)) (SIGNATURE |halfExtendedResultant2| ((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $))) |noBranch|))) (|Ring|)) (T |NewSparseUnivariatePolynomial|)) │ │ │ +((|fmecg| (*1 *1 *1 *2 *3 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|Ring|)))) (|monicModulo| (*1 *1 *1 *1) (AND (|isDomain| *1 (|NewSparseUnivariatePolynomial| *2)) (|ofCategory| *2 (|Ring|)))) (|lazyResidueClass| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Record| (|:| |polnum| (|NewSparseUnivariatePolynomial| *3)) (|:| |polden| *3) (|:| |power| (|NonNegativeInteger|)))) (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|Ring|)))) (|lazyPseudoRemainder| (*1 *1 *1 *1) (AND (|isDomain| *1 (|NewSparseUnivariatePolynomial| *2)) (|ofCategory| *2 (|Ring|)))) (|lazyPseudoDivide| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Record| (|:| |coef| *3) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| (|NewSparseUnivariatePolynomial| *3)) (|:| |remainder| (|NewSparseUnivariatePolynomial| *3)))) (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|Ring|)))) (|lazyPseudoQuotient| (*1 *1 *1 *1) (AND (|isDomain| *1 (|NewSparseUnivariatePolynomial| *2)) (|ofCategory| *2 (|Ring|)))) (|subResultantsChain| (*1 *2 *1 *1) (AND (|isDomain| *2 (|List| (|NewSparseUnivariatePolynomial| *3))) (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)))) (|lastSubResultant| (*1 *1 *1 *1) (AND (|isDomain| *1 (|NewSparseUnivariatePolynomial| *2)) (|ofCategory| *2 (|IntegralDomain|)) (|ofCategory| *2 (|Ring|)))) (|extendedSubResultantGcd| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Record| (|:| |gcd| (|NewSparseUnivariatePolynomial| *3)) (|:| |coef1| (|NewSparseUnivariatePolynomial| *3)) (|:| |coef2| (|NewSparseUnivariatePolynomial| *3)))) (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)))) (|halfExtendedSubResultantGcd1| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Record| (|:| |gcd| (|NewSparseUnivariatePolynomial| *3)) (|:| |coef1| (|NewSparseUnivariatePolynomial| *3)))) (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)))) (|halfExtendedSubResultantGcd2| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Record| (|:| |gcd| (|NewSparseUnivariatePolynomial| *3)) (|:| |coef2| (|NewSparseUnivariatePolynomial| *3)))) (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)))) (|extendedResultant| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Record| (|:| |resultant| *3) (|:| |coef1| (|NewSparseUnivariatePolynomial| *3)) (|:| |coef2| (|NewSparseUnivariatePolynomial| *3)))) (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)))) (|halfExtendedResultant1| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Record| (|:| |resultant| *3) (|:| |coef1| (|NewSparseUnivariatePolynomial| *3)))) (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)))) (|halfExtendedResultant2| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Record| (|:| |resultant| *3) (|:| |coef2| (|NewSparseUnivariatePolynomial| *3)))) (|isDomain| *1 (|NewSparseUnivariatePolynomial| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|))))) │ │ │ +(|Join| (|UnivariatePolynomialCategory| |#1|) (|CoercibleTo| (|SparseUnivariatePolynomial| |#1|)) (|RetractableTo| (|SparseUnivariatePolynomial| |#1|)) (CATEGORY |domain| (SIGNATURE |fmecg| ($ $ (|NonNegativeInteger|) |#1| $)) (SIGNATURE |monicModulo| ($ $ $)) (SIGNATURE |lazyResidueClass| ((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $)) (SIGNATURE |lazyPseudoRemainder| ($ $ $)) (SIGNATURE |lazyPseudoDivide| ((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $)) (SIGNATURE |lazyPseudoQuotient| ($ $ $)) (IF (|has| |#1| (|IntegralDomain|)) (PROGN (SIGNATURE |subResultantsChain| ((|List| $) $ $)) (SIGNATURE |lastSubResultant| ($ $ $)) (SIGNATURE |extendedSubResultantGcd| ((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (SIGNATURE |halfExtendedSubResultantGcd1| ((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $)) (SIGNATURE |halfExtendedSubResultantGcd2| ((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $)) (SIGNATURE |extendedResultant| ((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (SIGNATURE |halfExtendedResultant1| ((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $)) (SIGNATURE |halfExtendedResultant2| ((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $))) |noBranch|))) │ │ │ +((|vectorcombination| (((|Void|) (|U32Vector|) (|Integer|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 33)) (|vectoraddmul| (((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 27)) (|truncatedmultiplication| (((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|)) 45)) (|truncatedmuladd| (((|Void|) (|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|)) 44)) (|tomodpa| (((|U32Vector|) (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) 26)) (|resultant| (((|Integer|) (|U32Vector|) (|U32Vector|) (|Integer|)) 54)) (|remainder!| (((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|)) 36)) (|pow| (((|U32Vector|) (|U32Vector|) (|PositiveInteger|) (|NonNegativeInteger|) (|Integer|)) 48)) (|mulbyscalar| (((|Void|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|)) 31)) (|mulbybinomial| (((|Void|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|)) 28) (((|Void|) (|U32Vector|) (|Integer|) (|Integer|)) 30)) (|mul| (((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|)) 41)) (|lcm| (((|U32Vector|) (|PrimitiveArray| (|U32Vector|)) (|Integer|) (|Integer|) (|Integer|)) 42)) (|gcd| (((|U32Vector|) (|PrimitiveArray| (|U32Vector|)) (|Integer|) (|Integer|) (|Integer|)) 40) (((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|)) 38)) (|extendedgcd| (((|List| (|U32Vector|)) (|U32Vector|) (|U32Vector|) (|Integer|)) 53)) (|evalat| (((|Integer|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|)) 15)) (|divide!| (((|Void|) (|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|)) 35)) (|differentiate| (((|U32Vector|) (|U32Vector|) (|NonNegativeInteger|) (|Integer|)) 51) (((|U32Vector|) (|U32Vector|) (|Integer|)) 50)) (|degree| (((|Integer|) (|U32Vector|)) 32)) (|copyslice| (((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|)) 12)) (|copyfirst| (((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|)) 11))) │ │ │ +(((|U32VectorPolynomialOperations|) (CATEGORY |package| (SIGNATURE |copyfirst| ((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |copyslice| ((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|))) (SIGNATURE |evalat| ((|Integer|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |vectoraddmul| ((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |mulbybinomial| ((|Void|) (|U32Vector|) (|Integer|) (|Integer|))) (SIGNATURE |mulbybinomial| ((|Void|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |mulbyscalar| ((|Void|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |mul| ((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |truncatedmultiplication| ((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|))) (SIGNATURE |truncatedmuladd| ((|Void|) (|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|))) (SIGNATURE |pow| ((|U32Vector|) (|U32Vector|) (|PositiveInteger|) (|NonNegativeInteger|) (|Integer|))) (SIGNATURE |differentiate| ((|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |differentiate| ((|U32Vector|) (|U32Vector|) (|NonNegativeInteger|) (|Integer|))) (SIGNATURE |divide!| ((|Void|) (|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |remainder!| ((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |vectorcombination| ((|Void|) (|U32Vector|) (|Integer|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |tomodpa| ((|U32Vector|) (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|))) (SIGNATURE |gcd| ((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |gcd| ((|U32Vector|) (|PrimitiveArray| (|U32Vector|)) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |lcm| ((|U32Vector|) (|PrimitiveArray| (|U32Vector|)) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |degree| ((|Integer|) (|U32Vector|))) (SIGNATURE |extendedgcd| ((|List| (|U32Vector|)) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |resultant| ((|Integer|) (|U32Vector|) (|U32Vector|) (|Integer|))))) (T |U32VectorPolynomialOperations|)) │ │ │ +((|resultant| (*1 *2 *3 *3 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|U32Vector|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|extendedgcd| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|List| (|U32Vector|))) (|isDomain| *1 (|U32VectorPolynomialOperations|)) (|isDomain| *3 (|U32Vector|)))) (|degree| (*1 *2 *3) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|lcm| (*1 *2 *3 *4 *4 *4) (AND (|isDomain| *3 (|PrimitiveArray| (|U32Vector|))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|U32Vector|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|gcd| (*1 *2 *3 *4 *4 *4) (AND (|isDomain| *3 (|PrimitiveArray| (|U32Vector|))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|U32Vector|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|gcd| (*1 *2 *2 *2 *3) (AND (|isDomain| *2 (|U32Vector|)) (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|tomodpa| (*1 *2 *3 *4) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| (|Integer|))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|U32Vector|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|vectorcombination| (*1 *2 *3 *4 *3 *4 *4 *4 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|remainder!| (*1 *2 *3 *3 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|divide!| (*1 *2 *3 *3 *3 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|differentiate| (*1 *2 *2 *3 *4) (AND (|isDomain| *2 (|U32Vector|)) (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *4 (|Integer|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|differentiate| (*1 *2 *2 *3) (AND (|isDomain| *2 (|U32Vector|)) (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|pow| (*1 *2 *2 *3 *4 *5) (AND (|isDomain| *2 (|U32Vector|)) (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *5 (|Integer|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|truncatedmuladd| (*1 *2 *3 *3 *3 *4 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|truncatedmultiplication| (*1 *2 *2 *2 *3 *3) (AND (|isDomain| *2 (|U32Vector|)) (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|mul| (*1 *2 *2 *2 *3) (AND (|isDomain| *2 (|U32Vector|)) (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|mulbyscalar| (*1 *2 *3 *4 *4 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|mulbybinomial| (*1 *2 *3 *4 *4 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|mulbybinomial| (*1 *2 *3 *4 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|vectoraddmul| (*1 *2 *3 *3 *4 *4 *4 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|evalat| (*1 *2 *3 *2 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|U32Vector|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|copyslice| (*1 *2 *3 *3 *4 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|copyfirst| (*1 *2 *3 *3 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |copyfirst| ((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |copyslice| ((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|))) (SIGNATURE |evalat| ((|Integer|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |vectoraddmul| ((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |mulbybinomial| ((|Void|) (|U32Vector|) (|Integer|) (|Integer|))) (SIGNATURE |mulbybinomial| ((|Void|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |mulbyscalar| ((|Void|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |mul| ((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |truncatedmultiplication| ((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|))) (SIGNATURE |truncatedmuladd| ((|Void|) (|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|))) (SIGNATURE |pow| ((|U32Vector|) (|U32Vector|) (|PositiveInteger|) (|NonNegativeInteger|) (|Integer|))) (SIGNATURE |differentiate| ((|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |differentiate| ((|U32Vector|) (|U32Vector|) (|NonNegativeInteger|) (|Integer|))) (SIGNATURE |divide!| ((|Void|) (|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |remainder!| ((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |vectorcombination| ((|Void|) (|U32Vector|) (|Integer|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |tomodpa| ((|U32Vector|) (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|))) (SIGNATURE |gcd| ((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |gcd| ((|U32Vector|) (|PrimitiveArray| (|U32Vector|)) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |lcm| ((|U32Vector|) (|PrimitiveArray| (|U32Vector|)) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |degree| ((|Integer|) (|U32Vector|))) (SIGNATURE |extendedgcd| ((|List| (|U32Vector|)) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |resultant| ((|Integer|) (|U32Vector|) (|U32Vector|) (|Integer|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|numericalOptimization| (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) NIL) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 48)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 27) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|e04jafAnnaType|) (|NumericalOptimizationCategory|)) (T |e04jafAnnaType|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE * (|#1| |#1| (|Fraction| (|Integer|)))) (SIGNATURE * (|#1| (|Fraction| (|Integer|)) |#1|)) (SIGNATURE / (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|)) (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)) (SIGNATURE * (|#1| (|PositiveInteger|) |#1|))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) 11)) (|matrix| (((|SquareMatrix| |#1| |#2|) $) 12)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) 16)) (|coerce| (((|OutputForm|) $) NIL)) (|Zero| (($) NIL T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL))) │ │ │ -(((|QuadraticForm| |#1| |#2|) (|Join| (|AbelianGroup|) (CATEGORY |domain| (SIGNATURE |quadraticForm| ($ (|SquareMatrix| |#1| |#2|))) (SIGNATURE |matrix| ((|SquareMatrix| |#1| |#2|) $)) (SIGNATURE |elt| (|#2| $ (|DirectProduct| |#1| |#2|))))) (|PositiveInteger|) (|Field|)) (T |QuadraticForm|)) │ │ │ -((|quadraticForm| (*1 *1 *2) (AND (|isDomain| *2 (|SquareMatrix| *3 *4)) (|ofType| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Field|)) (|isDomain| *1 (|QuadraticForm| *3 *4)))) (|matrix| (*1 *2 *1) (AND (|isDomain| *2 (|SquareMatrix| *3 *4)) (|isDomain| *1 (|QuadraticForm| *3 *4)) (|ofType| *3 (|PositiveInteger|)) (|ofCategory| *4 (|Field|)))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 (|DirectProduct| *4 *2)) (|ofType| *4 (|PositiveInteger|)) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|QuadraticForm| *4 *2))))) │ │ │ -(|Join| (|AbelianGroup|) (CATEGORY |domain| (SIGNATURE |quadraticForm| ($ (|SquareMatrix| |#1| |#2|))) (SIGNATURE |matrix| ((|SquareMatrix| |#1| |#2|) $)) (SIGNATURE |elt| (|#2| $ (|DirectProduct| |#1| |#2|))))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|variables| (((|List| |#3|) $) 70)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 50 (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) 51 (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) 53 (|has| |#1| (|IntegralDomain|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|reductum| (($ $) 59)) (|recip| (((|Union| $ "failed") $) 33)) (|pole?| (((|Boolean|) $) 69)) (|one?| (((|Boolean|) $) 30)) (|monomial?| (((|Boolean|) $) 61)) (|monomial| (($ |#1| |#2|) 60) (($ $ |#3| |#2|) 72) (($ $ (|List| |#3|) (|List| |#2|)) 71)) (|map| (($ (|Mapping| |#1| |#1|) $) 62)) (|leadingMonomial| (($ $) 64)) (|leadingCoefficient| ((|#1| $) 65)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|exquo| (((|Union| $ "failed") $ $) 49 (|has| |#1| (|IntegralDomain|)))) (|degree| ((|#2| $) 63)) (|complete| (($ $) 68)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ (|Fraction| (|Integer|))) 56 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $) 48 (|has| |#1| (|IntegralDomain|))) (($ |#1|) 46 (|has| |#1| (|CommutativeRing|)))) (|coefficient| ((|#1| $ |#2|) 58)) (|charthRoot| (((|Union| $ "failed") $) 47 (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 52 (|has| |#1| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (/ (($ $ |#1|) 57 (|has| |#1| (|Field|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (|Fraction| (|Integer|)) $) 55 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) 54 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ -(((|PowerSeriesCategory| |#1| |#2| |#3|) (|Category|) (|Ring|) (|OrderedAbelianMonoid|) (|OrderedSet|)) (T |PowerSeriesCategory|)) │ │ │ -((|leadingCoefficient| (*1 *2 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *2 *3 *4)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|Ring|)))) (|leadingMonomial| (*1 *1 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *4 (|OrderedSet|)))) (|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *3 *2 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|monomial| (*1 *1 *1 *2 *3) (AND (|ofCategory| *1 (|PowerSeriesCategory| *4 *3 *2)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|OrderedSet|)))) (|monomial| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *6)) (|isDomain| *3 (|List| *5)) (|ofCategory| *1 (|PowerSeriesCategory| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoid|)) (|ofCategory| *6 (|OrderedSet|)))) (|variables| (*1 *2 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| *5)))) (|pole?| (*1 *2 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)))) (|complete| (*1 *1 *1) (AND (|ofCategory| *1 (|PowerSeriesCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *4 (|OrderedSet|))))) │ │ │ -(|Join| (|AbelianMonoidRing| |t#1| |t#2|) (CATEGORY |domain| (SIGNATURE |monomial| ($ $ |t#3| |t#2|)) (SIGNATURE |monomial| ($ $ (|List| |t#3|) (|List| |t#2|))) (SIGNATURE |leadingMonomial| ($ $)) (SIGNATURE |leadingCoefficient| (|t#1| $)) (SIGNATURE |degree| (|t#2| $)) (SIGNATURE |variables| ((|List| |t#3|) $)) (SIGNATURE |pole?| ((|Boolean|) $)) (SIGNATURE |complete| ($ $)))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| |#2|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) |has| |#1| (|IntegralDomain|)) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|EntireRing|) |has| |#1| (|IntegralDomain|)) ((|IntegralDomain|) |has| |#1| (|IntegralDomain|)) ((|LeftModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Module| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) |has| |#1| (|IntegralDomain|)) ((|Monoid|) . T) ((|RightModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|sample| (($) NIL T CONST)) (|rotate!| (($ $) 20)) (|queue| (($ (|List| |#1|)) 29)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|length| (((|NonNegativeInteger|) $) 22)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|inspect| ((|#1| $) 24)) (|insert!| (($ |#1| $) 15)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|front| ((|#1| $) 23)) (|extract!| ((|#1| $) 19)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|enqueue!| ((|#1| |#1| $) 14)) (|empty?| (((|Boolean|) $) 17)) (|empty| (($) NIL)) (|dequeue!| ((|#1| $) 18)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|bag| (($ (|List| |#1|)) NIL)) (|back| ((|#1| $) 26)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|Queue| |#1|) (|Join| (|QueueAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |queue| ($ (|List| |#1|))) (SIGNATURE |dequeue!| (|#1| $)) (SIGNATURE |extract!| (|#1| $)) (SIGNATURE |enqueue!| (|#1| |#1| $)) (SIGNATURE |insert!| ($ |#1| $)) (SIGNATURE |inspect| (|#1| $)) (SIGNATURE |front| (|#1| $)) (SIGNATURE |back| (|#1| $)) (SIGNATURE |rotate!| ($ $)) (SIGNATURE |length| ((|NonNegativeInteger|) $)) (SIGNATURE |less?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |size?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |bag| ($ (|List| |#1|))) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |empty| ($)) (SIGNATURE |sample| ($)) (SIGNATURE |copy| ($ $)) (SIGNATURE |eq?| ((|Boolean|) $ $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (SIGNATURE |map!| ($ (|Mapping| |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |latex| ((|String|) $)) (SIGNATURE |hash| ((|SingleInteger|) $)) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE = ((|Boolean|) $ $)) (SIGNATURE ~= ((|Boolean|) $ $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (PROGN (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |#| ((|NonNegativeInteger|) $)) (SIGNATURE |parts| ((|List| |#1|) $)) (SIGNATURE |members| ((|List| |#1|) $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |member?| ((|Boolean|) |#1| $)) (SIGNATURE |count| ((|NonNegativeInteger|) |#1| $))) |noBranch|) |noBranch|))) (|SetCategory|)) (T |Queue|)) │ │ │ -((|eq?| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Queue| *3)) (|ofCategory| *3 (|SetCategory|)))) (|copy| (*1 *1 *1) (AND (|isDomain| *1 (|Queue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|empty| (*1 *1) (AND (|isDomain| *1 (|Queue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|empty?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Queue| *3)) (|ofCategory| *3 (|SetCategory|)))) (|less?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Queue| *4)) (|ofCategory| *4 (|SetCategory|)))) (|more?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Queue| *4)) (|ofCategory| *4 (|SetCategory|)))) (|size?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Queue| *4)) (|ofCategory| *4 (|SetCategory|)))) (|sample| (*1 *1) (AND (|isDomain| *1 (|Queue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|#| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Queue| *3)) (|ofCategory| *3 (|SetCategory|)))) (|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Queue| *3)))) (|map!| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Queue| *3)))) (|any?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Queue| *4)))) (|every?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Queue| *4)))) (|count| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Queue| *4)))) (|parts| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|Queue| *3)) (|ofCategory| *3 (|SetCategory|)))) (|members| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|Queue| *3)) (|ofCategory| *3 (|SetCategory|)))) (|count| (*1 *2 *3 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Queue| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|member?| (*1 *2 *3 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Queue| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|latex| (*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|Queue| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|hash| (*1 *2 *1) (AND (|isDomain| *2 (|SingleInteger|)) (|isDomain| *1 (|Queue| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|Queue| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (= (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Queue| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (~= (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Queue| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|bag| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Queue| *3)))) (|extract!| (*1 *2 *1) (AND (|isDomain| *1 (|Queue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|insert!| (*1 *1 *2 *1) (AND (|isDomain| *1 (|Queue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|inspect| (*1 *2 *1) (AND (|isDomain| *1 (|Queue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|enqueue!| (*1 *2 *2 *1) (AND (|isDomain| *1 (|Queue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|dequeue!| (*1 *2 *1) (AND (|isDomain| *1 (|Queue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|rotate!| (*1 *1 *1) (AND (|isDomain| *1 (|Queue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|length| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Queue| *3)) (|ofCategory| *3 (|SetCategory|)))) (|front| (*1 *2 *1) (AND (|isDomain| *1 (|Queue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|back| (*1 *2 *1) (AND (|isDomain| *1 (|Queue| *2)) (|ofCategory| *2 (|SetCategory|)))) (|queue| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Queue| *3))))) │ │ │ -(|Join| (|QueueAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |queue| ($ (|List| |#1|))) (SIGNATURE |dequeue!| (|#1| $)) (SIGNATURE |extract!| (|#1| $)) (SIGNATURE |enqueue!| (|#1| |#1| $)) (SIGNATURE |insert!| ($ |#1| $)) (SIGNATURE |inspect| (|#1| $)) (SIGNATURE |front| (|#1| $)) (SIGNATURE |back| (|#1| $)) (SIGNATURE |rotate!| ($ $)) (SIGNATURE |length| ((|NonNegativeInteger|) $)) (SIGNATURE |less?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |size?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |bag| ($ (|List| |#1|))) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |empty| ($)) (SIGNATURE |sample| ($)) (SIGNATURE |copy| ($ $)) (SIGNATURE |eq?| ((|Boolean|) $ $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (SIGNATURE |map!| ($ (|Mapping| |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |latex| ((|String|) $)) (SIGNATURE |hash| ((|SingleInteger|) $)) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE = ((|Boolean|) $ $)) (SIGNATURE ~= ((|Boolean|) $ $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (PROGN (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |#| ((|NonNegativeInteger|) $)) (SIGNATURE |parts| ((|List| |#1|) $)) (SIGNATURE |members| ((|List| |#1|) $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |member?| ((|Boolean|) |#1| $)) (SIGNATURE |count| ((|NonNegativeInteger|) |#1| $))) |noBranch|) |noBranch|))) │ │ │ -((|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) 21) ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) 18)) (|clearCache| (((|Void|)) 15)) (|cache| (((|List| |#1|)) 9))) │ │ │ -(((|SortedCache| |#1|) (CATEGORY |package| (SIGNATURE |clearCache| ((|Void|))) (SIGNATURE |cache| ((|List| |#1|))) (SIGNATURE |enterInCache| (|#1| |#1| (|Mapping| (|Boolean|) |#1|))) (SIGNATURE |enterInCache| (|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)))) (|CachableSet|)) (T |SortedCache|)) │ │ │ -((|enterInCache| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Mapping| (|Integer|) *2 *2)) (|ofCategory| *2 (|CachableSet|)) (|isDomain| *1 (|SortedCache| *2)))) (|enterInCache| (*1 *2 *2 *3) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *2)) (|ofCategory| *2 (|CachableSet|)) (|isDomain| *1 (|SortedCache| *2)))) (|cache| (*1 *2) (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|SortedCache| *3)) (|ofCategory| *3 (|CachableSet|)))) (|clearCache| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|SortedCache| *3)) (|ofCategory| *3 (|CachableSet|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |clearCache| ((|Void|))) (SIGNATURE |cache| ((|List| |#1|))) (SIGNATURE |enterInCache| (|#1| |#1| (|Mapping| (|Boolean|) |#1|))) (SIGNATURE |enterInCache| (|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|segment| (($ |#1| |#1|) 15)) (|map| (((|List| |#1|) (|Mapping| |#1| |#1|) $) 37 (|has| |#1| (|OrderedRing|)))) (|low| ((|#1| $) 10)) (|lo| ((|#1| $) 9)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|incr| (((|Integer|) $) 14)) (|high| ((|#1| $) 12)) (|hi| ((|#1| $) 11)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|expand| (((|List| |#1|) $) 35 (|has| |#1| (|OrderedRing|))) (((|List| |#1|) (|List| $)) 34 (|has| |#1| (|OrderedRing|)))) (|convert| (($ |#1|) 26)) (|coerce| (((|OutputForm|) $) 25 (|has| |#1| (|SetCategory|)))) (SEGMENT (($ |#1| |#1|) 8)) (BY (($ $ (|Integer|)) 16)) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|))))) │ │ │ -(((|Segment| |#1|) (|Join| (|SegmentCategory| |#1|) (CATEGORY |package| (IF (|has| |#1| (|SetCategory|)) (ATTRIBUTE (|SetCategory|)) |noBranch|) (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|SegmentExpansionCategory| |#1| (|List| |#1|))) |noBranch|))) (|Type|)) (T |Segment|)) │ │ │ +(|NumericalOptimizationCategory|) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) 78)) (|zeroSetSplit| (((|List| $) (|List| |#4|)) 79) (((|List| $) (|List| |#4|) (|Boolean|)) 104)) (|variables| (((|List| |#3|) $) 32)) (|trivialIdeal?| (((|Boolean|) $) 25)) (|triangular?| (((|Boolean|) $) 16 (|has| |#1| (|IntegralDomain|)))) (|stronglyReduced?| (((|Boolean|) |#4| $) 94) (((|Boolean|) $) 90)) (|stronglyReduce| ((|#4| |#4| $) 85)) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) 119)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) 26)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 43)) (|select| (($ (|Mapping| (|Boolean|) |#4|) $) 64 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Union| |#4| "failed") $ |#3|) 72)) (|sample| (($) 44 T CONST)) (|roughUnitIdeal?| (((|Boolean|) $) 21 (|has| |#1| (|IntegralDomain|)))) (|roughSubIdeal?| (((|Boolean|) $ $) 23 (|has| |#1| (|IntegralDomain|)))) (|roughEqualIdeals?| (((|Boolean|) $ $) 22 (|has| |#1| (|IntegralDomain|)))) (|roughBase?| (((|Boolean|) $) 24 (|has| |#1| (|IntegralDomain|)))) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 86)) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) 17 (|has| |#1| (|IntegralDomain|)))) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) 18 (|has| |#1| (|IntegralDomain|)))) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) 35)) (|retract| (($ (|List| |#4|)) 34)) (|rest| (((|Union| $ "failed") $) 75)) (|removeZero| ((|#4| |#4| $) 82)) (|removeDuplicates| (($ $) 67 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|remove| (($ |#4| $) 66 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (($ (|Mapping| (|Boolean|) |#4|) $) 63 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 19 (|has| |#1| (|IntegralDomain|)))) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) 95)) (|reduceByQuasiMonic| ((|#4| |#4| $) 80)) (|reduce| ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4| |#4|) 65 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4|) 62 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#4| (|Mapping| |#4| |#4| |#4|) $) 61 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 87)) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) 98)) (|purelyTranscendental?| (((|Boolean|) |#4| $) 129)) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) 126)) (|purelyAlgebraic?| (((|Boolean|) |#4| $) 130) (((|Boolean|) $) 127)) (|parts| (((|List| |#4|) $) 51 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|normalized?| (((|Boolean|) |#4| $) 97) (((|Boolean|) $) 96)) (|mvar| ((|#3| $) 33)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 42)) (|members| (((|List| |#4|) $) 52 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#4| $) 54 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#4| |#4|) $) 47 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#4| |#4|) $) 46)) (|mainVariables| (((|List| |#3|) $) 31)) (|mainVariable?| (((|Boolean|) |#3| $) 30)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 41)) (|latex| (((|String|) $) 9)) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) 121)) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) 120)) (|last| (((|Union| |#4| "failed") $) 76)) (|invertibleSet| (((|List| $) |#4| $) 122)) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) 125)) (|invertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) 124) (((|Boolean|) |#4| $) 123)) (|intersect| (((|List| $) |#4| $) 118) (((|List| $) (|List| |#4|) $) 117) (((|List| $) (|List| |#4|) (|List| $)) 116) (((|List| $) |#4| (|List| $)) 115)) (|internalAugment| (($ |#4| $) 110) (($ (|List| |#4|) $) 109)) (|initials| (((|List| |#4|) $) 100)) (|initiallyReduced?| (((|Boolean|) |#4| $) 92) (((|Boolean|) $) 88)) (|initiallyReduce| ((|#4| |#4| $) 83)) (|infRittWu?| (((|Boolean|) $ $) 103)) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (|IntegralDomain|)))) (|headReduced?| (((|Boolean|) |#4| $) 93) (((|Boolean|) $) 89)) (|headReduce| ((|#4| |#4| $) 84)) (|hash| (((|SingleInteger|) $) 10)) (|first| (((|Union| |#4| "failed") $) 77)) (|find| (((|Union| |#4| "failed") (|Mapping| (|Boolean|) |#4|) $) 60)) (|extendIfCan| (((|Union| $ "failed") $ |#4|) 71)) (|extend| (($ $ |#4|) 70) (((|List| $) |#4| $) 108) (((|List| $) |#4| (|List| $)) 107) (((|List| $) (|List| |#4|) $) 106) (((|List| $) (|List| |#4|) (|List| $)) 105)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#4|) $) 49 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| |#4|) (|List| |#4|)) 58 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) (($ $ |#4| |#4|) 57 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) (($ $ (|Equation| |#4|)) 56 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) (($ $ (|List| (|Equation| |#4|))) 55 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 37)) (|empty?| (((|Boolean|) $) 40)) (|empty| (($) 39)) (|degree| (((|NonNegativeInteger|) $) 99)) (|count| (((|NonNegativeInteger|) |#4| $) 53 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#4|) $) 50 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|copy| (($ $) 38)) (|convert| (((|InputForm|) $) 68 (|has| |#4| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#4|)) 59)) (|collectUpper| (($ $ |#3|) 27)) (|collectUnder| (($ $ |#3|) 29)) (|collectQuasiMonic| (($ $) 81)) (|collect| (($ $ |#3|) 28)) (|coerce| (((|OutputForm|) $) 11) (((|List| |#4|) $) 36)) (|coHeight| (((|NonNegativeInteger|) $) 69 (|has| |#3| (|Finite|)))) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 102) (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 101)) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) 91)) (|augment| (((|List| $) |#4| $) 114) (((|List| $) |#4| (|List| $)) 113) (((|List| $) (|List| |#4|) $) 112) (((|List| $) (|List| |#4|) (|List| $)) 111)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#4|) $) 48 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|algebraicVariables| (((|List| |#3|) $) 74)) (|algebraicCoefficients?| (((|Boolean|) |#4| $) 128)) (|algebraic?| (((|Boolean|) |#3| $) 73)) (= (((|Boolean|) $ $) 6)) (|#| (((|NonNegativeInteger|) $) 45 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|NormalizedTriangularSetCategory| |#1| |#2| |#3| |#4|) (|Category|) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |t#1| |t#2| |t#3|)) (T |NormalizedTriangularSetCategory|)) │ │ │ NIL │ │ │ -(|Join| (|SegmentCategory| |#1|) (CATEGORY |package| (IF (|has| |#1| (|SetCategory|)) (ATTRIBUTE (|SetCategory|)) |noBranch|) (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|SegmentExpansionCategory| |#1| (|List| |#1|))) |noBranch|))) │ │ │ +(|Join| (|RegularTriangularSetCategory| |t#1| |t#2| |t#3| |t#4|)) │ │ │ +(((|Aggregate|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|List| |#4|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| |#4|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|))) ((|Evalable| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|HomogeneousAggregate| |#4|) . T) ((|InnerEvalable| |#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|PolynomialSetCategory| |#1| |#2| |#3| |#4|) . T) ((|RegularTriangularSetCategory| |#1| |#2| |#3| |#4|) . T) ((|SetCategory|) . T) ((|TriangularSetCategory| |#1| |#2| |#3| |#4|) . T) ((|Type|) . T)) │ │ │ +((|univcase| (((|Factored| |#4|) |#4| |#2|) 116)) (|squareFreePrim| (((|Factored| |#4|) |#4|) NIL)) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) 107) (((|Factored| |#4|) |#4|) 38)) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) 65)) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) 133)) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) 58)) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) 62)) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) 22)) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) 54)) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) 130)) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) 55)) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) NIL))) │ │ │ +(((|MultivariateSquareFree| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |squareFree| ((|Factored| |#4|) |#4|)) (SIGNATURE |squareFree| ((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|))) (SIGNATURE |squareFreePrim| ((|Factored| |#4|) |#4|)) (SIGNATURE |compdegd| ((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))))) (SIGNATURE |univcase| ((|Factored| |#4|) |#4| |#2|)) (SIGNATURE |consnewpol| ((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|))) (SIGNATURE |nsqfree| ((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|)))) (SIGNATURE |intChoose| ((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|)))) (SIGNATURE |coefChoose| (|#4| (|Integer|) (|Factored| |#4|))) (SIGNATURE |check| ((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))))) (SIGNATURE |lift| ((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|))) (SIGNATURE |myDegree| ((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|))) (SIGNATURE |normDeriv2| ((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|EuclideanDomain|) (|PolynomialCategory| |#3| |#1| |#2|)) (T |MultivariateSquareFree|)) │ │ │ +((|normDeriv2| (*1 *2 *2 *3) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *6)) (|isDomain| *3 (|Integer|)) (|ofCategory| *6 (|EuclideanDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|MultivariateSquareFree| *4 *5 *6 *7)) (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5)))) (|myDegree| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *9)) (|isDomain| *4 (|List| *7)) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *9 (|PolynomialCategory| *8 *6 *7)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *8 (|EuclideanDomain|)) (|isDomain| *2 (|List| (|NonNegativeInteger|))) (|isDomain| *1 (|MultivariateSquareFree| *6 *7 *8 *9)) (|isDomain| *5 (|NonNegativeInteger|)))) (|lift| (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| AND (|isDomain| *4 (|SparseUnivariatePolynomial| *11)) (|isDomain| *6 (|List| *10)) (|isDomain| *7 (|List| (|NonNegativeInteger|))) (|isDomain| *8 (|List| *11)) (|ofCategory| *10 (|OrderedSet|)) (|ofCategory| *11 (|EuclideanDomain|)) (|ofCategory| *9 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|PolynomialCategory| *11 *9 *10)) (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| *5))) (|isDomain| *1 (|MultivariateSquareFree| *9 *10 *11 *5)) (|isDomain| *3 (|SparseUnivariatePolynomial| *5)))) (|check| (*1 *2 *3 *3) (AND (|isDomain| *3 (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| *6)) (|:| |exponent| (|Integer|))))) (|ofCategory| *6 (|EuclideanDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|MultivariateSquareFree| *4 *5 *6 *7)) (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5)))) (|coefChoose| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *4 (|Factored| *2)) (|ofCategory| *2 (|PolynomialCategory| *7 *5 *6)) (|isDomain| *1 (|MultivariateSquareFree| *5 *6 *7 *2)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *7 (|EuclideanDomain|)))) (|intChoose| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *9)) (|isDomain| *4 (|List| *7)) (|isDomain| *5 (|List| (|List| *8))) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *8 (|EuclideanDomain|)) (|ofCategory| *9 (|PolynomialCategory| *8 *6 *7)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|isDomain| *2 (|Record| (|:| |upol| (|SparseUnivariatePolynomial| *8)) (|:| |Lval| (|List| *8)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| *8)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| *8))) (|isDomain| *1 (|MultivariateSquareFree| *6 *7 *8 *9)))) (|nsqfree| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|List| *7)) (|isDomain| *5 (|List| (|List| *8))) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *8 (|EuclideanDomain|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *9 (|PolynomialCategory| *8 *6 *7)) (|isDomain| *2 (|Record| (|:| |unitPart| *9) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| *9)) (|:| |exponent| (|Integer|))))))) (|isDomain| *1 (|MultivariateSquareFree| *6 *7 *8 *9)) (|isDomain| *3 (|SparseUnivariatePolynomial| *9)))) (|consnewpol| (*1 *2 *3 *4 *5) (AND (|isDomain| *5 (|Integer|)) (|ofCategory| *6 (|OrderedAbelianMonoidSup|)) (|ofCategory| *7 (|OrderedSet|)) (|ofCategory| *8 (|EuclideanDomain|)) (|ofCategory| *9 (|PolynomialCategory| *8 *6 *7)) (|isDomain| *2 (|Record| (|:| |pol| (|SparseUnivariatePolynomial| *9)) (|:| |polval| (|SparseUnivariatePolynomial| *8)))) (|isDomain| *1 (|MultivariateSquareFree| *6 *7 *8 *9)) (|isDomain| *3 (|SparseUnivariatePolynomial| *9)) (|isDomain| *4 (|SparseUnivariatePolynomial| *8)))) (|univcase| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *6 (|EuclideanDomain|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|MultivariateSquareFree| *5 *4 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| *6 *5 *4)))) (|compdegd| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| *6)) (|:| |exponent| (|Integer|))))) (|ofCategory| *6 (|EuclideanDomain|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|MultivariateSquareFree| *4 *5 *6 *7)) (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5)))) (|squareFreePrim| (*1 *2 *3) (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|EuclideanDomain|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|MultivariateSquareFree| *4 *5 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| *6 *4 *5)))) (|squareFree| (*1 *2 *3) (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|EuclideanDomain|)) (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5)) (|isDomain| *2 (|Factored| (|SparseUnivariatePolynomial| *7))) (|isDomain| *1 (|MultivariateSquareFree| *4 *5 *6 *7)) (|isDomain| *3 (|SparseUnivariatePolynomial| *7)))) (|squareFree| (*1 *2 *3) (AND (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|EuclideanDomain|)) (|isDomain| *2 (|Factored| *3)) (|isDomain| *1 (|MultivariateSquareFree| *4 *5 *6 *3)) (|ofCategory| *3 (|PolynomialCategory| *6 *4 *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |squareFree| ((|Factored| |#4|) |#4|)) (SIGNATURE |squareFree| ((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|))) (SIGNATURE |squareFreePrim| ((|Factored| |#4|) |#4|)) (SIGNATURE |compdegd| ((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))))) (SIGNATURE |univcase| ((|Factored| |#4|) |#4| |#2|)) (SIGNATURE |consnewpol| ((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|))) (SIGNATURE |nsqfree| ((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|)))) (SIGNATURE |intChoose| ((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|)))) (SIGNATURE |coefChoose| (|#4| (|Integer|) (|Factored| |#4|))) (SIGNATURE |check| ((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))))) (SIGNATURE |lift| ((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|))) (SIGNATURE |myDegree| ((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|))) (SIGNATURE |normDeriv2| ((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19))) │ │ │ +(((|AbelianGroup|) (|Category|)) (T |AbelianGroup|)) │ │ │ +((- (*1 *1 *1) (|ofCategory| *1 (|AbelianGroup|))) (- (*1 *1 *1 *1) (|ofCategory| *1 (|AbelianGroup|))) (* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|AbelianGroup|)) (|isDomain| *2 (|Integer|))))) │ │ │ +(|Join| (|CancellationAbelianMonoid|) (CATEGORY |domain| (SIGNATURE - ($ $)) (SIGNATURE - ($ $ $)) (SIGNATURE * ($ (|Integer|) $)))) │ │ │ +(((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)) │ │ │ +((|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) 24))) │ │ │ +(((|IntegerSolveLinearPolynomialEquation|) (CATEGORY |package| (SIGNATURE |solveLinearPolynomialEquation| ((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|)))))) (T |IntegerSolveLinearPolynomialEquation|)) │ │ │ +((|solveLinearPolynomialEquation| (*1 *2 *2 *3) (|partial| AND (|isDomain| *2 (|List| (|SparseUnivariatePolynomial| (|Integer|)))) (|isDomain| *3 (|SparseUnivariatePolynomial| (|Integer|))) (|isDomain| *1 (|IntegerSolveLinearPolynomialEquation|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |solveLinearPolynomialEquation| ((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))))) │ │ │ ((|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) 23 (|has| |#1| (|OrderedRing|))) (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) 14))) │ │ │ (((|SegmentFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|))) (IF (|has| |#1| (|OrderedRing|)) (SIGNATURE |map| ((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|))) |noBranch|)) (|Type|) (|Type|)) (T |SegmentFunctions2|)) │ │ │ ((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Segment| *5)) (|ofCategory| *5 (|OrderedRing|)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|List| *6)) (|isDomain| *1 (|SegmentFunctions2| *5 *6)))) (|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Segment| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|Segment| *6)) (|isDomain| *1 (|SegmentFunctions2| *5 *6))))) │ │ │ (CATEGORY |package| (SIGNATURE |map| ((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|))) (IF (|has| |#1| (|OrderedRing|)) (SIGNATURE |map| ((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|))) |noBranch|)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|symbol?| (((|Boolean|) $) 37)) (|symbol| ((|#2| $) 41)) (|string?| (((|Boolean|) $) 36)) (|string| ((|#1| $) 40)) (|pair?| (((|Boolean|) $) 34)) (|null?| (((|Boolean|) $) 14)) (|list?| (((|Boolean|) $) 35)) (|latex| (((|String|) $) NIL)) (|integer?| (((|Boolean|) $) 38)) (|integer| ((|#3| $) 43)) (|hash| (((|SingleInteger|) $) NIL)) (|float?| (((|Boolean|) $) 39)) (|float| ((|#4| $) 42)) (|expr| ((|#5| $) 44)) (|eq| (((|Boolean|) $ $) 33)) (|elt| (($ $ (|Integer|)) 55) (($ $ (|List| (|Integer|))) 57)) (|destruct| (((|List| $) $) 21)) (|convert| (($ (|List| $)) 45) (($ |#1|) 46) (($ |#2|) 47) (($ |#3|) 48) (($ |#4|) 49) (($ |#5|) 50)) (|coerce| (((|OutputForm|) $) 22)) (|cdr| (($ $) 20)) (|car| (($ $) 51)) (|atom?| (((|Boolean|) $) 18)) (= (((|Boolean|) $ $) 32)) (|#| (((|Integer|) $) 53))) │ │ │ -(((|SExpressionOf| |#1| |#2| |#3| |#4| |#5|) (|SExpressionCategory| |#1| |#2| |#3| |#4| |#5|) (|SetCategory|) (|SetCategory|) (|SetCategory|) (|SetCategory|) (|SetCategory|)) (T |SExpressionOf|)) │ │ │ -NIL │ │ │ -(|SExpressionCategory| |#1| |#2| |#3| |#4| |#5|) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|top| ((|#1| $) 28)) (|stack| (($ (|List| |#1|)) 33)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|sample| (($) NIL T CONST)) (|push!| ((|#1| |#1| $) 30)) (|pop!| ((|#1| $) 26)) (|parts| (((|List| |#1|) $) 34 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 39 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 37)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|inspect| ((|#1| $) 29)) (|insert!| (($ |#1| $) 31)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|extract!| ((|#1| $) 27)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) 24)) (|empty| (($) 32)) (|depth| (((|NonNegativeInteger|) $) 22)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) 20)) (|coerce| (((|OutputForm|) $) 17 (|has| |#1| (|SetCategory|)))) (|bag| (($ (|List| |#1|)) NIL)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 12 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 23 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|Stack| |#1|) (|Join| (|StackAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |stack| ($ (|List| |#1|))) (SIGNATURE |pop!| (|#1| $)) (SIGNATURE |extract!| (|#1| $)) (SIGNATURE |push!| (|#1| |#1| $)) (SIGNATURE |insert!| ($ |#1| $)) (SIGNATURE |inspect| (|#1| $)) (SIGNATURE |top| (|#1| $)) (SIGNATURE |depth| ((|NonNegativeInteger|) $)) (SIGNATURE |less?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |size?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |bag| ($ (|List| |#1|))) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |empty| ($)) (SIGNATURE |sample| ($)) (SIGNATURE |copy| ($ $)) (SIGNATURE |eq?| ((|Boolean|) $ $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (SIGNATURE |map!| ($ (|Mapping| |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |latex| ((|String|) $)) (SIGNATURE |hash| ((|SingleInteger|) $)) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE = ((|Boolean|) $ $)) (SIGNATURE ~= ((|Boolean|) $ $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (PROGN (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |#| ((|NonNegativeInteger|) $)) (SIGNATURE |parts| ((|List| |#1|) $)) (SIGNATURE |members| ((|List| |#1|) $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |member?| ((|Boolean|) |#1| $)) (SIGNATURE |count| ((|NonNegativeInteger|) |#1| $))) |noBranch|) |noBranch|))) (|SetCategory|)) (T |Stack|)) │ │ │ -((|eq?| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Stack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|copy| (*1 *1 *1) (AND (|isDomain| *1 (|Stack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|empty| (*1 *1) (AND (|isDomain| *1 (|Stack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|empty?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Stack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|less?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Stack| *4)) (|ofCategory| *4 (|SetCategory|)))) (|more?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Stack| *4)) (|ofCategory| *4 (|SetCategory|)))) (|size?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Stack| *4)) (|ofCategory| *4 (|SetCategory|)))) (|sample| (*1 *1) (AND (|isDomain| *1 (|Stack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|#| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Stack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Stack| *3)))) (|map!| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Stack| *3)))) (|any?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Stack| *4)))) (|every?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Stack| *4)))) (|count| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Stack| *4)))) (|parts| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|Stack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|members| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|Stack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|count| (*1 *2 *3 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Stack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|member?| (*1 *2 *3 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Stack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|latex| (*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|Stack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|hash| (*1 *2 *1) (AND (|isDomain| *2 (|SingleInteger|)) (|isDomain| *1 (|Stack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|Stack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (= (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Stack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (~= (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Stack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|bag| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Stack| *3)))) (|extract!| (*1 *2 *1) (AND (|isDomain| *1 (|Stack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|insert!| (*1 *1 *2 *1) (AND (|isDomain| *1 (|Stack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|inspect| (*1 *2 *1) (AND (|isDomain| *1 (|Stack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|push!| (*1 *2 *2 *1) (AND (|isDomain| *1 (|Stack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|pop!| (*1 *2 *1) (AND (|isDomain| *1 (|Stack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|top| (*1 *2 *1) (AND (|isDomain| *1 (|Stack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|depth| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Stack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|stack| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Stack| *3))))) │ │ │ -(|Join| (|StackAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |stack| ($ (|List| |#1|))) (SIGNATURE |pop!| (|#1| $)) (SIGNATURE |extract!| (|#1| $)) (SIGNATURE |push!| (|#1| |#1| $)) (SIGNATURE |insert!| ($ |#1| $)) (SIGNATURE |inspect| (|#1| $)) (SIGNATURE |top| (|#1| $)) (SIGNATURE |depth| ((|NonNegativeInteger|) $)) (SIGNATURE |less?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |size?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |bag| ($ (|List| |#1|))) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |empty| ($)) (SIGNATURE |sample| ($)) (SIGNATURE |copy| ($ $)) (SIGNATURE |eq?| ((|Boolean|) $ $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (SIGNATURE |map!| ($ (|Mapping| |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |latex| ((|String|) $)) (SIGNATURE |hash| ((|SingleInteger|) $)) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE = ((|Boolean|) $ $)) (SIGNATURE ~= ((|Boolean|) $ $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (PROGN (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |#| ((|NonNegativeInteger|) $)) (SIGNATURE |parts| ((|List| |#1|) $)) (SIGNATURE |members| ((|List| |#1|) $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |member?| ((|Boolean|) |#1| $)) (SIGNATURE |count| ((|NonNegativeInteger|) |#1| $))) |noBranch|) |noBranch|))) │ │ │ -((|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) 38)) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) 24)) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) 34)) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) 30)) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) 37)) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) 36)) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) 28)) (|inverse| (((|List| |#1|) (|List| |#1|)) 31)) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) 18)) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) 15)) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) 13)) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) 39)) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) 41))) │ │ │ -(((|TableauxBumpers| |#1|) (CATEGORY |package| (SIGNATURE |bumprow| ((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|)))) (SIGNATURE |bumptab| ((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|))))) (SIGNATURE |bumptab1| ((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|))))) (SIGNATURE |untab| ((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))))) (SIGNATURE |bat1| ((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))))) (SIGNATURE |bat| ((|List| (|List| |#1|)) (|Tableau| (|List| |#1|)))) (SIGNATURE |tab1| ((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)))) (SIGNATURE |tab| ((|Tableau| (|List| |#1|)) (|List| |#1|))) (SIGNATURE |lex| ((|List| (|List| |#1|)) (|List| (|List| |#1|)))) (SIGNATURE |slex| ((|List| (|List| |#1|)) (|List| |#1|))) (SIGNATURE |inverse| ((|List| |#1|) (|List| |#1|))) (SIGNATURE |maxrow| ((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))))) (SIGNATURE |mr| ((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))))) (|OrderedSet|)) (T |TableauxBumpers|)) │ │ │ -((|mr| (*1 *2 *3) (AND (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|Record| (|:| |f1| (|List| *4)) (|:| |f2| (|List| (|List| (|List| *4)))) (|:| |f3| (|List| (|List| *4))) (|:| |f4| (|List| (|List| (|List| *4)))))) (|isDomain| *1 (|TableauxBumpers| *4)) (|isDomain| *3 (|List| (|List| (|List| *4)))))) (|maxrow| (*1 *2 *3 *4 *5 *4 *4 *4) (AND (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *3 (|List| *6)) (|isDomain| *5 (|List| *3)) (|isDomain| *2 (|Record| (|:| |f1| *3) (|:| |f2| (|List| *5)) (|:| |f3| *5) (|:| |f4| (|List| *5)))) (|isDomain| *1 (|TableauxBumpers| *6)) (|isDomain| *4 (|List| *5)))) (|inverse| (*1 *2 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|TableauxBumpers| *3)))) (|slex| (*1 *2 *3) (AND (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|List| (|List| *4))) (|isDomain| *1 (|TableauxBumpers| *4)) (|isDomain| *3 (|List| *4)))) (|lex| (*1 *2 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|TableauxBumpers| *3)))) (|tab| (*1 *2 *3) (AND (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|Tableau| (|List| *4))) (|isDomain| *1 (|TableauxBumpers| *4)) (|isDomain| *3 (|List| *4)))) (|tab1| (*1 *2 *3) (AND (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|List| (|List| (|List| *4)))) (|isDomain| *1 (|TableauxBumpers| *4)) (|isDomain| *3 (|List| (|List| *4))))) (|bat| (*1 *2 *3) (AND (|isDomain| *3 (|Tableau| (|List| *4))) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|List| (|List| *4))) (|isDomain| *1 (|TableauxBumpers| *4)))) (|bat1| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|List| (|List| *4)))) (|isDomain| *2 (|List| (|List| *4))) (|isDomain| *1 (|TableauxBumpers| *4)) (|ofCategory| *4 (|OrderedSet|)))) (|untab| (*1 *2 *2 *3) (AND (|isDomain| *3 (|List| (|List| (|List| *4)))) (|isDomain| *2 (|List| (|List| *4))) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *1 (|TableauxBumpers| *4)))) (|bumptab1| (*1 *2 *3 *2) (AND (|isDomain| *2 (|List| (|List| (|List| *4)))) (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *1 (|TableauxBumpers| *4)))) (|bumptab| (*1 *2 *3 *4 *2) (AND (|isDomain| *2 (|List| (|List| (|List| *5)))) (|isDomain| *3 (|Mapping| (|Boolean|) *5 *5)) (|isDomain| *4 (|List| *5)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|TableauxBumpers| *5)))) (|bumprow| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *6 *6)) (|ofCategory| *6 (|OrderedSet|)) (|isDomain| *4 (|List| *6)) (|isDomain| *2 (|Record| (|:| |fs| (|Boolean|)) (|:| |sd| *4) (|:| |td| (|List| *4)))) (|isDomain| *1 (|TableauxBumpers| *6)) (|isDomain| *5 (|List| *4))))) │ │ │ -(CATEGORY |package| (SIGNATURE |bumprow| ((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|)))) (SIGNATURE |bumptab| ((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|))))) (SIGNATURE |bumptab1| ((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|))))) (SIGNATURE |untab| ((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))))) (SIGNATURE |bat1| ((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))))) (SIGNATURE |bat| ((|List| (|List| |#1|)) (|Tableau| (|List| |#1|)))) (SIGNATURE |tab1| ((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)))) (SIGNATURE |tab| ((|Tableau| (|List| |#1|)) (|List| |#1|))) (SIGNATURE |lex| ((|List| (|List| |#1|)) (|List| (|List| |#1|)))) (SIGNATURE |slex| ((|List| (|List| |#1|)) (|List| |#1|))) (SIGNATURE |inverse| ((|List| |#1|) (|List| |#1|))) (SIGNATURE |maxrow| ((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))))) (SIGNATURE |mr| ((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))))) │ │ │ -((|revert| (((|Stream| |#1|) (|Stream| |#1|)) 77)) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) 37)) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) 117 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) 121 (|has| |#1| (|Field|)))) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) 90)) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) 57)) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) 108 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) 95)) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) 45)) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) 60)) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) 119 (|has| |#1| (|Field|)))) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) 107 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) 120 (|has| |#1| (|Field|)))) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) 89)) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) 76)) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) 96)) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) 105 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|integers| (((|Stream| (|Integer|)) (|Integer|)) 56)) (|int| (((|Stream| |#1|) |#1|) 59)) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) 92)) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) 66)) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) 35)) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) 91)) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) 71)) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) 62)) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) 72)) (|coerce| (((|Stream| |#1|) |#1|) 67)) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) 82)) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) 36)) (- (((|Stream| |#1|) (|Stream| |#1|)) 21) (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) 23)) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) 17)) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) 29) (((|Stream| |#1|) |#1| (|Stream| |#1|)) 26) (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) 27))) │ │ │ -(((|StreamTaylorSeriesOperations| |#1|) (CATEGORY |package| (SIGNATURE + ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE - ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE - ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE * ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE * ((|Stream| |#1|) |#1| (|Stream| |#1|))) (SIGNATURE * ((|Stream| |#1|) (|Stream| |#1|) |#1|)) (SIGNATURE |exquo| ((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE / ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |recip| ((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|))) (SIGNATURE |monom| ((|Stream| |#1|) |#1| (|Integer|))) (SIGNATURE |integers| ((|Stream| (|Integer|)) (|Integer|))) (SIGNATURE |oddintegers| ((|Stream| (|Integer|)) (|Integer|))) (SIGNATURE |int| ((|Stream| |#1|) |#1|)) (SIGNATURE |mapmult| ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |deriv| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |gderiv| ((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|))) (SIGNATURE |coerce| ((|Stream| |#1|) |#1|)) (SIGNATURE |eval| ((|Stream| |#1|) (|Stream| |#1|) |#1|)) (SIGNATURE |compose| ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |lagrange| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |revert| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |addiag| ((|Stream| |#1|) (|Stream| (|Stream| |#1|)))) (SIGNATURE |lambert| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |oddlambert| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |evenlambert| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |generalLambert| ((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|))) (SIGNATURE |multisect| ((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|))) (SIGNATURE |invmultisect| ((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ((|Stream| |#1|) |#1| (|Stream| |#1|))) (SIGNATURE |lazyIntegrate| ((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|)))) (SIGNATURE |nlde| ((|Stream| |#1|) (|Stream| (|Stream| |#1|)))) (SIGNATURE |powern| ((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)))) |noBranch|) (IF (|has| |#1| (|Field|)) (PROGN (SIGNATURE |mapdiv| ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |lazyGintegrate| ((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|)))) (SIGNATURE |power| ((|Stream| |#1|) |#1| (|Stream| |#1|)))) |noBranch|)) (|Ring|)) (T |StreamTaylorSeriesOperations|)) │ │ │ -((|power| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|lazyGintegrate| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *4 (|Integer|))) (|isDomain| *5 (|Mapping| (|Stream| *4))) (|ofCategory| *4 (|Field|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Stream| *4)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)))) (|mapdiv| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|powern| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Stream| *4)) (|ofCategory| *4 (|Algebra| *3)) (|ofCategory| *4 (|Ring|)) (|isDomain| *3 (|Fraction| (|Integer|))) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)))) (|nlde| (*1 *2 *3) (AND (|isDomain| *3 (|Stream| (|Stream| *4))) (|isDomain| *2 (|Stream| *4)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)) (|ofCategory| *4 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *4 (|Ring|)))) (|lazyIntegrate| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| (|Stream| *3))) (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|Ring|)))) (|integrate| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|invmultisect| (*1 *2 *3 *3 *2) (AND (|isDomain| *2 (|Stream| *4)) (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)))) (|multisect| (*1 *2 *3 *3 *2) (AND (|isDomain| *2 (|Stream| *4)) (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)))) (|generalLambert| (*1 *2 *2 *3 *3) (AND (|isDomain| *2 (|Stream| *4)) (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)))) (|evenlambert| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|oddlambert| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|lambert| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|addiag| (*1 *2 *3) (AND (|isDomain| *3 (|Stream| (|Stream| *4))) (|isDomain| *2 (|Stream| *4)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)) (|ofCategory| *4 (|Ring|)))) (|revert| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|lagrange| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|compose| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|eval| (*1 *2 *2 *3) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|coerce| (*1 *2 *3) (AND (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)) (|ofCategory| *3 (|Ring|)))) (|gderiv| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Stream| *4)) (|isDomain| *3 (|Mapping| *4 (|Integer|))) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)))) (|deriv| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|mapmult| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|int| (*1 *2 *3) (AND (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)) (|ofCategory| *3 (|Ring|)))) (|oddintegers| (*1 *2 *3) (AND (|isDomain| *2 (|Stream| (|Integer|))) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *3 (|Integer|)))) (|integers| (*1 *2 *3) (AND (|isDomain| *2 (|Stream| (|Integer|))) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *3 (|Integer|)))) (|monom| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)) (|ofCategory| *3 (|Ring|)))) (|recip| (*1 *2 *2) (|partial| AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (/ (*1 *2 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|exquo| (*1 *2 *2 *2) (|partial| AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (* (*1 *2 *2 *3) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (* (*1 *2 *3 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (* (*1 *2 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (- (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (- (*1 *2 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (+ (*1 *2 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))))) │ │ │ -(CATEGORY |package| (SIGNATURE + ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE - ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE - ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE * ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE * ((|Stream| |#1|) |#1| (|Stream| |#1|))) (SIGNATURE * ((|Stream| |#1|) (|Stream| |#1|) |#1|)) (SIGNATURE |exquo| ((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE / ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |recip| ((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|))) (SIGNATURE |monom| ((|Stream| |#1|) |#1| (|Integer|))) (SIGNATURE |integers| ((|Stream| (|Integer|)) (|Integer|))) (SIGNATURE |oddintegers| ((|Stream| (|Integer|)) (|Integer|))) (SIGNATURE |int| ((|Stream| |#1|) |#1|)) (SIGNATURE |mapmult| ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |deriv| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |gderiv| ((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|))) (SIGNATURE |coerce| ((|Stream| |#1|) |#1|)) (SIGNATURE |eval| ((|Stream| |#1|) (|Stream| |#1|) |#1|)) (SIGNATURE |compose| ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |lagrange| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |revert| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |addiag| ((|Stream| |#1|) (|Stream| (|Stream| |#1|)))) (SIGNATURE |lambert| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |oddlambert| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |evenlambert| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |generalLambert| ((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|))) (SIGNATURE |multisect| ((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|))) (SIGNATURE |invmultisect| ((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ((|Stream| |#1|) |#1| (|Stream| |#1|))) (SIGNATURE |lazyIntegrate| ((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|)))) (SIGNATURE |nlde| ((|Stream| |#1|) (|Stream| (|Stream| |#1|)))) (SIGNATURE |powern| ((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)))) |noBranch|) (IF (|has| |#1| (|Field|)) (PROGN (SIGNATURE |mapdiv| ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |lazyGintegrate| ((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|)))) (SIGNATURE |power| ((|Stream| |#1|) |#1| (|Stream| |#1|)))) |noBranch|)) │ │ │ -((|tableau| (($ (|List| (|List| |#1|))) 9)) (|listOfLists| (((|List| (|List| |#1|)) $) 10)) (|coerce| (((|OutputForm|) $) 25))) │ │ │ -(((|Tableau| |#1|) (CATEGORY |domain| (SIGNATURE |tableau| ($ (|List| (|List| |#1|)))) (SIGNATURE |listOfLists| ((|List| (|List| |#1|)) $)) (SIGNATURE |coerce| ((|OutputForm|) $))) (|SetCategory|)) (T |Tableau|)) │ │ │ -((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|Tableau| *3)) (|ofCategory| *3 (|SetCategory|)))) (|listOfLists| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|List| *3))) (|isDomain| *1 (|Tableau| *3)) (|ofCategory| *3 (|SetCategory|)))) (|tableau| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Tableau| *3))))) │ │ │ -(CATEGORY |domain| (SIGNATURE |tableau| ($ (|List| (|List| |#1|)))) (SIGNATURE |listOfLists| ((|List| (|List| |#1|)) $)) (SIGNATURE |coerce| ((|OutputForm|) $))) │ │ │ -((|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) 8))) │ │ │ -(((|TopLevelThreeSpace|) (CATEGORY |package| (SIGNATURE |createThreeSpace| ((|ThreeSpace| (|DoubleFloat|)))))) (T |TopLevelThreeSpace|)) │ │ │ -((|createThreeSpace| (*1 *2) (AND (|isDomain| *2 (|ThreeSpace| (|DoubleFloat|))) (|isDomain| *1 (|TopLevelThreeSpace|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |createThreeSpace| ((|ThreeSpace| (|DoubleFloat|))))) │ │ │ -((|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) 15)) (|setClosed| (((|Boolean|) $ (|Boolean|)) 14)) (|open?| (((|Boolean|) $) 13)) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) 10)) (|getCurve| ((|#1| $) 8)) (|closed?| (((|Boolean|) $) 12))) │ │ │ -(((|TubePlot| |#1|) (CATEGORY |domain| (SIGNATURE |getCurve| (|#1| $)) (SIGNATURE |listLoops| ((|List| (|List| (|Point| (|DoubleFloat|)))) $)) (SIGNATURE |closed?| ((|Boolean|) $)) (SIGNATURE |open?| ((|Boolean|) $)) (SIGNATURE |setClosed| ((|Boolean|) $ (|Boolean|))) (SIGNATURE |tube| ($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)))) (|PlottableSpaceCurveCategory|)) (T |TubePlot|)) │ │ │ -((|tube| (*1 *1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|))))) (|isDomain| *4 (|Boolean|)) (|isDomain| *1 (|TubePlot| *2)) (|ofCategory| *2 (|PlottableSpaceCurveCategory|)))) (|setClosed| (*1 *2 *1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|TubePlot| *3)) (|ofCategory| *3 (|PlottableSpaceCurveCategory|)))) (|open?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|TubePlot| *3)) (|ofCategory| *3 (|PlottableSpaceCurveCategory|)))) (|closed?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|TubePlot| *3)) (|ofCategory| *3 (|PlottableSpaceCurveCategory|)))) (|listLoops| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|List| (|Point| (|DoubleFloat|))))) (|isDomain| *1 (|TubePlot| *3)) (|ofCategory| *3 (|PlottableSpaceCurveCategory|)))) (|getCurve| (*1 *2 *1) (AND (|isDomain| *1 (|TubePlot| *2)) (|ofCategory| *2 (|PlottableSpaceCurveCategory|))))) │ │ │ -(CATEGORY |domain| (SIGNATURE |getCurve| (|#1| $)) (SIGNATURE |listLoops| ((|List| (|List| (|Point| (|DoubleFloat|)))) $)) (SIGNATURE |closed?| ((|Boolean|) $)) (SIGNATURE |open?| ((|Boolean|) $)) (SIGNATURE |setClosed| ((|Boolean|) $ (|Boolean|))) (SIGNATURE |tube| ($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)))) │ │ │ -((|pi| (($) 11)) (|atanh| (($ $) 35)) (|asinh| (($ $) 33)) (|asin| (($ $) 25)) (|asech| (($ $) 17)) (|acsch| (($ $) 15)) (|acoth| (($ $) 19)) (|acot| (($ $) 30)) (|acosh| (($ $) 34)) (|acos| (($ $) 29))) │ │ │ -(((|TranscendentalFunctionCategory&| |#1|) (CATEGORY |domain| (SIGNATURE |pi| (|#1|)) (SIGNATURE |atanh| (|#1| |#1|)) (SIGNATURE |asinh| (|#1| |#1|)) (SIGNATURE |asech| (|#1| |#1|)) (SIGNATURE |acsch| (|#1| |#1|)) (SIGNATURE |acoth| (|#1| |#1|)) (SIGNATURE |acosh| (|#1| |#1|)) (SIGNATURE |asin| (|#1| |#1|)) (SIGNATURE |acot| (|#1| |#1|)) (SIGNATURE |acos| (|#1| |#1|))) (|TranscendentalFunctionCategory|)) (T |TranscendentalFunctionCategory&|)) │ │ │ -NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |pi| (|#1|)) (SIGNATURE |atanh| (|#1| |#1|)) (SIGNATURE |asinh| (|#1| |#1|)) (SIGNATURE |asech| (|#1| |#1|)) (SIGNATURE |acsch| (|#1| |#1|)) (SIGNATURE |acoth| (|#1| |#1|)) (SIGNATURE |acosh| (|#1| |#1|)) (SIGNATURE |asin| (|#1| |#1|)) (SIGNATURE |acot| (|#1| |#1|)) (SIGNATURE |acos| (|#1| |#1|))) │ │ │ -((|userOrdered?| (((|Boolean|)) 14)) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) 18) (((|Void|) (|List| |#1|)) 19)) (|more?| (((|Boolean|) |#1| |#1|) 30 (|has| |#1| (|OrderedSet|)))) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) 26) (((|Union| (|Boolean|) "failed") |#1| |#1|) 24)) (|largest| ((|#1| (|List| |#1|)) 31 (|has| |#1| (|OrderedSet|))) ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) 27)) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) 16))) │ │ │ -(((|UserDefinedPartialOrdering| |#1|) (CATEGORY |package| (SIGNATURE |setOrder| ((|Void|) (|List| |#1|))) (SIGNATURE |setOrder| ((|Void|) (|List| |#1|) (|List| |#1|))) (SIGNATURE |getOrder| ((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|))))) (SIGNATURE |less?| ((|Union| (|Boolean|) "failed") |#1| |#1|)) (SIGNATURE |less?| ((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|))) (SIGNATURE |largest| (|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|))) (SIGNATURE |userOrdered?| ((|Boolean|))) (IF (|has| |#1| (|OrderedSet|)) (PROGN (SIGNATURE |largest| (|#1| (|List| |#1|))) (SIGNATURE |more?| ((|Boolean|) |#1| |#1|))) |noBranch|)) (|SetCategory|)) (T |UserDefinedPartialOrdering|)) │ │ │ -((|more?| (*1 *2 *3 *3) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|UserDefinedPartialOrdering| *3)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *3 (|SetCategory|)))) (|largest| (*1 *2 *3) (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|SetCategory|)) (|ofCategory| *2 (|OrderedSet|)) (|isDomain| *1 (|UserDefinedPartialOrdering| *2)))) (|userOrdered?| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|UserDefinedPartialOrdering| *3)) (|ofCategory| *3 (|SetCategory|)))) (|largest| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *2)) (|isDomain| *4 (|Mapping| (|Boolean|) *2 *2)) (|isDomain| *1 (|UserDefinedPartialOrdering| *2)) (|ofCategory| *2 (|SetCategory|)))) (|less?| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|Mapping| (|Boolean|) *3 *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|UserDefinedPartialOrdering| *3)))) (|less?| (*1 *2 *3 *3) (|partial| AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|UserDefinedPartialOrdering| *3)) (|ofCategory| *3 (|SetCategory|)))) (|getOrder| (*1 *2) (AND (|isDomain| *2 (|Record| (|:| |low| (|List| *3)) (|:| |high| (|List| *3)))) (|isDomain| *1 (|UserDefinedPartialOrdering| *3)) (|ofCategory| *3 (|SetCategory|)))) (|setOrder| (*1 *2 *3 *3) (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|UserDefinedPartialOrdering| *4)))) (|setOrder| (*1 *2 *3) (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|UserDefinedPartialOrdering| *4))))) │ │ │ -(CATEGORY |package| (SIGNATURE |setOrder| ((|Void|) (|List| |#1|))) (SIGNATURE |setOrder| ((|Void|) (|List| |#1|) (|List| |#1|))) (SIGNATURE |getOrder| ((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|))))) (SIGNATURE |less?| ((|Union| (|Boolean|) "failed") |#1| |#1|)) (SIGNATURE |less?| ((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|))) (SIGNATURE |largest| (|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|))) (SIGNATURE |userOrdered?| ((|Boolean|))) (IF (|has| |#1| (|OrderedSet|)) (PROGN (SIGNATURE |largest| (|#1| (|List| |#1|))) (SIGNATURE |more?| ((|Boolean|) |#1| |#1|))) |noBranch|)) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|segment| (($ |#1| |#1|) 9) (($ |#1|) 8)) (|map| (((|Stream| |#1|) (|Mapping| |#1| |#1|) $) 41 (|has| |#1| (|OrderedRing|)))) (|low| ((|#1| $) 14)) (|lo| ((|#1| $) 10)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|incr| (((|Integer|) $) 18)) (|high| ((|#1| $) 17)) (|hi| ((|#1| $) 11)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|hasHi| (((|Boolean|) $) 16)) (|expand| (((|Stream| |#1|) $) 38 (|has| |#1| (|OrderedRing|))) (((|Stream| |#1|) (|List| $)) 37 (|has| |#1| (|OrderedRing|)))) (|convert| (($ |#1|) 25)) (|coerce| (($ (|Segment| |#1|)) 24) (((|OutputForm|) $) 34 (|has| |#1| (|SetCategory|)))) (SEGMENT (($ |#1| |#1|) 20) (($ |#1|) 19)) (BY (($ $ (|Integer|)) 13)) (= (((|Boolean|) $ $) 27 (|has| |#1| (|SetCategory|))))) │ │ │ -(((|UniversalSegment| |#1|) (|Join| (|SegmentCategory| |#1|) (CATEGORY |domain| (SIGNATURE SEGMENT ($ |#1|)) (SIGNATURE |segment| ($ |#1|)) (SIGNATURE |coerce| ($ (|Segment| |#1|))) (SIGNATURE |hasHi| ((|Boolean|) $)) (IF (|has| |#1| (|SetCategory|)) (ATTRIBUTE (|SetCategory|)) |noBranch|) (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|SegmentExpansionCategory| |#1| (|Stream| |#1|))) |noBranch|))) (|Type|)) (T |UniversalSegment|)) │ │ │ -((SEGMENT (*1 *1 *2) (AND (|isDomain| *1 (|UniversalSegment| *2)) (|ofCategory| *2 (|Type|)))) (|segment| (*1 *1 *2) (AND (|isDomain| *1 (|UniversalSegment| *2)) (|ofCategory| *2 (|Type|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Segment| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|UniversalSegment| *3)))) (|hasHi| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|UniversalSegment| *3)) (|ofCategory| *3 (|Type|))))) │ │ │ -(|Join| (|SegmentCategory| |#1|) (CATEGORY |domain| (SIGNATURE SEGMENT ($ |#1|)) (SIGNATURE |segment| ($ |#1|)) (SIGNATURE |coerce| ($ (|Segment| |#1|))) (SIGNATURE |hasHi| ((|Boolean|) $)) (IF (|has| |#1| (|SetCategory|)) (ATTRIBUTE (|SetCategory|)) |noBranch|) (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|SegmentExpansionCategory| |#1| (|Stream| |#1|))) |noBranch|))) │ │ │ -((|tanh| (($ $) 26)) (|tan| (($ $) 11)) (|sinh| (($ $) 27)) (|sin| (($ $) 10)) (|sech| (($ $) 28)) (|sec| (($ $) 9)) (|pi| (($) 16)) (|log| (($ $) 19)) (|exp| (($ $) 18)) (|csch| (($ $) 29)) (|csc| (($ $) 8)) (|coth| (($ $) 30)) (|cot| (($ $) 7)) (|cosh| (($ $) 31)) (|cos| (($ $) 6)) (|atanh| (($ $) 20)) (|atan| (($ $) 32)) (|asinh| (($ $) 21)) (|asin| (($ $) 33)) (|asech| (($ $) 22)) (|asec| (($ $) 34)) (|acsch| (($ $) 23)) (|acsc| (($ $) 35)) (|acoth| (($ $) 24)) (|acot| (($ $) 36)) (|acosh| (($ $) 25)) (|acos| (($ $) 37)) (** (($ $ $) 17))) │ │ │ -(((|TranscendentalFunctionCategory|) (|Category|)) (T |TranscendentalFunctionCategory|)) │ │ │ -((|pi| (*1 *1) (|ofCategory| *1 (|TranscendentalFunctionCategory|)))) │ │ │ -(|Join| (|TrigonometricFunctionCategory|) (|ArcTrigonometricFunctionCategory|) (|HyperbolicFunctionCategory|) (|ArcHyperbolicFunctionCategory|) (|ElementaryFunctionCategory|) (CATEGORY |domain| (SIGNATURE |pi| ($)))) │ │ │ -(((|ArcHyperbolicFunctionCategory|) . T) ((|ArcTrigonometricFunctionCategory|) . T) ((|ElementaryFunctionCategory|) . T) ((|HyperbolicFunctionCategory|) . T) ((|TrigonometricFunctionCategory|) . T)) │ │ │ -((/ (($ $ |#2|) 10))) │ │ │ -(((|VectorSpace&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE / (|#1| |#1| |#2|))) (|VectorSpace| |#2|) (|Field|)) (T |VectorSpace&|)) │ │ │ -NIL │ │ │ -(CATEGORY |domain| (SIGNATURE / (|#1| |#1| |#2|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|dimension| (((|CardinalNumber|)) 25)) (|coerce| (((|OutputForm|) $) 11)) (|Zero| (($) 17 T CONST)) (= (((|Boolean|) $ $) 6)) (/ (($ $ |#1|) 26)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ |#1| $) 22) (($ $ |#1|) 24))) │ │ │ -(((|VectorSpace| |#1|) (|Category|) (|Field|)) (T |VectorSpace|)) │ │ │ -((/ (*1 *1 *1 *2) (AND (|ofCategory| *1 (|VectorSpace| *2)) (|ofCategory| *2 (|Field|)))) (|dimension| (*1 *2) (AND (|ofCategory| *1 (|VectorSpace| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|CardinalNumber|))))) │ │ │ -(|Join| (|Module| |t#1|) (CATEGORY |domain| (SIGNATURE / ($ $ |t#1|)) (SIGNATURE |dimension| ((|CardinalNumber|))))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#1|) . T) ((|Module| |#1|) . T) ((|RightModule| |#1|) . T) ((|SetCategory|) . T)) │ │ │ -((|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) 17) (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) 16) (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) 15)) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) 23) (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) 22)) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) 34))) │ │ │ -(((|ViewportPackage|) (CATEGORY |package| (SIGNATURE |graphCurves| ((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|)))) (SIGNATURE |graphCurves| ((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))))) (SIGNATURE |graphCurves| ((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|)))) (SIGNATURE |drawCurves| ((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|)))) (SIGNATURE |drawCurves| ((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|)))) (SIGNATURE |coerce| ((|TwoDimensionalViewport|) (|GraphImage|))))) (T |ViewportPackage|)) │ │ │ -((|coerce| (*1 *2 *3) (AND (|isDomain| *3 (|GraphImage|)) (|isDomain| *2 (|TwoDimensionalViewport|)) (|isDomain| *1 (|ViewportPackage|)))) (|drawCurves| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|))))) (|isDomain| *4 (|List| (|DrawOption|))) (|isDomain| *2 (|TwoDimensionalViewport|)) (|isDomain| *1 (|ViewportPackage|)))) (|drawCurves| (*1 *2 *3 *4 *4 *5 *6) (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|))))) (|isDomain| *4 (|Palette|)) (|isDomain| *5 (|PositiveInteger|)) (|isDomain| *6 (|List| (|DrawOption|))) (|isDomain| *2 (|TwoDimensionalViewport|)) (|isDomain| *1 (|ViewportPackage|)))) (|graphCurves| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|))))) (|isDomain| *4 (|List| (|DrawOption|))) (|isDomain| *2 (|GraphImage|)) (|isDomain| *1 (|ViewportPackage|)))) (|graphCurves| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|))))) (|isDomain| *2 (|GraphImage|)) (|isDomain| *1 (|ViewportPackage|)))) (|graphCurves| (*1 *2 *3 *4 *4 *5 *6) (AND (|isDomain| *3 (|List| (|List| (|Point| (|DoubleFloat|))))) (|isDomain| *4 (|Palette|)) (|isDomain| *5 (|PositiveInteger|)) (|isDomain| *6 (|List| (|DrawOption|))) (|isDomain| *2 (|GraphImage|)) (|isDomain| *1 (|ViewportPackage|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |graphCurves| ((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|)))) (SIGNATURE |graphCurves| ((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))))) (SIGNATURE |graphCurves| ((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|)))) (SIGNATURE |drawCurves| ((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|)))) (SIGNATURE |drawCurves| ((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|)))) (SIGNATURE |coerce| ((|TwoDimensionalViewport|) (|GraphImage|)))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|varList| (((|List| |#1|) $) 39)) (|trunc| (($ $ (|NonNegativeInteger|)) 68)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sh| (($ $ $) 42 (|has| |#2| (|CommutativeRing|))) (($ $ (|NonNegativeInteger|)) 41 (|has| |#2| (|CommutativeRing|)))) (|sample| (($) 16 T CONST)) (|rquo| (($ $ |#1|) 53) (($ $ (|OrderedFreeMonoid| |#1|)) 52) (($ $ $) 51)) (|retractIfCan| (((|Union| (|OrderedFreeMonoid| |#1|) "failed") $) 63)) (|retract| (((|OrderedFreeMonoid| |#1|) $) 62)) (|recip| (((|Union| $ "failed") $) 33)) (|quasiRegular?| (((|Boolean|) $) 44)) (|quasiRegular| (($ $) 43)) (|one?| (((|Boolean|) $) 30)) (|monomial?| (((|Boolean|) $) 49)) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) 50)) (|mirror| (($ $) 48)) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) 59)) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) 60)) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) 70)) (|map| (($ (|Mapping| |#2| |#2|) $) 40)) (|lquo| (($ $ |#1|) 56) (($ $ (|OrderedFreeMonoid| |#1|)) 55) (($ $ $) 54)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|degree| (((|NonNegativeInteger|) $) 69)) (|constant?| (((|Boolean|) $) 46)) (|constant| ((|#2| $) 45)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ |#2|) 67) (($ (|OrderedFreeMonoid| |#1|)) 64) (($ |#1|) 47)) (|coef| ((|#2| $ (|OrderedFreeMonoid| |#1|)) 58) ((|#2| $ $) 57)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ |#2| $) 66) (($ $ |#2|) 65) (($ |#1| $) 61))) │ │ │ -(((|XPolynomialsCat| |#1| |#2|) (|Category|) (|OrderedSet|) (|Ring|)) (T |XPolynomialsCat|)) │ │ │ -((|maxdeg| (*1 *2 *1) (AND (|ofCategory| *1 (|XPolynomialsCat| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|OrderedFreeMonoid| *3)))) (|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|XPolynomialsCat| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|trunc| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|XPolynomialsCat| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|))))) │ │ │ -(|Join| (|XFreeAlgebra| |t#1| |t#2|) (CATEGORY |domain| (SIGNATURE |maxdeg| ((|OrderedFreeMonoid| |t#1|) $)) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |trunc| ($ $ (|NonNegativeInteger|))))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#2|) |has| |#2| (|CommutativeRing|)) ((|BasicType|) . T) ((|BiModule| |#2| |#2|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#2|) . T) ((|LeftModule| $) . T) ((|Module| |#2|) |has| |#2| (|CommutativeRing|)) ((|Monoid|) . T) ((|RetractableTo| (|OrderedFreeMonoid| |#1|)) . T) ((|RightModule| |#2|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|XAlgebra| |#2|) . T) ((|XFreeAlgebra| |#1| |#2|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#2| "failed") $) NIL)) (|retract| ((|#2| $) NIL)) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) 34)) (|quasiRegular?| (((|Boolean|) $) 29)) (|quasiRegular| (($ $) 30)) (|one?| (((|Boolean|) $) NIL)) (|numberOfMonomials| (((|NonNegativeInteger|) $) NIL)) (|monomials| (((|List| $) $) NIL)) (|monomial?| (((|Boolean|) $) NIL)) (|monom| (($ |#2| |#1|) NIL)) (|mindeg| ((|#2| $) 19)) (|maxdeg| ((|#2| $) 16)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|listOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (|leadingMonomial| ((|#2| $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|constant?| (((|Boolean|) $) 27)) (|constant| ((|#1| $) 28)) (|coerce| (((|OutputForm|) $) 53) (($ (|Integer|)) 38) (($ |#1|) 33) (($ |#2|) NIL)) (|coefficients| (((|List| |#1|) $) NIL)) (|coefficient| ((|#1| $ |#2|) NIL)) (|coef| ((|#1| $ |#2|) 24)) (|characteristic| (((|NonNegativeInteger|)) 14)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 25 T CONST)) (|One| (($) 11 T CONST)) (= (((|Boolean|) $ $) 26)) (/ (($ $ |#1|) 55 (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) 42)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) 44)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 43) (($ |#1| $) 39) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (|#| (((|NonNegativeInteger|) $) 15))) │ │ │ -(((|XPolynomialRing| |#1| |#2|) (|Join| (|Ring|) (|XAlgebra| |#1|) (|FreeModuleCat| |#1| |#2|) (CATEGORY |domain| (SIGNATURE * ($ $ |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) $)) (SIGNATURE |coerce| ($ |#2|)) (SIGNATURE |maxdeg| (|#2| $)) (SIGNATURE |mindeg| (|#2| $)) (SIGNATURE |reductum| ($ $)) (SIGNATURE |coef| (|#1| $ |#2|)) (SIGNATURE |constant?| ((|Boolean|) $)) (SIGNATURE |constant| (|#1| $)) (SIGNATURE |quasiRegular?| ((|Boolean|) $)) (SIGNATURE |quasiRegular| ($ $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (IF (|has| |#1| (|Field|)) (SIGNATURE / ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (ATTRIBUTE |noZeroDivisors|)) (ATTRIBUTE |noZeroDivisors|) |noBranch|) (IF (|has| |#1| (ATTRIBUTE |unitsKnown|)) (ATTRIBUTE |unitsKnown|) |noBranch|) (IF (|has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (ATTRIBUTE |canonicalUnitNormal|) |noBranch|))) (|Ring|) (|OrderedMonoid|)) (T |XPolynomialRing|)) │ │ │ -((* (*1 *1 *1 *2) (AND (|isDomain| *1 (|XPolynomialRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedMonoid|)))) (|reductum| (*1 *1 *1) (AND (|isDomain| *1 (|XPolynomialRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedMonoid|)))) (|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|XPolynomialRing| *3 *4)) (|ofCategory| *4 (|OrderedMonoid|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *1 (|XPolynomialRing| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedMonoid|)))) (|#| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|XPolynomialRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedMonoid|)))) (|maxdeg| (*1 *2 *1) (AND (|ofCategory| *2 (|OrderedMonoid|)) (|isDomain| *1 (|XPolynomialRing| *3 *2)) (|ofCategory| *3 (|Ring|)))) (|mindeg| (*1 *2 *1) (AND (|ofCategory| *2 (|OrderedMonoid|)) (|isDomain| *1 (|XPolynomialRing| *3 *2)) (|ofCategory| *3 (|Ring|)))) (|coef| (*1 *2 *1 *3) (AND (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|XPolynomialRing| *2 *3)) (|ofCategory| *3 (|OrderedMonoid|)))) (|constant?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|XPolynomialRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedMonoid|)))) (|constant| (*1 *2 *1) (AND (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|XPolynomialRing| *2 *3)) (|ofCategory| *3 (|OrderedMonoid|)))) (|quasiRegular?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|XPolynomialRing| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedMonoid|)))) (|quasiRegular| (*1 *1 *1) (AND (|isDomain| *1 (|XPolynomialRing| *2 *3)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedMonoid|)))) (/ (*1 *1 *1 *2) (AND (|isDomain| *1 (|XPolynomialRing| *2 *3)) (|ofCategory| *2 (|Field|)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|OrderedMonoid|))))) │ │ │ -(|Join| (|Ring|) (|XAlgebra| |#1|) (|FreeModuleCat| |#1| |#2|) (CATEGORY |domain| (SIGNATURE * ($ $ |#1|)) (SIGNATURE |#| ((|NonNegativeInteger|) $)) (SIGNATURE |coerce| ($ |#2|)) (SIGNATURE |maxdeg| (|#2| $)) (SIGNATURE |mindeg| (|#2| $)) (SIGNATURE |reductum| ($ $)) (SIGNATURE |coef| (|#1| $ |#2|)) (SIGNATURE |constant?| ((|Boolean|) $)) (SIGNATURE |constant| (|#1| $)) (SIGNATURE |quasiRegular?| ((|Boolean|) $)) (SIGNATURE |quasiRegular| ($ $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (IF (|has| |#1| (|Field|)) (SIGNATURE / ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (ATTRIBUTE |noZeroDivisors|)) (ATTRIBUTE |noZeroDivisors|) |noBranch|) (IF (|has| |#1| (ATTRIBUTE |unitsKnown|)) (ATTRIBUTE |unitsKnown|) |noBranch|) (IF (|has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (ATTRIBUTE |canonicalUnitNormal|) |noBranch|))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|setelt| ((|#2| $ (|Integer|) |#2|) NIL)) (|removeConjugate| (((|List| $) (|List| $) (|NonNegativeInteger|)) 39) (((|List| $) (|List| $)) 40)) (|rational?| (((|Boolean|) $ (|NonNegativeInteger|)) 36) (((|Boolean|) $) 38)) (|pointValue| (((|List| |#2|) $) 31)) (|origin| (($) 12)) (|orbit| (((|List| $) $) 48) (((|List| $) $ (|NonNegativeInteger|)) 45)) (|list| (((|List| |#2|) $) 30)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|elt| ((|#2| $ (|Integer|)) NIL)) (|degree| (((|PositiveInteger|) $) 20)) (|definingField| ((|#2| $) 26)) (|conjugate| (($ $ (|NonNegativeInteger|)) 33) (($ $) 47)) (|coerce| (((|OutputForm|) $) 23) (((|List| |#2|) $) 28) (($ (|List| |#2|)) 51)) (|affinePoint| (($ (|List| |#2|)) 29)) (= (((|Boolean|) $ $) 35))) │ │ │ -(((|AffineSpace| |#1| |#2|) (|AffineSpaceCategory| |#2|) (|NonNegativeInteger|) (|Field|)) (T |AffineSpace|)) │ │ │ -NIL │ │ │ -(|AffineSpaceCategory| |#2|) │ │ │ -((|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) 16))) │ │ │ -(((|ApplyUnivariateSkewPolynomial| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |apply| (|#2| |#3| (|Mapping| |#2| |#2|) |#2|))) (|Ring|) (|LeftModule| |#1|) (|UnivariateSkewPolynomialCategory| |#1|)) (T |ApplyUnivariateSkewPolynomial|)) │ │ │ -((|apply| (*1 *2 *3 *4 *2) (AND (|isDomain| *4 (|Mapping| *2 *2)) (|ofCategory| *2 (|LeftModule| *5)) (|ofCategory| *5 (|Ring|)) (|isDomain| *1 (|ApplyUnivariateSkewPolynomial| *5 *2 *3)) (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *5))))) │ │ │ -(CATEGORY |package| (SIGNATURE |apply| (|#2| |#3| (|Mapping| |#2| |#2|) |#2|))) │ │ │ -((|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) 16)) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) 18)) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) 13))) │ │ │ -(((|OneDimensionalArrayFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |scan| ((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|)) (SIGNATURE |map| ((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)))) (|Type|) (|Type|)) (T |OneDimensionalArrayFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|OneDimensionalArray| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|OneDimensionalArray| *6)) (|isDomain| *1 (|OneDimensionalArrayFunctions2| *5 *6)))) (|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) (|isDomain| *4 (|OneDimensionalArray| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|OneDimensionalArrayFunctions2| *5 *2)))) (|scan| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *5 *6 *5)) (|isDomain| *4 (|OneDimensionalArray| *6)) (|ofCategory| *6 (|Type|)) (|ofCategory| *5 (|Type|)) (|isDomain| *2 (|OneDimensionalArray| *5)) (|isDomain| *1 (|OneDimensionalArrayFunctions2| *6 *5))))) │ │ │ -(CATEGORY |package| (SIGNATURE |scan| ((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|)) (SIGNATURE |map| ((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (((|Boolean|) $) NIL (|has| |#1| (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| |#1| (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| ((|#1| $ (|Integer|) |#1|) 11 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|remove| (($ |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) NIL)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) NIL) (((|Integer|) |#1| $) NIL (|has| |#1| (|SetCategory|))) (((|Integer|) |#1| $ (|Integer|)) NIL (|has| |#1| (|SetCategory|)))) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|oneDimensionalArray| (($ (|List| |#1|)) 13) (($ (|NonNegativeInteger|) |#1|) 14)) (|new| (($ (|NonNegativeInteger|) |#1|) 9)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|insert| (($ |#1| $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|first| ((|#1| $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) NIL)) (|fill!| (($ $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) 7)) (|elt| ((|#1| $ (|Integer|) |#1|) NIL) ((|#1| $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) NIL)) (|concat| (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (|List| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|OneDimensionalArray| |#1|) (|Join| (|OneDimensionalArrayAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |oneDimensionalArray| ($ (|List| |#1|))) (SIGNATURE |oneDimensionalArray| ($ (|NonNegativeInteger|) |#1|)))) (|Type|)) (T |OneDimensionalArray|)) │ │ │ -((|oneDimensionalArray| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|OneDimensionalArray| *3)))) (|oneDimensionalArray| (*1 *1 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|OneDimensionalArray| *3)) (|ofCategory| *3 (|Type|))))) │ │ │ -(|Join| (|OneDimensionalArrayAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |oneDimensionalArray| ($ (|List| |#1|))) (SIGNATURE |oneDimensionalArray| ($ (|NonNegativeInteger|) |#1|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) NIL)) (|setRow!| (($ $ (|Integer|) (|OneDimensionalArray| |#1|)) NIL)) (|setColumn!| (($ $ (|Integer|) (|OneDimensionalArray| |#1|)) NIL)) (|sample| (($) NIL T CONST)) (|row| (((|OneDimensionalArray| |#1|) $ (|Integer|)) NIL)) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) NIL)) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) NIL)) (|parts| (((|List| |#1|) $) NIL)) (|nrows| (((|NonNegativeInteger|) $) NIL)) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) NIL)) (|ncols| (((|NonNegativeInteger|) $) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minRowIndex| (((|Integer|) $) NIL)) (|minColIndex| (((|Integer|) $) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxRowIndex| (((|Integer|) $) NIL)) (|maxColIndex| (((|Integer|) $) NIL)) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|fill!| (($ $ |#1|) NIL)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#1| $ (|Integer|) (|Integer|)) NIL) ((|#1| $ (|Integer|) (|Integer|) |#1|) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) NIL)) (|column| (((|OneDimensionalArray| |#1|) $ (|Integer|)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|TwoDimensionalArray| |#1|) (|Join| (|TwoDimensionalArrayCategory| |#1| (|OneDimensionalArray| |#1|) (|OneDimensionalArray| |#1|)) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|))) (|Type|)) (T |TwoDimensionalArray|)) │ │ │ -NIL │ │ │ -(|Join| (|TwoDimensionalArrayCategory| |#1| (|OneDimensionalArray| |#1|) (|OneDimensionalArray| |#1|)) (CATEGORY |package| (ATTRIBUTE |shallowlyMutable|))) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|top| ((|#1| $) 34)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|sample| (($) NIL T CONST)) (|push!| ((|#1| |#1| $) 30)) (|pop!| ((|#1| $) 28)) (|parts| (((|List| |#1|) $) 39 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|map!| (($ (|Mapping| |#1| |#1|) $) 43 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 41)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|inspect| ((|#1| $) 45)) (|insert!| (($ |#1| $) 31)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|extract!| ((|#1| $) 29)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) 16)) (|empty| (($) 38)) (|depth| (((|NonNegativeInteger|) $) 26)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) 15)) (|coerce| (((|OutputForm|) $) 25 (|has| |#1| (|SetCategory|)))) (|bag| (($ (|List| |#1|)) NIL)) (|arrayStack| (($ (|List| |#1|)) 36)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 13 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 10 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|ArrayStack| |#1|) (|Join| (|StackAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |arrayStack| ($ (|List| |#1|))) (SIGNATURE |pop!| (|#1| $)) (SIGNATURE |extract!| (|#1| $)) (SIGNATURE |push!| (|#1| |#1| $)) (SIGNATURE |insert!| ($ |#1| $)) (SIGNATURE |inspect| (|#1| $)) (SIGNATURE |top| (|#1| $)) (SIGNATURE |depth| ((|NonNegativeInteger|) $)) (SIGNATURE |less?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |size?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |bag| ($ (|List| |#1|))) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |empty| ($)) (SIGNATURE |sample| ($)) (SIGNATURE |copy| ($ $)) (SIGNATURE |eq?| ((|Boolean|) $ $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (SIGNATURE |map!| ($ (|Mapping| |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |latex| ((|String|) $)) (SIGNATURE |hash| ((|SingleInteger|) $)) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE = ((|Boolean|) $ $)) (SIGNATURE ~= ((|Boolean|) $ $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (PROGN (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |#| ((|NonNegativeInteger|) $)) (SIGNATURE |parts| ((|List| |#1|) $)) (SIGNATURE |members| ((|List| |#1|) $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |member?| ((|Boolean|) |#1| $)) (SIGNATURE |count| ((|NonNegativeInteger|) |#1| $))) |noBranch|) |noBranch|))) (|SetCategory|)) (T |ArrayStack|)) │ │ │ -((|eq?| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|copy| (*1 *1 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|empty| (*1 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|empty?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|less?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *4)) (|ofCategory| *4 (|SetCategory|)))) (|more?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *4)) (|ofCategory| *4 (|SetCategory|)))) (|size?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *4)) (|ofCategory| *4 (|SetCategory|)))) (|sample| (*1 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|#| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|ArrayStack| *3)))) (|map!| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|ArrayStack| *3)))) (|any?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *4)))) (|every?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *4)))) (|count| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|SetCategory|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ArrayStack| *4)))) (|parts| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|members| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|count| (*1 *2 *3 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|member?| (*1 *2 *3 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|latex| (*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|hash| (*1 *2 *1) (AND (|isDomain| *2 (|SingleInteger|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (= (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (~= (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|SetCategory|)))) (|bag| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|ArrayStack| *3)))) (|extract!| (*1 *2 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|insert!| (*1 *1 *2 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|inspect| (*1 *2 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|push!| (*1 *2 *2 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|pop!| (*1 *2 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|top| (*1 *2 *1) (AND (|isDomain| *1 (|ArrayStack| *2)) (|ofCategory| *2 (|SetCategory|)))) (|depth| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|ArrayStack| *3)) (|ofCategory| *3 (|SetCategory|)))) (|arrayStack| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|ArrayStack| *3))))) │ │ │ -(|Join| (|StackAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |arrayStack| ($ (|List| |#1|))) (SIGNATURE |pop!| (|#1| $)) (SIGNATURE |extract!| (|#1| $)) (SIGNATURE |push!| (|#1| |#1| $)) (SIGNATURE |insert!| ($ |#1| $)) (SIGNATURE |inspect| (|#1| $)) (SIGNATURE |top| (|#1| $)) (SIGNATURE |depth| ((|NonNegativeInteger|) $)) (SIGNATURE |less?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |size?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |bag| ($ (|List| |#1|))) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |empty| ($)) (SIGNATURE |sample| ($)) (SIGNATURE |copy| ($ $)) (SIGNATURE |eq?| ((|Boolean|) $ $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (SIGNATURE |map!| ($ (|Mapping| |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |latex| ((|String|) $)) (SIGNATURE |hash| ((|SingleInteger|) $)) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE = ((|Boolean|) $ $)) (SIGNATURE ~= ((|Boolean|) $ $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (PROGN (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |#| ((|NonNegativeInteger|) $)) (SIGNATURE |parts| ((|List| |#1|) $)) (SIGNATURE |members| ((|List| |#1|) $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |member?| ((|Boolean|) |#1| $)) (SIGNATURE |count| ((|NonNegativeInteger|) |#1| $))) |noBranch|) |noBranch|))) │ │ │ -((~ (($ $) 14)) (|not| (($ $) 11)) (|nor| (($ $ $) 24)) (|nand| (($ $ $) 22)) (^ (($ $) 12)) (|\\/| (($ $ $) 20)) (|/\\| (($ $ $) 18))) │ │ │ -(((|BitAggregate&| |#1|) (CATEGORY |domain| (SIGNATURE |nor| (|#1| |#1| |#1|)) (SIGNATURE |nand| (|#1| |#1| |#1|)) (SIGNATURE ^ (|#1| |#1|)) (SIGNATURE |not| (|#1| |#1|)) (SIGNATURE ~ (|#1| |#1|)) (SIGNATURE |/\\| (|#1| |#1| |#1|)) (SIGNATURE |\\/| (|#1| |#1| |#1|))) (|BitAggregate|)) (T |BitAggregate&|)) │ │ │ -NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |nor| (|#1| |#1| |#1|)) (SIGNATURE |nand| (|#1| |#1| |#1|)) (SIGNATURE ^ (|#1| |#1|)) (SIGNATURE |not| (|#1| |#1|)) (SIGNATURE ~ (|#1| |#1|)) (SIGNATURE |/\\| (|#1| |#1| |#1|)) (SIGNATURE |\\/| (|#1| |#1| |#1|))) │ │ │ -((|cycleElt| (((|Union| |#2| "failed") |#2|) 14)) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) 16)) (|computeCycleEntry| ((|#2| |#2| |#2|) 18))) │ │ │ -(((|CyclicStreamTools| |#1| |#2|) (CATEGORY |package| (SIGNATURE |cycleElt| ((|Union| |#2| "failed") |#2|)) (SIGNATURE |computeCycleLength| ((|NonNegativeInteger|) |#2|)) (SIGNATURE |computeCycleEntry| (|#2| |#2| |#2|))) (|Type|) (|LazyStreamAggregate| |#1|)) (T |CyclicStreamTools|)) │ │ │ -((|computeCycleEntry| (*1 *2 *2 *2) (AND (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|CyclicStreamTools| *3 *2)) (|ofCategory| *2 (|LazyStreamAggregate| *3)))) (|computeCycleLength| (*1 *2 *3) (AND (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|CyclicStreamTools| *4 *3)) (|ofCategory| *3 (|LazyStreamAggregate| *4)))) (|cycleElt| (*1 *2 *2) (|partial| AND (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|CyclicStreamTools| *3 *2)) (|ofCategory| *2 (|LazyStreamAggregate| *3))))) │ │ │ -(CATEGORY |package| (SIGNATURE |cycleElt| ((|Union| |#2| "failed") |#2|)) (SIGNATURE |computeCycleLength| ((|NonNegativeInteger|) |#2|)) (SIGNATURE |computeCycleEntry| (|#2| |#2| |#2|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (~ (($ $) 103)) (|xor| (($ $ $) 24)) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) 66 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) $) 98 (|has| (|Boolean|) (|OrderedSet|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $) 92)) (|sort!| (($ $) 102 (AND (|has| (|Boolean|) (|OrderedSet|)) (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (($ (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $) 101 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sort| (($ $) 97 (|has| (|Boolean|) (|OrderedSet|))) (($ (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $) 91)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 37)) (|setelt| (((|Boolean|) $ (|UniversalSegment| (|Integer|)) (|Boolean|)) 88 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Boolean|) $ (|Integer|) (|Boolean|)) 54 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) (|Boolean|)) $) 71 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) 38 T CONST)) (|reverse!| (($ $) 100 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) 90)) (|removeDuplicates| (($ $) 68 (AND (|has| (|Boolean|) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|remove| (($ (|Mapping| (|Boolean|) (|Boolean|)) $) 72 (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Boolean|) $) 69 (AND (|has| (|Boolean|) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|reduce| (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $) 74 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $ (|Boolean|)) 73 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $ (|Boolean|) (|Boolean|)) 70 (AND (|has| (|Boolean|) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|qsetelt!| (((|Boolean|) $ (|Integer|) (|Boolean|)) 53 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| (((|Boolean|) $ (|Integer|)) 55)) (|position| (((|Integer|) (|Boolean|) $ (|Integer|)) 95 (|has| (|Boolean|) (|SetCategory|))) (((|Integer|) (|Boolean|) $) 94 (|has| (|Boolean|) (|SetCategory|))) (((|Integer|) (|Mapping| (|Boolean|) (|Boolean|)) $) 93)) (|parts| (((|List| (|Boolean|)) $) 45 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|or| (($ $ $) 25)) (|not| (($ $) 30)) (|nor| (($ $ $) 27)) (|new| (($ (|NonNegativeInteger|) (|Boolean|)) 77)) (|nand| (($ $ $) 28)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 36)) (|minIndex| (((|Integer|) $) 63 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) 12)) (|merge| (($ $ $) 96 (|has| (|Boolean|) (|OrderedSet|))) (($ (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $ $) 89)) (|members| (((|List| (|Boolean|)) $) 46 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Boolean|) $) 48 (AND (|has| (|Boolean|) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxIndex| (((|Integer|) $) 62 (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) 13)) (|map!| (($ (|Mapping| (|Boolean|) (|Boolean|)) $) 41 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $ $) 82) (($ (|Mapping| (|Boolean|) (|Boolean|)) $) 40)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 35)) (|latex| (((|String|) $) 9)) (|insert| (($ $ $ (|Integer|)) 87) (($ (|Boolean|) $ (|Integer|)) 86)) (|indices| (((|List| (|Integer|)) $) 60)) (|index?| (((|Boolean|) (|Integer|) $) 59)) (|hash| (((|SingleInteger|) $) 10)) (|first| (((|Boolean|) $) 64 (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| (|Boolean|) "failed") (|Mapping| (|Boolean|) (|Boolean|)) $) 75)) (|fill!| (($ $ (|Boolean|)) 65 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|)) $) 43 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Boolean|)) (|List| (|Boolean|))) 52 (AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|)))) (($ $ (|Boolean|) (|Boolean|)) 51 (AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|)))) (($ $ (|Equation| (|Boolean|))) 50 (AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|)))) (($ $ (|List| (|Equation| (|Boolean|)))) 49 (AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 31)) (|entry?| (((|Boolean|) (|Boolean|) $) 61 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Boolean|) (|SetCategory|))))) (|entries| (((|List| (|Boolean|)) $) 58)) (|empty?| (((|Boolean|) $) 34)) (|empty| (($) 33)) (|elt| (($ $ (|UniversalSegment| (|Integer|))) 83) (((|Boolean|) $ (|Integer|)) 57) (((|Boolean|) $ (|Integer|) (|Boolean|)) 56)) (|delete| (($ $ (|UniversalSegment| (|Integer|))) 85) (($ $ (|Integer|)) 84)) (|count| (((|NonNegativeInteger|) (|Boolean|) $) 47 (AND (|has| (|Boolean|) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Boolean|)) $) 44 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|copyInto!| (($ $ $ (|Integer|)) 99 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) 32)) (|convert| (((|InputForm|) $) 67 (|has| (|Boolean|) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|Boolean|))) 76)) (|concat| (($ (|List| $)) 81) (($ $ $) 80) (($ (|Boolean|) $) 79) (($ $ (|Boolean|)) 78)) (|coerce| (((|OutputForm|) $) 11)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|)) $) 42 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|and| (($ $ $) 26)) (^ (($ $) 29)) (|\\/| (($ $ $) 105)) (>= (((|Boolean|) $ $) 15)) (> (((|Boolean|) $ $) 16)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 14)) (< (((|Boolean|) $ $) 17)) (|/\\| (($ $ $) 104)) (|#| (((|NonNegativeInteger|) $) 39 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|BitAggregate|) (|Category|)) (T |BitAggregate|)) │ │ │ -((|not| (*1 *1 *1) (|ofCategory| *1 (|BitAggregate|))) (^ (*1 *1 *1) (|ofCategory| *1 (|BitAggregate|))) (|nand| (*1 *1 *1 *1) (|ofCategory| *1 (|BitAggregate|))) (|nor| (*1 *1 *1 *1) (|ofCategory| *1 (|BitAggregate|))) (|and| (*1 *1 *1 *1) (|ofCategory| *1 (|BitAggregate|))) (|or| (*1 *1 *1 *1) (|ofCategory| *1 (|BitAggregate|))) (|xor| (*1 *1 *1 *1) (|ofCategory| *1 (|BitAggregate|)))) │ │ │ -(|Join| (|OrderedSet|) (|Logic|) (|OneDimensionalArrayAggregate| (|Boolean|)) (CATEGORY |domain| (SIGNATURE |not| ($ $)) (SIGNATURE ^ ($ $)) (SIGNATURE |nand| ($ $ $)) (SIGNATURE |nor| ($ $ $)) (SIGNATURE |and| ($ $ $)) (SIGNATURE |or| ($ $ $)) (SIGNATURE |xor| ($ $ $)))) │ │ │ -(((|Aggregate|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| (|Boolean|)) . T) ((|ConvertibleTo| (|InputForm|)) |has| (|Boolean|) (|ConvertibleTo| (|InputForm|))) ((|Eltable| (|Integer|) (|Boolean|)) . T) ((|EltableAggregate| (|Integer|) (|Boolean|)) . T) ((|Evalable| (|Boolean|)) AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|))) ((|FiniteLinearAggregate| (|Boolean|)) . T) ((|HomogeneousAggregate| (|Boolean|)) . T) ((|IndexedAggregate| (|Integer|) (|Boolean|)) . T) ((|InnerEvalable| (|Boolean|) (|Boolean|)) AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|))) ((|LinearAggregate| (|Boolean|)) . T) ((|Logic|) . T) ((|OneDimensionalArrayAggregate| (|Boolean|)) . T) ((|OrderedSet|) . T) ((|SetCategory|) . T) ((|Type|) . T)) │ │ │ -((|stirling2| ((|#1| |#1| |#1|) 52)) (|stirling1| ((|#1| |#1| |#1|) 49)) (|permutation| ((|#1| |#1| |#1|) 43)) (|partition| ((|#1| |#1|) 34)) (|multinomial| ((|#1| |#1| (|List| |#1|)) 42)) (|factorial| ((|#1| |#1|) 36)) (|binomial| ((|#1| |#1| |#1|) 39))) │ │ │ -(((|IntegerCombinatoricFunctions| |#1|) (CATEGORY |package| (SIGNATURE |binomial| (|#1| |#1| |#1|)) (SIGNATURE |factorial| (|#1| |#1|)) (SIGNATURE |multinomial| (|#1| |#1| (|List| |#1|))) (SIGNATURE |partition| (|#1| |#1|)) (SIGNATURE |permutation| (|#1| |#1| |#1|)) (SIGNATURE |stirling1| (|#1| |#1| |#1|)) (SIGNATURE |stirling2| (|#1| |#1| |#1|))) (|IntegerNumberSystem|)) (T |IntegerCombinatoricFunctions|)) │ │ │ -((|stirling2| (*1 *2 *2 *2) (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)))) (|stirling1| (*1 *2 *2 *2) (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)))) (|permutation| (*1 *2 *2 *2) (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)))) (|partition| (*1 *2 *2) (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)))) (|multinomial| (*1 *2 *2 *3) (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)) (|isDomain| *1 (|IntegerCombinatoricFunctions| *2)))) (|factorial| (*1 *2 *2) (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2)) (|ofCategory| *2 (|IntegerNumberSystem|)))) (|binomial| (*1 *2 *2 *2) (AND (|isDomain| *1 (|IntegerCombinatoricFunctions| *2)) (|ofCategory| *2 (|IntegerNumberSystem|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |binomial| (|#1| |#1| |#1|)) (SIGNATURE |factorial| (|#1| |#1|)) (SIGNATURE |multinomial| (|#1| |#1| (|List| |#1|))) (SIGNATURE |partition| (|#1| |#1|)) (SIGNATURE |permutation| (|#1| |#1| |#1|)) (SIGNATURE |stirling1| (|#1| |#1| |#1|)) (SIGNATURE |stirling2| (|#1| |#1| |#1|))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|numericalIntegration| (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) NIL) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) 62)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) NIL) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 29)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|d01fcfAnnaType|) (|NumericalIntegrationCategory|)) (T |d01fcfAnnaType|)) │ │ │ -NIL │ │ │ -(|NumericalIntegrationCategory|) │ │ │ -((|map| ((|#5| (|Mapping| |#4| |#2|) |#3|) 19))) │ │ │ -(((|FiniteAbelianMonoidRingFunctions2| |#1| |#2| |#3| |#4| |#5|) (CATEGORY |package| (SIGNATURE |map| (|#5| (|Mapping| |#4| |#2|) |#3|))) (|OrderedAbelianMonoid|) (|Ring|) (|FiniteAbelianMonoidRing| |#2| |#1|) (|Ring|) (|FiniteAbelianMonoidRing| |#4| |#1|)) (T |FiniteAbelianMonoidRingFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *7 *6)) (|ofCategory| *6 (|Ring|)) (|ofCategory| *7 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|FiniteAbelianMonoidRing| *7 *5)) (|isDomain| *1 (|FiniteAbelianMonoidRingFunctions2| *5 *6 *4 *7 *2)) (|ofCategory| *4 (|FiniteAbelianMonoidRing| *6 *5))))) │ │ │ -(CATEGORY |package| (SIGNATURE |map| (|#5| (|Mapping| |#4| |#2|) |#3|))) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (((|Boolean|) $) NIL (|has| |#1| (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| |#1| (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|shrinkable| (((|Boolean|) (|Boolean|)) NIL)) (|setelt| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) NIL)) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates!| (($ $) NIL (|has| |#1| (|SetCategory|)))) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|remove!| (($ |#1| $) NIL (|has| |#1| (|SetCategory|))) (($ (|Mapping| (|Boolean|) |#1|) $) NIL)) (|remove| (($ |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) NIL)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) NIL) (((|Integer|) |#1| $) NIL (|has| |#1| (|SetCategory|))) (((|Integer|) |#1| $ (|Integer|)) NIL (|has| |#1| (|SetCategory|)))) (|physicalLength!| (($ $ (|Integer|)) NIL)) (|physicalLength| (((|NonNegativeInteger|) $) NIL)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|new| (($ (|NonNegativeInteger|) |#1|) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|merge!| (($ $ $) NIL (|has| |#1| (|OrderedSet|))) (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) NIL)) (|merge| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|insert!| (($ $ $ (|Integer|)) NIL) (($ |#1| $ (|Integer|)) NIL)) (|insert| (($ |#1| $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|flexibleArray| (($ (|List| |#1|)) NIL)) (|first| ((|#1| $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) NIL)) (|fill!| (($ $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#1| $ (|Integer|) |#1|) NIL) ((|#1| $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) NIL) (($ $ (|Integer|)) NIL)) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) NIL)) (|concat!| (($ $ $) NIL) (($ $ |#1|) NIL)) (|concat| (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (|List| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|FlexibleArray| |#1|) (|Join| (|OneDimensionalArrayAggregate| |#1|) (|ExtensibleLinearAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |flexibleArray| ($ (|List| |#1|))) (SIGNATURE |physicalLength| ((|NonNegativeInteger|) $)) (SIGNATURE |physicalLength!| ($ $ (|Integer|))) (SIGNATURE |shrinkable| ((|Boolean|) (|Boolean|))))) (|Type|)) (T |FlexibleArray|)) │ │ │ -((|flexibleArray| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|FlexibleArray| *3)))) (|physicalLength| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|FlexibleArray| *3)) (|ofCategory| *3 (|Type|)))) (|physicalLength!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|FlexibleArray| *3)) (|ofCategory| *3 (|Type|)))) (|shrinkable| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|FlexibleArray| *3)) (|ofCategory| *3 (|Type|))))) │ │ │ -(|Join| (|OneDimensionalArrayAggregate| |#1|) (|ExtensibleLinearAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |flexibleArray| ($ (|List| |#1|))) (SIGNATURE |physicalLength| ((|NonNegativeInteger|) $)) (SIGNATURE |physicalLength!| ($ $ (|Integer|))) (SIGNATURE |shrinkable| ((|Boolean|) (|Boolean|))))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|numericalOptimization| (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) NIL) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 48)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) 23) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|e04mbfAnnaType|) (|NumericalOptimizationCategory|)) (T |e04mbfAnnaType|)) │ │ │ -NIL │ │ │ -(|NumericalOptimizationCategory|) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|varList| (((|List| |#1|) $) 29)) (|trunc| (($ $ (|NonNegativeInteger|)) 30)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) 33)) (|mirror| (($ $) 31)) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) 34)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|eval| (($ $ |#1| $) 28) (($ $ (|List| |#1|) (|List| $)) 27)) (|degree| (((|NonNegativeInteger|) $) 35)) (|construct| (($ $ $) 26)) (|coerce| (((|OutputForm|) $) 11) (($ |#1|) 38) (((|XDistributedPolynomial| |#1| |#2|) $) 37) (((|XRecursivePolynomial| |#1| |#2|) $) 36)) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) 39)) (|Zero| (($) 17 T CONST)) (|LiePoly| (($ (|LyndonWord| |#1|)) 32)) (= (((|Boolean|) $ $) 6)) (/ (($ $ |#2|) 25 (|has| |#2| (|Field|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ |#2| $) 22) (($ $ |#2|) 24))) │ │ │ -(((|FreeLieAlgebra| |#1| |#2|) (|Category|) (|OrderedSet|) (|CommutativeRing|)) (T |FreeLieAlgebra|)) │ │ │ -((|coef| (*1 *2 *3 *1) (AND (|isDomain| *3 (|XRecursivePolynomial| *4 *2)) (|ofCategory| *1 (|FreeLieAlgebra| *4 *2)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *2 (|CommutativeRing|)))) (|coerce| (*1 *1 *2) (AND (|ofCategory| *1 (|FreeLieAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|CommutativeRing|)))) (|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|XDistributedPolynomial| *3 *4)))) (|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|XRecursivePolynomial| *3 *4)))) (|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|lquo| (*1 *2 *2 *1) (AND (|isDomain| *2 (|XRecursivePolynomial| *3 *4)) (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|rquo| (*1 *2 *2 *1) (AND (|isDomain| *2 (|XRecursivePolynomial| *3 *4)) (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|LiePoly| (*1 *1 *2) (AND (|isDomain| *2 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *4 (|CommutativeRing|)))) (|mirror| (*1 *1 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|CommutativeRing|)))) (|trunc| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|varList| (*1 *2 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *2 (|List| *3)))) (|eval| (*1 *1 *1 *2 *1) (AND (|ofCategory| *1 (|FreeLieAlgebra| *2 *3)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|CommutativeRing|)))) (|eval| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *4)) (|isDomain| *3 (|List| *1)) (|ofCategory| *1 (|FreeLieAlgebra| *4 *5)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|CommutativeRing|))))) │ │ │ -(|Join| (|LieAlgebra| |t#2|) (CATEGORY |domain| (SIGNATURE |coef| (|t#2| (|XRecursivePolynomial| |t#1| |t#2|) $)) (SIGNATURE |coerce| ($ |t#1|)) (SIGNATURE |coerce| ((|XDistributedPolynomial| |t#1| |t#2|) $)) (SIGNATURE |coerce| ((|XRecursivePolynomial| |t#1| |t#2|) $)) (SIGNATURE |degree| ((|NonNegativeInteger|) $)) (SIGNATURE |lquo| ((|XRecursivePolynomial| |t#1| |t#2|) (|XRecursivePolynomial| |t#1| |t#2|) $)) (SIGNATURE |rquo| ((|XRecursivePolynomial| |t#1| |t#2|) (|XRecursivePolynomial| |t#1| |t#2|) $)) (SIGNATURE |LiePoly| ($ (|LyndonWord| |t#1|))) (SIGNATURE |mirror| ($ $)) (SIGNATURE |trunc| ($ $ (|NonNegativeInteger|))) (SIGNATURE |varList| ((|List| |t#1|) $)) (SIGNATURE |eval| ($ $ |t#1| $)) (SIGNATURE |eval| ($ $ (|List| |t#1|) (|List| $))))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|BiModule| |#2| |#2|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| |#2|) . T) ((|LieAlgebra| |#2|) . T) ((|Module| |#2|) . T) ((|RightModule| |#2|) . T) ((|SetCategory|) . T)) │ │ │ -((|sizePascalTriangle| (((|NonNegativeInteger|)) 41)) (|safetyMargin| (((|NonNegativeInteger|)) 23 (|has| |#1| (|FloatingPointSystem|))) (((|NonNegativeInteger|) (|NonNegativeInteger|)) 22 (|has| |#1| (|FloatingPointSystem|)))) (|safeFloor| (((|Integer|) |#1|) 18 (|has| |#1| (|FloatingPointSystem|)))) (|safeCeiling| (((|Integer|) |#1|) 20 (|has| |#1| (|FloatingPointSystem|)))) (|rangePascalTriangle| (((|NonNegativeInteger|)) 40) (((|NonNegativeInteger|) (|NonNegativeInteger|)) 39)) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) 29)) (|fillPascalTriangle| (((|Void|)) 43))) │ │ │ -(((|GaloisGroupUtilities| |#1|) (CATEGORY |package| (SIGNATURE |pascalTriangle| (|#1| (|NonNegativeInteger|) (|Integer|))) (SIGNATURE |rangePascalTriangle| ((|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |rangePascalTriangle| ((|NonNegativeInteger|))) (SIGNATURE |sizePascalTriangle| ((|NonNegativeInteger|))) (SIGNATURE |fillPascalTriangle| ((|Void|))) (IF (|has| |#1| (|FloatingPointSystem|)) (PROGN (SIGNATURE |safeCeiling| ((|Integer|) |#1|)) (SIGNATURE |safeFloor| ((|Integer|) |#1|)) (SIGNATURE |safetyMargin| ((|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |safetyMargin| ((|NonNegativeInteger|)))) |noBranch|)) (|Ring|)) (T |GaloisGroupUtilities|)) │ │ │ -((|safetyMargin| (*1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|GaloisGroupUtilities| *3)) (|ofCategory| *3 (|FloatingPointSystem|)) (|ofCategory| *3 (|Ring|)))) (|safetyMargin| (*1 *2 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|GaloisGroupUtilities| *3)) (|ofCategory| *3 (|FloatingPointSystem|)) (|ofCategory| *3 (|Ring|)))) (|safeFloor| (*1 *2 *3) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GaloisGroupUtilities| *3)) (|ofCategory| *3 (|FloatingPointSystem|)) (|ofCategory| *3 (|Ring|)))) (|safeCeiling| (*1 *2 *3) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|GaloisGroupUtilities| *3)) (|ofCategory| *3 (|FloatingPointSystem|)) (|ofCategory| *3 (|Ring|)))) (|fillPascalTriangle| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|GaloisGroupUtilities| *3)) (|ofCategory| *3 (|Ring|)))) (|sizePascalTriangle| (*1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|GaloisGroupUtilities| *3)) (|ofCategory| *3 (|Ring|)))) (|rangePascalTriangle| (*1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|GaloisGroupUtilities| *3)) (|ofCategory| *3 (|Ring|)))) (|rangePascalTriangle| (*1 *2 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|GaloisGroupUtilities| *3)) (|ofCategory| *3 (|Ring|)))) (|pascalTriangle| (*1 *2 *3 *4) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *4 (|Integer|)) (|isDomain| *1 (|GaloisGroupUtilities| *2)) (|ofCategory| *2 (|Ring|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |pascalTriangle| (|#1| (|NonNegativeInteger|) (|Integer|))) (SIGNATURE |rangePascalTriangle| ((|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |rangePascalTriangle| ((|NonNegativeInteger|))) (SIGNATURE |sizePascalTriangle| ((|NonNegativeInteger|))) (SIGNATURE |fillPascalTriangle| ((|Void|))) (IF (|has| |#1| (|FloatingPointSystem|)) (PROGN (SIGNATURE |safeCeiling| ((|Integer|) |#1|)) (SIGNATURE |safeFloor| ((|Integer|) |#1|)) (SIGNATURE |safetyMargin| ((|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |safetyMargin| ((|NonNegativeInteger|)))) |noBranch|)) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|sample| (($) NIL T CONST)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|merge!| (($ $ $) 32)) (|merge| (($ $ $) 31)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|max| ((|#1| $) 26)) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|inspect| ((|#1| $) 27)) (|insert!| (($ |#1| $) 10)) (|heap| (($ (|List| |#1|)) 12)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|extract!| ((|#1| $) 23)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) 9)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|bag| (($ (|List| |#1|)) 29)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) 21 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|Heap| |#1|) (|Join| (|PriorityQueueAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |heap| ($ (|List| |#1|))) (SIGNATURE |bag| ($ (|List| |#1|))) (SIGNATURE |copy| ($ $)) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |empty| ($)) (SIGNATURE |eq?| ((|Boolean|) $ $)) (SIGNATURE |extract!| (|#1| $)) (SIGNATURE |insert!| ($ |#1| $)) (SIGNATURE |inspect| (|#1| $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (SIGNATURE |max| (|#1| $)) (SIGNATURE |merge| ($ $ $)) (SIGNATURE |merge!| ($ $ $)) (SIGNATURE |sample| ($)) (SIGNATURE |less?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |size?| ((|Boolean|) $ (|NonNegativeInteger|))) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (SIGNATURE |map!| ($ (|Mapping| |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |latex| ((|String|) $)) (SIGNATURE |hash| ((|SingleInteger|) $)) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE = ((|Boolean|) $ $)) (SIGNATURE ~= ((|Boolean|) $ $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (PROGN (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |#| ((|NonNegativeInteger|) $)) (SIGNATURE |parts| ((|List| |#1|) $)) (SIGNATURE |members| ((|List| |#1|) $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |member?| ((|Boolean|) |#1| $)) (SIGNATURE |count| ((|NonNegativeInteger|) |#1| $))) |noBranch|) |noBranch|))) (|OrderedSet|)) (T |Heap|)) │ │ │ -((|eq?| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Heap| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|copy| (*1 *1 *1) (AND (|isDomain| *1 (|Heap| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|empty| (*1 *1) (AND (|isDomain| *1 (|Heap| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|empty?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Heap| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|less?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Heap| *4)) (|ofCategory| *4 (|OrderedSet|)))) (|more?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Heap| *4)) (|ofCategory| *4 (|OrderedSet|)))) (|size?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Heap| *4)) (|ofCategory| *4 (|OrderedSet|)))) (|sample| (*1 *1) (AND (|isDomain| *1 (|Heap| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|#| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Heap| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|map| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|Heap| *3)))) (|map!| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|Heap| *3)))) (|any?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Heap| *4)))) (|every?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Heap| *4)))) (|count| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Mapping| (|Boolean|) *4)) (|has| $ (ATTRIBUTE |finiteAggregate|)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Heap| *4)))) (|parts| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|Heap| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|members| (*1 *2 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|Heap| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|count| (*1 *2 *3 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Heap| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|OrderedSet|)))) (|member?| (*1 *2 *3 *1) (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Heap| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|OrderedSet|)))) (|latex| (*1 *2 *1) (AND (|isDomain| *2 (|String|)) (|isDomain| *1 (|Heap| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|OrderedSet|)))) (|hash| (*1 *2 *1) (AND (|isDomain| *2 (|SingleInteger|)) (|isDomain| *1 (|Heap| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|OrderedSet|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|Heap| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|OrderedSet|)))) (= (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Heap| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|OrderedSet|)))) (~= (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Heap| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|OrderedSet|)))) (|bag| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|Heap| *3)))) (|extract!| (*1 *2 *1) (AND (|isDomain| *1 (|Heap| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|insert!| (*1 *1 *2 *1) (AND (|isDomain| *1 (|Heap| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|inspect| (*1 *2 *1) (AND (|isDomain| *1 (|Heap| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|max| (*1 *2 *1) (AND (|isDomain| *1 (|Heap| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|merge| (*1 *1 *1 *1) (AND (|isDomain| *1 (|Heap| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|merge!| (*1 *1 *1 *1) (AND (|isDomain| *1 (|Heap| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|heap| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|Heap| *3))))) │ │ │ -(|Join| (|PriorityQueueAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |heap| ($ (|List| |#1|))) (SIGNATURE |bag| ($ (|List| |#1|))) (SIGNATURE |copy| ($ $)) (SIGNATURE |empty?| ((|Boolean|) $)) (SIGNATURE |empty| ($)) (SIGNATURE |eq?| ((|Boolean|) $ $)) (SIGNATURE |extract!| (|#1| $)) (SIGNATURE |insert!| ($ |#1| $)) (SIGNATURE |inspect| (|#1| $)) (SIGNATURE |map| ($ (|Mapping| |#1| |#1|) $)) (SIGNATURE |max| (|#1| $)) (SIGNATURE |merge| ($ $ $)) (SIGNATURE |merge!| ($ $ $)) (SIGNATURE |sample| ($)) (SIGNATURE |less?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |more?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |size?| ((|Boolean|) $ (|NonNegativeInteger|))) (IF (|has| $ (ATTRIBUTE |shallowlyMutable|)) (SIGNATURE |map!| ($ (|Mapping| |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |latex| ((|String|) $)) (SIGNATURE |hash| ((|SingleInteger|) $)) (SIGNATURE |coerce| ((|OutputForm|) $)) (SIGNATURE = ((|Boolean|) $ $)) (SIGNATURE ~= ((|Boolean|) $ $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (PROGN (SIGNATURE |every?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |any?| ((|Boolean|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |count| ((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |#| ((|NonNegativeInteger|) $)) (SIGNATURE |parts| ((|List| |#1|) $)) (SIGNATURE |members| ((|List| |#1|) $))) |noBranch|) (IF (|has| $ (ATTRIBUTE |finiteAggregate|)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |member?| ((|Boolean|) |#1| $)) (SIGNATURE |count| ((|NonNegativeInteger|) |#1| $))) |noBranch|) |noBranch|))) │ │ │ -((|logGamma| (((|Complex| (|Float|)) (|Complex| (|Float|))) 64) (((|Float|) (|Float|)) 65)) (|Gamma| (((|Complex| (|Float|)) (|Complex| (|Float|))) 52) (((|Float|) (|Float|)) 61))) │ │ │ -(((|FloatSpecialFunctions|) (CATEGORY |package| (SIGNATURE |logGamma| ((|Float|) (|Float|))) (SIGNATURE |logGamma| ((|Complex| (|Float|)) (|Complex| (|Float|)))) (SIGNATURE |Gamma| ((|Float|) (|Float|))) (SIGNATURE |Gamma| ((|Complex| (|Float|)) (|Complex| (|Float|)))))) (T |FloatSpecialFunctions|)) │ │ │ -((|Gamma| (*1 *2 *2) (AND (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|FloatSpecialFunctions|)))) (|Gamma| (*1 *2 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|FloatSpecialFunctions|)))) (|logGamma| (*1 *2 *2) (AND (|isDomain| *2 (|Complex| (|Float|))) (|isDomain| *1 (|FloatSpecialFunctions|)))) (|logGamma| (*1 *2 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|FloatSpecialFunctions|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |logGamma| ((|Float|) (|Float|))) (SIGNATURE |logGamma| ((|Complex| (|Float|)) (|Complex| (|Float|)))) (SIGNATURE |Gamma| ((|Float|) (|Float|))) (SIGNATURE |Gamma| ((|Complex| (|Float|)) (|Complex| (|Float|))))) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (((|Boolean|) $) NIL (|has| |#1| (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| |#1| (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| ((|#1| $ (|Integer|) |#1|) 25 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|remove| (($ |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) 22 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) 21)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) NIL) (((|Integer|) |#1| $) NIL (|has| |#1| (|SetCategory|))) (((|Integer|) |#1| $ (|Integer|)) NIL (|has| |#1| (|SetCategory|)))) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|new| (($ (|NonNegativeInteger|) |#1|) 14)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) 12 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxIndex| (((|Integer|) $) 23 (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) 16 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 17) (($ (|Mapping| |#1| |#1| |#1|) $ $) 19)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|insert| (($ |#1| $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|first| ((|#1| $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) NIL)) (|fill!| (($ $ |#1|) 10 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) 13)) (|elt| ((|#1| $ (|Integer|) |#1|) NIL) ((|#1| $ (|Integer|)) 24) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) NIL)) (|concat| (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (|List| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) 9 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|IndexedOneDimensionalArray| |#1| |#2|) (|OneDimensionalArrayAggregate| |#1|) (|Type|) (|Integer|)) (T |IndexedOneDimensionalArray|)) │ │ │ -NIL │ │ │ -(|OneDimensionalArrayAggregate| |#1|) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) NIL)) (|setRow!| (($ $ (|Integer|) (|IndexedOneDimensionalArray| |#1| |#3|)) NIL)) (|setColumn!| (($ $ (|Integer|) (|IndexedOneDimensionalArray| |#1| |#2|)) NIL)) (|sample| (($) NIL T CONST)) (|row| (((|IndexedOneDimensionalArray| |#1| |#3|) $ (|Integer|)) NIL)) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) NIL)) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) NIL)) (|parts| (((|List| |#1|) $) NIL)) (|nrows| (((|NonNegativeInteger|) $) NIL)) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) NIL)) (|ncols| (((|NonNegativeInteger|) $) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minRowIndex| (((|Integer|) $) NIL)) (|minColIndex| (((|Integer|) $) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxRowIndex| (((|Integer|) $) NIL)) (|maxColIndex| (((|Integer|) $) NIL)) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|fill!| (($ $ |#1|) NIL)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#1| $ (|Integer|) (|Integer|)) NIL) ((|#1| $ (|Integer|) (|Integer|) |#1|) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) NIL)) (|column| (((|IndexedOneDimensionalArray| |#1| |#2|) $ (|Integer|)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|IndexedTwoDimensionalArray| |#1| |#2| |#3|) (|TwoDimensionalArrayCategory| |#1| (|IndexedOneDimensionalArray| |#1| |#3|) (|IndexedOneDimensionalArray| |#1| |#2|)) (|Type|) (|Integer|) (|Integer|)) (T |IndexedTwoDimensionalArray|)) │ │ │ +((|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) 10)) (|bitLength| (((|Integer|) (|Integer|)) 7)) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) 8))) │ │ │ +(((|IntegerBits|) (CATEGORY |package| (SIGNATURE |bitLength| ((|Integer|) (|Integer|))) (SIGNATURE |bitCoef| ((|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |bitTruth| ((|Boolean|) (|Integer|) (|Integer|))))) (T |IntegerBits|)) │ │ │ +((|bitTruth| (*1 *2 *3 *3) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IntegerBits|)))) (|bitCoef| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerBits|)))) (|bitLength| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerBits|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |bitLength| ((|Integer|) (|Integer|))) (SIGNATURE |bitCoef| ((|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |bitTruth| ((|Boolean|) (|Integer|) (|Integer|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|variables| (((|List| (|SingletonAsOrderedSet|)) $) NIL)) (|variable| (((|Symbol|) $) 86)) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) 73)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) 135 (|has| |#1| (|IntegralDomain|)))) (|truncate| (($ $ (|NonNegativeInteger|)) 120) (($ $ (|NonNegativeInteger|) (|NonNegativeInteger|)) 122)) (|terms| (((|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|))) $) 42)) (|tanh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|tan| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sqrt| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sinh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sin| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|series| (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) 53) (($ (|Stream| |#1|)) NIL)) (|sech| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sec| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sample| (($) NIL T CONST)) (|revert| (($ $) 126)) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|quoByVar| (($ $) 133)) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) 63) (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) 65)) (|pole?| (((|Boolean|) $) NIL)) (|pi| (($) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|order| (((|NonNegativeInteger|) $) NIL) (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) NIL)) (|one?| (((|Boolean|) $) NIL)) (|oddlambert| (($ $) 110)) (|nthRoot| (($ $ (|Integer|)) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|multisect| (($ (|Integer|) (|Integer|) $) 128)) (|multiplyExponents| (($ $ (|PositiveInteger|)) 132)) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) 104)) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| (|NonNegativeInteger|)) 15) (($ $ (|SingletonAsOrderedSet|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|NonNegativeInteger|))) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) 92)) (|log| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|lambert| (($ $) 108)) (|lagrange| (($ $) 106)) (|invmultisect| (($ (|Integer|) (|Integer|) $) 130)) (|integrate| (($ $) 143 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Symbol|)) 149 (OR (AND (|has| |#1| (SIGNATURE |integrate| (|#1| |#1| (|Symbol|)))) (|has| |#1| (SIGNATURE |variables| ((|List| (|Symbol|)) |#1|))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (AND (|has| |#1| (|AlgebraicallyClosedFunctionSpace| (|Integer|))) (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|PrimitiveFunctionCategory|)) (|has| |#1| (|TranscendentalFunctionCategory|))))) (($ $ (|Variable| |#2|)) 144 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|hash| (((|SingleInteger|) $) NIL)) (|generalLambert| (($ $ (|Integer|) (|Integer|)) 114)) (|extend| (($ $ (|NonNegativeInteger|)) 116)) (|exquo| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|exp| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|evenlambert| (($ $) 112)) (|eval| (((|Stream| |#1|) $ |#1|) 94 (|has| |#1| (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|)))))) (|elt| ((|#1| $ (|NonNegativeInteger|)) 89) (($ $ $) 124 (|has| (|NonNegativeInteger|) (|SemiGroup|)))) (|differentiate| (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) 101 (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))) (($ $) 96 (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))) (($ $ (|Variable| |#2|)) 97)) (|degree| (((|NonNegativeInteger|) $) NIL)) (|csch| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|csc| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|coth| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cot| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cosh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cos| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|complete| (($ $) 118)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) 24) (($ (|Fraction| (|Integer|))) 141 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $) NIL (|has| |#1| (|IntegralDomain|))) (($ |#1|) 23 (|has| |#1| (|CommutativeRing|))) (($ (|UnivariatePolynomial| |#2| |#1|)) 79) (($ (|Variable| |#2|)) 20)) (|coefficients| (((|Stream| |#1|) $) NIL)) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) 88)) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|center| ((|#1| $) 87)) (|atanh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|atan| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|asinh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asin| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asech| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asec| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|approximate| ((|#1| $ (|NonNegativeInteger|)) 85 (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|)))) (|has| |#1| (SIGNATURE |coerce| (|#1| (|Symbol|))))))) (|acsch| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acsc| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acoth| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acot| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acosh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acos| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 17 T CONST)) (|One| (($) 13 T CONST)) (D (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|List| (|Symbol|))) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|Symbol|)) NIL (AND (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|))))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|)))) (($ $) NIL (|has| |#1| (SIGNATURE * (|#1| (|NonNegativeInteger|) |#1|))))) (= (((|Boolean|) $ $) NIL)) (/ (($ $ |#1|) NIL (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) 100)) (+ (($ $ $) 18)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ |#1|) 138 (|has| |#1| (|Field|))) (($ $ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 99) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ +(((|UnivariateTaylorSeries| |#1| |#2| |#3|) (|Join| (|UnivariateTaylorSeriesCategory| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |univariatePolynomial| ((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ (|Variable| |#2|))) (SIGNATURE |differentiate| ($ $ (|Variable| |#2|))) (SIGNATURE |lagrange| ($ $)) (SIGNATURE |lambert| ($ $)) (SIGNATURE |oddlambert| ($ $)) (SIGNATURE |evenlambert| ($ $)) (SIGNATURE |generalLambert| ($ $ (|Integer|) (|Integer|))) (SIGNATURE |revert| ($ $)) (SIGNATURE |multisect| ($ (|Integer|) (|Integer|) $)) (SIGNATURE |invmultisect| ($ (|Integer|) (|Integer|) $)) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ (|Variable| |#2|))) |noBranch|))) (|Ring|) (|Symbol|) |#1|) (T |UnivariateTaylorSeries|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|UnivariatePolynomial| *4 *3)) (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Symbol|)) (|ofType| *5 *3) (|isDomain| *1 (|UnivariateTaylorSeries| *3 *4 *5)))) (|univariatePolynomial| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|UnivariatePolynomial| *5 *4)) (|isDomain| *1 (|UnivariateTaylorSeries| *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofType| *5 (|Symbol|)) (|ofType| *6 *4))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|UnivariateTaylorSeries| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3))) (|differentiate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|UnivariateTaylorSeries| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3))) (|lagrange| (*1 *1 *1) (AND (|isDomain| *1 (|UnivariateTaylorSeries| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofType| *3 (|Symbol|)) (|ofType| *4 *2))) (|lambert| (*1 *1 *1) (AND (|isDomain| *1 (|UnivariateTaylorSeries| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofType| *3 (|Symbol|)) (|ofType| *4 *2))) (|oddlambert| (*1 *1 *1) (AND (|isDomain| *1 (|UnivariateTaylorSeries| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofType| *3 (|Symbol|)) (|ofType| *4 *2))) (|evenlambert| (*1 *1 *1) (AND (|isDomain| *1 (|UnivariateTaylorSeries| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofType| *3 (|Symbol|)) (|ofType| *4 *2))) (|generalLambert| (*1 *1 *1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|UnivariateTaylorSeries| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Symbol|)) (|ofType| *5 *3))) (|revert| (*1 *1 *1) (AND (|isDomain| *1 (|UnivariateTaylorSeries| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofType| *3 (|Symbol|)) (|ofType| *4 *2))) (|multisect| (*1 *1 *2 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|UnivariateTaylorSeries| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Symbol|)) (|ofType| *5 *3))) (|invmultisect| (*1 *1 *2 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|UnivariateTaylorSeries| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Symbol|)) (|ofType| *5 *3))) (|integrate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Variable| *4)) (|ofType| *4 (|Symbol|)) (|isDomain| *1 (|UnivariateTaylorSeries| *3 *4 *5)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|Ring|)) (|ofType| *5 *3)))) │ │ │ +(|Join| (|UnivariateTaylorSeriesCategory| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|UnivariatePolynomial| |#2| |#1|))) (SIGNATURE |univariatePolynomial| ((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ (|Variable| |#2|))) (SIGNATURE |differentiate| ($ $ (|Variable| |#2|))) (SIGNATURE |lagrange| ($ $)) (SIGNATURE |lambert| ($ $)) (SIGNATURE |oddlambert| ($ $)) (SIGNATURE |evenlambert| ($ $)) (SIGNATURE |generalLambert| ($ $ (|Integer|) (|Integer|))) (SIGNATURE |revert| ($ $)) (SIGNATURE |multisect| ($ (|Integer|) (|Integer|) $)) (SIGNATURE |invmultisect| ($ (|Integer|) (|Integer|) $)) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (SIGNATURE |integrate| ($ $ (|Variable| |#2|))) |noBranch|))) │ │ │ +((|finiteSeries2Vector| (((|List| |#1|) |#2| (|Integer|)) 21)) (|finiteSeries2LinSysWOVectorise| (((|Matrix| |#1|) (|List| |#2|) (|Integer|)) 30)) (|finiteSeries2LinSys| (((|Matrix| |#1|) (|List| |#2|) (|Integer|)) 28))) │ │ │ +(((|LinearSystemFromPowerSeriesPackage| |#1| |#2|) (CATEGORY |package| (SIGNATURE |finiteSeries2LinSysWOVectorise| ((|Matrix| |#1|) (|List| |#2|) (|Integer|))) (SIGNATURE |finiteSeries2LinSys| ((|Matrix| |#1|) (|List| |#2|) (|Integer|))) (SIGNATURE |finiteSeries2Vector| ((|List| |#1|) |#2| (|Integer|)))) (|Field|) (|LocalPowerSeriesCategory| |#1|)) (T |LinearSystemFromPowerSeriesPackage|)) │ │ │ +((|finiteSeries2Vector| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Integer|)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|List| *5)) (|isDomain| *1 (|LinearSystemFromPowerSeriesPackage| *5 *3)) (|ofCategory| *3 (|LocalPowerSeriesCategory| *5)))) (|finiteSeries2LinSys| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *6)) (|isDomain| *4 (|Integer|)) (|ofCategory| *6 (|LocalPowerSeriesCategory| *5)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Matrix| *5)) (|isDomain| *1 (|LinearSystemFromPowerSeriesPackage| *5 *6)))) (|finiteSeries2LinSysWOVectorise| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *6)) (|isDomain| *4 (|Integer|)) (|ofCategory| *6 (|LocalPowerSeriesCategory| *5)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Matrix| *5)) (|isDomain| *1 (|LinearSystemFromPowerSeriesPackage| *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |finiteSeries2LinSysWOVectorise| ((|Matrix| |#1|) (|List| |#2|) (|Integer|))) (SIGNATURE |finiteSeries2LinSys| ((|Matrix| |#1|) (|List| |#2|) (|Integer|))) (SIGNATURE |finiteSeries2Vector| ((|List| |#1|) |#2| (|Integer|)))) │ │ │ +((|sorted?| (((|Boolean|) $) NIL) (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) 49)) (|sort!| (($ $) NIL) (($ (|Mapping| (|Boolean|) |#2| |#2|) $) 11)) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) 27)) (|reverse!| (($ $) 55)) (|removeDuplicates!| (($ $) 62)) (|remove!| (($ |#2| $) NIL) (($ (|Mapping| (|Boolean|) |#2|) $) 36)) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $) 21) ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) 52)) (|position| (((|Integer|) |#2| $ (|Integer|)) 60) (((|Integer|) |#2| $) NIL) (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) 46)) (|new| (($ (|NonNegativeInteger|) |#2|) 53)) (|merge!| (($ $ $) NIL) (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) 29)) (|merge| (($ $ $) NIL) (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) 24)) (|map| (($ (|Mapping| |#2| |#2|) $) NIL) (($ (|Mapping| |#2| |#2| |#2|) $ $) 54)) (|list| (($ |#2|) 14)) (|insert!| (($ $ $ (|Integer|)) 35) (($ |#2| $ (|Integer|)) 33)) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) 45)) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) 43) (($ $ (|Integer|)) 37)) (|copyInto!| (($ $ $ (|Integer|)) 59)) (|copy| (($ $) 57)) (< (((|Boolean|) $ $) 64))) │ │ │ +(((|ListAggregate&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |list| (|#1| |#2|)) (SIGNATURE |delete!| (|#1| |#1| (|Integer|))) (SIGNATURE |delete!| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |remove!| (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |insert!| (|#1| |#2| |#1| (|Integer|))) (SIGNATURE |insert!| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |merge!| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1| |#1|)) (SIGNATURE |select!| (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |remove!| (|#1| |#2| |#1|)) (SIGNATURE |removeDuplicates!| (|#1| |#1|)) (SIGNATURE |merge!| (|#1| |#1| |#1|)) (SIGNATURE |merge| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1| |#1|)) (SIGNATURE |sorted?| ((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |position| ((|Integer|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |position| ((|Integer|) |#2| |#1|)) (SIGNATURE |position| ((|Integer|) |#2| |#1| (|Integer|))) (SIGNATURE |merge| (|#1| |#1| |#1|)) (SIGNATURE |sorted?| ((|Boolean|) |#1|)) (SIGNATURE |copyInto!| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |reverse!| (|#1| |#1|)) (SIGNATURE |sort!| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |sort!| (|#1| |#1|)) (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#2| |#2|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#2|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1|)) (SIGNATURE |find| ((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |new| (|#1| (|NonNegativeInteger|) |#2|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2| |#2|) |#1| |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |copy| (|#1| |#1|))) (|ListAggregate| |#2|) (|Type|)) (T |ListAggregate&|)) │ │ │ NIL │ │ │ -(|TwoDimensionalArrayCategory| |#1| (|IndexedOneDimensionalArray| |#1| |#3|) (|IndexedOneDimensionalArray| |#1| |#2|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |list| (|#1| |#2|)) (SIGNATURE |delete!| (|#1| |#1| (|Integer|))) (SIGNATURE |delete!| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |remove!| (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |insert!| (|#1| |#2| |#1| (|Integer|))) (SIGNATURE |insert!| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |merge!| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1| |#1|)) (SIGNATURE |select!| (|#1| (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |remove!| (|#1| |#2| |#1|)) (SIGNATURE |removeDuplicates!| (|#1| |#1|)) (SIGNATURE |merge!| (|#1| |#1| |#1|)) (SIGNATURE |merge| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1| |#1|)) (SIGNATURE |sorted?| ((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |position| ((|Integer|) (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |position| ((|Integer|) |#2| |#1|)) (SIGNATURE |position| ((|Integer|) |#2| |#1| (|Integer|))) (SIGNATURE |merge| (|#1| |#1| |#1|)) (SIGNATURE |sorted?| ((|Boolean|) |#1|)) (SIGNATURE |copyInto!| (|#1| |#1| |#1| (|Integer|))) (SIGNATURE |reverse!| (|#1| |#1|)) (SIGNATURE |sort!| (|#1| (|Mapping| (|Boolean|) |#2| |#2|) |#1|)) (SIGNATURE |sort!| (|#1| |#1|)) (SIGNATURE < ((|Boolean|) |#1| |#1|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#2| |#2|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#2|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#2| |#2|) |#1|)) (SIGNATURE |find| ((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) |#1|)) (SIGNATURE |new| (|#1| (|NonNegativeInteger|) |#2|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2| |#2|) |#1| |#1|)) (SIGNATURE |map| (|#1| (|Mapping| |#2| |#2|) |#1|)) (SIGNATURE |copy| (|#1| |#1|))) │ │ │ +((|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) 60)) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) 25)) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) 30)) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) 42)) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) 50) (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) 47)) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) 29)) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) 18))) │ │ │ +(((|IntegralBasisTools| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |diagonalProduct| (|#1| (|Matrix| |#1|))) (SIGNATURE |matrixGcd| (|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|))) (SIGNATURE |divideIfCan!| (|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|))) (SIGNATURE |leastPower| ((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |idealiser| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |idealiser| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|)) (SIGNATURE |idealiserMatrix| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |moduleSum| ((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))))) (|Join| (|EuclideanDomain|) (CATEGORY |domain| (SIGNATURE |squareFree| ((|Factored| $) $)))) (|UnivariatePolynomialCategory| |#1|) (|FramedAlgebra| |#1| |#2|)) (T |IntegralBasisTools|)) │ │ │ +((|moduleSum| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Record| (|:| |basis| (|Matrix| *3)) (|:| |basisDen| *3) (|:| |basisInv| (|Matrix| *3)))) (|ofCategory| *3 (|Join| (|EuclideanDomain|) (CATEGORY |domain| (SIGNATURE |squareFree| ((|Factored| $) $))))) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|isDomain| *1 (|IntegralBasisTools| *3 *4 *5)) (|ofCategory| *5 (|FramedAlgebra| *3 *4)))) (|idealiserMatrix| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Join| (|EuclideanDomain|) (CATEGORY |domain| (SIGNATURE |squareFree| ((|Factored| $) $))))) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|isDomain| *1 (|IntegralBasisTools| *3 *4 *5)) (|ofCategory| *5 (|FramedAlgebra| *3 *4)))) (|idealiser| (*1 *2 *2 *2 *3) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Join| (|EuclideanDomain|) (CATEGORY |domain| (SIGNATURE |squareFree| ((|Factored| $) $))))) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|isDomain| *1 (|IntegralBasisTools| *3 *4 *5)) (|ofCategory| *5 (|FramedAlgebra| *3 *4)))) (|idealiser| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Join| (|EuclideanDomain|) (CATEGORY |domain| (SIGNATURE |squareFree| ((|Factored| $) $))))) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|isDomain| *1 (|IntegralBasisTools| *3 *4 *5)) (|ofCategory| *5 (|FramedAlgebra| *3 *4)))) (|leastPower| (*1 *2 *2 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Join| (|EuclideanDomain|) (CATEGORY |domain| (SIGNATURE |squareFree| ((|Factored| $) $))))) (|ofCategory| *4 (|UnivariatePolynomialCategory| *3)) (|isDomain| *1 (|IntegralBasisTools| *3 *4 *5)) (|ofCategory| *5 (|FramedAlgebra| *3 *4)))) (|divideIfCan!| (*1 *2 *3 *3 *2 *4) (AND (|isDomain| *3 (|Matrix| *2)) (|isDomain| *4 (|Integer|)) (|ofCategory| *2 (|Join| (|EuclideanDomain|) (CATEGORY |domain| (SIGNATURE |squareFree| ((|Factored| $) $))))) (|ofCategory| *5 (|UnivariatePolynomialCategory| *2)) (|isDomain| *1 (|IntegralBasisTools| *2 *5 *6)) (|ofCategory| *6 (|FramedAlgebra| *2 *5)))) (|matrixGcd| (*1 *2 *3 *2 *4) (AND (|isDomain| *3 (|Matrix| *2)) (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *2 (|Join| (|EuclideanDomain|) (CATEGORY |domain| (SIGNATURE |squareFree| ((|Factored| $) $))))) (|ofCategory| *5 (|UnivariatePolynomialCategory| *2)) (|isDomain| *1 (|IntegralBasisTools| *2 *5 *6)) (|ofCategory| *6 (|FramedAlgebra| *2 *5)))) (|diagonalProduct| (*1 *2 *3) (AND (|isDomain| *3 (|Matrix| *2)) (|ofCategory| *4 (|UnivariatePolynomialCategory| *2)) (|ofCategory| *2 (|Join| (|EuclideanDomain|) (CATEGORY |domain| (SIGNATURE |squareFree| ((|Factored| $) $))))) (|isDomain| *1 (|IntegralBasisTools| *2 *4 *5)) (|ofCategory| *5 (|FramedAlgebra| *2 *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |diagonalProduct| (|#1| (|Matrix| |#1|))) (SIGNATURE |matrixGcd| (|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|))) (SIGNATURE |divideIfCan!| (|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|))) (SIGNATURE |leastPower| ((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |idealiser| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |idealiser| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|)) (SIGNATURE |idealiserMatrix| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |moduleSum| ((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))))) │ │ │ ((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|width| ((|#1| $) 60)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|tanh| (($ $) 90)) (|tan| (($ $) 73)) (|sup| ((|#1| $) 61)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sqrt| (($ $) 72)) (|sinh| (($ $) 89)) (|sin| (($ $) 74)) (|sech| (($ $) 88)) (|sec| (($ $) 75)) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 68)) (|retract| (((|Integer|) $) 67)) (|recip| (((|Union| $ "failed") $) 33)) (|qinterval| (($ |#1| |#1|) 65)) (|positive?| (((|Boolean|) $) 59)) (|pi| (($) 100)) (|one?| (((|Boolean|) $) 30)) (|nthRoot| (($ $ (|Integer|)) 71)) (|negative?| (((|Boolean|) $) 58)) (|min| (($ $ $) 106)) (|max| (($ $ $) 105)) (|log| (($ $) 97)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|interval| (($ |#1| |#1|) 66) (($ |#1|) 64) (($ (|Fraction| (|Integer|))) 63)) (|inf| ((|#1| $) 62)) (|hash| (((|SingleInteger|) $) 10)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|exp| (($ $) 98)) (|csch| (($ $) 87)) (|csc| (($ $) 76)) (|coth| (($ $) 86)) (|cot| (($ $) 77)) (|cosh| (($ $) 85)) (|cos| (($ $) 78)) (|contains?| (((|Boolean|) $ |#1|) 57)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Integer|)) 69)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|atanh| (($ $) 96)) (|atan| (($ $) 84)) (|associates?| (((|Boolean|) $ $) 38)) (|asinh| (($ $) 95)) (|asin| (($ $) 83)) (|asech| (($ $) 94)) (|asec| (($ $) 82)) (|acsch| (($ $) 93)) (|acsc| (($ $) 81)) (|acoth| (($ $) 92)) (|acot| (($ $) 80)) (|acosh| (($ $) 91)) (|acos| (($ $) 79)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (>= (((|Boolean|) $ $) 103)) (> (((|Boolean|) $ $) 102)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 104)) (< (((|Boolean|) $ $) 101)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ $) 99) (($ $ (|Fraction| (|Integer|))) 70)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ (((|IntervalCategory| |#1|) (|Category|) (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))) (T |IntervalCategory|)) │ │ │ ((|interval| (*1 *1 *2 *2) (AND (|ofCategory| *1 (|IntervalCategory| *2)) (|ofCategory| *2 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))))) (|qinterval| (*1 *1 *2 *2) (AND (|ofCategory| *1 (|IntervalCategory| *2)) (|ofCategory| *2 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))))) (|interval| (*1 *1 *2) (AND (|ofCategory| *1 (|IntervalCategory| *2)) (|ofCategory| *2 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))))) (|interval| (*1 *1 *2) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|ofCategory| *1 (|IntervalCategory| *3)) (|ofCategory| *3 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))))) (|inf| (*1 *2 *1) (AND (|ofCategory| *1 (|IntervalCategory| *2)) (|ofCategory| *2 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))))) (|sup| (*1 *2 *1) (AND (|ofCategory| *1 (|IntervalCategory| *2)) (|ofCategory| *2 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))))) (|width| (*1 *2 *1) (AND (|ofCategory| *1 (|IntervalCategory| *2)) (|ofCategory| *2 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))))) (|positive?| (*1 *2 *1) (AND (|ofCategory| *1 (|IntervalCategory| *3)) (|ofCategory| *3 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))) (|isDomain| *2 (|Boolean|)))) (|negative?| (*1 *2 *1) (AND (|ofCategory| *1 (|IntervalCategory| *3)) (|ofCategory| *3 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))) (|isDomain| *2 (|Boolean|)))) (|contains?| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|IntervalCategory| *3)) (|ofCategory| *3 (|Join| (|FloatingPointSystem|) (|TranscendentalFunctionCategory|))) (|isDomain| *2 (|Boolean|))))) │ │ │ (|Join| (|GcdDomain|) (|OrderedSet|) (|TranscendentalFunctionCategory|) (|RadicalCategory|) (|RetractableTo| (|Integer|)) (CATEGORY |domain| (ATTRIBUTE |approximate|) (SIGNATURE |interval| ($ |t#1| |t#1|)) (SIGNATURE |qinterval| ($ |t#1| |t#1|)) (SIGNATURE |interval| ($ |t#1|)) (SIGNATURE |interval| ($ (|Fraction| (|Integer|)))) (SIGNATURE |inf| (|t#1| $)) (SIGNATURE |sup| (|t#1| $)) (SIGNATURE |width| (|t#1| $)) (SIGNATURE |positive?| ((|Boolean|) $)) (SIGNATURE |negative?| ((|Boolean|) $)) (SIGNATURE |contains?| ((|Boolean|) $ |t#1|)))) │ │ │ (((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|ArcHyperbolicFunctionCategory|) . T) ((|ArcTrigonometricFunctionCategory|) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|ElementaryFunctionCategory|) . T) ((|EntireRing|) . T) ((|GcdDomain|) . T) ((|HyperbolicFunctionCategory|) . T) ((|IntegralDomain|) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|OrderedSet|) . T) ((|RadicalCategory|) . T) ((|RetractableTo| (|Integer|)) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|TranscendentalFunctionCategory|) . T) ((|TrigonometricFunctionCategory|) . T)) │ │ │ -((|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) 26))) │ │ │ -(((|IrredPolyOverFiniteField| |#1|) (CATEGORY |package| (SIGNATURE |generateIrredPoly| ((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)))) (|FiniteFieldCategory|)) (T |IrredPolyOverFiniteField|)) │ │ │ -((|generateIrredPoly| (*1 *2 *3) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *4)) (|isDomain| *1 (|IrredPolyOverFiniteField| *4)) (|ofCategory| *4 (|FiniteFieldCategory|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |generateIrredPoly| ((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (((|Boolean|) $) NIL (|has| |#1| (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| |#1| (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|shrinkable| (((|Boolean|) (|Boolean|)) 24)) (|setelt| ((|#1| $ (|Integer|) |#1|) 27 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) 51)) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates!| (($ $) 54 (|has| |#1| (|SetCategory|)))) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|remove!| (($ |#1| $) NIL (|has| |#1| (|SetCategory|))) (($ (|Mapping| (|Boolean|) |#1|) $) 43)) (|remove| (($ |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) NIL)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) NIL) (((|Integer|) |#1| $) NIL (|has| |#1| (|SetCategory|))) (((|Integer|) |#1| $ (|Integer|)) NIL (|has| |#1| (|SetCategory|)))) (|physicalLength!| (($ $ (|Integer|)) 13)) (|physicalLength| (((|NonNegativeInteger|) $) 11)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|new| (($ (|NonNegativeInteger|) |#1|) 22)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) 20 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|merge!| (($ $ $) NIL (|has| |#1| (|OrderedSet|))) (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) 34)) (|merge| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxIndex| (((|Integer|) $) 19 (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|insert!| (($ $ $ (|Integer|)) 50) (($ |#1| $ (|Integer|)) 36)) (|insert| (($ |#1| $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|flexibleArray| (($ (|List| |#1|)) 28)) (|first| ((|#1| $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) NIL)) (|fill!| (($ $ |#1|) 18 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 39)) (|entry?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) 14)) (|elt| ((|#1| $ (|Integer|) |#1|) NIL) ((|#1| $ (|Integer|)) 32) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) 49) (($ $ (|Integer|)) 44)) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) 40 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) 31)) (|convert| (((|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) NIL)) (|concat!| (($ $ $) 41) (($ $ |#1|) 38)) (|concat| (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (|List| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) 15 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|IndexedFlexibleArray| |#1| |#2|) (|Join| (|OneDimensionalArrayAggregate| |#1|) (|ExtensibleLinearAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |flexibleArray| ($ (|List| |#1|))) (SIGNATURE |physicalLength| ((|NonNegativeInteger|) $)) (SIGNATURE |physicalLength!| ($ $ (|Integer|))) (SIGNATURE |shrinkable| ((|Boolean|) (|Boolean|))))) (|Type|) (|Integer|)) (T |IndexedFlexibleArray|)) │ │ │ -((|flexibleArray| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|IndexedFlexibleArray| *3 *4)) (|ofType| *4 (|Integer|)))) (|physicalLength| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|IndexedFlexibleArray| *3 *4)) (|ofCategory| *3 (|Type|)) (|ofType| *4 (|Integer|)))) (|physicalLength!| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IndexedFlexibleArray| *3 *4)) (|ofCategory| *3 (|Type|)) (|ofType| *4 *2))) (|shrinkable| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|IndexedFlexibleArray| *3 *4)) (|ofCategory| *3 (|Type|)) (|ofType| *4 (|Integer|))))) │ │ │ -(|Join| (|OneDimensionalArrayAggregate| |#1|) (|ExtensibleLinearAggregate| |#1|) (CATEGORY |domain| (SIGNATURE |flexibleArray| ($ (|List| |#1|))) (SIGNATURE |physicalLength| ((|NonNegativeInteger|) $)) (SIGNATURE |physicalLength!| ($ $ (|Integer|))) (SIGNATURE |shrinkable| ((|Boolean|) (|Boolean|))))) │ │ │ -((|tanh| (($ $) 38)) (|tan| (($ $) 21)) (|sinh| (($ $) 37)) (|sin| (($ $) 22)) (|sech| (($ $) 36)) (|sec| (($ $) 23)) (|pi| (($) 48)) (|log| (($ $) 45)) (|li| (($ $) 17)) (|integral| (($ $ (|SegmentBinding| $)) 7) (($ $ (|Symbol|)) 6)) (|fresnelS| (($ $) 14)) (|fresnelC| (($ $) 13)) (|exp| (($ $) 46)) (|erf| (($ $) 15)) (|dilog| (($ $) 16)) (|csch| (($ $) 35)) (|csc| (($ $) 24)) (|coth| (($ $) 34)) (|cot| (($ $) 25)) (|cosh| (($ $) 33)) (|cos| (($ $) 26)) (|atanh| (($ $) 44)) (|atan| (($ $) 32)) (|asinh| (($ $) 43)) (|asin| (($ $) 31)) (|asech| (($ $) 42)) (|asec| (($ $) 30)) (|acsch| (($ $) 41)) (|acsc| (($ $) 29)) (|acoth| (($ $) 40)) (|acot| (($ $) 28)) (|acosh| (($ $) 39)) (|acos| (($ $) 27)) (|Si| (($ $) 19)) (|Ei| (($ $) 20)) (|Ci| (($ $) 18)) (** (($ $ $) 47))) │ │ │ -(((|LiouvillianFunctionCategory|) (|Category|)) (T |LiouvillianFunctionCategory|)) │ │ │ -((|Ei| (*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))) (|Si| (*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))) (|Ci| (*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))) (|li| (*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))) (|dilog| (*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))) (|erf| (*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))) (|fresnelS| (*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|))) (|fresnelC| (*1 *1 *1) (|ofCategory| *1 (|LiouvillianFunctionCategory|)))) │ │ │ -(|Join| (|PrimitiveFunctionCategory|) (|TranscendentalFunctionCategory|) (CATEGORY |domain| (SIGNATURE |Ei| ($ $)) (SIGNATURE |Si| ($ $)) (SIGNATURE |Ci| ($ $)) (SIGNATURE |li| ($ $)) (SIGNATURE |dilog| ($ $)) (SIGNATURE |erf| ($ $)) (SIGNATURE |fresnelS| ($ $)) (SIGNATURE |fresnelC| ($ $)))) │ │ │ -(((|ArcHyperbolicFunctionCategory|) . T) ((|ArcTrigonometricFunctionCategory|) . T) ((|ElementaryFunctionCategory|) . T) ((|HyperbolicFunctionCategory|) . T) ((|PrimitiveFunctionCategory|) . T) ((|TranscendentalFunctionCategory|) . T) ((|TrigonometricFunctionCategory|) . T)) │ │ │ -((|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) 65)) (|sumOfDivisors| (((|Integer|) (|Integer|)) 64)) (|numberOfDivisors| (((|Integer|) (|Integer|)) 63)) (|moebiusMu| (((|Integer|) (|Integer|)) 68)) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) 48)) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) 45)) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) 20)) (|fibonacci| (((|Integer|) (|Integer|)) 21)) (|eulerPhi| (((|Integer|) (|Integer|)) 57)) (|euler| (((|Integer|) (|Integer|)) 32)) (|divisors| (((|List| (|Integer|)) (|Integer|)) 62)) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 43)) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) 41))) │ │ │ -(((|IntegerNumberTheoryFunctions|) (CATEGORY |package| (SIGNATURE |bernoulli| ((|Fraction| (|Integer|)) (|Integer|))) (SIGNATURE |chineseRemainder| ((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |divisors| ((|List| (|Integer|)) (|Integer|))) (SIGNATURE |euler| ((|Integer|) (|Integer|))) (SIGNATURE |eulerPhi| ((|Integer|) (|Integer|))) (SIGNATURE |fibonacci| ((|Integer|) (|Integer|))) (SIGNATURE |harmonic| ((|Fraction| (|Integer|)) (|Integer|))) (SIGNATURE |jacobi| ((|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |legendre| ((|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |moebiusMu| ((|Integer|) (|Integer|))) (SIGNATURE |numberOfDivisors| ((|Integer|) (|Integer|))) (SIGNATURE |sumOfDivisors| ((|Integer|) (|Integer|))) (SIGNATURE |sumOfKthPowerDivisors| ((|Integer|) (|Integer|) (|NonNegativeInteger|))))) (T |IntegerNumberTheoryFunctions|)) │ │ │ -((|sumOfKthPowerDivisors| (*1 *2 *2 *3) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|sumOfDivisors| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|numberOfDivisors| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|moebiusMu| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|legendre| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|jacobi| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|harmonic| (*1 *2 *3) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)) (|isDomain| *3 (|Integer|)))) (|fibonacci| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|eulerPhi| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|euler| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|divisors| (*1 *2 *3) (AND (|isDomain| *2 (|List| (|Integer|))) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)) (|isDomain| *3 (|Integer|)))) (|chineseRemainder| (*1 *2 *2 *2 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)))) (|bernoulli| (*1 *2 *3) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|IntegerNumberTheoryFunctions|)) (|isDomain| *3 (|Integer|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |bernoulli| ((|Fraction| (|Integer|)) (|Integer|))) (SIGNATURE |chineseRemainder| ((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |divisors| ((|List| (|Integer|)) (|Integer|))) (SIGNATURE |euler| ((|Integer|) (|Integer|))) (SIGNATURE |eulerPhi| ((|Integer|) (|Integer|))) (SIGNATURE |fibonacci| ((|Integer|) (|Integer|))) (SIGNATURE |harmonic| ((|Fraction| (|Integer|)) (|Integer|))) (SIGNATURE |jacobi| ((|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |legendre| ((|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |moebiusMu| ((|Integer|) (|Integer|))) (SIGNATURE |numberOfDivisors| ((|Integer|) (|Integer|))) (SIGNATURE |sumOfDivisors| ((|Integer|) (|Integer|))) (SIGNATURE |sumOfKthPowerDivisors| ((|Integer|) (|Integer|) (|NonNegativeInteger|)))) │ │ │ -((|symmetricSquare| (($ $) 26)) (|adjoint| (($ $) 24)) (D (($) 12))) │ │ │ -(((|LinearOrdinaryDifferentialOperatorCategory&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |symmetricSquare| (|#1| |#1|)) (SIGNATURE |adjoint| (|#1| |#1|)) (SIGNATURE D (|#1|))) (|LinearOrdinaryDifferentialOperatorCategory| |#2|) (|Ring|)) (T |LinearOrdinaryDifferentialOperatorCategory&|)) │ │ │ -NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |symmetricSquare| (|#1| |#1|)) (SIGNATURE |adjoint| (|#1| |#1|)) (SIGNATURE D (|#1|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|symmetricSquare| (($ $) 79 (|has| |#1| (|Field|)))) (|symmetricProduct| (($ $ $) 81 (|has| |#1| (|Field|)))) (|symmetricPower| (($ $ (|NonNegativeInteger|)) 80 (|has| |#1| (|Field|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|rightRemainder| (($ $ $) 44 (|has| |#1| (|Field|)))) (|rightQuotient| (($ $ $) 45 (|has| |#1| (|Field|)))) (|rightLcm| (($ $ $) 47 (|has| |#1| (|Field|)))) (|rightGcd| (($ $ $) 42 (|has| |#1| (|Field|)))) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 41 (|has| |#1| (|Field|)))) (|rightExactQuotient| (((|Union| $ "failed") $ $) 43 (|has| |#1| (|Field|)))) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 46 (|has| |#1| (|Field|)))) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 73 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) 71 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#1| "failed") $) 68)) (|retract| (((|Integer|) $) 74 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) 72 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1| $) 67)) (|reductum| (($ $) 63)) (|recip| (((|Union| $ "failed") $) 33)) (|primitivePart| (($ $) 54 (|has| |#1| (|GcdDomain|)))) (|one?| (((|Boolean|) $) 30)) (|monomial| (($ |#1| (|NonNegativeInteger|)) 61)) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56 (|has| |#1| (|IntegralDomain|)))) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 57 (|has| |#1| (|IntegralDomain|)))) (|minimumDegree| (((|NonNegativeInteger|) $) 65)) (|leftRemainder| (($ $ $) 51 (|has| |#1| (|Field|)))) (|leftQuotient| (($ $ $) 52 (|has| |#1| (|Field|)))) (|leftLcm| (($ $ $) 40 (|has| |#1| (|Field|)))) (|leftGcd| (($ $ $) 49 (|has| |#1| (|Field|)))) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 48 (|has| |#1| (|Field|)))) (|leftExactQuotient| (((|Union| $ "failed") $ $) 50 (|has| |#1| (|Field|)))) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 53 (|has| |#1| (|Field|)))) (|leadingCoefficient| ((|#1| $) 64)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|exquo| (((|Union| $ "failed") $ |#1|) 58 (|has| |#1| (|IntegralDomain|)))) (|elt| ((|#1| $ |#1|) 84)) (|directSum| (($ $ $) 78 (|has| |#1| (|Field|)))) (|degree| (((|NonNegativeInteger|) $) 66)) (|content| ((|#1| $) 55 (|has| |#1| (|GcdDomain|)))) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ (|Fraction| (|Integer|))) 70 (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (($ |#1|) 69)) (|coefficients| (((|List| |#1|) $) 60)) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) 62)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|apply| ((|#1| $ |#1| |#1|) 59)) (|adjoint| (($ $) 82)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($) 83)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 76) (($ |#1| $) 75))) │ │ │ -(((|LinearOrdinaryDifferentialOperatorCategory| |#1|) (|Category|) (|Ring|)) (T |LinearOrdinaryDifferentialOperatorCategory|)) │ │ │ -((D (*1 *1) (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|adjoint| (*1 *1 *1) (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *2 (|Ring|)))) (|symmetricProduct| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|symmetricPower| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *3 (|Field|)))) (|symmetricSquare| (*1 *1 *1) (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|)))) (|directSum| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|LinearOrdinaryDifferentialOperatorCategory| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|Field|))))) │ │ │ -(|Join| (|UnivariateSkewPolynomialCategory| |t#1|) (|Eltable| |t#1| |t#1|) (CATEGORY |domain| (SIGNATURE D ($)) (SIGNATURE |adjoint| ($ $)) (IF (|has| |t#1| (|Field|)) (PROGN (SIGNATURE |symmetricProduct| ($ $ $)) (SIGNATURE |symmetricPower| ($ $ (|NonNegativeInteger|))) (SIGNATURE |symmetricSquare| ($ $)) (SIGNATURE |directSum| ($ $ $))) |noBranch|))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|BasicType|) . T) ((|BiModule| |#1| |#1|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Eltable| |#1| |#1|) . T) ((|FullyRetractableTo| |#1|) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Monoid|) . T) ((|RetractableTo| (|Fraction| (|Integer|))) |has| |#1| (|RetractableTo| (|Fraction| (|Integer|)))) ((|RetractableTo| (|Integer|)) |has| |#1| (|RetractableTo| (|Integer|))) ((|RetractableTo| |#1|) . T) ((|RightModule| |#1|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|UnivariateSkewPolynomialCategory| |#1|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|varList| (((|List| |#1|) $) NIL)) (|right| (($ $) 50)) (|retractable?| (((|Boolean|) $) NIL)) (|retractIfCan| (((|Union| |#1| "failed") $) NIL)) (|retract| ((|#1| $) NIL)) (|min| (($ $ $) NIL)) (|max| (($ $ $) NIL)) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) 22)) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) 14)) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) 23)) (|lexico| (((|Boolean|) $ $) 28)) (|length| (((|PositiveInteger|) $) 35)) (|left| (($ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) 16)) (|coerce| (((|OutputForm|) $) 41) (($ |#1|) 32) (((|OrderedFreeMonoid| |#1|) $) 37) (((|Magma| |#1|) $) 42)) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) 55)) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) 57)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) 51)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) 36))) │ │ │ -(((|LyndonWord| |#1|) (|Join| (|OrderedSet|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |retractable?| ((|Boolean|) $)) (SIGNATURE |left| ($ $)) (SIGNATURE |right| ($ $)) (SIGNATURE |length| ((|PositiveInteger|) $)) (SIGNATURE |lexico| ((|Boolean|) $ $)) (SIGNATURE |coerce| ((|OrderedFreeMonoid| |#1|) $)) (SIGNATURE |coerce| ((|Magma| |#1|) $)) (SIGNATURE |factor| ((|List| $) (|OrderedFreeMonoid| |#1|))) (SIGNATURE |lyndon?| ((|Boolean|) (|OrderedFreeMonoid| |#1|))) (SIGNATURE |lyndon| ($ (|OrderedFreeMonoid| |#1|))) (SIGNATURE |lyndonIfCan| ((|Union| $ "failed") (|OrderedFreeMonoid| |#1|))) (SIGNATURE |varList| ((|List| |#1|) $)) (SIGNATURE |LyndonWordsList1| ((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|))) (SIGNATURE |LyndonWordsList| ((|List| $) (|List| |#1|) (|PositiveInteger|))))) (|OrderedSet|)) (T |LyndonWord|)) │ │ │ -((|retractable?| (*1 *2 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|left| (*1 *1 *1) (AND (|isDomain| *1 (|LyndonWord| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|right| (*1 *1 *1) (AND (|isDomain| *1 (|LyndonWord| *2)) (|ofCategory| *2 (|OrderedSet|)))) (|length| (*1 *2 *1) (AND (|isDomain| *2 (|PositiveInteger|)) (|isDomain| *1 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|lexico| (*1 *2 *1 *1) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OrderedFreeMonoid| *3)) (|isDomain| *1 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|Magma| *3)) (|isDomain| *1 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|factor| (*1 *2 *3) (AND (|isDomain| *3 (|OrderedFreeMonoid| *4)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|List| (|LyndonWord| *4))) (|isDomain| *1 (|LyndonWord| *4)))) (|lyndon?| (*1 *2 *3) (AND (|isDomain| *3 (|OrderedFreeMonoid| *4)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|LyndonWord| *4)))) (|lyndon| (*1 *1 *2) (AND (|isDomain| *2 (|OrderedFreeMonoid| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|LyndonWord| *3)))) (|lyndonIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|OrderedFreeMonoid| *3)) (|ofCategory| *3 (|OrderedSet|)) (|isDomain| *1 (|LyndonWord| *3)))) (|varList| (*1 *2 *1) (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|LyndonWord| *3)) (|ofCategory| *3 (|OrderedSet|)))) (|LyndonWordsList1| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|OneDimensionalArray| (|List| (|LyndonWord| *5)))) (|isDomain| *1 (|LyndonWord| *5)))) (|LyndonWordsList| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *2 (|List| (|LyndonWord| *5))) (|isDomain| *1 (|LyndonWord| *5))))) │ │ │ -(|Join| (|OrderedSet|) (|RetractableTo| |#1|) (CATEGORY |domain| (SIGNATURE |retractable?| ((|Boolean|) $)) (SIGNATURE |left| ($ $)) (SIGNATURE |right| ($ $)) (SIGNATURE |length| ((|PositiveInteger|) $)) (SIGNATURE |lexico| ((|Boolean|) $ $)) (SIGNATURE |coerce| ((|OrderedFreeMonoid| |#1|) $)) (SIGNATURE |coerce| ((|Magma| |#1|) $)) (SIGNATURE |factor| ((|List| $) (|OrderedFreeMonoid| |#1|))) (SIGNATURE |lyndon?| ((|Boolean|) (|OrderedFreeMonoid| |#1|))) (SIGNATURE |lyndon| ($ (|OrderedFreeMonoid| |#1|))) (SIGNATURE |lyndonIfCan| ((|Union| $ "failed") (|OrderedFreeMonoid| |#1|))) (SIGNATURE |varList| ((|List| |#1|) $)) (SIGNATURE |LyndonWordsList1| ((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|))) (SIGNATURE |LyndonWordsList| ((|List| $) (|List| |#1|) (|PositiveInteger|))))) │ │ │ -((|zero?| (((|Boolean|) $) 30)) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) 32)) (|vertConcat| (($ $ $) 57)) (|transpose| (($ |#3|) 53) (($ $) 54)) (|symmetric?| (((|Boolean|) $) 26)) (|swapRows!| (($ $ (|Integer|) (|Integer|)) 59)) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) 60)) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 64)) (|squareTop| (($ $) 55)) (|square?| (((|Boolean|) $) 14)) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) 65)) (|setelt| ((|#2| $ (|Integer|) (|Integer|) |#2|) NIL) (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) 63)) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) 39)) (|pfaffian| ((|#2| $) 108)) (|matrix| (($ (|List| (|List| |#2|))) 35) (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) 37)) (|listOfLists| (((|List| (|List| |#2|)) $) 58)) (|horizConcat| (($ $ $) 56)) (|exquo| (((|Union| $ "failed") $ |#2|) 111)) (|elt| ((|#2| $ (|Integer|) (|Integer|)) NIL) ((|#2| $ (|Integer|) (|Integer|) |#2|) NIL) (($ $ (|List| (|Integer|)) (|List| (|Integer|))) 62)) (|diagonalMatrix| (($ (|List| |#2|)) 41) (($ (|List| $)) 43)) (|diagonal?| (((|Boolean|) $) 23)) (|columnSpace| (((|List| |#4|) $) 94)) (|coerce| (((|OutputForm|) $) NIL) (($ |#4|) 48)) (|antisymmetric?| (((|Boolean|) $) 28)) (/ (($ $ |#2|) 113)) (- (($ $ $) 69) (($ $) 72)) (+ (($ $ $) 67)) (** (($ $ (|NonNegativeInteger|)) 81) (($ $ (|Integer|)) 116)) (* (($ $ $) 78) (($ |#2| $) 74) (($ $ |#2|) 75) (($ (|Integer|) $) 77) ((|#4| $ |#4|) 85) ((|#3| |#3| $) 89))) │ │ │ -(((|MatrixCategory&| |#1| |#2| |#3| |#4|) (CATEGORY |domain| (SIGNATURE ** (|#1| |#1| (|Integer|))) (SIGNATURE |pfaffian| (|#2| |#1|)) (SIGNATURE |columnSpace| ((|List| |#4|) |#1|)) (SIGNATURE / (|#1| |#1| |#2|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#2|)) (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE * (|#3| |#3| |#1|)) (SIGNATURE * (|#4| |#1| |#4|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|)) (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE + (|#1| |#1| |#1|)) (SIGNATURE |setsubMatrix!| (|#1| |#1| (|Integer|) (|Integer|) |#1|)) (SIGNATURE |subMatrix| (|#1| |#1| (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |swapColumns!| (|#1| |#1| (|Integer|) (|Integer|))) (SIGNATURE |swapRows!| (|#1| |#1| (|Integer|) (|Integer|))) (SIGNATURE |setelt| (|#1| |#1| (|List| (|Integer|)) (|List| (|Integer|)) |#1|)) (SIGNATURE |elt| (|#1| |#1| (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |listOfLists| ((|List| (|List| |#2|)) |#1|)) (SIGNATURE |vertConcat| (|#1| |#1| |#1|)) (SIGNATURE |horizConcat| (|#1| |#1| |#1|)) (SIGNATURE |squareTop| (|#1| |#1|)) (SIGNATURE |transpose| (|#1| |#1|)) (SIGNATURE |transpose| (|#1| |#3|)) (SIGNATURE |coerce| (|#1| |#4|)) (SIGNATURE |diagonalMatrix| (|#1| (|List| |#1|))) (SIGNATURE |diagonalMatrix| (|#1| (|List| |#2|))) (SIGNATURE |scalarMatrix| (|#1| (|NonNegativeInteger|) |#2|)) (SIGNATURE |matrix| (|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|)))) (SIGNATURE |matrix| (|#1| (|List| (|List| |#2|)))) (SIGNATURE |zero| (|#1| (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |zero?| ((|Boolean|) |#1|)) (SIGNATURE |antisymmetric?| ((|Boolean|) |#1|)) (SIGNATURE |symmetric?| ((|Boolean|) |#1|)) (SIGNATURE |diagonal?| ((|Boolean|) |#1|)) (SIGNATURE |square?| ((|Boolean|) |#1|)) (SIGNATURE |setelt| (|#2| |#1| (|Integer|) (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|) (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|) (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) (|MatrixCategory| |#2| |#3| |#4|) (|Ring|) (|FiniteLinearAggregate| |#2|) (|FiniteLinearAggregate| |#2|)) (T |MatrixCategory&|)) │ │ │ +((~= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|SetCategory|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $) NIL) (((|Boolean|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| (|Integer|) (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $) NIL) (($ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| (((|Integer|) $ (|Integer|) (|Integer|)) 15 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Integer|) $ (|UniversalSegment| (|Integer|)) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|remove| (($ (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|)))) (($ (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| (((|Integer|) (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ (|Integer|) (|Integer|)) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|)))) (((|Integer|) (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Integer|) (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| (((|Integer|) $ (|Integer|) (|Integer|)) 14 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| (((|Integer|) $ (|Integer|)) 12)) (|position| (((|Integer|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL) (((|Integer|) (|Integer|) $) NIL (|has| (|Integer|) (|SetCategory|))) (((|Integer|) (|Integer|) $ (|Integer|)) NIL (|has| (|Integer|) (|SetCategory|)))) (|parts| (((|List| (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|new| (($ (|NonNegativeInteger|) (|Integer|)) 11)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) 9 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $ $) NIL) (($ $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|members| (((|List| (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|map!| (($ (|Mapping| (|Integer|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Integer|) (|Integer|)) $) NIL) (($ (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|insert| (($ (|Integer|) $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|first| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| (|Integer|) "failed") (|Mapping| (|Boolean|) (|Integer|)) $) NIL)) (|fill!| (($ $ (|Integer|)) 16 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|Integer|)))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|Equation| (|Integer|))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|Integer|) (|Integer|)) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|List| (|Integer|)) (|List| (|Integer|))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|entries| (((|List| (|Integer|)) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) 10)) (|elt| (((|Integer|) $ (|Integer|) (|Integer|)) NIL) (((|Integer|) $ (|Integer|)) 13) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| (|Integer|) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|Integer|))) NIL)) (|concat| (($ $ (|Integer|)) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ (|List| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) 7 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|U32Vector|) (|OneDimensionalArrayAggregate| (|Integer|))) (T |U32Vector|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE ** (|#1| |#1| (|Integer|))) (SIGNATURE |pfaffian| (|#2| |#1|)) (SIGNATURE |columnSpace| ((|List| |#4|) |#1|)) (SIGNATURE / (|#1| |#1| |#2|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#2|)) (SIGNATURE ** (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE * (|#3| |#3| |#1|)) (SIGNATURE * (|#4| |#1| |#4|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|)) (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE + (|#1| |#1| |#1|)) (SIGNATURE |setsubMatrix!| (|#1| |#1| (|Integer|) (|Integer|) |#1|)) (SIGNATURE |subMatrix| (|#1| |#1| (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |swapColumns!| (|#1| |#1| (|Integer|) (|Integer|))) (SIGNATURE |swapRows!| (|#1| |#1| (|Integer|) (|Integer|))) (SIGNATURE |setelt| (|#1| |#1| (|List| (|Integer|)) (|List| (|Integer|)) |#1|)) (SIGNATURE |elt| (|#1| |#1| (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |listOfLists| ((|List| (|List| |#2|)) |#1|)) (SIGNATURE |vertConcat| (|#1| |#1| |#1|)) (SIGNATURE |horizConcat| (|#1| |#1| |#1|)) (SIGNATURE |squareTop| (|#1| |#1|)) (SIGNATURE |transpose| (|#1| |#1|)) (SIGNATURE |transpose| (|#1| |#3|)) (SIGNATURE |coerce| (|#1| |#4|)) (SIGNATURE |diagonalMatrix| (|#1| (|List| |#1|))) (SIGNATURE |diagonalMatrix| (|#1| (|List| |#2|))) (SIGNATURE |scalarMatrix| (|#1| (|NonNegativeInteger|) |#2|)) (SIGNATURE |matrix| (|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|)))) (SIGNATURE |matrix| (|#1| (|List| (|List| |#2|)))) (SIGNATURE |zero| (|#1| (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |zero?| ((|Boolean|) |#1|)) (SIGNATURE |antisymmetric?| ((|Boolean|) |#1|)) (SIGNATURE |symmetric?| ((|Boolean|) |#1|)) (SIGNATURE |diagonal?| ((|Boolean|) |#1|)) (SIGNATURE |square?| ((|Boolean|) |#1|)) (SIGNATURE |setelt| (|#2| |#1| (|Integer|) (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|) (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|) (|Integer|))) (SIGNATURE |coerce| ((|OutputForm|) |#1|))) │ │ │ -((|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) 25)) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) 21)) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) 26)) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) 14)) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) 18) (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) 16)) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) 20)) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) 12)) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) 30))) │ │ │ -(((|StorageEfficientMatrixOperations| |#1|) (CATEGORY |package| (SIGNATURE |copy!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |plus!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |minus!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |minus!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |leftScalarTimes!| ((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|))) (SIGNATURE |rightScalarTimes!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|)) (SIGNATURE |times!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |power!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|))) (SIGNATURE ** ((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)))) (|Ring|)) (T |StorageEfficientMatrixOperations|)) │ │ │ -((** (*1 *2 *2 *3) (AND (|isDomain| *2 (|Matrix| *4)) (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *4)))) (|power!| (*1 *2 *2 *2 *2 *2 *3) (AND (|isDomain| *2 (|Matrix| *4)) (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *4)))) (|times!| (*1 *2 *2 *2 *2) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))) (|rightScalarTimes!| (*1 *2 *2 *2 *3) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))) (|leftScalarTimes!| (*1 *2 *2 *3 *2) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))) (|minus!| (*1 *2 *2 *2 *2) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))) (|minus!| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))) (|plus!| (*1 *2 *2 *2 *2) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *3)))) (|copy!| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Matrix| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StorageEfficientMatrixOperations| *3))))) │ │ │ -(CATEGORY |package| (SIGNATURE |copy!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |plus!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |minus!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |minus!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |leftScalarTimes!| ((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|))) (SIGNATURE |rightScalarTimes!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|)) (SIGNATURE |times!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|))) (SIGNATURE |power!| ((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|))) (SIGNATURE ** ((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|rightRemainder| (($ $ $) NIL (|has| |#1| (|Field|)))) (|rightQuotient| (($ $ $) NIL (|has| |#1| (|Field|)))) (|rightLcm| (($ $ $) NIL (|has| |#1| (|Field|)))) (|rightGcd| (($ $ $) NIL (|has| |#1| (|Field|)))) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| |#1| (|Field|)))) (|rightExactQuotient| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|Field|)))) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 25 (|has| |#1| (|Field|)))) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#1| "failed") $) NIL)) (|retract| (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1| $) NIL)) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|primitivePart| (($ $) NIL (|has| |#1| (|GcdDomain|)))) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) NIL)) (|one?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| (|NonNegativeInteger|)) NIL)) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 21 (|has| |#1| (|IntegralDomain|)))) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 19 (|has| |#1| (|IntegralDomain|)))) (|minimumDegree| (((|NonNegativeInteger|) $) NIL)) (|leftRemainder| (($ $ $) NIL (|has| |#1| (|Field|)))) (|leftQuotient| (($ $ $) NIL (|has| |#1| (|Field|)))) (|leftLcm| (($ $ $) NIL (|has| |#1| (|Field|)))) (|leftGcd| (($ $ $) NIL (|has| |#1| (|Field|)))) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| |#1| (|Field|)))) (|leftExactQuotient| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|Field|)))) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 23 (|has| |#1| (|Field|)))) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|exquo| (((|Union| $ "failed") $ |#1|) NIL (|has| |#1| (|IntegralDomain|)))) (|degree| (((|NonNegativeInteger|) $) NIL)) (|content| ((|#1| $) NIL (|has| |#1| (|GcdDomain|)))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ (|Fraction| (|Integer|))) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (($ |#1|) NIL)) (|coefficients| (((|List| |#1|) $) NIL)) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) NIL)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|apply| ((|#1| $ |#1| |#1|) 15)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) │ │ │ -(((|SparseUnivariateSkewPolynomial| |#1| |#2| |#3|) (|Join| (|UnivariateSkewPolynomialCategory| |#1|) (CATEGORY |domain| (SIGNATURE |outputForm| ((|OutputForm|) $ (|OutputForm|))))) (|Ring|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) (T |SparseUnivariateSkewPolynomial|)) │ │ │ -((|outputForm| (*1 *2 *1 *2) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|SparseUnivariateSkewPolynomial| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofType| *4 (|Automorphism| *3)) (|ofType| *5 (|Mapping| *3 *3))))) │ │ │ -(|Join| (|UnivariateSkewPolynomialCategory| |#1|) (CATEGORY |domain| (SIGNATURE |outputForm| ((|OutputForm|) $ (|OutputForm|))))) │ │ │ -((|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) 20)) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) 43 (|has| |#1| (|Field|)))) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) 40 (|has| |#1| (|IntegralDomain|)))) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) 39 (|has| |#1| (|IntegralDomain|)))) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) 42 (|has| |#1| (|Field|)))) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) 31))) │ │ │ -(((|UnivariateSkewPolynomialCategoryOps| |#1| |#2|) (CATEGORY |package| (SIGNATURE |times| (|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|))) (SIGNATURE |apply| (|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|))) (IF (|has| |#1| (|IntegralDomain|)) (PROGN (SIGNATURE |monicLeftDivide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|))) (SIGNATURE |monicRightDivide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)))) |noBranch|) (IF (|has| |#1| (|Field|)) (PROGN (SIGNATURE |leftDivide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|))) (SIGNATURE |rightDivide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)))) |noBranch|)) (|Ring|) (|UnivariateSkewPolynomialCategory| |#1|)) (T |UnivariateSkewPolynomialCategoryOps|)) │ │ │ -((|rightDivide| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|Automorphism| *5)) (|ofCategory| *5 (|Field|)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3))) (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *5 *3)) (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *5)))) (|leftDivide| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|Automorphism| *5)) (|ofCategory| *5 (|Field|)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3))) (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *5 *3)) (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *5)))) (|monicRightDivide| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|Automorphism| *5)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3))) (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *5 *3)) (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *5)))) (|monicLeftDivide| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|Automorphism| *5)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3))) (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *5 *3)) (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *5)))) (|apply| (*1 *2 *3 *2 *2 *4 *5) (AND (|isDomain| *4 (|Automorphism| *2)) (|isDomain| *5 (|Mapping| *2 *2)) (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *2 *3)) (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *2)))) (|times| (*1 *2 *2 *2 *3 *4) (AND (|isDomain| *3 (|Automorphism| *5)) (|isDomain| *4 (|Mapping| *5 *5)) (|ofCategory| *5 (|Ring|)) (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *5 *2)) (|ofCategory| *2 (|UnivariateSkewPolynomialCategory| *5))))) │ │ │ -(CATEGORY |package| (SIGNATURE |times| (|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|))) (SIGNATURE |apply| (|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|))) (IF (|has| |#1| (|IntegralDomain|)) (PROGN (SIGNATURE |monicLeftDivide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|))) (SIGNATURE |monicRightDivide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)))) |noBranch|) (IF (|has| |#1| (|Field|)) (PROGN (SIGNATURE |leftDivide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|))) (SIGNATURE |rightDivide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)))) |noBranch|)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|rightRemainder| (($ $ $) NIL (|has| |#2| (|Field|)))) (|rightQuotient| (($ $ $) NIL (|has| |#2| (|Field|)))) (|rightLcm| (($ $ $) NIL (|has| |#2| (|Field|)))) (|rightGcd| (($ $ $) NIL (|has| |#2| (|Field|)))) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| |#2| (|Field|)))) (|rightExactQuotient| (((|Union| $ "failed") $ $) NIL (|has| |#2| (|Field|)))) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#2| (|Field|)))) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (|has| |#2| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#2| "failed") $) NIL)) (|retract| (((|Integer|) $) NIL (|has| |#2| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) NIL (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#2| $) NIL)) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|primitivePart| (($ $) NIL (|has| |#2| (|GcdDomain|)))) (|one?| (((|Boolean|) $) NIL)) (|monomial| (($ |#2| (|NonNegativeInteger|)) 16)) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#2| (|IntegralDomain|)))) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#2| (|IntegralDomain|)))) (|minimumDegree| (((|NonNegativeInteger|) $) NIL)) (|leftRemainder| (($ $ $) NIL (|has| |#2| (|Field|)))) (|leftQuotient| (($ $ $) NIL (|has| |#2| (|Field|)))) (|leftLcm| (($ $ $) NIL (|has| |#2| (|Field|)))) (|leftGcd| (($ $ $) NIL (|has| |#2| (|Field|)))) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| |#2| (|Field|)))) (|leftExactQuotient| (((|Union| $ "failed") $ $) NIL (|has| |#2| (|Field|)))) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#2| (|Field|)))) (|leadingCoefficient| ((|#2| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|exquo| (((|Union| $ "failed") $ |#2|) NIL (|has| |#2| (|IntegralDomain|)))) (|degree| (((|NonNegativeInteger|) $) NIL)) (|content| ((|#2| $) NIL (|has| |#2| (|GcdDomain|)))) (|coerce| (((|OutputForm|) $) 23) (($ (|Integer|)) NIL) (($ (|Fraction| (|Integer|))) NIL (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|))))) (($ |#2|) NIL) (($ (|Variable| |#1|)) 18)) (|coefficients| (((|List| |#2|) $) NIL)) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) NIL)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|apply| ((|#2| $ |#2| |#2|) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) 13 T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) │ │ │ -(((|UnivariateSkewPolynomial| |#1| |#2| |#3| |#4|) (|Join| (|UnivariateSkewPolynomialCategory| |#2|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Variable| |#1|))))) (|Symbol|) (|Ring|) (|Automorphism| |#2|) (|Mapping| |#2| |#2|)) (T |UnivariateSkewPolynomial|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Variable| *3)) (|ofType| *3 (|Symbol|)) (|isDomain| *1 (|UnivariateSkewPolynomial| *3 *4 *5 *6)) (|ofCategory| *4 (|Ring|)) (|ofType| *5 (|Automorphism| *4)) (|ofType| *6 (|Mapping| *4 *4))))) │ │ │ -(|Join| (|UnivariateSkewPolynomialCategory| |#2|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Variable| |#1|))))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|vectorise| (((|Vector| $) $ $) 116)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) 90)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 73)) (|squareFree| (((|Factored| $) $) 72)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|size| (((|NonNegativeInteger|)) 100)) (|setTower!| (((|Void|) $) 120)) (|sample| (($) 16 T CONST)) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) 84)) (|rem| (($ $ $) 54)) (|reduce| (($ (|SparseUnivariatePolynomial| $)) 110)) (|recip| (((|Union| $ "failed") $) 33)) (|random| (($) 103)) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|primitiveElement| (($) 88)) (|primitive?| (((|Boolean|) $) 87)) (|primeFrobenius| (($ $) 77) (($ $ (|NonNegativeInteger|)) 76)) (|prime?| (((|Boolean|) $) 71)) (|previousTower| (($ $) 115)) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) 79) (((|PositiveInteger|) $) 85)) (|one?| (((|Boolean|) $) 30)) (|nextItem| (((|Union| $ "failed") $) 99)) (|newElement| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) 119) (($ (|SparseUnivariatePolynomial| $) $ (|Symbol|)) 118)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|maxTower| (($ (|List| $)) 113)) (|lookup| (((|PositiveInteger|) $) 102)) (|lift| (((|SparseUnivariatePolynomial| $) $ $) 109) (((|SparseUnivariatePolynomial| $) $) 108)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 70)) (|init| (($) 98 T CONST)) (|index| (($ (|PositiveInteger|)) 101)) (|hash| (((|SingleInteger|) $) 10)) (|ground?| (((|Boolean|) $) 112)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|fullOutput| (((|OutputForm|) $) 121)) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) 91)) (|factor| (((|Factored| $) $) 74)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|extDegree| (((|PositiveInteger|) $) 114)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|enumerate| (((|List| $)) 104)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|distinguishedRootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) $) 111)) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) 78) (((|NonNegativeInteger|) $) 86)) (|differentiate| (($ $ (|NonNegativeInteger|)) 96) (($ $) 94)) (|definingPolynomial| (((|SparseUnivariatePolynomial| $) $) 107) (((|SparseUnivariatePolynomial| $)) 106)) (|createPrimitiveElement| (($) 89)) (|conjugate| (($ $) 117)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) 92)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Fraction| (|Integer|))) 65)) (|charthRoot| (((|Union| $ "failed") $) 80) (($ $) 93)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 38)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 69)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $ (|NonNegativeInteger|)) 97) (($ $) 95)) (= (((|Boolean|) $ $) 6)) (/ (($ $ $) 64)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 68)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 67) (($ (|Fraction| (|Integer|)) $) 66))) │ │ │ -(((|PseudoAlgebraicClosureOfFiniteFieldCategory|) (|Category|)) (T |PseudoAlgebraicClosureOfFiniteFieldCategory|)) │ │ │ +(|OneDimensionalArrayAggregate| (|Integer|)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sign| (((|Integer|) $) 52)) (|sample| (($) 16 T CONST)) (|recip| (((|Union| $ "failed") $) 33)) (|positive?| (((|Boolean|) $) 50)) (|one?| (((|Boolean|) $) 30)) (|negative?| (((|Boolean|) $) 51)) (|min| (($ $ $) 49)) (|max| (($ $ $) 48)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42)) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 38)) (|abs| (($ $) 53)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (>= (((|Boolean|) $ $) 46)) (> (((|Boolean|) $ $) 45)) (= (((|Boolean|) $ $) 6)) (<= (((|Boolean|) $ $) 47)) (< (((|Boolean|) $ $) 44)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ +(((|OrderedIntegralDomain|) (|Category|)) (T |OrderedIntegralDomain|)) │ │ │ NIL │ │ │ -(|Join| (|FiniteFieldCategory|) (|PseudoAlgebraicClosureOfPerfectFieldCategory|)) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DifferentialRing|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|FieldOfPrimeCharacteristic|) . T) ((|Finite|) . T) ((|FiniteFieldCategory|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|PseudoAlgebraicClosureOfPerfectFieldCategory|) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|StepThrough|) . T) ((|UniqueFactorizationDomain|) . T)) │ │ │ -((|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) 16)) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) 18)) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) 13))) │ │ │ -(((|PrimitiveArrayFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |scan| ((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|)) (SIGNATURE |map| ((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)))) (|Type|) (|Type|)) (T |PrimitiveArrayFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|PrimitiveArray| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|isDomain| *2 (|PrimitiveArray| *6)) (|isDomain| *1 (|PrimitiveArrayFunctions2| *5 *6)))) (|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) (|isDomain| *4 (|PrimitiveArray| *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|PrimitiveArrayFunctions2| *5 *2)))) (|scan| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *5 *6 *5)) (|isDomain| *4 (|PrimitiveArray| *6)) (|ofCategory| *6 (|Type|)) (|ofCategory| *5 (|Type|)) (|isDomain| *2 (|PrimitiveArray| *5)) (|isDomain| *1 (|PrimitiveArrayFunctions2| *6 *5))))) │ │ │ -(CATEGORY |package| (SIGNATURE |scan| ((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|)) (SIGNATURE |reduce| (|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|)) (SIGNATURE |map| ((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)))) │ │ │ -((|vectorcombination| (((|Void|) (|U32Vector|) (|Integer|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 33)) (|vectoraddmul| (((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 27)) (|truncatedmultiplication| (((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|)) 45)) (|truncatedmuladd| (((|Void|) (|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|)) 44)) (|tomodpa| (((|U32Vector|) (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) 26)) (|resultant| (((|Integer|) (|U32Vector|) (|U32Vector|) (|Integer|)) 54)) (|remainder!| (((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|)) 36)) (|pow| (((|U32Vector|) (|U32Vector|) (|PositiveInteger|) (|NonNegativeInteger|) (|Integer|)) 48)) (|mulbyscalar| (((|Void|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|)) 31)) (|mulbybinomial| (((|Void|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|)) 28) (((|Void|) (|U32Vector|) (|Integer|) (|Integer|)) 30)) (|mul| (((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|)) 41)) (|lcm| (((|U32Vector|) (|PrimitiveArray| (|U32Vector|)) (|Integer|) (|Integer|) (|Integer|)) 42)) (|gcd| (((|U32Vector|) (|PrimitiveArray| (|U32Vector|)) (|Integer|) (|Integer|) (|Integer|)) 40) (((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|)) 38)) (|extendedgcd| (((|List| (|U32Vector|)) (|U32Vector|) (|U32Vector|) (|Integer|)) 53)) (|evalat| (((|Integer|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|)) 15)) (|divide!| (((|Void|) (|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|)) 35)) (|differentiate| (((|U32Vector|) (|U32Vector|) (|NonNegativeInteger|) (|Integer|)) 51) (((|U32Vector|) (|U32Vector|) (|Integer|)) 50)) (|degree| (((|Integer|) (|U32Vector|)) 32)) (|copyslice| (((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|)) 12)) (|copyfirst| (((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|)) 11))) │ │ │ -(((|U32VectorPolynomialOperations|) (CATEGORY |package| (SIGNATURE |copyfirst| ((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |copyslice| ((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|))) (SIGNATURE |evalat| ((|Integer|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |vectoraddmul| ((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |mulbybinomial| ((|Void|) (|U32Vector|) (|Integer|) (|Integer|))) (SIGNATURE |mulbybinomial| ((|Void|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |mulbyscalar| ((|Void|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |mul| ((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |truncatedmultiplication| ((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|))) (SIGNATURE |truncatedmuladd| ((|Void|) (|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|))) (SIGNATURE |pow| ((|U32Vector|) (|U32Vector|) (|PositiveInteger|) (|NonNegativeInteger|) (|Integer|))) (SIGNATURE |differentiate| ((|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |differentiate| ((|U32Vector|) (|U32Vector|) (|NonNegativeInteger|) (|Integer|))) (SIGNATURE |divide!| ((|Void|) (|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |remainder!| ((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |vectorcombination| ((|Void|) (|U32Vector|) (|Integer|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |tomodpa| ((|U32Vector|) (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|))) (SIGNATURE |gcd| ((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |gcd| ((|U32Vector|) (|PrimitiveArray| (|U32Vector|)) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |lcm| ((|U32Vector|) (|PrimitiveArray| (|U32Vector|)) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |degree| ((|Integer|) (|U32Vector|))) (SIGNATURE |extendedgcd| ((|List| (|U32Vector|)) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |resultant| ((|Integer|) (|U32Vector|) (|U32Vector|) (|Integer|))))) (T |U32VectorPolynomialOperations|)) │ │ │ -((|resultant| (*1 *2 *3 *3 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|U32Vector|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|extendedgcd| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|List| (|U32Vector|))) (|isDomain| *1 (|U32VectorPolynomialOperations|)) (|isDomain| *3 (|U32Vector|)))) (|degree| (*1 *2 *3) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|lcm| (*1 *2 *3 *4 *4 *4) (AND (|isDomain| *3 (|PrimitiveArray| (|U32Vector|))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|U32Vector|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|gcd| (*1 *2 *3 *4 *4 *4) (AND (|isDomain| *3 (|PrimitiveArray| (|U32Vector|))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|U32Vector|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|gcd| (*1 *2 *2 *2 *3) (AND (|isDomain| *2 (|U32Vector|)) (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|tomodpa| (*1 *2 *3 *4) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| (|Integer|))) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|U32Vector|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|vectorcombination| (*1 *2 *3 *4 *3 *4 *4 *4 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|remainder!| (*1 *2 *3 *3 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|divide!| (*1 *2 *3 *3 *3 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|differentiate| (*1 *2 *2 *3 *4) (AND (|isDomain| *2 (|U32Vector|)) (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *4 (|Integer|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|differentiate| (*1 *2 *2 *3) (AND (|isDomain| *2 (|U32Vector|)) (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|pow| (*1 *2 *2 *3 *4 *5) (AND (|isDomain| *2 (|U32Vector|)) (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *4 (|NonNegativeInteger|)) (|isDomain| *5 (|Integer|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|truncatedmuladd| (*1 *2 *3 *3 *3 *4 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|truncatedmultiplication| (*1 *2 *2 *2 *3 *3) (AND (|isDomain| *2 (|U32Vector|)) (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|mul| (*1 *2 *2 *2 *3) (AND (|isDomain| *2 (|U32Vector|)) (|isDomain| *3 (|Integer|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|mulbyscalar| (*1 *2 *3 *4 *4 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|mulbybinomial| (*1 *2 *3 *4 *4 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|mulbybinomial| (*1 *2 *3 *4 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|vectoraddmul| (*1 *2 *3 *3 *4 *4 *4 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|evalat| (*1 *2 *3 *2 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|U32Vector|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|copyslice| (*1 *2 *3 *3 *4 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|)))) (|copyfirst| (*1 *2 *3 *3 *4) (AND (|isDomain| *3 (|U32Vector|)) (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|U32VectorPolynomialOperations|))))) │ │ │ -(CATEGORY |package| (SIGNATURE |copyfirst| ((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |copyslice| ((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|))) (SIGNATURE |evalat| ((|Integer|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |vectoraddmul| ((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |mulbybinomial| ((|Void|) (|U32Vector|) (|Integer|) (|Integer|))) (SIGNATURE |mulbybinomial| ((|Void|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |mulbyscalar| ((|Void|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |mul| ((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |truncatedmultiplication| ((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|))) (SIGNATURE |truncatedmuladd| ((|Void|) (|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|) (|Integer|))) (SIGNATURE |pow| ((|U32Vector|) (|U32Vector|) (|PositiveInteger|) (|NonNegativeInteger|) (|Integer|))) (SIGNATURE |differentiate| ((|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |differentiate| ((|U32Vector|) (|U32Vector|) (|NonNegativeInteger|) (|Integer|))) (SIGNATURE |divide!| ((|Void|) (|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |remainder!| ((|Void|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |vectorcombination| ((|Void|) (|U32Vector|) (|Integer|) (|U32Vector|) (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |tomodpa| ((|U32Vector|) (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|))) (SIGNATURE |gcd| ((|U32Vector|) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |gcd| ((|U32Vector|) (|PrimitiveArray| (|U32Vector|)) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |lcm| ((|U32Vector|) (|PrimitiveArray| (|U32Vector|)) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |degree| ((|Integer|) (|U32Vector|))) (SIGNATURE |extendedgcd| ((|List| (|U32Vector|)) (|U32Vector|) (|U32Vector|) (|Integer|))) (SIGNATURE |resultant| ((|Integer|) (|U32Vector|) (|U32Vector|) (|Integer|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 62 (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) 63 (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#1| "failed") $) 28)) (|retract| (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1| $) NIL)) (|reductum| (($ $) 24)) (|recip| (((|Union| $ "failed") $) 35)) (|primitivePart| (($ $) NIL (|has| |#1| (|GcdDomain|)))) (|pomopo!| (($ $ |#1| |#2| $) 47)) (|one?| (((|Boolean|) $) NIL)) (|numberOfMonomials| (((|NonNegativeInteger|) $) 16)) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| |#2|) NIL)) (|minimumDegree| ((|#2| $) 19)) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|leadingMonomial| (($ $) 23)) (|leadingCoefficient| ((|#1| $) 21)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|ground?| (((|Boolean|) $) 40)) (|ground| ((|#1| $) NIL)) (|fmecg| (($ $ |#2| |#1| $) 71 (AND (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#1| (|IntegralDomain|))))) (|exquo| (((|Union| $ "failed") $ $) 73 (|has| |#1| (|IntegralDomain|))) (((|Union| $ "failed") $ |#1|) 69 (|has| |#1| (|IntegralDomain|)))) (|degree| ((|#2| $) 17)) (|content| ((|#1| $) NIL (|has| |#1| (|GcdDomain|)))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) 39) (($ $) NIL (|has| |#1| (|IntegralDomain|))) (($ |#1|) 34) (($ (|Fraction| (|Integer|))) NIL (OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))))) (|coefficients| (((|List| |#1|) $) NIL)) (|coefficient| ((|#1| $ |#2|) 31)) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 15)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) 58 (|has| |#1| (|CommutativeRing|)))) (|associates?| (((|Boolean|) $ $) 68 (|has| |#1| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) 54) (($ $ (|NonNegativeInteger|)) 55)) (|Zero| (($) 22 T CONST)) (|One| (($) 12 T CONST)) (= (((|Boolean|) $ $) 67)) (/ (($ $ |#1|) 74 (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) 53) (($ $ (|NonNegativeInteger|)) 51)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ -(((|PolynomialRing| |#1| |#2|) (|Join| (|FiniteAbelianMonoidRing| |#1| |#2|) (CATEGORY |domain| (IF (|has| |#1| (|IntegralDomain|)) (IF (|has| |#2| (|CancellationAbelianMonoid|)) (SIGNATURE |fmecg| ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (ATTRIBUTE |canonicalUnitNormal|) |noBranch|))) (|Ring|) (|OrderedAbelianMonoid|)) (T |PolynomialRing|)) │ │ │ -((|fmecg| (*1 *1 *1 *2 *3 *1) (AND (|isDomain| *1 (|PolynomialRing| *3 *2)) (|ofCategory| *2 (|CancellationAbelianMonoid|)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|))))) │ │ │ -(|Join| (|FiniteAbelianMonoidRing| |#1| |#2|) (CATEGORY |domain| (IF (|has| |#1| (|IntegralDomain|)) (IF (|has| |#2| (|CancellationAbelianMonoid|)) (SIGNATURE |fmecg| ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (ATTRIBUTE |canonicalUnitNormal|) |noBranch|))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|setelt| ((|#2| $ (|Integer|) |#2|) NIL)) (|removeConjugate| (((|List| $) (|List| $) (|NonNegativeInteger|)) 41) (((|List| $) (|List| $)) 42)) (|rational?| (((|Boolean|) $ (|NonNegativeInteger|)) 38) (((|Boolean|) $) 40)) (|projectivePoint| (($ (|List| |#2|)) 25)) (|pointValue| (((|List| |#2|) $) 27)) (|orbit| (((|List| $) $) 50) (((|List| $) $ (|NonNegativeInteger|)) 47)) (|list| (((|List| |#2|) $) 26)) (|latex| (((|String|) $) NIL)) (|lastNonNull| (((|Integer|) $) 59)) (|lastNonNul| (((|Integer|) $) 62)) (|homogenize| (($ $ (|Integer|)) 36) (($ $) 52)) (|hash| (((|SingleInteger|) $) NIL)) (|elt| ((|#2| $ (|Integer|)) 32)) (|degree| (((|PositiveInteger|) $) 16)) (|definingField| ((|#2| $) 22)) (|conjugate| (($ $ (|NonNegativeInteger|)) 30) (($ $) 49)) (|coerce| (((|OutputForm|) $) 19) (((|List| |#2|) $) 24) (($ (|List| |#2|)) 58)) (= (((|Boolean|) $ $) 37))) │ │ │ -(((|ProjectiveSpace| |#1| |#2|) (|ProjectiveSpaceCategory| |#2|) (|NonNegativeInteger|) (|Field|)) (T |ProjectiveSpace|)) │ │ │ +(|Join| (|IntegralDomain|) (|OrderedRing|)) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|EntireRing|) . T) ((|IntegralDomain|) . T) ((|LeftModule| $) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|OrderedAbelianGroup|) . T) ((|OrderedAbelianMonoid|) . T) ((|OrderedAbelianSemiGroup|) . T) ((|OrderedCancellationAbelianMonoid|) . T) ((|OrderedRing|) . T) ((|OrderedSet|) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|wholePart| (((|BalancedPAdicInteger| |#1|) $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|EuclideanDomain|)))) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|PolynomialFactorizationExplicit|)))) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|PolynomialFactorizationExplicit|)))) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|sign| (((|Integer|) $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|OrderedIntegralDomain|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|BalancedPAdicInteger| |#1|) "failed") $) NIL) (((|Union| (|Symbol|) "failed") $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|RetractableTo| (|Symbol|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|RetractableTo| (|Integer|)))) (((|Union| (|Integer|) "failed") $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|RetractableTo| (|Integer|))))) (|retract| (((|BalancedPAdicInteger| |#1|) $) NIL) (((|Symbol|) $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|RetractableTo| (|Symbol|)))) (((|Fraction| (|Integer|)) $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|RetractableTo| (|Integer|)))) (((|Integer|) $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|RetractableTo| (|Integer|))))) (|removeZeroes| (($ $) NIL) (($ (|Integer|) $) NIL)) (|rem| (($ $ $) NIL)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|BalancedPAdicInteger| |#1|))) (|:| |vec| (|Vector| (|BalancedPAdicInteger| |#1|)))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| (|BalancedPAdicInteger| |#1|)) (|Matrix| $)) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|random| (($) NIL (|has| (|BalancedPAdicInteger| |#1|) (|IntegerNumberSystem|)))) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|prime?| (((|Boolean|) $) NIL)) (|positive?| (((|Boolean|) $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|OrderedIntegralDomain|)))) (|patternMatch| (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|PatternMatchable| (|Integer|)))) (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|PatternMatchable| (|Float|))))) (|one?| (((|Boolean|) $) NIL)) (|numerator| (($ $) NIL)) (|numer| (((|BalancedPAdicInteger| |#1|) $) NIL)) (|nextItem| (((|Union| $ "failed") $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|StepThrough|)))) (|negative?| (((|Boolean|) $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|OrderedIntegralDomain|)))) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|min| (($ $ $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|OrderedSet|)))) (|map| (($ (|Mapping| (|BalancedPAdicInteger| |#1|) (|BalancedPAdicInteger| |#1|)) $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) NIL)) (|init| (($) NIL (|has| (|BalancedPAdicInteger| |#1|) (|StepThrough|)) CONST)) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) NIL)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|fractionPart| (($ $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|EuclideanDomain|)))) (|floor| (((|BalancedPAdicInteger| |#1|) $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|IntegerNumberSystem|)))) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|PolynomialFactorizationExplicit|)))) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|PolynomialFactorizationExplicit|)))) (|factor| (((|Factored| $) $) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|eval| (($ $ (|List| (|BalancedPAdicInteger| |#1|)) (|List| (|BalancedPAdicInteger| |#1|))) NIL (|has| (|BalancedPAdicInteger| |#1|) (|Evalable| (|BalancedPAdicInteger| |#1|)))) (($ $ (|BalancedPAdicInteger| |#1|) (|BalancedPAdicInteger| |#1|)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|Evalable| (|BalancedPAdicInteger| |#1|)))) (($ $ (|Equation| (|BalancedPAdicInteger| |#1|))) NIL (|has| (|BalancedPAdicInteger| |#1|) (|Evalable| (|BalancedPAdicInteger| |#1|)))) (($ $ (|List| (|Equation| (|BalancedPAdicInteger| |#1|)))) NIL (|has| (|BalancedPAdicInteger| |#1|) (|Evalable| (|BalancedPAdicInteger| |#1|)))) (($ $ (|List| (|Symbol|)) (|List| (|BalancedPAdicInteger| |#1|))) NIL (|has| (|BalancedPAdicInteger| |#1|) (|InnerEvalable| (|Symbol|) (|BalancedPAdicInteger| |#1|)))) (($ $ (|Symbol|) (|BalancedPAdicInteger| |#1|)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|InnerEvalable| (|Symbol|) (|BalancedPAdicInteger| |#1|))))) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|elt| (($ $ (|BalancedPAdicInteger| |#1|)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|Eltable| (|BalancedPAdicInteger| |#1|) (|BalancedPAdicInteger| |#1|))))) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|differentiate| (($ $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|DifferentialRing|))) (($ $ (|Symbol|)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| (|BalancedPAdicInteger| |#1|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| (|BalancedPAdicInteger| |#1|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| (|BalancedPAdicInteger| |#1|) (|BalancedPAdicInteger| |#1|)) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| (|BalancedPAdicInteger| |#1|) (|BalancedPAdicInteger| |#1|))) NIL)) (|denominator| (($ $) NIL)) (|denom| (((|BalancedPAdicInteger| |#1|) $) NIL)) (|convert| (((|Pattern| (|Integer|)) $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|ConvertibleTo| (|Pattern| (|Integer|))))) (((|Pattern| (|Float|)) $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|ConvertibleTo| (|Pattern| (|Float|))))) (((|InputForm|) $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|ConvertibleTo| (|InputForm|)))) (((|Float|) $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|RealConstant|))) (((|DoubleFloat|) $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|RealConstant|)))) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) NIL)) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) NIL (AND (|has| $ (|CharacteristicNonZero|)) (|has| (|BalancedPAdicInteger| |#1|) (|PolynomialFactorizationExplicit|))))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL) (($ (|Fraction| (|Integer|))) NIL) (($ (|BalancedPAdicInteger| |#1|)) NIL) (($ (|Symbol|)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|RetractableTo| (|Symbol|))))) (|charthRoot| (((|Union| $ "failed") $) NIL (OR (AND (|has| $ (|CharacteristicNonZero|)) (|has| (|BalancedPAdicInteger| |#1|) (|PolynomialFactorizationExplicit|))) (|has| (|BalancedPAdicInteger| |#1|) (|CharacteristicNonZero|))))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|ceiling| (((|BalancedPAdicInteger| |#1|) $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|IntegerNumberSystem|)))) (|associates?| (((|Boolean|) $ $) NIL)) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) NIL)) (|abs| (($ $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|OrderedIntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (D (($ $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|DifferentialRing|))) (($ $ (|Symbol|)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| (|BalancedPAdicInteger| |#1|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| (|BalancedPAdicInteger| |#1|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| (|BalancedPAdicInteger| |#1|) (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| (|BalancedPAdicInteger| |#1|) (|BalancedPAdicInteger| |#1|)) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| (|BalancedPAdicInteger| |#1|) (|BalancedPAdicInteger| |#1|))) NIL)) (>= (((|Boolean|) $ $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| (|BalancedPAdicInteger| |#1|) (|OrderedSet|)))) (/ (($ $ $) NIL) (($ (|BalancedPAdicInteger| |#1|) (|BalancedPAdicInteger| |#1|)) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|Fraction| (|Integer|))) NIL) (($ (|Fraction| (|Integer|)) $) NIL) (($ (|BalancedPAdicInteger| |#1|) $) NIL) (($ $ (|BalancedPAdicInteger| |#1|)) NIL))) │ │ │ +(((|BalancedPAdicRational| |#1|) (|Join| (|QuotientFieldCategory| (|BalancedPAdicInteger| |#1|)) (CATEGORY |domain| (SIGNATURE |approximate| ((|Fraction| (|Integer|)) $ (|Integer|))) (SIGNATURE |continuedFraction| ((|ContinuedFraction| (|Fraction| (|Integer|))) $)) (SIGNATURE |removeZeroes| ($ $)) (SIGNATURE |removeZeroes| ($ (|Integer|) $)))) (|Integer|)) (T |BalancedPAdicRational|)) │ │ │ +((|approximate| (*1 *2 *1 *3) (AND (|isDomain| *2 (|Fraction| (|Integer|))) (|isDomain| *1 (|BalancedPAdicRational| *4)) (|ofType| *4 *3) (|isDomain| *3 (|Integer|)))) (|continuedFraction| (*1 *2 *1) (AND (|isDomain| *2 (|ContinuedFraction| (|Fraction| (|Integer|)))) (|isDomain| *1 (|BalancedPAdicRational| *3)) (|ofType| *3 (|Integer|)))) (|removeZeroes| (*1 *1 *1) (AND (|isDomain| *1 (|BalancedPAdicRational| *2)) (|ofType| *2 (|Integer|)))) (|removeZeroes| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|BalancedPAdicRational| *3)) (|ofType| *3 *2)))) │ │ │ +(|Join| (|QuotientFieldCategory| (|BalancedPAdicInteger| |#1|)) (CATEGORY |domain| (SIGNATURE |approximate| ((|Fraction| (|Integer|)) $ (|Integer|))) (SIGNATURE |continuedFraction| ((|ContinuedFraction| (|Fraction| (|Integer|))) $)) (SIGNATURE |removeZeroes| ($ $)) (SIGNATURE |removeZeroes| ($ (|Integer|) $)))) │ │ │ +((|bag| (($ (|List| |#2|)) 11))) │ │ │ +(((|BagAggregate&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |bag| (|#1| (|List| |#2|)))) (|BagAggregate| |#2|) (|Type|)) (T |BagAggregate&|)) │ │ │ NIL │ │ │ -(|ProjectiveSpaceCategory| |#2|) │ │ │ -((|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) 68)) (|zRange| (((|Segment| (|DoubleFloat|)) $) 40)) (|yRange| (((|Segment| (|DoubleFloat|)) $) 39)) (|xRange| (((|Segment| (|DoubleFloat|)) $) 38)) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) 43)) (|tRange| (((|Segment| (|DoubleFloat|)) $) 41)) (|setScreenResolution3D| (((|Integer|) (|Integer|)) 32)) (|setMinPoints3D| (((|Integer|) (|Integer|)) 28)) (|setMaxPoints3D| (((|Integer|) (|Integer|)) 30)) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) 35)) (|screenResolution3D| (((|Integer|)) 31)) (|refine| (($ $ (|Segment| (|DoubleFloat|))) 71) (($ $) 72)) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) 76) (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) 77)) (|plot| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) 79) (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) 80) (($ $ (|Segment| (|DoubleFloat|))) 74)) (|numFunEvals3D| (((|Integer|)) 36)) (|minPoints3D| (((|Integer|)) 27)) (|maxPoints3D| (((|Integer|)) 29)) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) 92)) (|debug3D| (((|Boolean|) (|Boolean|)) 37)) (|coerce| (((|OutputForm|) $) 91)) (|adaptive3D?| (((|Boolean|)) 34))) │ │ │ -(((|Plot3D|) (|Join| (|PlottableSpaceCurveCategory|) (CATEGORY |domain| (SIGNATURE |pointPlot| ($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |pointPlot| ($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plot| ($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plot| ($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plot| ($ $ (|Segment| (|DoubleFloat|)))) (SIGNATURE |zoom| ($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |refine| ($ $ (|Segment| (|DoubleFloat|)))) (SIGNATURE |refine| ($ $)) (SIGNATURE |tRange| ((|Segment| (|DoubleFloat|)) $)) (SIGNATURE |tValues| ((|List| (|List| (|DoubleFloat|))) $)) (SIGNATURE |minPoints3D| ((|Integer|))) (SIGNATURE |setMinPoints3D| ((|Integer|) (|Integer|))) (SIGNATURE |maxPoints3D| ((|Integer|))) (SIGNATURE |setMaxPoints3D| ((|Integer|) (|Integer|))) (SIGNATURE |screenResolution3D| ((|Integer|))) (SIGNATURE |setScreenResolution3D| ((|Integer|) (|Integer|))) (SIGNATURE |adaptive3D?| ((|Boolean|))) (SIGNATURE |setAdaptive3D| ((|Boolean|) (|Boolean|))) (SIGNATURE |numFunEvals3D| ((|Integer|))) (SIGNATURE |debug3D| ((|Boolean|) (|Boolean|)))))) (T |Plot3D|)) │ │ │ -((|pointPlot| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|))) (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))) (|pointPlot| (*1 *1 *2 *3 *3 *3 *3) (AND (|isDomain| *2 (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|))) (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))) (|plot| (*1 *1 *2 *2 *2 *2 *3) (AND (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))) (|plot| (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (AND (|isDomain| *2 (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|isDomain| *3 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))) (|plot| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))) (|zoom| (*1 *1 *1 *2 *2 *2) (AND (|isDomain| *2 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))) (|refine| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))) (|refine| (*1 *1 *1) (|isDomain| *1 (|Plot3D|))) (|tRange| (*1 *2 *1) (AND (|isDomain| *2 (|Segment| (|DoubleFloat|))) (|isDomain| *1 (|Plot3D|)))) (|tValues| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|List| (|DoubleFloat|)))) (|isDomain| *1 (|Plot3D|)))) (|minPoints3D| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))) (|setMinPoints3D| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))) (|maxPoints3D| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))) (|setMaxPoints3D| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))) (|screenResolution3D| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))) (|setScreenResolution3D| (*1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))) (|adaptive3D?| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Plot3D|)))) (|setAdaptive3D| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Plot3D|)))) (|numFunEvals3D| (*1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Plot3D|)))) (|debug3D| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Plot3D|))))) │ │ │ -(|Join| (|PlottableSpaceCurveCategory|) (CATEGORY |domain| (SIGNATURE |pointPlot| ($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |pointPlot| ($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plot| ($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plot| ($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |plot| ($ $ (|Segment| (|DoubleFloat|)))) (SIGNATURE |zoom| ($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)))) (SIGNATURE |refine| ($ $ (|Segment| (|DoubleFloat|)))) (SIGNATURE |refine| ($ $)) (SIGNATURE |tRange| ((|Segment| (|DoubleFloat|)) $)) (SIGNATURE |tValues| ((|List| (|List| (|DoubleFloat|))) $)) (SIGNATURE |minPoints3D| ((|Integer|))) (SIGNATURE |setMinPoints3D| ((|Integer|) (|Integer|))) (SIGNATURE |maxPoints3D| ((|Integer|))) (SIGNATURE |setMaxPoints3D| ((|Integer|) (|Integer|))) (SIGNATURE |screenResolution3D| ((|Integer|))) (SIGNATURE |setScreenResolution3D| ((|Integer|) (|Integer|))) (SIGNATURE |adaptive3D?| ((|Boolean|))) (SIGNATURE |setAdaptive3D| ((|Boolean|) (|Boolean|))) (SIGNATURE |numFunEvals3D| ((|Integer|))) (SIGNATURE |debug3D| ((|Boolean|) (|Boolean|))))) │ │ │ -((|upperCase| (($ $) 19)) (|trim| (($ $ (|Character|)) 10) (($ $ (|CharacterClass|)) 14)) (|prefix?| (((|Boolean|) $ $) 24)) (|lowerCase| (($ $) 17)) (|elt| (((|Character|) $ (|Integer|) (|Character|)) NIL) (((|Character|) $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL) (($ $ $) 29)) (|coerce| (($ (|Character|)) 27) (((|OutputForm|) $) NIL))) │ │ │ -(((|StringAggregate&| |#1|) (CATEGORY |domain| (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |elt| (|#1| |#1| |#1|)) (SIGNATURE |trim| (|#1| |#1| (|CharacterClass|))) (SIGNATURE |trim| (|#1| |#1| (|Character|))) (SIGNATURE |coerce| (|#1| (|Character|))) (SIGNATURE |prefix?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |upperCase| (|#1| |#1|)) (SIGNATURE |lowerCase| (|#1| |#1|)) (SIGNATURE |elt| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |elt| ((|Character|) |#1| (|Integer|))) (SIGNATURE |elt| ((|Character|) |#1| (|Integer|) (|Character|)))) (|StringAggregate|)) (T |StringAggregate&|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |bag| (|#1| (|List| |#2|)))) │ │ │ +((|outputAsFortran| (((|Void|) $) 44)) (|coerce| (((|OutputForm|) $) 38) (($ (|Vector| (|MachineFloat|))) 88) (($ (|List| (|FortranCode|))) 29) (($ (|FortranCode|)) 35) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 32))) │ │ │ +(((|Asp8| |#1|) (|FortranVectorCategory|) (|Symbol|)) (T |Asp8|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |coerce| ((|OutputForm|) |#1|)) (SIGNATURE |elt| (|#1| |#1| |#1|)) (SIGNATURE |trim| (|#1| |#1| (|CharacterClass|))) (SIGNATURE |trim| (|#1| |#1| (|Character|))) (SIGNATURE |coerce| (|#1| (|Character|))) (SIGNATURE |prefix?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |upperCase| (|#1| |#1|)) (SIGNATURE |lowerCase| (|#1| |#1|)) (SIGNATURE |elt| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |elt| ((|Character|) |#1| (|Integer|))) (SIGNATURE |elt| ((|Character|) |#1| (|Integer|) (|Character|)))) │ │ │ +(|FortranVectorCategory|) │ │ │ ((~= (((|Boolean|) $ $) 18 (|has| (|Character|) (|SetCategory|)))) (|upperCase!| (($ $) 113)) (|upperCase| (($ $) 114)) (|trim| (($ $ (|Character|)) 101) (($ $ (|CharacterClass|)) 100)) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|suffix?| (((|Boolean|) $ $) 111)) (|substring?| (((|Boolean|) $ $ (|Integer|)) 110)) (|split| (((|List| $) $ (|Character|)) 103) (((|List| $) $ (|CharacterClass|)) 102)) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) (|Character|) (|Character|)) $) 91) (((|Boolean|) $) 85 (|has| (|Character|) (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) (|Character|) (|Character|)) $) 82 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) 81 (AND (|has| (|Character|) (|OrderedSet|)) (|has| $ (ATTRIBUTE |shallowlyMutable|))))) (|sort| (($ (|Mapping| (|Boolean|) (|Character|) (|Character|)) $) 92) (($ $) 86 (|has| (|Character|) (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setelt| (((|Character|) $ (|Integer|) (|Character|)) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Character|) $ (|UniversalSegment| (|Integer|)) (|Character|)) 53 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) (|Character|)) $) 70 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) 7 T CONST)) (|rightTrim| (($ $ (|Character|)) 97) (($ $ (|CharacterClass|)) 96)) (|reverse!| (($ $) 83 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) 93)) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) 107)) (|removeDuplicates| (($ $) 73 (AND (|has| (|Character|) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|remove| (($ (|Character|) $) 72 (AND (|has| (|Character|) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (($ (|Mapping| (|Boolean|) (|Character|)) $) 69 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| (((|Character|) (|Mapping| (|Character|) (|Character|) (|Character|)) $ (|Character|) (|Character|)) 71 (AND (|has| (|Character|) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|Character|) (|Mapping| (|Character|) (|Character|) (|Character|)) $ (|Character|)) 68 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Character|) (|Mapping| (|Character|) (|Character|) (|Character|)) $) 67 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| (((|Character|) $ (|Integer|) (|Character|)) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| (((|Character|) $ (|Integer|)) 48)) (|prefix?| (((|Boolean|) $ $) 112)) (|position| (((|Integer|) (|Mapping| (|Boolean|) (|Character|)) $) 90) (((|Integer|) (|Character|) $) 89 (|has| (|Character|) (|SetCategory|))) (((|Integer|) (|Character|) $ (|Integer|)) 88 (|has| (|Character|) (|SetCategory|))) (((|Integer|) $ $ (|Integer|)) 106) (((|Integer|) (|CharacterClass|) $ (|Integer|)) 105)) (|parts| (((|List| (|Character|)) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|new| (($ (|NonNegativeInteger|) (|Character|)) 64)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|minIndex| (((|Integer|) $) 40 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) 80 (|has| (|Character|) (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) (|Character|) (|Character|)) $ $) 94) (($ $ $) 87 (|has| (|Character|) (|OrderedSet|)))) (|members| (((|List| (|Character|)) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Character|) $) 27 (AND (|has| (|Character|) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxIndex| (((|Integer|) $) 41 (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) 79 (|has| (|Character|) (|OrderedSet|)))) (|match?| (((|Boolean|) $ $ (|Character|)) 108)) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) 109)) (|map!| (($ (|Mapping| (|Character|) (|Character|)) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Character|) (|Character|)) $) 35) (($ (|Mapping| (|Character|) (|Character|) (|Character|)) $ $) 59)) (|lowerCase!| (($ $) 115)) (|lowerCase| (($ $) 116)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|leftTrim| (($ $ (|Character|)) 99) (($ $ (|CharacterClass|)) 98)) (|latex| (((|String|) $) 22 (|has| (|Character|) (|SetCategory|)))) (|insert| (($ (|Character|) $ (|Integer|)) 55) (($ $ $ (|Integer|)) 54)) (|indices| (((|List| (|Integer|)) $) 43)) (|index?| (((|Boolean|) (|Integer|) $) 44)) (|hash| (((|SingleInteger|) $) 21 (|has| (|Character|) (|SetCategory|)))) (|first| (((|Character|) $) 39 (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| (|Character|) "failed") (|Mapping| (|Boolean|) (|Character|)) $) 66)) (|fill!| (($ $ (|Character|)) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Character|)) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|Character|)))) 26 (AND (|has| (|Character|) (|Evalable| (|Character|))) (|has| (|Character|) (|SetCategory|)))) (($ $ (|Equation| (|Character|))) 25 (AND (|has| (|Character|) (|Evalable| (|Character|))) (|has| (|Character|) (|SetCategory|)))) (($ $ (|Character|) (|Character|)) 24 (AND (|has| (|Character|) (|Evalable| (|Character|))) (|has| (|Character|) (|SetCategory|)))) (($ $ (|List| (|Character|)) (|List| (|Character|))) 23 (AND (|has| (|Character|) (|Evalable| (|Character|))) (|has| (|Character|) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|entry?| (((|Boolean|) (|Character|) $) 42 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Character|) (|SetCategory|))))) (|entries| (((|List| (|Character|)) $) 45)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| (((|Character|) $ (|Integer|) (|Character|)) 47) (((|Character|) $ (|Integer|)) 46) (($ $ (|UniversalSegment| (|Integer|))) 58) (($ $ $) 95)) (|delete| (($ $ (|Integer|)) 57) (($ $ (|UniversalSegment| (|Integer|))) 56)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Character|)) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Character|) $) 28 (AND (|has| (|Character|) (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copyInto!| (($ $ $ (|Integer|)) 84 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) 13)) (|convert| (((|InputForm|) $) 74 (|has| (|Character|) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|Character|))) 65)) (|concat| (($ $ (|Character|)) 63) (($ (|Character|) $) 62) (($ $ $) 61) (($ (|List| $)) 60)) (|coerce| (($ (|Character|)) 104) (((|OutputForm|) $) 20 (|has| (|Character|) (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Character|)) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) 77 (|has| (|Character|) (|OrderedSet|)))) (> (((|Boolean|) $ $) 76 (|has| (|Character|) (|OrderedSet|)))) (= (((|Boolean|) $ $) 19 (|has| (|Character|) (|SetCategory|)))) (<= (((|Boolean|) $ $) 78 (|has| (|Character|) (|OrderedSet|)))) (< (((|Boolean|) $ $) 75 (|has| (|Character|) (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ (((|StringAggregate|) (|Category|)) (T |StringAggregate|)) │ │ │ ((|lowerCase| (*1 *1 *1) (|ofCategory| *1 (|StringAggregate|))) (|lowerCase!| (*1 *1 *1) (|ofCategory| *1 (|StringAggregate|))) (|upperCase| (*1 *1 *1) (|ofCategory| *1 (|StringAggregate|))) (|upperCase!| (*1 *1 *1) (|ofCategory| *1 (|StringAggregate|))) (|prefix?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Boolean|)))) (|suffix?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Boolean|)))) (|substring?| (*1 *2 *1 *1 *3) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Boolean|)))) (|match| (*1 *2 *1 *1 *3) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *3 (|Character|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|match?| (*1 *2 *1 *1 *3) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *3 (|Character|)) (|isDomain| *2 (|Boolean|)))) (|replace| (*1 *1 *1 *2 *1) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|UniversalSegment| (|Integer|))))) (|position| (*1 *2 *1 *1 *2) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Integer|)))) (|position| (*1 *2 *3 *1 *2) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Integer|)) (|isDomain| *3 (|CharacterClass|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Character|)) (|ofCategory| *1 (|StringAggregate|)))) (|split| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Character|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|StringAggregate|)))) (|split| (*1 *2 *1 *3) (AND (|isDomain| *3 (|CharacterClass|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|StringAggregate|)))) (|trim| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Character|)))) (|trim| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|CharacterClass|)))) (|leftTrim| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Character|)))) (|leftTrim| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|CharacterClass|)))) (|rightTrim| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|Character|)))) (|rightTrim| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|StringAggregate|)) (|isDomain| *2 (|CharacterClass|)))) (|elt| (*1 *1 *1 *1) (|ofCategory| *1 (|StringAggregate|)))) │ │ │ (|Join| (|OneDimensionalArrayAggregate| (|Character|)) (CATEGORY |domain| (SIGNATURE |lowerCase| ($ $)) (SIGNATURE |lowerCase!| ($ $)) (SIGNATURE |upperCase| ($ $)) (SIGNATURE |upperCase!| ($ $)) (SIGNATURE |prefix?| ((|Boolean|) $ $)) (SIGNATURE |suffix?| ((|Boolean|) $ $)) (SIGNATURE |substring?| ((|Boolean|) $ $ (|Integer|))) (SIGNATURE |match| ((|NonNegativeInteger|) $ $ (|Character|))) (SIGNATURE |match?| ((|Boolean|) $ $ (|Character|))) (SIGNATURE |replace| ($ $ (|UniversalSegment| (|Integer|)) $)) (SIGNATURE |position| ((|Integer|) $ $ (|Integer|))) (SIGNATURE |position| ((|Integer|) (|CharacterClass|) $ (|Integer|))) (SIGNATURE |coerce| ($ (|Character|))) (SIGNATURE |split| ((|List| $) $ (|Character|))) (SIGNATURE |split| ((|List| $) $ (|CharacterClass|))) (SIGNATURE |trim| ($ $ (|Character|))) (SIGNATURE |trim| ($ $ (|CharacterClass|))) (SIGNATURE |leftTrim| ($ $ (|Character|))) (SIGNATURE |leftTrim| ($ $ (|CharacterClass|))) (SIGNATURE |rightTrim| ($ $ (|Character|))) (SIGNATURE |rightTrim| ($ $ (|CharacterClass|))) (SIGNATURE |elt| ($ $ $)))) │ │ │ (((|Aggregate|) . T) ((|BasicType|) OR (|has| (|Character|) (|SetCategory|)) (|has| (|Character|) (|OrderedSet|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| (|Character|) (|SetCategory|)) (|has| (|Character|) (|OrderedSet|))) ((|Collection| (|Character|)) . T) ((|ConvertibleTo| (|InputForm|)) |has| (|Character|) (|ConvertibleTo| (|InputForm|))) ((|Eltable| (|Integer|) (|Character|)) . T) ((|EltableAggregate| (|Integer|) (|Character|)) . T) ((|Evalable| (|Character|)) AND (|has| (|Character|) (|Evalable| (|Character|))) (|has| (|Character|) (|SetCategory|))) ((|FiniteLinearAggregate| (|Character|)) . T) ((|HomogeneousAggregate| (|Character|)) . T) ((|IndexedAggregate| (|Integer|) (|Character|)) . T) ((|InnerEvalable| (|Character|) (|Character|)) AND (|has| (|Character|) (|Evalable| (|Character|))) (|has| (|Character|) (|SetCategory|))) ((|LinearAggregate| (|Character|)) . T) ((|OneDimensionalArrayAggregate| (|Character|)) . T) ((|OrderedSet|) |has| (|Character|) (|OrderedSet|)) ((|SetCategory|) OR (|has| (|Character|) (|SetCategory|)) (|has| (|Character|) (|OrderedSet|))) ((|Type|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#1| "failed") $) NIL)) (|retract| (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1| $) NIL)) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|primitivePart| (($ $) NIL (|has| |#1| (|GcdDomain|)))) (|pomopo!| (($ $ |#1| (|Partition|) $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|numberOfMonomials| (((|NonNegativeInteger|) $) NIL)) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| (|Partition|)) NIL)) (|minimumDegree| (((|Partition|) $) NIL)) (|mapExponents| (($ (|Mapping| (|Partition|) (|Partition|)) $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|ground?| (((|Boolean|) $) NIL)) (|ground| ((|#1| $) NIL)) (|fmecg| (($ $ (|Partition|) |#1| $) NIL (AND (|has| (|Partition|) (|CancellationAbelianMonoid|)) (|has| |#1| (|IntegralDomain|))))) (|exquo| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|IntegralDomain|))) (((|Union| $ "failed") $ |#1|) NIL (|has| |#1| (|IntegralDomain|)))) (|degree| (((|Partition|) $) NIL)) (|content| ((|#1| $) NIL (|has| |#1| (|GcdDomain|)))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL (|has| |#1| (|IntegralDomain|))) (($ |#1|) NIL) (($ (|Fraction| (|Integer|))) NIL (OR (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))))) (|coefficients| (((|List| |#1|) $) NIL)) (|coefficient| ((|#1| $ (|Partition|)) NIL)) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|CommutativeRing|)))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 9 T CONST)) (|One| (($) 14 T CONST)) (= (((|Boolean|) $ $) 16)) (/ (($ $ |#1|) NIL (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) 19)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ -(((|SymmetricPolynomial| |#1|) (|Join| (|FiniteAbelianMonoidRing| |#1| (|Partition|)) (CATEGORY |domain| (IF (|has| |#1| (|IntegralDomain|)) (IF (|has| (|Partition|) (|CancellationAbelianMonoid|)) (SIGNATURE |fmecg| ($ $ (|Partition|) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (ATTRIBUTE |canonicalUnitNormal|) |noBranch|))) (|Ring|)) (T |SymmetricPolynomial|)) │ │ │ -((|fmecg| (*1 *1 *1 *2 *3 *1) (AND (|isDomain| *2 (|Partition|)) (|ofCategory| *2 (|CancellationAbelianMonoid|)) (|isDomain| *1 (|SymmetricPolynomial| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|ofCategory| *3 (|Ring|))))) │ │ │ -(|Join| (|FiniteAbelianMonoidRing| |#1| (|Partition|)) (CATEGORY |domain| (IF (|has| |#1| (|IntegralDomain|)) (IF (|has| (|Partition|) (|CancellationAbelianMonoid|)) (SIGNATURE |fmecg| ($ $ (|Partition|) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (ATTRIBUTE |canonicalUnitNormal|) |noBranch|))) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|value| ((|#1| $) NIL)) (|third| ((|#1| $) NIL)) (|tail| (($ $) 48)) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) 73 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|split!| (($ $ (|Integer|)) 107 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|showAllElements| (((|OutputForm|) $) 37 (|has| |#1| (|SetCategory|)))) (|showAll?| (((|Boolean|)) 38 (|has| |#1| (|SetCategory|)))) (|setvalue!| ((|#1| $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setrest!| (($ $ $) 95 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ (|Integer|) $) 117)) (|setlast!| ((|#1| $ |#1|) 104 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setfirst!| ((|#1| $ |#1|) 99 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setelt| ((|#1| $ "value" |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ "first" |#1|) 101 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ "rest" $) 103 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ "last" |#1|) 106 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) 86 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|Integer|) |#1|) 52 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|setchildren!| (($ $ (|List| $)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) 55)) (|second| ((|#1| $) NIL)) (|sample| (($) NIL T CONST)) (|rst| (($ $) 14)) (|rest| (($ $) 28) (($ $ (|NonNegativeInteger|)) 85)) (|repeating?| (((|Boolean|) (|List| |#1|) $) 112 (|has| |#1| (|SetCategory|)))) (|repeating| (($ (|List| |#1|)) 109)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|remove| (($ |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) (($ (|Mapping| (|Boolean|) |#1|) $) 54)) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) NIL)) (|possiblyInfinite?| (((|Boolean|) $) NIL)) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|output| (((|Void|) (|Integer|) $) 116 (|has| |#1| (|SetCategory|)))) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) 114)) (|nodes| (((|List| $) $) NIL)) (|node?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|new| (($ (|NonNegativeInteger|) |#1|) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) 70 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 60) (($ (|Mapping| |#1| |#1| |#1|) $ $) 64)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|leaves| (((|List| |#1|) $) NIL)) (|leaf?| (((|Boolean|) $) NIL)) (|lazyEvaluate| (($ $) 87)) (|lazy?| (((|Boolean|) $) 13)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|last| ((|#1| $) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|insert| (($ $ $ (|Integer|)) NIL) (($ |#1| $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) 71)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|generate| (($ (|Mapping| |#1|)) 119) (($ (|Mapping| |#1| |#1|) |#1|) 120)) (|frst| ((|#1| $) 10)) (|first| ((|#1| $) 27) (($ $ (|NonNegativeInteger|)) 46)) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) 24)) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) NIL)) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) 121)) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) 122)) (|fill!| (($ $ |#1|) 65 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|extend| (($ $ (|Integer|)) 31)) (|explicitlyFinite?| (((|Boolean|) $) 69)) (|explicitlyEmpty?| (((|Boolean|) $) 12)) (|explicitEntries?| (((|Boolean|) $) 113)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 20)) (|entry?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) NIL)) (|empty?| (((|Boolean|) $) 15)) (|empty| (($) 40)) (|elt| ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL) ((|#1| $ (|Integer|)) 51) ((|#1| $ (|Integer|) |#1|) NIL)) (|distance| (((|Integer|) $ $) 45)) (|delete| (($ $ (|UniversalSegment| (|Integer|))) NIL) (($ $ (|Integer|)) NIL)) (|delay| (($ (|Mapping| $)) 44)) (|cyclic?| (((|Boolean|) $) 66)) (|cycleTail| (($ $) 67)) (|cycleSplit!| (($ $) 96 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|cycleLength| (((|NonNegativeInteger|) $) NIL)) (|cycleEntry| (($ $) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) 41)) (|convert| (((|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) 50)) (|cons| (($ |#1| $) 94)) (|concat!| (($ $ $) 97 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $ |#1|) 98 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|concat| (($ $ $) 75) (($ |#1| $) 42) (($ (|List| $)) 80) (($ $ |#1|) 74)) (|complete| (($ $) 47)) (|coerce| (((|OutputForm|) $) 39 (|has| |#1| (|SetCategory|))) (($ (|List| |#1|)) 108)) (|children| (((|List| $) $) NIL)) (|child?| (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 111 (|has| |#1| (|SetCategory|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|Stream| |#1|) (|Join| (|LazyStreamAggregate| |#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (SIGNATURE |coerce| ($ (|List| |#1|))) (SIGNATURE |repeating| ($ (|List| |#1|))) (IF (|has| |#1| (|SetCategory|)) (SIGNATURE |repeating?| ((|Boolean|) (|List| |#1|) $)) |noBranch|) (SIGNATURE |findCycle| ((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $)) (SIGNATURE |delay| ($ (|Mapping| $))) (SIGNATURE |cons| ($ |#1| $)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |output| ((|Void|) (|Integer|) $)) (SIGNATURE |showAllElements| ((|OutputForm|) $)) (SIGNATURE |showAll?| ((|Boolean|)))) |noBranch|) (SIGNATURE |setrest!| ($ $ (|Integer|) $)) (SIGNATURE |generate| ($ (|Mapping| |#1|))) (SIGNATURE |generate| ($ (|Mapping| |#1| |#1|) |#1|)) (SIGNATURE |filterWhile| ($ (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |filterUntil| ($ (|Mapping| (|Boolean|) |#1|) $)))) (|Type|)) (T |Stream|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|Stream| *3)))) (|repeating| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|Stream| *3)))) (|repeating?| (*1 *2 *3 *1) (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *4 (|Type|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Stream| *4)))) (|findCycle| (*1 *2 *3 *1) (AND (|isDomain| *2 (|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|)))) (|isDomain| *1 (|Stream| *4)) (|ofCategory| *4 (|Type|)) (|isDomain| *3 (|NonNegativeInteger|)))) (|delay| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| (|Stream| *3))) (|isDomain| *1 (|Stream| *3)) (|ofCategory| *3 (|Type|)))) (|cons| (*1 *1 *2 *1) (AND (|isDomain| *1 (|Stream| *2)) (|ofCategory| *2 (|Type|)))) (|output| (*1 *2 *3 *1) (AND (|isDomain| *3 (|Integer|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|Stream| *4)) (|ofCategory| *4 (|SetCategory|)) (|ofCategory| *4 (|Type|)))) (|showAllElements| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|Stream| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|Type|)))) (|showAll?| (*1 *2) (AND (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|Stream| *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *3 (|Type|)))) (|setrest!| (*1 *1 *1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|Stream| *3)) (|ofCategory| *3 (|Type|)))) (|generate| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|Stream| *3)))) (|generate| (*1 *1 *2 *3) (AND (|isDomain| *2 (|Mapping| *3 *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|Stream| *3)))) (|filterWhile| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|Stream| *3)))) (|filterUntil| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Mapping| (|Boolean|) *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|Stream| *3))))) │ │ │ -(|Join| (|LazyStreamAggregate| |#1|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (SIGNATURE |coerce| ($ (|List| |#1|))) (SIGNATURE |repeating| ($ (|List| |#1|))) (IF (|has| |#1| (|SetCategory|)) (SIGNATURE |repeating?| ((|Boolean|) (|List| |#1|) $)) |noBranch|) (SIGNATURE |findCycle| ((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $)) (SIGNATURE |delay| ($ (|Mapping| $))) (SIGNATURE |cons| ($ |#1| $)) (IF (|has| |#1| (|SetCategory|)) (PROGN (SIGNATURE |output| ((|Void|) (|Integer|) $)) (SIGNATURE |showAllElements| ((|OutputForm|) $)) (SIGNATURE |showAll?| ((|Boolean|)))) |noBranch|) (SIGNATURE |setrest!| ($ $ (|Integer|) $)) (SIGNATURE |generate| ($ (|Mapping| |#1|))) (SIGNATURE |generate| ($ (|Mapping| |#1| |#1|) |#1|)) (SIGNATURE |filterWhile| ($ (|Mapping| (|Boolean|) |#1|) $)) (SIGNATURE |filterUntil| ($ (|Mapping| (|Boolean|) |#1|) $)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|variables| (((|List| (|Symbol|)) $) NIL)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) NIL (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) NIL (|has| |#1| (|IntegralDomain|)))) (|tanh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|tan| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sqrt| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sinh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sin| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sech| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sec| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|sample| (($) NIL T CONST)) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) 16) (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) NIL)) (|pole?| (((|Boolean|) $) NIL)) (|pi| (($) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|order| (((|NonNegativeInteger|) $ (|Symbol|)) NIL) (((|NonNegativeInteger|) $ (|Symbol|) (|NonNegativeInteger|)) NIL)) (|one?| (((|Boolean|) $) NIL)) (|nthRoot| (($ $ (|Integer|)) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|monomial?| (((|Boolean|) $) NIL)) (|monomial| (($ $ (|List| (|Symbol|)) (|List| (|IndexedExponents| (|Symbol|)))) NIL) (($ $ (|Symbol|) (|IndexedExponents| (|Symbol|))) NIL) (($ |#1| (|IndexedExponents| (|Symbol|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|log| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|leadingMonomial| (($ $) NIL)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|integrate| (($ $ (|Symbol|)) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Symbol|) |#1|) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|hash| (((|SingleInteger|) $) NIL)) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|extend| (($ $ (|NonNegativeInteger|)) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|exp| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|eval| (($ $ (|Symbol|) $) NIL) (($ $ (|List| (|Symbol|)) (|List| $)) NIL) (($ $ (|List| (|Equation| $))) NIL) (($ $ (|Equation| $)) NIL) (($ $ $ $) NIL) (($ $ (|List| $) (|List| $)) NIL)) (|differentiate| (($ $ (|Symbol|)) NIL) (($ $ (|List| (|Symbol|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL)) (|degree| (((|IndexedExponents| (|Symbol|)) $) NIL)) (|csch| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|csc| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|coth| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cot| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cosh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|cos| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|complete| (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#1|) NIL (|has| |#1| (|CommutativeRing|))) (($ $) NIL (|has| |#1| (|IntegralDomain|))) (($ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ (|Symbol|)) NIL) (($ (|Polynomial| |#1|)) NIL)) (|coefficient| ((|#1| $ (|IndexedExponents| (|Symbol|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL) (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) NIL)) (|charthRoot| (((|Union| $ "failed") $) NIL (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) NIL)) (|atanh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|atan| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|associates?| (((|Boolean|) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|asinh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asin| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asech| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|asec| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acsch| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acsc| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acoth| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acot| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acosh| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|acos| (($ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) NIL T CONST)) (D (($ $ (|Symbol|)) NIL) (($ $ (|List| (|Symbol|))) NIL) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL)) (= (((|Boolean|) $ $) NIL)) (/ (($ $ |#1|) NIL (|has| |#1| (|Field|)))) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ $ (|Fraction| (|Integer|))) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ (|Fraction| (|Integer|)) $) NIL (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) │ │ │ -(((|TaylorSeries| |#1|) (|Join| (|MultivariateTaylorSeriesCategory| |#1| (|Symbol|)) (CATEGORY |domain| (SIGNATURE |coefficient| ((|Polynomial| |#1|) $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ (|Symbol|))) (SIGNATURE |coerce| ($ (|Polynomial| |#1|))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ($ $ (|Symbol|) |#1|)) (SIGNATURE |fintegrate| ($ (|Mapping| $) (|Symbol|) |#1|))) |noBranch|))) (|Ring|)) (T |TaylorSeries|)) │ │ │ -((|coefficient| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Polynomial| *4)) (|isDomain| *1 (|TaylorSeries| *4)) (|ofCategory| *4 (|Ring|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|TaylorSeries| *3)) (|ofCategory| *3 (|Ring|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Polynomial| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|TaylorSeries| *3)))) (|integrate| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|Symbol|)) (|isDomain| *1 (|TaylorSeries| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|Ring|)))) (|fintegrate| (*1 *1 *2 *3 *4) (AND (|isDomain| *2 (|Mapping| (|TaylorSeries| *4))) (|isDomain| *3 (|Symbol|)) (|isDomain| *1 (|TaylorSeries| *4)) (|ofCategory| *4 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *4 (|Ring|))))) │ │ │ -(|Join| (|MultivariateTaylorSeriesCategory| |#1| (|Symbol|)) (CATEGORY |domain| (SIGNATURE |coefficient| ((|Polynomial| |#1|) $ (|NonNegativeInteger|))) (SIGNATURE |coerce| ($ (|Symbol|))) (SIGNATURE |coerce| ($ (|Polynomial| |#1|))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ($ $ (|Symbol|) |#1|)) (SIGNATURE |fintegrate| ($ (|Mapping| $) (|Symbol|) |#1|))) |noBranch|))) │ │ │ -((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|zero?| (((|Boolean|) $) 96)) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) 95)) (|vertConcat| (($ $ $) 84)) (|transpose| (($ |#2|) 88) (($ $) 87)) (|symmetric?| (((|Boolean|) $) 98)) (|swapRows!| (($ $ (|Integer|) (|Integer|)) 80)) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) 79)) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) 78)) (|squareTop| (($ $) 86)) (|square?| (((|Boolean|) $) 100)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) 77)) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) 41) (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) 81)) (|setRow!| (($ $ (|Integer|) |#2|) 39)) (|setColumn!| (($ $ (|Integer|) |#3|) 38)) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) 92)) (|sample| (($) 7 T CONST)) (|rowEchelon| (($ $) 64 (|has| |#1| (|EuclideanDomain|)))) (|row| ((|#2| $ (|Integer|)) 43)) (|rank| (((|NonNegativeInteger|) $) 62 (|has| |#1| (|IntegralDomain|)))) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) 40)) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) 45)) (|pfaffian| ((|#1| $) 57 (|has| |#1| (|CommutativeRing|)))) (|parts| (((|List| |#1|) $) 30)) (|nullity| (((|NonNegativeInteger|) $) 61 (|has| |#1| (|IntegralDomain|)))) (|nullSpace| (((|List| |#3|) $) 60 (|has| |#1| (|IntegralDomain|)))) (|nrows| (((|NonNegativeInteger|) $) 48)) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) 54)) (|ncols| (((|NonNegativeInteger|) $) 47)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|minordet| ((|#1| $) 58 (|has| |#1| (ATTRIBUTE (|commutative| "*"))))) (|minRowIndex| (((|Integer|) $) 52)) (|minColIndex| (((|Integer|) $) 50)) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxRowIndex| (((|Integer|) $) 51)) (|maxColIndex| (((|Integer|) $) 49)) (|matrix| (($ (|List| (|List| |#1|))) 94) (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) 93)) (|map!| (($ (|Mapping| |#1| |#1|) $) 34)) (|map| (($ (|Mapping| |#1| |#1|) $) 35) (($ (|Mapping| |#1| |#1| |#1|) $ $) 37) (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) 36)) (|listOfLists| (((|List| (|List| |#1|)) $) 83)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|inverse| (((|Union| $ "failed") $) 56 (|has| |#1| (|Field|)))) (|horizConcat| (($ $ $) 85)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|fill!| (($ $ |#1|) 53)) (|exquo| (((|Union| $ "failed") $ |#1|) 66 (|has| |#1| (|IntegralDomain|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ (|Integer|) (|Integer|)) 46) ((|#1| $ (|Integer|) (|Integer|) |#1|) 44) (($ $ (|List| (|Integer|)) (|List| (|Integer|))) 82)) (|diagonalMatrix| (($ (|List| |#1|)) 91) (($ (|List| $)) 90)) (|diagonal?| (((|Boolean|) $) 99)) (|determinant| ((|#1| $) 59 (|has| |#1| (ATTRIBUTE (|commutative| "*"))))) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|columnSpace| (((|List| |#3|) $) 63 (|has| |#1| (|EuclideanDomain|)))) (|column| ((|#3| $ (|Integer|)) 42)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|))) (($ |#3|) 89)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|antisymmetric?| (((|Boolean|) $) 97)) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (/ (($ $ |#1|) 65 (|has| |#1| (|Field|)))) (- (($ $ $) 75) (($ $) 74)) (+ (($ $ $) 76)) (** (($ $ (|NonNegativeInteger|)) 67) (($ $ (|Integer|)) 55 (|has| |#1| (|Field|)))) (* (($ $ $) 73) (($ |#1| $) 72) (($ $ |#1|) 71) (($ (|Integer|) $) 70) ((|#3| $ |#3|) 69) ((|#2| |#2| $) 68)) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|MatrixCategory| |#1| |#2| |#3|) (|Category|) (|Ring|) (|FiniteLinearAggregate| |t#1|) (|FiniteLinearAggregate| |t#1|)) (T |MatrixCategory|)) │ │ │ -((|square?| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Boolean|)))) (|diagonal?| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Boolean|)))) (|symmetric?| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Boolean|)))) (|antisymmetric?| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Boolean|)))) (|zero?| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|Boolean|)))) (|zero| (*1 *1 *2 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|matrix| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|matrix| (*1 *1 *2 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *3 (|Mapping| *4 (|Integer|) (|Integer|))) (|ofCategory| *4 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *4 *5 *6)) (|ofCategory| *5 (|FiniteLinearAggregate| *4)) (|ofCategory| *6 (|FiniteLinearAggregate| *4)))) (|scalarMatrix| (*1 *1 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|diagonalMatrix| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|diagonalMatrix| (*1 *1 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|coerce| (*1 *1 *2) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *2 (|FiniteLinearAggregate| *3)))) (|transpose| (*1 *1 *2) (AND (|ofCategory| *3 (|Ring|)) (|ofCategory| *1 (|MatrixCategory| *3 *2 *4)) (|ofCategory| *2 (|FiniteLinearAggregate| *3)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)))) (|transpose| (*1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (|squareTop| (*1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (|horizConcat| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (|vertConcat| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (|listOfLists| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|isDomain| *2 (|List| (|List| *3))))) (|elt| (*1 *1 *1 *2 *2) (AND (|isDomain| *2 (|List| (|Integer|))) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|setelt| (*1 *1 *1 *2 *2 *1) (AND (|isDomain| *2 (|List| (|Integer|))) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|swapRows!| (*1 *1 *1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|swapColumns!| (*1 *1 *1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|subMatrix| (*1 *1 *1 *2 *2 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|setsubMatrix!| (*1 *1 *1 *2 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (+ (*1 *1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (- (*1 *1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (- (*1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (* (*1 *1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (* (*1 *1 *1 *2) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)))) (* (*1 *1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (* (*1 *2 *1 *2) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *2 (|FiniteLinearAggregate| *3)))) (* (*1 *2 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *2 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|FiniteLinearAggregate| *3)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)))) (** (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)))) (|exquo| (*1 *1 *1 *2) (|partial| AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|IntegralDomain|)))) (/ (*1 *1 *1 *2) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Field|)))) (|rowEchelon| (*1 *1 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|EuclideanDomain|)))) (|columnSpace| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|EuclideanDomain|)) (|isDomain| *2 (|List| *5)))) (|rank| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|nullity| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|nullSpace| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|List| *5)))) (|determinant| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|has| *2 (ATTRIBUTE (|commutative| "*"))) (|ofCategory| *2 (|Ring|)))) (|minordet| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|has| *2 (ATTRIBUTE (|commutative| "*"))) (|ofCategory| *2 (|Ring|)))) (|pfaffian| (*1 *2 *1) (AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *2 (|CommutativeRing|)))) (|inverse| (*1 *1 *1) (|partial| AND (|ofCategory| *1 (|MatrixCategory| *2 *3 *4)) (|ofCategory| *2 (|Ring|)) (|ofCategory| *3 (|FiniteLinearAggregate| *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *2)) (|ofCategory| *2 (|Field|)))) (** (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|MatrixCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|FiniteLinearAggregate| *3)) (|ofCategory| *5 (|FiniteLinearAggregate| *3)) (|ofCategory| *3 (|Field|))))) │ │ │ -(|Join| (|TwoDimensionalArrayCategory| |t#1| |t#2| |t#3|) (CATEGORY |domain| (ATTRIBUTE |shallowlyMutable|) (ATTRIBUTE |finiteAggregate|) (SIGNATURE |square?| ((|Boolean|) $)) (SIGNATURE |diagonal?| ((|Boolean|) $)) (SIGNATURE |symmetric?| ((|Boolean|) $)) (SIGNATURE |antisymmetric?| ((|Boolean|) $)) (SIGNATURE |zero?| ((|Boolean|) $)) (SIGNATURE |zero| ($ (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |matrix| ($ (|List| (|List| |t#1|)))) (SIGNATURE |matrix| ($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |t#1| (|Integer|) (|Integer|)))) (SIGNATURE |scalarMatrix| ($ (|NonNegativeInteger|) |t#1|)) (SIGNATURE |diagonalMatrix| ($ (|List| |t#1|))) (SIGNATURE |diagonalMatrix| ($ (|List| $))) (SIGNATURE |coerce| ($ |t#3|)) (SIGNATURE |transpose| ($ |t#2|)) (SIGNATURE |transpose| ($ $)) (SIGNATURE |squareTop| ($ $)) (SIGNATURE |horizConcat| ($ $ $)) (SIGNATURE |vertConcat| ($ $ $)) (SIGNATURE |listOfLists| ((|List| (|List| |t#1|)) $)) (SIGNATURE |elt| ($ $ (|List| (|Integer|)) (|List| (|Integer|)))) (SIGNATURE |setelt| ($ $ (|List| (|Integer|)) (|List| (|Integer|)) $)) (SIGNATURE |swapRows!| ($ $ (|Integer|) (|Integer|))) (SIGNATURE |swapColumns!| ($ $ (|Integer|) (|Integer|))) (SIGNATURE |subMatrix| ($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|))) (SIGNATURE |setsubMatrix!| ($ $ (|Integer|) (|Integer|) $)) (SIGNATURE + ($ $ $)) (SIGNATURE - ($ $ $)) (SIGNATURE - ($ $)) (SIGNATURE * ($ $ $)) (SIGNATURE * ($ |t#1| $)) (SIGNATURE * ($ $ |t#1|)) (SIGNATURE * ($ (|Integer|) $)) (SIGNATURE * (|t#3| $ |t#3|)) (SIGNATURE * (|t#2| |t#2| $)) (SIGNATURE ** ($ $ (|NonNegativeInteger|))) (IF (|has| |t#1| (|IntegralDomain|)) (SIGNATURE |exquo| ((|Union| $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (|Field|)) (SIGNATURE / ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (|EuclideanDomain|)) (PROGN (SIGNATURE |rowEchelon| ($ $)) (SIGNATURE |columnSpace| ((|List| |t#3|) $))) |noBranch|) (IF (|has| |t#1| (|IntegralDomain|)) (PROGN (SIGNATURE |rank| ((|NonNegativeInteger|) $)) (SIGNATURE |nullity| ((|NonNegativeInteger|) $)) (SIGNATURE |nullSpace| ((|List| |t#3|) $))) |noBranch|) (IF (|has| |t#1| (ATTRIBUTE (|commutative| "*"))) (PROGN (SIGNATURE |determinant| (|t#1| $)) (SIGNATURE |minordet| (|t#1| $))) |noBranch|) (IF (|has| |t#1| (|CommutativeRing|)) (SIGNATURE |pfaffian| (|t#1| $)) |noBranch|) (IF (|has| |t#1| (|Field|)) (PROGN (SIGNATURE |inverse| ((|Union| $ "failed") $)) (SIGNATURE ** ($ $ (|Integer|)))) |noBranch|))) │ │ │ -(((|Aggregate|) . T) ((|BasicType|) |has| |#1| (|SetCategory|)) ((|CoercibleTo| (|OutputForm|)) |has| |#1| (|SetCategory|)) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|HomogeneousAggregate| |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|SetCategory|) |has| |#1| (|SetCategory|)) ((|TwoDimensionalArrayCategory| |#1| |#2| |#3|) . T) ((|Type|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|select| ((|#1| $ (|NonNegativeInteger|)) 13)) (|length| (((|NonNegativeInteger|) $) 12)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|coerce| (((|PrimitiveArray| |#1|) $) 10) (($ (|PrimitiveArray| |#1|)) 9) (((|OutputForm|) $) 23 (|has| |#1| (|SetCategory|)))) (= (((|Boolean|) $ $) 16 (|has| |#1| (|SetCategory|))))) │ │ │ -(((|Tuple| |#1|) (|Join| (|CoercibleTo| (|PrimitiveArray| |#1|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|PrimitiveArray| |#1|))) (SIGNATURE |select| (|#1| $ (|NonNegativeInteger|))) (SIGNATURE |length| ((|NonNegativeInteger|) $)) (IF (|has| |#1| (|SetCategory|)) (ATTRIBUTE (|SetCategory|)) |noBranch|))) (|Type|)) (T |Tuple|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|PrimitiveArray| *3)) (|ofCategory| *3 (|Type|)) (|isDomain| *1 (|Tuple| *3)))) (|select| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *1 (|Tuple| *2)) (|ofCategory| *2 (|Type|)))) (|length| (*1 *2 *1) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|Tuple| *3)) (|ofCategory| *3 (|Type|))))) │ │ │ -(|Join| (|CoercibleTo| (|PrimitiveArray| |#1|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|PrimitiveArray| |#1|))) (SIGNATURE |select| (|#1| $ (|NonNegativeInteger|))) (SIGNATURE |length| ((|NonNegativeInteger|) $)) (IF (|has| |#1| (|SetCategory|)) (ATTRIBUTE (|SetCategory|)) |noBranch|))) │ │ │ -((|variables| (((|List| (|SingletonAsOrderedSet|)) $) 28)) (|reductum| (($ $) 25)) (|monomial| (($ |#2| |#3|) NIL) (($ $ (|SingletonAsOrderedSet|) |#3|) 22) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| |#3|)) 20)) (|leadingMonomial| (($ $) 14)) (|leadingCoefficient| ((|#2| $) 12)) (|degree| ((|#3| $) 10))) │ │ │ -(((|UnivariatePowerSeriesCategory&| |#1| |#2| |#3|) (CATEGORY |domain| (SIGNATURE |variables| ((|List| (|SingletonAsOrderedSet|)) |#1|)) (SIGNATURE |monomial| (|#1| |#1| (|List| (|SingletonAsOrderedSet|)) (|List| |#3|))) (SIGNATURE |monomial| (|#1| |#1| (|SingletonAsOrderedSet|) |#3|)) (SIGNATURE |reductum| (|#1| |#1|)) (SIGNATURE |monomial| (|#1| |#2| |#3|)) (SIGNATURE |degree| (|#3| |#1|)) (SIGNATURE |leadingMonomial| (|#1| |#1|)) (SIGNATURE |leadingCoefficient| (|#2| |#1|))) (|UnivariatePowerSeriesCategory| |#2| |#3|) (|Ring|) (|OrderedAbelianMonoid|)) (T |UnivariatePowerSeriesCategory&|)) │ │ │ +((|sizeLess?| (((|Boolean|) $ $) 11)) (|rem| (($ $ $) 15)) (|quo| (($ $ $) 14)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 43)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 52)) (|gcd| (($ $ $) 21) (($ (|List| $)) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 31) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (|exquo| (((|Union| $ "failed") $ $) 18)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 45))) │ │ │ +(((|EuclideanDomain&| |#1|) (CATEGORY |domain| (SIGNATURE |multiEuclidean| ((|Union| (|List| |#1|) "failed") (|List| |#1|) |#1|)) (SIGNATURE |extendedEuclidean| ((|Union| (|Record| (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (SIGNATURE |extendedEuclidean| ((|Record| (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| |generator| |#1|)) |#1| |#1|)) (SIGNATURE |rem| (|#1| |#1| |#1|)) (SIGNATURE |quo| (|#1| |#1| |#1|)) (SIGNATURE |sizeLess?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |expressIdealMember| ((|Union| (|List| |#1|) "failed") (|List| |#1|) |#1|)) (SIGNATURE |principalIdeal| ((|Record| (|:| |coef| (|List| |#1|)) (|:| |generator| |#1|)) (|List| |#1|))) (SIGNATURE |gcd| (|#1| (|List| |#1|))) (SIGNATURE |gcd| (|#1| |#1| |#1|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#1|))) (|EuclideanDomain|)) (T |EuclideanDomain&|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |variables| ((|List| (|SingletonAsOrderedSet|)) |#1|)) (SIGNATURE |monomial| (|#1| |#1| (|List| (|SingletonAsOrderedSet|)) (|List| |#3|))) (SIGNATURE |monomial| (|#1| |#1| (|SingletonAsOrderedSet|) |#3|)) (SIGNATURE |reductum| (|#1| |#1|)) (SIGNATURE |monomial| (|#1| |#2| |#3|)) (SIGNATURE |degree| (|#3| |#1|)) (SIGNATURE |leadingMonomial| (|#1| |#1|)) (SIGNATURE |leadingCoefficient| (|#2| |#1|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|variables| (((|List| (|SingletonAsOrderedSet|)) $) 70)) (|variable| (((|Symbol|) $) 98)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 50 (|has| |#1| (|IntegralDomain|)))) (|unitCanonical| (($ $) 51 (|has| |#1| (|IntegralDomain|)))) (|unit?| (((|Boolean|) $) 53 (|has| |#1| (|IntegralDomain|)))) (|truncate| (($ $ |#2|) 93) (($ $ |#2| |#2|) 92)) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) 100)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|reductum| (($ $) 59)) (|recip| (((|Union| $ "failed") $) 33)) (|pole?| (((|Boolean|) $) 69)) (|order| ((|#2| $) 95) ((|#2| $ |#2|) 94)) (|one?| (((|Boolean|) $) 30)) (|multiplyExponents| (($ $ (|PositiveInteger|)) 96)) (|monomial?| (((|Boolean|) $) 61)) (|monomial| (($ |#1| |#2|) 60) (($ $ (|SingletonAsOrderedSet|) |#2|) 72) (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| |#2|)) 71)) (|map| (($ (|Mapping| |#1| |#1|) $) 62)) (|leadingMonomial| (($ $) 64)) (|leadingCoefficient| ((|#1| $) 65)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|extend| (($ $ |#2|) 90)) (|exquo| (((|Union| $ "failed") $ $) 49 (|has| |#1| (|IntegralDomain|)))) (|eval| (((|Stream| |#1|) $ |#1|) 89 (|has| |#1| (SIGNATURE ** (|#1| |#1| |#2|))))) (|elt| ((|#1| $ |#2|) 99) (($ $ $) 76 (|has| |#2| (|SemiGroup|)))) (|differentiate| (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 84 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 83 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (($ $ (|List| (|Symbol|))) 82 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (($ $ (|Symbol|)) 81 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (($ $ (|NonNegativeInteger|)) 79 (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|)))) (($ $) 77 (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (|degree| ((|#2| $) 63)) (|complete| (($ $) 68)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ (|Fraction| (|Integer|))) 56 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $) 48 (|has| |#1| (|IntegralDomain|))) (($ |#1|) 46 (|has| |#1| (|CommutativeRing|)))) (|coefficient| ((|#1| $ |#2|) 58)) (|charthRoot| (((|Union| $ "failed") $) 47 (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|center| ((|#1| $) 97)) (|associates?| (((|Boolean|) $ $) 52 (|has| |#1| (|IntegralDomain|)))) (|approximate| ((|#1| $ |#2|) 91 (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| |#2|))) (|has| |#1| (SIGNATURE |coerce| (|#1| (|Symbol|))))))) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 88 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 87 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (($ $ (|List| (|Symbol|))) 86 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (($ $ (|Symbol|)) 85 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (($ $ (|NonNegativeInteger|)) 80 (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|)))) (($ $) 78 (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))))) (= (((|Boolean|) $ $) 6)) (/ (($ $ |#1|) 57 (|has| |#1| (|Field|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (|Fraction| (|Integer|)) $) 55 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))) (($ $ (|Fraction| (|Integer|))) 54 (|has| |#1| (|Algebra| (|Fraction| (|Integer|))))))) │ │ │ -(((|UnivariatePowerSeriesCategory| |#1| |#2|) (|Category|) (|Ring|) (|OrderedAbelianMonoid|)) (T |UnivariatePowerSeriesCategory|)) │ │ │ -((|terms| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|Stream| (|Record| (|:| |k| *4) (|:| |c| *3)))))) (|elt| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *2 *3)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|)))) (|variable| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|isDomain| *2 (|Symbol|)))) (|center| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *2 *3)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|ofCategory| *2 (|Ring|)))) (|multiplyExponents| (*1 *1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)))) (|order| (*1 *2 *1) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|order| (*1 *2 *1 *2) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|truncate| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|truncate| (*1 *1 *1 *2 *2) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|approximate| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *2 *3)) (|ofCategory| *3 (|OrderedAbelianMonoid|)) (|has| *2 (SIGNATURE ** (*2 *2 *3))) (|has| *2 (SIGNATURE |coerce| (*2 (|Symbol|)))) (|ofCategory| *2 (|Ring|)))) (|extend| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedAbelianMonoid|)))) (|eval| (*1 *2 *1 *3) (AND (|ofCategory| *1 (|UnivariatePowerSeriesCategory| *3 *4)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoid|)) (|has| *3 (SIGNATURE ** (*3 *3 *4))) (|isDomain| *2 (|Stream| *3))))) │ │ │ -(|Join| (|PowerSeriesCategory| |t#1| |t#2| (|SingletonAsOrderedSet|)) (CATEGORY |domain| (SIGNATURE |terms| ((|Stream| (|Record| (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (SIGNATURE |elt| (|t#1| $ |t#2|)) (SIGNATURE |variable| ((|Symbol|) $)) (SIGNATURE |center| (|t#1| $)) (SIGNATURE |multiplyExponents| ($ $ (|PositiveInteger|))) (SIGNATURE |order| (|t#2| $)) (SIGNATURE |order| (|t#2| $ |t#2|)) (SIGNATURE |truncate| ($ $ |t#2|)) (SIGNATURE |truncate| ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (SIGNATURE |coerce| (|t#1| (|Symbol|)))) (IF (|has| |t#1| (SIGNATURE ** (|t#1| |t#1| |t#2|))) (SIGNATURE |approximate| (|t#1| $ |t#2|)) |noBranch|) |noBranch|) (SIGNATURE |extend| ($ $ |t#2|)) (IF (|has| |t#2| (|SemiGroup|)) (ATTRIBUTE (|Eltable| $ $)) |noBranch|) (IF (|has| |t#1| (SIGNATURE * (|t#1| |t#2| |t#1|))) (PROGN (ATTRIBUTE (|DifferentialRing|)) (IF (|has| |t#1| (|PartialDifferentialRing| (|Symbol|))) (ATTRIBUTE (|PartialDifferentialRing| (|Symbol|))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (SIGNATURE ** (|t#1| |t#1| |t#2|))) (SIGNATURE |eval| ((|Stream| |t#1|) $ |t#1|)) |noBranch|))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| |#2|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) |has| |#1| (|IntegralDomain|)) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|DifferentialRing|) |has| |#1| (SIGNATURE * (|#1| |#2| |#1|))) ((|Eltable| $ $) |has| |#2| (|SemiGroup|)) ((|EntireRing|) |has| |#1| (|IntegralDomain|)) ((|IntegralDomain|) |has| |#1| (|IntegralDomain|)) ((|LeftModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|Module| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) |has| |#1| (|IntegralDomain|)) ((|Monoid|) . T) ((|PartialDifferentialRing| (|Symbol|)) AND (|has| |#1| (SIGNATURE * (|#1| |#2| |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|PowerSeriesCategory| |#1| |#2| (|SingletonAsOrderedSet|)) . T) ((|RightModule| (|Fraction| (|Integer|))) |has| |#1| (|Algebra| (|Fraction| (|Integer|)))) ((|RightModule| |#1|) . T) ((|RightModule| $) OR (|has| |#1| (|IntegralDomain|)) (|has| |#1| (|CommutativeRing|))) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|SetCategory|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $) NIL) (((|Boolean|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| (|Integer|) (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $) NIL) (($ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| (((|Integer|) $ (|Integer|) (|Integer|)) 15 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Integer|) $ (|UniversalSegment| (|Integer|)) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|remove| (($ (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|)))) (($ (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| (((|Integer|) (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ (|Integer|) (|Integer|)) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|)))) (((|Integer|) (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Integer|) (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| (((|Integer|) $ (|Integer|) (|Integer|)) 14 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| (((|Integer|) $ (|Integer|)) 12)) (|position| (((|Integer|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL) (((|Integer|) (|Integer|) $) NIL (|has| (|Integer|) (|SetCategory|))) (((|Integer|) (|Integer|) $ (|Integer|)) NIL (|has| (|Integer|) (|SetCategory|)))) (|parts| (((|List| (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|new| (($ (|NonNegativeInteger|) (|Integer|)) 11)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) 9 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $ $) NIL) (($ $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|members| (((|List| (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|map!| (($ (|Mapping| (|Integer|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Integer|) (|Integer|)) $) NIL) (($ (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|insert| (($ (|Integer|) $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|first| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| (|Integer|) "failed") (|Mapping| (|Boolean|) (|Integer|)) $) NIL)) (|fill!| (($ $ (|Integer|)) 16 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|Integer|)))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|Equation| (|Integer|))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|Integer|) (|Integer|)) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|List| (|Integer|)) (|List| (|Integer|))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|entries| (((|List| (|Integer|)) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) 10)) (|elt| (((|Integer|) $ (|Integer|) (|Integer|)) NIL) (((|Integer|) $ (|Integer|)) 13) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| (|Integer|) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|Integer|))) NIL)) (|concat| (($ $ (|Integer|)) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ (|List| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) 7 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|U8Vector|) (|OneDimensionalArrayAggregate| (|Integer|))) (T |U8Vector|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |multiEuclidean| ((|Union| (|List| |#1|) "failed") (|List| |#1|) |#1|)) (SIGNATURE |extendedEuclidean| ((|Union| (|Record| (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (SIGNATURE |extendedEuclidean| ((|Record| (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| |generator| |#1|)) |#1| |#1|)) (SIGNATURE |rem| (|#1| |#1| |#1|)) (SIGNATURE |quo| (|#1| |#1| |#1|)) (SIGNATURE |sizeLess?| ((|Boolean|) |#1| |#1|)) (SIGNATURE |expressIdealMember| ((|Union| (|List| |#1|) "failed") (|List| |#1|) |#1|)) (SIGNATURE |principalIdeal| ((|Record| (|:| |coef| (|List| |#1|)) (|:| |generator| |#1|)) (|List| |#1|))) (SIGNATURE |gcd| (|#1| (|List| |#1|))) (SIGNATURE |gcd| (|#1| |#1| |#1|)) (SIGNATURE |exquo| ((|Union| |#1| "failed") |#1| |#1|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|varList| (((|List| |#1|) $) NIL)) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|mirror| (($ $) 67)) (|log| (((|LiePolynomial| |#1| |#2|) $) 52)) (|listOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) 36)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) 70)) (|identification| (((|List| (|Equation| |#2|)) $ $) 33)) (|hash| (((|SingleInteger|) $) NIL)) (|exp| (($ (|LiePolynomial| |#1| |#2|)) 48)) (|conjugate| (($ $ $) NIL)) (|commutator| (($ $ $) NIL)) (|coerce| (((|OutputForm|) $) 58) (((|XDistributedPolynomial| |#1| |#2|) $) NIL) (((|XPBWPolynomial| |#1| |#2|) $) 66)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|One| (($) 53 T CONST)) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) 31)) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) 65)) (= (((|Boolean|) $ $) 54)) (/ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (* (($ $ $) 44))) │ │ │ +(((|LieExponentials| |#1| |#2| |#3|) (|Join| (|Group|) (CATEGORY |domain| (SIGNATURE |exp| ($ (|LiePolynomial| |#1| |#2|))) (SIGNATURE |log| ((|LiePolynomial| |#1| |#2|) $)) (SIGNATURE |listOfTerms| ((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $)) (SIGNATURE |coerce| ((|XDistributedPolynomial| |#1| |#2|) $)) (SIGNATURE |coerce| ((|XPBWPolynomial| |#1| |#2|) $)) (SIGNATURE |mirror| ($ $)) (SIGNATURE |varList| ((|List| |#1|) $)) (SIGNATURE |LyndonBasis| ((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|))) (SIGNATURE |LyndonCoordinates| ((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $)) (SIGNATURE |identification| ((|List| (|Equation| |#2|)) $ $)))) (|OrderedSet|) (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|)))) (|PositiveInteger|)) (T |LieExponentials|)) │ │ │ +((|exp| (*1 *1 *2) (AND (|isDomain| *2 (|LiePolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|isDomain| *1 (|LieExponentials| *3 *4 *5)) (|ofType| *5 (|PositiveInteger|)))) (|log| (*1 *2 *1) (AND (|isDomain| *2 (|LiePolynomial| *3 *4)) (|isDomain| *1 (|LieExponentials| *3 *4 *5)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *5 (|PositiveInteger|)))) (|listOfTerms| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| *3)) (|:| |c| *4)))) (|isDomain| *1 (|LieExponentials| *3 *4 *5)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *5 (|PositiveInteger|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|XDistributedPolynomial| *3 *4)) (|isDomain| *1 (|LieExponentials| *3 *4 *5)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *5 (|PositiveInteger|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|XPBWPolynomial| *3 *4)) (|isDomain| *1 (|LieExponentials| *3 *4 *5)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *5 (|PositiveInteger|)))) (|mirror| (*1 *1 *1) (AND (|isDomain| *1 (|LieExponentials| *2 *3 *4)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *3 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *4 (|PositiveInteger|)))) (|varList| (*1 *2 *1) (AND (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|LieExponentials| *3 *4 *5)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *5 (|PositiveInteger|)))) (|LyndonBasis| (*1 *2 *3) (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|OrderedSet|)) (|isDomain| *2 (|List| (|LiePolynomial| *4 *5))) (|isDomain| *1 (|LieExponentials| *4 *5 *6)) (|ofCategory| *5 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *6 (|PositiveInteger|)))) (|LyndonCoordinates| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |k| (|LyndonWord| *3)) (|:| |c| *4)))) (|isDomain| *1 (|LieExponentials| *3 *4 *5)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *5 (|PositiveInteger|)))) (|identification| (*1 *2 *1 *1) (AND (|isDomain| *2 (|List| (|Equation| *4))) (|isDomain| *1 (|LieExponentials| *3 *4 *5)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Join| (|CommutativeRing|) (|Module| (|Fraction| (|Integer|))))) (|ofType| *5 (|PositiveInteger|))))) │ │ │ +(|Join| (|Group|) (CATEGORY |domain| (SIGNATURE |exp| ($ (|LiePolynomial| |#1| |#2|))) (SIGNATURE |log| ((|LiePolynomial| |#1| |#2|) $)) (SIGNATURE |listOfTerms| ((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $)) (SIGNATURE |coerce| ((|XDistributedPolynomial| |#1| |#2|) $)) (SIGNATURE |coerce| ((|XPBWPolynomial| |#1| |#2|) $)) (SIGNATURE |mirror| ($ $)) (SIGNATURE |varList| ((|List| |#1|) $)) (SIGNATURE |LyndonBasis| ((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|))) (SIGNATURE |LyndonCoordinates| ((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $)) (SIGNATURE |identification| ((|List| (|Equation| |#2|)) $ $)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) 78)) (|zeroSetSplit| (((|List| $) (|List| |#4|)) 79) (((|List| $) (|List| |#4|) (|Boolean|)) 104)) (|variables| (((|List| |#3|) $) 32)) (|trivialIdeal?| (((|Boolean|) $) 25)) (|triangular?| (((|Boolean|) $) 16 (|has| |#1| (|IntegralDomain|)))) (|stronglyReduced?| (((|Boolean|) |#4| $) 94) (((|Boolean|) $) 90)) (|stronglyReduce| ((|#4| |#4| $) 85)) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) 119)) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) 26)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 43)) (|select| (($ (|Mapping| (|Boolean|) |#4|) $) 64 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Union| |#4| "failed") $ |#3|) 72)) (|sample| (($) 44 T CONST)) (|roughUnitIdeal?| (((|Boolean|) $) 21 (|has| |#1| (|IntegralDomain|)))) (|roughSubIdeal?| (((|Boolean|) $ $) 23 (|has| |#1| (|IntegralDomain|)))) (|roughEqualIdeals?| (((|Boolean|) $ $) 22 (|has| |#1| (|IntegralDomain|)))) (|roughBase?| (((|Boolean|) $) 24 (|has| |#1| (|IntegralDomain|)))) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 86)) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) 17 (|has| |#1| (|IntegralDomain|)))) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) 18 (|has| |#1| (|IntegralDomain|)))) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) 35)) (|retract| (($ (|List| |#4|)) 34)) (|rest| (((|Union| $ "failed") $) 75)) (|removeZero| ((|#4| |#4| $) 82)) (|removeDuplicates| (($ $) 67 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|remove| (($ |#4| $) 66 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (($ (|Mapping| (|Boolean|) |#4|) $) 63 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 19 (|has| |#1| (|IntegralDomain|)))) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) 95)) (|reduceByQuasiMonic| ((|#4| |#4| $) 80)) (|reduce| ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4| |#4|) 65 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4|) 62 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#4| (|Mapping| |#4| |#4| |#4|) $) 61 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 87)) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) 98)) (|purelyTranscendental?| (((|Boolean|) |#4| $) 129)) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) 126)) (|purelyAlgebraic?| (((|Boolean|) |#4| $) 130) (((|Boolean|) $) 127)) (|parts| (((|List| |#4|) $) 51 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|normalized?| (((|Boolean|) |#4| $) 97) (((|Boolean|) $) 96)) (|mvar| ((|#3| $) 33)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 42)) (|members| (((|List| |#4|) $) 52 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#4| $) 54 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#4| |#4|) $) 47 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#4| |#4|) $) 46)) (|mainVariables| (((|List| |#3|) $) 31)) (|mainVariable?| (((|Boolean|) |#3| $) 30)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 41)) (|latex| (((|String|) $) 9)) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) 121)) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) 120)) (|last| (((|Union| |#4| "failed") $) 76)) (|invertibleSet| (((|List| $) |#4| $) 122)) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) 125)) (|invertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) 124) (((|Boolean|) |#4| $) 123)) (|intersect| (((|List| $) |#4| $) 118) (((|List| $) (|List| |#4|) $) 117) (((|List| $) (|List| |#4|) (|List| $)) 116) (((|List| $) |#4| (|List| $)) 115)) (|internalAugment| (($ |#4| $) 110) (($ (|List| |#4|) $) 109)) (|initials| (((|List| |#4|) $) 100)) (|initiallyReduced?| (((|Boolean|) |#4| $) 92) (((|Boolean|) $) 88)) (|initiallyReduce| ((|#4| |#4| $) 83)) (|infRittWu?| (((|Boolean|) $ $) 103)) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (|IntegralDomain|)))) (|headReduced?| (((|Boolean|) |#4| $) 93) (((|Boolean|) $) 89)) (|headReduce| ((|#4| |#4| $) 84)) (|hash| (((|SingleInteger|) $) 10)) (|first| (((|Union| |#4| "failed") $) 77)) (|find| (((|Union| |#4| "failed") (|Mapping| (|Boolean|) |#4|) $) 60)) (|extendIfCan| (((|Union| $ "failed") $ |#4|) 71)) (|extend| (($ $ |#4|) 70) (((|List| $) |#4| $) 108) (((|List| $) |#4| (|List| $)) 107) (((|List| $) (|List| |#4|) $) 106) (((|List| $) (|List| |#4|) (|List| $)) 105)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#4|) $) 49 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| |#4|) (|List| |#4|)) 58 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) (($ $ |#4| |#4|) 57 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) (($ $ (|Equation| |#4|)) 56 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) (($ $ (|List| (|Equation| |#4|))) 55 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 37)) (|empty?| (((|Boolean|) $) 40)) (|empty| (($) 39)) (|degree| (((|NonNegativeInteger|) $) 99)) (|count| (((|NonNegativeInteger|) |#4| $) 53 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#4|) $) 50 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|copy| (($ $) 38)) (|convert| (((|InputForm|) $) 68 (|has| |#4| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#4|)) 59)) (|collectUpper| (($ $ |#3|) 27)) (|collectUnder| (($ $ |#3|) 29)) (|collectQuasiMonic| (($ $) 81)) (|collect| (($ $ |#3|) 28)) (|coerce| (((|OutputForm|) $) 11) (((|List| |#4|) $) 36)) (|coHeight| (((|NonNegativeInteger|) $) 69 (|has| |#3| (|Finite|)))) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 102) (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) 101)) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) 91)) (|augment| (((|List| $) |#4| $) 114) (((|List| $) |#4| (|List| $)) 113) (((|List| $) (|List| |#4|) $) 112) (((|List| $) (|List| |#4|) (|List| $)) 111)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#4|) $) 48 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|algebraicVariables| (((|List| |#3|) $) 74)) (|algebraicCoefficients?| (((|Boolean|) |#4| $) 128)) (|algebraic?| (((|Boolean|) |#3| $) 73)) (= (((|Boolean|) $ $) 6)) (|#| (((|NonNegativeInteger|) $) 45 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|SquareFreeRegularTriangularSetCategory| |#1| |#2| |#3| |#4|) (|Category|) (|GcdDomain|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |t#1| |t#2| |t#3|)) (T |SquareFreeRegularTriangularSetCategory|)) │ │ │ NIL │ │ │ -(|OneDimensionalArrayAggregate| (|Integer|)) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|SetCategory|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $) NIL) (((|Boolean|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| (|Integer|) (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $) NIL) (($ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| (((|Integer|) $ (|Integer|) (|Integer|)) 15 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Integer|) $ (|UniversalSegment| (|Integer|)) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|remove| (($ (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|)))) (($ (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| (((|Integer|) (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ (|Integer|) (|Integer|)) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|)))) (((|Integer|) (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Integer|) (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| (((|Integer|) $ (|Integer|) (|Integer|)) 14 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| (((|Integer|) $ (|Integer|)) 12)) (|position| (((|Integer|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL) (((|Integer|) (|Integer|) $) NIL (|has| (|Integer|) (|SetCategory|))) (((|Integer|) (|Integer|) $ (|Integer|)) NIL (|has| (|Integer|) (|SetCategory|)))) (|parts| (((|List| (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|new| (($ (|NonNegativeInteger|) (|Integer|)) 11)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) 9 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $ $) NIL) (($ $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|members| (((|List| (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|map!| (($ (|Mapping| (|Integer|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Integer|) (|Integer|)) $) NIL) (($ (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|insert| (($ (|Integer|) $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|first| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| (|Integer|) "failed") (|Mapping| (|Boolean|) (|Integer|)) $) NIL)) (|fill!| (($ $ (|Integer|)) 16 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|Integer|)))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|Equation| (|Integer|))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|Integer|) (|Integer|)) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|List| (|Integer|)) (|List| (|Integer|))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|entries| (((|List| (|Integer|)) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) 10)) (|elt| (((|Integer|) $ (|Integer|) (|Integer|)) NIL) (((|Integer|) $ (|Integer|)) 13) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| (|Integer|) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|Integer|))) NIL)) (|concat| (($ $ (|Integer|)) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ (|List| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) 7 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|U16Vector|) (|OneDimensionalArrayAggregate| (|Integer|))) (T |U16Vector|)) │ │ │ +(|Join| (|RegularTriangularSetCategory| |t#1| |t#2| |t#3| |t#4|)) │ │ │ +(((|Aggregate|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|List| |#4|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| |#4|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|))) ((|Evalable| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|HomogeneousAggregate| |#4|) . T) ((|InnerEvalable| |#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|PolynomialSetCategory| |#1| |#2| |#3| |#4|) . T) ((|RegularTriangularSetCategory| |#1| |#2| |#3| |#4|) . T) ((|SetCategory|) . T) ((|TriangularSetCategory| |#1| |#2| |#3| |#4|) . T) ((|Type|) . T)) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|differentiate| (($ $ |#1|) 41) (($ $ (|List| |#1|)) 40) (($ $ |#1| (|NonNegativeInteger|)) 39) (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) 38)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $ |#1|) 37) (($ $ (|List| |#1|)) 36) (($ $ |#1| (|NonNegativeInteger|)) 35) (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) 34)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ +(((|PartialDifferentialRing| |#1|) (|Category|) (|SetCategory|)) (T |PartialDifferentialRing|)) │ │ │ +((|differentiate| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PartialDifferentialRing| *2)) (|ofCategory| *2 (|SetCategory|)))) (|differentiate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *1 (|PartialDifferentialRing| *3)) (|ofCategory| *3 (|SetCategory|)))) (|differentiate| (*1 *1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|PartialDifferentialRing| *2)) (|ofCategory| *2 (|SetCategory|)))) (|differentiate| (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *4)) (|isDomain| *3 (|List| (|NonNegativeInteger|))) (|ofCategory| *1 (|PartialDifferentialRing| *4)) (|ofCategory| *4 (|SetCategory|)))) (D (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PartialDifferentialRing| *2)) (|ofCategory| *2 (|SetCategory|)))) (D (*1 *1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *1 (|PartialDifferentialRing| *3)) (|ofCategory| *3 (|SetCategory|)))) (D (*1 *1 *1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|PartialDifferentialRing| *2)) (|ofCategory| *2 (|SetCategory|)))) (D (*1 *1 *1 *2 *3) (AND (|isDomain| *2 (|List| *4)) (|isDomain| *3 (|List| (|NonNegativeInteger|))) (|ofCategory| *1 (|PartialDifferentialRing| *4)) (|ofCategory| *4 (|SetCategory|))))) │ │ │ +(|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |differentiate| ($ $ |t#1|)) (SIGNATURE |differentiate| ($ $ (|List| |t#1|))) (SIGNATURE |differentiate| ($ $ |t#1| (|NonNegativeInteger|))) (SIGNATURE |differentiate| ($ $ (|List| |t#1|) (|List| (|NonNegativeInteger|)))) (SIGNATURE D ($ $ |t#1|)) (SIGNATURE D ($ $ (|List| |t#1|))) (SIGNATURE D ($ $ |t#1| (|NonNegativeInteger|))) (SIGNATURE D ($ $ (|List| |t#1|) (|List| (|NonNegativeInteger|)))))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +((|tableau| (($ (|List| (|List| |#1|))) 9)) (|listOfLists| (((|List| (|List| |#1|)) $) 10)) (|coerce| (((|OutputForm|) $) 25))) │ │ │ +(((|Tableau| |#1|) (CATEGORY |domain| (SIGNATURE |tableau| ($ (|List| (|List| |#1|)))) (SIGNATURE |listOfLists| ((|List| (|List| |#1|)) $)) (SIGNATURE |coerce| ((|OutputForm|) $))) (|SetCategory|)) (T |Tableau|)) │ │ │ +((|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|OutputForm|)) (|isDomain| *1 (|Tableau| *3)) (|ofCategory| *3 (|SetCategory|)))) (|listOfLists| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|List| *3))) (|isDomain| *1 (|Tableau| *3)) (|ofCategory| *3 (|SetCategory|)))) (|tableau| (*1 *1 *2) (AND (|isDomain| *2 (|List| (|List| *3))) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|Tableau| *3))))) │ │ │ +(CATEGORY |domain| (SIGNATURE |tableau| ($ (|List| (|List| |#1|)))) (SIGNATURE |listOfLists| ((|List| (|List| |#1|)) $)) (SIGNATURE |coerce| ((|OutputForm|) $))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|variables| (((|List| |#3|) $) 32)) (|trivialIdeal?| (((|Boolean|) $) 25)) (|triangular?| (((|Boolean|) $) 16 (|has| |#1| (|IntegralDomain|)))) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) 26)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 43)) (|select| (($ (|Mapping| (|Boolean|) |#4|) $) 64 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) 44 T CONST)) (|roughUnitIdeal?| (((|Boolean|) $) 21 (|has| |#1| (|IntegralDomain|)))) (|roughSubIdeal?| (((|Boolean|) $ $) 23 (|has| |#1| (|IntegralDomain|)))) (|roughEqualIdeals?| (((|Boolean|) $ $) 22 (|has| |#1| (|IntegralDomain|)))) (|roughBase?| (((|Boolean|) $) 24 (|has| |#1| (|IntegralDomain|)))) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) 17 (|has| |#1| (|IntegralDomain|)))) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) 18 (|has| |#1| (|IntegralDomain|)))) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) 35)) (|retract| (($ (|List| |#4|)) 34)) (|removeDuplicates| (($ $) 67 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|remove| (($ |#4| $) 66 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (($ (|Mapping| (|Boolean|) |#4|) $) 63 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 19 (|has| |#1| (|IntegralDomain|)))) (|reduce| ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4| |#4|) 65 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) ((|#4| (|Mapping| |#4| |#4| |#4|) $ |#4|) 62 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#4| (|Mapping| |#4| |#4| |#4|) $) 61 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|parts| (((|List| |#4|) $) 51 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|mvar| ((|#3| $) 33)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 42)) (|members| (((|List| |#4|) $) 52 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#4| $) 54 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|map!| (($ (|Mapping| |#4| |#4|) $) 47 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#4| |#4|) $) 46)) (|mainVariables| (((|List| |#3|) $) 31)) (|mainVariable?| (((|Boolean|) |#3| $) 30)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 41)) (|latex| (((|String|) $) 9)) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (|IntegralDomain|)))) (|hash| (((|SingleInteger|) $) 10)) (|find| (((|Union| |#4| "failed") (|Mapping| (|Boolean|) |#4|) $) 60)) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#4|) $) 49 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| |#4|) (|List| |#4|)) 58 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) (($ $ |#4| |#4|) 57 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) (($ $ (|Equation| |#4|)) 56 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|)))) (($ $ (|List| (|Equation| |#4|))) 55 (AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 37)) (|empty?| (((|Boolean|) $) 40)) (|empty| (($) 39)) (|count| (((|NonNegativeInteger|) |#4| $) 53 (AND (|has| |#4| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#4|) $) 50 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|copy| (($ $) 38)) (|convert| (((|InputForm|) $) 68 (|has| |#4| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#4|)) 59)) (|collectUpper| (($ $ |#3|) 27)) (|collectUnder| (($ $ |#3|) 29)) (|collect| (($ $ |#3|) 28)) (|coerce| (((|OutputForm|) $) 11) (((|List| |#4|) $) 36)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#4|) $) 48 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (= (((|Boolean|) $ $) 6)) (|#| (((|NonNegativeInteger|) $) 45 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|PolynomialSetCategory| |#1| |#2| |#3| |#4|) (|Category|) (|Ring|) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|RecursivePolynomialCategory| |t#1| |t#2| |t#3|)) (T |PolynomialSetCategory|)) │ │ │ +((|retractIfCan| (*1 *1 *2) (|partial| AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)))) (|retract| (*1 *1 *2) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)))) (|mvar| (*1 *2 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *2 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|RecursivePolynomialCategory| *3 *4 *2)) (|ofCategory| *2 (|OrderedSet|)))) (|variables| (*1 *2 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|List| *5)))) (|mainVariables| (*1 *2 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|List| *5)))) (|mainVariable?| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *4 *5 *3 *6)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *4 *5 *3)) (|isDomain| *2 (|Boolean|)))) (|collectUnder| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *2 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *5 (|RecursivePolynomialCategory| *3 *4 *2)))) (|collect| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *2 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *5 (|RecursivePolynomialCategory| *3 *4 *2)))) (|collectUpper| (*1 *1 *1 *2) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *2 *5)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *2 (|OrderedSet|)) (|ofCategory| *5 (|RecursivePolynomialCategory| *3 *4 *2)))) (|sort| (*1 *2 *1 *3) (AND (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *4 *5 *3)) (|isDomain| *2 (|Record| (|:| |under| *1) (|:| |floor| *1) (|:| |upper| *1))) (|ofCategory| *1 (|PolynomialSetCategory| *4 *5 *3 *6)))) (|trivialIdeal?| (*1 *2 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|isDomain| *2 (|Boolean|)))) (|roughBase?| (*1 *2 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))) (|roughSubIdeal?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))) (|roughEqualIdeals?| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))) (|roughUnitIdeal?| (*1 *2 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|)))) (|headRemainder| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |num| *3) (|:| |den| *4))))) (|remainder| (*1 *2 *3 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *4 *5 *6 *3)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *5 (|OrderedAbelianMonoidSup|)) (|ofCategory| *6 (|OrderedSet|)) (|ofCategory| *3 (|RecursivePolynomialCategory| *4 *5 *6)) (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (|rewriteIdealWithHeadRemainder| (*1 *2 *2 *1) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)))) (|rewriteIdealWithRemainder| (*1 *2 *2 *1) (AND (|isDomain| *2 (|List| *6)) (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)))) (|triangular?| (*1 *2 *1) (AND (|ofCategory| *1 (|PolynomialSetCategory| *3 *4 *5 *6)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|RecursivePolynomialCategory| *3 *4 *5)) (|ofCategory| *3 (|IntegralDomain|)) (|isDomain| *2 (|Boolean|))))) │ │ │ +(|Join| (|SetCategory|) (|Collection| |t#4|) (|CoercibleTo| (|List| |t#4|)) (CATEGORY |domain| (ATTRIBUTE |finiteAggregate|) (SIGNATURE |retractIfCan| ((|Union| $ "failed") (|List| |t#4|))) (SIGNATURE |retract| ($ (|List| |t#4|))) (SIGNATURE |mvar| (|t#3| $)) (SIGNATURE |variables| ((|List| |t#3|) $)) (SIGNATURE |mainVariables| ((|List| |t#3|) $)) (SIGNATURE |mainVariable?| ((|Boolean|) |t#3| $)) (SIGNATURE |collectUnder| ($ $ |t#3|)) (SIGNATURE |collect| ($ $ |t#3|)) (SIGNATURE |collectUpper| ($ $ |t#3|)) (SIGNATURE |sort| ((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |t#3|)) (SIGNATURE |trivialIdeal?| ((|Boolean|) $)) (IF (|has| |t#1| (|IntegralDomain|)) (PROGN (SIGNATURE |roughBase?| ((|Boolean|) $)) (SIGNATURE |roughSubIdeal?| ((|Boolean|) $ $)) (SIGNATURE |roughEqualIdeals?| ((|Boolean|) $ $)) (SIGNATURE |roughUnitIdeal?| ((|Boolean|) $)) (SIGNATURE |headRemainder| ((|Record| (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (SIGNATURE |remainder| ((|Record| (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (SIGNATURE |rewriteIdealWithHeadRemainder| ((|List| |t#4|) (|List| |t#4|) $)) (SIGNATURE |rewriteIdealWithRemainder| ((|List| |t#4|) (|List| |t#4|) $)) (SIGNATURE |triangular?| ((|Boolean|) $))) |noBranch|))) │ │ │ +(((|Aggregate|) . T) ((|BasicType|) . T) ((|CoercibleTo| (|List| |#4|)) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|Collection| |#4|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#4| (|ConvertibleTo| (|InputForm|))) ((|Evalable| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|HomogeneousAggregate| |#4|) . T) ((|InnerEvalable| |#4| |#4|) AND (|has| |#4| (|Evalable| |#4|)) (|has| |#4| (|SetCategory|))) ((|SetCategory|) . T) ((|Type|) . T)) │ │ │ +((|revert| (((|Stream| |#1|) (|Stream| |#1|)) 77)) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) 37)) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) 117 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) 121 (|has| |#1| (|Field|)))) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) 90)) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) 57)) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) 108 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) 95)) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) 45)) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) 60)) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) 119 (|has| |#1| (|Field|)))) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) 107 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) 120 (|has| |#1| (|Field|)))) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) 89)) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) 76)) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) 96)) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) 105 (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))))) (|integers| (((|Stream| (|Integer|)) (|Integer|)) 56)) (|int| (((|Stream| |#1|) |#1|) 59)) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) 92)) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) 66)) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) 35)) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) 91)) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) 71)) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) 62)) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) 72)) (|coerce| (((|Stream| |#1|) |#1|) 67)) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) 82)) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) 36)) (- (((|Stream| |#1|) (|Stream| |#1|)) 21) (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) 23)) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) 17)) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) 29) (((|Stream| |#1|) |#1| (|Stream| |#1|)) 26) (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) 27))) │ │ │ +(((|StreamTaylorSeriesOperations| |#1|) (CATEGORY |package| (SIGNATURE + ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE - ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE - ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE * ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE * ((|Stream| |#1|) |#1| (|Stream| |#1|))) (SIGNATURE * ((|Stream| |#1|) (|Stream| |#1|) |#1|)) (SIGNATURE |exquo| ((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE / ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |recip| ((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|))) (SIGNATURE |monom| ((|Stream| |#1|) |#1| (|Integer|))) (SIGNATURE |integers| ((|Stream| (|Integer|)) (|Integer|))) (SIGNATURE |oddintegers| ((|Stream| (|Integer|)) (|Integer|))) (SIGNATURE |int| ((|Stream| |#1|) |#1|)) (SIGNATURE |mapmult| ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |deriv| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |gderiv| ((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|))) (SIGNATURE |coerce| ((|Stream| |#1|) |#1|)) (SIGNATURE |eval| ((|Stream| |#1|) (|Stream| |#1|) |#1|)) (SIGNATURE |compose| ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |lagrange| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |revert| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |addiag| ((|Stream| |#1|) (|Stream| (|Stream| |#1|)))) (SIGNATURE |lambert| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |oddlambert| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |evenlambert| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |generalLambert| ((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|))) (SIGNATURE |multisect| ((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|))) (SIGNATURE |invmultisect| ((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ((|Stream| |#1|) |#1| (|Stream| |#1|))) (SIGNATURE |lazyIntegrate| ((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|)))) (SIGNATURE |nlde| ((|Stream| |#1|) (|Stream| (|Stream| |#1|)))) (SIGNATURE |powern| ((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)))) |noBranch|) (IF (|has| |#1| (|Field|)) (PROGN (SIGNATURE |mapdiv| ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |lazyGintegrate| ((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|)))) (SIGNATURE |power| ((|Stream| |#1|) |#1| (|Stream| |#1|)))) |noBranch|)) (|Ring|)) (T |StreamTaylorSeriesOperations|)) │ │ │ +((|power| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|lazyGintegrate| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *4 (|Integer|))) (|isDomain| *5 (|Mapping| (|Stream| *4))) (|ofCategory| *4 (|Field|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *2 (|Stream| *4)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)))) (|mapdiv| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|powern| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Stream| *4)) (|ofCategory| *4 (|Algebra| *3)) (|ofCategory| *4 (|Ring|)) (|isDomain| *3 (|Fraction| (|Integer|))) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)))) (|nlde| (*1 *2 *3) (AND (|isDomain| *3 (|Stream| (|Stream| *4))) (|isDomain| *2 (|Stream| *4)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)) (|ofCategory| *4 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *4 (|Ring|)))) (|lazyIntegrate| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| (|Stream| *3))) (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|Ring|)))) (|integrate| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Algebra| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|invmultisect| (*1 *2 *3 *3 *2) (AND (|isDomain| *2 (|Stream| *4)) (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)))) (|multisect| (*1 *2 *3 *3 *2) (AND (|isDomain| *2 (|Stream| *4)) (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)))) (|generalLambert| (*1 *2 *2 *3 *3) (AND (|isDomain| *2 (|Stream| *4)) (|isDomain| *3 (|Integer|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)))) (|evenlambert| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|oddlambert| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|lambert| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|addiag| (*1 *2 *3) (AND (|isDomain| *3 (|Stream| (|Stream| *4))) (|isDomain| *2 (|Stream| *4)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)) (|ofCategory| *4 (|Ring|)))) (|revert| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|lagrange| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|compose| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|eval| (*1 *2 *2 *3) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|coerce| (*1 *2 *3) (AND (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)) (|ofCategory| *3 (|Ring|)))) (|gderiv| (*1 *2 *3 *2) (AND (|isDomain| *2 (|Stream| *4)) (|isDomain| *3 (|Mapping| *4 (|Integer|))) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)))) (|deriv| (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|mapmult| (*1 *2 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|int| (*1 *2 *3) (AND (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)) (|ofCategory| *3 (|Ring|)))) (|oddintegers| (*1 *2 *3) (AND (|isDomain| *2 (|Stream| (|Integer|))) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *3 (|Integer|)))) (|integers| (*1 *2 *3) (AND (|isDomain| *2 (|Stream| (|Integer|))) (|isDomain| *1 (|StreamTaylorSeriesOperations| *4)) (|ofCategory| *4 (|Ring|)) (|isDomain| *3 (|Integer|)))) (|monom| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Integer|)) (|isDomain| *2 (|Stream| *3)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)) (|ofCategory| *3 (|Ring|)))) (|recip| (*1 *2 *2) (|partial| AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (/ (*1 *2 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (|exquo| (*1 *2 *2 *2) (|partial| AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (* (*1 *2 *2 *3) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (* (*1 *2 *3 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (* (*1 *2 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (- (*1 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (- (*1 *2 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3)))) (+ (*1 *2 *2 *2) (AND (|isDomain| *2 (|Stream| *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|StreamTaylorSeriesOperations| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE + ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE - ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE - ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE * ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE * ((|Stream| |#1|) |#1| (|Stream| |#1|))) (SIGNATURE * ((|Stream| |#1|) (|Stream| |#1|) |#1|)) (SIGNATURE |exquo| ((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE / ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |recip| ((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|))) (SIGNATURE |monom| ((|Stream| |#1|) |#1| (|Integer|))) (SIGNATURE |integers| ((|Stream| (|Integer|)) (|Integer|))) (SIGNATURE |oddintegers| ((|Stream| (|Integer|)) (|Integer|))) (SIGNATURE |int| ((|Stream| |#1|) |#1|)) (SIGNATURE |mapmult| ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |deriv| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |gderiv| ((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|))) (SIGNATURE |coerce| ((|Stream| |#1|) |#1|)) (SIGNATURE |eval| ((|Stream| |#1|) (|Stream| |#1|) |#1|)) (SIGNATURE |compose| ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |lagrange| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |revert| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |addiag| ((|Stream| |#1|) (|Stream| (|Stream| |#1|)))) (SIGNATURE |lambert| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |oddlambert| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |evenlambert| ((|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |generalLambert| ((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|))) (SIGNATURE |multisect| ((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|))) (SIGNATURE |invmultisect| ((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|))) (IF (|has| |#1| (|Algebra| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |integrate| ((|Stream| |#1|) |#1| (|Stream| |#1|))) (SIGNATURE |lazyIntegrate| ((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|)))) (SIGNATURE |nlde| ((|Stream| |#1|) (|Stream| (|Stream| |#1|)))) (SIGNATURE |powern| ((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)))) |noBranch|) (IF (|has| |#1| (|Field|)) (PROGN (SIGNATURE |mapdiv| ((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|))) (SIGNATURE |lazyGintegrate| ((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|)))) (SIGNATURE |power| ((|Stream| |#1|) |#1| (|Stream| |#1|)))) |noBranch|)) │ │ │ +((~= (((|Boolean|) $ $) 18 (|has| |#2| (|SetCategory|)))) (|zero?| (((|Boolean|) $) 67 (|has| |#2| (|CancellationAbelianMonoid|)))) (|unitVector| (($ (|PositiveInteger|)) 123 (|has| |#2| (|Ring|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sup| (($ $ $) 119 (|has| |#2| (|OrderedAbelianMonoidSup|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) 69 (|has| |#2| (|CancellationAbelianMonoid|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|size| (((|NonNegativeInteger|)) 104 (|has| |#2| (|Finite|)))) (|sign| (((|Integer|) $) 117 (|has| |#2| (|OrderedRing|)))) (|setelt| ((|#2| $ (|Integer|) |#2|) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sample| (($) 7 T CONST)) (|retractIfCan| (((|Union| (|Integer|) "failed") $) 62 (|and| (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) 59 (|and| (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|)))) (((|Union| |#2| "failed") $) 56 (|has| |#2| (|SetCategory|)))) (|retract| (((|Integer|) $) 63 (|and| (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|)))) (((|Fraction| (|Integer|)) $) 60 (|and| (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|)))) ((|#2| $) 55 (|has| |#2| (|SetCategory|)))) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) 103 (|and| (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) 102 (|and| (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|)))) (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#2|))) (|Matrix| $) (|Vector| $)) 101 (|has| |#2| (|Ring|))) (((|Matrix| |#2|) (|Matrix| $)) 100 (|has| |#2| (|Ring|)))) (|recip| (((|Union| $ "failed") $) 75 (|has| |#2| (|Monoid|)))) (|random| (($) 107 (|has| |#2| (|Finite|)))) (|qsetelt!| ((|#2| $ (|Integer|) |#2|) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#2| $ (|Integer|)) 48)) (|positive?| (((|Boolean|) $) 115 (|has| |#2| (|OrderedRing|)))) (|parts| (((|List| |#2|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|one?| (((|Boolean|) $) 78 (|has| |#2| (|Monoid|)))) (|negative?| (((|Boolean|) $) 116 (|has| |#2| (|OrderedRing|)))) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|minIndex| (((|Integer|) $) 40 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) 114 (OR (|has| |#2| (|OrderedRing|)) (|has| |#2| (|OrderedAbelianMonoidSup|))))) (|members| (((|List| |#2|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#2| $) 27 (AND (|has| |#2| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxIndex| (((|Integer|) $) 41 (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) 113 (OR (|has| |#2| (|OrderedRing|)) (|has| |#2| (|OrderedAbelianMonoidSup|))))) (|map!| (($ (|Mapping| |#2| |#2|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#2| |#2|) $) 35)) (|lookup| (((|PositiveInteger|) $) 106 (|has| |#2| (|Finite|)))) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|latex| (((|String|) $) 22 (|has| |#2| (|SetCategory|)))) (|indices| (((|List| (|Integer|)) $) 43)) (|index?| (((|Boolean|) (|Integer|) $) 44)) (|index| (($ (|PositiveInteger|)) 105 (|has| |#2| (|Finite|)))) (|hash| (((|SingleInteger|) $) 21 (|has| |#2| (|SetCategory|)))) (|first| ((|#2| $) 39 (|has| (|Integer|) (|OrderedSet|)))) (|fill!| (($ $ |#2|) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#2|))) 26 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|Equation| |#2|)) 25 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ |#2| |#2|) 24 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|)))) (($ $ (|List| |#2|) (|List| |#2|)) 23 (AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|enumerate| (((|List| $)) 108 (|has| |#2| (|Finite|)))) (|entry?| (((|Boolean|) |#2| $) 42 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#2| (|SetCategory|))))) (|entries| (((|List| |#2|) $) 45)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#2| $ (|Integer|) |#2|) 47) ((|#2| $ (|Integer|)) 46)) (|dot| ((|#2| $ $) 122 (|has| |#2| (|Ring|)))) (|directProduct| (($ (|Vector| |#2|)) 124)) (|dimension| (((|CardinalNumber|)) 121 (|has| |#2| (|Field|)))) (|differentiate| (($ $) 95 (|and| (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|)))) (($ $ (|NonNegativeInteger|)) 93 (|and| (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|)))) (($ $ (|Symbol|)) 91 (|and| (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|List| (|Symbol|))) 90 (|and| (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 89 (|and| (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 88 (|and| (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) 81 (|has| |#2| (|Ring|))) (($ $ (|Mapping| |#2| |#2|)) 80 (|has| |#2| (|Ring|)))) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#2| $) 28 (AND (|has| |#2| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copy| (($ $) 13)) (|coerce| (((|Vector| |#2|) $) 125) (((|OutputForm|) $) 20 (|has| |#2| (|SetCategory|))) (($ (|Integer|)) 61 (OR (|and| (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|))) (|has| |#2| (|Ring|)))) (($ (|Fraction| (|Integer|))) 58 (|and| (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|)))) (($ |#2|) 57 (|has| |#2| (|SetCategory|)))) (|characteristic| (((|NonNegativeInteger|)) 99 (|has| |#2| (|Ring|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|abs| (($ $) 118 (|has| |#2| (|OrderedRing|)))) (^ (($ $ (|NonNegativeInteger|)) 76 (|has| |#2| (|Monoid|))) (($ $ (|PositiveInteger|)) 72 (|has| |#2| (|Monoid|)))) (|Zero| (($) 66 (|has| |#2| (|CancellationAbelianMonoid|)) CONST)) (|One| (($) 79 (|has| |#2| (|Monoid|)) CONST)) (D (($ $) 94 (|and| (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|)))) (($ $ (|NonNegativeInteger|)) 92 (|and| (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|)))) (($ $ (|Symbol|)) 87 (|and| (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|List| (|Symbol|))) 86 (|and| (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 85 (|and| (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 84 (|and| (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|)))) (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) 83 (|has| |#2| (|Ring|))) (($ $ (|Mapping| |#2| |#2|)) 82 (|has| |#2| (|Ring|)))) (>= (((|Boolean|) $ $) 111 (OR (|has| |#2| (|OrderedRing|)) (|has| |#2| (|OrderedAbelianMonoidSup|))))) (> (((|Boolean|) $ $) 110 (OR (|has| |#2| (|OrderedRing|)) (|has| |#2| (|OrderedAbelianMonoidSup|))))) (= (((|Boolean|) $ $) 19 (|has| |#2| (|SetCategory|)))) (<= (((|Boolean|) $ $) 112 (OR (|has| |#2| (|OrderedRing|)) (|has| |#2| (|OrderedAbelianMonoidSup|))))) (< (((|Boolean|) $ $) 109 (OR (|has| |#2| (|OrderedRing|)) (|has| |#2| (|OrderedAbelianMonoidSup|))))) (/ (($ $ |#2|) 120 (|has| |#2| (|Field|)))) (- (($ $ $) 97 (|has| |#2| (|Ring|))) (($ $) 96 (|has| |#2| (|Ring|)))) (+ (($ $ $) 64 (|has| |#2| (|AbelianSemiGroup|)))) (** (($ $ (|NonNegativeInteger|)) 77 (|has| |#2| (|Monoid|))) (($ $ (|PositiveInteger|)) 73 (|has| |#2| (|Monoid|)))) (* (($ (|Integer|) $) 98 (|has| |#2| (|Ring|))) (($ $ $) 74 (|has| |#2| (|Monoid|))) (($ $ |#2|) 71 (|has| |#2| (|Monoid|))) (($ |#2| $) 70 (|has| |#2| (|Monoid|))) (($ (|NonNegativeInteger|) $) 68 (|has| |#2| (|CancellationAbelianMonoid|))) (($ (|PositiveInteger|) $) 65 (|has| |#2| (|AbelianSemiGroup|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ +(((|DirectProductCategory| |#1| |#2|) (|Category|) (|NonNegativeInteger|) (|Type|)) (T |DirectProductCategory|)) │ │ │ +((|directProduct| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| *4)) (|ofCategory| *4 (|Type|)) (|ofCategory| *1 (|DirectProductCategory| *3 *4)))) (|unitVector| (*1 *1 *2) (AND (|isDomain| *2 (|PositiveInteger|)) (|ofCategory| *1 (|DirectProductCategory| *3 *4)) (|ofCategory| *4 (|Ring|)) (|ofCategory| *4 (|Type|)))) (|dot| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|DirectProductCategory| *3 *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|Ring|)))) (* (*1 *1 *1 *2) (AND (|ofCategory| *1 (|DirectProductCategory| *3 *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|Monoid|)))) (* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|DirectProductCategory| *3 *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|Monoid|))))) │ │ │ +(|Join| (|IndexedAggregate| (|Integer|) |t#2|) (|CoercibleTo| (|Vector| |t#2|)) (CATEGORY |domain| (ATTRIBUTE |finiteAggregate|) (SIGNATURE |directProduct| ($ (|Vector| |t#2|))) (IF (|has| |t#2| (|SetCategory|)) (ATTRIBUTE (|FullyRetractableTo| |t#2|)) |noBranch|) (IF (|has| |t#2| (|Ring|)) (PROGN (ATTRIBUTE (|BiModule| |t#2| |t#2|)) (ATTRIBUTE (|DifferentialExtension| |t#2|)) (ATTRIBUTE (|FullyLinearlyExplicitRingOver| |t#2|)) (SIGNATURE |unitVector| ($ (|PositiveInteger|))) (SIGNATURE |dot| (|t#2| $ $))) |noBranch|) (IF (|has| |t#2| (|AbelianSemiGroup|)) (ATTRIBUTE (|AbelianSemiGroup|)) |noBranch|) (IF (|has| |t#2| (|CancellationAbelianMonoid|)) (ATTRIBUTE (|CancellationAbelianMonoid|)) |noBranch|) (IF (|has| |t#2| (|Monoid|)) (PROGN (ATTRIBUTE (|Monoid|)) (SIGNATURE * ($ |t#2| $)) (SIGNATURE * ($ $ |t#2|))) |noBranch|) (IF (|has| |t#2| (|Finite|)) (ATTRIBUTE (|Finite|)) |noBranch|) (IF (|has| |t#2| (|CommutativeRing|)) (PROGN (ATTRIBUTE (|Algebra| |t#2|)) (ATTRIBUTE (|CommutativeRing|))) |noBranch|) (IF (|has| |t#2| (ATTRIBUTE |unitsKnown|)) (ATTRIBUTE |unitsKnown|) |noBranch|) (IF (|has| |t#2| (|OrderedRing|)) (ATTRIBUTE (|OrderedRing|)) |noBranch|) (IF (|has| |t#2| (|OrderedAbelianMonoidSup|)) (ATTRIBUTE (|OrderedAbelianMonoidSup|)) |noBranch|) (IF (|has| |t#2| (|Field|)) (ATTRIBUTE (|VectorSpace| |t#2|)) |noBranch|))) │ │ │ +(((|AbelianGroup|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|))) ((|AbelianMonoid|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|CancellationAbelianMonoid|))) ((|AbelianSemiGroup|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|))) ((|Aggregate|) . T) ((|Algebra| |#2|) |has| |#2| (|CommutativeRing|)) ((|BasicType|) OR (|has| |#2| (|SetCategory|)) (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|))) ((|BiModule| |#2| |#2|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|))) ((|BiModule| $ $) |has| |#2| (|CommutativeRing|)) ((|CancellationAbelianMonoid|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|CancellationAbelianMonoid|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#2| (|SetCategory|)) (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|))) ((|CoercibleTo| (|Vector| |#2|)) . T) ((|CommutativeRing|) |has| |#2| (|CommutativeRing|)) ((|DifferentialExtension| |#2|) |has| |#2| (|Ring|)) ((|DifferentialRing|) AND (|has| |#2| (|DifferentialRing|)) (|has| |#2| (|Ring|))) ((|Eltable| (|Integer|) |#2|) . T) ((|EltableAggregate| (|Integer|) |#2|) . T) ((|Evalable| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|Finite|) |has| |#2| (|Finite|)) ((|FullyLinearlyExplicitRingOver| |#2|) |has| |#2| (|Ring|)) ((|FullyRetractableTo| |#2|) |has| |#2| (|SetCategory|)) ((|HomogeneousAggregate| |#2|) . T) ((|IndexedAggregate| (|Integer|) |#2|) . T) ((|InnerEvalable| |#2| |#2|) AND (|has| |#2| (|Evalable| |#2|)) (|has| |#2| (|SetCategory|))) ((|LeftModule| |#2|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|))) ((|LeftModule| $) OR (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|CommutativeRing|))) ((|LinearlyExplicitRingOver| (|Integer|)) AND (|has| |#2| (|LinearlyExplicitRingOver| (|Integer|))) (|has| |#2| (|Ring|))) ((|LinearlyExplicitRingOver| |#2|) |has| |#2| (|Ring|)) ((|Module| |#2|) OR (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|))) ((|Monoid|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|CommutativeRing|))) ((|OrderedAbelianGroup|) |has| |#2| (|OrderedRing|)) ((|OrderedAbelianMonoid|) OR (|has| |#2| (|OrderedRing|)) (|has| |#2| (|OrderedAbelianMonoidSup|))) ((|OrderedAbelianMonoidSup|) |has| |#2| (|OrderedAbelianMonoidSup|)) ((|OrderedAbelianSemiGroup|) OR (|has| |#2| (|OrderedRing|)) (|has| |#2| (|OrderedAbelianMonoidSup|))) ((|OrderedCancellationAbelianMonoid|) OR (|has| |#2| (|OrderedRing|)) (|has| |#2| (|OrderedAbelianMonoidSup|))) ((|OrderedRing|) |has| |#2| (|OrderedRing|)) ((|OrderedSet|) OR (|has| |#2| (|OrderedRing|)) (|has| |#2| (|OrderedAbelianMonoidSup|))) ((|PartialDifferentialRing| (|Symbol|)) AND (|has| |#2| (|PartialDifferentialRing| (|Symbol|))) (|has| |#2| (|Ring|))) ((|RetractableTo| (|Fraction| (|Integer|))) AND (|has| |#2| (|RetractableTo| (|Fraction| (|Integer|)))) (|has| |#2| (|SetCategory|))) ((|RetractableTo| (|Integer|)) AND (|has| |#2| (|RetractableTo| (|Integer|))) (|has| |#2| (|SetCategory|))) ((|RetractableTo| |#2|) |has| |#2| (|SetCategory|)) ((|RightModule| |#2|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|))) ((|RightModule| $) |has| |#2| (|CommutativeRing|)) ((|Ring|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|CommutativeRing|))) ((|Rng|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|CommutativeRing|))) ((|SemiGroup|) OR (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|CommutativeRing|))) ((|SetCategory|) OR (|has| |#2| (|SetCategory|)) (|has| |#2| (|Ring|)) (|has| |#2| (|OrderedRing|)) (|has| |#2| (|OrderedAbelianMonoidSup|)) (|has| |#2| (|Monoid|)) (|has| |#2| (|Finite|)) (|has| |#2| (|Field|)) (|has| |#2| (|CommutativeRing|)) (|has| |#2| (|CancellationAbelianMonoid|)) (|has| |#2| (|AbelianSemiGroup|))) ((|Type|) . T) ((|VectorSpace| |#2|) |has| |#2| (|Field|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 13)) (|wholePart| ((|#1| $) 21 (|has| |#1| (|EuclideanDomain|)))) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) NIL)) (|unitCanonical| (($ $) NIL)) (|unit?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|squareFreePart| (($ $) NIL)) (|squareFree| (((|Factored| $) $) NIL)) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) NIL (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|sizeLess?| (((|Boolean|) $ $) NIL)) (|sign| (((|Integer|) $) NIL (|has| |#1| (|OrderedIntegralDomain|)))) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) 17) (((|Union| (|Symbol|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Symbol|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) 70 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|))))) (|retract| ((|#1| $) 15) (((|Symbol|) $) NIL (|has| |#1| (|RetractableTo| (|Symbol|)))) (((|Fraction| (|Integer|)) $) 67 (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|))))) (|rem| (($ $ $) NIL)) (|reducedSystem| (((|Matrix| (|Integer|)) (|Matrix| $)) NIL (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $)) NIL (|has| |#1| (|LinearlyExplicitRingOver| (|Integer|)))) (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) NIL) (((|Matrix| |#1|) (|Matrix| $)) NIL)) (|recip| (((|Union| $ "failed") $) 50)) (|random| (($) NIL (|has| |#1| (|IntegerNumberSystem|)))) (|quo| (($ $ $) NIL)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) NIL)) (|prime?| (((|Boolean|) $) NIL)) (|positive?| (((|Boolean|) $) NIL (|has| |#1| (|OrderedIntegralDomain|)))) (|patternMatch| (((|PatternMatchResult| (|Integer|) $) $ (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) $)) NIL (|has| |#1| (|PatternMatchable| (|Integer|)))) (((|PatternMatchResult| (|Float|) $) $ (|Pattern| (|Float|)) (|PatternMatchResult| (|Float|) $)) NIL (|has| |#1| (|PatternMatchable| (|Float|))))) (|one?| (((|Boolean|) $) 64)) (|numerator| (($ $) NIL)) (|numer| ((|#1| $) 71)) (|nextItem| (((|Union| $ "failed") $) NIL (|has| |#1| (|StepThrough|)))) (|negative?| (((|Boolean|) $) NIL (|has| |#1| (|OrderedIntegralDomain|)))) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) NIL)) (|lcm| (($ $ $) NIL) (($ (|List| $)) NIL)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) NIL)) (|init| (($) NIL (|has| |#1| (|StepThrough|)) CONST)) (|hash| (((|SingleInteger|) $) NIL)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 97)) (|gcd| (($ $ $) NIL) (($ (|List| $)) NIL)) (|fractionPart| (($ $) NIL (|has| |#1| (|EuclideanDomain|)))) (|floor| ((|#1| $) 28 (|has| |#1| (|IntegerNumberSystem|)))) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 133 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) 129 (|has| |#1| (|PolynomialFactorizationExplicit|)))) (|factor| (((|Factored| $) $) NIL)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (|exquo| (((|Union| $ "failed") $ $) NIL)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) NIL)) (|eval| (($ $ (|List| |#1|) (|List| |#1|)) NIL (|has| |#1| (|Evalable| |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (|Evalable| |#1|))) (($ $ (|Equation| |#1|)) NIL (|has| |#1| (|Evalable| |#1|))) (($ $ (|List| (|Equation| |#1|))) NIL (|has| |#1| (|Evalable| |#1|))) (($ $ (|List| (|Symbol|)) (|List| |#1|)) NIL (|has| |#1| (|InnerEvalable| (|Symbol|) |#1|))) (($ $ (|Symbol|) |#1|) NIL (|has| |#1| (|InnerEvalable| (|Symbol|) |#1|)))) (|euclideanSize| (((|NonNegativeInteger|) $) NIL)) (|elt| (($ $ |#1|) NIL (|has| |#1| (|Eltable| |#1| |#1|)))) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL)) (|differentiate| (($ $) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|Symbol|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#1| |#1|)) 63)) (|denominator| (($ $) NIL)) (|denom| ((|#1| $) 73)) (|convert| (((|Pattern| (|Integer|)) $) NIL (|has| |#1| (|ConvertibleTo| (|Pattern| (|Integer|))))) (((|Pattern| (|Float|)) $) NIL (|has| |#1| (|ConvertibleTo| (|Pattern| (|Float|))))) (((|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| (|InputForm|)))) (((|Float|) $) NIL (|has| |#1| (|RealConstant|))) (((|DoubleFloat|) $) NIL (|has| |#1| (|RealConstant|)))) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) 113 (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ $) NIL) (($ (|Fraction| (|Integer|))) NIL) (($ |#1|) 10) (($ (|Symbol|)) NIL (|has| |#1| (|RetractableTo| (|Symbol|))))) (|charthRoot| (((|Union| $ "failed") $) 99 (OR (AND (|has| $ (|CharacteristicNonZero|)) (|has| |#1| (|PolynomialFactorizationExplicit|))) (|has| |#1| (|CharacteristicNonZero|))))) (|characteristic| (((|NonNegativeInteger|)) 100)) (|ceiling| ((|#1| $) 26 (|has| |#1| (|IntegerNumberSystem|)))) (|associates?| (((|Boolean|) $ $) NIL)) (|abs| (($ $) NIL (|has| |#1| (|OrderedIntegralDomain|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL)) (|Zero| (($) 22 T CONST)) (|One| (($) 8 T CONST)) (|OMwrite| (((|String|) $) 43 (AND (|has| |#1| (|IntegerNumberSystem|)) (|has| |#1| (|OpenMath|)))) (((|String|) $ (|Boolean|)) 44 (AND (|has| |#1| (|IntegerNumberSystem|)) (|has| |#1| (|OpenMath|)))) (((|Void|) (|OpenMathDevice|) $) 45 (AND (|has| |#1| (|IntegerNumberSystem|)) (|has| |#1| (|OpenMath|)))) (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) 46 (AND (|has| |#1| (|IntegerNumberSystem|)) (|has| |#1| (|OpenMath|))))) (D (($ $) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|DifferentialRing|))) (($ $ (|Symbol|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Symbol|) (|NonNegativeInteger|)) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) NIL (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) NIL) (($ $ (|Mapping| |#1| |#1|)) NIL)) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) 56)) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) 24 (|has| |#1| (|OrderedSet|)))) (/ (($ $ $) 124) (($ |#1| |#1|) 52)) (- (($ $) 25) (($ $ $) 55)) (+ (($ $ $) 53)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) 123)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 60) (($ $ $) 57) (($ $ (|Fraction| (|Integer|))) NIL) (($ (|Fraction| (|Integer|)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) │ │ │ +(((|Fraction| |#1|) (|Join| (|QuotientFieldCategory| |#1|) (CATEGORY |package| (IF (|has| |#1| (|IntegerNumberSystem|)) (IF (|has| |#1| (|OpenMath|)) (ATTRIBUTE (|OpenMath|)) |noBranch|) |noBranch|) (IF (|has| |#1| (ATTRIBUTE |canonical|)) (IF (|has| |#1| (|GcdDomain|)) (IF (|has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (ATTRIBUTE |canonical|) |noBranch|) |noBranch|) |noBranch|))) (|IntegralDomain|)) (T |Fraction|)) │ │ │ NIL │ │ │ -(|OneDimensionalArrayAggregate| (|Integer|)) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|SetCategory|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $) NIL) (((|Boolean|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| (|Integer|) (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $) NIL) (($ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| (((|Integer|) $ (|Integer|) (|Integer|)) 15 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Integer|) $ (|UniversalSegment| (|Integer|)) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|remove| (($ (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|)))) (($ (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| (((|Integer|) (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ (|Integer|) (|Integer|)) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|)))) (((|Integer|) (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Integer|) (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| (((|Integer|) $ (|Integer|) (|Integer|)) 14 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| (((|Integer|) $ (|Integer|)) 12)) (|position| (((|Integer|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL) (((|Integer|) (|Integer|) $) NIL (|has| (|Integer|) (|SetCategory|))) (((|Integer|) (|Integer|) $ (|Integer|)) NIL (|has| (|Integer|) (|SetCategory|)))) (|parts| (((|List| (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|new| (($ (|NonNegativeInteger|) (|Integer|)) 11)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) 9 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) (|Integer|) (|Integer|)) $ $) NIL) (($ $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|members| (((|List| (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|map!| (($ (|Mapping| (|Integer|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Integer|) (|Integer|)) $) NIL) (($ (|Mapping| (|Integer|) (|Integer|) (|Integer|)) $ $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|insert| (($ (|Integer|) $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|first| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| (|Integer|) "failed") (|Mapping| (|Boolean|) (|Integer|)) $) NIL)) (|fill!| (($ $ (|Integer|)) 16 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|Integer|)))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|Equation| (|Integer|))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|Integer|) (|Integer|)) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|)))) (($ $ (|List| (|Integer|)) (|List| (|Integer|))) NIL (AND (|has| (|Integer|) (|Evalable| (|Integer|))) (|has| (|Integer|) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|entries| (((|List| (|Integer|)) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) 10)) (|elt| (((|Integer|) $ (|Integer|) (|Integer|)) NIL) (((|Integer|) $ (|Integer|)) 13) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|Integer|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Integer|) (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| (|Integer|) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|Integer|))) NIL)) (|concat| (($ $ (|Integer|)) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ (|List| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| (|Integer|) (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Integer|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|#| (((|NonNegativeInteger|) $) 7 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|U32Vector|) (|OneDimensionalArrayAggregate| (|Integer|))) (T |U32Vector|)) │ │ │ +(|Join| (|QuotientFieldCategory| |#1|) (CATEGORY |package| (IF (|has| |#1| (|IntegerNumberSystem|)) (IF (|has| |#1| (|OpenMath|)) (ATTRIBUTE (|OpenMath|)) |noBranch|) |noBranch|) (IF (|has| |#1| (ATTRIBUTE |canonical|)) (IF (|has| |#1| (|GcdDomain|)) (IF (|has| |#1| (ATTRIBUTE |canonicalUnitNormal|)) (ATTRIBUTE |canonical|) |noBranch|) |noBranch|) |noBranch|))) │ │ │ +((^ (($ $ (|PositiveInteger|)) 12)) (** (($ $ (|PositiveInteger|)) 10))) │ │ │ +(((|SemiGroup&| |#1|) (CATEGORY |domain| (SIGNATURE ^ (|#1| |#1| (|PositiveInteger|))) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|)))) (|SemiGroup|)) (T |SemiGroup&|)) │ │ │ NIL │ │ │ -(|OneDimensionalArrayAggregate| (|Integer|)) │ │ │ -((|zero| (($ (|NonNegativeInteger|)) 16)) (|outerProduct| (((|Matrix| |#2|) $ $) 37)) (|magnitude| ((|#2| $) 46)) (|length| ((|#2| $) 45)) (|dot| ((|#2| $ $) 33)) (|cross| (($ $ $) 42)) (- (($ $) 20) (($ $ $) 26)) (+ (($ $ $) 13)) (* (($ (|Integer|) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28))) │ │ │ -(((|VectorCategory&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |magnitude| (|#2| |#1|)) (SIGNATURE |length| (|#2| |#1|)) (SIGNATURE |cross| (|#1| |#1| |#1|)) (SIGNATURE |outerProduct| ((|Matrix| |#2|) |#1| |#1|)) (SIGNATURE |dot| (|#2| |#1| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|)) (SIGNATURE |zero| (|#1| (|NonNegativeInteger|))) (SIGNATURE + (|#1| |#1| |#1|))) (|VectorCategory| |#2|) (|Type|)) (T |VectorCategory&|)) │ │ │ +(CATEGORY |domain| (SIGNATURE ^ (|#1| |#1| (|PositiveInteger|))) (SIGNATURE ** (|#1| |#1| (|PositiveInteger|)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|sample| (($) 16 T CONST)) (|recip| (((|Union| $ "failed") $) 33)) (|one?| (((|Boolean|) $) 30)) (|latex| (((|String|) $) 9)) (|hash| (((|SingleInteger|) $) 10)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27)) (|charthRoot| (((|Union| $ "failed") $) 34)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (= (((|Boolean|) $ $) 6)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23))) │ │ │ +(((|CharacteristicNonZero|) (|Category|)) (T |CharacteristicNonZero|)) │ │ │ +((|charthRoot| (*1 *1 *1) (|partial| |ofCategory| *1 (|CharacteristicNonZero|)))) │ │ │ +(|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |charthRoot| ((|Union| $ "failed") $)))) │ │ │ +(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|BasicType|) . T) ((|CancellationAbelianMonoid|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|LeftModule| $) . T) ((|Monoid|) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T)) │ │ │ +((|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) 143) (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) 141) (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) 140) (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) 139) (((|Result|) (|NumericalOptimizationProblem|)) 112) (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) 111)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) 76) (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) 78)) (|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) 144) (((|Result|) (|NumericalOptimizationProblem|)) 128))) │ │ │ +(((|AnnaNumericalOptimizationPackage|) (CATEGORY |package| (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|))) (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|))) (SIGNATURE |optimize| ((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|))) (SIGNATURE |optimize| ((|Result|) (|NumericalOptimizationProblem|))) (SIGNATURE |goodnessOfFit| ((|Result|) (|NumericalOptimizationProblem|))) (SIGNATURE |optimize| ((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|))))) (SIGNATURE |optimize| ((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|))))) (SIGNATURE |optimize| ((|Result|) (|Expression| (|Float|)) (|List| (|Float|)))) (SIGNATURE |optimize| ((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|)))) (SIGNATURE |goodnessOfFit| ((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|)))))) (T |AnnaNumericalOptimizationPackage|)) │ │ │ +((|goodnessOfFit| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Expression| (|Float|)))) (|isDomain| *4 (|List| (|Float|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|AnnaNumericalOptimizationPackage|)))) (|optimize| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Expression| (|Float|)))) (|isDomain| *4 (|List| (|Float|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|AnnaNumericalOptimizationPackage|)))) (|optimize| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Expression| (|Float|))) (|isDomain| *4 (|List| (|Float|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|AnnaNumericalOptimizationPackage|)))) (|optimize| (*1 *2 *3 *4 *5 *5) (AND (|isDomain| *3 (|Expression| (|Float|))) (|isDomain| *4 (|List| (|Float|))) (|isDomain| *5 (|List| (|OrderedCompletion| (|Float|)))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|AnnaNumericalOptimizationPackage|)))) (|optimize| (*1 *2 *3 *4 *5 *6 *5) (AND (|isDomain| *4 (|List| (|Float|))) (|isDomain| *5 (|List| (|OrderedCompletion| (|Float|)))) (|isDomain| *6 (|List| (|Expression| (|Float|)))) (|isDomain| *3 (|Expression| (|Float|))) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|AnnaNumericalOptimizationPackage|)))) (|goodnessOfFit| (*1 *2 *3) (AND (|isDomain| *3 (|NumericalOptimizationProblem|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|AnnaNumericalOptimizationPackage|)))) (|optimize| (*1 *2 *3) (AND (|isDomain| *3 (|NumericalOptimizationProblem|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|AnnaNumericalOptimizationPackage|)))) (|optimize| (*1 *2 *3 *4) (AND (|isDomain| *3 (|NumericalOptimizationProblem|)) (|isDomain| *4 (|RoutinesTable|)) (|isDomain| *2 (|Result|)) (|isDomain| *1 (|AnnaNumericalOptimizationPackage|)))) (|measure| (*1 *2 *3 *4) (AND (|isDomain| *3 (|NumericalOptimizationProblem|)) (|isDomain| *4 (|RoutinesTable|)) (|isDomain| *2 (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) (|isDomain| *1 (|AnnaNumericalOptimizationPackage|)))) (|measure| (*1 *2 *3) (AND (|isDomain| *3 (|NumericalOptimizationProblem|)) (|isDomain| *2 (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) (|isDomain| *1 (|AnnaNumericalOptimizationPackage|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|))) (SIGNATURE |measure| ((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|))) (SIGNATURE |optimize| ((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|))) (SIGNATURE |optimize| ((|Result|) (|NumericalOptimizationProblem|))) (SIGNATURE |goodnessOfFit| ((|Result|) (|NumericalOptimizationProblem|))) (SIGNATURE |optimize| ((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|))))) (SIGNATURE |optimize| ((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|))))) (SIGNATURE |optimize| ((|Result|) (|Expression| (|Float|)) (|List| (|Float|)))) (SIGNATURE |optimize| ((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|)))) (SIGNATURE |goodnessOfFit| ((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))))) │ │ │ +((|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) 54)) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) 44)) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) 62 (|has| |#1| (|Field|))))) │ │ │ +(((|AssociatedEquations| |#1| |#2|) (CATEGORY |package| (SIGNATURE |associatedSystem| ((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|))) (SIGNATURE |uncouplingMatrices| ((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|))) (IF (|has| |#1| (|Field|)) (SIGNATURE |associatedEquations| ((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|))) |noBranch|)) (|IntegralDomain|) (|LinearOrdinaryDifferentialOperatorCategory| |#1|)) (T |AssociatedEquations|)) │ │ │ +((|associatedEquations| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|Field|)) (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| *3) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| *3)))) (|isDomain| *1 (|AssociatedEquations| *5 *3)) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *5)))) (|uncouplingMatrices| (*1 *2 *3) (AND (|ofCategory| *4 (|IntegralDomain|)) (|isDomain| *2 (|Vector| (|Matrix| *4))) (|isDomain| *1 (|AssociatedEquations| *4 *5)) (|isDomain| *3 (|Matrix| *4)) (|ofCategory| *5 (|LinearOrdinaryDifferentialOperatorCategory| *4)))) (|associatedSystem| (*1 *2 *3 *4) (AND (|ofCategory| *5 (|IntegralDomain|)) (|isDomain| *2 (|Record| (|:| |mat| (|Matrix| *5)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|)))))) (|isDomain| *1 (|AssociatedEquations| *5 *3)) (|isDomain| *4 (|PositiveInteger|)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |associatedSystem| ((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|))) (SIGNATURE |uncouplingMatrices| ((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|))) (IF (|has| |#1| (|Field|)) (SIGNATURE |associatedEquations| ((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|))) |noBranch|)) │ │ │ +((|placesOfDegree| (((|Void|) (|PositiveInteger|) |#3| (|List| |#5|)) 55)) (|intersectionDivisor| ((|#8| |#3| |#3| (|List| |#10|) (|List| |#5|)) 52))) │ │ │ +(((|IntersectionDivisorPackage| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10| |#11|) (CATEGORY |package| (SIGNATURE |intersectionDivisor| (|#8| |#3| |#3| (|List| |#10|) (|List| |#5|))) (SIGNATURE |placesOfDegree| ((|Void|) (|PositiveInteger|) |#3| (|List| |#5|)))) (|Field|) (|List| (|Symbol|)) (|PolynomialCategory| |#1| |#4| (|OrderedVariableList| |#2|)) (|DirectProductCategory| (|#| |#2|) (|NonNegativeInteger|)) (|ProjectiveSpaceCategory| |#1|) (|LocalPowerSeriesCategory| |#1|) (|PlacesCategory| |#1| |#6|) (|DivisorCategory| |#7|) (|InfinitlyClosePointCategory| |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#11|) (|DesingTreeCategory| |#9|) (|BlowUpMethodCategory|)) (T |IntersectionDivisorPackage|)) │ │ │ +((|placesOfDegree| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|PositiveInteger|)) (|isDomain| *5 (|List| *9)) (|ofCategory| *9 (|ProjectiveSpaceCategory| *6)) (|ofCategory| *6 (|Field|)) (|ofType| *7 (|List| (|Symbol|))) (|ofCategory| *4 (|PolynomialCategory| *6 *8 (|OrderedVariableList| *7))) (|ofCategory| *8 (|DirectProductCategory| (|#| *7) (|NonNegativeInteger|))) (|ofCategory| *10 (|LocalPowerSeriesCategory| *6)) (|ofCategory| *11 (|PlacesCategory| *6 *10)) (|ofCategory| *12 (|DivisorCategory| *11)) (|ofCategory| *13 (|InfinitlyClosePointCategory| *6 *7 *4 *8 *9 *10 *11 *12 *15)) (|ofCategory| *15 (|BlowUpMethodCategory|)) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|IntersectionDivisorPackage| *6 *7 *4 *8 *9 *10 *11 *12 *13 *14 *15)) (|ofCategory| *14 (|DesingTreeCategory| *13)))) (|intersectionDivisor| (*1 *2 *3 *3 *4 *5) (AND (|isDomain| *4 (|List| *13)) (|isDomain| *5 (|List| *9)) (|ofCategory| *9 (|ProjectiveSpaceCategory| *6)) (|ofCategory| *13 (|DesingTreeCategory| *12)) (|ofCategory| *6 (|Field|)) (|ofCategory| *12 (|InfinitlyClosePointCategory| *6 *7 *3 *8 *9 *10 *11 *2 *14)) (|ofCategory| *14 (|BlowUpMethodCategory|)) (|ofType| *7 (|List| (|Symbol|))) (|ofCategory| *3 (|PolynomialCategory| *6 *8 (|OrderedVariableList| *7))) (|ofCategory| *8 (|DirectProductCategory| (|#| *7) (|NonNegativeInteger|))) (|ofCategory| *10 (|LocalPowerSeriesCategory| *6)) (|ofCategory| *11 (|PlacesCategory| *6 *10)) (|ofCategory| *2 (|DivisorCategory| *11)) (|isDomain| *1 (|IntersectionDivisorPackage| *6 *7 *3 *8 *9 *10 *11 *2 *12 *13 *14))))) │ │ │ +(CATEGORY |package| (SIGNATURE |intersectionDivisor| (|#8| |#3| |#3| (|List| |#10|) (|List| |#5|))) (SIGNATURE |placesOfDegree| ((|Void|) (|PositiveInteger|) |#3| (|List| |#5|)))) │ │ │ +((|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) 45))) │ │ │ +(((|NumericTubePlot| |#1|) (CATEGORY |package| (SIGNATURE |tube| ((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)))) (|PlottableSpaceCurveCategory|)) (T |NumericTubePlot|)) │ │ │ +((|tube| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|DoubleFloat|)) (|isDomain| *5 (|Integer|)) (|isDomain| *2 (|TubePlot| *3)) (|isDomain| *1 (|NumericTubePlot| *3)) (|ofCategory| *3 (|PlottableSpaceCurveCategory|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |tube| ((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)))) │ │ │ +((|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) 12) (((|Void|) (|List| (|Symbol|))) 10)) (|resetVariableOrder| (((|Void|)) 13)) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) 17))) │ │ │ +(((|UserDefinedVariableOrdering|) (CATEGORY |package| (SIGNATURE |setVariableOrder| ((|Void|) (|List| (|Symbol|)))) (SIGNATURE |setVariableOrder| ((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|)))) (SIGNATURE |getVariableOrder| ((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|)))))) (SIGNATURE |resetVariableOrder| ((|Void|))))) (T |UserDefinedVariableOrdering|)) │ │ │ +((|resetVariableOrder| (*1 *2) (AND (|isDomain| *2 (|Void|)) (|isDomain| *1 (|UserDefinedVariableOrdering|)))) (|getVariableOrder| (*1 *2) (AND (|isDomain| *2 (|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) (|isDomain| *1 (|UserDefinedVariableOrdering|)))) (|setVariableOrder| (*1 *2 *3 *3) (AND (|isDomain| *3 (|List| (|Symbol|))) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|UserDefinedVariableOrdering|)))) (|setVariableOrder| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Symbol|))) (|isDomain| *2 (|Void|)) (|isDomain| *1 (|UserDefinedVariableOrdering|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |setVariableOrder| ((|Void|) (|List| (|Symbol|)))) (SIGNATURE |setVariableOrder| ((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|)))) (SIGNATURE |getVariableOrder| ((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|)))))) (SIGNATURE |resetVariableOrder| ((|Void|)))) │ │ │ +((|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) 23)) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) 15)) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) 21))) │ │ │ +(((|FiniteLinearAggregateFunctions2| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |map| (|#4| (|Mapping| |#3| |#1|) |#2|)) (SIGNATURE |reduce| (|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|)) (SIGNATURE |scan| (|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|))) (|Type|) (|FiniteLinearAggregate| |#1|) (|Type|) (|FiniteLinearAggregate| |#3|)) (T |FiniteLinearAggregateFunctions2|)) │ │ │ +((|scan| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *5 *6 *5)) (|ofCategory| *6 (|Type|)) (|ofCategory| *5 (|Type|)) (|ofCategory| *2 (|FiniteLinearAggregate| *5)) (|isDomain| *1 (|FiniteLinearAggregateFunctions2| *6 *4 *5 *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *6)))) (|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *5 *2)) (|ofCategory| *5 (|Type|)) (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|FiniteLinearAggregateFunctions2| *5 *4 *2 *6)) (|ofCategory| *4 (|FiniteLinearAggregate| *5)) (|ofCategory| *6 (|FiniteLinearAggregate| *2)))) (|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|ofCategory| *5 (|Type|)) (|ofCategory| *6 (|Type|)) (|ofCategory| *2 (|FiniteLinearAggregate| *6)) (|isDomain| *1 (|FiniteLinearAggregateFunctions2| *5 *4 *6 *2)) (|ofCategory| *4 (|FiniteLinearAggregate| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| (|#4| (|Mapping| |#3| |#1|) |#2|)) (SIGNATURE |reduce| (|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|)) (SIGNATURE |scan| (|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|))) │ │ │ +((|testModulus| (((|Boolean|) |#1| (|List| |#2|)) 65)) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) 74)) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) 76)) (|reduction| ((|#2| |#2| |#1|) 28)) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) 20))) │ │ │ +(((|GenExEuclid| |#1| |#2|) (CATEGORY |package| (SIGNATURE |reduction| (|#2| |#2| |#1|)) (SIGNATURE |compBound| ((|NonNegativeInteger|) |#2| (|List| |#2|))) (SIGNATURE |tablePow| ((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|))) (SIGNATURE |solveid| ((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|)))) (SIGNATURE |testModulus| ((|Boolean|) |#1| (|List| |#2|)))) (|EuclideanDomain|) (|UnivariatePolynomialCategory| |#1|)) (T |GenExEuclid|)) │ │ │ +((|testModulus| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| *5)) (|ofCategory| *5 (|UnivariatePolynomialCategory| *3)) (|ofCategory| *3 (|EuclideanDomain|)) (|isDomain| *2 (|Boolean|)) (|isDomain| *1 (|GenExEuclid| *3 *5)))) (|solveid| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *5 (|Vector| (|List| *3))) (|ofCategory| *4 (|EuclideanDomain|)) (|isDomain| *2 (|List| *3)) (|isDomain| *1 (|GenExEuclid| *4 *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *4)))) (|tablePow| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|EuclideanDomain|)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *4)) (|isDomain| *2 (|Vector| (|List| *6))) (|isDomain| *1 (|GenExEuclid| *4 *6)) (|isDomain| *5 (|List| *6)))) (|compBound| (*1 *2 *3 *4) (AND (|isDomain| *4 (|List| *3)) (|ofCategory| *3 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 (|EuclideanDomain|)) (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|GenExEuclid| *5 *3)))) (|reduction| (*1 *2 *2 *3) (AND (|ofCategory| *3 (|EuclideanDomain|)) (|isDomain| *1 (|GenExEuclid| *3 *2)) (|ofCategory| *2 (|UnivariatePolynomialCategory| *3))))) │ │ │ +(CATEGORY |package| (SIGNATURE |reduction| (|#2| |#2| |#1|)) (SIGNATURE |compBound| ((|NonNegativeInteger|) |#2| (|List| |#2|))) (SIGNATURE |tablePow| ((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|))) (SIGNATURE |solveid| ((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|)))) (SIGNATURE |testModulus| ((|Boolean|) |#1| (|List| |#2|)))) │ │ │ +((|outputAsFortran| (((|Void|) $) 68)) (|coerce| (((|OutputForm|) $) 62) (($ (|Matrix| (|MachineFloat|))) 53) (($ (|List| (|FortranCode|))) 56) (($ (|FortranCode|)) 59) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) 52))) │ │ │ +(((|Asp30| |#1|) (|FortranMatrixCategory|) (|Symbol|)) (T |Asp30|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |magnitude| (|#2| |#1|)) (SIGNATURE |length| (|#2| |#1|)) (SIGNATURE |cross| (|#1| |#1| |#1|)) (SIGNATURE |outerProduct| ((|Matrix| |#2|) |#1| |#1|)) (SIGNATURE |dot| (|#2| |#1| |#1|)) (SIGNATURE * (|#1| |#1| |#2|)) (SIGNATURE * (|#1| |#2| |#1|)) (SIGNATURE * (|#1| (|Integer|) |#1|)) (SIGNATURE - (|#1| |#1| |#1|)) (SIGNATURE - (|#1| |#1|)) (SIGNATURE |zero| (|#1| (|NonNegativeInteger|))) (SIGNATURE + (|#1| |#1| |#1|))) │ │ │ -((|log| ((|#3| |#3| (|NonNegativeInteger|)) 23)) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) 28)) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) 29))) │ │ │ -(((|XExponentialPackage| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |exp| (|#3| |#3| (|NonNegativeInteger|))) (SIGNATURE |log| (|#3| |#3| (|NonNegativeInteger|))) (SIGNATURE |Hausdorff| (|#3| |#3| |#3| (|NonNegativeInteger|)))) (|Join| (|Ring|) (|Module| (|Fraction| (|Integer|)))) (|OrderedSet|) (|XPolynomialsCat| |#2| |#1|)) (T |XExponentialPackage|)) │ │ │ -((|Hausdorff| (*1 *2 *2 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Join| (|Ring|) (|Module| (|Fraction| (|Integer|))))) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|XExponentialPackage| *4 *5 *2)) (|ofCategory| *2 (|XPolynomialsCat| *5 *4)))) (|log| (*1 *2 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Join| (|Ring|) (|Module| (|Fraction| (|Integer|))))) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|XExponentialPackage| *4 *5 *2)) (|ofCategory| *2 (|XPolynomialsCat| *5 *4)))) (|exp| (*1 *2 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Join| (|Ring|) (|Module| (|Fraction| (|Integer|))))) (|ofCategory| *5 (|OrderedSet|)) (|isDomain| *1 (|XExponentialPackage| *4 *5 *2)) (|ofCategory| *2 (|XPolynomialsCat| *5 *4))))) │ │ │ -(CATEGORY |package| (SIGNATURE |exp| (|#3| |#3| (|NonNegativeInteger|))) (SIGNATURE |log| (|#3| |#3| (|NonNegativeInteger|))) (SIGNATURE |Hausdorff| (|#3| |#3| |#3| (|NonNegativeInteger|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|varList| (((|List| |#1|) $) 45)) (|trunc| (($ $ (|NonNegativeInteger|)) 39)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sh| (($ $ (|NonNegativeInteger|)) 17 (|has| |#2| (|CommutativeRing|))) (($ $ $) 18 (|has| |#2| (|CommutativeRing|)))) (|sample| (($) NIL T CONST)) (|rquo| (($ $ $) 61) (($ $ (|OrderedFreeMonoid| |#1|)) 48) (($ $ |#1|) 52)) (|retractIfCan| (((|Union| (|OrderedFreeMonoid| |#1|) "failed") $) NIL)) (|retract| (((|OrderedFreeMonoid| |#1|) $) NIL)) (|reductum| (($ $) 32)) (|recip| (((|Union| $ "failed") $) NIL)) (|quasiRegular?| (((|Boolean|) $) NIL)) (|quasiRegular| (($ $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|numberOfMonomials| (((|NonNegativeInteger|) $) NIL)) (|monomials| (((|List| $) $) NIL)) (|monomial?| (((|Boolean|) $) NIL)) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) 31)) (|mirror| (($ $) 33)) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) 11)) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) NIL)) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) 34)) (|map| (($ (|Mapping| |#2| |#2|) $) NIL)) (|lquo| (($ $ $) 60) (($ $ (|OrderedFreeMonoid| |#1|)) 50) (($ $ |#1|) 54)) (|listOfTerms| (((|List| (|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|))) $) NIL)) (|leadingTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) NIL)) (|leadingMonomial| (((|OrderedFreeMonoid| |#1|) $) 28)) (|leadingCoefficient| ((|#2| $) 30)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|degree| (((|NonNegativeInteger|) $) 36)) (|constant?| (((|Boolean|) $) 40)) (|constant| ((|#2| $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ (|OrderedFreeMonoid| |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (|Integer|)) NIL)) (|coefficients| (((|List| |#2|) $) NIL)) (|coefficient| ((|#2| $ (|OrderedFreeMonoid| |#1|)) NIL)) (|coef| ((|#2| $ $) 63) ((|#2| $ (|OrderedFreeMonoid| |#1|)) NIL)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (^ (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|PositiveInteger|)) NIL)) (|Zero| (($) 12 T CONST)) (|One| (($) 14 T CONST)) (= (((|Boolean|) $ $) 38)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) 21)) (** (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|PositiveInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 59) (($ |#2| (|OrderedFreeMonoid| |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) │ │ │ -(((|XDistributedPolynomial| |#1| |#2|) (|Join| (|FreeModuleCat| |#2| (|OrderedFreeMonoid| |#1|)) (|XPolynomialsCat| |#1| |#2|)) (|OrderedSet|) (|Ring|)) (T |XDistributedPolynomial|)) │ │ │ +(|FortranMatrixCategory|) │ │ │ +((|uniform01| (((|Float|)) 15)) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) 20)) (|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) 42)) (|normal01| (((|Float|)) 33)) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) 34)) (|exponential1| (((|Float|)) 26)) (|exponential| (((|Mapping| (|Float|)) (|Float|)) 27)) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) 37)) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) 38)) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) 41)) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) 39))) │ │ │ +(((|RandomFloatDistributions|) (CATEGORY |package| (SIGNATURE |uniform01| ((|Float|))) (SIGNATURE |normal01| ((|Float|))) (SIGNATURE |exponential1| ((|Float|))) (SIGNATURE |chiSquare1| ((|Float|) (|NonNegativeInteger|))) (SIGNATURE |uniform| ((|Mapping| (|Float|)) (|Float|) (|Float|))) (SIGNATURE |normal| ((|Mapping| (|Float|)) (|Float|) (|Float|))) (SIGNATURE |exponential| ((|Mapping| (|Float|)) (|Float|))) (SIGNATURE |chiSquare| ((|Mapping| (|Float|)) (|NonNegativeInteger|))) (SIGNATURE |Beta| ((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE F ((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |t| ((|Mapping| (|Float|)) (|NonNegativeInteger|))))) (T |RandomFloatDistributions|)) │ │ │ +((|t| (*1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Mapping| (|Float|))) (|isDomain| *1 (|RandomFloatDistributions|)))) (F (*1 *2 *3 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Mapping| (|Float|))) (|isDomain| *1 (|RandomFloatDistributions|)))) (|Beta| (*1 *2 *3 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Mapping| (|Float|))) (|isDomain| *1 (|RandomFloatDistributions|)))) (|chiSquare| (*1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Mapping| (|Float|))) (|isDomain| *1 (|RandomFloatDistributions|)))) (|exponential| (*1 *2 *3) (AND (|isDomain| *2 (|Mapping| (|Float|))) (|isDomain| *1 (|RandomFloatDistributions|)) (|isDomain| *3 (|Float|)))) (|normal| (*1 *2 *3 *3) (AND (|isDomain| *2 (|Mapping| (|Float|))) (|isDomain| *1 (|RandomFloatDistributions|)) (|isDomain| *3 (|Float|)))) (|uniform| (*1 *2 *3 *3) (AND (|isDomain| *2 (|Mapping| (|Float|))) (|isDomain| *1 (|RandomFloatDistributions|)) (|isDomain| *3 (|Float|)))) (|chiSquare1| (*1 *2 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|isDomain| *2 (|Float|)) (|isDomain| *1 (|RandomFloatDistributions|)))) (|exponential1| (*1 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|RandomFloatDistributions|)))) (|normal01| (*1 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|RandomFloatDistributions|)))) (|uniform01| (*1 *2) (AND (|isDomain| *2 (|Float|)) (|isDomain| *1 (|RandomFloatDistributions|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |uniform01| ((|Float|))) (SIGNATURE |normal01| ((|Float|))) (SIGNATURE |exponential1| ((|Float|))) (SIGNATURE |chiSquare1| ((|Float|) (|NonNegativeInteger|))) (SIGNATURE |uniform| ((|Mapping| (|Float|)) (|Float|) (|Float|))) (SIGNATURE |normal| ((|Mapping| (|Float|)) (|Float|) (|Float|))) (SIGNATURE |exponential| ((|Mapping| (|Float|)) (|Float|))) (SIGNATURE |chiSquare| ((|Mapping| (|Float|)) (|NonNegativeInteger|))) (SIGNATURE |Beta| ((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE F ((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|))) (SIGNATURE |t| ((|Mapping| (|Float|)) (|NonNegativeInteger|)))) │ │ │ +((|setelt| ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) 43) ((|#2| $ (|Integer|) |#2|) 40)) (|possiblyInfinite?| (((|Boolean|) $) 11)) (|map!| (($ (|Mapping| |#2| |#2|) $) 38)) (|first| ((|#2| $) NIL) (($ $ (|NonNegativeInteger|)) 16)) (|fill!| (($ $ |#2|) 39)) (|explicitlyFinite?| (((|Boolean|) $) 10)) (|elt| ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (|UniversalSegment| (|Integer|))) 30) ((|#2| $ (|Integer|)) 22) ((|#2| $ (|Integer|) |#2|) NIL)) (|concat!| (($ $ $) 46) (($ $ |#2|) NIL)) (|concat| (($ $ $) 32) (($ |#2| $) NIL) (($ (|List| $)) 35) (($ $ |#2|) NIL))) │ │ │ +(((|StreamAggregate&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |possiblyInfinite?| ((|Boolean|) |#1|)) (SIGNATURE |explicitlyFinite?| ((|Boolean|) |#1|)) (SIGNATURE |setelt| (|#2| |#1| (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|))) (SIGNATURE |fill!| (|#1| |#1| |#2|)) (SIGNATURE |concat| (|#1| |#1| |#2|)) (SIGNATURE |concat| (|#1| (|List| |#1|))) (SIGNATURE |elt| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |setelt| (|#2| |#1| (|UniversalSegment| (|Integer|)) |#2|)) (SIGNATURE |setelt| (|#2| |#1| "last" |#2|)) (SIGNATURE |setelt| (|#1| |#1| "rest" |#1|)) (SIGNATURE |setelt| (|#2| |#1| "first" |#2|)) (SIGNATURE |concat!| (|#1| |#1| |#2|)) (SIGNATURE |concat!| (|#1| |#1| |#1|)) (SIGNATURE |elt| (|#2| |#1| "last")) (SIGNATURE |elt| (|#1| |#1| "rest")) (SIGNATURE |first| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#2| |#1| "first")) (SIGNATURE |first| (|#2| |#1|)) (SIGNATURE |concat| (|#1| |#2| |#1|)) (SIGNATURE |concat| (|#1| |#1| |#1|)) (SIGNATURE |setelt| (|#2| |#1| "value" |#2|)) (SIGNATURE |elt| (|#2| |#1| "value")) (SIGNATURE |map!| (|#1| (|Mapping| |#2| |#2|) |#1|))) (|StreamAggregate| |#2|) (|Type|)) (T |StreamAggregate&|)) │ │ │ NIL │ │ │ -(|Join| (|FreeModuleCat| |#2| (|OrderedFreeMonoid| |#1|)) (|XPolynomialsCat| |#1| |#2|)) │ │ │ -((|transcendent?| (((|Boolean|) $) 13)) (|algebraic?| (((|Boolean|) $) 12)) (|Frobenius| (($ $) 17) (($ $ (|NonNegativeInteger|)) 18))) │ │ │ -(((|ExtensionField&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |Frobenius| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |Frobenius| (|#1| |#1|)) (SIGNATURE |transcendent?| ((|Boolean|) |#1|)) (SIGNATURE |algebraic?| ((|Boolean|) |#1|))) (|ExtensionField| |#2|) (|Field|)) (T |ExtensionField&|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |possiblyInfinite?| ((|Boolean|) |#1|)) (SIGNATURE |explicitlyFinite?| ((|Boolean|) |#1|)) (SIGNATURE |setelt| (|#2| |#1| (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|) |#2|)) (SIGNATURE |elt| (|#2| |#1| (|Integer|))) (SIGNATURE |fill!| (|#1| |#1| |#2|)) (SIGNATURE |concat| (|#1| |#1| |#2|)) (SIGNATURE |concat| (|#1| (|List| |#1|))) (SIGNATURE |elt| (|#1| |#1| (|UniversalSegment| (|Integer|)))) (SIGNATURE |setelt| (|#2| |#1| (|UniversalSegment| (|Integer|)) |#2|)) (SIGNATURE |setelt| (|#2| |#1| "last" |#2|)) (SIGNATURE |setelt| (|#1| |#1| "rest" |#1|)) (SIGNATURE |setelt| (|#2| |#1| "first" |#2|)) (SIGNATURE |concat!| (|#1| |#1| |#2|)) (SIGNATURE |concat!| (|#1| |#1| |#1|)) (SIGNATURE |elt| (|#2| |#1| "last")) (SIGNATURE |elt| (|#1| |#1| "rest")) (SIGNATURE |first| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |elt| (|#2| |#1| "first")) (SIGNATURE |first| (|#2| |#1|)) (SIGNATURE |concat| (|#1| |#2| |#1|)) (SIGNATURE |concat| (|#1| |#1| |#1|)) (SIGNATURE |setelt| (|#2| |#1| "value" |#2|)) (SIGNATURE |elt| (|#2| |#1| "value")) (SIGNATURE |map!| (|#1| (|Mapping| |#2| |#2|) |#1|))) │ │ │ +((|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) 44) (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) 41) (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) 45) (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) 17))) │ │ │ +(((|RationalFunctionDefiniteIntegration| |#1|) (CATEGORY |package| (SIGNATURE |integrate| ((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))))) (SIGNATURE |integrate| ((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|))) (SIGNATURE |integrate| ((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))))) (SIGNATURE |integrate| ((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)))) (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (T |RationalFunctionDefiniteIntegration|)) │ │ │ +((|integrate| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| *6))))) (|isDomain| *5 (|String|)) (|isDomain| *3 (|Fraction| (|Polynomial| *6))) (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Union| (|:| |f1| (|OrderedCompletion| (|Expression| *6))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (|isDomain| *1 (|RationalFunctionDefiniteIntegration| *6)))) (|integrate| (*1 *2 *3 *4) (AND (|isDomain| *4 (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| *5))))) (|isDomain| *3 (|Fraction| (|Polynomial| *5))) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Union| (|:| |f1| (|OrderedCompletion| (|Expression| *5))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (|isDomain| *1 (|RationalFunctionDefiniteIntegration| *5)))) (|integrate| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Fraction| (|Polynomial| *6))) (|isDomain| *4 (|SegmentBinding| (|OrderedCompletion| (|Expression| *6)))) (|isDomain| *5 (|String|)) (|ofCategory| *6 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Union| (|:| |f1| (|OrderedCompletion| (|Expression| *6))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (|isDomain| *1 (|RationalFunctionDefiniteIntegration| *6)))) (|integrate| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5))) (|isDomain| *4 (|SegmentBinding| (|OrderedCompletion| (|Expression| *5)))) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|) (|RetractableTo| (|Integer|)) (|LinearlyExplicitRingOver| (|Integer|)))) (|isDomain| *2 (|Union| (|:| |f1| (|OrderedCompletion| (|Expression| *5))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (|isDomain| *1 (|RationalFunctionDefiniteIntegration| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |integrate| ((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))))) (SIGNATURE |integrate| ((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|))) (SIGNATURE |integrate| ((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))))) (SIGNATURE |integrate| ((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)))) │ │ │ +((|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) 43)) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) 25)) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) 20)) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) 32))) │ │ │ +(((|RationalFunctionIntegration| |#1|) (CATEGORY |package| (SIGNATURE |internalIntegrate| ((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|))) (SIGNATURE |infieldIntegrate| ((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|))) (SIGNATURE |limitedIntegrate| ((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |extendedIntegrate| ((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))))) (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|)) (|CharacteristicZero|))) (T |RationalFunctionIntegration|)) │ │ │ +((|extendedIntegrate| (*1 *2 *3 *4 *3) (|partial| AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|)) (|CharacteristicZero|))) (|isDomain| *2 (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| *5))) (|:| |coeff| (|Fraction| (|Polynomial| *5))))) (|isDomain| *1 (|RationalFunctionIntegration| *5)) (|isDomain| *3 (|Fraction| (|Polynomial| *5))))) (|limitedIntegrate| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *4 (|Symbol|)) (|isDomain| *5 (|List| (|Fraction| (|Polynomial| *6)))) (|isDomain| *3 (|Fraction| (|Polynomial| *6))) (|ofCategory| *6 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|)) (|CharacteristicZero|))) (|isDomain| *2 (|Record| (|:| |mainpart| *3) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| *3) (|:| |logand| *3)))))) (|isDomain| *1 (|RationalFunctionIntegration| *6)))) (|infieldIntegrate| (*1 *2 *2 *3) (|partial| AND (|isDomain| *2 (|Fraction| (|Polynomial| *4))) (|isDomain| *3 (|Symbol|)) (|ofCategory| *4 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|)) (|CharacteristicZero|))) (|isDomain| *1 (|RationalFunctionIntegration| *4)))) (|internalIntegrate| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|IntegralDomain|) (|RetractableTo| (|Integer|)) (|CharacteristicZero|))) (|isDomain| *2 (|IntegrationResult| (|Fraction| (|Polynomial| *5)))) (|isDomain| *1 (|RationalFunctionIntegration| *5)) (|isDomain| *3 (|Fraction| (|Polynomial| *5)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |internalIntegrate| ((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|))) (SIGNATURE |infieldIntegrate| ((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|))) (SIGNATURE |limitedIntegrate| ((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |extendedIntegrate| ((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sign| (((|Integer|) $) NIL (|has| |#1| (|OrderedRing|)))) (|sample| (($) NIL T CONST)) (|recip| (((|Union| $ "failed") $) NIL)) (|positive?| (((|Boolean|) $) NIL (|has| |#1| (|OrderedRing|)))) (|one?| (((|Boolean|) $) NIL)) (|numer| ((|#1| $) 13)) (|negative?| (((|Boolean|) $) NIL (|has| |#1| (|OrderedRing|)))) (|min| (($ $ $) NIL (|has| |#1| (|OrderedRing|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedRing|)))) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|denom| ((|#3| $) 15)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#2|) NIL)) (|characteristic| (((|NonNegativeInteger|)) 20)) (|abs| (($ $) NIL (|has| |#1| (|OrderedRing|)))) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|One| (($) 12 T CONST)) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedRing|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedRing|)))) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedRing|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedRing|)))) (/ (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) │ │ │ +(((|LocalAlgebra| |#1| |#2| |#3|) (|Join| (|Algebra| |#2|) (CATEGORY |domain| (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|OrderedRing|)) |noBranch|) (SIGNATURE / ($ $ |#3|)) (SIGNATURE / ($ |#1| |#3|)) (SIGNATURE |numer| (|#1| $)) (SIGNATURE |denom| (|#3| $)))) (|Algebra| |#2|) (|CommutativeRing|) (|SubsetCategory| (|Monoid|) |#2|)) (T |LocalAlgebra|)) │ │ │ +((/ (*1 *1 *1 *2) (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *1 (|LocalAlgebra| *3 *4 *2)) (|ofCategory| *3 (|Algebra| *4)) (|ofCategory| *2 (|SubsetCategory| (|Monoid|) *4)))) (/ (*1 *1 *2 *3) (AND (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *1 (|LocalAlgebra| *2 *4 *3)) (|ofCategory| *2 (|Algebra| *4)) (|ofCategory| *3 (|SubsetCategory| (|Monoid|) *4)))) (|numer| (*1 *2 *1) (AND (|ofCategory| *3 (|CommutativeRing|)) (|ofCategory| *2 (|Algebra| *3)) (|isDomain| *1 (|LocalAlgebra| *2 *3 *4)) (|ofCategory| *4 (|SubsetCategory| (|Monoid|) *3)))) (|denom| (*1 *2 *1) (AND (|ofCategory| *4 (|CommutativeRing|)) (|ofCategory| *2 (|SubsetCategory| (|Monoid|) *4)) (|isDomain| *1 (|LocalAlgebra| *3 *4 *2)) (|ofCategory| *3 (|Algebra| *4))))) │ │ │ +(|Join| (|Algebra| |#2|) (CATEGORY |domain| (IF (|has| |#1| (|OrderedRing|)) (ATTRIBUTE (|OrderedRing|)) |noBranch|) (SIGNATURE / ($ $ |#3|)) (SIGNATURE / ($ |#1| |#3|)) (SIGNATURE |numer| (|#1| $)) (SIGNATURE |denom| (|#3| $)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|numericalIntegration| (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) 58) (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) NIL)) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) 37) (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|d01akfAnnaType|) (|NumericalIntegrationCategory|)) (T |d01akfAnnaType|)) │ │ │ NIL │ │ │ -(CATEGORY |domain| (SIGNATURE |Frobenius| (|#1| |#1| (|NonNegativeInteger|))) (SIGNATURE |Frobenius| (|#1| |#1|)) (SIGNATURE |transcendent?| ((|Boolean|) |#1|)) (SIGNATURE |algebraic?| ((|Boolean|) |#1|))) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|transcendent?| (((|Boolean|) $) 92)) (|transcendenceDegree| (((|NonNegativeInteger|)) 88)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 73)) (|squareFree| (((|Factored| $) $) 72)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|sample| (($) 16 T CONST)) (|retractIfCan| (((|Union| |#1| "failed") $) 99)) (|retract| ((|#1| $) 98)) (|rem| (($ $ $) 54)) (|recip| (((|Union| $ "failed") $) 33)) (|quo| (($ $ $) 55)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) 85 (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|)))) (($ $) 84 (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|prime?| (((|Boolean|) $) 71)) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) 82 (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|one?| (((|Boolean|) $) 30)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 70)) (|inGroundField?| (((|Boolean|) $) 91)) (|hash| (((|SingleInteger|) $) 10)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|factor| (((|Factored| $) $) 74)) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) 89)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) 83 (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|dimension| (((|CardinalNumber|)) 97)) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) 90)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Fraction| (|Integer|))) 65) (($ |#1|) 100)) (|charthRoot| (((|Union| $ "failed") $) 81 (OR (|has| |#1| (|CharacteristicNonZero|)) (|has| |#1| (|Finite|))))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|associates?| (((|Boolean|) $ $) 38)) (|algebraic?| (((|Boolean|) $) 93)) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 69)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (|Frobenius| (($ $) 87 (|has| |#1| (|Finite|))) (($ $ (|NonNegativeInteger|)) 86 (|has| |#1| (|Finite|)))) (= (((|Boolean|) $ $) 6)) (/ (($ $ $) 64) (($ $ |#1|) 96)) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 68)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 67) (($ (|Fraction| (|Integer|)) $) 66) (($ $ |#1|) 95) (($ |#1| $) 94))) │ │ │ -(((|ExtensionField| |#1|) (|Category|) (|Field|)) (T |ExtensionField|)) │ │ │ -((|algebraic?| (*1 *2 *1) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Boolean|)))) (|transcendent?| (*1 *2 *1) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Boolean|)))) (|inGroundField?| (*1 *2 *1) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Boolean|)))) (|degree| (*1 *2 *1) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|OnePointCompletion| (|PositiveInteger|))))) (|extensionDegree| (*1 *2) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|OnePointCompletion| (|PositiveInteger|))))) (|transcendenceDegree| (*1 *2) (AND (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|NonNegativeInteger|)))) (|Frobenius| (*1 *1 *1) (AND (|ofCategory| *1 (|ExtensionField| *2)) (|ofCategory| *2 (|Field|)) (|ofCategory| *2 (|Finite|)))) (|Frobenius| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|ExtensionField| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *3 (|Finite|))))) │ │ │ -(|Join| (|Field|) (|RetractableTo| |t#1|) (|VectorSpace| |t#1|) (CATEGORY |domain| (IF (|has| |t#1| (|CharacteristicZero|)) (ATTRIBUTE (|CharacteristicZero|)) |noBranch|) (IF (|has| |t#1| (|CharacteristicNonZero|)) (ATTRIBUTE (|FieldOfPrimeCharacteristic|)) |noBranch|) (SIGNATURE |algebraic?| ((|Boolean|) $)) (SIGNATURE |transcendent?| ((|Boolean|) $)) (SIGNATURE |inGroundField?| ((|Boolean|) $)) (SIGNATURE |degree| ((|OnePointCompletion| (|PositiveInteger|)) $)) (SIGNATURE |extensionDegree| ((|OnePointCompletion| (|PositiveInteger|)))) (SIGNATURE |transcendenceDegree| ((|NonNegativeInteger|))) (IF (|has| |t#1| (|Finite|)) (PROGN (ATTRIBUTE (|FieldOfPrimeCharacteristic|)) (SIGNATURE |Frobenius| ($ $)) (SIGNATURE |Frobenius| ($ $ (|NonNegativeInteger|)))) |noBranch|))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) OR (|has| |#1| (|Finite|)) (|has| |#1| (|CharacteristicNonZero|))) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|FieldOfPrimeCharacteristic|) OR (|has| |#1| (|Finite|)) (|has| |#1| (|CharacteristicNonZero|))) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| |#1|) . T) ((|Module| $) . T) ((|Monoid|) . T) ((|PrincipalIdealDomain|) . T) ((|RetractableTo| |#1|) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| |#1|) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|UniqueFactorizationDomain|) . T) ((|VectorSpace| |#1|) . T)) │ │ │ -((~= (((|Boolean|) $ $) 18 (|has| |#1| (|SetCategory|)))) (|zero| (($ (|NonNegativeInteger|)) 105 (|has| |#1| (|AbelianMonoid|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) 37 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) 91) (((|Boolean|) $) 85 (|has| |#1| (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) 82 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) 81 (AND (|has| |#1| (|OrderedSet|)) (|has| $ (ATTRIBUTE |shallowlyMutable|))))) (|sort| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) 92) (($ $) 86 (|has| |#1| (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) 8)) (|setelt| ((|#1| $ (|Integer|) |#1|) 49 (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) 53 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) 70 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) 7 T CONST)) (|reverse!| (($ $) 83 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) 93)) (|removeDuplicates| (($ $) 73 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|remove| (($ |#1| $) 72 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) (($ (|Mapping| (|Boolean|) |#1|) $) 69 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) 71 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) 67 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) 50 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) 48)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) 90) (((|Integer|) |#1| $) 89 (|has| |#1| (|SetCategory|))) (((|Integer|) |#1| $ (|Integer|)) 88 (|has| |#1| (|SetCategory|)))) (|parts| (((|List| |#1|) $) 30 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|outerProduct| (((|Matrix| |#1|) $ $) 98 (|has| |#1| (|Ring|)))) (|new| (($ (|NonNegativeInteger|) |#1|) 64)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) 9)) (|minIndex| (((|Integer|) $) 40 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) 80 (|has| |#1| (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) 94) (($ $ $) 87 (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#1|) $) 29 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) 27 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|maxIndex| (((|Integer|) $) 41 (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) 79 (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) 34 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) 35) (($ (|Mapping| |#1| |#1| |#1|) $ $) 59)) (|magnitude| ((|#1| $) 95 (AND (|has| |#1| (|Ring|)) (|has| |#1| (|RadicalCategory|))))) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) 10)) (|length| ((|#1| $) 96 (AND (|has| |#1| (|Ring|)) (|has| |#1| (|RadicalCategory|))))) (|latex| (((|String|) $) 22 (|has| |#1| (|SetCategory|)))) (|insert| (($ |#1| $ (|Integer|)) 55) (($ $ $ (|Integer|)) 54)) (|indices| (((|List| (|Integer|)) $) 43)) (|index?| (((|Boolean|) (|Integer|) $) 44)) (|hash| (((|SingleInteger|) $) 21 (|has| |#1| (|SetCategory|)))) (|first| ((|#1| $) 39 (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) 66)) (|fill!| (($ $ |#1|) 38 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 32 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) 26 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) 25 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) 24 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) 23 (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) 14)) (|entry?| (((|Boolean|) |#1| $) 42 (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) 45)) (|empty?| (((|Boolean|) $) 11)) (|empty| (($) 12)) (|elt| ((|#1| $ (|Integer|) |#1|) 47) ((|#1| $ (|Integer|)) 46) (($ $ (|UniversalSegment| (|Integer|))) 58)) (|dot| ((|#1| $ $) 99 (|has| |#1| (|Ring|)))) (|delete| (($ $ (|Integer|)) 57) (($ $ (|UniversalSegment| (|Integer|))) 56)) (|cross| (($ $ $) 97 (|has| |#1| (|Ring|)))) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) 31 (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) 28 (AND (|has| |#1| (|SetCategory|)) (|has| $ (ATTRIBUTE |finiteAggregate|))))) (|copyInto!| (($ $ $ (|Integer|)) 84 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) 13)) (|convert| (((|InputForm|) $) 74 (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) 65)) (|concat| (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (|List| $)) 60)) (|coerce| (((|OutputForm|) $) 20 (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) 33 (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) 77 (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) 76 (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) 19 (|has| |#1| (|SetCategory|)))) (<= (((|Boolean|) $ $) 78 (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) 75 (|has| |#1| (|OrderedSet|)))) (- (($ $) 104 (|has| |#1| (|AbelianGroup|))) (($ $ $) 103 (|has| |#1| (|AbelianGroup|)))) (+ (($ $ $) 106 (|has| |#1| (|AbelianSemiGroup|)))) (* (($ (|Integer|) $) 102 (|has| |#1| (|AbelianGroup|))) (($ |#1| $) 101 (|has| |#1| (|Monoid|))) (($ $ |#1|) 100 (|has| |#1| (|Monoid|)))) (|#| (((|NonNegativeInteger|) $) 6 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|VectorCategory| |#1|) (|Category|) (|Type|)) (T |VectorCategory|)) │ │ │ -((+ (*1 *1 *1 *1) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|AbelianSemiGroup|)))) (|zero| (*1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|VectorCategory| *3)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofCategory| *3 (|Type|)))) (- (*1 *1 *1) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|AbelianGroup|)))) (- (*1 *1 *1 *1) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|AbelianGroup|)))) (* (*1 *1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|VectorCategory| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|AbelianGroup|)))) (* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|Monoid|)))) (* (*1 *1 *1 *2) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|Monoid|)))) (|dot| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|Ring|)))) (|outerProduct| (*1 *2 *1 *1) (AND (|ofCategory| *1 (|VectorCategory| *3)) (|ofCategory| *3 (|Type|)) (|ofCategory| *3 (|Ring|)) (|isDomain| *2 (|Matrix| *3)))) (|cross| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|Ring|)))) (|length| (*1 *2 *1) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|RadicalCategory|)) (|ofCategory| *2 (|Ring|)))) (|magnitude| (*1 *2 *1) (AND (|ofCategory| *1 (|VectorCategory| *2)) (|ofCategory| *2 (|Type|)) (|ofCategory| *2 (|RadicalCategory|)) (|ofCategory| *2 (|Ring|))))) │ │ │ -(|Join| (|OneDimensionalArrayAggregate| |t#1|) (CATEGORY |domain| (IF (|has| |t#1| (|AbelianSemiGroup|)) (SIGNATURE + ($ $ $)) |noBranch|) (IF (|has| |t#1| (|AbelianMonoid|)) (SIGNATURE |zero| ($ (|NonNegativeInteger|))) |noBranch|) (IF (|has| |t#1| (|AbelianGroup|)) (PROGN (SIGNATURE - ($ $)) (SIGNATURE - ($ $ $)) (SIGNATURE * ($ (|Integer|) $))) |noBranch|) (IF (|has| |t#1| (|Monoid|)) (PROGN (SIGNATURE * ($ |t#1| $)) (SIGNATURE * ($ $ |t#1|))) |noBranch|) (IF (|has| |t#1| (|Ring|)) (PROGN (SIGNATURE |dot| (|t#1| $ $)) (SIGNATURE |outerProduct| ((|Matrix| |t#1|) $ $)) (SIGNATURE |cross| ($ $ $))) |noBranch|) (IF (|has| |t#1| (|RadicalCategory|)) (IF (|has| |t#1| (|Ring|)) (PROGN (SIGNATURE |length| (|t#1| $)) (SIGNATURE |magnitude| (|t#1| $))) |noBranch|) |noBranch|))) │ │ │ -(((|Aggregate|) . T) ((|BasicType|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|CoercibleTo| (|OutputForm|)) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|Collection| |#1|) . T) ((|ConvertibleTo| (|InputForm|)) |has| |#1| (|ConvertibleTo| (|InputForm|))) ((|Eltable| (|Integer|) |#1|) . T) ((|EltableAggregate| (|Integer|) |#1|) . T) ((|Evalable| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|FiniteLinearAggregate| |#1|) . T) ((|HomogeneousAggregate| |#1|) . T) ((|IndexedAggregate| (|Integer|) |#1|) . T) ((|InnerEvalable| |#1| |#1|) AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))) ((|LinearAggregate| |#1|) . T) ((|OneDimensionalArrayAggregate| |#1|) . T) ((|OrderedSet|) |has| |#1| (|OrderedSet|)) ((|SetCategory|) OR (|has| |#1| (|SetCategory|)) (|has| |#1| (|OrderedSet|))) ((|Type|) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|varList| (((|List| (|Symbol|)) $) NIL)) (|unexpand| (($ (|XDistributedPolynomial| (|Symbol|) |#1|)) NIL)) (|trunc| (($ $ (|NonNegativeInteger|)) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sh| (($ $ $) NIL (|has| |#1| (|CommutativeRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|CommutativeRing|)))) (|sample| (($) NIL T CONST)) (|rquo| (($ $ (|Symbol|)) NIL) (($ $ (|OrderedFreeMonoid| (|Symbol|))) NIL) (($ $ $) NIL)) (|retractIfCan| (((|Union| (|OrderedFreeMonoid| (|Symbol|)) "failed") $) NIL)) (|retract| (((|OrderedFreeMonoid| (|Symbol|)) $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|quasiRegular?| (((|Boolean|) $) NIL)) (|quasiRegular| (($ $) NIL)) (|one?| (((|Boolean|) $) NIL)) (|monomial?| (((|Boolean|) $) NIL)) (|monom| (($ (|OrderedFreeMonoid| (|Symbol|)) |#1|) NIL)) (|mirror| (($ $) NIL)) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| (|Symbol|))) (|:| |c| |#1|)) $) NIL)) (|mindeg| (((|OrderedFreeMonoid| (|Symbol|)) $) NIL)) (|maxdeg| (((|OrderedFreeMonoid| (|Symbol|)) $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|lquo| (($ $ (|Symbol|)) NIL) (($ $ (|OrderedFreeMonoid| (|Symbol|))) NIL) (($ $ $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|expand| (((|XDistributedPolynomial| (|Symbol|) |#1|) $) NIL)) (|degree| (((|NonNegativeInteger|) $) NIL)) (|constant?| (((|Boolean|) $) NIL)) (|constant| ((|#1| $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ |#1|) NIL) (($ (|OrderedFreeMonoid| (|Symbol|))) NIL) (($ (|Symbol|)) NIL)) (|coef| ((|#1| $ (|OrderedFreeMonoid| (|Symbol|))) NIL) ((|#1| $ $) NIL)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) NIL T CONST)) (|RemainderList| (((|List| (|Record| (|:| |k| (|Symbol|)) (|:| |c| $))) $) NIL)) (|One| (($) NIL T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (|Symbol|) $) NIL))) │ │ │ -(((|XPolynomial| |#1|) (|Join| (|XPolynomialsCat| (|Symbol|) |#1|) (CATEGORY |domain| (SIGNATURE |expand| ((|XDistributedPolynomial| (|Symbol|) |#1|) $)) (SIGNATURE |unexpand| ($ (|XDistributedPolynomial| (|Symbol|) |#1|))) (SIGNATURE |RemainderList| ((|List| (|Record| (|:| |k| (|Symbol|)) (|:| |c| $))) $)))) (|Ring|)) (T |XPolynomial|)) │ │ │ -((|expand| (*1 *2 *1) (AND (|isDomain| *2 (|XDistributedPolynomial| (|Symbol|) *3)) (|isDomain| *1 (|XPolynomial| *3)) (|ofCategory| *3 (|Ring|)))) (|unexpand| (*1 *1 *2) (AND (|isDomain| *2 (|XDistributedPolynomial| (|Symbol|) *3)) (|ofCategory| *3 (|Ring|)) (|isDomain| *1 (|XPolynomial| *3)))) (|RemainderList| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |k| (|Symbol|)) (|:| |c| (|XPolynomial| *3))))) (|isDomain| *1 (|XPolynomial| *3)) (|ofCategory| *3 (|Ring|))))) │ │ │ -(|Join| (|XPolynomialsCat| (|Symbol|) |#1|) (CATEGORY |domain| (SIGNATURE |expand| ((|XDistributedPolynomial| (|Symbol|) |#1|) $)) (SIGNATURE |unexpand| ($ (|XDistributedPolynomial| (|Symbol|) |#1|))) (SIGNATURE |RemainderList| ((|List| (|Record| (|:| |k| (|Symbol|)) (|:| |c| $))) $)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|varList| (((|List| |#1|) $) 84)) (|trunc| (($ $ (|NonNegativeInteger|)) 87)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sh| (($ $ $) NIL (|has| |#2| (|CommutativeRing|))) (($ $ (|NonNegativeInteger|)) NIL (|has| |#2| (|CommutativeRing|)))) (|sample| (($) NIL T CONST)) (|rquo| (($ $ |#1|) NIL) (($ $ (|OrderedFreeMonoid| |#1|)) NIL) (($ $ $) NIL)) (|retractIfCan| (((|Union| (|OrderedFreeMonoid| |#1|) "failed") $) NIL) (((|Union| (|PoincareBirkhoffWittLyndonBasis| |#1|) "failed") $) NIL)) (|retract| (((|OrderedFreeMonoid| |#1|) $) NIL) (((|PoincareBirkhoffWittLyndonBasis| |#1|) $) NIL)) (|reductum| (($ $) 86)) (|recip| (((|Union| $ "failed") $) NIL)) (|quasiRegular?| (((|Boolean|) $) 75)) (|quasiRegular| (($ $) 79)) (|product| (($ $ $ (|NonNegativeInteger|)) 88)) (|one?| (((|Boolean|) $) NIL)) (|numberOfMonomials| (((|NonNegativeInteger|) $) NIL)) (|monomials| (((|List| $) $) NIL)) (|monomial?| (((|Boolean|) $) NIL)) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) NIL) (($ (|PoincareBirkhoffWittLyndonBasis| |#1|) |#2|) 25)) (|mirror| (($ $) 101)) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) NIL)) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) NIL)) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) NIL)) (|map| (($ (|Mapping| |#2| |#2|) $) NIL)) (|lquo| (($ $ |#1|) NIL) (($ $ (|OrderedFreeMonoid| |#1|)) NIL) (($ $ $) NIL)) (|log| (($ $ (|NonNegativeInteger|)) 95 (|has| |#2| (|Module| (|Fraction| (|Integer|)))))) (|listOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) NIL)) (|leadingTerm| (((|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|)) $) NIL)) (|leadingMonomial| (((|PoincareBirkhoffWittLyndonBasis| |#1|) $) 69)) (|leadingCoefficient| ((|#2| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|exp| (($ $ (|NonNegativeInteger|)) 92 (|has| |#2| (|Module| (|Fraction| (|Integer|)))))) (|degree| (((|NonNegativeInteger|) $) 85)) (|constant?| (((|Boolean|) $) 70)) (|constant| ((|#2| $) 74)) (|coerce| (((|OutputForm|) $) 56) (($ (|Integer|)) NIL) (($ |#2|) 50) (($ (|OrderedFreeMonoid| |#1|)) NIL) (($ |#1|) 58) (($ (|PoincareBirkhoffWittLyndonBasis| |#1|)) NIL) (($ (|LiePolynomial| |#1| |#2|)) 42) (((|XDistributedPolynomial| |#1| |#2|) $) 63) (((|XRecursivePolynomial| |#1| |#2|) $) 68)) (|coefficients| (((|List| |#2|) $) NIL)) (|coefficient| ((|#2| $ (|PoincareBirkhoffWittLyndonBasis| |#1|)) NIL)) (|coef| ((|#2| $ (|OrderedFreeMonoid| |#1|)) NIL) ((|#2| $ $) NIL)) (|characteristic| (((|NonNegativeInteger|)) NIL)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 21 T CONST)) (|One| (($) 24 T CONST)) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) 100)) (= (((|Boolean|) $ $) 64)) (- (($ $) 94) (($ $ $) 93)) (+ (($ $ $) 20)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (|PoincareBirkhoffWittLyndonBasis| |#1|)) NIL))) │ │ │ -(((|XPBWPolynomial| |#1| |#2|) (|Join| (|XPolynomialsCat| |#1| |#2|) (|FreeModuleCat| |#2| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|LiePolynomial| |#1| |#2|))) (SIGNATURE |coerce| ((|XDistributedPolynomial| |#1| |#2|) $)) (SIGNATURE |coerce| ((|XRecursivePolynomial| |#1| |#2|) $)) (SIGNATURE |LiePolyIfCan| ((|Union| (|LiePolynomial| |#1| |#2|) "failed") $)) (SIGNATURE |product| ($ $ $ (|NonNegativeInteger|))) (IF (|has| |#2| (|Module| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |exp| ($ $ (|NonNegativeInteger|))) (SIGNATURE |log| ($ $ (|NonNegativeInteger|)))) |noBranch|))) (|OrderedSet|) (|CommutativeRing|)) (T |XPBWPolynomial|)) │ │ │ -((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|LiePolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)) (|isDomain| *1 (|XPBWPolynomial| *3 *4)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|XDistributedPolynomial| *3 *4)) (|isDomain| *1 (|XPBWPolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|coerce| (*1 *2 *1) (AND (|isDomain| *2 (|XRecursivePolynomial| *3 *4)) (|isDomain| *1 (|XPBWPolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|LiePolyIfCan| (*1 *2 *1) (|partial| AND (|isDomain| *2 (|LiePolynomial| *3 *4)) (|isDomain| *1 (|XPBWPolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|product| (*1 *1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|XPBWPolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|exp| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|XPBWPolynomial| *3 *4)) (|ofCategory| *4 (|Module| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|)))) (|log| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *1 (|XPBWPolynomial| *3 *4)) (|ofCategory| *4 (|Module| (|Fraction| (|Integer|)))) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|CommutativeRing|))))) │ │ │ -(|Join| (|XPolynomialsCat| |#1| |#2|) (|FreeModuleCat| |#2| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|LiePolynomial| |#1| |#2|))) (SIGNATURE |coerce| ((|XDistributedPolynomial| |#1| |#2|) $)) (SIGNATURE |coerce| ((|XRecursivePolynomial| |#1| |#2|) $)) (SIGNATURE |LiePolyIfCan| ((|Union| (|LiePolynomial| |#1| |#2|) "failed") $)) (SIGNATURE |product| ($ $ $ (|NonNegativeInteger|))) (IF (|has| |#2| (|Module| (|Fraction| (|Integer|)))) (PROGN (SIGNATURE |exp| ($ $ (|NonNegativeInteger|))) (SIGNATURE |log| ($ $ (|NonNegativeInteger|)))) |noBranch|))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|varList| (((|List| |#1|) $) 119)) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) 43)) (|trunc| (($ $ (|NonNegativeInteger|)) 31)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sh| (($ $ $) 47 (|has| |#2| (|CommutativeRing|))) (($ $ (|NonNegativeInteger|)) 45 (|has| |#2| (|CommutativeRing|)))) (|sample| (($) NIL T CONST)) (|rquo| (($ $ |#1|) 101) (($ $ (|OrderedFreeMonoid| |#1|)) 102) (($ $ $) 25)) (|retractIfCan| (((|Union| (|OrderedFreeMonoid| |#1|) "failed") $) NIL)) (|retract| (((|OrderedFreeMonoid| |#1|) $) NIL)) (|recip| (((|Union| $ "failed") $) 109)) (|quasiRegular?| (((|Boolean|) $) 104)) (|quasiRegular| (($ $) 105)) (|one?| (((|Boolean|) $) NIL)) (|monomial?| (((|Boolean|) $) NIL)) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) 19)) (|mirror| (($ $) NIL)) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) NIL)) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) 110)) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) 113)) (|map| (($ (|Mapping| |#2| |#2|) $) 118)) (|lquo| (($ $ |#1|) 99) (($ $ (|OrderedFreeMonoid| |#1|)) 100) (($ $ $) 55)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) 83)) (|degree| (((|NonNegativeInteger|) $) 116)) (|constant?| (((|Boolean|) $) 69)) (|constant| ((|#2| $) 27)) (|coerce| (((|OutputForm|) $) 62) (($ (|Integer|)) 76) (($ |#2|) 73) (($ (|OrderedFreeMonoid| |#1|)) 17) (($ |#1|) 72)) (|coef| ((|#2| $ (|OrderedFreeMonoid| |#1|)) 103) ((|#2| $ $) 26)) (|characteristic| (((|NonNegativeInteger|)) 107)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 14 T CONST)) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) 52)) (|One| (($) 28 T CONST)) (= (((|Boolean|) $ $) 13)) (- (($ $) 87) (($ $ $) 90)) (+ (($ $ $) 54)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) 48)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) 46) (($ (|Integer|) $) 93) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 81))) │ │ │ -(((|XRecursivePolynomial| |#1| |#2|) (|Join| (|XPolynomialsCat| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |expand| ((|XDistributedPolynomial| |#1| |#2|) $)) (SIGNATURE |unexpand| ($ (|XDistributedPolynomial| |#1| |#2|))) (SIGNATURE |RemainderList| ((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $)))) (|OrderedSet|) (|Ring|)) (T |XRecursivePolynomial|)) │ │ │ -((|expand| (*1 *2 *1) (AND (|isDomain| *2 (|XDistributedPolynomial| *3 *4)) (|isDomain| *1 (|XRecursivePolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)))) (|unexpand| (*1 *1 *2) (AND (|isDomain| *2 (|XDistributedPolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|XRecursivePolynomial| *3 *4)))) (|RemainderList| (*1 *2 *1) (AND (|isDomain| *2 (|List| (|Record| (|:| |k| *3) (|:| |c| (|XRecursivePolynomial| *3 *4))))) (|isDomain| *1 (|XRecursivePolynomial| *3 *4)) (|ofCategory| *3 (|OrderedSet|)) (|ofCategory| *4 (|Ring|))))) │ │ │ -(|Join| (|XPolynomialsCat| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |expand| ((|XDistributedPolynomial| |#1| |#2|) $)) (SIGNATURE |unexpand| ($ (|XDistributedPolynomial| |#1| |#2|))) (SIGNATURE |RemainderList| ((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $)))) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|setelt| ((|#1| $ (|Integer|) |#1|) NIL)) (|removeConjugate| (((|List| $) (|List| $) (|NonNegativeInteger|)) NIL) (((|List| $) (|List| $)) NIL)) (|rational?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL) (((|Boolean|) $) NIL)) (|pointValue| (((|List| |#1|) $) NIL)) (|origin| (($) NIL)) (|orbit| (((|List| $) $) NIL) (((|List| $) $ (|NonNegativeInteger|)) NIL)) (|list| (((|List| |#1|) $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|elt| ((|#1| $ (|Integer|)) NIL)) (|degree| (((|PositiveInteger|) $) NIL)) (|definingField| ((|#1| $) NIL)) (|conjugate| (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (((|List| |#1|) $) NIL) (($ (|List| |#1|)) NIL)) (|affinePoint| (($ (|List| |#1|)) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ -(((|AffinePlane| |#1|) (|AffineSpaceCategory| |#1|) (|Field|)) (T |AffinePlane|)) │ │ │ +(|NumericalIntegrationCategory|) │ │ │ +((|gcdPrimitive| ((|#4| (|List| |#4|)) 119) (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) 65) ((|#4| |#4| |#4|) 118)) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) 112) (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) 48) ((|#4| (|List| |#4|)) 53) ((|#4| |#4| |#4|) 82))) │ │ │ +(((|PolynomialGcdPackage| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |gcd| (|#4| |#4| |#4|)) (SIGNATURE |gcd| (|#4| (|List| |#4|))) (SIGNATURE |gcd| ((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|))) (SIGNATURE |gcd| ((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|)))) (SIGNATURE |gcdPrimitive| (|#4| |#4| |#4|)) (SIGNATURE |gcdPrimitive| ((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|))) (SIGNATURE |gcdPrimitive| (|#4| (|List| |#4|)))) (|OrderedAbelianMonoidSup|) (|OrderedSet|) (|EuclideanDomain|) (|PolynomialCategory| |#3| |#1| |#2|)) (T |PolynomialGcdPackage|)) │ │ │ +((|gcdPrimitive| (*1 *2 *3) (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|PolynomialCategory| *6 *4 *5)) (|isDomain| *1 (|PolynomialGcdPackage| *4 *5 *6 *2)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|EuclideanDomain|)))) (|gcdPrimitive| (*1 *2 *2 *2) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *6)) (|ofCategory| *6 (|PolynomialCategory| *5 *3 *4)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|EuclideanDomain|)) (|isDomain| *1 (|PolynomialGcdPackage| *3 *4 *5 *6)))) (|gcdPrimitive| (*1 *2 *2 *2) (AND (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|EuclideanDomain|)) (|isDomain| *1 (|PolynomialGcdPackage| *3 *4 *5 *2)) (|ofCategory| *2 (|PolynomialCategory| *5 *3 *4)))) (|gcd| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|SparseUnivariatePolynomial| *7))) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|EuclideanDomain|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *7)) (|isDomain| *1 (|PolynomialGcdPackage| *4 *5 *6 *7)) (|ofCategory| *7 (|PolynomialCategory| *6 *4 *5)))) (|gcd| (*1 *2 *2 *2) (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *6)) (|ofCategory| *6 (|PolynomialCategory| *5 *3 *4)) (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|EuclideanDomain|)) (|isDomain| *1 (|PolynomialGcdPackage| *3 *4 *5 *6)))) (|gcd| (*1 *2 *3) (AND (|isDomain| *3 (|List| *2)) (|ofCategory| *2 (|PolynomialCategory| *6 *4 *5)) (|isDomain| *1 (|PolynomialGcdPackage| *4 *5 *6 *2)) (|ofCategory| *4 (|OrderedAbelianMonoidSup|)) (|ofCategory| *5 (|OrderedSet|)) (|ofCategory| *6 (|EuclideanDomain|)))) (|gcd| (*1 *2 *2 *2) (AND (|ofCategory| *3 (|OrderedAbelianMonoidSup|)) (|ofCategory| *4 (|OrderedSet|)) (|ofCategory| *5 (|EuclideanDomain|)) (|isDomain| *1 (|PolynomialGcdPackage| *3 *4 *5 *2)) (|ofCategory| *2 (|PolynomialCategory| *5 *3 *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |gcd| (|#4| |#4| |#4|)) (SIGNATURE |gcd| (|#4| (|List| |#4|))) (SIGNATURE |gcd| ((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|))) (SIGNATURE |gcd| ((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|)))) (SIGNATURE |gcdPrimitive| (|#4| |#4| |#4|)) (SIGNATURE |gcdPrimitive| ((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|))) (SIGNATURE |gcdPrimitive| (|#4| (|List| |#4|)))) │ │ │ +((|seriesSolve| ((|#2| (|Mapping| |#3| |#3|) (|List| |#1|)) 67))) │ │ │ +(((|TaylorSolve| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |seriesSolve| (|#2| (|Mapping| |#3| |#3|) (|List| |#1|)))) (|Field|) (|UnivariateTaylorSeriesCategory| |#1|) (|UnivariateTaylorSeriesCategory| (|SparseUnivariatePolynomialExpressions| |#1|))) (T |TaylorSolve|)) │ │ │ +((|seriesSolve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *6)) (|isDomain| *4 (|List| *5)) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|UnivariateTaylorSeriesCategory| (|SparseUnivariatePolynomialExpressions| *5))) (|ofCategory| *2 (|UnivariateTaylorSeriesCategory| *5)) (|isDomain| *1 (|TaylorSolve| *5 *2 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |seriesSolve| (|#2| (|Mapping| |#3| |#3|) (|List| |#1|)))) │ │ │ +((|retractIfCan| (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) 129) (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) 118) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) 151) (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) 140) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 107) (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 96)) (|retract| (($ (|Vector| (|Expression| (|Float|)))) 125) (($ (|Vector| (|Expression| (|Integer|)))) 114) (($ (|Vector| (|Polynomial| (|Float|)))) 147) (($ (|Vector| (|Polynomial| (|Integer|)))) 136) (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) 103) (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) 89)) (|outputAsFortran| (((|Void|) $) 82)) (|coerce| (((|OutputForm|) $) 74) (($ (|List| (|FortranCode|))) NIL) (($ (|FortranCode|)) NIL) (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) NIL) (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) 69))) │ │ │ +(((|Asp42| |#1| |#2| |#3|) (|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|))))))) (|Symbol|) (|Symbol|) (|Symbol|)) (T |Asp42|)) │ │ │ +((|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) (|isDomain| *1 (|Asp42| *3 *4 *5)) (|ofType| *3 (|Symbol|)) (|ofType| *4 (|Symbol|)) (|ofType| *5 (|Symbol|))))) │ │ │ +(|Join| (|FortranVectorFunctionCategory|) (CATEGORY |domain| (SIGNATURE |coerce| ($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|))))))) │ │ │ +((|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) 13) (((|Matrix| |#1|) (|List| |#1|)) 14)) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) 34)) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) 42))) │ │ │ +(((|ODETools| |#1| |#2|) (CATEGORY |package| (SIGNATURE |wronskianMatrix| ((|Matrix| |#1|) (|List| |#1|))) (SIGNATURE |wronskianMatrix| ((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|))) (SIGNATURE |variationOfParameters| ((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|))) (SIGNATURE |particularSolution| ((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)))) (|Field|) (|LinearOrdinaryDifferentialOperatorCategory| |#1|)) (T |ODETools|)) │ │ │ +((|particularSolution| (*1 *2 *3 *2 *4 *5) (|partial| AND (|isDomain| *4 (|List| *2)) (|isDomain| *5 (|Mapping| *2 *2)) (|ofCategory| *2 (|Field|)) (|isDomain| *1 (|ODETools| *2 *3)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *2)))) (|variationOfParameters| (*1 *2 *3 *4 *5) (|partial| AND (|isDomain| *5 (|List| *4)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|Vector| *4)) (|isDomain| *1 (|ODETools| *4 *3)) (|ofCategory| *3 (|LinearOrdinaryDifferentialOperatorCategory| *4)))) (|wronskianMatrix| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| *5)) (|isDomain| *4 (|NonNegativeInteger|)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|Matrix| *5)) (|isDomain| *1 (|ODETools| *5 *6)) (|ofCategory| *6 (|LinearOrdinaryDifferentialOperatorCategory| *5)))) (|wronskianMatrix| (*1 *2 *3) (AND (|isDomain| *3 (|List| *4)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|Matrix| *4)) (|isDomain| *1 (|ODETools| *4 *5)) (|ofCategory| *5 (|LinearOrdinaryDifferentialOperatorCategory| *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE |wronskianMatrix| ((|Matrix| |#1|) (|List| |#1|))) (SIGNATURE |wronskianMatrix| ((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|))) (SIGNATURE |variationOfParameters| ((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|))) (SIGNATURE |particularSolution| ((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|setelt| ((|#1| $ (|Integer|) |#1|) NIL)) (|removeConjugate| (((|List| $) (|List| $) (|NonNegativeInteger|)) NIL) (((|List| $) (|List| $)) NIL)) (|rational?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL) (((|Boolean|) $) NIL)) (|projectivePoint| (($ (|List| |#1|)) NIL)) (|pointValue| (((|List| |#1|) $) NIL)) (|orbit| (((|List| $) $) NIL) (((|List| $) $ (|NonNegativeInteger|)) NIL)) (|list| (((|List| |#1|) $) NIL)) (|latex| (((|String|) $) NIL)) (|lastNonNull| (((|Integer|) $) NIL)) (|lastNonNul| (((|Integer|) $) NIL)) (|homogenize| (($ $ (|Integer|)) NIL) (($ $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|elt| ((|#1| $ (|Integer|)) NIL)) (|degree| (((|PositiveInteger|) $) NIL)) (|definingField| ((|#1| $) NIL)) (|conjugate| (($ $ (|NonNegativeInteger|)) NIL) (($ $) NIL)) (|coerce| (((|OutputForm|) $) NIL) (((|List| |#1|) $) NIL) (($ (|List| |#1|)) NIL)) (= (((|Boolean|) $ $) NIL))) │ │ │ +(((|ProjectivePlane| |#1|) (|ProjectiveSpaceCategory| |#1|) (|Field|)) (T |ProjectivePlane|)) │ │ │ NIL │ │ │ -(|AffineSpaceCategory| |#1|) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (~ (($ $) NIL)) (|xor| (($ $ $) NIL)) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) $) NIL (|has| (|Boolean|) (|OrderedSet|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $) NIL)) (|sort!| (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| (|Boolean|) (|OrderedSet|)))) (($ (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sort| (($ $) NIL (|has| (|Boolean|) (|OrderedSet|))) (($ (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $) NIL)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| (((|Boolean|) $ (|UniversalSegment| (|Integer|)) (|Boolean|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|Boolean|) $ (|Integer|) (|Boolean|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Boolean|) (|SetCategory|))))) (|remove| (($ (|Mapping| (|Boolean|) (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (($ (|Boolean|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Boolean|) (|SetCategory|))))) (|reduce| (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $ (|Boolean|)) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $ (|Boolean|) (|Boolean|)) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Boolean|) (|SetCategory|))))) (|qsetelt!| (((|Boolean|) $ (|Integer|) (|Boolean|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| (((|Boolean|) $ (|Integer|)) NIL)) (|position| (((|Integer|) (|Boolean|) $ (|Integer|)) NIL (|has| (|Boolean|) (|SetCategory|))) (((|Integer|) (|Boolean|) $) NIL (|has| (|Boolean|) (|SetCategory|))) (((|Integer|) (|Mapping| (|Boolean|) (|Boolean|)) $) NIL)) (|parts| (((|List| (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|or| (($ $ $) NIL)) (|not| (($ $) NIL)) (|nor| (($ $ $) NIL)) (|new| (($ (|NonNegativeInteger|) (|Boolean|)) 8)) (|nand| (($ $ $) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL)) (|merge| (($ $ $) NIL (|has| (|Boolean|) (|OrderedSet|))) (($ (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $ $) NIL)) (|members| (((|List| (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|Boolean|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Boolean|) (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL)) (|map!| (($ (|Mapping| (|Boolean|) (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|Boolean|) (|Boolean|) (|Boolean|)) $ $) NIL) (($ (|Mapping| (|Boolean|) (|Boolean|)) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL)) (|insert| (($ $ $ (|Integer|)) NIL) (($ (|Boolean|) $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|first| (((|Boolean|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| (|Boolean|) "failed") (|Mapping| (|Boolean|) (|Boolean|)) $) NIL)) (|fill!| (($ $ (|Boolean|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Boolean|)) (|List| (|Boolean|))) NIL (AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|)))) (($ $ (|Boolean|) (|Boolean|)) NIL (AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|)))) (($ $ (|Equation| (|Boolean|))) NIL (AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|)))) (($ $ (|List| (|Equation| (|Boolean|)))) NIL (AND (|has| (|Boolean|) (|Evalable| (|Boolean|))) (|has| (|Boolean|) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) (|Boolean|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Boolean|) (|SetCategory|))))) (|entries| (((|List| (|Boolean|)) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| (($ $ (|UniversalSegment| (|Integer|))) NIL) (((|Boolean|) $ (|Integer|)) NIL) (((|Boolean|) $ (|Integer|) (|Boolean|)) NIL)) (|delete| (($ $ (|UniversalSegment| (|Integer|))) NIL) (($ $ (|Integer|)) NIL)) (|count| (((|NonNegativeInteger|) (|Boolean|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|Boolean|) (|SetCategory|)))) (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| (|Boolean|) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|Boolean|))) NIL)) (|concat| (($ (|List| $)) NIL) (($ $ $) NIL) (($ (|Boolean|) $) NIL) (($ $ (|Boolean|)) NIL)) (|coerce| (((|OutputForm|) $) NIL)) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) 9)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|Boolean|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|and| (($ $ $) NIL)) (^ (($ $) NIL)) (|\\/| (($ $ $) NIL)) (>= (((|Boolean|) $ $) NIL)) (> (((|Boolean|) $ $) NIL)) (= (((|Boolean|) $ $) NIL)) (<= (((|Boolean|) $ $) NIL)) (< (((|Boolean|) $ $) NIL)) (|/\\| (($ $ $) NIL)) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|Bits|) (|Join| (|BitAggregate|) (CATEGORY |domain| (SIGNATURE |bits| ($ (|NonNegativeInteger|) (|Boolean|)))))) (T |Bits|)) │ │ │ -((|bits| (*1 *1 *2 *3) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|isDomain| *3 (|Boolean|)) (|isDomain| *1 (|Bits|))))) │ │ │ -(|Join| (|BitAggregate|) (CATEGORY |domain| (SIGNATURE |bits| ($ (|NonNegativeInteger|) (|Boolean|))))) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| (|DoubleFloat|) (|SetCategory|)))) (|zero?| (((|Boolean|) $) NIL)) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) NIL)) (|vertConcat| (($ $ $) NIL)) (|transpose| (($ (|DoubleFloatVector|)) NIL) (($ $) NIL)) (|symmetric?| (((|Boolean|) $) NIL)) (|swapRows!| (($ $ (|Integer|) (|Integer|)) NIL)) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) NIL)) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) NIL)) (|squareTop| (($ $) NIL)) (|square?| (((|Boolean|) $) NIL)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) NIL)) (|setelt| (((|DoubleFloat|) $ (|Integer|) (|Integer|) (|DoubleFloat|)) NIL) (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) NIL)) (|setRow!| (($ $ (|Integer|) (|DoubleFloatVector|)) NIL)) (|setColumn!| (($ $ (|Integer|) (|DoubleFloatVector|)) NIL)) (|scalarMatrix| (($ (|NonNegativeInteger|) (|DoubleFloat|)) NIL)) (|sample| (($) NIL T CONST)) (|rowEchelon| (($ $) NIL (|has| (|DoubleFloat|) (|EuclideanDomain|)))) (|row| (((|DoubleFloatVector|) $ (|Integer|)) NIL)) (|rank| (((|NonNegativeInteger|) $) NIL (|has| (|DoubleFloat|) (|IntegralDomain|)))) (|qsetelt!| (((|DoubleFloat|) $ (|Integer|) (|Integer|) (|DoubleFloat|)) 16)) (|qnew| (($ (|Integer|) (|Integer|)) 18)) (|qelt| (((|DoubleFloat|) $ (|Integer|) (|Integer|)) 15)) (|pfaffian| (((|DoubleFloat|) $) NIL (|has| (|DoubleFloat|) (|CommutativeRing|)))) (|parts| (((|List| (|DoubleFloat|)) $) NIL)) (|nullity| (((|NonNegativeInteger|) $) NIL (|has| (|DoubleFloat|) (|IntegralDomain|)))) (|nullSpace| (((|List| (|DoubleFloatVector|)) $) NIL (|has| (|DoubleFloat|) (|IntegralDomain|)))) (|nrows| (((|NonNegativeInteger|) $) 10)) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|DoubleFloat|)) 19)) (|ncols| (((|NonNegativeInteger|) $) 11)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minordet| (((|DoubleFloat|) $) NIL (|has| (|DoubleFloat|) (ATTRIBUTE (|commutative| "*"))))) (|minRowIndex| (((|Integer|) $) 7)) (|minColIndex| (((|Integer|) $) 8)) (|members| (((|List| (|DoubleFloat|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|DoubleFloat|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|DoubleFloat|) (|SetCategory|))))) (|maxRowIndex| (((|Integer|) $) 12)) (|maxColIndex| (((|Integer|) $) 13)) (|matrix| (($ (|List| (|List| (|DoubleFloat|)))) NIL) (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| (|DoubleFloat|) (|Integer|) (|Integer|))) NIL)) (|map!| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) $) NIL)) (|map| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) $) NIL) (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) $ $) NIL) (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) $ $ (|DoubleFloat|)) NIL)) (|listOfLists| (((|List| (|List| (|DoubleFloat|))) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| (|DoubleFloat|) (|SetCategory|)))) (|inverse| (((|Union| $ "failed") $) NIL (|has| (|DoubleFloat|) (|Field|)))) (|horizConcat| (($ $ $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| (|DoubleFloat|) (|SetCategory|)))) (|fill!| (($ $ (|DoubleFloat|)) NIL)) (|exquo| (((|Union| $ "failed") $ (|DoubleFloat|)) NIL (|has| (|DoubleFloat|) (|IntegralDomain|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|DoubleFloat|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|DoubleFloat|)))) NIL (AND (|has| (|DoubleFloat|) (|Evalable| (|DoubleFloat|))) (|has| (|DoubleFloat|) (|SetCategory|)))) (($ $ (|Equation| (|DoubleFloat|))) NIL (AND (|has| (|DoubleFloat|) (|Evalable| (|DoubleFloat|))) (|has| (|DoubleFloat|) (|SetCategory|)))) (($ $ (|DoubleFloat|) (|DoubleFloat|)) NIL (AND (|has| (|DoubleFloat|) (|Evalable| (|DoubleFloat|))) (|has| (|DoubleFloat|) (|SetCategory|)))) (($ $ (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) NIL (AND (|has| (|DoubleFloat|) (|Evalable| (|DoubleFloat|))) (|has| (|DoubleFloat|) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) 17)) (|elt| (((|DoubleFloat|) $ (|Integer|) (|Integer|)) NIL) (((|DoubleFloat|) $ (|Integer|) (|Integer|) (|DoubleFloat|)) NIL) (($ $ (|List| (|Integer|)) (|List| (|Integer|))) NIL)) (|diagonalMatrix| (($ (|List| (|DoubleFloat|))) NIL) (($ (|List| $)) NIL)) (|diagonal?| (((|Boolean|) $) NIL)) (|determinant| (((|DoubleFloat|) $) NIL (|has| (|DoubleFloat|) (ATTRIBUTE (|commutative| "*"))))) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|DoubleFloat|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|DoubleFloat|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|DoubleFloat|) (|SetCategory|))))) (|copy| (($ $) NIL)) (|columnSpace| (((|List| (|DoubleFloatVector|)) $) NIL (|has| (|DoubleFloat|) (|EuclideanDomain|)))) (|column| (((|DoubleFloatVector|) $ (|Integer|)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| (|DoubleFloat|) (|SetCategory|))) (($ (|DoubleFloatVector|)) NIL)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|DoubleFloat|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|antisymmetric?| (((|Boolean|) $) NIL)) (= (((|Boolean|) $ $) NIL (|has| (|DoubleFloat|) (|SetCategory|)))) (/ (($ $ (|DoubleFloat|)) NIL (|has| (|DoubleFloat|) (|Field|)))) (- (($ $ $) NIL) (($ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL (|has| (|DoubleFloat|) (|Field|)))) (* (($ $ $) NIL) (($ (|DoubleFloat|) $) NIL) (($ $ (|DoubleFloat|)) NIL) (($ (|Integer|) $) NIL) (((|DoubleFloatVector|) $ (|DoubleFloatVector|)) NIL) (((|DoubleFloatVector|) (|DoubleFloatVector|) $) NIL)) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|DoubleFloatMatrix|) (|Join| (|MatrixCategory| (|DoubleFloat|) (|DoubleFloatVector|) (|DoubleFloatVector|)) (CATEGORY |domain| (SIGNATURE |qnew| ($ (|Integer|) (|Integer|)))))) (T |DoubleFloatMatrix|)) │ │ │ -((|qnew| (*1 *1 *2 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|DoubleFloatMatrix|))))) │ │ │ -(|Join| (|MatrixCategory| (|DoubleFloat|) (|DoubleFloatVector|) (|DoubleFloatVector|)) (CATEGORY |domain| (SIGNATURE |qnew| ($ (|Integer|) (|Integer|))))) │ │ │ -((|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) 21)) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) 23)) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) 18))) │ │ │ -(((|DirectProductFunctions2| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |scan| ((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|)) (SIGNATURE |reduce| (|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|)) (SIGNATURE |map| ((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)))) (|NonNegativeInteger|) (|Type|) (|Type|)) (T |DirectProductFunctions2|)) │ │ │ -((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *7 *6)) (|isDomain| *4 (|DirectProduct| *5 *6)) (|ofType| *5 (|NonNegativeInteger|)) (|ofCategory| *6 (|Type|)) (|ofCategory| *7 (|Type|)) (|isDomain| *2 (|DirectProduct| *5 *7)) (|isDomain| *1 (|DirectProductFunctions2| *5 *6 *7)))) (|reduce| (*1 *2 *3 *4 *2) (AND (|isDomain| *3 (|Mapping| *2 *6 *2)) (|isDomain| *4 (|DirectProduct| *5 *6)) (|ofType| *5 (|NonNegativeInteger|)) (|ofCategory| *6 (|Type|)) (|ofCategory| *2 (|Type|)) (|isDomain| *1 (|DirectProductFunctions2| *5 *6 *2)))) (|scan| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Mapping| *5 *7 *5)) (|isDomain| *4 (|DirectProduct| *6 *7)) (|ofType| *6 (|NonNegativeInteger|)) (|ofCategory| *7 (|Type|)) (|ofCategory| *5 (|Type|)) (|isDomain| *2 (|DirectProduct| *6 *5)) (|isDomain| *1 (|DirectProductFunctions2| *6 *7 *5))))) │ │ │ -(CATEGORY |package| (SIGNATURE |scan| ((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|)) (SIGNATURE |reduce| (|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|)) (SIGNATURE |map| ((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)))) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| (|DoubleFloat|) (|SetCategory|)))) (|zero| (($ (|NonNegativeInteger|)) NIL (|has| (|DoubleFloat|) (|AbelianMonoid|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) (|DoubleFloat|) (|DoubleFloat|)) $) NIL) (((|Boolean|) $) NIL (|has| (|DoubleFloat|) (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) (|DoubleFloat|) (|DoubleFloat|)) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| (|DoubleFloat|) (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) (|DoubleFloat|) (|DoubleFloat|)) $) NIL) (($ $) NIL (|has| (|DoubleFloat|) (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| (((|DoubleFloat|) $ (|Integer|) (|DoubleFloat|)) 17 (|has| $ (ATTRIBUTE |shallowlyMutable|))) (((|DoubleFloat|) $ (|UniversalSegment| (|Integer|)) (|DoubleFloat|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) (|DoubleFloat|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|DoubleFloat|) (|SetCategory|))))) (|remove| (($ (|DoubleFloat|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|DoubleFloat|) (|SetCategory|)))) (($ (|Mapping| (|Boolean|) (|DoubleFloat|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| (((|DoubleFloat|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) $ (|DoubleFloat|) (|DoubleFloat|)) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|DoubleFloat|) (|SetCategory|)))) (((|DoubleFloat|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) $ (|DoubleFloat|)) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|DoubleFloat|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| (((|DoubleFloat|) $ (|Integer|) (|DoubleFloat|)) 9 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qnew| (($ (|Integer|)) 14)) (|qelt| (((|DoubleFloat|) $ (|Integer|)) 8)) (|position| (((|Integer|) (|Mapping| (|Boolean|) (|DoubleFloat|)) $) NIL) (((|Integer|) (|DoubleFloat|) $) NIL (|has| (|DoubleFloat|) (|SetCategory|))) (((|Integer|) (|DoubleFloat|) $ (|Integer|)) NIL (|has| (|DoubleFloat|) (|SetCategory|)))) (|parts| (((|List| (|DoubleFloat|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|outerProduct| (((|Matrix| (|DoubleFloat|)) $ $) NIL (|has| (|DoubleFloat|) (|Ring|)))) (|new| (($ (|NonNegativeInteger|) (|DoubleFloat|)) 15)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) 12 (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| (|DoubleFloat|) (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) (|DoubleFloat|) (|DoubleFloat|)) $ $) NIL) (($ $ $) NIL (|has| (|DoubleFloat|) (|OrderedSet|)))) (|members| (((|List| (|DoubleFloat|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) (|DoubleFloat|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|DoubleFloat|) (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| (|DoubleFloat|) (|OrderedSet|)))) (|map!| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) $) NIL) (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) $ $) NIL)) (|magnitude| (((|DoubleFloat|) $) NIL (AND (|has| (|DoubleFloat|) (|RadicalCategory|)) (|has| (|DoubleFloat|) (|Ring|))))) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|length| (((|DoubleFloat|) $) NIL (AND (|has| (|DoubleFloat|) (|RadicalCategory|)) (|has| (|DoubleFloat|) (|Ring|))))) (|latex| (((|String|) $) NIL (|has| (|DoubleFloat|) (|SetCategory|)))) (|insert| (($ (|DoubleFloat|) $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| (|DoubleFloat|) (|SetCategory|)))) (|first| (((|DoubleFloat|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| (|DoubleFloat|) "failed") (|Mapping| (|Boolean|) (|DoubleFloat|)) $) NIL)) (|fill!| (($ $ (|DoubleFloat|)) 18 (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) (|DoubleFloat|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| (|DoubleFloat|)))) NIL (AND (|has| (|DoubleFloat|) (|Evalable| (|DoubleFloat|))) (|has| (|DoubleFloat|) (|SetCategory|)))) (($ $ (|Equation| (|DoubleFloat|))) NIL (AND (|has| (|DoubleFloat|) (|Evalable| (|DoubleFloat|))) (|has| (|DoubleFloat|) (|SetCategory|)))) (($ $ (|DoubleFloat|) (|DoubleFloat|)) NIL (AND (|has| (|DoubleFloat|) (|Evalable| (|DoubleFloat|))) (|has| (|DoubleFloat|) (|SetCategory|)))) (($ $ (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) NIL (AND (|has| (|DoubleFloat|) (|Evalable| (|DoubleFloat|))) (|has| (|DoubleFloat|) (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) (|DoubleFloat|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|DoubleFloat|) (|SetCategory|))))) (|entries| (((|List| (|DoubleFloat|)) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) 13)) (|elt| (((|DoubleFloat|) $ (|Integer|) (|DoubleFloat|)) NIL) (((|DoubleFloat|) $ (|Integer|)) 16) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|dot| (((|DoubleFloat|) $ $) NIL (|has| (|DoubleFloat|) (|Ring|)))) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|cross| (($ $ $) NIL (|has| (|DoubleFloat|) (|Ring|)))) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) (|DoubleFloat|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) (|DoubleFloat|) $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| (|DoubleFloat|) (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| (|DoubleFloat|) (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| (|DoubleFloat|))) NIL)) (|concat| (($ $ (|DoubleFloat|)) NIL) (($ (|DoubleFloat|) $) NIL) (($ $ $) NIL) (($ (|List| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| (|DoubleFloat|) (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) (|DoubleFloat|)) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| (|DoubleFloat|) (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| (|DoubleFloat|) (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| (|DoubleFloat|) (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| (|DoubleFloat|) (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| (|DoubleFloat|) (|OrderedSet|)))) (- (($ $) NIL (|has| (|DoubleFloat|) (|AbelianGroup|))) (($ $ $) NIL (|has| (|DoubleFloat|) (|AbelianGroup|)))) (+ (($ $ $) NIL (|has| (|DoubleFloat|) (|AbelianSemiGroup|)))) (* (($ (|Integer|) $) NIL (|has| (|DoubleFloat|) (|AbelianGroup|))) (($ (|DoubleFloat|) $) NIL (|has| (|DoubleFloat|) (|Monoid|))) (($ $ (|DoubleFloat|)) NIL (|has| (|DoubleFloat|) (|Monoid|)))) (|#| (((|NonNegativeInteger|) $) 11 (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|DoubleFloatVector|) (|Join| (|VectorCategory| (|DoubleFloat|)) (CATEGORY |domain| (SIGNATURE |qnew| ($ (|Integer|)))))) (T |DoubleFloatVector|)) │ │ │ -((|qnew| (*1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|isDomain| *1 (|DoubleFloatVector|))))) │ │ │ -(|Join| (|VectorCategory| (|DoubleFloat|)) (CATEGORY |domain| (SIGNATURE |qnew| ($ (|Integer|))))) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|zero?| (((|Boolean|) $) NIL)) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) NIL)) (|vertConcat| (($ $ $) NIL)) (|transpose| (($ (|IndexedVector| |#1| |#3|)) NIL) (($ $) NIL)) (|symmetric?| (((|Boolean|) $) NIL)) (|swapRows!| (($ $ (|Integer|) (|Integer|)) 12)) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) NIL)) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) NIL)) (|squareTop| (($ $) NIL)) (|square?| (((|Boolean|) $) NIL)) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) NIL)) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) NIL) (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) NIL)) (|setRow!| (($ $ (|Integer|) (|IndexedVector| |#1| |#3|)) NIL)) (|setColumn!| (($ $ (|Integer|) (|IndexedVector| |#1| |#2|)) NIL)) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) NIL)) (|sample| (($) NIL T CONST)) (|rowEchelon| (($ $) 19 (|has| |#1| (|EuclideanDomain|)))) (|row| (((|IndexedVector| |#1| |#3|) $ (|Integer|)) NIL)) (|rank| (((|NonNegativeInteger|) $) 22 (|has| |#1| (|IntegralDomain|)))) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) NIL)) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) NIL)) (|pfaffian| ((|#1| $) NIL (|has| |#1| (|CommutativeRing|)))) (|parts| (((|List| |#1|) $) NIL)) (|nullity| (((|NonNegativeInteger|) $) 24 (|has| |#1| (|IntegralDomain|)))) (|nullSpace| (((|List| (|IndexedVector| |#1| |#2|)) $) 27 (|has| |#1| (|IntegralDomain|)))) (|nrows| (((|NonNegativeInteger|) $) NIL)) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) NIL)) (|ncols| (((|NonNegativeInteger|) $) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minordet| ((|#1| $) 17 (|has| |#1| (ATTRIBUTE (|commutative| "*"))))) (|minRowIndex| (((|Integer|) $) 10)) (|minColIndex| (((|Integer|) $) NIL)) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxRowIndex| (((|Integer|) $) 11)) (|maxColIndex| (((|Integer|) $) NIL)) (|matrix| (($ (|List| (|List| |#1|))) NIL) (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) NIL)) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) NIL)) (|listOfLists| (((|List| (|List| |#1|)) $) NIL)) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|inverse| (((|Union| $ "failed") $) 31 (|has| |#1| (|Field|)))) (|horizConcat| (($ $ $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|fill!| (($ $ |#1|) NIL)) (|exquo| (((|Union| $ "failed") $ |#1|) NIL (|has| |#1| (|IntegralDomain|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#1| $ (|Integer|) (|Integer|)) NIL) ((|#1| $ (|Integer|) (|Integer|) |#1|) NIL) (($ $ (|List| (|Integer|)) (|List| (|Integer|))) NIL)) (|diagonalMatrix| (($ (|List| |#1|)) NIL) (($ (|List| $)) NIL)) (|diagonal?| (((|Boolean|) $) NIL)) (|determinant| ((|#1| $) 15 (|has| |#1| (ATTRIBUTE (|commutative| "*"))))) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copy| (($ $) NIL)) (|columnSpace| (((|List| (|IndexedVector| |#1| |#2|)) $) NIL (|has| |#1| (|EuclideanDomain|)))) (|column| (((|IndexedVector| |#1| |#2|) $ (|Integer|)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|))) (($ (|IndexedVector| |#1| |#2|)) NIL)) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|antisymmetric?| (((|Boolean|) $) NIL)) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (/ (($ $ |#1|) NIL (|has| |#1| (|Field|)))) (- (($ $ $) NIL) (($ $) NIL)) (+ (($ $ $) NIL)) (** (($ $ (|NonNegativeInteger|)) NIL) (($ $ (|Integer|)) NIL (|has| |#1| (|Field|)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (|Integer|) $) NIL) (((|IndexedVector| |#1| |#2|) $ (|IndexedVector| |#1| |#2|)) NIL) (((|IndexedVector| |#1| |#3|) (|IndexedVector| |#1| |#3|) $) NIL)) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|IndexedMatrix| |#1| |#2| |#3|) (|MatrixCategory| |#1| (|IndexedVector| |#1| |#3|) (|IndexedVector| |#1| |#2|)) (|Ring|) (|Integer|) (|Integer|)) (T |IndexedMatrix|)) │ │ │ +(|ProjectiveSpaceCategory| |#1|) │ │ │ +((|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) 17))) │ │ │ +(((|PointFunctions2| |#1| |#2|) (CATEGORY |package| (SIGNATURE |map| ((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)))) (|Ring|) (|Ring|)) (T |PointFunctions2|)) │ │ │ +((|map| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Mapping| *6 *5)) (|isDomain| *4 (|Point| *5)) (|ofCategory| *5 (|Ring|)) (|ofCategory| *6 (|Ring|)) (|isDomain| *2 (|Point| *6)) (|isDomain| *1 (|PointFunctions2| *5 *6))))) │ │ │ +(CATEGORY |package| (SIGNATURE |map| ((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)))) │ │ │ +((|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) 16))) │ │ │ +(((|ApplyUnivariateSkewPolynomial| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |apply| (|#2| |#3| (|Mapping| |#2| |#2|) |#2|))) (|Ring|) (|LeftModule| |#1|) (|UnivariateSkewPolynomialCategory| |#1|)) (T |ApplyUnivariateSkewPolynomial|)) │ │ │ +((|apply| (*1 *2 *3 *4 *2) (AND (|isDomain| *4 (|Mapping| *2 *2)) (|ofCategory| *2 (|LeftModule| *5)) (|ofCategory| *5 (|Ring|)) (|isDomain| *1 (|ApplyUnivariateSkewPolynomial| *5 *2 *3)) (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |apply| (|#2| |#3| (|Mapping| |#2| |#2|) |#2|))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|retractIfCan| (((|Union| |#2| "failed") $) 25)) (|retract| ((|#2| $) 27)) (|reductum| (($ $) NIL)) (|numberOfMonomials| (((|NonNegativeInteger|) $) 10)) (|monomials| (((|List| $) $) 20)) (|monomial?| (((|Boolean|) $) NIL)) (|monom| (($ |#2| |#1|) 18)) (|map| (($ (|Mapping| |#1| |#1|) $) NIL)) (|listOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (|leadingMonomial| ((|#2| $) 15)) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|coerce| (((|OutputForm|) $) 43) (($ |#2|) 26)) (|coefficients| (((|List| |#1|) $) 17)) (|coefficient| ((|#1| $ |#2|) 45)) (|Zero| (($) 28 T CONST)) (= (((|Boolean|) $ $) NIL)) (- (($ $) NIL) (($ $ $) NIL)) (+ (($ $ $) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 33) (($ |#2| |#1|) 34))) │ │ │ +(((|FreeModule1| |#1| |#2|) (|Join| (|FreeModuleCat| |#1| |#2|) (CATEGORY |domain| (SIGNATURE * ($ |#2| |#1|)))) (|Ring|) (|OrderedSet|)) (T |FreeModule1|)) │ │ │ +((* (*1 *1 *2 *3) (AND (|isDomain| *1 (|FreeModule1| *3 *2)) (|ofCategory| *3 (|Ring|)) (|ofCategory| *2 (|OrderedSet|))))) │ │ │ +(|Join| (|FreeModuleCat| |#1| |#2|) (CATEGORY |domain| (SIGNATURE * ($ |#2| |#1|)))) │ │ │ +((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) 33)) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|reduce| (($ |#1| |#2|) 25)) (|recip| (((|Union| $ "failed") $) 47)) (|one?| (((|Boolean|) $) 35)) (|modulus| ((|#2| $) 12)) (|latex| (((|String|) $) NIL)) (|inv| (($ $) 48)) (|hash| (((|SingleInteger|) $) NIL)) (|exQuo| (((|Union| $ "failed") $ $) 46)) (|coerce| (((|OutputForm|) $) 24) (($ (|Integer|)) 19) ((|#1| $) 13)) (|characteristic| (((|NonNegativeInteger|)) 28)) (^ (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (|Zero| (($) 16 T CONST)) (|One| (($) 30 T CONST)) (= (((|Boolean|) $ $) 38)) (- (($ $) 43) (($ $ $) 37)) (+ (($ $ $) 40)) (** (($ $ (|PositiveInteger|)) NIL) (($ $ (|NonNegativeInteger|)) NIL)) (* (($ (|PositiveInteger|) $) NIL) (($ (|NonNegativeInteger|) $) NIL) (($ (|Integer|) $) 21) (($ $ $) 20))) │ │ │ +(((|ModularRing| |#1| |#2| |#3| |#4| |#5|) (|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |modulus| (|#2| $)) (SIGNATURE |coerce| (|#1| $)) (SIGNATURE |reduce| ($ |#1| |#2|)) (SIGNATURE |exQuo| ((|Union| $ "failed") $ $)) (SIGNATURE |recip| ((|Union| $ "failed") $)) (SIGNATURE |inv| ($ $)))) (|CommutativeRing|) (|AbelianMonoid|) (|Mapping| |#1| |#1| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2|) (|Mapping| (|Union| |#1| "failed") |#1| |#1| |#2|)) (T |ModularRing|)) │ │ │ +((|recip| (*1 *1 *1) (|partial| AND (|isDomain| *1 (|ModularRing| *2 *3 *4 *5 *6)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3)) (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3)) (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3)))) (|modulus| (*1 *2 *1) (AND (|ofCategory| *2 (|AbelianMonoid|)) (|isDomain| *1 (|ModularRing| *3 *2 *4 *5 *6)) (|ofCategory| *3 (|CommutativeRing|)) (|ofType| *4 (|Mapping| *3 *3 *2)) (|ofType| *5 (|Mapping| (|Union| *2 "failed") *2 *2)) (|ofType| *6 (|Mapping| (|Union| *3 "failed") *3 *3 *2)))) (|coerce| (*1 *2 *1) (AND (|ofCategory| *2 (|CommutativeRing|)) (|isDomain| *1 (|ModularRing| *2 *3 *4 *5 *6)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3)) (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3)) (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3)))) (|reduce| (*1 *1 *2 *3) (AND (|isDomain| *1 (|ModularRing| *2 *3 *4 *5 *6)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3)) (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3)) (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3)))) (|exQuo| (*1 *1 *1 *1) (|partial| AND (|isDomain| *1 (|ModularRing| *2 *3 *4 *5 *6)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3)) (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3)) (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3)))) (|inv| (*1 *1 *1) (AND (|isDomain| *1 (|ModularRing| *2 *3 *4 *5 *6)) (|ofCategory| *2 (|CommutativeRing|)) (|ofCategory| *3 (|AbelianMonoid|)) (|ofType| *4 (|Mapping| *2 *2 *3)) (|ofType| *5 (|Mapping| (|Union| *3 "failed") *3 *3)) (|ofType| *6 (|Mapping| (|Union| *2 "failed") *2 *2 *3))))) │ │ │ +(|Join| (|Ring|) (CATEGORY |domain| (SIGNATURE |modulus| (|#2| $)) (SIGNATURE |coerce| (|#1| $)) (SIGNATURE |reduce| ($ |#1| |#2|)) (SIGNATURE |exQuo| ((|Union| $ "failed") $ $)) (SIGNATURE |recip| ((|Union| $ "failed") $)) (SIGNATURE |inv| ($ $)))) │ │ │ +((|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) 20)) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) 43 (|has| |#1| (|Field|)))) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) 40 (|has| |#1| (|IntegralDomain|)))) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) 39 (|has| |#1| (|IntegralDomain|)))) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) 42 (|has| |#1| (|Field|)))) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) 31))) │ │ │ +(((|UnivariateSkewPolynomialCategoryOps| |#1| |#2|) (CATEGORY |package| (SIGNATURE |times| (|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|))) (SIGNATURE |apply| (|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|))) (IF (|has| |#1| (|IntegralDomain|)) (PROGN (SIGNATURE |monicLeftDivide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|))) (SIGNATURE |monicRightDivide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)))) |noBranch|) (IF (|has| |#1| (|Field|)) (PROGN (SIGNATURE |leftDivide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|))) (SIGNATURE |rightDivide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)))) |noBranch|)) (|Ring|) (|UnivariateSkewPolynomialCategory| |#1|)) (T |UnivariateSkewPolynomialCategoryOps|)) │ │ │ +((|rightDivide| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|Automorphism| *5)) (|ofCategory| *5 (|Field|)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3))) (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *5 *3)) (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *5)))) (|leftDivide| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|Automorphism| *5)) (|ofCategory| *5 (|Field|)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3))) (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *5 *3)) (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *5)))) (|monicRightDivide| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|Automorphism| *5)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3))) (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *5 *3)) (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *5)))) (|monicLeftDivide| (*1 *2 *3 *3 *4) (AND (|isDomain| *4 (|Automorphism| *5)) (|ofCategory| *5 (|IntegralDomain|)) (|ofCategory| *5 (|Ring|)) (|isDomain| *2 (|Record| (|:| |quotient| *3) (|:| |remainder| *3))) (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *5 *3)) (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *5)))) (|apply| (*1 *2 *3 *2 *2 *4 *5) (AND (|isDomain| *4 (|Automorphism| *2)) (|isDomain| *5 (|Mapping| *2 *2)) (|ofCategory| *2 (|Ring|)) (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *2 *3)) (|ofCategory| *3 (|UnivariateSkewPolynomialCategory| *2)))) (|times| (*1 *2 *2 *2 *3 *4) (AND (|isDomain| *3 (|Automorphism| *5)) (|isDomain| *4 (|Mapping| *5 *5)) (|ofCategory| *5 (|Ring|)) (|isDomain| *1 (|UnivariateSkewPolynomialCategoryOps| *5 *2)) (|ofCategory| *2 (|UnivariateSkewPolynomialCategory| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |times| (|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|))) (SIGNATURE |apply| (|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|))) (IF (|has| |#1| (|IntegralDomain|)) (PROGN (SIGNATURE |monicLeftDivide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|))) (SIGNATURE |monicRightDivide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)))) |noBranch|) (IF (|has| |#1| (|Field|)) (PROGN (SIGNATURE |leftDivide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|))) (SIGNATURE |rightDivide| ((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)))) |noBranch|)) │ │ │ +((|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) 94) (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) 93) (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) 91) (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) 89) (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) 75) (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) 76) (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) 70) (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) 59)) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) 87) (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) 43)) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) 97) (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) 96))) │ │ │ +(((|RadicalSolvePackage| |#1|) (CATEGORY |package| (SIGNATURE |radicalSolve| ((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|))) (SIGNATURE |radicalSolve| ((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |radicalSolve| ((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|))) (SIGNATURE |radicalSolve| ((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |radicalSolve| ((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|)))) (SIGNATURE |radicalSolve| ((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |radicalSolve| ((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)))) (SIGNATURE |radicalSolve| ((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))))) (SIGNATURE |radicalRoots| ((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|))) (SIGNATURE |radicalRoots| ((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|)))) (SIGNATURE |contractSolve| ((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|))) (SIGNATURE |contractSolve| ((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)))) (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|))) (T |RadicalSolvePackage|)) │ │ │ +((|contractSolve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5))) (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|))) (|isDomain| *2 (|SuchThat| (|List| (|Expression| *5)) (|List| (|Equation| (|Expression| *5))))) (|isDomain| *1 (|RadicalSolvePackage| *5)))) (|contractSolve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Equation| (|Fraction| (|Polynomial| *5)))) (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|))) (|isDomain| *2 (|SuchThat| (|List| (|Expression| *5)) (|List| (|Equation| (|Expression| *5))))) (|isDomain| *1 (|RadicalSolvePackage| *5)))) (|radicalRoots| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| *5)))) (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|List| (|Expression| *5)))) (|isDomain| *1 (|RadicalSolvePackage| *5)))) (|radicalRoots| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5))) (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|Expression| *5))) (|isDomain| *1 (|RadicalSolvePackage| *5)))) (|radicalSolve| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Equation| (|Fraction| (|Polynomial| *4))))) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|List| (|Equation| (|Expression| *4))))) (|isDomain| *1 (|RadicalSolvePackage| *4)))) (|radicalSolve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Equation| (|Fraction| (|Polynomial| *5))))) (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|List| (|Equation| (|Expression| *5))))) (|isDomain| *1 (|RadicalSolvePackage| *5)))) (|radicalSolve| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| *4)))) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|List| (|Equation| (|Expression| *4))))) (|isDomain| *1 (|RadicalSolvePackage| *4)))) (|radicalSolve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| *5)))) (|isDomain| *4 (|List| (|Symbol|))) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|List| (|Equation| (|Expression| *5))))) (|isDomain| *1 (|RadicalSolvePackage| *5)))) (|radicalSolve| (*1 *2 *3) (AND (|isDomain| *3 (|Equation| (|Fraction| (|Polynomial| *4)))) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|Equation| (|Expression| *4)))) (|isDomain| *1 (|RadicalSolvePackage| *4)))) (|radicalSolve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Equation| (|Fraction| (|Polynomial| *5)))) (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|Equation| (|Expression| *5)))) (|isDomain| *1 (|RadicalSolvePackage| *5)))) (|radicalSolve| (*1 *2 *3) (AND (|isDomain| *3 (|Fraction| (|Polynomial| *4))) (|ofCategory| *4 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|Equation| (|Expression| *4)))) (|isDomain| *1 (|RadicalSolvePackage| *4)))) (|radicalSolve| (*1 *2 *3 *4) (AND (|isDomain| *3 (|Fraction| (|Polynomial| *5))) (|isDomain| *4 (|Symbol|)) (|ofCategory| *5 (|Join| (|EuclideanDomain|) (|OrderedSet|) (|CharacteristicZero|))) (|isDomain| *2 (|List| (|Equation| (|Expression| *5)))) (|isDomain| *1 (|RadicalSolvePackage| *5))))) │ │ │ +(CATEGORY |package| (SIGNATURE |radicalSolve| ((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|))) (SIGNATURE |radicalSolve| ((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)))) (SIGNATURE |radicalSolve| ((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|))) (SIGNATURE |radicalSolve| ((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |radicalSolve| ((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|)))) (SIGNATURE |radicalSolve| ((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))))) (SIGNATURE |radicalSolve| ((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)))) (SIGNATURE |radicalSolve| ((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))))) (SIGNATURE |radicalRoots| ((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|))) (SIGNATURE |radicalRoots| ((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|)))) (SIGNATURE |contractSolve| ((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|))) (SIGNATURE |contractSolve| ((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)))) │ │ │ +((|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) 83)) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) 99)) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) 95))) │ │ │ +(((|InnerNumericEigenPackage| |#1| |#2| |#3|) (CATEGORY |package| (SIGNATURE |charpol| ((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|))) (SIGNATURE |solve1| ((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|)) (SIGNATURE |innerEigenvectors| ((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))))) (|Field|) (|Field|) (|Join| (|Field|) (|OrderedRing|))) (T |InnerNumericEigenPackage|)) │ │ │ +((|innerEigenvectors| (*1 *2 *3 *4 *5) (AND (|isDomain| *3 (|Matrix| *6)) (|isDomain| *5 (|Mapping| (|Factored| (|SparseUnivariatePolynomial| *6)) (|SparseUnivariatePolynomial| *6))) (|ofCategory| *6 (|Field|)) (|isDomain| *2 (|List| (|Record| (|:| |outval| *7) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| *7)))))) (|isDomain| *1 (|InnerNumericEigenPackage| *6 *7 *4)) (|ofCategory| *7 (|Field|)) (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))))) (|solve1| (*1 *2 *3 *4) (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *5)) (|ofCategory| *5 (|Field|)) (|isDomain| *2 (|List| *6)) (|isDomain| *1 (|InnerNumericEigenPackage| *5 *6 *4)) (|ofCategory| *6 (|Field|)) (|ofCategory| *4 (|Join| (|Field|) (|OrderedRing|))))) (|charpol| (*1 *2 *3) (AND (|isDomain| *3 (|Matrix| *4)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|SparseUnivariatePolynomial| *4)) (|isDomain| *1 (|InnerNumericEigenPackage| *4 *5 *6)) (|ofCategory| *5 (|Field|)) (|ofCategory| *6 (|Join| (|Field|) (|OrderedRing|)))))) │ │ │ +(CATEGORY |package| (SIGNATURE |charpol| ((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|))) (SIGNATURE |solve1| ((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|)) (SIGNATURE |innerEigenvectors| ((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))))) │ │ │ +((|zero?| (((|Boolean|) |#3| $) 13)) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) 23)) (|recip| (((|Union| |#3| "failed") |#3| $) 37)) (|positive?| (((|Boolean|) |#3| $) 16)) (|negative?| (((|Boolean|) |#3| $) 14))) │ │ │ +(((|RealRootCharacterizationCategory&| |#1| |#2| |#3|) (CATEGORY |domain| (SIGNATURE |rootOf| ((|Union| |#1| "failed") |#3| (|PositiveInteger|))) (SIGNATURE |recip| ((|Union| |#3| "failed") |#3| |#1|)) (SIGNATURE |positive?| ((|Boolean|) |#3| |#1|)) (SIGNATURE |negative?| ((|Boolean|) |#3| |#1|)) (SIGNATURE |zero?| ((|Boolean|) |#3| |#1|))) (|RealRootCharacterizationCategory| |#2| |#3|) (|Join| (|OrderedRing|) (|Field|)) (|UnivariatePolynomialCategory| |#2|)) (T |RealRootCharacterizationCategory&|)) │ │ │ NIL │ │ │ -(|MatrixCategory| |#1| (|IndexedVector| |#1| |#3|) (|IndexedVector| |#1| |#2|)) │ │ │ -((~= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (|zero| (($ (|NonNegativeInteger|)) NIL (|has| |#1| (|AbelianMonoid|)))) (|swap!| (((|Void|) $ (|Integer|) (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|sorted?| (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (((|Boolean|) $) NIL (|has| |#1| (|OrderedSet|)))) (|sort!| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) (($ $) NIL (AND (|has| $ (ATTRIBUTE |shallowlyMutable|)) (|has| |#1| (|OrderedSet|))))) (|sort| (($ (|Mapping| (|Boolean|) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (|OrderedSet|)))) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|setelt| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|))) ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|sample| (($) NIL T CONST)) (|reverse!| (($ $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|reverse| (($ $) NIL)) (|removeDuplicates| (($ $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|remove| (($ |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) (($ (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|)))) ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) ((|#1| (|Mapping| |#1| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|qsetelt!| ((|#1| $ (|Integer|) |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|qelt| ((|#1| $ (|Integer|)) NIL)) (|position| (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) NIL) (((|Integer|) |#1| $) NIL (|has| |#1| (|SetCategory|))) (((|Integer|) |#1| $ (|Integer|)) NIL (|has| |#1| (|SetCategory|)))) (|parts| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|outerProduct| (((|Matrix| |#1|) $ $) NIL (|has| |#1| (|Ring|)))) (|new| (($ (|NonNegativeInteger|) |#1|) NIL)) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|minIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|min| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|merge| (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|members| (((|List| |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|member?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|maxIndex| (((|Integer|) $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|max| (($ $ $) NIL (|has| |#1| (|OrderedSet|)))) (|map!| (($ (|Mapping| |#1| |#1|) $) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|map| (($ (|Mapping| |#1| |#1|) $) NIL) (($ (|Mapping| |#1| |#1| |#1|) $ $) NIL)) (|magnitude| ((|#1| $) NIL (AND (|has| |#1| (|RadicalCategory|)) (|has| |#1| (|Ring|))))) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) NIL)) (|length| ((|#1| $) NIL (AND (|has| |#1| (|RadicalCategory|)) (|has| |#1| (|Ring|))))) (|latex| (((|String|) $) NIL (|has| |#1| (|SetCategory|)))) (|insert| (($ |#1| $ (|Integer|)) NIL) (($ $ $ (|Integer|)) NIL)) (|indices| (((|List| (|Integer|)) $) NIL)) (|index?| (((|Boolean|) (|Integer|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL (|has| |#1| (|SetCategory|)))) (|first| ((|#1| $) NIL (|has| (|Integer|) (|OrderedSet|)))) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) NIL)) (|fill!| (($ $ |#1|) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (|eval| (($ $ (|List| (|Equation| |#1|))) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|Equation| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ |#1| |#1|) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|)))) (($ $ (|List| |#1|) (|List| |#1|)) NIL (AND (|has| |#1| (|Evalable| |#1|)) (|has| |#1| (|SetCategory|))))) (|eq?| (((|Boolean|) $ $) NIL)) (|entry?| (((|Boolean|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|entries| (((|List| |#1|) $) NIL)) (|empty?| (((|Boolean|) $) NIL)) (|empty| (($) NIL)) (|elt| ((|#1| $ (|Integer|) |#1|) NIL) ((|#1| $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|dot| ((|#1| $ $) NIL (|has| |#1| (|Ring|)))) (|delete| (($ $ (|Integer|)) NIL) (($ $ (|UniversalSegment| (|Integer|))) NIL)) (|cross| (($ $ $) NIL (|has| |#1| (|Ring|)))) (|count| (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))) (((|NonNegativeInteger|) |#1| $) NIL (AND (|has| $ (ATTRIBUTE |finiteAggregate|)) (|has| |#1| (|SetCategory|))))) (|copyInto!| (($ $ $ (|Integer|)) NIL (|has| $ (ATTRIBUTE |shallowlyMutable|)))) (|copy| (($ $) NIL)) (|convert| (((|InputForm|) $) NIL (|has| |#1| (|ConvertibleTo| (|InputForm|))))) (|construct| (($ (|List| |#1|)) NIL)) (|concat| (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (|List| $)) NIL)) (|coerce| (((|OutputForm|) $) NIL (|has| |#1| (|SetCategory|)))) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|)))) (>= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (> (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (= (((|Boolean|) $ $) NIL (|has| |#1| (|SetCategory|)))) (<= (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (< (((|Boolean|) $ $) NIL (|has| |#1| (|OrderedSet|)))) (- (($ $) NIL (|has| |#1| (|AbelianGroup|))) (($ $ $) NIL (|has| |#1| (|AbelianGroup|)))) (+ (($ $ $) NIL (|has| |#1| (|AbelianSemiGroup|)))) (* (($ (|Integer|) $) NIL (|has| |#1| (|AbelianGroup|))) (($ |#1| $) NIL (|has| |#1| (|Monoid|))) (($ $ |#1|) NIL (|has| |#1| (|Monoid|)))) (|#| (((|NonNegativeInteger|) $) NIL (|has| $ (ATTRIBUTE |finiteAggregate|))))) │ │ │ -(((|IndexedVector| |#1| |#2|) (|VectorCategory| |#1|) (|Type|) (|Integer|)) (T |IndexedVector|)) │ │ │ +(CATEGORY |domain| (SIGNATURE |rootOf| ((|Union| |#1| "failed") |#3| (|PositiveInteger|))) (SIGNATURE |recip| ((|Union| |#3| "failed") |#3| |#1|)) (SIGNATURE |positive?| ((|Boolean|) |#3| |#1|)) (SIGNATURE |negative?| ((|Boolean|) |#3| |#1|)) (SIGNATURE |zero?| ((|Boolean|) |#3| |#1|))) │ │ │ +((|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) 52))) │ │ │ +(((|AlgebraicHermiteIntegration| |#1| |#2| |#3| |#4|) (CATEGORY |package| (SIGNATURE |HermiteIntegrate| ((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)))) (|Field|) (|UnivariatePolynomialCategory| |#1|) (|UnivariatePolynomialCategory| (|Fraction| |#2|)) (|FunctionFieldCategory| |#1| |#2| |#3|)) (T |AlgebraicHermiteIntegration|)) │ │ │ +((|HermiteIntegrate| (*1 *2 *3 *4) (AND (|isDomain| *4 (|Mapping| *6 *6)) (|ofCategory| *6 (|UnivariatePolynomialCategory| *5)) (|ofCategory| *5 (|Field|)) (|ofCategory| *7 (|UnivariatePolynomialCategory| (|Fraction| *6))) (|isDomain| *2 (|Record| (|:| |answer| *3) (|:| |logpart| *3))) (|isDomain| *1 (|AlgebraicHermiteIntegration| *5 *6 *7 *3)) (|ofCategory| *3 (|FunctionFieldCategory| *5 *6 *7))))) │ │ │ +(CATEGORY |package| (SIGNATURE |HermiteIntegrate| ((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)))) │ │ │ +((/ (((|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|)) 18)) (- (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|)) 12)) (+ (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|)) 10)) (* (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|)) 14))) │ │ │ +(((|MappingPackage4| |#1| |#2|) (CATEGORY |package| (SIGNATURE + ((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|))) (SIGNATURE - ((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|))) (SIGNATURE * ((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|))) (SIGNATURE / ((|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|)))) (|SetCategory|) (|Ring|)) (T |MappingPackage4|)) │ │ │ +((/ (*1 *2 *2 *2) (AND (|isDomain| *2 (|Mapping| (|Expression| (|Integer|)) *3)) (|ofCategory| *3 (|SetCategory|)) (|isDomain| *1 (|MappingPackage4| *3 *4)) (|ofCategory| *4 (|Ring|)))) (* (*1 *2 *2 *2) (AND (|isDomain| *2 (|Mapping| *4 *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|MappingPackage4| *3 *4)))) (- (*1 *2 *2 *2) (AND (|isDomain| *2 (|Mapping| *4 *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|MappingPackage4| *3 *4)))) (+ (*1 *2 *2 *2) (AND (|isDomain| *2 (|Mapping| *4 *3)) (|ofCategory| *3 (|SetCategory|)) (|ofCategory| *4 (|Ring|)) (|isDomain| *1 (|MappingPackage4| *3 *4))))) │ │ │ +(CATEGORY |package| (SIGNATURE + ((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|))) (SIGNATURE - ((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|))) (SIGNATURE * ((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|))) (SIGNATURE / ((|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|)))) │ │ │ +((~= (((|Boolean|) $ $) 7)) (|setelt| ((|#1| $ (|Integer|) |#1|) 14)) (|removeConjugate| (((|List| $) (|List| $) (|NonNegativeInteger|)) 22) (((|List| $) (|List| $)) 21)) (|rational?| (((|Boolean|) $ (|NonNegativeInteger|)) 20) (((|Boolean|) $) 19)) (|projectivePoint| (($ (|List| |#1|)) 30)) (|pointValue| (((|List| |#1|) $) 13)) (|orbit| (((|List| $) $) 26) (((|List| $) $ (|NonNegativeInteger|)) 25)) (|list| (((|List| |#1|) $) 16)) (|latex| (((|String|) $) 9)) (|lastNonNull| (((|Integer|) $) 17)) (|lastNonNul| (((|Integer|) $) 32)) (|homogenize| (($ $ (|Integer|)) 31) (($ $) 18)) (|hash| (((|SingleInteger|) $) 10)) (|elt| ((|#1| $ (|Integer|)) 15)) (|degree| (((|PositiveInteger|) $) 12)) (|definingField| ((|#1| $) 29)) (|conjugate| (($ $ (|NonNegativeInteger|)) 24) (($ $) 23)) (|coerce| (((|OutputForm|) $) 11) (((|List| |#1|) $) 28) (($ (|List| |#1|)) 27)) (= (((|Boolean|) $ $) 6))) │ │ │ +(((|ProjectiveSpaceCategory| |#1|) (|Category|) (|Field|)) (T |ProjectiveSpaceCategory|)) │ │ │ +((|lastNonNul| (*1 *2 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Integer|)))) (|homogenize| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)))) (|projectivePoint| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)))) (|definingField| (*1 *2 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|List| *3)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|List| *3)) (|ofCategory| *3 (|Field|)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)))) (|orbit| (*1 *2 *1) (AND (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)))) (|orbit| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *4)))) (|conjugate| (*1 *1 *1 *2) (AND (|isDomain| *2 (|NonNegativeInteger|)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)))) (|conjugate| (*1 *1 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|removeConjugate| (*1 *2 *2 *3) (AND (|isDomain| *2 (|List| *1)) (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *4)) (|ofCategory| *4 (|Field|)))) (|removeConjugate| (*1 *2 *2) (AND (|isDomain| *2 (|List| *1)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)))) (|rational?| (*1 *2 *1 *3) (AND (|isDomain| *3 (|NonNegativeInteger|)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *4)) (|ofCategory| *4 (|Field|)) (|isDomain| *2 (|Boolean|)))) (|rational?| (*1 *2 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Boolean|)))) (|homogenize| (*1 *1 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|lastNonNull| (*1 *2 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Integer|)))) (|list| (*1 *2 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|List| *3)))) (|elt| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|setelt| (*1 *2 *1 *3 *2) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|ProjectiveSpaceCategory| *2)) (|ofCategory| *2 (|Field|)))) (|pointValue| (*1 *2 *1) (AND (|ofCategory| *1 (|ProjectiveSpaceCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|List| *3))))) │ │ │ +(|Join| (|SetCategoryWithDegree|) (CATEGORY |domain| (SIGNATURE |lastNonNul| ((|Integer|) $)) (SIGNATURE |homogenize| ($ $ (|Integer|))) (SIGNATURE |projectivePoint| ($ (|List| |t#1|))) (SIGNATURE |definingField| (|t#1| $)) (SIGNATURE |coerce| ((|List| |t#1|) $)) (SIGNATURE |coerce| ($ (|List| |t#1|))) (SIGNATURE |orbit| ((|List| $) $)) (SIGNATURE |orbit| ((|List| $) $ (|NonNegativeInteger|))) (SIGNATURE |conjugate| ($ $ (|NonNegativeInteger|))) (SIGNATURE |conjugate| ($ $)) (SIGNATURE |removeConjugate| ((|List| $) (|List| $) (|NonNegativeInteger|))) (SIGNATURE |removeConjugate| ((|List| $) (|List| $))) (SIGNATURE |rational?| ((|Boolean|) $ (|NonNegativeInteger|))) (SIGNATURE |rational?| ((|Boolean|) $)) (SIGNATURE |homogenize| ($ $)) (SIGNATURE |lastNonNull| ((|Integer|) $)) (SIGNATURE |list| ((|List| |t#1|) $)) (SIGNATURE |elt| (|t#1| $ (|Integer|))) (SIGNATURE |setelt| (|t#1| $ (|Integer|) |t#1|)) (SIGNATURE |pointValue| ((|List| |t#1|) $)))) │ │ │ +(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T) ((|SetCategoryWithDegree|) . T)) │ │ │ +((|shiftHP| (((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|)) NIL (AND (|has| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| (|Symbol|))) (|has| (|Polynomial| (|Integer|)) (|RetractableTo| (|Symbol|))))) (((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) NIL)) (|guessRec| (((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) NIL (AND (|has| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| (|Symbol|))) (|has| (|Polynomial| (|Integer|)) (|RetractableTo| (|Symbol|))))) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|))))) NIL)) (|guessRat| (((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) NIL (AND (|has| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| (|Symbol|))) (|has| (|Polynomial| (|Integer|)) (|RetractableTo| (|Symbol|))))) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|))))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) NIL)) (|guessPade| (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|))))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) NIL)) (|guessPRec| (((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) NIL (AND (|has| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| (|Symbol|))) (|has| (|Polynomial| (|Integer|)) (|RetractableTo| (|Symbol|))))) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|))))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) NIL)) (|guessHolo| (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|))))) NIL)) (|guessHP| (((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) NIL)) (|guessExpRat| (((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) NIL (AND (|has| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| (|Symbol|))) (|has| (|Polynomial| (|Integer|)) (|RetractableTo| (|Symbol|))))) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|))))) NIL)) (|guessBinRat| (((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) NIL (AND (|has| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| (|Symbol|))) (|has| (|Polynomial| (|Integer|)) (|RetractableTo| (|Symbol|))))) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|))))) NIL)) (|guessAlg| (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|))))) NIL)) (|guessADE| (((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) NIL (AND (|has| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| (|Symbol|))) (|has| (|Polynomial| (|Integer|)) (|RetractableTo| (|Symbol|))))) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|))))) NIL)) (|guess| (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (|List| (|Symbol|)) (|List| (|GuessOption|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (|List| (|Symbol|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) NIL) (((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|))))) NIL)) (|diffHP| (((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|)) NIL (AND (|has| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| (|Symbol|))) (|has| (|Polynomial| (|Integer|)) (|RetractableTo| (|Symbol|))))) (((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) NIL))) │ │ │ +(((|GuessPolynomial|) (CATEGORY |package| (SIGNATURE |guess| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guess| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guess| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (|List| (|Symbol|)))) (SIGNATURE |guess| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (|List| (|Symbol|)) (|List| (|GuessOption|)))) (SIGNATURE |guessExpRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guessExpRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guessBinRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guessBinRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (IF (|has| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| (|Symbol|))) (IF (|has| (|Polynomial| (|Integer|)) (|RetractableTo| (|Symbol|))) (PROGN (SIGNATURE |guessExpRat| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessBinRat| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)))) |noBranch|) |noBranch|) (SIGNATURE |guessHP| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|))))) (SIGNATURE |guessADE| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guessADE| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guessAlg| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guessAlg| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guessHolo| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guessHolo| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guessPade| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guessPade| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guessRec| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guessRec| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guessPRec| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guessPRec| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guessRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guessRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |diffHP| ((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) (SIGNATURE |shiftHP| ((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) (IF (|has| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| (|Symbol|))) (IF (|has| (|Polynomial| (|Integer|)) (|RetractableTo| (|Symbol|))) (PROGN (SIGNATURE |shiftHP| ((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |diffHP| ((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessRec| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessPRec| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessRat| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessADE| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)))) |noBranch|) |noBranch|))) (T |GuessPolynomial|)) │ │ │ +((|guessADE| (*1 *2 *3) (AND (|ofCategory| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| *3)) (|ofCategory| (|Polynomial| (|Integer|)) (|RetractableTo| *3)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessRat| (*1 *2 *3) (AND (|ofCategory| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| *3)) (|ofCategory| (|Polynomial| (|Integer|)) (|RetractableTo| *3)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessPRec| (*1 *2 *3) (AND (|ofCategory| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| *3)) (|ofCategory| (|Polynomial| (|Integer|)) (|RetractableTo| *3)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessRec| (*1 *2 *3) (AND (|ofCategory| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| *3)) (|ofCategory| (|Polynomial| (|Integer|)) (|RetractableTo| *3)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessPolynomial|)))) (|diffHP| (*1 *2 *3) (AND (|ofCategory| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| *3)) (|ofCategory| (|Polynomial| (|Integer|)) (|RetractableTo| *3)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) *3)) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) *3 (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessPolynomial|)))) (|shiftHP| (*1 *2 *3) (AND (|ofCategory| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| *3)) (|ofCategory| (|Polynomial| (|Integer|)) (|RetractableTo| *3)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) *3)) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) *3 (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessPolynomial|)))) (|shiftHP| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|GuessOption|))) (|isDomain| *2 (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|diffHP| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|GuessOption|))) (|isDomain| *2 (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessRat| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessRat| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessPRec| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessPRec| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessRec| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessRec| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessPade| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessPade| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessHolo| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessHolo| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessAlg| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessAlg| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessADE| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessADE| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessHP| (*1 *2 *3) (AND (|isDomain| *3 (|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) (|isDomain| *2 (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessBinRat| (*1 *2 *3) (AND (|ofCategory| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| *3)) (|ofCategory| (|Polynomial| (|Integer|)) (|RetractableTo| *3)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessExpRat| (*1 *2 *3) (AND (|ofCategory| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| *3)) (|ofCategory| (|Polynomial| (|Integer|)) (|RetractableTo| *3)) (|isDomain| *3 (|Symbol|)) (|isDomain| *2 (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessBinRat| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessBinRat| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessExpRat| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guessExpRat| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guess| (*1 *2 *3 *4 *5 *6) (AND (|isDomain| *4 (|List| (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))))) (|isDomain| *5 (|List| (|Symbol|))) (|isDomain| *6 (|List| (|GuessOption|))) (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guess| (*1 *2 *3 *4 *5) (AND (|isDomain| *4 (|List| (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))))) (|isDomain| *5 (|List| (|Symbol|))) (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guess| (*1 *2 *3 *4) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *4 (|List| (|GuessOption|))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|)))) (|guess| (*1 *2 *3) (AND (|isDomain| *3 (|List| (|Fraction| (|Polynomial| (|Integer|))))) (|isDomain| *2 (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|))))) (|isDomain| *1 (|GuessPolynomial|))))) │ │ │ +(CATEGORY |package| (SIGNATURE |guess| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guess| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guess| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (|List| (|Symbol|)))) (SIGNATURE |guess| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (|List| (|Symbol|)) (|List| (|GuessOption|)))) (SIGNATURE |guessExpRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guessExpRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guessBinRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guessBinRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (IF (|has| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| (|Symbol|))) (IF (|has| (|Polynomial| (|Integer|)) (|RetractableTo| (|Symbol|))) (PROGN (SIGNATURE |guessExpRat| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessBinRat| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)))) |noBranch|) |noBranch|) (SIGNATURE |guessHP| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|))))) (SIGNATURE |guessADE| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guessADE| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guessAlg| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guessAlg| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guessHolo| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guessHolo| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guessPade| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guessPade| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guessRec| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guessRec| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guessPRec| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guessPRec| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |guessRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|)))) (SIGNATURE |guessRat| ((|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))))) (SIGNATURE |diffHP| ((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) (SIGNATURE |shiftHP| ((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) (IF (|has| (|Fraction| (|Polynomial| (|Integer|))) (|RetractableTo| (|Symbol|))) (IF (|has| (|Polynomial| (|Integer|)) (|RetractableTo| (|Symbol|))) (PROGN (SIGNATURE |shiftHP| ((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |diffHP| ((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|))))) (|UnivariateFormalPowerSeries| (|Fraction| (|Polynomial| (|Integer|)))))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| |exprStream| (|Mapping| (|Stream| (|Expression| (|Integer|))) (|Expression| (|Integer|)) (|Symbol|))) (|:| A (|Mapping| (|Polynomial| (|Integer|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| (|Polynomial| (|Integer|))))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|)))) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| (|Integer|))))))) (|:| AX (|Mapping| (|Expression| (|Integer|)) (|NonNegativeInteger|) (|Symbol|) (|Expression| (|Integer|)))) (|:| C (|Mapping| (|List| (|Polynomial| (|Integer|))) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessRec| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessPRec| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessRat| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|))) (SIGNATURE |guessADE| ((|Mapping| (|List| (|Record| (|:| |function| (|Expression| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)))) |noBranch|) |noBranch|)) │ │ │ +((|eval| (($ $ (|Symbol|) |#2|) NIL) (($ $ (|List| (|Symbol|)) (|List| |#2|)) 18) (($ $ (|List| (|Equation| |#2|))) 14) (($ $ (|Equation| |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (|List| |#2|) (|List| |#2|)) NIL)) (|elt| (($ $ |#2|) 11))) │ │ │ +(((|FullyEvalableOver&| |#1| |#2|) (CATEGORY |domain| (SIGNATURE |elt| (|#1| |#1| |#2|)) (SIGNATURE |eval| (|#1| |#1| (|List| |#2|) (|List| |#2|))) (SIGNATURE |eval| (|#1| |#1| |#2| |#2|)) (SIGNATURE |eval| (|#1| |#1| (|Equation| |#2|))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Equation| |#2|)))) (SIGNATURE |eval| (|#1| |#1| (|List| (|Symbol|)) (|List| |#2|))) (SIGNATURE |eval| (|#1| |#1| (|Symbol|) |#2|))) (|FullyEvalableOver| |#2|) (|SetCategory|)) (T |FullyEvalableOver&|)) │ │ │ NIL │ │ │ -(|VectorCategory| |#1|) │ │ │ -((~= (((|Boolean|) $ $) 7)) (|zero?| (((|Boolean|) $) 15)) (|variables| (((|List| (|SingletonAsOrderedSet|)) $) 117)) (|variable| (((|Symbol|) $) 122)) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 40)) (|unitCanonical| (($ $) 39)) (|unit?| (((|Boolean|) $) 37)) (|truncate| (($ $ (|Integer|) (|Integer|)) 128) (($ $ (|Integer|)) 127)) (|terms| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) 120)) (|subtractIfCan| (((|Union| $ "failed") $ $) 18)) (|squareFreePart| (($ $) 73)) (|squareFree| (((|Factored| $) $) 72)) (|sizeLess?| (((|Boolean|) $ $) 58)) (|shift| (($ $ (|Integer|)) 88)) (|series| (($ (|Integer|) |#1| $) 89)) (|sbt| (($ $ $) 94)) (|sample| (($) 16 T CONST)) (|removeZeroes| (($ (|Integer|) $) 91) (($ $) 90)) (|removeFirstZeroes| (($ $) 95)) (|rem| (($ $ $) 54)) (|reductum| (($ $) 110)) (|recip| (((|Union| $ "failed") $) 33)) (|quo| (($ $ $) 55)) (|printInfo| (((|Boolean|) (|Boolean|)) 85) (((|Boolean|)) 84)) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) 50)) (|prime?| (((|Boolean|) $) 71)) (|posExpnPart| (($ $) 97)) (|pole?| (((|Boolean|) $) 118)) (|orderIfNegative| (((|Union| (|Integer|) "failed") $) 96)) (|order| (((|Integer|) $ (|Integer|)) 126) (((|Integer|) $) 125) (((|Integer|) $) 101)) (|one?| (((|Boolean|) $) 30)) (|multiplyExponents| (($ $ (|PositiveInteger|)) 124)) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) 51)) (|monomial?| (((|Boolean|) $) 108)) (|monomial2series| (($ (|List| $) (|List| (|NonNegativeInteger|)) (|Integer|)) 92)) (|monomial| (($ $ (|List| (|SingletonAsOrderedSet|)) (|List| (|Integer|))) 116) (($ $ (|SingletonAsOrderedSet|) (|Integer|)) 115) (($ |#1| (|Integer|)) 109)) (|map| (($ (|Mapping| |#1| |#1|) $) 107)) (|leadingMonomial| (($ $) 105)) (|leadingCoefficient| ((|#1| $) 104)) (|lcmCoef| (((|Record| (|:| |llcmres| $) (|:| |coeff1| $) (|:| |coeff2| $)) $ $) 48)) (|lcm| (($ $ $) 45) (($ (|List| $)) 44)) (|latex| (((|String|) $) 9)) (|inv| (($ $) 70)) (|hash| (((|SingleInteger|) $) 10)) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) 43)) (|gcd| (($ $ $) 47) (($ (|List| $)) 46)) (|findCoef| ((|#1| $ (|Integer|)) 100)) (|filterUpTo| (($ $ (|Integer|)) 87)) (|factor| (((|Factored| $) $) 74)) (|extendedEuclidean| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) 53) (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 52)) (|extend| (($ $ (|Integer|)) 130)) (|exquo| (((|Union| $ "failed") $ $) 41)) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) 49)) (|eval| (((|Stream| |#1|) $ |#1|) 131 (|has| |#1| (SIGNATURE ** (|#1| |#1| (|Integer|)))))) (|euclideanSize| (((|NonNegativeInteger|) $) 57)) (|elt| (($ $ $) 144 (|has| (|Integer|) (|SemiGroup|))) ((|#1| $ (|Integer|)) 121)) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 56)) (|differentiate| (($ $) 143 (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))) (($ $ (|NonNegativeInteger|)) 141 (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))) (($ $ (|Symbol|)) 139 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))) (($ $ (|List| (|Symbol|))) 138 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 137 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 136 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))))) (|delay| (($ (|Mapping| $)) 93)) (|degree| (((|Integer|) $) 106)) (|complete| (($ $) 119)) (|coerce| (((|OutputForm|) $) 11) (($ (|Integer|)) 27) (($ $) 42) (($ (|Fraction| (|Integer|))) 65) (($ |#1|) 114 (|has| |#1| (|CommutativeRing|))) (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) 99) (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) 98)) (|coefficient| ((|#1| $ (|Integer|)) 111)) (|coefOfFirstNonZeroTerm| ((|#1| $) 86)) (|charthRoot| (((|Union| $ "failed") $) 113 (|has| |#1| (|CharacteristicNonZero|)))) (|characteristic| (((|NonNegativeInteger|)) 28)) (|center| ((|#1| $) 123)) (|associates?| (((|Boolean|) $ $) 38)) (|approximate| ((|#1| $ (|Integer|)) 129 (AND (|has| |#1| (SIGNATURE ** (|#1| |#1| (|Integer|)))) (|has| |#1| (SIGNATURE |coerce| (|#1| (|Symbol|))))))) (^ (($ $ (|PositiveInteger|)) 25) (($ $ (|NonNegativeInteger|)) 32) (($ $ (|Integer|)) 69)) (|Zero| (($) 17 T CONST)) (|One| (($) 29 T CONST)) (D (($ $) 142 (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))) (($ $ (|NonNegativeInteger|)) 140 (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))) (($ $ (|Symbol|)) 135 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))) (($ $ (|List| (|Symbol|))) 134 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))) (($ $ (|Symbol|) (|NonNegativeInteger|)) 133 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))))) (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|))) 132 (AND (|has| |#1| (|PartialDifferentialRing| (|Symbol|))) (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|)))))) (= (((|Boolean|) $ $) 6)) (/ (($ $ $) 64) (($ $ |#1|) 112 (|has| |#1| (|Field|)))) (- (($ $) 21) (($ $ $) 20)) (+ (($ $ $) 13)) (** (($ $ (|PositiveInteger|)) 24) (($ $ (|NonNegativeInteger|)) 31) (($ $ (|Integer|)) 68)) (* (($ (|PositiveInteger|) $) 12) (($ (|NonNegativeInteger|) $) 14) (($ (|Integer|) $) 19) (($ $ $) 23) (($ $ (|Fraction| (|Integer|))) 67) (($ (|Fraction| (|Integer|)) $) 66) (($ |#1| $) 103) (($ $ |#1|) 102))) │ │ │ -(((|LocalPowerSeriesCategory| |#1|) (|Category|) (|Field|)) (T |LocalPowerSeriesCategory|)) │ │ │ -((|order| (*1 *2 *1) (AND (|ofCategory| *1 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Integer|)))) (|order| (*1 *2 *1) (AND (|ofCategory| *1 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Integer|)))) (|findCoef| (*1 *2 *1 *3) (AND (|isDomain| *3 (|Integer|)) (|ofCategory| *1 (|LocalPowerSeriesCategory| *2)) (|ofCategory| *2 (|Field|)))) (|coerce| (*1 *1 *2) (AND (|isDomain| *2 (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| *3)))) (|ofCategory| *3 (|Field|)) (|ofCategory| *1 (|LocalPowerSeriesCategory| *3)))) (|coerce| (*1 *2 *1) (AND (|ofCategory| *1 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| *3)))))) (|posExpnPart| (*1 *1 *1) (AND (|ofCategory| *1 (|LocalPowerSeriesCategory| *2)) (|ofCategory| *2 (|Field|)))) (|orderIfNegative| (*1 *2 *1) (|partial| AND (|ofCategory| *1 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Integer|)))) (|removeFirstZeroes| (*1 *1 *1) (AND (|ofCategory| *1 (|LocalPowerSeriesCategory| *2)) (|ofCategory| *2 (|Field|)))) (|sbt| (*1 *1 *1 *1) (AND (|ofCategory| *1 (|LocalPowerSeriesCategory| *2)) (|ofCategory| *2 (|Field|)))) (|delay| (*1 *1 *2) (AND (|isDomain| *2 (|Mapping| *1)) (|ofCategory| *1 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *3 (|Field|)))) (|monomial2series| (*1 *1 *2 *3 *4) (AND (|isDomain| *2 (|List| *1)) (|isDomain| *3 (|List| (|NonNegativeInteger|))) (|isDomain| *4 (|Integer|)) (|ofCategory| *1 (|LocalPowerSeriesCategory| *5)) (|ofCategory| *5 (|Field|)))) (|removeZeroes| (*1 *1 *2 *1) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *3 (|Field|)))) (|removeZeroes| (*1 *1 *1) (AND (|ofCategory| *1 (|LocalPowerSeriesCategory| *2)) (|ofCategory| *2 (|Field|)))) (|series| (*1 *1 *2 *3 *1) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *3 (|Field|)))) (|shift| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *3 (|Field|)))) (|filterUpTo| (*1 *1 *1 *2) (AND (|isDomain| *2 (|Integer|)) (|ofCategory| *1 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *3 (|Field|)))) (|coefOfFirstNonZeroTerm| (*1 *2 *1) (AND (|ofCategory| *1 (|LocalPowerSeriesCategory| *2)) (|ofCategory| *2 (|Field|)))) (|printInfo| (*1 *2 *2) (AND (|isDomain| *2 (|Boolean|)) (|ofCategory| *1 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *3 (|Field|)))) (|printInfo| (*1 *2) (AND (|ofCategory| *1 (|LocalPowerSeriesCategory| *3)) (|ofCategory| *3 (|Field|)) (|isDomain| *2 (|Boolean|))))) │ │ │ -(|Join| (|Field|) (|UnivariatePowerSeriesCategory| |t#1| (|Integer|)) (CATEGORY |domain| (SIGNATURE |order| ((|Integer|) $)) (SIGNATURE |findCoef| (|t#1| $ (|Integer|))) (SIGNATURE |coerce| ($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |t#1|))))) (SIGNATURE |coerce| ((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |t#1|))) $)) (SIGNATURE |posExpnPart| ($ $)) (SIGNATURE |orderIfNegative| ((|Union| (|Integer|) "failed") $)) (SIGNATURE |removeFirstZeroes| ($ $)) (SIGNATURE |sbt| ($ $ $)) (SIGNATURE |delay| ($ (|Mapping| $))) (SIGNATURE |monomial2series| ($ (|List| $) (|List| (|NonNegativeInteger|)) (|Integer|))) (SIGNATURE |removeZeroes| ($ (|Integer|) $)) (SIGNATURE |removeZeroes| ($ $)) (SIGNATURE |series| ($ (|Integer|) |t#1| $)) (SIGNATURE |shift| ($ $ (|Integer|))) (SIGNATURE |filterUpTo| ($ $ (|Integer|))) (SIGNATURE |coefOfFirstNonZeroTerm| (|t#1| $)) (SIGNATURE |printInfo| ((|Boolean|) (|Boolean|))) (SIGNATURE |printInfo| ((|Boolean|))))) │ │ │ -(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianMonoidRing| |#1| (|Integer|)) . T) ((|AbelianSemiGroup|) . T) ((|Algebra| (|Fraction| (|Integer|))) . T) ((|Algebra| |#1|) |has| |#1| (|CommutativeRing|)) ((|Algebra| $) . T) ((|BasicType|) . T) ((|BiModule| (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) . T) ((|BiModule| |#1| |#1|) . T) ((|BiModule| $ $) . T) ((|CancellationAbelianMonoid|) . T) ((|CharacteristicNonZero|) |has| |#1| (|CharacteristicNonZero|)) ((|CharacteristicZero|) |has| |#1| (|CharacteristicZero|)) ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T) ((|DifferentialRing|) |has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) ((|DivisionRing|) . T) ((|Eltable| $ $) |has| (|Integer|) (|SemiGroup|)) ((|EntireRing|) . T) ((|EuclideanDomain|) . T) ((|Field|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T) ((|LeftModule| (|Fraction| (|Integer|))) . T) ((|LeftModule| |#1|) . T) ((|LeftModule| $) . T) ((|LeftOreRing|) . T) ((|Module| (|Fraction| (|Integer|))) . T) ((|Module| |#1|) |has| |#1| (|CommutativeRing|)) ((|Module| $) . T) ((|Monoid|) . T) ((|PartialDifferentialRing| (|Symbol|)) AND (|has| |#1| (SIGNATURE * (|#1| (|Integer|) |#1|))) (|has| |#1| (|PartialDifferentialRing| (|Symbol|)))) ((|PowerSeriesCategory| |#1| (|Integer|) (|SingletonAsOrderedSet|)) . T) ((|PrincipalIdealDomain|) . T) ((|RightModule| (|Fraction| (|Integer|))) . T) ((|RightModule| |#1|) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T) ((|SemiGroup|) . T) ((|SetCategory|) . T) ((|UniqueFactorizationDomain|) . T) ((|UnivariatePowerSeriesCategory| |#1| (|Integer|)) . T)) │ │ │ -((~= (((|Boolean|) $ $) NIL)) (|zero?| (((|Boolean|) $) NIL)) (|symmetricSquare| (($ $) NIL (|has| |#1| (|Field|)))) (|symmetricProduct| (($ $ $) NIL (|has| |#1| (|Field|)))) (|symmetricPower| (($ $ (|NonNegativeInteger|)) NIL (|has| |#1| (|Field|)))) (|subtractIfCan| (((|Union| $ "failed") $ $) NIL)) (|sample| (($) NIL T CONST)) (|rightRemainder| (($ $ $) NIL (|has| |#1| (|Field|)))) (|rightQuotient| (($ $ $) NIL (|has| |#1| (|Field|)))) (|rightLcm| (($ $ $) NIL (|has| |#1| (|Field|)))) (|rightGcd| (($ $ $) NIL (|has| |#1| (|Field|)))) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| |#1| (|Field|)))) (|rightExactQuotient| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|Field|)))) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#1| (|Field|)))) (|retractIfCan| (((|Union| (|Integer|) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Union| (|Fraction| (|Integer|)) "failed") $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (((|Union| |#1| "failed") $) NIL)) (|retract| (((|Integer|) $) NIL (|has| |#1| (|RetractableTo| (|Integer|)))) (((|Fraction| (|Integer|)) $) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) ((|#1| $) NIL)) (|reductum| (($ $) NIL)) (|recip| (((|Union| $ "failed") $) NIL)) (|primitivePart| (($ $) NIL (|has| |#1| (|GcdDomain|)))) (|one?| (((|Boolean|) $) NIL)) (|monomial| (($ |#1| (|NonNegativeInteger|)) NIL)) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#1| (|IntegralDomain|)))) (|minimumDegree| (((|NonNegativeInteger|) $) NIL)) (|leftRemainder| (($ $ $) NIL (|has| |#1| (|Field|)))) (|leftQuotient| (($ $ $) NIL (|has| |#1| (|Field|)))) (|leftLcm| (($ $ $) NIL (|has| |#1| (|Field|)))) (|leftGcd| (($ $ $) NIL (|has| |#1| (|Field|)))) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) NIL (|has| |#1| (|Field|)))) (|leftExactQuotient| (((|Union| $ "failed") $ $) NIL (|has| |#1| (|Field|)))) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) NIL (|has| |#1| (|Field|)))) (|leadingCoefficient| ((|#1| $) NIL)) (|latex| (((|String|) $) NIL)) (|hash| (((|SingleInteger|) $) NIL)) (|exquo| (((|Union| $ "failed") $ |#1|) NIL (|has| |#1| (|IntegralDomain|)))) (|elt| ((|#1| $ |#1|) NIL)) (|directSum| (($ $ $) NIL (|has| |#1| (|Field|)))) (|degree| (((|NonNegativeInteger|) $) NIL)) (|content| ((|#1| $) NIL (|has| |#1| (|GcdDomain|)))) (|coerce| (((|OutputForm|) $) NIL) (($ (|Integer|)) NIL) (($ (|Fraction| (|Integer|))) NIL (|has| |#1| (|RetractableTo| (|Fraction| (|Integer|))))) (($ |#1|) NIL)) (|coefficients| (((|List| |#1|) $) NIL)) (|coefficient| ((|#1| $ (|NonNegativ TRUNCATED DUE TO SIZE LIMIT: 10485760 bytes